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Influence Function and Asymptotic Efficiency
of Scatter Matrix Based Array Processors:

Case MVDR Beamformer
Esa Ollila, Member, IEEE, and Visa Koivunen, Senior Member, IEEE

Abstract—In this paper, we consider array processors that are
scale-invariant functions of the array covariance matrix. The em-
phasis is on Capon’s MVDR beamformer. We call such an array
processor as scatter matrix based (SMB) array processor since the
covariance matrix is required only up to a constant scalar and
thus a scatter matrix (proportional to covariance under finite co-
variance assumption) provides sufficient information. In order to
establish interesting statistical robustness and large sample prop-
erties, we derive a general expression for the influence function
and the asymptotic covariance structure of SMB-MVDR beam-
former weights. Our results apply under the class of complex ellip-
tically symmetric distributions, which includes the commonly used
complex normal distribution as a special case. We illustrate the
theory by deriving the IF and asymptotic relative efficiencies of the
conventional SMB-MVDR beamformer that employs the sample
covariance matrix and beamformers that employ robust -esti-
mators of scatter. Theoretical findings are confirmed by simula-
tions. Our findings favor beamformers based upon -estimators
of scatter, since they combine a high efficiency with appealing ro-
bustness properties.

Index Terms— -estimation, beamforming, complex elliptical
distributions, influence function, robustness, statistical efficiency,
statistical functional.

I. INTRODUCTION

O PTIMAL array processors are derived under idealized
assumptions, e.g., that the covariance matrix

of the array output vector is known, and some
times, the distribution of is assumed to be known also, e.g.,
the conventional (circular) complex normal (CN) distribution.
The resulting array processor is often found to be a function
of the covariance matrix alone, i.e., of the form , where

is a function that maps the covariance ma-
trix to a vector in complex Euclidean -space

, where denotes the set of complex positive definite
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Hermitian matrices. If the array processor is scale-in-
variant (positively homogeneous function of degree zero), i.e.,

for all and (1)

then it requires covariance matrix only up to a constant scalar,
and thus requires information on the “scatter” of the data set
only but not on the “scale.” Hence, one may replace in

by a more general notion of covariance, called the scatter
matrix , which is proportional to under finite vari-
ance assumption under the class of circular complex elliptically
symmetric (CES) [1] distributions that includes the widely used
CN distribution as an important special case. Covariance ma-
trix is an example of a scatter matrix but more general scatter
matrices exists which do not rely upon finiteness of variances,
e.g., robust -estimators of scatter [2], [3]. We call resulting
array processor as a scatter matrix based (SMB) array
processor.

For example, the classical Capon’s [4] minimum variance dis-
tortionless response (MVDR) beamformer weight vector

(2)

where is the nominal array response vector (assumed to be
known exactly), satisfies criteria (1). In this paper, we define
and study a wide class of MVDR beamformers by replacing
covariance matrix in (2) by a scatter matrix , yielding a
SMB-MVDR beamformer weight vector . In practice,
since the employed scatter matrix is unknown, an intuitive ap-
proach is to replace the true scatter matrix by an estimated value

which yields the estimated SMB-MVDR beamformer .
As an example, if the covariance matrix is our choice for the
scatter matrix, then the commonly used estimate is the sample
covariance matrix (SCM) since it is the
maximum-likelihood estimator (MLE) under the conventional
assumption that the array output data is a random
sample from CN distribution.

The estimated array processor employing the SCM may
yield optimal estimator if the assumptions under which the the-
oretical array processor was derived holds. However, it may
have poor performance when the nominal assumptions are not
valid, e.g., in the face of outliers (outliers occur in array data
e.g., due to heavy-tailed, impulsive noise such as man-made
interference) or (slight/large) departures from nominal distri-
butional assumptions. Hence, it may be advisable to employ
some other estimator of covariance (instead of SCM) that pos-
sess better robustness and statistical efficiency characteristics.
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In this paper, we focus on MVDR beamformer and address the
following questions:

i) How robust to outliers is the MVDR beamformer em-
ploying an estimated covariance matrix?

ii) What is the efficiency (performance loss, gain) of the
MVDR beamformer employing the SCM as opposed to
some other estimator of covariance when the assumption
of normality is not valid?

We address the questions i) and ii) via asymptotic (large
sample) analysis of under the assumption that
is a random sample from a CES distribution. To be more
specific, general expressions for the influence function (IF)
[5] and the asymptotic covariance matrix of the SMB-MVDR
weight vector are established. Our investigations reveal that a
single, easily computable scalar-index of asymptotic relative
efficiency (ARE), defined as a ratio between matrix traces
of the asymptotic covariance matrices, is sufficient and that
the robustness (boundedness and continuity) of the influence
function can be described by a real valued scalar function. Our
findings thus substantially facilitate robustness and accuracy
(efficiency) comparisons of different SMB-MVDR beam-
formers. We illustrate the general theory by calculating the IFs
and AREs of the SMB-MVDR weight vectors employing SCM
and selected complex -estimators of scatter. Theoretical
findings are confirmed via simulation studies comparing em-
pirical influence function and finite sample relative efficiencies
with the obtained theoretical counterparts. Our findings favor
SMB-MVDR beamformer based upon robust -estimators,
since they combine a high efficiency with appealing robustness
properties.

We wish to point out that in beamforming literature, “robust”
more commonly refers to robustness to steering errors (impre-
cise knowledge of the array response may be due to uncer-
tainty in array element locations, steering directions and cali-
bration errors) and robustness in the face of insufficient sample
support that may lead to rank deficient SCM or inaccurate es-
timates of the array covariance matrix. The diagonal loading of
the SCM is one of the most popular techniques to overcome the
above problems, i.e., to use , , in place of , which
may not be full rank and hence not invertible. For this type of ro-
bustness studies, see e.g., [6]–[9] and references therein. In this
paper, the term “robust” refers to statistical robustness to out-
liers [5], commonly measured by the concept of the influence
function. We wish to point out that robustness (as measured by
the influence function) of the MVDR beamformer remains unal-
tered by diagonally loading the covariance matrix , i.e., using

, where is some constant diagonal loading
term not dependent on the distribution of . Although (sta-
tistical) robustness of the MVDR weight functional is not im-
proved with diagonal loading, it provides, however, other kind
of robustness by improving the condition number of the esti-
mated array covariance matrix. Naturally, IF is an asymptotic
concept, and it is not the correct tool to analyze the performance
in sample starved scenarios.

The paper is organized as follows. Section II reviews the
family of CES distributions. In Section III, scatter matrix
and the SMB-MVDR beamformer class are defined formally.
Also robust -estimators of scatter matrix are reviewed. In

Section IV, our tools, the IF and asymptotic relative efficiency,
are discussed. It is highlighted that establishing the asymp-
totic covariance structure of a statistic requires calculation of
(asymptotic) covariance matrix and pseudo-covariance matrix.
The statistical robustness and efficiency analysis begins in
Section V, where the IF and asymptotic covariance structure
of SMB-MVDR beamformers are derived. The efficiencies
and robustness of SMB-MVDR beamformers based on SCM
and selected -estimators of scatter are compared as well.
In Section VI, the simulated empirical influence function and
finite sample relative efficiencies of the SMB-MVDR beam-
formers neatly validate the theoretical (asymptotic) findings.
Section VII concludes, and the Appendix presents all the
proofs.

Notation: Superscripts , , and stand for the
Hermitian transpose, transpose and complex conjugate, respec-
tively. Symbol denotes the imaginary unit, denotes the
matrix determinant (or, complex modulus when its argument is
a complex scalar), denotes the matrix trace, extracts
the real part of its argument and denotes the norm of a

vector (i.e., ). Furthermore, symbol reads “has
the same distribution as” and means convergence in dis-
tribution or in law. By convention, whenever

and for any statistical functional , e.g., .

II. COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

Complex random vector (r.v.) has circularly symmetric
(CS) distribution if for all . A prominent
example in this class is the CN distribution: A zero mean
random vector (r.v.) has -variate complex
circular normal distribution, labeled , if and have
joint -variate real normal distribution and a real
covariance matrix of a special form

and (3)

The CN distribution has density [10]–[12]
if the covariance matrix is

nonsingular. If is singular, then CN distribution do
not have density, but the characteristic function (cf.)

always exists and is unique. We
shall write . A natural extension of CN distribution
is the class of (circular) complex elliptically symmetric (CES)
distributions studied in [1]; see also [3] and [13].

Definition 1: Random vector is said to have a (cen-
tered) CES distribution with parameter , if its
p.d.f. is of the form

(4)

where is a fixed function, called the density
generator, independent of and is a normalizing constant.
We shall write .

In (4), is defined as , where
is the surface area of unit complex -sphere

and . Naturally,
could be absorbed into the function , but with this nota-

tion can be independent of the dimension . Observe that the
regions of constant contours are ellipsoids in complex Euclidean
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-space, thus explaining the name for this class of distributions.
CES distributions can also be defined more generally (without
the existence of a density) via their characteristic function [1].
A generalization of CES distributions (avoiding the circularity
assumption) is given in [13].

The functional form of the density generator uniquely
distinguishes different CES distributions from another. For ex-
ample, yields the CN distribution, and

yields the -variate complex -distribution [1], [3] with de-
grees of freedom ( ), labeled . The case
is called the complex Cauchy distribution, and the limiting case

yields the CN distribution.
When the covariance matrix of exists it is proportional to

, namely

(5)

where and the quadratic form
is a positive real random variable (r.va.) with a p.d.f.

(6)

Hence, the covariance matrix of exists if and only if
, i.e., . At -distribution, ,

so as expected. At -distribution,
, indicating that do not possess a finite covariance matrix

for .

III. SCATTER MATRIX BASED MVDR BEAMFORMER

A. Scatter Matrix

Definition 2: Let denote invertible linear transfor-
mation of for any nonsingular . Func-
tional is called a scatter matrix if

.
Equivariance property implies that

(7)

for some positive scalar factor , the value of which
depends both on the functional and on the underlying CES
distribution of only through the density (6) of the quadratic
form . Equations (5) and (7) show that scatter ma-
trix (provided it exists) is proportional to covariance matrix
at all CES distributions with finite covariance matrix. Thus,
scatter matrix can be referred to as generalized covariance ma-
trix, as it is more general concept: can exist for CES
distributions which do not have finite covariance. Classical
example of a scatter matrix is the covariance matrix .

Let denote the empirical distribution function associ-
ated with the data set . Then a natural
plug-in estimator of is . For example, if

, then the (plug-in) estimator is the SCM
since . At the finite sample level,
equivariance under linear transformations implies that for any

nonsingular , the estimator for the transformed data
set is .

B. M-Estimators of Scatter

-estimators of multivariate scatter were first introduced in
[2] for real data and later generalized in [3], [14], and [15] for
complex data. As in the real case, they can be defined by gener-
alizing MLE.

Let be an i.i.d. sample from a CES distri-
bution , where (i.e., sample size is larger
than the number of sensors ). The MLE of , is found
by minimizíng the negative of the log-likelihood function,

. By differentiating
with respect to (using complex matrix differentiation

rules [16]), shows that the MLE is a solution to estimating
equation

(8)

where is a weight function. For the
CN distribution [i.e., ], we have that ,
which yields the SCM as the MLE of . The MLE for
distribution, labeled , is obtained with

(9)

Note that (1) is the highly robust estimator corresponding
to MLE of for the complex Cauchy distribution.

We generalize (8), by defining -estimator of scatter, de-
noted by , as the choice of that solves the
estimating equation

(10)

where is a real-valued weight function on . Hence,
-estimators is a wide class that include the MLEs for CES

distributions as important special cases. -estimators can
be calculated by a simple iterative algorithm described in
the Appendix A. The theoretical (population) counterpart,
the -functional of scatter, denoted by or , is
defined analogously as the solution of

(11)

Observe that (11) reduces to (10) when is the empirical distri-
bution , i.e., the solution of (10) is the plug-in estimator

of . It is easy to show that -functional of scatter
is equivariant in the sense of Definition 2. Due to equivariance,

, where the scalar factor may be
found by solving

(12)

where has density (6). Often need to be solved numeri-
cally from (12) but in some cases an analytic expression can be
derived.
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A prominent robust -estimator, the Huber’s -estimator,
labeled , is defined by

for

for

where is a tuning constant defined so that for a
chosen ( ) and the scaling factor

, where denotes the c.d.f. of chi-squared distri-
bution with degrees of freedom.1 Note that the choice
yields , and thus (1) correspond to the SCM.

By (10), can be interpreted as a weighted covariance ma-
trix. Hence, a robust weight function should descend to
zero. This means that small weights are given to those observa-
tions that are highly outlying in terms of measure .
Note that SCM is an -estimator that gives unit weight ( )
to all observations. Fig. 1(a) plots the weight function (9) of

estimators for selected values of . Note that weight
function (9) tends to weight function of the SCM as ex-
pected (since tends to distribution when ). Thus,

for large values of . Fig. 1(b) depicts weight
function of estimators for selected values of . There
is a tradeoff between robustness and efficiency: low values of
increase robustness (i.e., they give lower weight) but decrease
efficiency at the nominal CN model. Naturally,
for .

C. SMB-MVDR Beamformer

The MVDR beamformer chooses as the minimizer of the
output power while constraining the
beam response along a specific look direction and frequency

to be unity:

subject to where

and denotes the array transfer function (array response,
steering vector) whose functional form is assumed to be known,
i.e., array is calibrated. Note that in narrowband applications
the dependency on can be dropped. The solution to this con-
strained optimization problem is given by in (2). Note
that MVDR beamformer do not make any assumption on the
structure of covariance matrix and hence can be considered as
a “nonparametric method” [17]. The SMB-MVDR beamformer
is defined formally below.

Definition 3: Scatter matrix based MVDR (SMB-MVDR)
weight is defined as

where is a scatter matrix.
Define

where (13)

1The scaling factor � is chosen so that �������� � � when � � � . This
choice assures by (12), that � � � and thus � �� � � ���.

Fig. 1. (a) ���� of 	
���� estimators. (b) ���� of �
��	� estimators.

Since the scatter matrix is proportional to [cf. equation
(7)] at , it follows that

provided that exists. For example, for
all CES distributions possessing finite covariance. Since
in practice, the true scatter matrix is unknown, we
replace it by the plug-in estimator , which yields

as a plug-in estimator for the SMB-MVDR
weight.

Notation: SMB-MVDR weight functional (respectively,
estimator) based on -functional of scatter is denoted by

(respectively, ). The optimal weight functional (respec-
tively, estimator) at employs MLE of (i.e., ) and
is denoted by (respectively, ).

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 03:57 from IEEE Xplore.  Restrictions apply.



OLLILA AND KOIVUNEN: INFLUENCE FUNCTION AND ASYMPTOTIC EFFICIENCY OF SMB ARRAY PROCESSORS 251

IV. TOOLS TO COMPARE ESTIMATORS

A. Influence Function

Main tool for our statistical analysis of an estimator is the
concept of influence function. It is a versatile tool for studying
qualitative robustness (local stability) and large sample prop-
erties of estimators; see [5] and [18]. Denote the complex point
mass distribution function at by and consider the -con-
taminated distribution Then
the influence function of a statistical functional at the distri-
bution is

(14)

One may interpret the influence function as describing the effect
(influence) of an infinitesimal point-mass contamination at on
the estimator, standardized by the mass of the contamination.
Hence, the IF gives asymptotic bias caused by the contamina-
tion. See [5] for a more detailed explanation of the influence
function.

A robust estimator should have a bounded and
continuous IF. Loosely speaking, the boundedness implies that
a small amount of contamination at any point does not have
an arbitrarily large influence on the estimator whereas the con-
tinuity implies that the small changes in the data set cause only
small changes in the estimator. Note however that the IF is an
asymptotic concept, characterizing stability of the estimator as

approaches infinity. Corresponding finite sample version is
obtained by suppressing the limit in (14) and choosing

and . This yields the empirical influence
function (EIF) (also called sensitivity function [5]) of the esti-
mator :

The EIF thus calculates the standardized effect of an additional
observation at on the estimator. In many cases,
is a consistent estimator of [5], [19].

A fundamental result on the form of IF of any scatter matrix
functional at CES distribution was found in [14] and is stated
below for further reference. The result is analogous to the cor-
responding result in the real case [5, p. 276], [20, Lemma 1].

Lemma 1: For any scatter matrix functional pos-
sessing an influence function, there exists two functions

such that

where (nonsingular ),
and .

Lemma 1 implies that the IF of is bounded if and only
if the corresponding “weight functions” and are
bounded.

B. Asymptotic Performance of an Estimator

If r.v. satisfies (3), then it is said to be second-order cir-
cular [21] (or, proper [22]). Asymptotic performance analysis

of an estimator calls for a more general notion of complex nor-
mality that avoids the unnecessary second-order circularity as-
sumption: r.v. is said to have a generalized complex
normal (GCN) distribution if and have joint -variate real
normal distribution. The cf. of GCN distribution is [21], [23]

where is called the pseudo-covariance
matrix. We shall write . As expected, cf. of GCN
distribution reduce to cf. of CN distribution when [which
is the complex form of (3)], i.e., . If is
nonsingular, then GCN possess a density function.

For a complete second-order description of the limiting dis-
tribution of any statistic we need to provide both the
asymptotic covariance and the pseudo-covariance matrix. This
may be clarified by noting that the real multivariate central limit
theorem (e.g., [24, p. 385]) when written into a complex form
reads as follows.

1) Complex Central Limit Theorem (CCLT): Let
be i.i.d. random vectors from with mean

, finite covariance matrix and pseudo-covariance
matrix , then .

Estimator of based on i.i.d. random sample
from has asymptotic GCN distribution with

asymptotic covariance matrix and asymptotic
pseudo-covariance matrix , if

If , then has asymptotic CN distribution. By
CCLT, has GCN distribution with and

. Moreover, has asymptotic CN distribu-
tion if and only if is second-order circular.

If a functional corresponding to an estimator
is sufficiently regular and is an i.i.d. random

sample from , one has that [5], [18]

(15)

It turns out that and, hence by CCLT, is
asymptotically complex normal:

with

(16)

(17)

Although (15) is often true, a rigorous proof may be difficult.
However, given the form of the IF, (16) and (17) can be used
to calculate an expression for the asymptotic covariance matrix
and pseudo-covariance matrix of the estimator in a heuristic
manner.
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Adopting (16) and (17) as the definitions of ASC and ASP, it
was shown in [25] that for the off-diagonal element ( )
of scatter matrix estimator , one has that

and

where denotes element of , and
are constants

and (18)

which depend on the underlying CES distribution via r.va.
possessing density (6). It will be shown in Section V that the

asymptotic covariance structure of SMB-MVDR beamformer
relies upon the constant , but not on .

V. STATISTICAL ANALYSIS OF SMB-MVDR BEAMFORMERS

A. Influence Function

Based on Lemma 1, it is now possible to derive a general
expression for the IF of the SMB-MVDR functional .

Theorem 1: With the notation of Lemma 1, the influence
function of SMB-MVDR functional at a CES distribution

is given by

where is defined in (13) and is the scalar factor (7).
Remark 1: Theorem 1 shows that the IF of is continuous

and bounded if is continuous and bounded. This follows
by noting that when , or equivalently , grows
to infinity, remains bounded. Hence, to validate
qualitative robustness of SMB-MVDR beamformers employing
scatter matrix we only need to study the function ap-
pearing in the IF of in Lemma 1. Note also that the IF of

do not depend on the function , which together with
, fully determines the IF of . This is in line with result

(8.2) of [26] obtained in the real case.
Remark 2: Theorem 1 also shows that ,

i.e., if the contamination point equals the array response ,
then it causes zero influence on the functional.

For the covariance matrix , and
with having density (6). The IF of the associated SMB-MVDR
functional is thus quadratic in and conse-
quently unbounded. In [14], function of the -functional
of scatter was found to be

(19)

Fig. 2. � ��� functions of (a)������ estimators and (b)������ estimators
at 	 .

where the constant is defined as

(20)

where has p.d.f. (6) and the scalar factor is the solution
to (12). Next corollary then follows at once from (19) and
Theorem 1.

Corollary 1: The influence function of SMB-MVDR weight
based on -functional of scatter is continuous and

bounded if and only if is continuous and bounded.
Fig. 2(a) depicts of functionals for choices

at the distribution. As we can see,
-functions corresponding to the robust (1) and (5)

functionals are bounded and continuous. However, when
increases, -function resembles more and more straight line
corresponding to function of the covariance matrix (i.e.,

). Fig. 2(b) depicts of functionals for
choices at the distribution. Recall that

(1) correspond to the covariance matrix. We observe that
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TABLE I
ASYMPTOTIC RELATIVE EFFICIENCIES OF �� BASED ON ������ AND ��	��� ESTIMATORS AT 
 , � AND � DISTRIBUTIONS

(AND DIMENSIONS � � �� 
� �� ��). RECALL THAT ��� (1) CORRESPOND TO SCM

the robust functionals with possess bounded
and continuous -functions.

B. Asymptotic Relative Efficiencies

If we take (16) and (17) as the definitions of the asymptotic
covariance matrix and pseudo-covariance matrix of a functional
then the next theorem holds.

Theorem 2: The asymptotic covariance matrix of the esti-
mated SMB-MVDR weight when sampling from

is

where is defined in (13) and is a positive
constant scalar, , where is given in (18) and

is the scalar factor (7). Furthermore, the asymptotic pseudo-
covariance matrix of vanishes, i.e., .

Remark 3: Note that the ASC of depends on the selected
scatter matrix and on the functional form of the CES distribu-
tion only via the real-valued positive multiplicative constant

. (Observe that the matrix term do not depend
on the choice of and on only via .) Hence, comparisons
of this single scalar index is needed only. It is a suprising result
that ASP vanishes, which means that has asymptotic CN
distribution.

Remark 4: Note that is singular and of rank
(since the nullspace of has dimension 1 due

to MVDR constraint , so ). Thus,
the asymptotic CN distribution of is singular. This is ex-
pected result since singular distributions commonly arise in con-
strained parameter estimation problems, where the constraint
imposes certain degree of deterministicity to the estimator.

The ARE of is calculated as

where correspond to value associated with the optimal
SMB-MVDR beamformer . Thus, ARE .
Loosely speaking, if is based on a sample of observations
(and is large), then is the sample size needed
for to achieve the same accuracy as .

For , the constant , denoted by , is

where the quadratic form possess density (6), is
given in (20) and is the solution to (12). For (i.e., ),
we have that

under
under

Since depends on the second-order moment , the
underlying CES distribution needs to possess finite fourth-
order moments in order that possess asymptotic CN distri-
bution. For example, at distribution with , do not
possess limiting CN distribution.

Table I reports the AREs of based on (using
) and (using ) under

complex normal ( ), complex Cauchy ( ) and distri-
butions for some choices of dimension . Recall that (1)
correspond to the SCM. At CN distribution, we note that the

has the best performance among its robust alter-
natives and that the efficiencies associated with and

are increasing with the dimension: for example, at
, experiences only 0.006 efficiency loss

and (1) which ranks the lowest, has a moderate 8.3 loss
in efficiency. Hence, adding more sensors to the array increases
the (asymptotic) efficiency of the estimated SMB-MVDR
beamformers based upon the above robust -estimators. At

distribution, employed -estimators are superior to the
conventional covariance matrix based beamformer. Curiously,
the efficiencies for the covariance matrix and are
decreasing with the dimension (the decrease being faster for
the covariance matrix) whereas the efficiencies for ,

, (1) and (2) are increasing and tending
towards the optimal value 1 as the dimensionality grows. At
complex Cauchy distribution, all the robust -estimators
are performing very well and their efficiencies are increasing
with the dimension. To conclude, these asymptotic efficiencies
clearly favor estimated SMB-MVDR beamformers based upon
robust -estimators of scatter, since they combine a high
efficiency with appealing robustness properties.

Finite sample covariance matrix (among many other results)
of the conventional estimated MVDR beamformer weight
was found in [27, p. 1785] at to be
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Fig. 3. Averaged SMB-MVDR beampatterns (left) and spectrums (right) for
Setting A (� � ���, SOI at �10 , interferer at 15 ). All estimators perform
comparably.

Hence, we observe the expected result:
as . The re-

sults of [27] were shown to apply for a data matrix
possessing a matrix-variate

CES distribution. A disadvantage of matrix-variate CES dis-
tribution is that it does not allow to be i.i.d. from

other than . Since i.i.d.’ness is a key assumption in this
paper, the class of matrix-variate CES distributions is not a
permissible model here.

VI. NUMERICAL EXAMPLES

A. Finite Sample Robustness

As noted earlier, influence function is a theoretical (asymp-
totic) tool to quantify the robustness of the functional form of
an estimator. We now consider finite sample robustness of the
SMB-MVDR beamformers on simulated data sets. The simula-
tion settings are described below.

Setting A: Gaussian noise: A four-sensor uniform linear
array ( spacing) receives two uncorrelated circular normal

Fig. 4. Averaged SMB-MVDR beampatterns (top) and spectrums (bottom) for
Setting B (� � ���, SOI at �10 , interferer at 15 ). SCM fails, but robust
�������	 and 
�� (1) estimators perform very well.

(Gaussian) signals (of equal variance ) with direction-of-ar-
rivals (DOAs) at 10 (signal-of-interest, SOI) and 15
(interferer). The array output is corrupted by additive noise
vector (independent of the signals), whose elements are i.i.d.
following (circular) complex Gaussian distribution with scale
parameter .

Setting B: Cauchy noise: As Setting A, but noise vector
has i.i.d. elements following circular complex Cauchy dis-
tribution with scale . In both settings, the SNR (dB) is

15 dB.
Figs. 3 and 4 depict the estimated SMB-MVDR beampatterns

and spectrums (number of snapshots ) for look direc-
tion 10 for Settings A and B averaged over 100 realizations.
The employed scatter matrices are the SCM [i.e., (1)],

(1) and . In the Gaussian noise case (Setting A;
Fig. 3), the estimated beampatterns are closely similar, in fact,
overlapping for the SCM and . The estimated spec-
trums associated with the different estimators are overlapping
in the Gaussian case, so they provide essentially the same DOA
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Fig. 5. Averaged ������� �� � � �� for the SCM (top row), �	
�����
(middle row) and 
�� (1) (bottom row). Samples � (� � ������)
are generated from model of Setting A; � � � correspond to the plot of
������� � � ��. The contamination point � � �� � � � is such that � is
fixed and � � � � �	 � varies.

estimates. In the Cauchy noise case (Setting B; Fig. 4), however,
the conventional MVDR fails completely and can not resolve the
two sources: the estimated beampattern and the spectrum are flat
and the mainlobe and the peaks cannot be well identified. The
beampattern associated with (1) and , however,
has a narrow mainlobe centered at the look direction and places
a deep null in the direction of interference. Also the spectrums
for (1) and shows two sharp peaks at the DOAs
of the sources. Hence, the performance loss is negligible by em-
ploying (1) or instead of the SCM in nominal
Gaussian noise conditions. However, significant gain in perfor-
mance is obtained when the noise is heavy-tailed Cauchy.

We now compute the empirical influence functions (EIFs)
for the above estimators for simulated data sets from Set-
ting A. In this case, with ,
where denotes the array response matrix
of ULA for DOAs at 10 (SOI) and 15 (interferer). Let the

-variate contaminating vector be such that only the first
component is allowed to vary, and the remaining
components have fixed values: , , where
denotes the component of the array response . An informa-
tive picture on the effect of contamination on
is obtained by the surface plot of the norm of the empirical influ-
ence function with respect to and . The
EIFs in Fig. 5 are averages over 100 realizations. Sample lengths
are , where the surface plots under
correspond to asymptotic value . As expected,
we observe that when the sample size grows (from to

), the calculated EIF surfaces more accurately resemble
the corresponding theoretical IF surface. However, at the small
sample size ( ), the relative influence of an additional ob-
servation on the estimator is a bit larger than what the IF would
indicate. The surface plots neatly demonstrate the non-robust-
ness of the conventional MVDR beamformer for both the fi-
nite and large sample cases: outlying points with large values of

and/or have bounded influence in case of or
(1) but large and unbounded influence when the conven-

tional SCM is employed.

B. Finite Sample Efficiencies

The asymptotic behavior is often used to approximate the
small sample behavior of an estimator. Therefore, it is impor-
tant to investigate the accuracies of these approximations. In the
following simulation study, estimated finite sample relative ef-
ficiencies are compared with the asymptotic numbers presented
in Table I.

We generated samples ( ) from
-variate ( ) complex normal ( ), Cauchy ( ) and

distributions with

(21)

where with and . Since
is proportional to covariance matrix (provided that it ex-

ists), (21) represents the decomposition of (and thus of
) into signal and noise-plus-interference components. Fur-

thermore, since the noise-plus-interference matrix term is
normalized, represents the signal-to-interference-plus-noise
ratio (SINR) averaged across the sensors. In our sim-
ulation, SINR= 20 (dB), was generated
randomly and is the array response of the ULA at 10
(of SOI). Obtained simulation results were similar for
any other choices of , or . The mean-squared error
(MSE) of the SMB-MVDR weight was calculated by

.

where denotes the computed value for the gener-
ated sample. Finite sample relative efficiency of listed in
Table II is calculated as the ratio . The
corresponding AREs from Table I are also listed under
for easy reference. Recall that (1) correspond to the SCM.
The results show that (expect for the SCM at ) the finite
sample relative efficiencies approximate very well the AREs
even at small sample sizes. At , the SCM appears to have
a gain in efficiency at small sample sizes since the estimated
finite sample efficiencies are considerably higher than the ARE;
also the convergence of finite sample efficiencies toward the
ARE as increases is a bit slow.

VII. CONCLUSION

Optimal array processors are often scale-invariant functions
of the covariance matrix . Hence, they can be based on gen-
eralized covariance matrix , called the scatter matrix. Scatter
matrix is a more general notion than covariance matrix, but pro-
portional to it under the class of CES distributions. In addition
to MVDR considered in this paper, also many other array pro-
cessors, such as the classical complex least-squares estimator
[12, p. 522, 529–530] satisfy (1). Also many high-resolution
subspace methods such as MUSIC and ESPRIT (see [17]), are
scale-invariant since they depend on the covariance matrix only
through its eigenvectors. In this paper, we focused on a scatter
matrix based (SMB-)MVDR beamformer weight vector and de-
rived a general expression for its influence function and asymp-
totic covariance structure.
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TABLE II
FINITE SAMPLE RELATIVE EFFICIENCIES OF �� BASED ON ������ AND ��	��� ESTIMATORS. SAMPLES (LENGTHS � 
 ��� 
�������)

ARE SIMULATED FROM � AND � DISTRIBUTIONS (DIMENSIONS � 
 �� ��)

We showed that the conventional estimated MVDR beam-
former (employing the SCM) is not robust and has a serious
loss in efficiency if the traditional assumption of CN distribu-
tion is not valid. On the other hand, SMB-MVDR beamformers
employing the considered robust -estimators of scatter were
shown to be statistically robust (possessing a bounded and con-
tinuous IF) and have good efficiencies under CN distribution
and (heavy-tailed) complex distribution, e.g., at complex
Cauchy distribution ( ). For example, the Huber’s -esti-
mator with is a very safe choice, as it suffers
negligible performance loss compared to SCM under traditional
CN assumption, but has a superior performance for heavy-tailed
distributions. On the other hand, (1) gives the best safe-
guard against outliers and has a moderate efficiency loss under
CN distribution. Our examples with simulated data confirmed
the theoretical findings. To conclude, our findings favor beam-
formers based upon -estimators of scatter, since they combine
a high efficiency with appealing statistical robustness properties.

APPENDIX A
COMPUTATION OF -ESTIMATOR OF SCATTER

Given any initial estimate , the iterations

converge to the solution of (10) under some mild regularity
conditions. The authors of [2], [18], and [28] consider the real
case only, but the complex case follows similarly. See also dis-
cussions in [3].

As an example, let the initial estimate be the SCM, i.e.,
. The first iteration, or the “1-step M-estimator,” is simply a

weighed sample covariance matrix

If is a robust weighting function, then is a robusti-
fied version of . At the second iteration step, we calculate

as a weighted sample covariance matrix using weights
and proceed analogously until the iter-

ations “converge,” i.e., ,
where is a matrix norm and is predetermined tolerance
level, e.g., . To reduce computation time, one can
always stop after (e.g., ) iterations and take the
“m-step M-estimator” as an approximation for the true

-estimator . MATLAB functions to compute
and estimators are available at http://wooster.hut.fi/
~esollila/MVDR/.

APPENDIX B
PROOF OF THEOREM 1

Lemma 2: With the notation of Lemma 1, the influence
function of at is given by

Proof: Write for the con-
taminated distribution at . Note that . Since

, we obtain that

Rearranging the terms and recalling that gives

which, after substituting the expression for from
Lemma 1, produces the stated expression for the influence func-
tion of .
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Proof of Theorem 1: Simple derivation yields

Then by noting that

and that , the earlier equation can be simplified
to a form

(22)

Using Lemma 2 and noting that yields

Substituting the previous equation into (22) and observing that
(as ), completes the proof.

APPENDIX C
PROOF OF THEOREM 2

First, we need to introduce some notations. Let denote
an operator that transforms a matrix into a vector by stacking the
columns of the matrix and denote the Kronecker product: for
any matrix and , is a block matrix with -block
being equal to . An important identity involving the Kro-
necker product and vec-operator is

(23)

where and are matrices such that the product is
properly defined. Also, some useful, well-known properties of
Kronecker product are: (where
matrices and are such that the products and
are properly defined), ,
and . A commutation matrix [29] is a
block matrix with -block equal to a matrix that has a
1 at entry and 0’s elsewhere. The matrix derives its name
from the property

(24)

Finally, we denote the unit
complex -sphere.

In the proof of Theorem 2, we rely upon Lemmas 3 and 4.
Lemma 3 (Krishnaiah and Lin [1]): Let

with . Then and are
independent, has a uniform distribution on .

Lemma 4: Suppose has a uniform distribution on .
[a] The only fourth-order moments (where

are arbitrary integers between and is by
convention either or ) not equal to zero are

and

for all , .
[b] Write . Then

and
.

Proof: [a] The distribution of remains invariant
under unitary linear transformations, i.e., for
all unitary matrices (so ), e.g., we may
choose as for
arbitrary , . This implies, e.g.,

,
which holds if and only if . Similar arguments
show that all fourth-order moments necessarily vanish with
the exception of and . Now, assume

with . Then, by Lemma 3, and
are independent, has a uniform distribution on

. One can verify from (6), as , that the

quadratic form , where denotes a r.va.
from chi-squared distribution with degrees of freedom.
These facts and the decomposition yields

and

Then rearranging the terms and using
gives us the stated claim. [b] This result is a direct consequence
of the [a]-part of the Lemma.

Proof of Theorem 2: Using (17) and Theorem 1, the ASC
of can be calculated as

(25)

where , , ,
and . Note that and are independent

by Lemma 3 and hence we were able to split the expectation
above into two separate parts, other involving r.va. and
the other involving r.v. via . Also recall that has a uniform
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distribution on and has a density (6). Then using (23) we
have that

(26)

where . Applying Lemma 4 gives

where the last identity follows using (23) and properties of Kro-
necker product. Next note that

where the first identity follows as is positive definite (thus
) and the second identity follows as and

. Hence,
and thus

Here we used the fact that (as ,
which is the constraint imposed by the MVDR beamformer) and
the properties and . Then substituting
the previous equation into (25) yields the stated expression for

.
Similarly, using (17) and Theorem 1, the ASP of can be

calculated as

(27)

Then note that

where we have used Lemma 4 and (26) and rules of calculus in-
volving vec-operator, Kronecker product and commutation ma-
trix listed in (23)–(24). Now it can be inferred that

(since ), which subsequently,
due to (27), implies that .
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