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Compact Cramér–Rao Bound Expression for
Independent Component Analysis

Esa Ollila, Member, IEEE, Hyon-Jung Kim, and Visa Koivunen, Senior Member, IEEE

Abstract—Despite of the increased interest in independent com-
ponent analysis (ICA) during the past two decades, a simple closed
form expression of the Cramér–Rao bound (CRB) for the demixing
matrix estimation has not been established in the open literature.
In the present paper we fill this gap by deriving a simple closed-
form expression for the CRB of the demixing matrix directly from
its definition. A simulation study comparing ICA estimators with
the CRB is given.

Index Terms—Cramér–Rao lower bound, efficient estimator,
FastICA, Fisher information, independent component analysis
(ICA).

I. INTRODUCTION

I NDEPENDENT component analysis (ICA) is a relatively
recent (see [1], [2]) technique of multivariate data analysis

with the purpose of extracting unobserved source signals or in-
dependent components (ICs) from their observed linear mix-
tures. In (real-valued) linear instantaneous ICA model the ob-
served random vector of mixtures is gener-
ated by

(1)

where is unknown mixing matrix
of full rank and is the unobserved random
vector of ICs, i.e., the source signals. The goal is then to
estimate, based on the i.i.d. sample from (1), the
demixing matrix which,
subsequently, allows the estimation of the source vectors that
generated the data by . At this
point, neglect the scaling, sign and permutation ambiguity [1],
[3] in the estimation of the demixing vectors (row
vectors of ). These issues are addressed later in the paper.
Several estimation methods have been proposed to solve the
above problem, for instance FastICA and JADE (see [2] and
[4] for reviews).

It is highly useful to have a lower bound for the statistical vari-
ability (accuracy) of an estimator. Cramér–Rao bound (CRB)
provides a lower bound on the covariance matrix of any unbi-
ased estimator of a parameter vector. CRB, which is the inverse
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of the Fisher information matrix (FIM), can be used e.g., to show
that an unbiased estimator is uniformly minimum variance un-
biased (UMVU) estimator. CRB is also related to asymptotic
optimality theory.

Despite of the increased interest in ICA during the past two
decades, a closed-form expression for the CRB for the demixing
matrix estimation has not been established in the open literature.
CRB is derived indirectly in [5]–[9] via asymptotic approxima-
tions of the likelihood or via asymptotic covariance matrix of the
maximum-likelihood (ML) estimator of a transformed parame-
ters such as the interference-to-signal ratio. In the present paper
we fill this gap by deriving a simple, compact closed-form ex-
pression for the CRB of the vectorized parameter
directly from its definition; see Theorems 1 and 2 of the present
paper.

Remarkably, the CRB depends on the distribution of ’s only
through two scalars defined in (6) and (7) that are rather easy
to calculate. This is in agreement with the earlier (asymptotic)
results derived in [8]. CRB thus provides an easily computable
performance criterion for ICA. Simple expressions for the

-blocks of the inverse of FIM are derived, which, in turn
provide the CRB for estimation of the demixing vectors .
This is a useful e.g., as many ICA methods, such as the 1-unit
FastICA, employ deflation approach, i.e., they do not estimate
the demixing matrix as a whole but a single demixing vector

(one by one, if wanted). In this paper we use different
approach than earlier papers by exploiting matrix results e.g.,
involving Kronecker product, vec-operator and commutation
matrix that enable the derivation of the inverse of FIM into a
simple closed form. Two recent studies on the CRB can also
be found from [10], [11]. Also in these papers, a compact
closed-form expression for the CRB of the demixing matrix
was not explicitly derived.

II. CRLB FOR ICA

Suppose i.i.d. observations are distributed as
having the pdf with parameter vector . The inverse
of the FIM of

(2)

gives, under regularity conditions1, the CRB on the covariance
matrix of an unbiased estimator of in the sense that

(3)

Above, for symmetric matrices and , the notation “
” implies that is positive semidefinite. The CRB (3)

1The regularity conditions are required for the interchange of certain differ-
entiation and integration operators (see [12] for details)
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thus implies, for example, that , where
denotes the th component of and the th element
of . CRB is also related to asymptotic optimality theory in
the sense that asymptotic covariance matrix of the ML estimator
coincides with . Recall however that there may not exist an
unbiased estimator that attains the CRB for all .

Next we recall the scaling, sign and permutation ambiquity
of the ICA problem: if is a diagonal matrix and is a

permutation matrix, then , where
has independent components as well. Therefore, compo-

nents of can be identified only up to multiplying constants and
permutation. Therefore, scales of ’s can be fixed, e.g., by im-
posing . This scaling convention is
common in ICA and it renders (respectively, ) unique up
to permutation and sign of its columns (respectively, rows).

A. Assumptions

First we form the parameter vector

(4)

where are the row vectors of and the “vec” is the
well-known vectorizing operator ([13], p. 30), namely, if is

matrix, then is a -dimensional vector formed
by stacking the column vectors of the matrix on top of each
other. The pdf of is ,
where denotes the pdf of . Use of matrix derivatives gives

where and
is the location score function of the th IC.

The Fisher score of the parameter (4) in the ICA model can
now be calculated by

(5)

The following assumptions on th IC for are
made.

a) has zero mean and unit variance
and only one of the IC’s can have

a Gaussian distribution.
b) The pdf of satisfy

b.1) is continuous with contiguous support,
and exist on the support

of the density ;
b.2) tends to zero as tends to the boundaries of

the support of .
c) The following variances:

(6)

(7)

exist and are finite.
Rather surprisingly, the assumption of finite variance in a)

turns out to be crucial for the existence of the FIM. Such a re-

striction necessarily excludes, for instance, the Cauchy distribu-
tion which does not possess finite variance. Due to indetermi-
nacy of the scales of the ’s, we have assumed in a), without
any loss of generality, that IC’s have unit variance. The mean of

is irrelevant and is, for ease of exposition, assumed to be zero.
The necessity of at most one Gaussian component is a necessary
restriction in ICA [1].

Assumption b.1) is mainly needed for the existence of
the Fisher score (5). Assumption b.2) is not very restrictive
and quite reasonable for densities with infinite support. b.2)
implicitly implies that tends to zero as tends to the
boundaries of the support of , which subsequently implies
that . Hence, b.2) may not often
be satisfied for densities with finite or semi-finite support.
Clearly, e.g., the (zero mean) uniform distribution and the
exponential distribution do not satisfy b). Note that the zero
mean Laplace distribution satisfies b.2) but it does not satisfy
b.1) since it is not differentiable at . Nevertheless, Laplace
distribution can be approximated to within arbitrary precision
by a valid pdf that does satisfy b). Note that the assumption b)
ensures that and it is in fact a necessary con-
dition for the Fisher score (5) to satisfy
[see Lemma 1a) of Appendix B], which is a basic assumption
of CRB theory.

For finiteness of the variances in (6) and (7), the respective
integrands in (6) and (7), i.e., and

need to decay rapidly enough to zero as
tends to in case of infinite support sources, or, be bounded

in case of finite support sources. For example, the zero mean
Rayleigh distribution which is commonly used in communica-
tions theory satisfies assumptions a) and b), but not c). It can be
shown [Lemma 1b) of Appendix B] that with equality if
and only if is a Gaussian random variable and that .

If (second derivative of ) exists at all , then can
be calculated by

provided that d.1) as tends to the boundaries of the
support of . Note that d.1) is satisfied for all infinite support
sources. Thus, the assumption d.1) should be checked for distri-
butions with finite or semi-finite support only. Similarly, if we
assume that exists at all , then

provided that d.2) as tends to the boundaries
of the support of . Note that d.1) implies d.2) if has finite
support, but not in the case of infinite or semi-finite support.
These alternative formulae [proofs are given in Lemma 1c) of
Appendix B] often provide an easier method to calculate the
values of and .

B. FIM and Its Inverse

We may calculate the FIM (2) using the expression

(8)
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where denotes the identity matrix. Here we applied (5) and
algebraic properties involving the vec transformation and the
Kronecker product (c.f. Appendix A) and that follows ICA
model, i.e., and .

Next theorem reveals the compact expression of FIM. The
proofs of the theorems are given in Appendix C.

Theorem 1: In the ICA model (1) and under Assumptions
a)-c), the FIM of is a block matrix
with -block being equal to matrix:

if

if

Remark 1: The whole matrix can be constructed
using the above blocks via the formula (15) in the
Appendix A.

Remark 2: The FIM of Theorem 1 is not in agreement with
(34) of [10]. This is due to the fact that the pdf
for the i.i.d. sample in (32) of [10] has a su-
perscript missing from which subsequently leads to
an inaccurate expression for the entries of FIM. To be more spe-
cific, in (34) of [10], the first term (containing the term )
is wrong. If that term is eliminated, then the element-wise ex-
pression (34) of [10] and the block-matrix expression of The-
orem 1 are equivalent. Naturally, for , the expressions are
equivalent without modifications.

Using Theorem 1, a simple and compact expression for the
inverse of the FIM can now be presented.

Theorem 2: In the ICA model (1) and under Assumptions
a)-c) and denoting exists and is a
block matrix with -block being equal to a matrix:

if

if

Note that diagonal blocks give the CRB for an unbi-
ased estimator of the demixing vector :

for . Theorem 2 shows that the CRB depends on
the distributions of only through the scalars and for

. Theorem 2 also implies that only one of ’s can be
Gaussian: if the first and second component, say, are Gaussian,
then [Lemma 1 b) in Appendix B] and

is not defined. Still, even in this case, any other block
for exists (since the denominators

, do not vanish), indicating that all the remaining rows
of expect the first two can be consistently estimated. That
is, the presence of two Gaussian sources does not eliminate the
possibility to recover the other sources.

In ICA, the performance of the separation is often investi-
gated via

since the estimated th source is
. Thus, and for rep-

resent the magnitude and the average power of interference of

th source in the estimated th source signal. Since ,
the variance reflects how accurately the presence of
th source itself is estimated. The CRB for is

independent of the parameter as it is a nonsingular linear
transformation of , i.e., , where
denotes the Kronecker product: for any matrix and
is a block matrix with -block being equal to . There-
fore, , which by (3) and (8)
indicate that

(9)

where denotes the value of at (i.e., at
). Hence, , and Theorem 2 gives the

following bounds:

and

where may be interpreted as the average power of interfering
source signals to the estimated th source.

The fact that the CRB for elements of is independent of
is in agreement with the equivariance property [14] shared by
many ICA estimators. To be more specific, let be
an estimator of based upon i.i.d. data set
from the ICA model (1). Thus, the data matrix can
be factored as , where is an
i.i.d. data set distributed as . Equivariant estimator satisfies

and thus is
independent of . This property is nicely reflected in the above
derived bound (9) for . See also [15] for a similar result con-
cerning the induced bound on .

III. SIMULATION STUDY

The performance of FastICA [16], [17] algorithm is next
compared with the CRB via a simulation study. Over the past
ten years, the FastICA algorithm has become a benchmark
method of ICA due to its simplicity, fast computation and a
user-friendly public-domain software.2 The two variants of
FastICA, the symmetric approach and the 1-unit (or deflation)
approach and the possibility to choose the nonlinearity, provide
a vast selection of FastICA estimators, which can have largely
different statistical properties. We compare four different Fas-
tICA estimators: both the symmetric and the 1-unit FastICA
estimators using nonlinearities “pow3” and “tanh.” These
estimators are hereafter referred by obvious acronyms POW3,
TANH, 1u-POW3 and 1u-TANH. The nonlinearity pow3 is the
original [16] FastICA algorithm whereas tanh is described as a
“good general purpose nonlinearity” in [17].

The simulation setup consists of (zero mean and unit
variance) infinite-support symmetric source signals: having
Laplace distribution, having -distribution and possessing
logistic distribution. simulated samples of the source
signals were generated using different sample lengths and each

2http://www.cis.hut.fi/projects/ica/fastica
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sample was mixed by a randomly generated mixing matrix .
Although Laplace density do
not satisfy assumption b.1) (since it does not have a deriva-
tive at zero), it can be approximated to within arbitrary preci-
sion by a valid density that does. Moreover, by setting

, yields and for the Laplace-dis-
tributed source .

Fig. 1 depicts the calculated mean-squared error MSE
as a function of signal sample length for the estimated sources

. The MSE is calculated by

MSE

MSE MSE MSE

where and denotes estimate of
computed from the th generated sample and denotes the
th column of the identity matrix. Note that FastICA estimator,

explicitly by its definition, constraints the solution for the
ICA model with unit variance sources. Hence, the FastICA
demixing matrix estimator is by default (without any additional
normalization) suitable for comparison with the derived CRB.
Nevertheless, it is still possible to solve the demixing matrix
only up to permutation/sign-change of the rows. Hence, we
need to match the computed value of with the true : each

computed by TANH or POW3
from the th simulated sample are multiplied from left by
a permutation and sign-change matrix that produces the
smallest value for , where and
is the Frobenius norm. Also, it is not known beforehand which
one of the original sources is being estimated by 1u-TANH
or 1u-POW3. It seems to depend largely on the value of the
initial estimate.3 Therefore, all the estimates computed
by 1u-TANH or 1u-POW3 are sign corrected values of the
estimates giving best match with the correct value of .

Fig. 1 shows that 1u-POW3 is performing the worst in all
cases: especially it ranks clearly the lowest in separating logistic
and -distributed IC; for separating Laplacian IC its perfor-
mance is close to POW3. The poor performance of 1u-POW3
with logistic IC can be explained by its poor separation ability
for sources possessing kurtosis values even moderately close to
a Gaussian distribution. The existence of sixth-order moments
of the IC is needed for the existence of asymptotic variances
of 1u-POW3 ([18], [17], [10]) and POW3 [10]. This explains
why for -distributed IC (which do not possess sixth-order mo-
ments) there is a slow increase in MSE for 1u-POW3 and POW3
for the largest values of signal length (although this trend would
become more apparent for larger signal lengths than
shown in the figure). TANH has the best performance in all
cases although for Laplacian IC the performance difference with
1u-TANH is rather marginal. 1u-TANH however performs well
only for the Laplacian IC. For the logistic source TANH reaches

3E.g., for signal lengthn = 750 only 3% of 1u-POW3 or 1u-TANH estimates
did not estimate w (the sign-corrected estimate was closer to w or w as
measured by their angles) when the true value of w was given as an initial
estimate, and, 0% failed for n > 1500.

Fig. 1. Separation results in terms of MSE(ĝ ) depicted as a function of sample
length.

close to the CRB. This is not surprising as the nonlinearity tanh
is the location score function (up to sign and scale differences)
of the logistic distribution, and hence the optimal nonlinearity.
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Fig. 2. Separation results in terms of MSE(ĝ ) depicted as a function of
sample length.

Fig. 2 depicts the values of MSE alone .
Recall that reflects how accurately the presence of th
source itself is estimated in , whereas MSE includes also

the effects of interfering source signals. Fig. 2 clearly shows
that there are very little (and for and Laplacian IC practically
none) difference in the performance of the above FastICA esti-
mators. Thus, the differences between the estimators are mainly
due to their ability to cancel out the interfering source signals in
the estimate of each source.

IV. CONCLUSION

Based on rather general assumptions on the distributions of
the sources , we derived, in Theorem 2, a simple and compact
closed-form expression of the CRB for the demixing matrix esti-
mation. The CRB depends on the distribution of only through
two scalars of (6) and (7). Hence, in most cases, it yields a prac-
tical and easily computable performance criterion for ICA as
was demonstrated by our simulation study.

At the end, we wish to clarify that, this paper provides a novel
compact closed-form expression for the CRB of the demixing
matrix estimation based on elegant matrix manipulations. Te-
dious elementwise derivations used in many related papers are
thus be avoided. In addition, the result corrects the error in de-
riving FIM in a recent related result [10]. We also think that our
method of proof based on the novel use of matrix algebra can
provide a useful machinery for CRB derivations for related mul-
tivariate signal processing models.

APPENDIX A
RELEVANT MATRIX ALGEBRA

Let denote a matrix with a 1 in the position
and 0’s elsewhere. Often we write for . It is useful to note
that

for
(10)

A commutation matrix is a block matrix with
-block being equal to a matrix that has a 1 at entry
and 0’s elsewhere, that is

(11)

Useful algebraic properties involving the ‘vec’-operator and
commutation matrix are [13]

(12)

where the first identity holds for all matrices and
such that the product is properly defined and the third
identity holds for all -matrices and . Some useful
rules of calculus involving the Kronecker product are also listed
below [13]:

(13)
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(14)

The first identity in (13) holds for all matrices and and
second identity for all matrices and such that the
products and are properly defined. The first identity
in (14) holds for all nonsingular matrices and and second
identity holds if and are of same size. For later use we note
that any block matrix may be written analytically
using its diagonal-blocks and off-diagonal
blocks , as follows:

(15)

APPENDIX B
ADDITIONAL LEMMAS

Lemma 1:
a) Under Assumptions a)–c)

if
if

(16)

or equivalently, , or equiva-
lently, .

b) Under Assumptions a)–c), with equality if and
only if is a Gaussian random variable. Furthermore,

, or equivalently, .
c) Assume exists at all on the support of the density

of . Then under Assumptions a)–c), pro-
vided d.1) holds and provided d.2)
holds.

Proof:
a) for : as

and are independent and zero mean. The re-
sult

follows using integration by parts and
Assumption b.2). This result is well-known (see, e.g.,
[5], [19], and [20]). Note that the expected value of the
Fisher score (5) is

Thus, since matrix is nonsingular (as is non-
singular), if and only if

, i.e., , i.e., (16)
holds.

b) By the a)-part of the Lemma, .
By correlation inequality:

with equality if and only if
(i.e., is Gaussian). This result is not new

(see, e.g., Appendix B in [5] or [19]). Next note that

since variance is positive for nondegenerate
random variables and cannot be a constant func-
tion equal to zero in its entire support (i.e., the uniform
distribution) due to assumption b.2).

c) Now
,

which, by integration by parts, equals
provided that d.1) holds. Similarly, observe that

, which, by
integration by parts, equals

where and denotes the left and right boundary
of the support of the density . Here we used that

due to a)-part of the Lemma and
provided that d.2)

holds. Note that .
Lemma 2: Under Assumptions a)–c)

(17)

where is diagonal matrix

(18)

Proof: is a block matrix whose -block
is a matrix which is a diagonal ma-
trix since the components of are independent and zero mean.
Diagonal elements are for
and for

(as ). Thus, .
The -block of for is a matrix

which has 1 at entry and
since

[where the last identity follows from Lemma 1a)] and 0’s else-
where (since the components of are independent with zero
mean and for ). Thus,

.
Then by using (15) and the rule in (14) we may write as a

sum:

where the last identity follows by using (11) and
.
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Lemma 3:

where the diagonal matrix is defined in (18).
Proof: It is easy to verify that

where is a diagonal matrix . Using prop-
erties (12) of the commutation matrix, we get

and thus

Then note that

which follows using (10) and (13). Thus

which follows by replacing identity matrix in the left-hand
side of the equation by . It is
now straightforward to verify, resorting to (10) and (14), that
the product of the matrices and derived above
gives the expression for stated in the lemma. Recall
that .

APPENDIX C
PROOFS

Proof of Theorem 1: Using Lemma 1a) and Lemma 2 gives

where is defined in (18). Plugging the above expression in (8),
and the summation (11) in place of yields

which by (15) gives the stated claim.
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Proof of Theorem 2: Since ,
it follows that

Then using Lemma 3 and recalling rules of calculus of Kro-
necker product stated in (13), it is straightforward to write
in the form claimed in the theorem.
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