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Abstract

This Thesis concentrates on methods for modeling and analyzing the magnetic field in magnetic
brain imaging. The work is motivated by the combination of two brain imaging modalities,
magnetoencephalography (MEG) and magnetic resonance imaging (MRI), in a single MEG-MRI
device. In magnetoencephalography, brain functions are studied by recording the magnetic-field
distribution generated by electrical brain activity. With magnetic resonance imaging, the structure
of the head can be analyzed. The combination of these two imaging methods is enabled by applying
ultra-low magnetic fields for MRI (ULF MRI). Besides the imaging structure, ultra-low-field MRI
can be made sensitive to the magnetic field generated by small currents, enabling current density
imaging (CDI). This method can be utilized to estimate the current flow in the head, which is
needed for modeling the neuronal magnetic field in MEG and especially the electric field studied
by electroencephalography (EEG).

Magnetic-field modeling was first applied for spatial calibration of ULF MRI, which enables
enhancing the spatial accuracy of MEG when measured with the hybrid MEG-MRI device. Second,
MR imaging of magnetic fields generated by injected currents inside the human head was
simulated to study the performance of CDI. Third, the electric and magnetic fields generated by
brain activity were analyzed to study the effect of field sampling in MEG and EEG. Last, general
computational tools were developed for modeling and designing magnetic fields produced, e.g., by
the electromagnetic coils used in MRI. Altogether, this Thesis provides computational and
methodological tools that facilitate the analysis and design of biomagnetic experiments for brain
research.
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1. Introduction

Electricity is a fundamental component in the living human body. Electric
signals in the nerve cells enable the communication of different body parts,
all controlled by the brain. The electric activity in the brain can be studied
non-invasively by electroencephalography (EEG) [1], i.e., by recording the
electric potential differences on the scalp of the head. The electric current
associated with the activity also generates a magnetic field which can be
measured with magnetic-field sensors outside the head. The measurement
of the magnetic field generated by the electrical brain activity is known as
magnetoencephalography (MEG) [2].

In a limited sense, as these methods provide spatial information of the
brain activity, they can be seen as brain imaging methods. They also
provide real-time temporal information which is essential for studying how
the brain works. Understanding the capabilities and limitations of these
methods requires understanding the electromagnetic field.

In this work, I mainly concentrate on methods that measure the magnetic
field generated in the brain. Besides MEG, another imaging method that
involves the magnetic field is magnetic resonance imaging (MRI), which
can be used to study the structure of the brain. In MRI, the field is
generated by the nuclei of hydrogen atoms magnetized in a large external
magnetic field. The strength of the resulting magnetization depends on
the tissue type enabling differentiating between different tissues in MR
images.

In MRI, it possible to actively manipulate the magnetization, which
provides a way for highly controllable spatial encoding and localization
of the field source into small volume elements. On the contrary, in MEG
measures only passively the magnetic field generated by the brain activity.
To make inference of the brain activity itself, MEG requires a physical
model for the electric current distributions responsible of the field. This
model includes the structure of the head, which is usually derived from
MR images.

Since modeling of MEG is intertwined with MRI and both methods
measure the magnetic field, MEG would benefit if MRI could be performed
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in the same device. To combine MEG and MRI [3, 4], the magnetic fields
associated with MR imaging need to be lowered substantially, down to
the magnitude of the Earth’s field. The resulting modality is known as
ultra-low-field MRI (ULF MRI) [5, 6]. Besides the combination of the two
imaging methods, ULF MRI offers unique possibilities for brain imaging
such as the capability of direct imaging of current distributions inside the
head.

1.1 Aims of this Thesis

This Thesis aims to facilitate the analysis and design of biomagnetic
experiments and imaging by developing computational and methodological
tools. The aims of the individual studies are listed below.

I To develop a method for accurate spatial calibration of ULF-MR
images for hybrid MEG-MRI device. To verify and assess the method
using numerical simulations.

II To understand and quantify the signal-to-noise ratios of the field re-
constructions derived from zero-field-encoded CDI data. To determine
whether existing ULF-MRI systems are adequate for current-density
reconstructions.

IIT To analyze spatial sampling of EEG and MEG on general curved
surfaces. To quantify the beneficial number of samples and the
benefit of optimizing the sampling configuration.

IV To develop general computational tools for modeling magnetic fields
using surface currents. To describe the computational principles of
the developed software.

12



2. Background: Physics

In this Chapter, I describe the necessary physics for understanding the
magnetic measurements in MEG and MRI. I start with the quastistatic
approximation of the electromagnetic field applicable to both bioelec-
tromagnetic measurements and ultra-low-field MRI. I describe how the
quastistatic fields are generated in the two modalities and explain the
magnetic resonance phenomenon from the classical perspective. Addition-
ally, I discuss modeling the magnetic field in the free space. I finish this
Chapter by analyzing the spatial sensitivity of magnetic-field sensors to
magnetization and electric sources in the brain.

2.1 Quasistatic approximation of the electromagnetic field

Static magnetic and electric fields describe a special state of the electro-
magnetic field, where the rate of change of the field sources is negligible.
In this state, the magnetic field B(7) arises solely from electric currents,
described by the current density .J(7) and the electric field E(7) originates
from the charge density p(+). In the magnetoquasistatic approximation
[7, 81, the electric field can additionally originate from a time-varying
magnetic field but a time-varying electric field as a source of the magnetic
field is considered negligible. Under this approximation, the physics of the
fields are described by the following four Maxwell’s equations

Gauss’law V-E =72 2.1

€0
Faraday’slaw V x E = —%—? (2.2)
Gauss law for B V-B =0 (2.3)
Ampere’slaw V x B = puoJ (2.4)
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where ¢ is the electric permittivity and po the magnetic permeability in
the free space. In addition to Maxwell’s equations, the electric field and
the current density are related by Ohm’s law

J=0FE, (2.5)

where o is the conductivity of the material or tissue.

Neglecting the effect of displacement currents e%—? in Ampere’s law is
justified by the relatively short time constant ¢/c for the redistribution
of charges in a linearly-polarized conductor [9, 7]. Here, ¢ is the material
permittivity including the electric polarization. For example, in the brain,
with material parameters ¢ = 0.3 S/m and ¢ = 10°¢; [2], the time constant
for the charge relaxation is ¢/c = 3ps. Hence, in the kHz range and
lower Ohmic currents o F dominate the displacement currents e%—‘?. In
addition, the displacement current can lead to coupling of Faraday’s and
Ampere’s laws resulting in electromagnetic waves. The time constant
for this phenomenon L,/1ge, where L is the length scale of the object, is
however an order of magnitude smaller than ¢/o. Furthermore, if there
are no external sources of the magnetic field such as rapidly-switched
electromagnetic coils, also 9B /0t can be neglected in Faraday’s law leading
to static Maxwell’s equations.

To mathematically manipulate the field equations, it is convenient to
introduce the electric and magnetic fields in terms of potentials. The static
electric field is curl-free and can be expressed as E = —V¢, where ¢ is
the electric potential. The magnetic field is divergence-free and can be
expressed using the magnetic vector potential A as B = V x A. Inserting
these forms into Gauss’ law for E and Ampére’s law for B, we get

V2 =-L (2.6)
€0
Vzg: u0<f7 (27)

where the gauge V - A = 0 is assumed. These equations are in the form of
Poisson’s equation. The solution to Poisson’s equation can be expressed
as a convolution of the source density with the potential point source 1/r,
where r is the distance from the source

=/
o= [ LT v, 2.8
dmeg ) |7 — 7]
o
A=t [ ) gy (2.9)

dw | |7 — 7|
where the integration domains are over all the sources. The integral
solution for the electric field, i.e., Coulombs law, can now be obtained by
applying gradient to Eq. (2.8) and Biot—Savart’s law for the magnetic field
by applying curl to Eq. (2.9):

T(=1 S =
§®=%/ﬂuiﬁl%w (2.10)
7

7= 7P
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2.2 Bioelectric and biomagnetic fields

2.2.1 Source currents in a volume conductor

The bioelectric and -magnetic fields originate from the active mechanisms
of the nerve cells or neurons in the living body [10, 11]. In the brain, neu-
rons communicate chemically via synapses. The redistribution of charges
due to the active mechanisms in the post-synaptic neuron leads to a rising
potential across the neuron membrane. Such activation is related to a local
electric field that drives current in the vicinity of the cell. At macroscopic
scales, this current can be modeled as an equivalent source-current density
fp called the primary current. A single cell produces a very small primary
current and it is estimated at least 10° must be activated simultaneously
within a small volume in order to get a measurable biomagnetic field [2].

The active currents modeled by J_,‘, generate a macroscopic electric field
E = —V¢ in the brain by redistributing charges at large scales. The total
current density in the brain is then J = J_;, — oV¢, where —oV¢ is called
volume current density. In the quasistatic approximation, J is divergence-
free, i.e., V-J =0, making the field lines of J closed loops and resulting in
the following partial differential equation for the electric potential

V- (0(PVe(F) =V - Jo(7) (2.11)

where V - fl’)(f‘) is interpreted as the source term.

In a uniform infinite conductor where o(7) = 09, Eq. (2.11) reduces to
an ordinary Poisson’s equation V2¢(7") = (1/00)V - J,(7), for which the
solution can be written as

T (=
boo(7) = 747300 / vlf,i"g‘ Vv’ — 47300 /Jp(F’) v ‘Ffmdvh (2.12)
An analogous equation can be obtained for the magnetic field in a homo-
geneous conductor. By applying curl to Ampere’s law (2.4), one obtains
another Poisson’s equation V2B = 1oV x J; , whose solution is
o
Boo(7) = %OT %dw - ZL; To(7) x Vﬁdv’. (2.13)
To demonstrate these solutions, let us consider a simple model of the
primary current density .J,(7) = Jo exp(—r2/(2d?))z with a Gaussian mag-
nitude profile illustrated in Fig. 2.1. Figure 2.1A shows the potential
distribution ¢, and the associated electric field lines which can be seen
to originate from the sink-source pair, associated with V - J;,. In Fig. 2.1B
is shown the total current density, which is divergence-free. Fig. 2.1C
displays the magnetic field B, following the geometry of the V x j};.
Far from the source, the details of a localized distribution of .J, does not
affect the field shape of ¢ or B. Then, a sufficient model for brain activity

15
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Figure 2.1. Fields related to a primary current density in an infinite homogeneous con-
ductor. The primary current density is illustrated with purple arrows in the
vertical plane in (A) and (C). (A) The electric potential and field lines of the
corresponding electric field. (B) The total current on on the same plane as (A).
(C) The magnetic field depicted by the arrows on the horizontal plane.

localized in a small region can be a current dipole fl;(f‘) = qo(F—7"), where
0(7 — 7') is Dirac’s delta function. The current dipole is a point model,
which has the sink and the source of the current density at infinitesimal
distance from each other.

2.2.2 Conductivity models and the forward problem

The inifinite-conductor model may be a good model for the field in the
vicinity of the sources, when the surrounding medium is approximately
homogeneous. When measuring MEG and EEG, the conductivity structure
of the head guides the volume currents —oV ¢, affecting the shapes of the
magnetic and electric fields. Solving the fields affected by the volume
conduction is generally known as the forward problem.

Because of the close-to-spherical geometry of the head, spherical head
models have been used to approximate the effect of volume conduction
[10]. Due to the symmetry, spherical head models exhibit some special
properties, especially in MEG, manifested by easily applicable closed-form
solutions.

The next simplest models are layered head-models with usually 1-4
nested compartments of homogeneous conductivity. The compartments
correspond to different tissue types such as the skin, skull, cerebrospinal
fluid (CSF), and the brain gray and white matter. Usually only the most
distinct tissues are used for modeling the conduction effects [12, 13], while
others are lumped in common compartments. The geometries of these
compartments are usually obtained from structural MR images.

When using general head models, the volume conduction problem has
to be solved using numerical methods such as finite-element (FEM) [13]
or boundary-element methods (BEM) [14, 15]. BEMs solve the forward
problem using integral equations, which are now briefly discussed.

Integral equations for the electric potential and magnetic field can be
build once interface conditions for the potential and its normals derivative
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between the compartments are known. As the electric field is curl free,
tangential electric field is continuous across the interface and the electric
potential is continuous up to a constant. Because the current density is
divergence-free, the normal current on the interface must be continuous.
Together these interface conditions read

ot =¢~ (2.14)
L0¢T 09
o o =0 o (2.15)

where the superscripts + and — refer, respectively, to the quantities on the
outer and inner side of the interface.

Using the interface conditions and Green’s second identity, one can derive
an integral equation for the potential [16]

masm—oo%omz /¢> V) S (216)

where o is the conduct1v1ty in the compartment containing the sources
and ¢, the potential in an infinite conductor Eq. (2.12). From Biot—Savart
law for B, one obtains a similar surface-integral formula for the magnetic
field [17]:

B() = Boo(7) + Bu(F, ),
LN~ Ho(of =) [ A x V() (2.17)
¢) = Z - /S ds' .

7=

Both the magnetic field and the electric potential are now expressed as
functions of the potential at the conductivity interfaces. The interface
potentials can be solved using Eq. (2.16) by taking limits of ¢(7)¢(7) from
inside and outside of the interfaces. Averaging the limiting values on
interface j, one gets

U +o

) = vt + 3 T [ D) s 228

Discretizing the integral equations for all the interfaces j [14, 15], ¢(7) on
the interfaces can be solved numerically.

The equations (2.16) and (2.17) seem quite similar in terms of conduc-
tivity parameters o;. However, the implicit dependence of the potential
in Eq. (2.18) makes the scalp potential measured by EEG very sensitive
to these parameters. On the contrary, B, measured by MEG is insensi-
tive to the electric potentials outside the brain compartment, because the
poorly conducting skull [18, 19] restricts the volume currents mostly in
the intracranial volume. As a consequence, a good approximate volume-
conductor model for the extra-cranial field is a uniform conductor bounded
by the brain-skull interface [20]. A similar conclusion can be arrived at by
considering the MEG forward problem from the perspective of a magnetic
sensor, as done in Sec. 2.5.2.
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2.3 Magnetization and magnetic resonance

2.3.1 Fields and analogy to volume-conductor problems

Although the field models in MEG utilize current densities, in MRI, it is
more convenient to model the field by magnetic dipoles, elementary point-
like sources of the magnetic field. The magnetic field produced by a dipole
is equivalent to that of an infinitesimal current loop. Alternatively, as an
analogy to electric dipoles, the field can be modeled by opposite magnetic
charges or poles, separated by a small distance. The dipole is characterized
by its dipole moment i, the direction of which is perpendicular to the
circulating current or parallel to the separation of the magnetic charges.
A material is said to be magnetized when it contains coherently aligned
magnetic dipole moments. Such material can be modeled with magneti-
zation M (7), a macroscopic vector field that equals the average density of
magnetic moments in a small volume around 7 such that dif, = MdV.

As the magnetic field B is divergence-free, it cannot originate from
magnetic poles. To work with the pole model, one can introduce an auxiliary
magnetic field A satisfying

B = po(H+M). (2.19)

In free space (M = 0,.J = 0), B and H differ only by the vacuum per-
meability po. When there are no free currents in the magnetic problem,
one can also define the magnetic scalar potential U for the auxiliary field:
H=-vU.

Using the definitions above, we can draw useful analogies for the mag-
netic field produced by M with the fields in an infinite electric volume
conductor discussed in the previous section. First, taking the divergence
of Eq. (2.19), we get a Poisson equation for U: V2U = V - M, where V - M
can be interpreted as magnetic charge density. The potential U can be
obtained as in Eq. (2.12) for the electric potential:

1 [M-(F-7)
UfFf)=— | ————===dV. 2.20
(") 4 / |7 — 73 ( )
Likewise, taking the curl of Eq. (2.19), we get a Poisson equation for A:
VxB=V24= 1oV X ]\7[, where V x M is called the magnetization current.
The solution to the equation is analogous to Eq. (2.13) for the magnetic
field: ~
- o [ M x (F—7")
AF) ="~ | ———=-—2dV. 2.21
(") 4 / |7 — 73 ( )
In conclusion, when M is considered the source for B as J;, is for J in an
infinite volume conductor, U can be interpreted as the counterpart of the
electric potential oy¢ (Fig. 2.1A) and A in a magnetic problem corresponds
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to B /o in a volume conductor problem (Fig. 2. IC) This also means that
B in a magnetic problem has the same role as J in a volume-conductor
problem (Fig. 2.1B), both being divergence-free.

2.3.2 Intrinsic magnetization in materials

In every-day magnetism, the magnetization is produced by the magnetic
moments of electrons. Ferromagnetic materials, such as iron, contain
strong magnetic interactions between the electrons, which cause the strong
magnetic response of these materials as well as the remnant magnetization
after the application of external fields. Materials with weaker magnetic in-
teractions are para- or diamagnetic. In these materials, the magnetization
is linearly dependent on the applied magnetic field M = yH, where y is the
magnetic susceptibility of the material. For paramagnetic materials, the
susceptibility is positive, whereas for diagmagnetic materials it is negative,
i.e., the effective magnetization aligns itself parallel (paramagnetic) or
against (diamagnetic) the applied magnetic field.

Besides electrons, also the nuclei of the atoms have magnetic moments.
The behaviour of nuclear magnetic moments is paramagnetic, but the
resulting magnetization is 6-8 orders of magnitude smaller than in elec-
tronic paramagnetism [21]. This makes the detection of static nuclear
magnetism very challenging. Instead, nuclear magnetism can be measured
via magnetic resonance, where the relationship of the magnetic moments
with the nuclear spins is exploited. In magnetic resonance imaging, nu-
clear magnetization of hydrogen is used because of its natural abundance
in the human body.

2.3.3 Magnetic resonance

The magnetic moments of subatomic particles are related to the spin
angular momentum of the particles. At microscopic level, one needs the
description of quantum mechanics to handle the spins of the subatomic
particles correctly. However, when the number of spins in the physical
system is large and the spins only interact with macroscopic fields, the
system can be described classically [22].

The magnetic moment of a system of spins with an average spin angular
momentum S is m = 5, where the factor v is called the gyromagnetic
ratio. In an external field B, a magnetic moment tends to align parallel
to the field, i.e., the field applies a torque ¥ = 17 x B on the moment.
Similar to a force acting on a linear momentum (Newton’s second law), the
torque results in the rate of change in the total angular momentum L as
df/ dt = 7 = m x B. In consequence, for an ensemble of particles, whose
angular momentum consists only of the spins L = S, the magnetization
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evolves according to

= yM(F) x B(F). (2.22)

The equation describes a rotational or precessing motion of M about B
with an angular frequency w = ~|B]| called the Larmor frequency.

The general solution for this equation can be expressed in terms of a
rotation matrix ®. With Cartesian coordinates, the right-hand side of
Eq. 2.22 can be expressed as wCm, where C is a unitary cross-product
matrix and the column vector m contains the coordinates of M. Using the
matrix exponential, the solution becomes

m = ®dmy = “*Cmy, (2.23)

where my is the initial magnetization and ® = e“tC.

Assuming the magnetic field is uniform and z directional, the solution for
the r and y components of the magnetization can be written as rotation in
the zy plane using complex numbers. Associating the x component to the
real part and y component to the imaginary part of the complex number m,
the rotation can be described as

m = e“lmyg. (2.24)

In a realistic physical system, spins do not only interact with the external
magnetic field, but also with each other and the surrounding medium.
These interactions result in relaxation, which can be modeled as two
additional terms in Eq. (2.22):

dM . . M,, M—-M,
Y MxB- Ty T 0 2.25
aw M T 0 (2.25)

where T} is called the lattice relaxation time and 75 the spin-spin relax-
ation time, and M) is the equilibrium magnetization parallel to By. The
relaxation times are properties of materials or tissues. In MRI, they can
be exploited for creating contrast between tissues with careful timing of
the imaging sequence. The magnitude of the equilibrium magnetization
My depends on the statistical properties of the spin system and is directly
proportional to By.

The equilibrium solution to Eq. (2.25) is M = My, i.e., after several
T, relaxation times, the magnetization always returns to the equilibrium
value. To start the precession, a magnetization component perpendicular to
the main field is needed. In nuclear magnetic resonance, the magnetization
can be perturbed from the equilibrium by an oscillating magnetic field that
is in resonance with the Larmor frequency B, and perpendicular to By.
According to Eq. (2.22), such oscillating field induces tipping of M from M
and rotates it until the oscillating pulse is finished. In ultra-low-field MRI,
the precession can also be embarked using non-adiabatic field switching
[6, 23].
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W

Figure 2.2. A few examples of surface-harmonic basis functions on a head surface and
their magnetic scalar potentials. On the head surface, the green—-brown
colors correspond to a dipole density (stream function) which the source of the
magnetic field. The blue-red colors on the vertical planes show the contours
of the magnetic scalar potential. The density of the contours is proportional to
the magnitude of the magnetic field.

2.4 Magnetic field in free space

2.4.1 Magnetic scalar potential

The magnetic field in a source-free space is has zero curl (V x B= 140 J =0).
Such a field can be expressed as a gradient of a potential: B= —uoVU. To
be consistent with the convention H = —VU , the vacuum permeability is
included for the B field. The scalar potential U is well-defined everywhere
in simply-connected current-free regions of space [24]. As the magnetic
field is also divergence-free (V - B = 0), the governing equation for the
scalar potential is Laplace’s equation

VU =0. (2.26)

The solutions of Laplace’s equation are studied in harmonic potential
theory [25], which has been applied notably in geomagnetism [26] but
also in MEG [27] in terms of spherical harmonics. In the following, the
representation of the magnetic field using harmonic potentials and its
connection to equivalent magnetization and surface currents are discussed.
More detail discussion of the application of this method can found in
Publication IV and in Ref. [28].

2.4.2 Equivalent sources and their decomposition

In many experimental situations magnetic measurements are made in
the free space, and the magnetic sources are confined in a 3D body. As
a solution to Laplace’s equation, the magnetic scalar potential is solely
determined by the potential data on the bounding surface of the body
[8]. Using the theory of integral equations [29] it can be shown that the
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potential on the boundary can be recreated by a distribution of magnetic
dipoles on the surface. In other words, an equivalent dipole layer can be
set on the body surface and the field can be expressed as

—

_ 1 T e
U@ = | )i = ﬂPdS, (2.27)

| 7

where 1) is the magnitude of a equivalent dipole density on the surface 0V
and 7’ the surface normal vector.

<

Similar to a single dipole that can be considered a loop of current, a
surface-dipole density 7 is equivalent to a surface-current density. In
fact, an equivalent surface current can be obtained from the dipole density
as [30]

Js = V() x i, (2.28)

where V| is a gradient operator acting along the tangent planes of the
surface. In this type of context, the function ¢ is usually called a stream
function, because the iso-contours of the v correspond to the stream lines
of Js.

Because the spatial details in the magnetic field decay rapidly when mov-
ing away from the sources, it is useful to describe the field with functions
that only contain low spatial frequencies. Such a representation can be
obtained from Eq. (2.27) by expanding the stream function on the surface
with a set of low-spatial-frequency basis functions. A suitable basis for this
purpose is the eigenbasis of the Laplace-Beltrami operator V - V|, which
generalizes sinusoidal functions to a general surface [31]. Because of this
property, in Publication IV, we called these functions surface harmonics.
Denoting the surface-harmonic functions as v; the stream function can be
expressed as ¥(7) = Y, s;v;(¥) and the scalar potential as where Uj; is

U(r) = Z 5;Ui(7)

1 gy =T y

(2.29)

These function and the respective potentials are illustrated in Fig. 2.2.

2.4.3 Relation to multipole expansion

When the surface enclosing the sources is a sphere, the eigenfunctions
of the Laplace-Beltrami operator are spherical harmonics Y}, and the
discussed representation corresponds to the series of spherical harmonic
functions, the spherical multipole expansion [27, 24]. This can be seen by
expanding the inverse distance from 7 to 7’ in spherical coordinates (r, 6, )
as [8]

E-lJr)l mm(e 799l)1/2nz(07€0) . (2.30)

= .
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Using this series and the identity V'1/|7 — /| = (¥ — ) /|7 — 7|3, the
potential in Eq. (2.27) produced by an equivalent source ) on sphere S
with radius R can be expanded as

Yim (6, ¢)
u(r) = ZslmQHH/RM D simUim(6,0), (231

lm

where s;,, = [ (7 WYm(@', o)dQ)Y are the multipole coefficients corre-
sponding to ¢. Because Y, are the eigenfunctions of the Laplace-Beltrami
operator, the coefficients s, ,,, are also surface-harmonic coefficients of ¢
and the functions U, correponds to the surface-harmonic potentials in
Eq. (2.29).

Equation (2.31) is the canonical form to express all the potential configu-
rations originating from magnetic sources inside a sphere. The potential
inside a sphere due to external sources can also be expressed with spherical
harmonic functions. Combining the external and internal potential, one
obtains the general solution of Laplace’s equation in spherical coordinates:

U(F) = Z O‘l,myim(gv @)(T/R)7171 + 5l,m}/lm(07 99) (T/R)l ) (2.32)
Im
where o, and §;,, are known as the internal and external multipole
coefficients, respectively.

2.5 Detection of magnetic field and magnetic sources

2.5.1 Magnetic-field sensors

A conventional way to detect the magnetic field is to measure the electro-
motive force induced by a time-varying magnetic field over a coil according
to Faraday’s law. The detected signal is proportional to the frequency of
magnetic-field signal, which makes the inductive method insensitivive to
lower-frequency signals such as the biomagnetic field [32]. To overcome
this issue, biomagnetic signals are usually measured with superconducting
quantum interference devices (SQUIDs).

The SQUID is a superconducting loop with two insulating gaps, called
Josephson junctions [33]. The operation of the SQUID is based on the
so-called Josephson effect and quantization of magnetic flux in a super-
conducting loop. Due to these effects, when the SQUID is biased with a
constant current, a linear change of the magnetic flux yields a roughly
sinusoidal voltage over the SQUID with a period of the flux quantum ®.

In practice, the SQUID is operated in a feedback loop with a feedback
flux locking the total flux in a linear range of the periodic response curve.
This setup is sensitive to the field itself and has a uniform frequency
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response over a large bandwidth. Thus, coupled to a external pickup loop,
the SQUID makes an excellent magnetometer for low-frequency signals.
The signal measured by the device can be modeled as the instantaneous
magnetic flux through the pickup loop.

For MEG, the SQUID has been the only viable sensor for a long time.
However, recent developments in optics and microfabrication have enabled
a new type of sensor, the optically-pumped magnetometer (OPM) [34] to
emerge in MEG. This sensor does not require cryogenic environment to
maintain superconductivity and can be placed much closer to the scalp than
the SQUID sensors. OPM sensors use electron spin resonance of vaporized
alkali-metal atoms to detect changes in the magnetic field. Instead of using
magnetic field to induce precession, these devices work by lasers matched
to the energy levels of the atoms. The precessing electron spins, susceptible
to the external magnetic field, are also probed using a laser.

Besides OPMs, magnetometers such as giant-magneto-resistive sensors
[35] and high-transition-temperature SQUIDs [36] have been aimed to
be applied in biomagnetic measurements. Although these newer types of
sensors can be put closer to the head, compared to conventional SQUIDs,
they contain higher instrumentation noise. In consequence, SQUID-based
systems are still the standard way of measuring magnetic fields from the
brain. Hence, I will next concentrate on the spatial sensitivity of a SQUID
coupled to a pickup loop, although the analysis would be quite similar with
sensors without pickup loops.

2.5.2 Spatial sensitivity to magnetic sources

I will next examine how a magnetic sensor coupled to a pickup loop senses
magnetic sources: the magnetization M in MRI and primary current
density fp in MEG. The signal, i.e., the magnetic flux over a loop surface S
enclosed by the loop 95 can be computed as

@:/E(f‘)-d§:/ A - dl. 2.33)
S a8

For quasistatic magnetization, the vector potential is given by Eq. (2.21).
By changing the order of integration, the generated flux can be written as

S
Ho iy r—r VN
P =— M ———=dV' -dl
0= L 1
. . — —/
Ho Tl r—r ot TN B (=] /
=— M . ———= xdldV' = M - By dv
i ] 3 [ o M) BTV
(2.34)
where B; is the magnetic field produced by a unit current in the pickup
loop. The equation for the flux can now be interpreted so that the field B

describes the spatial sensitivity of the pickup loop for M. This field can be
used to model the sensitivity patterns seen in (ULF) MR images [37].
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Figure 2.3. Sensitivity patterns of a point-like sensor (red arrow) for magnetization (A)
and primary current density (B). The direction of the field is visualized on
a surface representing the inner skull of the head and the field magnitude
is visualized both as a color in the horizontal plane and as the color of the
arrows. The sensitivity pattern for primary current is calculated assuming a
homogeneous volume conductor bounded by the inner skull. The sensitivity
pattern for magnetization is independent of the volume conductor.

When the magnetic flux originates from a current distribution J, the
vector potential can be expressed as in Eq. (2.9). Inserting this form in the
equation for the flux and changing the order of integration, we get

¢y= / T - / %W’: / J(i) - Ay(7)av, (2.35)
V! as |7 — 7| v’

where A, the vector potential of a unit current flowing in the pickup loop
can be interpreted as the sensitivity field for J. However, in MEG, the
source of interest is not the total current J = fp — oV¢, but the primary
current .J,. Therefore, it is more convenient to express the flux as a linear
relation with respect to Jj,.

As the total current is divergence-free, the sensitivity field A, is not
unique, but one can add any conservative field VU; to it, so that Eq. (2.35)
still holds. Denoting this field as L= /Ys — VU and expressing the total
current as J = J; — oV¢, Eq. (2.35) can be written as

= /V T KV - / o(F)V (') - L(F)dV". (2.36)

\
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In Refs. [38] and [39], it is shown that the latter integral can always be
made zero by choosing Us suitably. In a piecewise-homogeneous conductor,
this condition is fulfilled when Us is harmonic in the conductive volumes
and satisfies the following boundary conditions

Fh VU — o7 - VU = (0 — o7 )i As
(2.37)
S =05

on each conductivity interface i. For L that satisfies these conditions, the
flux signal is simply

;= / T LEav (2.38)

where I is known as the magnetic lead field. The name stems from EEG
where the sensitivity of a pair leads to J; is proportional to the current
density driven by the leads [11], i.e, the field pattern of transcranial direct
current stimulation (tDCS) [40]. Similarly the magnetic lead field can
be seen as the stimulation pattern of transcranial magnetic stimulation
(TMS) [41].

Applying the interface conditions for the human head with high con-
ductivity contrast between the brain and the skull, it can be seen that
OUs/On =~ 1 - /YS for U, in the brain close to the inner skull. This means
that the lead field L = A, — VU, must be approximately tangential to the
inner-skull boundary. Thus, when the brain tissues are lumped in a single
compartment, the lead field can be calculated based on the geometry of the
sensor and that of the inner skull.

Fig. 2.3 illustrates the spatial sensitivity patterns B, for magnetization
and L for a primary current density, assuming a point-like sensor oriented
normal to the head surface. The sensitivity to magnetization is concen-
trated right below the sensor, while the sensitivity to primary currents
p1cks up s1gnal a bit off from the sensor axis. As these fields are related by
B, =V x L, By generally decays faster with respect to distance from the
sensor compared to L.
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In this Chapter, I analyze MEG and MRI as linear imaging systems. Based
on this common perspective, I use the concept of spatial response function
[42] to illustrate the spatial resolution of these methods. Furthermore, I
describe MEG source estimation based on additional prior information,
and spatial sampling in MEG. Finally, I discuss ultra-low-field MRI, its
combination with MEG, and its application to current-density imaging
(CDI).

3.1 Linear imaging systems

In both MRI and MEG, the magnetic measurement model is linear and
can be formalized as

Y = / an()s(F) AV, 3.1)
;

where s(7) is the magnetic source and a; are the encoding functions of
the magnetic measurement y;. The specific model for MRI is discussed in
Sec. 3.2.1 and for MEG in Sec. 3.3.1.

The basic problem of imaging is to reconstruct an estimate of the source
field from the measurements. If the reconstruction is linear, the estimate
of the source is always a linear combination of the measurements: 5(7,) =
> i Wmnln = wTTny, where w,,, and y are column vectors of reconstruction
weights and the measurements, respectively, and | denotes the transpose.
Using Eq. (3.1), the estimate can be written as

5(Fm) = E wm,n/ a,(7s(FdV' =
; v
(3.2)

/ <Zwm,nan(f')> S(F)dV = / o ()s(7) AV,
174 n 174

where v, (7) = Y, Wmnan(7) is the spatial response function (SRF) [42]
of the image element at 7,,. In other contexts, the SRF is known as the
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averaging kernel [43], the resolution field [44] and the cross-talk function
[45] with subtle differences in their definitions. The SRF describes the
sensitivity of the image value, e.g., a pixel value to the source distribution
surrounding 7,,. In the optimal case, the SRF corresponds to Dirac’s delta
function v,,(7) = §(7,, — 7) so that §(7,) = s(7im).

To find an optimal local estimate for s(7) within the constraints of the
imaging modality, one can optimize the weights so that the difference
|V (7) — 6(F — 7 )||? measured by the L, norm is minimized. In terms of
the weights w,,, the optimization problem becomes

Iunlin w, Gw,, — 2w, a,,, 3.3)
where G is a Gram matrix with elements G,,,,, = fv an(F)am (7)dV and a,,
contains the basis function values at 7, (am)n = [ (7 — Fn)an(F)dV =
an(7m). The solution to this minimization problem can be found by equating
the gradient of the objective function to zero, which gives

Wm = Gilam . (3.4)

Unless the basis functions are orthonormal with respect to the inner
product, i.e., G = I, the solution may become unstable. This can be allevi-
ated by penalizing for the expected squared error of the source estimate in
the objective function. If the measurements y contain additive noise with
a covariance matrix C, the expected squared error in 5(7,,) is w,, Cw,,. By
adding this quadratic form multiplied by a trade-off parameter )\ to the
objective in Eq. (3.3), the minimization of the objective yields a regularized
solution

wp, = (G +A\C) ta,,. (3.5)

The spatial resolution of a linear imaging modality can be obtained
from the SRF. For demonstration, I now use complex sinusoidal functions
e’** to build a SRF, motivated by the fact that these are the encoding
functions in the most basic form of MRI. For simplicity, let us assume a
one-dimensional domain of a length L; the SRF generalizes to 2D and 3D
rectangular domains as a product of the 1D SRFs of each coordinate. The
basis functions a,, = e?*»* are orthogonal in the domain, when k, = 2wn/L,
i.e., G = LI. According to Eq. (3.4), the optimal weights for a point at
r = 2, are then (wy,)n = an(2m) = €= /L and the corresponding SRF is
1 i hnomany _ S0 CEW +1/2)(z — )

vm(®) = 7 Lsin (2%@ — xm)/Q) ’ (3.6)

L
n=—N

which is called the Dirichlet kernel, illustrated in Fig. 3.1A. One possible
way to define the spatial resolution of the imaging system is the width
of the main lobe of the SRF. This width is inversely proportional to the
highest measured spatial frequency k.
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Figure 3.1. Spatial response functions in MRI. A: On the left, the Dirichlet SRF in 1D,
and in 2D as well as a simulated MR image of a disc corresponding to the
SRF. On the right, the SRF of Hann-windowed k space data as well as the
corresponding reconstruction of the disc. B: On the left, two SRF's of under-
sampled multichannel imaging (blue lines) for two different channels and
the corresponding images spatially aliased in the horizontal direction . The
orange envelope curves visualize the spatial sensitivity profiles of the two
channels. On the right, the two SRFs are resolved as weighted combinations
of the SRFs on the left using the SENSE method.

Although the SRF is optimal in the sense of squared error, it may not be
optimal with respect to other criteria. For example, the Dirichlet kernel
contains far-reaching side lobes, i.e., the estimate 5(x,,) can pickup source
signal far from z,,, which can cause ringing artifacts in the image (see
Fig. 3.1A). To reduce the side lobes, one can damp the terms corresponding
to the higher spatial frequencies, the trade-off being that the main lobe
widens. Different measures the optimality are discussed by Backus and
Gilbert in Ref. [43], where the SRF is known as the averaging kernel.

3.2 MRI

3.2.1 Encoding and reconstruction

As explained in Sec. 2.3.3, when tipped from equilibrium, nuclear mag-
netization M (7) precesses around the external magnetic field with the
angular frequency w = vB. When expressing the precessing magnetization
in the zy plane as a complex number as in Eq. (2.24), the model for the
detected, magnetic flux in Eq. (2.34) can be written in the form of a linear
measurement (Eq. (3.1))

®(t) = Re / B(F)*e T g (7)dV, (8.7
14

where § = B, + iB, is obtained from the sensitivity field B.. Here,
mo(7) is the magnetization, i.e., imaged source and §(7)*e (") is the
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encoding function, which depends on the phase of the magnetization
o(7,t) = jot w(7,t')dt" as well as on the sensor location.

Magnetic resonance imaging is based on manipulating the magnetization
phase across the imaged volume. By varying the phase linearly A¢(7) =
k-7, the exponential part of the encoding functions become Fourier basis
functions ¢’*7 and Fourier transform can be used to efficiently reconstruct
the image. The linear phase change is achieved by introducing so-called
gradient fields B, on top of the main field. When B, > B, and By is z
directional, the variation in the field magnitude is approximately Eg - 2.
Choosing Eg such that §g(fj .2=G -7, linear phase encoding is achieved.

In practice, the gradient sequence consists of two steps: phase and
frequency encoding. Phase encoding varies the phase before the signal
acquisition and frequency encoding varies it during the acquisition. The
purpose of these two steps is to gather data that corresponds to basis
functions with different k vectors:

y(n) = /V B o(Fe Tav, 3.8)

The collection of samples then constitutes a data array which can be inter-
preted as samples of the Fourier transform of 3*(7)/n(7) in the reciprocal k
space. In conventional Fourier imaging, the k space is sampled uniformly
using a series of phase- and frequency-encoding steps.

A linear reconstruction of the source can be obtained by optimizing the
spatial response function for chosen source locations [42]. If 5*(7)m(7)
is considered as the image (instead of 7 (7)), the encoding functions are
of the form ¢*7 and the optimal reconstruction corresponds to the SRF
optimization in Sec. 3.1. When the image is reconstructed in a pixel-
or voxel-based manner, values are required only for points in a regular
grid and the reconstruction weights become the elements in a discrete
Fourier transform (DFT) [42]. The reconstruction to a regular grid can
thus be carried out by the efficient Fast-Fourier-Transform algorithm
(FFT). Finally, the voxel values can be corrected for the sensitivity profiles
by dividing the reconstructed values by 5*(7).

Although this is the usual way of reconstructing an MR image, the
estimated values of the source 5*(7) are not restricted to the grid points
determined by the DFT. The optimal reconstruction to the points between
the DFT grid can be obtained efficiently by the FFT by zero-padding
the & space data. Extending the zero padding, the optimal continuous
reconstruction of the source is approached.

3.2.2 Multi-channel MRI
In many MRI applications, the magnetic field generated by precessing

nuclear magnetization is received by multiple sensors positioned around
the imaged object. Each sensor j forms a channel that gathers the signal
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from the source weighted by its own sensitivity profile 5 = ; as described
in Eq. (3.7). Assuming the FFT-reconstruction yields spatial response
functions sufficiently close to a delta function, FFT can be applied sensor-
wise to reconstruct single-channel images ; ()m(r"). These images can be
combined voxelwise as a weighted sum of the voxel values in each image
to obtain the imaged of () [37].

When considering @-(f’)*e*i‘/’(m) Eq. (3.7) as the encoding functions, one
is not limited to the conventional k space imaging, but can also use the
encoding power of the sensitivity profiles 5;(7). Such generalized encoding
can be used to reduce the number of data acquisitions, which decreases
the total imaging time. The most convenient way to do this is to under-
sample the k space along the phase encoding dimensions. For instance,
undersampling by a factor 2 in two dimensions, reduces the imaging time
to one fourth.

When using the FFT-based reconstruction, the undersampling leads to
aliasing or folding of the image on top of itself, which can be understood
in terms of the spatial response function. The SRF of FFT reconstruction,
described by Eq. (3.6), is periodic with a period of L = 1/Ak, where Ak
is the sampling interval in the k space. Because the SRF peaks at every
period, features at the period of L will sum up to the same voxel and folding
occurs if L is smaller than the object size. The folding can be resolved
when the image data is captured by multiple sensors. One such method is
called SENSE (sensitivity encoding) [46], which works by solving the linear
equations associated with the aliased sensitivity profiles §;(7). Because
the sensitivity profiles decay and smooth out with distance from the sensor,
resolving the aliasing works best at the superficial parts of the head [47].

3.3 MEG

3.3.1 Minimum norm estimate

In magnetoencephalography, the linear model for the measurements can
be formulated using the lead fields in Eq. (2.38). For each sensor the model
for the data is then simply

Yn = / Lo (F) - Jo(7)dV, (3.9)
1%

where L, is the magnetic lead field of the sensor n. When compared to
multi-channel MRI, the model would roughly correspond to having data
without any gradient encoding. Mirrored by this fact, one could estimate
that MEG, as an imaging modality, has a very limited spatial resolution
compared to MRI.

The resolution of MEG can be quantified using the spatial response
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function, which in this context is a vector field called the resolution field
[44, 48]. A similar concept is the cross-talk function [45], which is usually
only considered in a discretized setting. The optimal reconstruction weights
derived using Eq. (3.4) for source location 7, are

B = 3 (G npLi(Pom) (3.10)
k

and the corresponding SRF is

Ry, m Z n kLk "m) n(r), (3.11)

where G, , = fv n(7) - Lk( ) and the double vector denotes a second-order
tensor. The corresponding estimate JMN(rm) = >, WmnYn is known as the
minimum-norm estimate. Since the lead fields are not orthogonal, the
inversion of the matrix G is generally not stable. Therefore, the estimate
is usually regularized by replacing G with G + AC as in Eq. (3.5).

Fig. 3.2 shows examples of the SRF for two current estimates computed
using an inner-skull-based single-compartment head model. Since the lead
fields are divergence-free and tangential on the conductivity interface, so
is the resolution field. These examples explain visually the sensitivity of
MEG to superficial source activity. Although the SRF can be optimized
for deeper source activity, it always picks up activity primarily from the
superficial parts of the brain, if such activity is present.

3.3.2 Source estimation using additional prior information

In order to make inference of the brain activity based on magnetic-field
measurements, one must have prior knowledge of how the field is gen-
erated. In a broad sense, this prior knowledge includes the geometry of
the sensor arrangement, the geometry of the head conductivity structure,
conductivity parameters, i.e., the whole forward model. Error in any part
of the model may affect accuracy of the estimate of the source activity.

In a more strict sense, the prior knowledge only refers the source currents
J_;)(f') and other parts of the physical model are considered to be certain.
One can then assign prior probabilities for J:)(F) according to one’s beliefs
of where the activity can take place. A common prior assumption is that
the source activity lies normal to the surface of the cortex, in the direction
of pyramidal neurons [2, 49]. This assumption constrains the minimum-
norm estimate to the cortex. However, as the cortex is highly folded the
estimate can spread over multiple sulci [49, 50].

In some situations, one can expect to have the source activity primarily
concentrated on certain focal locations. When only one dominating location
is assumed, it can be searched by dipole fitting, i.e., by varying location
and orientation of a candidate dipole and matching the field topography of
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Figure 3.2. Spatial response functions (SRF's) for estimates of fp pointing upwards at two
locations. A: Superficial location at 4 mm from the inner skull. B: Deeper
location at 4 cm from the inner skull. The field magntitude and direction
are plotted on the inner skull surface. The field magnitude is shown also
on the horizontal plane. The SRF for the superficial location is quite well-
concentrated around the desired location, but the SRF for the deeper location
is biased towards the more superficial areas.

the dipole with the measured one. When multiple active locations are as-
sumed, one may use multiple-signal classification (MUSIC), beamformers
[10], or Bayesian multi-dipole methods [51] to determine these locations.
Beamformers can also be interpreted as spatial filters [52], which can be
analyzed using spatial response functions (cross-talk functions [45]). In-
stead of building the reconstruction weights only based on the field model
(L) asin MNE, beamformers also use data over the whole time course.

The methods described above try to resolve the neural activity in greater
detail than than minimum-norm estimation by taking advantage of small
differences in the field topographies. As a consequence, they require
more accurate modeling of the electromagnetic field. In MEG, a major
issue can be the errors in spatially aligning head model with the MEG
sensors [53, 54, 55], which distort the forward model. Although in EEG,
uncertainties in the conductivity structure of the head play a big role
[56, 57], in MEG they have only minor effect [12, 58].
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3.3.3 Spatial sampling

In conventional MRI, the signal is sampled in the k space, and the effect of
sampling, such as aliasing of the image, can be studied with conventional
methods of signal processing. In MEG, the field signal is only sampled in
the real space with sensors placed around the head. Adequate sampling
of the magnetic field is needed to get the full picture of the continuous
field profile. Modern MEG devices contain hundreds of magnetic sensors
sampling the field and it has been argued that they provide substantial
oversampling of the field [59, 27]. With the coming of new types of sensors
(Sec. 2.5.1) that can be flexibly positioned, the sampling issue has also
become more and more relevant.

The sampling in MEG has been thoroughly analyzed in terms of spatial
frequencies [59] and aliasing of the signal in the Fourier (k) space. The
analysis works well in flat domains but remains only an approximation
of the realistic situation, where the sensors are positioned on a curved
surface. In Publication III, it was demonstrated that similar analysis can
be made on a surface, when the Fourier basis functions are generalized
as eigenfunctions of the Laplace—Beltrami operator. Although there is
no similar notion of k as in flat 2D domains and conventional sampling
analysis cannot be done, the number of basis functions needed to represent
the magnetic field patterns of the brain can be used to estimate the number
of samples required.

Another problem is how to position or orient the sensors when the number
of sensors is fixed. When assuming homogeneous uncorrelated activity
within the brain, the goodness of the sampling configurations can be
quantified by calculating the total information or the channel capacity
[60, 61]. Under this assumption, the total information (TI) is a function of
the Gram matrix G used in the minimum norm estimate (Eq. (3.11)) and
the noise covariance matrix C:

1 det(¢®G + C)

Th=3ls —qw@

5 (3.12)

where ¢ is the assumed variance of .J, within the brain.

The optimal sampling configuration depends on the prior assumptions of
the brain activity encoded in the matrix ¢>G. Furthermore, if external field
fluctuations exist, they create measurement noise that correlates between
the sampling locations, and it should be taken into account in the noise
covariance C.
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3.4 Ultra-low-field MRl and MEG-MRI

3.4.1 Basics principles of ultra-low-field MRI

The strength of the main field of conventional MRI is 1-7 T, and even
higher field strengths are strived for. The need for high field strengths
exists mainly because the main field is used for magnetizing the spin
population and higher magnetization gives better quality signal. On the
contrary, in ultra-low-field MRI, the main field strength is in the order
of the Earth’s magnetic field, 50 uT, [5, 6] and the corresponding Larmor
frequency is around 2 kHz. The low main field is not enough to build
up required magnetization. Therefore, prepolarization, i.e., a strong field
pulse of 10-100 mT is applied before the signal encoding and acquisition.
Such a strong pulse creates eddy-current problems, which have to be dealt
with using special techniques [62, 63].

Prepolarization itself does not enable imaging at ultra low fields. Another
problem is the acquisition of MR signals of low Larmor frequency, since, as
described in Sec. 2.5.1, inductive measurement of the magnetic field loses
sensitivity at low frequencies. As in MEG, this problem is solved by using
SQUID sensors, that provide a flat response in the frequency range of ULF
MRI. However, the SQUIDs must bear high prepolarization pulses and
they must be designed more carefully than the ones aimed only for MEG
[64, 65].

After taking care of instrumentation problems, ULF MRI has unique
possibilities for biomagnetic measurements. First, a multi-sensor system
capable of measuring ULF MRI can be directly used for MEG studies.
Additionally, ULF MRI itself has several advantages compared to high field
MRI. At low fields, the magnetization relaxation times change compared
to high fields, enabling improved image contrast for certain tissues [66,
67, 68]. Furthermore lower fields enable more flexible design of imaging
sequences [69, 23], e.g., a sequence for three-dimensional current-density
imaging discussed in more detail below.

However, there are several challenges, e.g, low SNR and long prepo-
larization times [70], which limit to the achievable spatial resolution of
ULF MRI. Additionally, one major physical hindrance are the so-called
concomitant gradients, i.e., the orthogonal components of the gradient
field Eg [71]. Because Eg is a gradient of a harmonic potential (Sec. 2.4.1),
such a component is always present at some part of the imaging volume.
At low fields the orthogonal components contribute to the field strength
approximately as [72]

. . . |B‘L|2
|Bo+ By~ (Bg+B;-2) [ 14+ ———— |, (3.13)
® ® 2(By + By - 2)?
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where Egl is the concomitant component. When B, approaches B in any
part of the image, the encoded phase becomes non-linear with respect to
location, i.e., ¢ # k -  and the notion of k space loses its meaning. On the
other hand, imaging with lower gradients requires longer encoding times,
resulting in relaxed magnetization and smaller signals.

To a certain extent, the concomitant effect can be handled as a geometric
distortion when using a FFT reconstruction [72]. The image can also be
reconstructed by explicitly modeling the encoding functions affected by the
concomitant fields [73], but the reconstruction involves matrix inversions,
which takes more time and can be more susceptible to modeling errors.

3.4.2 Current-density imaging

In MRI, any inhomogeneity on top of the main Bj field causes the precess-
ing magnetization to dephase. This effect is exploited to spatially encode
the magnetization by gradient fields. Any additional field causes addi-
tional phase change which can be quantified by the phase of the complex
voxel values. One such field is the one generated by current density in
the brain B;. If the source of the current density is the brain, as in MEG,
the imaging modality is called neuronal current imaging (NCI) [74]. It
has been estimated that the strength of the local field generated by a local
activation can be in the order of 1 nT [75, 76]. If the field is in the direction
of By, the related phase change in 7 =100 ms (a typical relaxation time of
ULF-MR signal) is only A¢ = y7B; = 1.5°. For a detectable NCI signal, a
high signal-to-noise ratio and a long-lasting activation are needed.

Instead of relying on fields generated by the brain, one can use externally
injected currents to study current distributions in the head. The effect of
B on the MR signal can be more easily controlled by the amplitude and
duration of the applied current. In high-field MRI, the detection of injected
currents is mainly limited to recording the component of B, parallel to By
[77] and such measurements are of limited use. However, the flexibility in
the sequence design of ULF MRI enables measuring all three components
of B [78, 23], which can be used to fully resolve the underlying J field by
the application of Ampere’s law. Direct imaging of J can offer valuable
information about the conductivity structure of the head.

The encoding of B into the MR signal is based on a zero-field sequence,
where the main field is switched of after the prepolarizing pulse, before
the spatial encoding. During the zero-field time, the magnetization rotates
around B; according to Eq. (2.23), illustrated in Fig. 3.3. Switching on
By and continuing with conventional spatial encoding, one can measure
projection of the rotated starting magnetization in the zy plane perpen-
dicular to By. When the measurement is repeated for three orthogonal
starting magnetizations, the projections of these vectors can be used to
determine the associated rotation matrix exp(¢(B,;)C(B,)), which contains
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Figure 3.3. Rotation of thee orthogonal starting magnetizations (blue, green, and red
arrows) initially oriented along the coordinate axis in zero-field encoded CDI
sequence. A: Application of By during the zero-field period rotates the starting
magnetization vectors. B After the application of 5, the rotated vectors start

to precess around By. The z and y components of the rotated vectors contribute
to the MR signal from which they can be resolved for each voxel in the image.

the information for reconstructing B.

Although current-density imaging has been successfully demonstrated in
a homogeneous phantom [23], applying the technique for humans has sev-
eral complications, discussed in Publication II. First, the applied current is
limited to approximately below 4 mA to prevent uncomfortable sensations
in the skin [79]. Second, the human head is not homogeneous in conductiv-
ity, but the relatively resistive skull hinders the current transmitted into
the brain [80], lowering the SNR of intracranial CDI. Another problem
is the inhomogeneity of the magnetization in the different tissue types.
Since the skull has effectively no magnetization, B cannot be measured
there either. A voxel positioned at the skull actually measures B from the
neighbouring areas based on its spatial response function.

3.4.3 Co-registration and Spatial Calibration of MEG and MRI

The use of detailed prior information in MEG discussed in Sec. 3.3.2
requires accurate forward modeling. Since the conductor model for MEG
does not require to be very detailed, the major errors in the physical model
usually come from the spatial alignment, i.e., the co-registration of MEG
sensors and the geometrical model of the head. The MRI-derived head
model comprises the conductivity boundaries for modeling the volume
conduction and possibly the cortex for constraining the inverse solution.
The co-registration problem is a major issue both in the workflow of MEG
experiments, but also in the processing of MEG data. It involves manual
steps, which can be susceptible to human errors [81].

A typical co-registration procedure involves multiple coordinate systems,
in which the data are presented [82]. One of these is the MRI coordinate
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system describing structural MR data as voxel values in a rectangular grid.
Depending on the MR device and the imaging sequence, the geometry of the
head can already be distorted in this coordinate system. The geometrical
model of the head derived from the MR images must positioned in the
MEG coordinate system, i.e., the coordinate system of the MEG sensors,
to derive the physical field model (). This is usually accomplished with
a 3D digitizing device, which maps positions on the head in its own head
coordinate system. Certain digitized positions are then localized in MEG
coordinate system with the help of small energized coils whose signal
is measured by the MEG sensors. Additionally, a larger set of digitized
positions are used to map the MRI-based head model in the head coordinate
system. Finally, after the two coordinate transformations determined from
this procedure, the geometrical model of the head can be positioned with
respect to the MEG device.

In combined MEG—MRI, the co-registration procedure is somewhat sim-
pler as these manual steps can be avoided. The MEG and ULF-MR co-
ordinate systems can be spatially calibrated without relation to a head
coordinate system as described in Publication I. Therefore, when data from
both modalities are recorded in the same session and the head stays still,
ULF-MR data such as structural or current-density information can be
obtained in the same coordinates as MEG. Structural ULF-MR data can
also be co-registered with structural high-field MR data [83], enabling
automatized use of high-field MR data, e.g., for MEG source modeling.
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4.1 Publication I: "Automatic spatial calibration of ultra-low-field
MRI for high-accuracy hybrid MEG-MRI"

As described in Sec. 3.4.3, the co-registration of MR images and the MEG
device is laborious and prone to errors. In this publication, we approached
the co-registration problem from a different perspective, in the context of
a hybrid MEG-MRI device. Instead of using conventional co-registration
procedures, the device can be spatially calibrated so that every ULF-
MR image taken with device can be accurately expressed in the MEG
coordinates (see Fig. 4.1).

We developed a spatial calibration method that uses the spatial infor-
mation in the MR sensitivity profiles 5; described in Secs. 2.5.2 and 3.2.1.
This method solves the placement of the ULF-MR image with respect to
the magnetic sensors using single-channel images of a phantom and a com-
putational model for the spatial sensitivities 3;. With extensive computer
simulations, we verified the feasibility of the method in high-noise condi-
tions and demonstrated that it can reach sub-voxel and sub-millimeter
accuracy in the spatial calibration. The methods ensures the enhanced
spatial accuracy in the co-registration of MRI and MEG when using the
MEG-MRI device.

4.2 Publication II: "Evaluating the performance of ultra-low-field
MRI for in-vivo 3D current density imaging of the human head"

Ultra-low-field MRI can be applied for imaging currents (CDI) injected into
the head as described in 3.4.2. In order to reconstruct the currents from
the MR image data, one needs high-enough signal-to-noise ratio (SNR).
The purpose of this study was to quantify the SNR of magnetic-field (B,)
and current-density (.J) reconstructions in terms of image SNR, which is
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ULF MR image

Sensor array

Figure 4.1. The spatial calibration method in Publication I finds the location of the MRI
image voxels (e.g. the red cube) in the coordinate system of the sensor array.
The locations are determined by a fitting a mapping between the coordinate
system of the sensor array (z,y, z) and the coordinate system of the ULF MR
image (g1, g2, ¢3)-

easier to estimate. We also carried out simulations of J and B (Fig. 4.2)
using a realistically shaped three-compartment head model and a finite-
element method. By incorporating the field simulations in an accurately
modelled zero-field encoded CDI sequence, we determined whether the
SNR would be high-enough in two existing ULF-MRI systems for in-vivo
measurements. One of the systems was the multichannel MEG-MRI
system at Aalto University and the other one was a one-channel system at
PTB Berlin.

Based on this computational study, the magnetic field By generated by
the current density J can be reconstructed reasonably well in the intracra-
nial volume near the skull in both systems. However, the current-density
reconstructions were more susceptible to image artifacts that originate
from the scalp-skull structure and the SRF sidelobes. The elimination of
these artifacts should still be studied more thoroughly.

4.3 Publication Illl:"Spatial sampling of MEG and EEG revisited:
From spatial-frequency spectra to model-informed sampling”

In this study, spatial sampling of continuous field patterns generated by
the brain was analyzed. Based on a spatial-frequency analysis conveyed
using Laplace—Beltrami eigenfunctions, the number of sensors that suf-
ficiently sample all the possible field patterns was estimated. For field
samples positioned on around 2 cm away from the scalp, this number was
around 100 which corresponds to the number of magnetometers in the
new prototype of the MEG-MRI device at Aalto University. Thus, the
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15

Figure 4.2. The current density J and magnetic field 3, solved with a finite-element
method and used in the CDI simulations of Publication II are shown in panels
a and b. Panels ¢ and d show the magnitude of the field reconstructions
derived from the simulated MR data. In these examples, no noise was applied
to the simulation to show the artifacts in the reconstruction of current density
J.

300 sensors equipped in conventional MEG devices are overly sufficient
for sampling of MEG, although they may be beneficial in other respects,
e.g., in interference detection. We also carried out the same analysis for
on-scalp MEG and EEG. For MEG sensors that can be positioned on the
scalp, the beneficial number of sensors was around 300 and for EEG it was
approximately 100.

We applied the theory of Gaussian processes and optimal design (see
Fig. 4.3) to analyze how sensor positioning affects the total information
(Eq. (38.12)) conveyed from the brain. Furthermore, we developed a method
to design sampling configurations that are optimal in this respect. The
information metric was compared among different sampling configurations
for two different cases of prior information: uniform activation around
the brain and an activation located in a certain region of interest. The
optimized sampling positions were especially useful for the latter case. In
future, the sampling method may be applied in studies where a certain
region of brain is known to be activated and the sensors can be freely
positioned.
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ground truth  posterior mean

Figure 4.3. Prior variance encodes the uncertainty of the field based on a prior model
set by the experimenter before measurements. Using Bayesian inference,
the uncertainty after measurements (posterior variance) can be calculated.
The posterior mean is the expected field pattern incorporating information
from the prior model and the measured field samples. The figure illustrates
the posterior mean and variance for 1, 15, 30, and 100 uniformly distributed
samples. The more samples, the less uncertainty is left in the field and the
more accurate estimate is the posterior mean for the ground truth.

Figure 4.4. Panel A: An example of triangle mesh used in the field modeling in Publication
IV. Blue and green color indicate the magnitude of two basis functions on the
surface. The basis functions can be used to describe basis current densities
(black arrows), which circulate either the nodes or holes of the mesh. Panel B:
The magnetic scalar potential on the left and the magnetic field on the right
originating from a single basis-function current. The different shades of grey
on the triangles represent the magnitude of the stream function.

4.4 Publication IV: "Magnetic-field modeling with surface currents.
Part I. Physical and computational principles of bfieldtools"

In this study, we designed and implemented general computational tools
for modeling quasistatic magnetic fields. The tool set is primarily based
on representing the magnetic field using divergence-free surface currents
(Sec. 2.4). The computations were aimed for arbitrary surface-current
geometries by discretizing the stream function of the current density using
triangle meshes. The field equations associated with the stream function
were analytically discretized for accurate computations as shown in Fig. 4.4.
Additionally, the construction of function bases for field processing using
the Laplace-Beltrami eigenfunctions was implemented.

The tools described in this work are currently available as a software
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package called bfieldtools in a public code repository available at https:
//github.com/bfieldtools/bfieldtools. This package can be used for a variety
of tasks from eddy current problems (encountered in ULF MRI) to surface-
coil design (e.g., the gradient coils in MRI) and field interpolation in the
free space (useful for visualizing and modeling neuronal fields).
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5. Discussion

Both magnetoencephalography and ultra-low-field MRI are somewhat lim-
ited in the spatial resolution for imaging magnetic sources. Despite this
fact, their combination in a single device can provide unique possiblities
for magnetic brain imaging. Understanding the field recorded by a mul-
tichannel magnetometer is crucial for developing new methods that can
take full advantage of combination of these two modalities.

In MEG, considering the measurement in terms of reciprocal vector fields
enables the interpretation of linear source estimates and their spatial
resolution. The spatial dependence of the magnetic lead field is mainly
determined by the orientation and the location of the sensor with respect to
the inner skull of the head. Thus, errors in the co-registration of the MRI-
derived head model and the magnetic sensors can play a big role in the
spatial accuracy of MEG. In Publication I, the issues with co-registration
were alleviated by the spatial calibration of the MEG-MRI device, which
removes the need for complicated co-registration stages. Although the
minimum-norm estimation may not be so sensitive to spatial errors, the
enhanced spatial accuracy is useful when source estimation methods in-
volving additional prior information are applied.

The improved spatial accuracy in MEG using the hybrid MEG-MRI
device is based on the assumption that ULF-MR data can be used to
construct the head model for MEG. Because of the issues discussed in
Sec. 3.4.1, similar resolution to high-field MRI can be difficult to obtain
in a reasonable imaging time. However, constructing the over-all shape
of the head, especially that of the inner skull, is doable also using lower-
resolution data. Because ULF MRI in the hybrid device can provide this
information without a need for co-registration, it can still enhance the
spatial accuracy of MEG. Additionally, the workflow of the measurement
and data processing in MEG can be simplified.

The spatial resolution of bioelectromagnetic neuroimaging could be fur-
ther increased by combining MEG with EEG [84]. The promise of ULF
MRI for this combination is that current-density imaging can provide infor-
mation for improving the volume conductor model essential especially for
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EEG. Theoretically, as the EEG lead fields correspond to the field pattern
produced by applying a current between pairs of electrodes, CDI can di-
rectly measure these patterns. In practice, as shown in Publication II, the
SNR and spatial resolution of CDI may not be high-enough for resolving
the currents adequately. Nevertheless, image data of B, could be used to
resolve the flux of current passing the skull, because these patterns are
known to be spatially smooth a priori. Furthermore, the (multi-)electrode
configuration [85, 86] and the electrodes themselves [87, 88] could be opti-
mized for higher intracranial current and reduced sensation of the current
on the skin. Combining the methodological and technical improvements,
individual differences due to the structure of the skull could be measured
and applied for modeling EEG.

In Publication III, the spatial information of MEG was studied in terms
of field patterns sampled on surface around the head. The results of this
study suggest that bringing the sensors on the scalp, e.g., by means of,
optically-pumped magnetometers, increases the spatial-frequency content
of the field by roughly a factor of three. Could ULF MRI benefit from
sensors closer to the head, too? First, the sensitivity of the measurements
would increase, especially very close to the sensor. The increased amount of
spatial information could also be used to accelerate the imaging. However,
the sensor types currently applied for MEG would not work as they require
a magnetic field stabilized from low-frequency field fluctuations. Although
these sensors can be tuned for a desired frequency for the detection of
MR signal [89, 90], they need to be shielded from the fields of the MR se-
quence which complicates the construction of a whole-head device. Another
problem in applying these sensors for MRI is their limited bandwidth.

A common aspect in field distributions such as the potential distribution
in EEG, the magnetic field distribution in MEG, and the flux of current at
the inner skull in CDI is that they are limited to low spatial frequencies.
In the usual sense, spatial frequencies are associated with sinusoidal func-
tions in certain coordinate systems, such as Cartesian or spherical ones.
In Publication IIT and Publication IV, spatial-frequency methods were gen-
eralized on curved geometries using the Laplace—Beltrami eigenfunctions,
which have been used in graphics and geometry processing for some time
[91, 92, 31]. These functions can provide useful bases for problems related
to smooth surface fields in bioelectromagnetic neuroimaging. Furthermore,
the functions could be used to parametrize small disturbances in the geom-
etry itself, which could provide a different approach to determine curved
geometries from structural MR data.
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6. Conclusions

In this Thesis, computational modeling of the magnetic field was applied
for developing methods that facilitate the design and analysis of mag-
netic brain imaging. For ultra-low-field MRI, a sensitivity-field-based
spatial calibration method was introduced and the signal-to-noise ratio
of current-density imaging of the human head was analyzed. For magne-
toencephalography, generalized spatial-frequency analysis and an optimal
design were applied to study the spatial sampling of neuronal magnetic
fields. Last, computational tools for magnetic-field design and analysis
were developed and published also as a software package.
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