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1 Introduction
Historically,  the  autoimmune  variant  of 
diabetes was a devastating disease with a
short life expectancy after diagnosis. An 
early  clinical  report  [Twitchell  1907] 
stated that “Of 64 severe cases (of dia-
betes), 59 died before the third year after
discovery”.  At  the  time,  it  was  already
known that  normal  glucose  metabolism 
was  absent  in  these  patients,  and  there 
was  a  consensus  about  the  two  major
forms of diabetes:  young people tended 
to  have  the  severe  form,  whereas  most 
older  individuals  could  cope  with  diet 
adjustments for many years.

The introduction of insulin injections two 
decades later provided the critical treat-
ment  for  the  acute  symptoms  [Banting 
1922],  but  already in the mid-thirties it
became evident  the  the  insulin  replace-
ment therapy was not enough to restore
optimal  metabolism.  It  was  discovered 
that  some  patients  with  insulin-treated 
diabetes suffered from high blood pres-
sure  and  specific  lesions  in  the  kidney
[Kimmelstiel 1936]. Gradually, a detailed
picture of  tissue damage in the circula-
tory and nervous systems emerged in pa-
tients with a long-standing juvenile dia-
betes.

Today, diabetes is classified into two ma-
jor and a number of minor types accord-
ing  to  the  mode of  development  [ADA
2007]. Type 1 is the autoimmune variant,
where the  body selectively destroys the 
insulin-producing  pancreatic  beta-cells 

through  a  deranged  immune  response, 
typically  at  a  young age.  Type 2 is  the 
more common form that develops slowly 
from a complex set of environmental and 
genetic causes as people grow older and 
both  the  effectiveness  and  secretion  of
insulin decline sufficiently [Kahn 2006].

Treatments for most of the diabetic com-
plications  have  advanced  over  the  last 
fifty  years:  dialysis  and  transplantation 
can be used to offset kidney failure and 
laser surgery can prevent vision loss from
diabetic eye disease.  A decreasing frac-
tion of patients with type 1 diabetes die 
of  failed  kidneys  [Finne  2005].  On  the 
other hand, heart attacks and strokes have 
emerged  as  the  major  threats  to 
longevity: they are more severe and more 
common  for  the  patients  with  diabetic 
complications  [Gross  2005,  Daneman 
2006].

The  traditional  risk  factors  that  were 
known  already  in  the  early  1900’s  are 
still  valid  today:  obesity,  smoking  and
poor diet seem to predispose to a number 
of diseases, including type 2 diabetes and 
the complications of type 1 diabetes. For 
instance,  a  contemporary  paper  on  me-
tabolism  [Breed  1918] began  with  the 
words  “in  a  generously  fed  community 
such as may be found anywhere today, a
large majority of the people are overfed, 
and  when  people  are  continuously 
overfed, sooner or later we find that they 
have  diseases  due  to  a  changed  body 
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chemistry”.  A  hundred  years  later,  this 
phenomenon  has  become  even  more 
widespread.

Still,  not  all  obese  people  suffer  from
type 2 diabetes or heart disease. Not all
patients  with  type  1  diabetes  develop 
complications.  If  every  patient  has  the 
same metabolic problems, why do some 
develop  complications  while  others  do 
not? There are two possible,  non-exclu-
sive  answers  to  these  questions:  i)  the 
metabolism is, in fact, not the same, but
the  diagnostic  criteria  is  insufficient  to 
describe the breadth of the phenomenon 

or ii) the susceptibility to the metabolic 
stress is genetically determined.

This thesis investigates the first hypothe-
sis  from  a  technological  perspective. 
Publications  I  and  V  employ  computa-
tional approaches to uncover new pheno-
typic  features  beyond  the  conventional 
clinical  classifications.  The emphasis  is 
on  the  multivariate  (biochemical)  pat-
terns that are associated with death, gen-
der and other qualitative traits.  Publica-
tions II-IV introduce new technology to 
obtain more biochemical information and 
to elaborate the phenotypes even further.
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2 Review of the literature

2.1 Diabetes mellitus and its 

complications

Classification of type 1 diabetes

Diabetes is characterized by the inability
of tissues to utilize glucose. Insulin is the
critical  hormone  that  activates  the  nor-
mal  glucose  uptake  and  metabolism  in 
most  cells,  and  its  secretion  from  the 
pancreas  is  stimulated  by  nutrient  ab-
sorption in the gut and the subsequent in-
crease in blood glucose concentration. In 
type  1  diabetes,  however,  the  immune 
system  attacks  the  insulin  producing 
beta-cells,  and  rapidly  depletes  the  in-
sulin  response  capability  [Daneman
2006,  Knip  2008].  The  precise  triggers
and driving factors for this autoimmune
reaction are unknown, but bovine insulin, 
other  dietary  agents  and  environmental 
toxins [Virtanen 2003, Vaarala 2006], vi-
ral  infections  [Haverkos  2003,  Filippi 
2008] and  an  inborn  metabolic  imbal-
ance [Oresic 2008] have been suggested, 
in conjunction with an inherited immune
system susceptibility [Jahromi 2007, Ne-
jentsev 2007, Todd 2007].

Type  2  diabetes  is  even  more  complex
than  type  1,  and  gradual  in  nature:  it
comprises several defects that reduce the 
pancreatic  insulin  secretion,  but  also 
make the hormone less efficient in acti-
vating  the  carbohydrate  metabolism
[Kahn  2006,  Lyssenko  2008,  Lyssenko 
2009].  In  addition,  type  2  diabetes  is

heavily  influenced  by  life-style  factors 
that exacerbate the genetic effects. These 
include the hallmarks of the modern civi-
lization:  energy-rich  diets  and  poor 
physical condition due to the lack of ex-
ercise [Lindström 2006, Jeon 2007].

Traditionally, type 1 and type 2 diabetes 
have been distinguished by the age of on-
set: type 1 diabetes starts abruptly at an 
early  age,  typically  within  adolescence, 
whereas type 2 is a disease that gradually 
develops in adulthood. The current gold-
standard is based on the antibodies that 
are associated with the autoimmune re-
sponse  [Seissler  2006] and also  on  ge-
netic  testing  to  confirm  rarer  types  of 
diabetes  [Fajans  2001].  On  the  other 
hand, most clinical studies employ surro-
gate classifications based on the age of 
onset  and the  type  of  insulin  treatment 
for practical reasons. In this thesis, type 1 
diabetes is defined as an age of onset be-
low 35 and permanent insulin treatment 
within a year of onset.

Finland has one of the highest incidence 
rates,  rising from 31 in  1980 to 64 per 
100,000  per  year  in  2005  [Harjutsalo 
2008]. It is estimated that in 2005 there 
were 45,000 Finnish patients with type 1, 
and  193,500  patients  with  type  2  dia-
betes. If also those people with subclinic-
al or undetected (type 2) diabetes are in-
cluded,  the  total  number  likely  exceeds 
half a million or close to 10% of the en-
tire population [Reunanen 2006].
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Acute  symptoms  of  glucose  imbalance 
are treatable, but the insulin replacement 
therapy for type 1 diabetes, for instance,
is not able to fully match the natural pan-
creatic regulation and response. As a re-
sult,  blood  glucose  concentration  be-
comes less stable in these patients  [Kil-
patrick 2007c]. To avoid acute episodes
of  harmfully  low  glucose,  higher  than 
normal  average  concentration  must  be 
maintained (Figure 1), which drives sec-
ondary disease processes (diabetic com-
plications) that cause most of the human
suffering  and societal  burden  [Marshall 
2006].

Microvascular complications

Persisting  high  concentration  of  blood 
glucose  is  associated  with  progressing
damage  to  the  vascular  system  [DCCT 

1993,  DCCT  2000,  Scott  2001,  Gross 
2005, Lachin 2008]. The kidneys, for ex-
ample, are filled with small and vulnera-
ble  blood  vessel  structures  (hence  the 
term  microvascular).  They  filter  out 
waste  products  from the  blood into  the 
urine and also maintain the overall fluid
balance of  the body. The filtering units 
(Figure  2)  are  composed  of  a  globular 
mesh  of  capillary  blood  vessels  (the 
glomerulus)  and  tubular  structures  that 
re-absorb the  spill-over  of  useful  mole-
cules and ions – and most of the water – 
from the  urinary  side.  Abnormal  tissue 
expansions around the intricate capillar-
ies in the glomerulus are the typical signs 
of  diabetic  kidney  disease,  but  lesions 
can also be seen in the tubular structures 
and the  surrounding tissue  [Drummond 
2002, Fioretto 2006, Najafian 2006, Per-
rin 2006]. Reduced survival of the octo-
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Figure 1: Concentration curves from 72h glucose monitoring experiments for a patient with 
type 1 diabetes. The continuous data were measured from the interstitial fluid and calibrated 
by four daily blood tests by finger sticks [Gordin 2008b]. Values below 3 mmol/l are rare in 
non-diabetic  individuals  and  most  of  the  time  blood  glucose  stays  within  4-6  mmol/l, 
although the peak value may rise close to 10 mmol/l shortly after a meal. Patients with type 1 
diabetes must adopt insulin replacement therapies to maintain adequate glucose metabolism 
in  tissues.  Insulin  pumps  can  match  the  natural  responses  better  than  manual  injections. 
However,  the  technology is  expensive  and does  not  work  for  everyone  and  most  type  1 
diabetic patients rely on self-administered insulin.
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Figure  2:  Structural  elements  of  the  kidney.  A The renal  cortex is  the  primary  filtration 
compartment  that  contains  most of  the  several  hundred thousand nephrons  in the  human 
kidney. B The nephron has two main components. The corpuscle (glomerulus and Bowman's 
capsule)  produces  the  first  filtrate  from  arterial  blood  via  the  small  capillaries.  Any 
negatively charged proteins or other macromolecules are blocked from entering the urinary 
space, but water, small molecules and ions are passed through. The tubules reabsorb essential 
molecules and ions back from the filtrate, and return them to the blood circulation. Finally, 
the  collecting  ducts  finish  the  reabsorption  of  water  and  thus  maintain  the  overall  fluid 
balance in the body. C Scanning electron microscope image of a mouse glomerular capillary 
with podocytes (Wikipedia, Creative Commons Attribution ShareAlike 3.0).



pus-like  cells  (podocytes)  that  embrace 
the  glomerular  capillaries  may  also 
accompany the early progressive nephron 
damage [White 2002, Wolf 2005].

An estimated third of patients with type 1
diabetes will be affected during their life-
time,  although  recent  studies  have  re-
ported a decline or a delay in incidence
[Nordwall  2004,  Finne  2005,  Rossing 
2005]. The disease advances at an indi-
vidual  rate  over  the  course  of  several
years,  but  ultimately  most  of  the 
glomeruli will  be destroyed and the pa-
tients will suffer from insufficient filtra-
tion ability [Bloomgarden 2008].

Vulnerable  small  vessel  structures  also
exist in the back of the eye, where they 
feed the light-sensitive cells of the retina 
[DCCT 1995b, Hammes 2002, Alibrahim 
2006, Al-Kateb 2007]. Interestingly, both
the  kidneys  and  the  retina  can  take  up
glucose without insulin, which can lead 
to  excess  glucose  inside  certain  cell 
types. In one study, for instance, the en-
dothelial cells on the retinal vessel wall
were not susceptible to high glucose, but 
neighboring pigment cells were, and they 
released  signaling  molecules  that  then 
drove  also  the  endothelial  cells  out  of
balance [Busik 2008]. On the other hand,
the brain – which does not need insulin
for glucose metabolism either – appears 
to  be  protected  from  increased  uptake, 
and does not  exhibit  similar  changes in
small vessels [Badr 2000].

Nearly all  patients with type 1 diabetes
will have some detectable changes in the
retinal  vasculature  [Skrivarhaug  2006,
Klein  2008],  but  for  some  patients  the
small  capillaries leak excessively to the 
surrounding tissue (including the macula, 

the  area  of  the  best  sensory  accuracy), 
the small arteries in the back of the eye 
become  stiffer  (and  less  efficient),  and 
new blood vessels start to form to meet 
the  subsequent  shortage  of  oxygen 
[Davidson  2007b].  These  proliferative 
forms of  retinopathy are more common 
in patients with kidney disease, and lead 
to severe loss of sight or even blindness if 
left untreated [Ferris 1999].

Macrovascular disease

Although  the  microvascular  complica-
tions pose a serious threat to health, the 
premature  deaths  attributed  to  diabetes 
come  primarily  from  occlusions  in  the 
large  arteries  that  supply  oxygen-rich
blood to the heart and to the brain [Mor-
rish  2001,  Soedamah-Muthu  2004, 
DCCT 2005, Stadler 2006]. Several stud-
ies  have  reported  a  three-fold  or  even 
higher risk of cardiovascular events (e.g. 
heart attacks) in the diabetic population. 
In  fact,  the risk of  the first  event  for  a 
diabetic patient is comparable to the risk 
of recurrence for a non-diabetic heart pa-
tient [Juutilainen 2005, Juutilainen 2008, 
Schramm 2008].

The disease process, which is similar to
that seen in non-diabetic individuals, in-
volves an inflammatory response within 
the arterial wall, accompanied by the ac-
cumulation of  lipids  (Figure 3).  Gradu-
ally,  the  wall  begins  to  thicken  and  a 
plaque of fatty cell  debris forms on the 
inside surface of the affected blood ves-
sel  [Pajunen 2000, Beckman 2002, Ret-
nakaran 2008].  When the plaque grows 
sufficiently,  the  diameter  available  for 
blood flow decreases and oxygen supply 
to tissues is jeopardized. Or, if the plaque 
becomes  unstable,  it  may  rupture  and 
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lead to an unanticipated and fatal block-
age [Ruggeri 2002, Zgibor 2006, Pundz-
iute 2007].

Plaques  can  form  on  any  arterial  wall. 
However, the blood vessels that provide 
oxygen to the heart muscle are of particu-
lar importance, since they are easily oc-
cluded due to their smaller size, and any 
disruptions in the blood flow will  have
catastrophic  effects  on  the  whole  body
[Orchard  2006,  Lockhart  2008,  Hasin 
2009]. The veins are not affected, unless
transplanted in replacement for occluded 
arteries  in  heart  bypass  surgery  [Desai 
2004].

Glucose control is a key modifiable fac-
tor  in  the  prevention  of  complications 
and there is evidence that the effect ex-
tends to arterial  plaques,  particularly  in 

type  1  diabetes:  an  intensive  treatment 
program had beneficial long-term effects 
against  arterial  degradation  [Snell-
Bergeon 2003, Cleary 2006, Juutilainen
2008]. Indirect influence is possible: pa-
tients with diabetic kidney disease have 
an increased risk of stroke or heart attack 
due  to  an  accelerated  and  wide-spread 
process  of  plaque  formation  [Dahl-Jør-
gensen 2005, Kim 2007]. The immediate 
threat to life from kidney failure can be
minimized  by  renal  replacement  thera-
pies  [Finne 2005, Rossing 2005] but, in 
many cases, these survivors succumb to 
macrovascular  diseases  within  a  few 
years.

Neuropathy and other complications

Excess glucose is  also damaging to the 
nervous system: direct metabolic effects 
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Figure 3: Schematic illustration of coronary atherosclerosis. A The heart is highly sensitive to 
any damage in its vasculature. When the ventricules contract, they create a pressure wave that 
travels along the arterial tree, which can be detected as the systolic pulse. Simultaneously, 
most arteries inside the heart muscle are compressed and cannot deliver blood. Therefore, the 
primary supply of oxygen to the heart itself occurs during the relaxing diastolic phase: some 
of the systolic energy is reflected from the arterial tree and this reverse wave maintains the 
flow in the coronary arteries.  B Thickening of the vascular wall and accumulation of lipid 
debris with inflammation as a function of time. Eventually, the plaque becomes ulcerated and 
unstable. A rupture typically leads to a blood clot (platelets adhere to the damaged wall), 
which can then block the artery or travel further into the arterial tree to cause a blockage 
elsewhere.



make the affected neurons more prone to
end their  life-cycle prematurely and the 
impairment  of  microcirculation  through
small capillary blood vessels causes fur-
ther  indirect  injury  [DCCT  1995a,  Pit-
tenger  1997,  Vincent  2002,  Lefrandt 
2003,  Maguire  2007,  Edwards  2008].
The physical manifestations include loss 
of  feeling  and  chronic  pain  [Martin 
2006],  impaired  autonomic  responses
[Lefrandt  1999,  Forsén  2004],  erectile
and other sexual problems [Enzlin 2003,
Klein  2005]  and inefficient  stomach 
function  [Jones  2002,  Sogabe  2005].
Cognitive functions may also be affected, 
and  tissue-specific  changes  can  be  ob-
served by brain imaging [Wessels 2008].
However, most of the studies can provide
only suggestive evidence due to numer-
ous  methodological  challenges  [Van
Harten 2006, Weinger 2008].

Diabetic foot ulcers and the amputation 
of  lower  extremities  causes  significant 
human  suffering  and  disability,  and  a 
large portion of overall health care costs
[Gordois 2003, Chen 2006]. Foot ulcers
are  often  initiated  and  exacerbated  by 
diabetic neuropathy  [Mueller 2005, Ger-
shater 2009]. 

Pregnancy for a woman with type 1 dia-
betes  poses  additional  challenges  to 
metabolic control and insulin treatment. 
Newborns of diabetic mothers are often 
larger than normal due to the high-glu-
cose environment, and a phenomenon of 
run-away blood pressure and leakage of
protein into the urine (pre-eclampsia) is 
more common [Evers 2004]. Perhaps ex-
pectedly, those women with a history of 
pre-eclampsia  have  a  higher  prevalence 
of  diabetic  kidney  disease,  although 
pregnancy itself is not a significant long-

term  risk  factor  [Vérier-Mine  2005, 
Gordin 2007b].

Symptoms  of  depression  are  common 
(10-30%)  among  patients  with  diabetes 
and there is an additional association be-
tween  mental  health  and  complications 
[Anderson  2001,  De  Groot  2001,  Li 
2008]. Undoubtedly, the quality of life is 
affected,  especially  due  to  loss  of  eye-
sight  and  kidney  function,  which  for
young patients may mean permanent in-
ability to work [Kraut 2001]. Adaptation 
to strict dietary regime and careful glu-
cose monitoring is not easy, and any ad-
ditional stress and anxiety has an impact 
on  the  self-care  adherence  [McKellar 
2004], which perpetuates the vicious cy-
cle of poor mental and physical health.

2.2 Clinical risk factors

Age and diabetes duration

The  combination  of  time  and  impaired 
pancreatic  function  (deranged  glucose 
metabolism) is a necessary (but possibly 
not  sufficient)  precondition  to  diabetic 
complications.  Newly  diagnosed  type  1 
diabetes  is  often  accompanied  by  in-
creased  filtration  and  enlarged  kidneys,
probably  to  counter  the  rising  glucose 
[O'Donnell 1988, Vallon 2003]. Within a 
few years, the filtration subsides to nor-
mal levels – and declines further [Magee 
2009]. Hyperfiltration is not, however, a 
necessary  prerequisite  for  future  kidney 
complications. The clinical signs of dia-
betic  kidney disease (most  notably pro-
tein in urine) usually appear in the sec-
ond decade of diabetes [Mogensen 1995, 
Österby  1995,  Ayodele  2004].  As  the 
functional capacity declines (at a rate of 
~10% per  year),  protein  excretion  typi-
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cally  increases  and  the  other  metabolic 
effects  worsen until  the kidneys can no 
longer maintain normal urine flow; renal 
replacement  therapy  is  required  there-
after  (Figure 4).  Of note, recent studies
suggest  that  low-level  protein  excretion 
may  be  unrelated  to  the  functional  de-
cline  in  filtering  capacity,  and can  dis-
appear  with  modern  diabetes  manage-
ment [Rosolowsky 2008].

Retinal abnormalities can already be seen 
shortly  after  the  onset  of  diabetes  in
some patients  [Malone 2001] and retinal
disease  is  highly  prevalent  (>50%)  in 
those patients with a long diabetes dura-
tion  [Agardh  1997,  Rossing  2005,
Keenan  2007,  Klein  2008].  The  sight-
threatening  complications  (proliferative 
retinopathy in particular) affect a subset 
of  patients  (approximately  30%),  but
much  of  the  visual  acuity  can  be  pre-
served  with  laser  surgery  [Davidson 
2007a, Mohamed 2007]. Curiously, sud-
den  changes  in  blood  glucose  control 
may have unexpected consequences; one 
study reported an initial worsening of the 
retinal damage when switching to an in-

tensive  insulin  treatment,  although  the 
long-term  prognosis  was  improved 
[DCCT 1998, DCCT 2000].

The macrovascular complications accom-
pany  the  microvascular  deterioration  of 
the  kidneys  and  the  retina.  Put  differ-
ently, patients with type 1 diabetes (and 
kidney disease) suffer from heart attacks 
earlier than their peers, and are less likely 
to  survive  from  initial  events  [Fisher
1997, May 2000, Antoniucci 2004, Miller 
2009].  It  is,  however,  unclear  whether 
this acceleration extends to the less vul-
nerable  patients  with  continuing  good 
metabolic  control  even after  decades of 
diabetes.

Not only diabetes duration, but also the 
age of onset has an impact on the inci-
dence of complications. Those that have 
had type 1 diabetes from early childhood 
(<5 years old) may have less kidney dis-
ease  [Finne  2005].  On  the  other  hand, 
there  is  a  strong  birth  cohort  effect 
thanks  to  the  increased  awareness  and 
technological advances in glucose moni-
toring  and  insulin  preparates  [Brange 
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Figure  4: Natural course of diabetic kidney 
disease.  Initially,  the  glomerular  filtration 
rate (GFR) can be above the typical healthy
range  from  60  to  130  ml/min/1.73m2  in 
newly diagnosed patients  with type 1 dia-
betes. Within two decades the GFR begins 
to decline and urinary protein excretion in-
creases for one in three patients. Finally, the 
kidneys fail to filter enough blood and ex-
crete urine to clear the body of accumulat-
ing metabolic waste products, and renal re-
placement therapy is required.



1997, Siebenhofer 2004, Von Sengbusch 
2005,  Monami  2009].  Interestingly,  age
at onset has also a familial association on
the  risk of  type 1 diabetes  itself:  those 
patients  with  an  early  onset  are  more 
likely to have a diabetic sibling  [Harjut-
salo 2005].

Blood pressure and arterial stiffening

Aging arteries become stiffer, which in-
creases the peak flow resistance and cre-
ates stronger pulse fluctuations during a 
heart beat; in type 1 diabetes arteries age
10-20 years faster than normal, if looking
at blood pressure alone [Rönnback 2004,
Laugesen 2009]. The continuing increase 
in systolic blood pressure is also a classi-
cal indicator of kidney complications and 
large vessel diseases – keeping the blood 
pressure within the normal or even lower
range (<130/80 mmHg) with medication 
slows down the disease progression sig-
nificantly  [Bretzel 1997, Beckman 2002,
Tomlinson 2003,  Sobolewski  2004,  As-
trup 2005, Thomas 2006b].

The glomerulus may be particularly vul-
nerable  to  intense  pulse  wave  fluctua-
tions: a steeper pressure gradient within 
the  Bowman’s  capsule  (Figure  2)  im-
poses a mechanical stress on the delicate 
capillaries,  which may contribute to the 
tissue  expansions  and  podocyte  abnor-
malities  in  diabetic  kidney  disease 
[Ishida  1999,  Petermann  2002,  Gnudi 
2007].  The  combination  of  stress  and 
high  blood  glucose  can  in  some  cases
lead  to  further  metabolic  derangements 
[Riser  1999,  Lewko  2005].  Similarly,
damaging effects of cyclic stretching and 
persistent  high  pressure  on  the  retinal
vasculature have been documented  [Su-
zuma 2001, Beltramo 2006].

High (systolic)  blood pressure  and stiff 
arteries  have  a  functional  relationship, 
and the  two are  associated  with  an  in-
creased  risk  of  heart  attack  [Schiffrin 
2004,  Zoungas  2007].  The  mechanisms 
remain under investigation: in type 1 dia-
betes, for instance, acute glucose load in 
an experimental setting increased arterial 
stiffness  and  prolonged  the  bioelectric 
cycle of the heart [Gordin 2007a, Gordin 
2008a], both of which are indicators and/
or  risk factors for heart disease  [Veglio 
1999].  Another  study reported that  bio-
chemical  markers  of  glucose  exposure 
are correlated with increased pulse pres-
sure  [Schram  2005].  Arterial  stiffening 
increases  the  heart  workload  while  re-
ducing the supply of fresh blood to the
heart  muscle,  which may partly explain 
the more severe nature of cardiovascular 
events in type 1 diabetes [Brooks 1999].

Obesity and the metabolic syndrome

Overweight patients with type 1 diabetes 
have more complications than lean indi-
viduals  and  obesity-related  metabolic 
changes contribute to the development of 
diabetic complications  [De Block 2005, 
Stone 2006]. In particular, central obesity 
(waist circumference) has been identified
as  a  key  marker  since  it  reflects  the 
amount of excess fat around internal or-
gans  [Després  2006,  De  Boer  2007]. 
These visceral fat deposits are associated 
with  reduced  insulin  action  [Macor 
1997], which in turn may be a sign of the 
metabolic defects that lead to the compli-
cations  [Lorenzo  2003,  Groop  2005, 
Mathieu  2008].  However,  the  practical 
predictive value of obesity (waist and hip 
circumference, weight and height) or in-
direct measures of the underlying meta-
bolic abnormality are limited in patients 
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Table 1: A number of definitions for the metabolic syndrome. Each criterion yields a point, 
and the final diagnosis is confirmed if the total tally exceeds a given threshold. For most 
definitions,  three or more points  are required.  Abbreviations:  IDF (International  Diabetes 
Federation), TG (plasma triglycerides), HDLC (high-density lipoprotein cholesterol), NCEP 
ATP (the US National Cholesterol Education Program, Adult Treatment Panel), WHO (the 
World Health Organization), EGIR (the European Group for the Study of Insulin Resistance).

IDF (2006)

Obesity Wide waist circumference (exact cutoffs depend on ethinicity)

Lipids TG >1.7 mmol/l or lipid-lowering medication, HDLC <1.0 mmol/l

(men) or <1.3 mmol/l (women) or HDL-enhancing medication

Glucose and insulin Diabetes mellitus or fasting plasma glucose >5.6 mmol/l

Blood pressure >130 mmHg systolic or >85 mmHg diastolic or anti-hypertensive

medication

NCEP ATP III (2001)

Obesity Waist circumference >102 cm (men) or >88 cm (women)

Lipids TG >1.7 mmol/l, HDLC <0.9 mmol/l (men) or <1.0 mmol/l (women)

Glucose and insulin Fasting plasma glucose >6.0 mmol/l

Blood pressure >130 mmHg systolic or >85 mmHg diastolic or anti-hypertensive

medication

WHO (1999)

Obesity Waist-hip ratio >0.90 (men) or >0.85 (women) or body mass index

>30 kg/m2

Lipids TG >1.7mmol/l, HDLC <0.9 mmol/l (men) or <1.0 mmol/l (women)

Glucose and insulin Diabetes mellitus, impaired glucose tolerance, impaired fasting 

glucose or insulin resistance (methodology not specified)

Blood pressure >140 mmHg systolic or >90 mmHg diastolic or anti-hypertensive 

medication

EGIR (1999)

Obesity Waist circumference >94 cm (men) or >80 cm (women)

Lipids TG >2.0 mmol/l or HDLC <1.0 mmol/l or under treatment for 

dyslipidaemia

Glucose and insulin Top 25% of the fasting insulin values among non-diabetic 

individuals, fasting plasma glucose >6.0 mmol/l

Blood pressure >140 mmHg systolic or >90 mmHg diastolic or anti-hypertensive 

medication



with type 1 diabetes [Giorgino 2004, Kil-
patrick 2007b]. Especially, an early indi-
cation  of  diabetic  kidney  disease  (in-
creased  urinary  albumin  excretion)  can 
override  the  obesity-related  risk  of 
macrovascular complications [Pambianco 
2007, Thorn 2009a].

Many of the previous studies investigated 
the  “metabolic  syndrome”  rather  than 
obesity itself. The syndrome was created
to  assess  the  underlying  insulin  resis-
tance and the related cardiovascular risk 
in  the  general  population  without  inva-
sive procedures [Eckel 2005]. The classi-
fication can be based on several different 
scoring systems (Table 1)  that  typically 
combine measures of obesity, blood pres-
sure, glucose control and a few additional
metabolic  variables  [Alberti  1998,  Al-
berti 2006, Day 2007, NCEP 2002]. For
instance,  according  to  the  National 
Cholesterol  Education  Program  Adult
Treatment Panel III (NCEP ATP III) rec-
ommendations, a waist circumference of 
>102 cm for men >88 cm for women cor-
responds  to  one  point.  Systolic  blood 
pressure over 130 mmHg yields another 
and so on. Finally, the points from the in-
dividual criteria are tallied and the total 
score is used for diagnosis.

The  prevalence  of  the  NCEP  ATP  III
metabolic  syndrome  is  close  to  40% 
within  the  Finnish  patients  with  type  1 
diabetes [Thorn 2005]. However, the use-
fulness  of  the  concept  has  been  ques-
tioned, not only for type 1 diabetes [Pam-
bianco 2007], but in general as well due
to ethnic differences and the lack of addi-
tive benefits from combining the individ-
ual  components  [Cossrow  2004,  Misra
2005,  Vaidya  2007,  Sattar  2008].  Also, 
the  cutoffs  cause  information  loss,  and 

indeed the basic idea of qualitative epi-
demiological  classification  and  insulin 
resistance at the center of the metabolic 
syndrome  has  been  criticized  [Yudkin 
2007].  Nevertheless,  the metabolic  syn-
drome continues to enjoy some popular-
ity in the scientific community, thanks to 
its ease of application.

Gender

Men  have  higher  mortality  rates  than 
women (Figure 5). The same trend is also 
reflected in diabetic complications: there 
are  more  type  1  diabetic  men  than 
women who are affected by kidney dis-
ease, retinopathy or heart attacks  [Raile 
2007, Villar 2007, Klein 2008]. However,
the  population-adjusted  risk  is  more 
complicated,  especially  for  women  be-
fore and after menopause  [Laing 2003a, 
Laing 2003b]. Unlike the majority of au-
toimmune  disorders,  type  1  diabetes  it-
self  is  more  common  in  men  than  in 
women and the male proportion is most 
pronounced in those patients with an on-
set  during  or  after  puberty  [Harjutsalo 
2008].  Also,  the transmission of type 1 
diabetes from the father to a child occurs 
more often than from the mother,  espe-
cially  if  the father  has  an early  disease
onset [Harjutsalo 2006].

A number of factors may produce the ob-
served associations between gender and 
complications.  Men  tend  to  lead  less 
healthy  lives:  data  from  Statistics  Fin-
land,  collected  in  2007,  indicates  that
26%  of  adult  men  but  only  16%  of 
women were smokers, 1,425 men versus 
371  women  died  of  alcohol-related 
causes and 618 men versus 199 women 
committed suicide. Men have also physi-
cal  disadvantages:  they  tend to  become 
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centrally  obese (apple-shape)  instead of 
the  less  harmful  gluteo-femoral  type 
(pear-shape), and have more adverse pro-
files of lipid and other metabolism [Mo-
larius 1999, Sibley 2006, Ordovas 2007]. 
An active female reproductive cycle may 
be protective in this respect. For instance,
cardiovascular disease is less common in 
pre-menopausal  women than in  men of 
the  same age,  but  this  difference is  di-
minished  or  even  reversed  by  diabetes 
and  later  by  the  onset  of  menopause
[Kaseta  1999,  Marra  2002,  Juutilainen 
2005]. An increased inherited risk of dia-
betic  microvascular  complications  in
women  has  also  been  reported  [Monti 
2007].

Men are more susceptible than women to
non-diabetic  kidney  diseases.  Sex  hor-
mones have been proposed as one expla-
nation  [Silbiger  2008]:  in  young  men,
high  concentrations  of  androgenic  hor-
mones  such  as  testosterone  (popularly 
known as  “the male hormone”) were as-
sociated with a reduction in kidney func-
tion [Tomaszewski 2009b]. On the other 
hand, adverse effects of low testosterone 
have  also  been  observed  [Khaw  2007, 
Carrero  2009]  and  the  overall  associa-
tions or mechanisms are difficult  to as-
certain  [Reckelhoff  2005,  Yeap  2009].

Some  reports  suggest  that  estrogen 
(known as  “the  female  hormone”)  may 
offer protection against vascular diseases 
in  a  time-dependent  manner  in  women 
[Lee  2001,  Scott  2004,  Teede  2007, 
Collins 2007], whereas other studies have 
produced  contradictory  observations 
[Joles  1998,  Von  Hertzen  2004,  Toma-
szewski 2009a].

Diabetes has a profound impact on me-
tabolism and it is likely that the female
protection  against  kidney  and  other  in-
jury is partially lost in type 1 diabetic pa-
tients  [Ahlgren  2002,  Miller  2009].  In 
fact, conflicting reports on the differen-
tial  progression  of  diabetic  kidney  dis-
ease between men and women have been 
published  [Holl  1999,  Zhang  2003,
Dahlquist  2008,  Maric  2008].  However, 
it  is  not  yet  clear  what  gender-specific 
mechanisms are  at  play  during  diabetic 
organ damage.

Even though the absolute number of men 
with  complications  is  larger,  a  woman 
who  develops  diabetic  complications 
may have a worse prognosis than a man 
in  a  similar  situation.  Furthermore, 
women and men tend to experience dia-
betes differently. For instance, fear of low 
blood  glucose  episodes  (hypoglycemia)
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Figure 5: Logarithmic one-year mortality as 
a  function of  age.  The data  were  obtained 
from Statistics Finland and the curves repre-
sent all-cause mortality rate estimates within 
1980-2006 in the entire Finnish population 
(a  total  of  136,466,661  person-years  and 
1,298,393 deaths).



makes some patients cautious against in-
jecting  sufficient  doses  of  insulin.  The 
cultural  pressure  to  be  lean  may entice
women in particular to reduce insulin in-
take  even  further  to  avoid  weight-gain. 
This behavior can also lead to eating dis-
orders that further exacerbate the diabetic 
condition [Goebel-Fabbri 2008].

Men  and  women  live  in  only  partially
overlapping spheres of cultural and social
influence  due  to  the  obvious  physical 
features.  This  fact  in  itself  should  be 
enough to warrant equal – but distinctive 
– attention to both sexes with respect to
the research, treatment and prevention of 
complications  [Legato  2006,  Auryan
2008].

Smoking, alcohol and physical activity

Cigarette  smoking has  multiple  adverse 
effects at tissue level: carcinogenic mole-
cules are released into the inhaled smoke,
and lung carcinomas [Hoffman 2000] re-
main among the most common forms of
cancer in both men and women (Statis-
tics  Finland).  Other  bioactive  agents, 
such as nicotine, alter the function of the
cells in arterial walls and modify energy
and fat metabolism [Jensen 1995, Dewar
2002, Argacha 2008], which probably ex-
plains the increase in smokers’ suscepti-
bility  to  macrovascular  diseases  [Zhang 
2001,  Karim  2004,  Sharrett  2006,  Teo 
2006].

Aside from its addictive properties, nico-
tine  in  tobacco  increases  the  metabolic 
rate (acutely) and decreases appetite  [Jo 
2002, Jessen 2003, Bishop 2004]. Smok-
ers  tend to be leaner  than non-smokers
(and  smoking  cessation  increases  body 
mass), which explains the popular belief 

of the cigarette as a means to lose weight. 
However,  the  long-term  connection  be-
tween smoking and body weight is con-
founded by numerous other environmen-
tal and socioeconomic factors and there 
is no solid evidence to support the thera-
peutic aspect [Chiolero 2008].

Smoking  and  nicotine  promote  insulin 
resistance  and,  accordingly,  current  or 
past smoking is a risk factor for type 2
diabetes  [Rimm  1993,  Eliasson  1997, 
Eliasson 1997]. For the patients that al-
ready have diabetes, smoking cessation is 
an important mode of intervention to re-
duce  the  burden  of  complications 
[Howard  1990,  Boren  2007].  Arterial 
stiffening  is  accelerated  by  smoking
[Failla 1997, Barnoya 2005] and for a pa-
tient with type 1 diabetes this may mani-
fest  as  even  higher  blood  pressure  and 
faster  progression  of  kidney  disease 
[Scott  2001,  Safar  2004,  Cooper  2006, 
Shahid 2007]. That said, pinpointing the 
precise actions of smoking is challenging 
due to the heterogeneity of environmen-
tal  factors  and difficulties  in estimating 
the long-term smoking exposure.

Alcohol consumption has a non-linear re-
lationship  with  macrovascular  diseases:
low daily doses are protective, but larger 
doses  can  destroy  the  benefit  [Rimm 
1996, Bain 2003]. A u-shaped pattern has 
also been observed in type 1 diabetes and 
its  complications,  including kidney dis-
ease and neuropathy [Beulens 2008]. Al-
cohol can increase insulin sensitivity and
usually  raises  high-density  lipoprotein 
cholesterol [Scragg 2004, Joosten 2008, 
Kim 2009], both of which reduce the risk 
of  heart  attacks  and  strokes  [Mukamal 
2005]. On the other hand, alcoholism is a 
common  cause  for  liver  failure  [Ishak 
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1991, Rehm 2003]. Estimating the inten-
sity and type of long-term alcohol expo-
sure is difficult  and it  is  uncertain how
much of these effects are caused by con-
founders,  as  smoking  and  excessive 
drinking co-occur with other bad habits 
[Godsland 1998, Ahmed 2006].

Regular exercise is a key contributor to
good health. The benefits of physical ac-
tivity include improved insulin sensitivity
and reduced fat mass [Frank 2005, Wijn-
daele 2007], improved vascular function 
[Mason  2006,  Heidarianpour  2007, 
Herbst  2007],  strengthening  of  muscles 
and bones  [Korpelainen 2006, Hofbauer
2007] and reduced risk of mental illness
or  cognitive  decline  [Cotman  2002,
Masley  2009].  In  type  1  diabetes,  the
usefulness of exercise is undermined by 
the  kidney,  eye  and  foot  complications 
that in many cases prohibit intensive ac-
tivity and certain sports, and by the fear
of  harmfully  low  blood  glucose  [Dubé 
2006, Iafusco 2006, Zhao 2008]. Not sur-
prisingly, low physical activity has been 
associated with the established risk fac-
tors  of  diabetic  kidney  disease  [Wadén 
2008].

Genes and family history

Diabetic kidney and retinal diseases have 
an  inherited  component  [Harjutsalo 
2004,  Hietala  2008] although  the  exact
contributions from genes or a shared en-
vironment  remain  obscure  [Krolewski 
1999,  Pitkäniemi  2007].  A  number  of
candidate  genes  have  been  investigated 
[Boright  2005,  Ewens  2005,  Fröjdö 
2005, Vionnet 2006, Al-Kateb 2007, Al-
Kateb 2008], but so far the observed ef-
fects  have  been  small.  One  explanation 
could be the difficult  nature of the dis-

ease – diabetic complications are gradual 
and  they  develop  at  an  individual  rate, 
which  hampers  accurate  phenotyping. 
Confounding factors such as gender may 
also  prevent  the  detection  of  important 
effects [Pettersson-Fernholm 2006].

Vascular diseases and diabetic complica-
tions  have  a  tendency  to  accumulate 
within  a  subset  of  families  [Fagerudd 
1998,  Thorn  2007].  Direct  transmission
of diabetic complications from parents to 
offspring is difficult to detect since type 
1 diabetes has a relatively low and spo-
radic  incidence.  However,  a  number  of 
reports suggest that parental type 2 dia-
betes, high blood pressure and markers of 
insulin resistance increase the frequency
of complications in type 1 diabetic off-
spring and/or predict a more insulin re-
sistant phenotype [Seaquist 1989, Borch-
Johnsen  1992,  Parving  1996,  Roglic 
1998, Thorn 2009b]. The results may be 
partly  explained  by  socioeconomic  fac-
tors: children from well-off families tend 
to have lower blood glucose, and higher 
education helps to avoid complications in 
later life [Hassan 2006, Carter 2008, Ná-
das 2009].

Linkage  and  candidate  gene  analyses
have found several genotypes that may be 
associated with type 1 diabetes complica-
tions, but it is likely that many of the ge-
netic  traits  have  not  yet  been  located 
[Mueller 2006, Tarnow 2008]. A recent 
report highlighted a non-coding suscepti-
bility locus in chromosome 3, and the re-
sults were replicated across Finnish, Ice-
landic  and British  type  1  diabetic  indi-
viduals  [Österholm 2007, He 2009]. The 
effect  size was modest  (odds ratio 1.33 
for  the  high-risk  variant),  but  neverthe-
less  statistically  significant.  The  func-
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tional  link  between  the  variant  and 
nephron injury remains to be uncovered.

The success of genomic studies on dia-
betic complications depends on the accu-
rate  characterization  of  patients.  This 
would involve a  long-term follow-up or 
invasive procedures such as kidney biop-
sies,  arterial  imaging or  high-resolution 
retinal  photography.  Unfortunately,  data 
of that quality are extremely difficult to
obtain in human studies. Hence an alter-
nate  source of  phenotypical  detail  must 
be  exploited:  the  hidden  physiological 
processes  are  reflected  in  biofluid 
metabolites, the concentrations of which 
can be measured more easily.

2.3 Metabolic risk markers

Urinary albumin and kidney function

Healthy nephrons  are  able  to  block the
proteins and other large particles before 
they enter the collecting ducts (Figure 2).
The filtering process is highly efficient: 
the daily amount of protein that is circu-
lated within the glomerular blood flow is
comparable  to  a  person’s  body  weight 
(50 - 100 kg), but urinary excretion be-
yond  50  -  100  mg or  0.0001% can  al-
ready be considered abnormal [Koolman 
2005].

Albumin  is  the  most  abundant  protein 
species in the blood and small amounts
in  the  urine  (microalbuminuria)  can  be 
detected in patients with pre-clinical dia-
betic  kidney  disease  [Comper  2004,
Newman  2005].  However,  the  natural 
variance of urinary albumin excretion is 
proportionally  high  at  low  concentra-
tions, which makes it difficult to identify
the  vulnerable  patients  early  enough 

[Caramori  2006].  For  instance,  a  non-
diabetic  individual  without  any  kidney 
disease may have a transient albumin ex-
cretion rate in excess of the clinically sig-
nificant limit, and therefore the classifi-
cations  are  usually  based  on  multiple 
successive urine samples [Gomes 2001]. 

At the cellular level,  the podocytes that 
surround the glomerular capillaries have 
a critical role in preventing the leakage of
albumin (Figure 2). The Finnish congeni-
tal nephrotic syndrome is the classic ex-
ample: an inborn defect prevents the for-
mation  of  the  thin  slit  diaphragms that 
normally overlay the small gaps between 
adjacent foot processes, which leads to a 
massive  flow  of  protein  into  the  urine
and a short life expectancy for the new-
born  [Huttunen  1976,  Patrakka  2000]. 
Nevertheless, the exact mechanisms and 
functional structures within the glomeru-
lar  capillary  barrier  are  not  yet  fully 
known and other nephron compartments 
have  also  been  suggested  as  primary 
damage sites  in  diabetic  kidney disease 
[Vallon 2003, Ozdemir 2005].

Creatine is a molecule that works as an 
energy-buffer mainly in skeletal muscle; 
a small fraction breaks down non-enzy-
matically into creatinine as a by-product 
of normal metabolism. Creatinine, how-
ever, is metabolically inactive and subse-
quently removed by the kidneys  [Chiou 
1975, Walker 1990a]. Thanks to the con-
stant  rate  of  “production”,  creatinine 
clearance and related formulas comprise
the standard clinical measures of kidney 
function  [Hogg 2003,  Levey 2003].  On 
the other hand, the concentration in the 
blood is affected by the individual’s body 
and muscle mass, which reduces the di-
agnostic  accuracy of  the clearance esti-

30 Metabolic risk markers



mates.  Moreover,  the  kidneys  not  only 
excrete  but  also  secrete  small  amounts, 
which  can  severely  bias  the  results  of
urine  analyses  [Kemperman  1999].  A
more robust estimate of kidney function 
(or  glomerular  filtration  rate)  can  be 
achieved by injecting an inactive chemi-
cal  (such as  inulin)  into  the  circulation
and then measuring its removal from the 
body, but this approach is laborious and
may  cause  side  effects  for  the  patient
[Prigent 2008].

Cystatin  C  has  been  proposed  as  a  re-
placement for creatinine clearance [Mus-
sap 2002, Hoek 2003]. It is a signaling
molecule of 120 amino acids and mainly
inhibits several enzymes from degrading
proteins within and outside cells  [Abra-
hamson 1990, Paraoan 2007]. Cystatin C
is almost exclusively removed from blood 
by the kidneys, and any reduction in the
filtering capacity leads to an increase in
concentration. Compared with creatinine
alone cystatin C is preferred, but the lim-
ited accuracy beyond the advanced filtra-
tion  rate  formulas  may not  warrant  the
high cost  of  measurement  [Buysschaert 
2003, Roos 2007, Tidman 2008]. Finally,
Cystatin C is metabolically related to ho-
mocysteine, which in turn has been asso-
ciated with increased risk of large vessel
disease [Selhub 1995, Bostom 1999, Wi-
jekoon 2007] and type 1 diabetes compli-
cations [Soedamah-Muthu 2005].

Lipids and lipoproteins

Lipids  include  a  diverse  group  of  fat-
soluble  molecules  that  are  essential 
structural  components  of  cell  mem-
branes,  necessary  for  long-term  energy 
storage and also involved in cell signal-
ing and other metabolic processes. In the

context of diabetic complications, triglyc-
erides  (triacylglycerols)  and  cholesterol 
are the two basic lipids that are routinely 
measured  from the  blood in  the  clinics 
[Hadjadj  2004,  Molitch  2006,  Tolonen 
2008,  Kearney  2008].  The  lipid  mole-
cules are poorly soluble in water (or in 
blood), so the absorption and subsequent 
transportation to tissues requires special 
macromolecular  vehicles  [Olson  1998, 
Kwiterovich 2000].

Lipoprotein  particles  (Figure  6)  consist 
of a lipid-rich core, and a water-soluble 
surface – they can thus be transported by 
the circulation [Taskinen 2003, Kumpula 
2008]. Food ingestion is the first stage of 
lipid  entry  into  the  body:  triglycerides
from animal fats  and vegetable  oils  are 
packaged into large lipoprotein particles 
(chylomicrons) in the small intestine, re-
leased into the blood stream and subse-
quently absorbed by fat cells (adipose tis-
sue) and muscle  [Phillips 2000, Robert-
son 2003, Williams 2008]. Lipid supply 
is  not  solely  dependent  on  dietary 
sources. For example, almost all cells can 
synthesize  cholesterol  and  any  surplus 
excreted into the bile can be reabsorbed 
in the gut (enterohepatic circulation).

The liver is a secondary source of choles-
terol  and  triglycerides:  it  replaces  the 
chylomicron remnants left over from the 
ingested  lipid  absorption  with  smaller 
(but still relatively large) lipoprotein par-
ticles,  referred  to  as  very  low  density 
lipoproteins  (VLDLs).  Specifically,  the
liver cells produce apolipoprotein B-100, 
around  which  the  lipids  are  assembled 
[Shelness  2005,  Parhofer  2006].  The 
VLDLs are filled with triglycerides, but 
also  contain  a  higher  proportion  of 
cholesterol in the core compared with the 
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chylomicrons [Sittiwet 2007]. Again, adi-
pose and muscle tissue are the main des-
tinations for the triglycerides and the par-
ticles are gradually reduced to intermedi-
ate density (IDL) and then to low density
(LDL) particles after the bulk of the core
lipid  content  has  been  released  [Duvil-
lard 2005].

A minority of LDL-like particles contain 
an  apolipoprotein(a)  attached  to  the 
backbone apolipoprotein B-100, denoted
as the Lp(a) class. The concentration of 
Lp(a)  depends  heavily  on  the  Apo(a) 
gene, but it typically comprises less than 
10%  of  the  total  LDL  [Berg  1963, 
Koschinsky 2003].
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Figure  6:  A  simplified  overview  of  the  human  lipoprotein  metabolism.  A Lipoprotein
particles vary in size, density and composition: chylomicron diameter is typically within 100-
1000  nm  and  they  have  the  lowest  density  (<0.95  g/mL),  very  low  density  lipoprotein 
particles  (VLDLs,  0.95-1.006 g/mL) measure  at  30-80 nm, inter-mediate particles  (IDLs, 
1.006-1.019 g/mL) at 25-50 nm and low density lipoproteins (LDLs, 1.019-1.063 g/mL) at 18-
28 nm. The high-density lipoprotein (HDL, >1.063 g/mL) fraction contains particles 5-15 nm 
in diameter. In the laboratory, lipoprotein particles are typically isolated into fractions based 
on their density (buoyancy), which explains the de facto taxonomy. The data were obtained 
from Wikipedia. B Lipoprotein metabolism is usually divided into the external pathway (i.e.
originating mainly from food intake) and the internal pathway from the liver. In the figure, 
particle traffic is marked by solid lines, whereas transfer of molecules alone is denoted by 
dashes.  In  particular,  HDL particles  exchange cholesterol,  fatty  acids and apolipoproteins 
with the other lipoproteins to render them metabolically active. C Molecular components of
the main lipoprotein fractions [Koolman 2005].



So far most of the cholesterol has been
preserved  inside  the  lipoproteins  that 
originated  from  the  liver.  Rather  than 
merely extract the lipids from the LDLs,
the  destination  cells  absorb  the  entire 
particles and break them down internally 
to  obtain  the  cholesterol  [Goldstein 
1977]. This trait is the reason why LDL 
and  the  cholesterol-rich  chylomicron 
remnants are considered the “bad” parti-
cles: they can penetrate the wall of large
arteries and provide the materials for the 
abnormal deposits of lipid debris  [Proc-
tor 2004, Lyons 2006], which then pro-
mote inflammatory responses  [Natarajan 
2004,  Bensinger  2008,  Lopes-Virella
2007] and can ultimately lead to the le-
sions observed in macrovascular diseases
(Figure 3). LDL has also been implicated 
in  the  progression  of  kidney disease  in
type 1 diabetes [Thomas 2006a].

In  addition  to  the  VLDL particles,  the 
liver produces the protein components of 
the  smallest  particles,  denoted by high-
density  lipoproteins  (HDLs),  that  can 
take  excess  cholesterol  from  peripheral 
tissues and other lipoproteins back to the
liver  [Lewis  2006].  Higher  levels  of
HDL-contained cholesterol have been as-
sociated  with  fewer  heart  attacks  and
other  macrovascular  complications,  and 
HDL is often referred to as the “good”
particle [Davidson 2007a]. It is also asso-
ciated  with  insulin  sensitivity,  but  the 
causative role of HDL metabolism in the
development of type 1 diabetes compli-
cations  remains  uncertain  [Chaturvedi
2001, Jenkins 2003, Groop 2007].

Measuring  lipoproteins  is  a  challenge 
[Mora 2009]. They are diverse in qualita-
tive  and  quantitative  characteristics,
which makes it  difficult  to interpret the 

results  [Miljkovic-Gacic 2006,  Ala-Kor-
pela 2007, Mora 2007]. In clinical stud-
ies,  surrogate  measures are  traditionally 
used for technical reasons. For instance, 
the adverse role of LDL is largely based 
on clinical studies that have measured the 
cholesterol concentration of the isolated 
HDL fraction, total cholesterol and total 
triglycerides.  The LDL cholesterol  con-
tent was then estimated by a mathemati-
cal  formula  [Friedewald  1972].  In  fact,
this  so-called  Friedewald  formula  does 
not estimate pure LDL by modern stan-
dards,  but  the  sum  of  LDL  and  IDL 
cholesterol,  which is not appreciated by 
the  majority  of  clinical  literature  [Cor-
dova  2004].  One  could  also  argue  that 
the cholesterol content itself is not an op-
timal biomarker. Ideally, the exact parti-
cle size and structure should be used.

Advanced glycation end-products

Mix  glucose  and  protein  in  water  and 
keep  the  liquid  warm.  Eventually,  the 
glucose  and  protein  molecules  interact 
and the affected proteins get irreversibly 
modified and turn into advanced glyca-
tion  end-products,  or  AGEs  for  short 
[DeGroot  2004,  Horvat  2004].  The 
process is spontaneous and occurs in ev-
ery living organism, but in patients with 
type 1 diabetes the concentration of glu-
cose is higher, which in itself leads to in-
creased opportunity of protein modifica-
tion in the blood. To make matters worse, 
cells in the diabetic environment tend to 
synthesize  additional  AGEs,  which  can
lead to a  further  increase of  AGE con-
centrations  within  the  cells  [Brownlee 
2001]. Glycation is not fast enough to al-
ter most proteins in the body, but for the 
long-lasting  structural  components  such 
as collagen the modifications can accu-
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mulate  with  detrimental  consequences.
Also lipids can be affected by analogous
modification processes, and turn into ad-
vanced  lipoxidation  end-products 
[Baynes 2003].

Hemoglobin in the red blood cells is the
classic example of a glycated protein: the
proportion  of  the  glycated  form A1c is
significantly  increased  in  diabetic  pa-
tients  [Bunn 1978]. Since the red blood
cells  have  a  limited  life  span  (a  few
months  at  most),  the  hemoglobin  A1c 
proportion is an indirect marker of the to-
tal glucose exposure within the last few 
weeks  [Jeffcoate  2004].  Consequently, 
hemoglobin A1c is often used as a diag-
nostic tool and a treatment target for ad-
justing insulin replacement therapy, even 
if several studies have reported A1c vari-
ability beyond mean blood glucose con-
centrations  [Hempe  2002,  Kilpatrick 
2007a].

In general, AGEs are considered harmful 
substances  in  the  body  [Goldin  2006,
Thomas 2005].  A cell  detects  the pres-
ence of AGEs via a set of specific recep-
tor proteins, and the binding of an AGE
molecule  to  a  receptor  activates  sec-
ondary  metabolic  responses  inside  the
cell.  For  instance,  a  recent  study  con-
cluded  that  an  AGE-mediated  distur-
bance to the cellular energy metabolism 
was hidden until a combination of high
glucose and AGE concentrations was in-
troduced, which lead to a significant in-
crease  in  the  intra-cellular  oxidative
stress or, put simply, an increased risk of
harmful  molecular  reactions  [Coughlan 
2009].  The  receptor  for  AGE  (RAGE) 
was the key mediator in the process.

With  high  concentrations  of  circulating 

AGEs,  the  RAGEs  proliferate,  which 
may indicate a positive (and possibly un-
controllable)  feedback  loop  of  cell  sig-
naling  [Stern  2002,  Mercer  2007].  In-
creased oxidative stress and other effects 
of the RAGE have been associated with 
podocyte  cell-death  [Chuang  2007],  al-
tered signaling in other glomerular cells 
[Fukami  2004],  inflammation [Basta 
2002] and  reduced  adaptation  of  small 
arteries to changing blood flow  [Linden
2008]. Interestingly, nullifying the cellu-
lar  receptors  with  a  soluble  RAGE  (a 
non-functional decoy receptor) showed a 
significant reduction in vascular compli-
cations in animal models [Hudson 2003].

Signaling molecules and other

biomarkers

The cellular processes that drive the tis-
sue damage in diabetic complications are 
not  yet  fully  understood.  Nevertheless, 
clinical  studies have confirmed associa-
tions  between  a  number  of  signaling 
molecules and kidney disease: C-reactive 
protein and mannose-binding lectin were 
elevated  (suggesting  low-grade  inflam-
mation [Østergaard 2005]) in type 1 dia-
betic patients with kidney complications 
compared with those patients that had no
complications  [Saraheimo 2003, Hansen 
2004,  Saraheimo  2005a],  or  were  lean 
[Jenkins  2008].  Similar  findings  have 
been  made with  respect  to  adiponectin 
[Saraheimo 2005b,  Jorsal  2008],  a  hor-
mone that is correlated with insulin sen-
sitivity  and  excreted  by  fatty  tissue
(adipocytes).  The latter finding was un-
expected since insulin resistance is con-
sidered a co-occurring aspect of diabetic 
complications,  and  should  have  mani-
fested as a low adiponectin concentration 
[Lara-Castro 2007].
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Reactive oxygen species (ROS) are more 
abundant  in  diabetic  individuals  due  to 
the presence of AGEs and altered mito-
chondrial and metabolic functions in the 
glucose-rich  environment  [Nishikawa 
2000, Ha 2008]. These molecules are po-
tent damaging agents to DNA, proteins, 
lipids and carbohydrates and thus pose a 
threat to tissue integrity and the effects
may be further exacerbated by glycation 
[Jenkins  2004,  Forbes  2008].  The ROS
can also affect the signaling pathways in
the  kidney,  and  this  way  lead  to  the
typical  abnormal  growth  and  extra-
cellular  deposits  seen  in  the  diabetic 
nephrons [Lee 2003].

Several  biomarker  candidates  of  kidney
susceptibility have been proposed, espe-
cially in the glomerulus [Wolf 2005]. For
instance,  the  genetic  defect  behind  the 
Finnish  congenital  nephrotic  syndrome 
prevents  the  normal  formation  of  the 
nephrin  protein  [Kestilä  1998,  Ruot-
salainen 1999], which is a critical com-
ponent of the slit diaphragm between the
podocyte  foot  processes (Figure 2).  Al-
tered expression of the protein [Doublier 
2003]  and  increased  urinary  release
[Pätäri 2003] have been observed in pa-
tients with diabetic kidney disease.

Also angiotensin II has been implicated 
in nephron injury; its concentration is in-
creased in the diabetic cellular environ-
ment  [Zhang  1999,  Durvasula  2008],
with detrimental  effects on nephrin and 
other  podocyte  proteins  [Hsu  2008,  Jia
2008] and complex interactions with in-
creased ROS production  [Seshiah 2002,
Banday 2008]. In fact,  inhibition of the
renin-aldosterone  system  (including  an-
giotensin II) is the pharmacological cor-
nerstone of the current treatments for dia-

betic small vessel complications and high 
blood  pressure  [Bonnet  2001,  Parving 
2001,  Brewster  2004,  Balamuthusamy 
2008].

At the final stages of insulin production, 
the hormone is cleaved from a precursor 
protein  (proinsulin),  and trimmed down 
to  the  final  amino-acid  sequence  and 
folding  structure.  C-peptide  is  the  re-
mainder of proinsulin and it  is  released
into the blood in equimolar numbers with 
the insulin molecule.  A direct measure-
ment of blood insulin is difficult due to 
the highly active nature of the hormone. 
C-peptide, on the other hand, is less ac-
tive  and  can  yield  more  accurate  esti-
mates of pancreatic beta-cell function. It
was previously considered metabolically 
inactive, but recent studies suggest that it 
can  have  beneficial  effects  on  diabetic 
complications  [Samnegård  2005,  Reb-
somen  2008].  Furthermore,  regulatory 
effects  on  several  metabolic  pathways 
have  been  reported  [Marques  2004]. 
However,  large-scale  longitudinal  evi-
dence on the effectiveness of  C-peptide 
replacement therapy is not yet available.

2.4 Metabolite measurements

Metabonomics

The explosion of the “omics” sciences is 
attributed  to  the  advancements  in  auto-
mated  measurement  technologies.  Ge-
neticists  can  now measure  most  of  the 
genomic  variation  in  large  populations
[Frazer  2007,  Novembre  2008],  cell 
biologists  have  numerous  high-through-
put  methods  to  detect  gene  expression 
and proteins [Young 2000, Omenn 2006] 
and  two  technologies  have  emerged  as 
the primary tools in metabolite research: 
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nuclear  magnetic  resonance  (NMR)
spectroscopy of biofluids is the cheaper, 
reproducible  but  relatively  insensitive
screening  platform,  while  mass  spec-
trometry  (with  its  multiple  variants)  is 
the method of choice for new biomarker
detection  and  for  tracking  minute 
quantities of signaling molecules  [Dunn 
2005, Domon 2006, Ellis 2007].

Diabetes is a metabolic disorder, and the
study of the metabolite composition from 
a system-wide perspective has been rec-
ognized as a path to discovering the dis-
ease  mechanisms  [Griffin  2006,  Kell 
2006]. Metabonomics is  focused on the 
characteristics and dynamic responses of 
metabolism  and  the  subsequent  effects
on the organism’s phenotype  [Nicholson 
2002,  Holmes  2008b].  A  more  widely
used  term  metabolomics  can  mean  the 
same  thing  depending  on  the  context 
[Gieger 2008], but metabolomic research
has traditionally focused on cellular pro-
cesses and the identification of metabo-
lites, that is, the mapping of the human
metabolome.  Furthermore,  metabo-
nomics  is  often  associated  with  NMR 
spectroscopy,  whereas  the  term  meta-
bolomics is favored in mass spectrometry 
studies.

The  early  applications  of  proton  (1H) 
NMR spectroscopy in  diabetes  research 
date back to the 1980’s [Nicholson 1984]. 
Since then,  biofluid  1H NMR has been
extensively  applied  in  animal  [Serkova 
2005, Clayton 2006] and human studies
[Kirschenlohr  2006,  Holmes  2008a, 
Tukiainen  2008], and  in  combination
with mass spectrometry  [Atherton 2006,
Chan 2009]. NMR is a non-invasive non-
chemical  technique  and  it  can  measure 
lipoprotein particles in their natural state 

[Ala-Korpela  1994],  which  has  lead  to 
commercial  clinical  applications  [Otvos 
1991,  Soedamah-Muthu  2003,  Klein 
2004, LipoScience 2009].

Proton NMR spectroscopy

NMR is a phenomenon at the sub-atomic 
scale. Atoms consist of a nucleus (which 
is made of protons and neutrons) and a 
cloud  of  orbiting  electrons.  Some  ele-
ments,  such  as  hydrogen  and  fluorine, 
have  an  odd  number  of  protons  and/or 
neutrons  within  their  nuclei  and  in  the 
world of quantum mechanics this means 
sensitivity  to  external  magnetic  fields. 
Specifically,  the  nuclei  tend  to  align 
themselves  according  to  the  magnetic
forces  they  are  subjected  to  [Keeler 
2002].

The  nuclear  alignment  requires  energy, 
and  this  energy  can  be  detected  indi-
rectly.  The  principle  of  an  NMR spec-
trometer  is  analogous  to  a  church  bell. 
First,  a  constant  stabilizing  force  is 
needed: gravity aligns the bell, and an ar-
tificial magnetic field does the same for 
the atomic nuclei.  Next, the bell is per-
turbed by the pulling of ropes – the nu-
cleus is perturbed by radio waves. Some
of the energy is consumed in the process 
as the bell tilts. The quantum unit of the 
radio wave (the photon) is spent for the 
nuclear (mis)alignment.

When the  ringer  stops  pulling,  the  bell 
swings  back  and  produces  an  audible
sound.  Similarly,  when the  radio signal 
subsides, the nuclei try to return to their 
original state. However, the bell keeps on 
swinging and producing the sound until 
the extra energy is spent; the nucleus will 
also  continue  to  precess,  and the  small 
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changes in magnetization can be captured 
and converted to an electric signal.

Church  bells  have  a  specific  resonance 
frequency: if the ringer pulls the rope at
the  wrong  time,  the  rhythm  is  broken.
Exactly  the  same  holds  for  the  nuclear 
equivalent: only a certain radio frequency 
will  excite  a  signal  from a  certain  nu-
cleus.  The power  of  NMR comes from 
the fact that the electron cloud shields the
nucleus from electromagnetic fields. The 
cloud, in turn, is modulated by the sur-
rounding atoms. Consequently, the nuclei 
of an element behave differently in dif-
ferent molecular environments (the char-
acteristic  frequency  is  shifted)  –  and 
these differences can be exploited to re-
solve  the  numbers  of  the  target  nuclei
within  specific  metabolites.  This  is 
equivalent  to  measuring  the  metabolite 
concentration  in  a  known  volume  of 
biofluid.

The hydrogen proton (denoted by 1H) is a 
highly  NMR-sensitive  stable  nucleus.  It 
is  also  abundant  in  organic  molecules, 
hence  it  is  the  most  useful  target  for
NMR  spectroscopy  in  metabonomic
studies, although other nuclei can also be 
used  in  specific  applications  [Linden
1997, Komoroski 2000, Eisenreich 2007].

Data processing

The raw signal from an NMR instrument
is  a  time-dependent  curve  of  the  ob-
served net magnetization after the excita-
tion of the sample material by pulses of
radio waves. To resolve signals from in-
dividual metabolites, the data are Fourier 
transformed to produce a spectral repre-
sentation. Typical spectra of blood serum 
and urine are depicted in Figure 7.

The peak areas in the figure represent the 
total number of target nuclei for the pool 
of a particular molecular species, but the 
translation  into  concentrations  is  not 
straightforward. Most NMR experiments 
are  not  intrinsically  quantitative,  and  a 
reference  substance  is  often  chosen 
among  the  metabolites  to  specify  the 
measurement  unit  [Constantinou  2005, 
Heikkilä  2008].  Another  popular  tech-
nique is to divide the spectral intensities
with the total area of the spectrum with 
the rationale that every sample contains 
approximately the same amount of meta-
bolic products, albeit at different relative 
concentrations   [Craig  2006].  Quantita-
tive protocols are also possible: an exter-
nal reference substance can be added and
more  advanced  systems  can  estimate 
concentrations directly from the electro-
magnetic signals in selected applications 
[Burton  2005,  Holzgrabe  2005,  Wider 
2006].

Peak overlap and misalignment are other 
challenges for NMR data analysis. Serum 
contains proteins, lipids and lipoproteins, 
which produce much wider signals than 
smaller  molecules  such  as  glucose  and 
creatinine  [Adosraku  1994,  De  Graaf 
2003]. Inevitably, the signal shapes over-
lap and form continuous envelopes with 
no traces of the individual molecules left 
(Figure 7). Fortunately, the spectra is still 
useful  even if  the signals cannot be re-
solved,  since  the  overall  information  is 
preserved  in  the  complex  shapes  [Pe-
tersen 2005].

Each atom within a molecule has a spe-
cific chemical shift in the spectrum and 
the  shifts  are  of  crucial  importance  for 
the  identification  and  quantification  of 
molecules  [Mielke  2005,  Jukarainen 

Metabolite measurements 37



38 Metabolite measurements

Figure  7:  1H NMR spectra  of  human  biofluids.  A Each  hydrogen  proton  in  a  molecule 
produces a characteristic resonance based on its neighboring atoms. The raw data form a 
time-series of the net magnetization in the sample. After Fourier transformation, individual 
protons can be seen as peaks in the spectrum. It is customary to put the lower frequencies on 
the right on the horizontal axis.  B Typical serum spectrum, measured at 500MHz magnetic 
field  strength.  Note  the  heavy  overlap  between  signals  from  lipoprotein  particles  and 
macromolecules in the aliphatic region.  C 1H NMR spetrum of human urine, measured at 
600MHz  [Salek 2007]. The signals come mainly from small unbound molecules,  and the 
peaks are therefore narrow and easily distinguishable. On the other hand, the acidity/basicity 
of the sample has a strong effect on the peak positions, which may pose additional problems 
for urine analyses.



2008].  In  biomedical  applications,  the 
pH of a sample has a complicated and of-
ten confounding effect on the peak shifts,
which causes problems particularly in the
urine analyses. On the other hand, the ex-
tra information can also have biological 
origins and therefore have a value on its
own [Cloarec 2005]. The adverse effects
of experimental peak shifts are typically 
either  aligned  automatically  or  circum-
vented  by  binning  [De  Meyer  2008,
Veselkov 2009].

2.5 Multi-variate pattern recognition

Statistical modeling

The classical statistical methods in clini-
cal medicine were restrained by the lack
of  computational  power  at  the  time  of 
their conception in the early half of the
20th century  [Moore  1965].  Most  tools
were based on descriptive statistics (the 
mean and variance are typical examples) 
that could be calculated with simple nu-
merical  procedures  [Milton  1995].  The
mathematical effort was on the analytical 
derivation of formulas for statistical sig-
nificance  under  a  variety  of  model  as-
sumptions so that, given a formula, a re-
searcher  could  do  the  calculations  by
hand. The culture of medical statistics is 
still rooted in this principle, although the 
new  computationally  intensive  tech-
niques  are  becoming  more  common 
[Lucas  2004,  Petrovsky  2004,  Ashby 
2006].

The traditional tools of hypothesis testing 
were  naturally  suited  for  reductionist 
analyses.  However,  the  high-throughput
data  that  became  available  in  the 
“omics”-sciences required a different ap-
proach due to multiple testing problems 

and  the  ambiguity  of  inference  targets 
[Loscalzo 2007b]. Also, univariate statis-
tics  were  incapable  of  detecting  multi-
variate effects that are typical for a bio-
logical system. Thus there was a need for 
data  condensation:  the relevant parts  of 
the observations must be separated from 
the irrelevant noise to better understand 
the complex phenomenon under investi-
gation [Jain 2000].

The  choice  of  a  pattern  recognition 
method  is  usually  application-specific. 
The aim of this thesis, however, was not 
to  compare  different  methods  (previous 
experiences and literature were taken into 
account  when  making  the  modeling 
choices).  Hence  only  a  small  subset  of
techniques are discussed.

Linear projections

Principal component analysis (PCA) is a 
basic  technique  for  compressing  the 
variation  within  a  multi-variate  dataset 
into  a  small  number  of  linear  compo-
nents  [Pearson 1901, Shlens 2005].  The 
method can be described by projecting a 
dataset with three variables onto a two-
dimensional canvas. Suppose an irregular 
3D  object  is  placed  between  a  light
source and a canvas. By rotating the ob-
ject one can alter the size of the shaded 
area  on  the  canvas.  Similarly,  the  data 
points can be represented as dots in three 
dimensions (one dimension per variable), 
and the PCA defines the rotation which 
produces the most dispersed point cloud
on  just  two  dimensions  (that  is,  the 
largest shadow on the canvas).

Mathematically,  the  principal  compo-
nents  (PCs)  define  the  projection  from 
the original data space into a rotated data 
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space in such a way that the first coordi-
nate axis in the transformed space (the 1st

PC  in  the  original  space)  spreads  the 
samples  maximally,  the  second  coordi-
nate axis spreads the samples maximally 
perpendicular to the first and so on until
the number of dimensions is full. Obvi-
ously,  such structure  cannot  be  directly 
visualized beyond three dimensions, but 
the power comes from the fact  that  the
first few axes usually explain nearly all of
the  variation  in  the  data  [Stanimirova 
2004, Zhu 2006]. Figure 8 shows the re-
sults for a four-dimensional set of socioe-
conomic data.

Supervised projection methods

PCA is the de facto standard of unsuper-
vised  analysis  in  metabonomics  [Trygg 
2007].  Recent  applications  include  1H 
NMR  urinary  studies  of  ethnic  groups 
[Holmes 2008a], a comparison of animal 
and  human  diabetes  [Salek  2007],  and
various  studies  on  type  2  diabetes,  the
metabolic  syndrome  and  cardiovascular
disease  [Lehto 2000,  Yang 2004, Wang 
2005, Hillier  2006,  Kirschenlohr 2006]. 
In clinical studies, however, the samples 
are  rarely  clustered  in  distinct  groups, 
which  makes  PCA  less  useful  in
characterizing subtle disease states.

To  improve  detection  of  weak  but 
biologically relevant signals, PCA is usu-
ally accompanied by the supervised pro-
jection variants such as the PLS discrimi-
nant  analysis  (PLS-DA).  The  acronym
PLS is derived from “partial least squares 
projection to latent structures” or it  can
just  refer  to  the  partial  least  squares
algorithm  that  in  most  applications 
iteratively  determines  the  projections
[Wold  1973].  Unlike  PCA,  PLS  adapts

the rotations so that they best explain the 
co-variation of the input data and a pre-
selected target variable, even if the total 
input  data  variance  would  be  captured 
inefficiently.  Hence the  noise  (which is 
related  to  nothing)  or  experimental 
effects  (which  should  not  be  related  to 
the  target  variable)  are  not  allowed  to 
mask  biologically  relevant  patterns 
[Rosipal 2006, Trygg 2007].

Linear discriminant analysis (LDA) is an 
algebraic approach to estimate the likeli-
hood of a sample belonging to a pre-de-
fined class  [Fisher 1936, Martínez 2001, 
Ye  2007].  The  goal  is  to  find  a  linear 
combination of the explanatory variables 
that best separates the samples into two
or more pre-defined groups. The dataset 
is, in effect, compressed much the same 
way as with PCA and PLS. To cancel out 
as much noise as possible, the (L)DA can 
be  performed  on  a  limited  number  of 
PLS  components  (hence  the  acronym 
PLS-DA),  where  the  target  variable  for 
PLS is a binary indicator matrix of the 
group memberships.

Linear projection methods perform ade-
quately  in  most  situations,  and  without 
excessive computational load. The diffi-
culties  of  classical  PCA and  PLS stem 
from the model interpretation. The con-
nections between variables, samples and 
classification  are  translated  by  an  n-di-
mensional linear basis, which makes the 
results less intuitive. In general, the com-
ponents  may  not  be  related  to  biologi-
cally  relevant  phenomena;  especially 
non-linear effects are often dispersed be-
tween a number of PCs. As only three di-
mensions  can  be  visualized  simultane-
ously, some data is always lost in the pre-
sentation.  Fortunately  the  recent  adap-
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Figure  8: Principal component analysis (PCA) of the countries and autonomous regions of
the world. Before analysis, the raw data were normalized to unit variance and shifted to zero 
mean. The goal of PCA is to show the differences in the overall country characteristics in as 
few dimensions  as  possible.  The horizontal  axis  represents  the  first  principal  component 
score  S1 that  explains 63% of total dataset variance. The coefficients define the PC vector,
and the weighted sum produces the projection onto the PC. The first PC is dominated by the 
per capita gross domestic product (GDP), infant mortality  and adult literacy. On the other 
hand, the second PC score S2 (explains 23% of variance) is almost exclusively quantified by 
the  population  size.  The  data  were  obtained  from  the  United  Nations  (literacy  and
population), the International Monetary Fund (GDP) and from the US Central Intelligence 
Agency (infant mortality).



tions  of  the  basic  methods  (orthogonal 
PLS in particular) are easier to interpret,
especially  if  tailored  for  a  particular 
problem  [Ergon 2004, Trygg 2002].  Fi-
nally, the strict assumption of a linear or-
thogonal basis for the dataset (combined 
with Gaussian residuals) limits the model 
severely and can lead to inefficient solu-
tions  in  demanding  applications 
[Malthouse  1997,  Demiriz  2001,  Venna 
2001].

Linear regression and kernel models

Excessive number and collinearity of in-
put variables prevent the use of ordinary 
linear  regression in most metabonomics 
studies, which has lead to the widespread
use of the projection methods. However, 
a regularization technique that effectively 
assigns a cost to the sum of the regres-
sion  coefficient  magnitudes  is  another 
possibility  [Tikhonov 1963] and is often
referred  to  as  ridge  regression.  The 
choice between the two is application-de-
pendent: if the dataset can be reduced to
a few orthogonal components efficiently, 
the projection methods are favored, oth-
erwise  the  regularized  linear  regression 
yields  better  results  [Vigneau  1997, 
Huang 2002, Burr 2005].

Most noisy and collinear datasets result 
in a poor recovery of regression coeffi-
cients  [Farkas  2005,  Kiers  2007],  even 
when  prediction  performance  remains 
strong.  Biomarker  detection  from spec-
troscopic data, for instance, can thus be
compromised.  The  otherwise  reliable
projection methods will  also fail  in this
respect if the dataset cannot be described
by the first few principal components.

The so-called kernel methods are a way 

to bypass the collinearity: instead of us-
ing the spectra as such, one can decode 
them into a weighted sum of pre-deter-
mined line-shapes or  quantities  [Opstad 
2007, Vehtari  2007,  Bylesjö  2008].  The 
weights for the summation are then de-
termined by linear regression or projec-
tion methods. For NMR spectra, a single 
resonance peak (in the shape of a Cauchy 
function) is the natural kernel  [Ala-Kor-
pela 1995b]. Broadly speaking, the kernel
can  be  almost  anything  (even  wavelets 
[Liu  2007])  and  enables  the  incorpo-
ration  of  non-linearity  within  the  stan-
dard  linear  framework.  Choosing  the 
number and shape of kernels is the criti-
cal  modeling  aspect  and  often  requires 
detailed  knowledge  of  the  phenomenon
under study – and should always by fol-
lowed by computationally intensive pro-
cedures  to  optimize  and  validate  the 
choices,  whatever  method  was  used 
[Efron 1995, Westerhuis 2008].

Artificial neural networks

The advanced modifications of the pro-
jection methods can provide detailed in-
formation on the relevance of individual 
input variables, but if that is of low prior-
ity, more powerful “black-box” modeling,
such  as  artificial  neural  networks 
(ANNs), can improve the regression esti-
mates for complex non-linear phenomena 
[Haykin  1994,  Alpaydin  1998,  Yang 
2004]. Biomedical applications of ANNs 
include  lipoprotein  quantification  from 
NMR  spectra  [Ala-Korpela  1995a],  the
prediction  of  diabetes  [Park  2001],  the 
discovery  of signaling  proteins  in  au-
toimmunity  [Honeyman  1998],  and  the 
assessment  of  retinal  complications  in 
the  eye  [Usher  2004] and  of  plaque 
formation in the arteries [Ergün 2004].
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A typical ANN mimics a simple nervous 
network  with  a  layer  of  input  neurons 
(one per input variable), connected with 
a layer of hidden neuronal units, which in 
turn are connected to a common output 
neuron that provides the regression esti-
mate (Figure 9). The hidden and output 
neurons  with  multiple  inputs  behave as
weighted  summing  devices,  where  the 
weights (the strengths of connections to 
the previous layer) are tuned so as to pro-
duce  the  least  error  between  the  esti-
mated  output  and  observed  value 
[Theodoridis 2003].

Each neuron is a non-linear summing de-
vice, which means that the sum of inputs 
is  transformed  (a  sigmoidal  shape  is 
common) before the value is passed on to 

the next layer.  A network with a single 
hidden unit is equivalent to a generalized 
linear  model,  but  more  hidden  neurons 
result in a highly flexible, albeit compli-
cated,  non-linear  model.  Therefore,  the 
validation and regularization of ANNs is 
crucial  before  drawing  any  inferences 
[Larsen 1995, Bishop 1996, Amari 1997,
Lampinen  2001].  In  situations  of  no 
added gain from ANNs, simpler models 
should be chosen [Harrison 2005].

Self-organizing map

The projection methods are built on the
correlations between variables, and indi-
rectly  model  the  individual  differences 
between  the  samples.  The  reverse  ap-
proach  is  also  possible:  one  can  start 
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Figure 9: A fully trained multi-layer neural network model (multi-layer perceptron). The first 
layer consists of a number of input variables that are thought to explain the target variable(s) 
in  the  output  layer.  Here,  there  are  two inputs,  denoted by  x and  y,  and a single  output 
variable  z. A hidden layer of two additive non-linear neurons (sigmoid response  f(t)  to the 
summed signal) is placed in between. The layers are connected by weighted links, where the 
weights correspond to the coefficients for the summation. Initially, the weights are unknown. 
The model is "trained" with an iterative algorithm that gradually finds the best set of weigths 
for the dataset at hand. Finally, the mature neuron is now able to produce an estimate z(x, y) 

for new values of x and y.
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Figure  10:  A  series  of  snapshots  at  different  stages  of  the  self-forganizing  map  (SOM)
algorithm. The colored plots indicate the averages in different parts of the SOM for each of 
the societal and governmental indicators respectively. During each iteration (t), the SOM is 
updated so as to better reflect the statistical properties of the dataset. This can be viewed as 
analogous to a plastic neural tissue that learns the regular statistical patterns that connect the
stimuli in an unsupervised manner. Simultaneously, each country will have a single unit that 
best describes it: for illustration purposes only one unit is active in the beginning and thus 
“collects” all the countries. Later on, the map structure begins to diversify and the countries 
start to spread on the map. Finally, the SOM stabilizes to an optimized configuration that best
separates large and small, poor and rich and developed and developing countries. The dataset 
is the same that was investigated by PCA in Figure 8.



from  the differences  between  the  ob-
served metabolic profiles, and indirectly
investigate the associations  between the 
metabolites.  The  nearest-neighbor  (k-
NN)  methods  are  extreme  examples  of
the latter approach: they try to find a set 
of model profiles (k denotes the number)
that divide the samples into  groups that
are accurately summarized by the mod-
els.  Put  differently,  the  samples  in  a
group  are  more  similar  to  the  group
model  than  any  other  model  [Cover 
1967]. For clustered data, this leads to the
detection of distinct sample clouds in the
data space, provided that the parameter k
is chosen appropriately.

The  self-organizing  map  (SOM)  shares
the  ideology  of  the  k-NN,  but  imple-
ments an unsupervised neural network to 
position the samples on a confined lattice
[Kohonen 2001].  It  was  originally  con-
ceived to mimic the plasticity and adap-
tation of  human nervous tissue.  First,  a
set of neurons is put on a lattice so that
each one is connected to a small number
of  adjacent  neurons.  The  neurons  are 
considered  as  memory  units  that  can 
store a single metabolic profile such as 
an NMR spectrum, for instance. Initially, 
the model profiles  in memory are arbi-
trarily determined.

The learning process starts by finding the
best match for an observed sample pro-
file among the profiles stored in the neu-
rons.  The  matching  neuron  then  “re-
sponds to the stimulus” by updating its
profile even closer to the sample. More
importantly, though, the adjacent neurons 
are affected: they also adapt to the sam-
ple  profile,  albeit  not  as  much  as  the
best-matching  neuron.  When  the  afore-
mentioned  procedure  is  repeatedly  per-

formed on every observation, the profiles 
stored in the neurons gradually converge 
to a stable configuration (Figure 10) that 
describes  the  characteristics  of  the 
dataset [Bengio 1995].

The SOM is a popular data mining tool: 
for  example,  the  map  illustrated  how 
NMR spectroscopy of breast cancer tis-
sue  was  able  to  characterize  the  meta-
bolic  features  of  tumors  [Beckonert
2003].  Similarly,  the  lipoprotein  abnor-
malities of the metabolic syndrome were 
visualized  by  the  SOM  [Suna  2007]. 
Other biological applications include the 
elucidation of clusters in protein-protein 
networks [Barrios-Rodiles 2005], a com-
mittee  of  SOMs  for  assessing  arterial
plaques  [Christodoulou  2003]  and  a 
clinical  study  on  insulin  resistance 
[Valkonen 2002].

Complex networks

The inter-dependence of variables, weak 
but  multiple  effects  from  unknown 
molecular processes, and the difficulties 
in  making targeted  and yet  comprehen-
sive measurements characterize the study 
of diabetic complications in humans. The 
gradually  progressive  diseases  produce
the typical clinical dataset with a variable 
number  of  statistically  significant  bio-
markers  and  risk  factors,  but  no  (obvi-
ous) defining indicator that would predict 
an outcome. Instead, a multitude of sub-
tle defects interact to produce an adverse 
physical  manifestation  [Loscalzo 2007a,
Pawson 2008].

Complex network theory is built on the 
notion of emergent complex phenomena 
from a large number of simplified inter-
actions (Figure 11) between the individ-
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Figure  11: Web of science derived from clickstream data  [Bollen 2009]. A website client’s 
usage  history  was  tracked  from  one  journal  to  another  during  a  browsing  session.  The 
resulting  clickstream  database  was  analysed  to  see  if  there  were  temporal  connections 
between journals  from various  disciplines.  The network topology was then  visualized by 
drawing the five most strongest out-bound links from a journal. Circles represent individual 
journals. The lines that connect journals are the edges of the clickstream model. The colors 
and  labels  correspond  to  the  Getty  Research  Institute  Art  and  Architecture  Thesaurus 
classification of the journal.



ual constituents (or factors or nodes) of
the  system.  The methodology  has  been 
applied in biology [Almaas 2007], social 
sciences  [Onnela  2007],  transportation 
[Guimerà  2005] and  disease  spreading 
[Small  2007],  among  others.  In  bio-
sciences,  networks  arise  naturally  from
gene expression  [Benson 2006],  protein
metabolism [Pieroni  2008]  and  disease
pathology  [Goh 2007, Lee 2008]. Inter-
estingly,  networks  from  different  fields
seem  to  share  similar  basic  properties: 
most  empirical  networks  exhibit  scale-
free,  modular  and/or  so-called  small-
world  characteristics  [Barabasi  1999, 
Girvan 2002].

The term network is widely used in bio-
medical literature, although not necessar-
ily in reference to graphs. For instance, a
structural  equation  model,  conceptual-
ized  as  a  network,  revealed  the  impor-
tance  of  self-efficacy  and  positive  atti-
tude to ensure a good quality of  life in

the  presence  of  diabetic  complications 
[Rose  2002].  An integrative analysis  of 
cellular studies and publication databases 
revealed  novel  “nexus”  genes  in  the 
development  of  atherosclerosis  [King 
2005]  and  numerous  studies  have  de-
scribed  molecular  interactions  and  net-
work structures relevant to diabetes [Lum 
2006, Bergholdt 2007, Ferrara 2008].

Applications of complex network theory
are rare in clinical research. This may be 
due to the bias that favors a “mechanis-
tic” paradigm (characterization of pheno-
types  from  a  collection  of  molecular 
mechanisms) in the network field, rather 
than an “observational” (characterization 
of risk factors from observed patient pro-
files),  which  is  the  natural  choice  for 
clinicians.  Also,  complex  networks  are
more apt at describing the properties of 
high-dimensional objects – such datasets 
have  only  recently  become  available  in 
large-scale human studies.
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3 Aims of the study
I To investigate the multi-variate profiles of serum and urine biochemistry in a 

large set of patients with type 1 diabetes. The secondary aim was to determine 
the connections between the representative metabolic profiles, diabetic kidney 
disease and all-cause mortality.

II To study how to assess the metabolic state of type 1 diabetic individuals by 1H
NMR spectroscopy of serum and how this assessment compares to traditional 
biochemical assays.

III To develop suitable visualization tools for complex clinical datasets and to ana-
lyze the statistical relationship between 1H NMR spectra of serum and all-cause 
mortality in type 1 diabetes.

IV To improve the currently available lipoprotein markers by computational model-
ing and to verify the clinical relevance of the new estimates in an independent 
test set of patients with type 1 diabetes.

V To characterize  the  network  of  inter-dependencies  between  clinical  and  bio-
chemical risk factors for diabetic complications.
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4 Materials and methods

4.1 Patients and samples

The Finnish Diabetic Nephropathy Study

The aim of the Finnish Diabetic Nephro-
pathy Study (FinnDiane) is to determine
the  genetic  and  environmental  risk 
factors  for  the  complications  of  type  1
diabetes,  especially for the chronic  kid-
ney disease. The nation-wide recruitment 
of patients was launched in 1997 with a
specific goal  of  25% of all  type 1 dia-
betes  cases  in  the  cross-sectional  first 
phase,  their  first-degree  relatives  in  the 
second phase and finally re-examination 
of the original patients in the prospective
third  phase.  At  the  time  of  this  thesis,
4,200 patients out of 40,000 (10%) have
been investigated cross-sectionally, 2,400
relatives  have also  participated  and fol-
low-up  data  are  available  on  3,100  pa-
tients, although only 1,300 of them have 
been fully re-examined.

The Division of Nephrology in the De-
partment  of  Medicine  at  the  Helsinki
University Central Hospital was the ini-
tial  FinnDiane  center.  Furthermore,  all 
the  five  university  hospitals,  all  the  16 
central  hospitals and 56 regional hospi-
tals and health care centers have actively 
participated  in  the  collection  of  patient 
records  and  biofluid  samples.  Most  of 
the  urban  areas  in  Finland  are  covered
(Figure 12) and initial results from geo-
genomic analyses suggest that the study 
set reflects the overall ancestral structure 

of  the  Finnish  population  (unpublished 
data). 

Written  informed  consent  was  obtained 
from every participant and the study pro-
tocols were approved by the local ethics
committees in the collaborating centers. 
The  FinnDiane  study  conforms  to  the 
Declaration of Helsinki [WMA 2008].

All patients with adequate data available 
were  included  in  Publications  I  (n = 
4,197), IV (n = 4,084) and V (n = 4,197).
A  case-control  design  was  adopted  in 
Publication II with a total of 182 age- and 
sex-matched  patients  with  type  1  dia-
betes: 73 controls with normal AER, 93 
cases with macroalbuminuria, and 16 ad-
ditional patients with microalbuminuria. 
The  set  was  expanded  to  251  controls, 
225 cases and 137 patients with microal-
buminuria in Publication III. Basic clini-
cal characteristics for each substudy are 
listed in Table 2.

Clinical definitions

Diagnostic criteria for type 1 diabetes in-
cluded age of onset <35 years and transi-
tion to insulin treatment within a year of 
onset.  Four  patients  were  excluded  be-
cause  of  insufficient  biochemical  data. 
The  design  was  cross-sectional  (n =
4,197),  but  with longitudinal  records of 
albuminuria  and  clinical  events  before 
baseline  and  with  all-cause  mortality 
data  available  after  an  average  of  6.5 
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years  of  follow-up  from  the  baseline 
(25,714 patient-years).

Data  on  medication,  cardiovascular  sta-
tus,  diabetic  complications,  education
level,  smoking  dose  and  alcohol  con-
sumption,  working  status  (disabled  vs. 
employed  or  unemployed),  asthma,
rheumatoid arthritis  and thyroid disease 
were  registered  by  two  standardized 
questionnaires,  one  of  which  was  com-
pleted by the patient and the other by the
patient’s attending physician according to 

the medical file. Vitality status was ob-
tained  from the  national  registry  main-
tained by the Population Register Center 
of Finland.

The  classification  of  renal  status  was 
made centrally according to urinary albu-
min excretion rate (AER) in at least two 
out of three consecutive overnight or 24h 
urine  samples.  Absence  of  diabetic 
kidney  disease  (DKD)  was  defined  as 
AER within the normal range (AER <20
µg/min or  <30 mg/24h) and at  least  15 
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Figure  12:  Geographical  distribution  of  the  FinnDiane  patients.  A Regional  population 
density in Finland (data from Statistics Finland). B Current residence of patients with type 1 
diabetes who are participating in the FinnDiane Study (n = 4,130 addresses available). C The
birthplaces of the patients’ parents (n = 5,291 addresses). Each of the circular semi-transpar-
ent markers represents a set of 100 local inhabitants.



years of type 1 diabetes. This kidney dis-
ease negative subset is  denoted by KD-
NEG (Publication  V  only).  Macroalbu-
minuria or overt kidney disease was de-
fined as AER ≥ 200 µg/min or ≥ 300 mg/
24h. The intermediary range was defined 
as  microalbuminuria (20 ≤  AER < 200
µg/min or 30 ≤ AER < 300 mg/24h). Pa-
tients  on  renal  replacement  therapy 
(dialysis or transplantation) were classi-
fied  as  having  end-stage  renal  disease 
(ESRD).  An  additional  subset,  denoted 
by DMDur<15, was formed from patients 
with less than 15 years of diabetes dura-
tion, and normal or unknown AER (Pub-
lication V only).

The locally measured AER values were 
not used for statistical analyses. Instead, 
the 24h albumin excretion rate was esti-
mated from a single 24h collection, mea-
sured by the laboratory of Helsinki Uni-
versity Central Hospital. This continuous 
variable  is  abbreviated  by  24h-uAlb  to
distinguish  it  from  the  AER  estimates 
made  by the  local  hospitals  and  health
care centers.

The metabolic syndrome was defined as 
a score of  3 or higher according to the 
modified National Cholesterol Education 
Program Adult Treatment Panel III crite-
ria [NCEP 2002, Thorn 2005], where ev-
ery patient  with type 1 diabetes has an 
initial score of 1 for high blood glucose 
(hyperglycemia).  Diabetic  retinopathy 
was  defined as  present  if  a  patient  had 
undergone laser  treatment of  the retina. 
Macrovascular disease was defined as a 
pooled end point of coronary heart dis-
ease,  myocardial  infarction,  stroke,  and 
peripheral vascular disease.  Blood pres-
sure  was  measured  twice  with  two-
minute intervals in the sitting position af-
ter a 10-minute rest.

Laboratory measurements

Biochemical  data  came both  from cen-
trally  organized  measurements  (90% of 
values) and from local health care centers 
and  hospitals  (10%).  When  both  were
available,  the  centrally  measured  value 
was used. The pattern of missing values 
was regular (Online appendix 1 in Publi-
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Table 2: Clinical characteristics of the patient subsets at baseline. Median values ± standard 
deviation are listed for continuous variables. Blood pressure is abbreviated as BP.

Publication I & V II III IV

Number 4,197 182 613 4,084
Male 52% 47% 51% 52%
Age [year] 37 ± 12 38 ± 12 39 ± 11 37 ± 12
Diabetes duration [year] 22 ± 12 26 ± 8 25 ± 10 22 ± 12
Waist-hip ratio 0.86 ± 0.08 0.86 ± 0.09 0.88 ± 0.08 0.86 ± 0.08
Systolic BP [mmHg] 131 ± 19 135 ± 20 139 ± 18 131 ± 19
Diastolic BP [mmHg] 80 ± 10 80 ± 11 80 ± 10 80 ± 10
Kidney disease 23% 51% 36% 23%
Retinopathy 35% 56% 51% 35%
Macrovascular disease 8% 8% 9% 8%
Metabolic syndrome 32% 43% 33% 32%
Follow-up time [year] 6.5 ± 5.0 8.5 ± 0.9 8.2 ± 0.6 6.5 ± 5.0
Died within follow-up 7% 10% 9% 7%



cation I), but no significant sampling bias
was detected.

Serum  lipid  and  lipoprotein  concentra-
tions were measured from fasting blood 
samples  at  the  research  laboratory  of 
Helsinki University Central Hospital, Di-
vision  of  Cardiology.  Total  cholesterol 
and triglycerides were determined enzy-
matically using an auto-analyzer (Cobas 
Mira  or  Mira  Plus;  ABX  Diagnostics,
Montpellier,  France).  Total  HDL  and 
HDL3 cholesterol were determined enzy-
matically  using  an  assay  reader  (HTS 
7000 Plus Bio; Perkin Elmer, Wellesley, 
MA).  HDL2 cholesterol  was  calculated
by subtracting HDL3 cholesterol from to-
tal  HDL  cholesterol.  LDLF cholesterol
was calculated according to the Friede-
wald formula (Publication I only). VLDL 
triglycerides  and IDL and LDL choles-
terol  were  estimated  by neural  network 
modeling  (Publications  IV  and  V). 
Serum  apolipoprotein  A-I,  A-II,  and  B 
concentrations  were  determined  by  im-
munoassays  (Orion Diagnostica,  Espoo, 
Finland). 

Serum and 24h urinary creatinine (enzy-
matic), 24h urinary albumin (immunotur-
bidimetric), C-reactive protein (radioim-
munoassay),  and  C-peptide  (radioim-
munoassay) were quantified at  the Hel-
sinki University Central Hospital Labora-
tory.  Adiponectin  and  mannan  binding 
lectin  were  measured  as  previously  de-
scribed [Frystyk  2005,  Thiel  2002].
Twenty-four–hour  urinary  urea  (en-
zymatic),  Na,  and  K  (ion  selective 
electrode) were measured on a Cobas In-
tegra  analyzer  (Hoffmann-La  Roche,
Basel, Switzerland) by Medix Laborato-
ries (Espoo, Finland). Glycated hemoglo-
bin  (A1c)  was  determined by standard-

ized  assays  at  local  health  care  centers 
and hospitals. Serum concentration of the 
soluble  receptor  for  advanced  glycation 
end-products  was  measured  by  solid 
phase ELISA (Thomas et al. submitted).

Regression models of lipoprotein

measures

Measurements of VLDL, IDL, LDL and 
HDL  fractions  were  performed  at  the
University of Oulu. The dataset included 
863 individuals with no severe lipid ab-
normalities (total cholesterol <6.0 mmol/
l,  triglycerides  <2.0  mmol/l)  and  in-
dividuals  with  familial  cholesterol  dis-
orders  or  chronic  renal  failure,  among 
others. The study subjects were recruited
within  several  clinical  studies  [Savo-
lainen 1991a, Savolainen 1991b, Hannuk-
sela 1992, Hörkkö 1994].  In total, 1,775 
plasma samples were available for the re-
gression analyses.

Advanced lipoprotein measures were es-
timated in silico from total triglycerides, 
total cholesterol and HDL cholesterol by 
early-stopping  committees  of  20  neural 
networks  (multi-layer  perceptrons  or 
MLPs  for  short).  First,  the  original 
lipoprotein  data  from  Oulu  were  ran-
domly  divided  into  two  sets  for  each 
MLP (training and testing, respectively). 
Next, the MLPs were updated according 
to  the  respective  training  set  and  vali-
dated in the test set during each iteration. 
The process was halted if the test set in-
dicated  any  deterioration  in  accuracy,
that is, if the model was over-learning the 
training set. Finally, the outputs of all the 
committee members were averaged into a 
single  estimate.  The  analysis  software 
was  implemented (by Mr  Niemi)  based 
on the  MCMCStuff  toolbox for  Matlab 
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(http://www.lce.hut.fi/research/mm/mcm
cstuff/).

Cox proportional hazard models of mor-
tality were constructed to assess the bio-
logical significance of the lipoprotein es-
timates in n = 4,084 patients with type 1
diabetes  from  the  FinnDiane  Study.  A 
separate age- and sex-adjusted model was 
fitted for each lipoprotein variable.  The 
variables  include  the  conventional  risk
markers  (total  triglycerides  and  total, 
LDLF and  HDL  cholesterol),  the  esti-
mates from the neural network modeling 
(apolipoprotein B-100 and A-I, IDL and 
LDL  cholesterol,  among  others)  and  a 
number  of  derived  indicators  that  have 
been previously linked to cardiovascular
disease or mortality.

4.2 Proton NMR spectroscopy

Molecular windows

The NMR experiments  were  performed 
on a 500MHz Bruker Avance spectrome-
ter  located  in  the  Instrument  Centre  in
the Department of Chemistry at the Uni-
versity  of  Turku.  A  double-tube  setup 
was  adopted:  the  reference  substance 
(sodium 3-trimethylsilyl[2,2,3,3-d4]propi-
onate 40 mmol/l, MnSO4 0.6 mmol/l in
99.8%  D2O)  was  placed  in  a  separate 
small tube inside the sample container to 
prevent  molecular  mixing from disturb-
ing the serum metabolite signals. Conse-
quently,  the  results  can  be  quantified 
with  respect  to  the  known  volume and
concentration of the reference substance. 
Before analysis, aliquots of 430  �l were
extracted from the thawed serum samples 
and  placed  inside  an  automatic  sample 
changer. All experiments were preformed
at 37°C to mimic the physiological state 

of the serum macromolecules [Ala-Kor-
pela 1995b].

The  standard  1H  NMR  spectrum  of 
serum  contains  a  complex  envelope  of 
signals from lipoprotein lipids, albumin-
bound  fatty  acids  and  smaller  features 
from  a  number  of  abundant  molecules 
such as glucose and lactate (Figure 13). 
For this "LIPO" window, 128 transients 
were  collected  with  a  90°  flip  angle,  a
6.2 s acquisition time and a 0.1 s relax-
ation delay.

While  the  sample  remains  in  the  spec-
trometer, it is possible to change the rela-
tive  visibility  of  metabolite  signals  by 
manipulating the electromagnetic pulses
that  excite  magnetization  in  the  target 
molecules. The low-molecular-weight or 
"LMWM"  data  were  collected  with  a 
standard  one-dimensional  Carr-Purcell-
Meiboom-Gill  pulse  sequence  [Carr 
1954] with a 325 ms T2-filter and a fixed 
400 ms echo delay to eliminate diffusion 
and  J-modulation  effects.  Forty-eight 
transients were collected after 16 dummy 
scans with a 6.2 s acquisition time and an 
8.7 s relaxation delay. The signals from 
macromolecules such as lipoproteins are 
proportionally  more  suppressed  by  the
aforementioned sequence, so the spectral 
peaks  from  smaller  molecules  become 
visible.

Preprocessing

The spectra were obtained without water
suppression at the instrument level. Wa-
ter is by far the most abundant compound 
in blood serum, and thus produces a very 
strong background signal, which disturbs 
the  nearby  metabolite  peaks  from  glu-
cose (3.1-3.9 and ~5.2 ppm), lactate (1.23 
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and ~4.1 ppm) and creatinine (~3.0 and
~4.0 ppm) among others. Before statisti-
cal analysis, the aliphatic tail of the water
peak in the LMWM window was elimi-
nated  by  fitting  a  Lorenzian  curve  and
then subtracting it from the original spec-
trum. The aromatic tail was removed by
piece-wise linear interpolation. A minor
correction  was  also  applied  within  3.0-
4.5 ppm in both molecular windows.

Selected  metabolites  (glucose,  lactate
and creatinine in particular) were quanti-
fied by estimating the total area under the
corresponding peaks in the LMWM win-

dow. In theory,  these areas can be nor-
malized  to  absolute  concentration  units 
by knowing the suppression coefficients 
from the  applied  pulse  sequence.  Here, 
however,  these  coefficients  were  not
readily  available  so  the  reference  peak 
area (set to 0 ppm) was chosen as an ar-
bitrary –  but proportionally valid – con-
centration unit.

4.3 Self-organizing map

Dimension reduction

The self-organizing map is a two-dimen-
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Figure  13:  1H NMR spectra of serum obtained by a protocol with two molecular windows. 
The  top-right  spectrum  represents  the  standard  experiment  with  broad  line-shapes  from 
lipoprotein  lipids  and  serum  fatty  acids.  The  bottom  and  left  plots  depict  a  T2-filtered 
spectrum, where the broad resonances from macromolecules have been almost completely 
suppressed.



sional visualization algorithm for multi-
dimensional  datasets  such  as  the  bio-
chemical data of the type 1 diabetic pa-
tients in this thesis. The algorithm is pa-
tient-centric by nature, that is, the mathe-
matics  are  based  on comparing  the  pa-
tients’  metabolic  profiles  directly  rather 
than relying on the statistical associations 
between the  biochemical  variables.  The 
patients (or samples to be accurate) are
spread on the map and their mutual posi-
tions  indicate  how  similar  they  are  to 
each other: adjacent patients on the map
are relatively similar with respect to the 
metabolites, whereas patients that are far 
apart have differing metabolic profiles.

The finished SOM is analogous to an or-
dinary geographic map in the sense that
the patients have a fixed “place of resi-
dence”,  just  like the  residents  in  a  city
have  postal  addresses  that  translate  to 
two-dimensional  coordinates.  Conse-
quently, it is possible to represent the re-
gional  characteristics  of  the  patients  on 
the SOM in the same way as one would
characterize the different neighborhoods
in the city. For instance, in a large city,
one could find areas of high average in-
come,  education  level  and  real  estate 
prices in the center, and less affluent de-
mographics in the under-developed out-
skirts.  Similarly,  old and obese patients 
are typically concentrated on different ar-
eas  than  lean  young ones  on  the  SOM
due to the distinct metabolic profiles that
reflect  old  age  and  excess  body  fat
[Valkonen 2002].

Topographic statistic

Geographic maps can be colored accord-
ing to the regional demographics and the 
same approach is  directly  applicable  to 

the SOM. There is,  however, a method-
ological  caveat:  for  finite  datasets  there 
will always be some regional differences, 
even if there were no real statistical asso-
ciations.  A real-life analog would be to 
create  a  microscopically  perfect  planar 
surface on a pile of  gravel.  Hence it  is 
difficult  to  determine  a  suitable  color 
scale  or  dynamic  range  that  would  not 
give falsely significant patterns for purely 
random fluctuations. For instance, a sim-
ple  adjustment  by  the  variance  of  a 
variable  would  not  accurately  reflect 
whether the observed coloring were reli-
able or not, since statistical significance 
is also influenced by the number of data.

In  this  thesis,  the  problem of  dynamic
range  was  solved  by  random  permuta-
tions  according  to  a  hypothesis-based, 
so-called frequentist, approach. The two 
challenges in any frequentist approach is 
to find i) a suitable test statistic that com-
presses the measured phenomenon into a 
univariate value and ii) the null distribu-
tion of the statistic in the random case. 
Here, the regional variability is the phe-
nomenon to be measured.

A suitable statistic should be insensitive 
to orientation; whether the obese patients
are clustered on the northern or southern 
SOM half is of no importance (indepen-
dence  of  orientation).  Furthermore,  the 
mean value of the variable should not in-
fluence  the  results  (independence  of 
level). For instance, it would not matter 
whether body temperatures were given as
degrees centigrade or Fahrenheit. It turns 
out that the regional variance, taken liter-
ally, is a robust and sensitive statistic that 
fulfills  both  requirements:  if  one  takes 
the SOM unit averages, collects them in 
a  column (independence  of  orientation) 
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and then calculates the variance over the
values,  one  effectively  estimates  the 
volumetric space left  between the mean 
elevation (independence of level) and the 
measured “gravel surface”.

Statistical significance

If  one  assumes  that  a  particular  bio-
chemical variable has no impact on the
patients’ positions on the map, then the
regional  averages  (for  the  variable  in
question) on the SOM must come from
purely random effects. Before the advent 
of computers, these random effects were 
estimated by mathematical formulas and 
rigorous constraints. On the other hand, 
non-association  between  a  variable  and 
the positions can be achieved artificially 
by randomly permuting either  the posi-

tions or the variable. Therefore, it is pos-
sible to computationally simulate a situa-
tion  of  no  statistical  significance  (null 
hypothesis)  by  randomly  permuting  the 
variable  before  calculating  the  regional
averages on the SOM.

One simulated case of the null hypothesis 
is not enough, but a large number must 
be generated to accurately determine the 
null distribution, which then gives an es-
timate of the dynamic range of the ran-
dom regional variation on the SOM, au-
tomatically  adjusted  by  the  map  and 
population sizes. Furthermore, the proce-
dure can be extended to data  that  were 
not included in the training set. In Publi-
cation I, for instance, the SOM was cre-
ated based on the biochemical data, but 
the main results were obtained by color-
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Figure  14:  Estimation of empirical  P-value for a variable that is not included in the SOM 
training  set.  A The  map was  created  from the  dataset  of  world  countries:  income level, 
literacy, infant mortality and population size were included in the training set (Figure 10). 
The SOM was then colored according to the availability of fresh drinking water (data from
the  United  Nations).  B-H During  each  permutation,  the  original  water  data  is  shuffled 
randomly and the map recolored (the positions of the countries remain the same). Also, the 
variance of the unit-specific values is estimated and represented by the normalized g-statistic. 
Here the observed statistic is larger than any of the seven permuted versions, so the upper
limit for the estimate is 1 out of 7 or P < 0.14. A large number of permutations are typically 
required to attain accurate P-values.



ing  the  map  according  to  clinical  end-
points and mortality – with statistical sig-
nificance  estimates  directly  available 
from the null distribution. An example of
the permutation process is shown in Fig-
ure 14. The SOM statistics and visualiza-
tions are implemented in the Melikerion 
software package.

4.4 Association networks

Correlation matrix

The SOM is an excellent tool for investi-
gating the diversity of metabolic profiles. 
However,  it  does  not  provide  direct  re-
sults  on  the  correlation  or  association 
structure between variables.  To comple-
ment the patient-centric analysis,  a  net-
work  based  visualization  approach  was
developed  to  characterize  the  inter-de-
pendencies   between  clinical  and  bio-
chemical risk factors for type 1 diabetes
complications.

The size of a correlation matrix increases 
by the square of the number of variables.
In clinical datasets it is typical that every
variable is at least mildly correlated with
every  other  variable.  From a  visualiza-
tion perspective this  is  a problem since
depicting  an  n-dimensional  correlation 
structure in only two dimensions (printed 
media) leads to a complicated presenta-
tion that may be too difficult to interpret.
Figure 15 depicts the correlation matrix 
of lipoproteins and their structural char-
acteristics. The variables are grouped ac-
cording to an existing taxonomy,  which 
greatly  helps  in  identifying  functional 
blocks  and biologically  significant  con-
nections.  In  many  other  applications, 
however, such grouping is not known be-
forehand  or  is  difficult  to  achieve  by

computational  means.  Also,  the  large 
size of the matrix may create typographi-
cal problems.

Network visualization

If presented with an excessively complex 
entity, the only choice is to simplify its 
presentation.  One  solution  is  to  group 
certain  variables  together  and  present 
them as a single trait; these type of ap-
proaches are often based on hierarchical 
clustering  algorithms  [Ward  1963].  Re-
ducing the number of correlation coeffi-
cients is another option. If the variables 
are regarded as nodes in a network and 
the  connection  strengths  between  the 
nodes are quantified by correlation coef-
ficients,  then  the  reduction  of  connec-
tions  corresponds  to  pruning  the  link 
topology.

The  pruning  algorithm  should  preserve 
strong  links,  that  is,  strong  correlation 
coefficients should not be removed first. 
On  the  other  hand,  heavily  intra-con-
nected cliques should not cause the frag-
mentation  of  the  network  into  small 
dense  islets  of  connections.  Therefore, 
some  weak  links  should  also  be  pre-
served.

A spanning tree is an appealing construct 
to ensure that the network remains con-
nected.  The concept  is  also  well  suited 
for  correlation  networks  since  the  tree 
can be chosen such that the sum of the 
link weights (i.e. correlation magnitudes)
is maximized (denoted here by maximal 
spanning tree). By definition, a tree is an 
acyclic  subgraph  that  connects  all  the 
nodes in the network, which means that 
with  n-variables,  a correlation tree con-
tains exactly n - 1 links. The tree contains 
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only branches so it is difficult to ascer-
tain if multiple variables have a high de-
gree  of  inter-connectedness.  In  some 
sense,  this  is  the  opposite  case  to  the
small  islets  with  dense  internal 
connections.

Augmenting the first spanning tree with 
a  second  is  a  compromise  between  the
two extremes. Assuming that the network 
is fully connected (correlations are non-
zero),  then  removing  the  first  maximal 
spanning tree from the network does not
disconnect  the  variables.  Another  span-

ning graph can now be calculated for the 
remainder  and  so  on  until  the  desired
level  of  connectedness  is  achieved.  In 
most situations, two spanning trees com-
bined is  enough for  a  visually  pleasing 
layout (Figure 16).

Pruning  the  network  is  not  enough  to 
draw the picture.  Positioning the nodes
in an optimal configuration with as few 
intersecting links as possible is the final 
step. Here, a hybrid algorithm based on 
force-directed spring kinetics and simu-
lated annealing was  used (the  Himmeli 
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Figure  15:  Spearman cross-correlations  of  lipoprotein cholesterol  content  in  a  set  of  100 
human serum samples. Each pixel corresponds to a pair of variables, determined by the row 
and  column.  The  color  of  the  pixel  depicts  the  correlation  coefficient  between  the  two 
variables. The data were measured by the LipoSearch method (Skylight Biotech Inc). The 
subclasses from 1-20 follow the LipoSearch taxonomy (based on particle size) and are not 
directly comparable with the commonly used notation.



graph visualization software).

Statistical robustness

The  networks  of  continuous  variables 
were based on pair-wise Spearman’s cor-
relation coefficients. It is a challenge to 
isolate the influence of  methodological, 
physiological, pathological and data col-
lection from the final network topology. 
Hence it does not make sense to investi-
gate whether the observed structures are 
non-random  –  they  inevitably  are  but
mostly for the wrong reasons. Instead, by
dividing  the  material  into  subsets  and 
then comparing the differences between 
the subset correlation networks it is pos-

sible to eliminate the irrelevant phenom-
ena and focus on those that are related to 
the subset division.

Comparisons of subset networks (formed 
according  to  the  kidney  disease  status) 
were  validated by permutation  analysis. 
First, two subsets were selected from the 
dataset, designated as cases and controls. 
Next, the difference network was calcu-
lated (observation). Then the null distri-
bution  of  differences  was  simulated  by 
randomly  shuffling  the  case-control  la-
bels 10,000 times (effectively creating a 
large  number  of  random  subsets),  and 
each time recording the differences.  Fi-
nally, the observation was compared with 
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Figure  16: Pruned correlation network from the correlation matrix  in Figure 15. The nodes 
represent lipoprotein cholesterol and the links depict the topologically important correlations. 
The colors of the links indicate the respective correlation coefficient. Compared with Figure
15, the network visualization is more compact and highlights the connections between the 
blocks more clearly. For instance, it is easy to see that the cholesterol in larger HDL-particles 
is inversely correlated with VLDL cholesterol whereas the smaller particles are associated 
with the LDL particles. The numbers in the abbreviations indicate ordering by particle size.
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Figure 17: Permutation process for subset graph comparison. Type 1 diabetic patients without 
kidney disease (KDNEG) and patients with macroalbuminuria where chosen for analysis, as 
described in Publication V. First, the correlation networks of the two subsets are calculated 
and then the observed difference network is created by subtracting the KDNEG correlation 
coefficients from the corresponding macroalbuminuria coefficients (left side of the figure). 
The variance of the differences was chosen as the test statistic. Next, the process is repeated 
for  a  large  number  of  random  divisions  of  the  pooled  dataset  to  determine  the  null 
distribution of the test statistic (right side). Finally, the observed statistic is compared against 
the histogram: a clear separation can be seen and thus one can conclude that the division by 
kidney disease makes a statistically significant difference network.



the simulated distribution to obtain an es-
timate for P-value (Figure 17).

Non-continuous data

The correlation coefficient is suitable for 
measuring  the  linear  dependence  be-
tween  two  continuous  variables,  but 
medical  datasets  usually  contain  both 
quantitative and qualitative traits. A real-
valued variable has a higher “information
density” than a nominal  or  binary trait, 
so one can convert categorical data into
continuous variables without the loss of 
precision – at least from a computer pro-
gramming perspective.

A Bayesian probit model was separately
created for each binary variable [Johnson 
1999].  Standard  logistic  regression  was 
not   numerically stable due to the high
number of dimensions. The binary target 
variable was estimated based on the real-
valued variables, and then the linear pre-
dictor of the model was stored as a surro-
gate continuous trait. The procedure was 
repeated for every variable (least-squares 
ridge-regression  for  the  continuous)  to 
ensure that the binary-binary links were 
comparable  to  binary-continuous  and 
continuous-continuous  links.  To  reduce
artificial  inflation  of  correlation,  the 
dataset was divided into two halves, one 
of  which  was  then  used  to  predict  the
other.

After  the  binary  and  continuous  data 
were  converted  to  linear  predictors,  the
network  was  constructed  by  calculating 
the  correlations  between  the  predictors 
instead  of  the  observed  values  (regres-
sion-correlation). Permutation analysis of
statistical  significance  was  not  feasible 
due to the excessive computational load.

4.5 Software for clinical data analysis

Melikerion

The integration of  numerous sources of 
biochemical and clinical information sets 
a challenge to the medical scientists who 
are striving for a deeper understanding of 
human disease  mechanisms.  Melikerion 
is  an  implementation  of  the  Kohonen 
self-organizing  neural  network  algo-
rithm, and was designed for unsupervised
analysis of clinical materials, in particu-
lar. The goal was to make an easily ac-
cessible web-based system that can read 
tabulated  data  and  cope  with  missing 
data without the need of excessive man-
ual  preprocessing  of  the  files  (visit 
www.finndiane.fi/software/ for more de-
tails).

A typical process flow - with emphasis 
on the biochemical profiles - begins with 
the preparation of the measurement data 
so that the variables become comparable 
in scale and mean value. Next, linear de-
composition is applied to create an initial 
map layout of patients. The final layout is 
achieved  after  several  iterations  of  a 
batch version of the Kohonen algorithm. 
Once  the  map  is  complete,  the  full 
dataset  is  visualized  based  on  the  bio-
chemical profiles, with statistical signifi-
cance estimates for the clinical variables.

The  first  version  of  the  software  was 
based  on  the  SOM  Toolbox  [Vesanto 
2000] on the Matlab programming envi-
ronment  (Mathworks  Inc.,  Natick  MA,
USA). However, it was necessary to cre-
ate a stand-alone package for maximum 
usability in the academic field and to en-
able  the  web-based  service.  Octave  by 
Eaton JW et al. is an open-source clone 
of Matlab so it was chosen as the soft-
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ware platform for the current version.

The  Matlab/Octave  environment  is  de-
signed for matrix algebra and the current 
implementation  is  programmatically  in-
efficient when it comes to certain types
of tasks that involve element-by-element 
operations  of  multiple  data  arrays.  The 
next generation of Melikerion, currently 
under development, is programmed in C/
C++, which is better suited for the most
time-consuming components of the soft-
ware.

Himmeli and Katiska

A general  graph  constitutes  a  multi-di-
mensional object so to draw it on a flat
surface  involves  a  coarse  simplification 
of  its  nature.  The  Himmeli  software  is
designed for the most  difficult  cases of
weighted and densely connected  graphs 
were  no  regularities  can  be  exploited. 
Consequently,  large  graphs  take  a  long 
time to process and the textbook exam-
ples  of  exact  combinatorial  constructs 
might not be visualized optimally.

The core algorithm is a mix of simulated
annealing  and  molecular  dynamics and 
employs a cell grid memory structure to
reduce unnecessary computing [Fruchter-
mann 1991, Davidson 1996]. The nodes
of the network are regarded as particles
that repel each other according to a non-
linear  function  of  distance.  The  links 
correspond to strings that work as oppo-
site forces and try to pull the nodes to-
gether.

In a closed system, the nodes and links
would oscillate indefinitely. Hence an an-
nealing process is imposed upon the net-
work:  first  the  nodes  are  free  to  move

larger distances, but gradually the maxi-
mum move per iteration is limited until a 
near-zero value is reached. One can think 
of this as putting the network in a viscous 
fluid that ultimately drains the kinetic en-
ergy and the structure is stabilized to an 
optimal configuration were all the forces 
cancel each other out. The starting con-
figuration is critical for reaching a good 
node  layout.  Himmeli  calculates  the 
spanning tree of the graph to create a pla-
nar  connected  subgraph  and  then  em-
ploys the Walker’s algorithm to create the 
initial  layout  [Walker  1990b,  Mäkinen 
2005].

Katiska is a web-based interface to make 
the visualization of correlation networks
easier.  It  works  according  to  the  same 
principles as the Melikerion software and 
accepts incomplete datasets. An Octave-
based prototype is available on the web 
site (www.finndiane.fi/software), but the 
final  implementation  will  be  in  C/C++ 
and will  also  feature  the  statistical  sig-
nificance estimates for subset networks.

Lipido

The  neural  networks  in  Publication  IV 
were trained with the MCMCStuff pack-
age [Vanhatalo 2006] for Matlab. A full 
open-source  version  for  the  web  server 
was not feasible due to dependencies on 
proprietary  toolboxes,  but  the  neural 
models were portable from Matlab to Oc-
tave.  The  online  system  provides  esti-
mates for VLDL triglycerides, IDL, LDL
and  HDL2 cholesterol,  and  apolipopro-
teins A-I and B-100 from the measured 
total  cholesterol,  HDL  cholesterol  and 
triglycerides. The service is available at 
www.finndiane.fi/software  and  www. 
computationalmedicine.fi.
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5 Results and discussion

5.1 Metabolic phenotypes and

mortality

Gender effects

The  observed  metabolic  profiles  were
gender-specific. For instance, women are 
shorter and have larger waist-hip ratio on
average. Their lower body mass also pro-
duces less urine (i.e. smaller amounts of
24h-urine metabolites), and women tend 
to  have  higher  HDL  cholesterol  and 
serum  adiponectin  concentrations  than
men. The initial SOM analyses revealed a
clear  division  into  male-  and  female-
dominated  map  halves,  which  clouded 
the more biologically interesting relation-
ships  between  metabolism  and  clinical 
phenotypes.

To eliminate the differences in univariate 
statistics  between the  sexes,  the  dataset 
was split into two and then a rank trans-
formation was applied to both the male
and the female subsets.  The ranks were
scaled to within [-1, 1] and the final val-
ues were calculated with the formula x =

(z3 + z) / 2 to make the rank-based uni-
form distributions closer to a bell-shaped 
curve. The latter step mimics a Gaussian
probability density, and is therefore com-
patible  with  the  use  of  Euclidean  dis-
tances between the patient profiles in the 
standard SOM algorithm. This makes the 
spread of the patients more balanced on
the  map.  The  two  subsets  were  then
pooled  together  to  train  the  SOM.  The

modified  rank  transform  successfully 
removed  the  spatial  division  between 
men and women (Figure 18).

Model profiles and map colorings

Each SOM unit represents a model meta-
bolic profile that summarizes the charac-
teristics of nearby patients. In Figure 18, 
the bar profiles depict the relative devia-
tions  of  selected  biochemical  markers 
from the study set average. For example, 
the patients that are located in the north-
east  corner  of  the map (row 2,  column 
10) have relatively high concentrations of 
serum  triglycerides,  cholesterol  apo-
lipoprotein  B-100,  and  C-reactive  pro-
tein.  This  type  of  profile  is  consistent 
with the metabolic syndrome phenotype 
[Laaksonen 2004, Bloomgarden 2005].

In the center-north area (1,6), the patients 
have  relatively  high  serum  creatinine 
concentrations,  and  potassium  and  24h 
urinary  albumin  excretion,  which  indi-
cates a phenotype dominated by kidney
disease [Sircar 2008]. Moving to the west 
(1,1) improves the lipid profile with a de-
crease  in  triglycerides  and  increase  in 
apolipoprotein  A-I,  while  having  some 
signs of  kidney disease (minor increase 
in urinary albumin). Lastly, the patients 
in the south-west have a profile of high
HDL2 cholesterol, low C-reactive protein 
and low serum creatinine, which suggests 
that  these  individuals  have  a  low-risk 
metabolic phenotype (7,1).
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Map colorings reveal the previous find-
ings from another perspective, one vari-
able  at  a  time  (Figure  19).  The  spatial 
patterns  are  similar  between  men  and 
women,  hence  only  the  men  (i.e.  the 
larger group) are depicted to avoid redun-
dancy. Nevertheless, the mean values are 
different  between  the  sexes  so  the  re-
gional averages are listed also for women 
in the text.

The  highest  triglyceride  values  in  the 
north-east  exceed  the  NCEP  ATP  III 
guideline of 1.7 mmol/l for the presence
of the metabolic syndrome lipid compo-

nent.  Furthermore,  the  patients  in  the 
eastern half have lower HDL2 cholesterol 
than those in the western half (0.23 vs. 
0.69-0.80 mmol/l for men and 0.32-0.42 
vs.  0.99-1.01 mmol/l  for  women).  High 
concentrations  of  serum  creatinine – 
indicative of  reduced kidney function – 
prevail on the northern regions (134-194 
µmol/l  for  men and 150-163 µmol/l  for 
women).  Interestingly,  adiponectin  is
elevated in the center north (up to 21 mg/
l  for  men and 26 mg/l  for  women).  C-
reactive protein is  also increased,  but  it 
peaks in the north-east (4.3 mg/l for men 
and  7.7  mg/l  for  women).  The  signifi-
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Figure  18: Self-organizing map of the 4,197 FinnDiane patients with type 1 diabetes. The
colored bars indicate the typical increase or decrease for a given variable in the highlighted 
regions, in reference to the dataset mean. The bar heights are adjusted by standard deviations 
and thus they indicate proportional change. The circular markers represent the positions of 
the patients on the map (one marker corresponds to a group of 10 local residents).



cance of adiponectin is discussed in the
next section.

Cholesterol  exhibits  a  split  pattern  of 
high values on the map (6.1 & 6.4 mmol 
for  men  and  6.1  &  6.5  mmol/l  for
women). This is not, however, conclusive 
evidence that there would be two classes
of  patients  with  high  cholesterol.  The 
pattern probably represents the folding of
a  multi-dimensional  structure  into  two 
dimensions; the continuum of cholesterol 
values is  split  in order to "fit"  the data 
onto the canvas. On the other hand, the
pattern shows that high total cholesterol 
does  not  necessarily  accompany  high 
triglycerides or low HDL2 cholesterol, a

clue  that  could  be  missed  by  conven-
tional linear modeling.

Clinical traits

The SOM was trained with biochemical 
data only. It is therefore possible to esti-
mate the statistical significance between 
the SOM layout and the clinical variables 
by  permutation  analysis,  as  explained
earlier. Figure 20 depicts the 10-year all-
cause mortality, diabetic kidney disease, 
retinopathy, the prevalence of the meta-
bolic syndrome and other clinical charac-
teristics  on  the  map.  As  expected,  the 
highest  metabolic  syndrome  scores  are 
located  in  the  north-east  (69-88%)  and 
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Figure 19: Map colorings for biochemical variables. The plots were qualitatively the same for 
women, except that women had generally lower triglycerides and 24h urinary albumin and 
higher HDL2 cholesterol, adiponectin and C-reactive protein (data not shown). These data 
were part of the training set for the self-organizing map, hence the P-values for the regional 
variation could not be estimated.



the center-north area has the highest rates
of  ESRD  or  macroalbuminuria  (50-
84%).  The  south-west  region  is
characterized  by  good  glycemic  control 
(hemoglobin  A1c  <  7.5%),  which  was 
reflected also in the favorable metabolic 
profile  in  Figure  18.  The  highest 
macrovascular disease prevalence (32%) 
coincides  with  the  highest  mortality 
(47%  per  decade).  These  patients  have
also the longest  diabetes duration of 31
years, on average.

Figure 21 depicts the main findings that
were reported in Publication I. There was
a  ten  percentage-point  difference  be-
tween male and female 10-year mortality, 

however,  this  difference  could  be  ex-
plained by the sex difference in the entire 
Finnish  population  (Figure  5).  Popula-
tion-adjusted mortality ratio was highest 
for  patients that  had features from both 
the  obesity-related  metabolic  syndrome 
and advanced kidney disease. Both men 
and women with the adverse phenotype 
were more than 10-times likely to die be-
fore their average Finnish peers. No sta-
tistically significant excess risk was de-
tected for patients with a favorable meta-
bolic phenotype, although this last obser-
vation may be explainable by the younger 
age of the low-risk patients.

Overall, the results obtained by the SOM 
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Figure 20: Clinical characteristics of 2,173 men with type 1 diabetes. Similar color patterns 
were observed for women (data not shown) although the group means were different: women 
had lower average mortality and prevalence of complications by approximately 10 percentage 
points. *The metabolic syndrome definition includes some variables that were part of the 
self-organizing map training set, and therefore the P-value may not be accurate.



software  were  consistent  with  previous 
knowledge  and  thus  validate  the  some-
what  unorthodox  approach.  Risk  ratios 
up to 37-fold for death or macrovascular
events have been reported in other stud-
ies  [Borch-Johnsen  1987,  Soedamah-
Muthu 2004, Stadler 2006], although di-
rect comparisons are difficult. Neverthe-
less,  a  study of  the FinnDiane material
that focused on the clinical albuminuria 
categories  and  employed  the  classical 

statistical  tools  produced  similar  ratios 
despite  the  difference  in  statistical 
methodology [Groop 2009].

Strengths and weaknesses of the self-or-

ganizing map

If conventional methods can produce the 
same results,  why should one adopt the 
more complicated SOM approach? First, 
the notion of complicated analysis is, in 
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Figure 21: Metabolic phenotypes and the risk of premature death. The relative risk of death 
for  men  and  women  was  estimated  against  the  expected  mortality  (n/s  stands  for  non-
significant).  A-E Five model phenotypes were constructed based on observations from the 
self-organizing map of 4,197 FinnDiane patients. F The glucose concentration was obtained 
from a subset of patients that had  1H NMR spectra of serum available. The models do not 
represent  distinct  clusters  in  the  dataset,  but  they summarize  the  characteristics  of  those 
patients that are located close to the highlighted area. Serum biomarkers are denoted by 's' to 
distinguish from urinary measurements (when necessary).



fact,  misleading  since  the  method  can 
process large numbers of data automati-
cally.  In  a  traditional  setting,  the  re-
searcher would spend considerable time 
in designing qualitative criteria that best 
revealed significant aspects from the ma-
terial. A typical example is the division 
of the patients into age groups and then
investigating the group means and preva-
lences  of  clinical  end-points.  In  the 
worst-case scenario, these divisions have
to  be  made  for  a  number  of  variables
one-by-one, which can be time-consum-
ing. Also, the statistical power to detect
associations  is  diminished  due  to  the 
categorization step.  As to the SOM, no
categorization  of  the  data  is  necessary, 
and most of the exploration is performed
by the computer: the task left to the re-
searcher is to interpret the colorings and
profiles which, admittedly, requires some 
training to master.

Non-linearity  is  another  benefit,  or  a 
down-side, of the SOM depending on the 
situation.  There  is  evidence  that  many 
biological  phenomena  have  non-linear
components.  Alcohol  consumption  is  a 
famous example: a modest increase from 
absolutism  improves  cardiovascular 
health but too high doses are detrimental
[Athyros 2007, O'Keefe 2007]. Combin-
ing multiple factors can also lead to un-
expected results. A study of  Caenorhab-

ditis  Elegans found that  prolonging the
worm’s life by glucose restriction or an-
tioxidants  required  a  specific  genetic 
background,  and thus  a  simple  analysis
of high and low glucose could not accu-
rately capture the whole situation [Schulz 
2007]. The downside of non-linearity is 
the increasing danger of  overfitting and 
unstable models, but this can be avoided
by increasing the level of smoothing (de-

crease in spatial  resolution),  which pre-
vents the SOM from adapting too much.

The  SOM  offers  an  automated  ex-
ploratory tool  that  can  resolve apparent 
controversies from simpler analyses. The 
somewhat  mirroring  relationship  be-
tween adiponectin and C-reactive protein 
was  suggested  by  the  earlier  analysis. 
Adiponectin is  usually considered to be 
inversely  correlated  with  insulin  resis-
tance  and  obesity  [Lara-Castro  2007], 
which in turn are thought to be heavily 
involved in diabetic small vessel compli-
cations  [Groop 2005].  However,  studies 
have shown that patients with type 1 dia-
betes  complications  have  higher  serum 
adiponectin  concentrations  [Saraheimo
2005b, Jorsal 2008]. The profiles in Fig-
ure  18  and  the  colorings  in  Figures  19 
and 20 point to one possible explanation: 
the presence or increased risk of kidney 
disease  and/or  retinopathy  is  associated 
with  elevated  adiponectin  (Figures  19H 
and 20B),  but  within  these  patients  the 
inverse relationship with obesity (Figures 
19H and 20E,H) is still preserved, albeit 
masked  by  the  complications.  On  the 
other hand, C-reactive protein, a marker 
of  systemic  inflammation,  is  positively 
associated with obesity and lipid toxicity
[Cave  2008,  Mathieu  2009],  so  the 
higher concentrations are located more to 
the  triglyceride-rich  north-east  areas  of 
the SOM (Figures 19A,I and 20E,H).

The interpretation of the SOM figures di-
rectly influences the final conclusions. A
non-linear model with a large number of 
parameters  is  prone  to  overfitting  the 
data,  that  is,  to produce patterns where 
none exist in reality. The relationship be-
tween adiponectin and C-reactive protein 
was weak on the map, and the discussion 
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in the preceding paragraph should not be
regarded as final evidence on the matter.
It is unlikely that the main observation is
false,  but  the  finer  details  such  as  the
adiponectin-obesity  gradient  within  the
kidney disease group should be verified 
in an independent study. The SOM offers 
ample opportunity to jump to erroneous 
conclusions – unless one accepts that it
offers a human-friendly view to complex 
datasets, but may exaggerate statistically 
insignificant features. This applies espe-
cially to the biochemical (or other) vari-
ables that are included in the training set.

5.2 Classification of the metabolic 

state by NMR

Biochemical information

Publication II is,  to the author’s knowl-
edge,  the  first  human study of  diabetic 
kidney disease by 1H NMR spectroscopy
of serum. Originally, a subset of 182 pa-
tients with type 1 diabetes were selected
from the FinnDiane Study for a case-con-

trol analysis of normal AER vs. macro-
albuminuria.  The  sample  selection  was 
later  expanded in  Publication III  (Table 
3).

The  two-window  NMR  protocol  (dis-
cussed  previously)  provides  information 
on lipoprotein lipids, albumin, creatinine 
and other abundant metabolites, some of 
which  had  already  been  measured  by 
specific  biochemical  assays  by  the 
FinnDiane Study. It was therefore of in-
terest  to investigate the pattern recogni-
tion  ability  of  the  1H  NMR  metabo-
nomics  framework,  and  to  compare  it 
with  the  corresponding  conventional 
measurements.

Figures 22 and 23 depict  the univariate 
associations between the measured spec-
tral  intensities  and  the  non-NMR  data, 
calculated for the expanded dataset from 
Publication  III  (missing  data  excluded). 
In the LIPO window (Figure 22), a nega-
tive correlation can be observed with the 
background signal and 24h urinary albu-
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Table 3: Clinical characteristics of the case-control subsets in Publication III. Median values 
± standard deviation are listed for continuous variables. BP denotes blood pressure.

Controls Unclassified Cases

Normal AER Microalbuminuria Macroalbuminuria

Number 251 137 225
Male 47% 54% 53%
Age [year] 40 ± 12 36 ± 12 41 ± 10
Diabetes dur. [year] 24 ± 10 25 ± 11 28 ± 8
Waist-hip ratio 0.84 ± 0.08 0.86 ± 0.08 0.89 ± 0.09
Systolic BP [mmHg] 130 ± 15 135 ± 16 143 ± 20
Diastolic BP [mmHg] 78 ± 9 80 ± 10 82 ± 10
Retinopathy 26% 48% 79%
Macrovasc. disease 3% 5% 16%
Metabolic syndrome 29% 40% 59%
Follow-up time [year] 8.4 ± 0.7 8.5 ± 0.4 8.5 ± 0.6
Died within follow-up 2% 7% 19%
Urinary alb. [mg/24h] 7.7 ± 5.1 47 ± 101 532 ± 1186



min, which suggests that the concentra-
tion (or NMR signal intensity) of serum 
albumin  and  albumin-bound  fatty  acids 
decreases  as  urinary  albumin  excretion 
increases. 

Patients with significantly impaired kid-
ney function have lower serum albumin
concentrations [Kaysen 1998]; here none 
of the subjects had ESRD. On the other 
hand, the coupling between serum potas-
sium  and  urinary  and  serum  albumin 
suggests  a  reduced  ability  to  maintain 
electrolyte balance, which is likely to be 

a sign of decreased kidney function.

The  lipoprotein  lipids  produce  positive 
correlations  at  the  expected  locations 
[Ala-Korpela  2007].  The  CH2-groups 
mostly from triglycerides produce a sig-
nal  at  1.25  ppm,  and  the  CH3 signals 
from lipoprotein lipids including choles-
terol,  surface phospholipids and triglyc-
erides are visible at 0.85 ppm. The phos-
pholipids  from  HDL  particles  can  be 
seen  at  3.18 ppm. There are  also back-
ground  correlations:  triglycerides  are 
correlated  with  urine  albumin  and  thus 
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Figure  22: Correlations between  1H NMR spectral intensities and biochemical and clinical 
data of 540 patients with type 1 diabetes. The NMR data was measured accrding to the LIPO 
protocol. A pixel depicts the Spearman correlation coefficient between a spectral region and 
an independently measured variable (the color indicates magnitude).  Glomerular filtration 
was estimated according to the Cockcroft-Gault formula [Cockcroft 1976]. Only pixels with a 
single test P < 0.001 are included.



are  related  to  the  general  background 
phenomenon. Surprisingly, HDL3 choles-
terol shows a pattern of positive correla-
tions.

In the LMWM window (Figure 23), the 
most  mobile  lipid  species  are  still  de-
tectable at 0.85, 1.25 and 1.92 ppm with
traces  left  also  around  3.18  ppm.  The
negative HDL signal comes from the bio-
logical interaction with triglycerides. The 
creatinine singlet peaks at 2.98 and 3.99
ppm are correlated with creatinine itself, 
as  expected,  and  with  24h urinary  alb-
umin via the biological link with kidney

function. Glucose peaks between 3 and 4 
ppm have negative correlations with ser-
um sodium.

Figures 22 and 23 contain a number of 
unexpected correlations with the spectral 
background  and  the  biochemical  vari-
ables. It is obvious that any negative cor-
relation must be the result of a biological 
or  methodological  dependence,  and  not 
from a direct NMR signal. Furthermore, 
any ions, large proteins, urinary metabo-
lites, or molecules with nanomolar con-
centrations  cannot  be  detected  by  the 
serum NMR protocol.
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Figure 23: Correlations between 1H NMR spectral intensities in the LMWM window and bio-
chemical and clinical data of 540 patients with type 1 diabetes. A pixel depicts the Spearman 
correlation coefficient between a spectral region and an independently measured variable (the 
color indicates magnitude). Only pixels with a single test P < 0.001 are included.



C-peptide concentrations (not visible by 
NMR)  are  low in  patients  with  type  1
diabetes and the values for most patients 
are  at  the  assay  detection  limit.  Some
correlations were observed, but it is pos-
sible that they are produced by changes
in laboratory protocols over the years, or 
by a few atypical  cases of diabetes.  On 
the  other  hand,  the  links  between  glu-
cose,  sodium,  potassium  and  albumin 
could indicate a change in fluid and elec-
trolyte balance. It can also be speculated
that  the observations may be caused by
altered  NMR  visibility  of  the  albumin 
and fatty acid background due to glyca-
tion or other systemic effects.

Biomarkers and disease diagnostics

Next, the non-NMR variables were quan-
tified from the NMR data by linear  re-
gression  to  investigate  the  biochemical 
information yield from  1H NMR experi-
ments.  Triglycerides (88% of total vari-
ance explained by the regression model)
and creatinine (61% explained) could be 
estimated  with  reasonable  accuracy,  as 
was expected from the correlation analy-
sis. Apolipoprotein A-I (64% explained) 
and  B-100  (53%  explained),  HDL2

cholesterol  (58%  explained)  and  even 
24h  urinary  albumin  (41%  explained) 
were associated with the spectral data.

The third part of Publication II discussed
the  classification  accuracy  of  selected 
spectral features and a set of non-NMR 
serum biomarkers.  Figure 24 shows the 
receiver operator characteristic curves for 
212 cases and 203 controls. The dataset 
includes  also  patients  from  Publication 
III (samples with missing data were ex-
cluded),  but  the  results  were  similar  to 
those obtained for the set of 182 patients 
in Publication II. In the figure, the NMR 
model was built on PCA components. In 
the original article, a kernel-based NMR 
model  with  eight  spectral  features  that 
represented  HDL  cholesterol,  triglyc-
erides,  creatinine  and  albumin  (two 
features per metabolic marker) was also 
used successfully.

The non-NMR model includes total chol-
esterol,  triglycerides,  HDL2 and  HDL3 

cholesterol,  apolipoproteins  A-I  and  B-
100,  creatinine,  sodium,  potassium  and 
hemoglobin  A1c  as  independent  serum 
(blood)  biomarkers.  All  the  NMR  and 
non-NMR  models  were  successful  at 
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Figure  24:  Receiver  operator  characteristic 
curves for diabetic kidney disease classifica-
tion of 203 controls and 212 cases. Patients
with any missing biochemical data were ex-
cluded. Two logistic regression models were 
constructed: the red model (dashed line) in-
cludes 14 serum biomarkers from the stan-
dard FinnDiane laboratory data and the blue 
model  (solid  line)  is  based on the  first  14 
principal components of the two-window 1H 
NMR  spectra  of  serum.  Sensitivity  and
specificity were estimated by leave-one-out 
cross-validation. The circle and the diamond 
indicate optimal cutoffs.



separating  most  of  the  patients  with 
macroalbuminuria  from those with nor-
mal  AER  (81-86%  correct  cross-vali-
dated classification).

It is noteworthy that the results in Figure
24 are similar to those obtained in Publi-
cation II, despite the addition of patients 
and  a  number  of  new biomarkers.  One 
can  therefore  conclude  that  improving 
the biochemical quantification or cover-
age would not  be likely to improve the
classification performance. This outcome
could,  perhaps,  be  anticipated  for  two 
reasons: i) the clinical diagnosis is essen-
tially a cutoff of a single biomarker (uri-
nary  albumin),  which  means  the  target 
variable is  noisy and ii)  there was only
one time point per patient so the biologi-
cal information at an individual level is 
limited.

The  classification  results  are  probably 
over-optimistic,  since  the  dataset  was 
purposefully chosen to reflect the clini-
cally different sets of cases and controls.
In a population-based setting, one would 
have  more  patients  with  microalbumin-
uria and those with a short diabetes dura-
tion.  Therefore,  Publication  II  has  only 
minor  clinical  relevance.  Nevertheless,
NMR was shown to be a viable screening
technique  and  in  the  next  phase  the 
method  was  employed  in  large-scale 
metabolic characterization.

5.3 Metabolic characterization by

NMR and the self-organizing map

Unsupervised framework

In  the  second  NMR  study  (Publication 
III),  the number of  patients  was tripled 
and the unsupervised SOM approach was 

developed. The emphasis was on the in-
herent information content rather than on 
the specific classification of albuminuria. 
Before analysis, the water signal was re-
moved from the spectra as described ear-
lier  to  make  the  biological  signals 
clearer.  The multitude of  glucose peaks 
between  3.22  and  3.88  ppm were  sup-
pressed to 0.1% of  original  intensity  to 
prevent the undesired influence from the 
erratic  glucose  concentrations  that  are
characteristic of type 1 diabetes.

Specifically quantified lipoprotein lipids 
or low-molecular-weight metabolites (ex-
cept a select few) were not available from 
the LIPO or LMWM spectra. The SOM 
was  therefore  constructed  directly  from
the preprocessed spectral curves. The up-
side of this choice was that all available 
information was accessible to the SOM 
algorithm  but,  on  the  other  hand,  also 
less  relevant  information  was  included 
and the emphasis on clinically significant 
features was absent. Estimating the clas-
sification performance for any particular 
clinical category was therefore not a pri-
ority since the statistical model was not 
optimized for the task in the first place. 
Also,  examples  of  supervised  analysis 
were already reported in Publication II.

Spectral profiles

Only the spectra were used for the train-
ing  of  the  SOM.  Nevertheless,  diabetic 
kidney disease emerged as  the  defining 
clinical characteristic on the map (Figure
25-27): the lowest prevalence of macroal-
buminuria  was  16%  in  the  north-east, 
compared with a maximum of 70% in the 
west.  Unlike  in  Publication  I,  the  cen-
trally measured 24h urinary albumin was 
not included in the training set, nor were 
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Figure  25:  NMR  spectral  profiles  of  type  1  diabetes.  A The  self-organizing  map  was 
constructed from 613  2�  1H NMR spectra of serum and colored according to the prevalence 
estimates  within  the  map  regions.  Each  hexagonal  map  unit  defines  a  specific  model 
spectrum and a corresponding subset of patients, the spectra of which best match the model
in question.  B The low molecular weight metabolites (LMWM) model spectrum and C the 
lipoprotein lipid and albumin (LIPO) model spectrum for the patient subset within the map 
unit with the lowest kidney disease prevalence. The colored curve segments indicate the fitted 
model, whereas the solid black curve indicates the mean spectrum over all data, thus serving
as a constant reference. The colored areas below the model spectra represent the proportional 
differences of the unit-specific model and the mean model.  D The LIPO model and  E the 
LMWM model for the map unit with the highest diabetic kidney disease prevalence.
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Figure 26: Prevalence pattern of kidney disease (macroalbuminuria), all-cause mortality rate 
and the metabolic syndrome on the self-organizing map of  613   2�  1H NMR spectra of 
serum. The color of each hexagonal map unit indicates the estimated proportion of cases with
respect to the total number of patients who reside on the unit in question. For mortality, the 
estimates were normalized by follow-up time.

Figure  27:  Comparison  of  biomarker  concentrations  from  direct  assays  or  regression 
modeling of 1H NMR spectra of serum. The results are depicted via the SOM in Figure 25 
that was constructed from the NMR spectra. The colorings on the bottom row were produced
by first fitting a regression model to estimate the direct assays, and then coloring the map 
based on the estimated concentrations in different regions.



any of the urine metabolites,  which ex-
plains  the  less  clear  result.  Please  note 
that  the  orientation  of  the  map  (i.e.
whether high prevalence is in the south 
or in the north) has no significance in ei-
ther analyses and that the patterns in the
two SOMs (Publication I vs. III) are not
spatially comparable.

The SOM model profiles confirmed ear-
lier  observations  from  Publication  II.
Relatively high albumin background, low 
triglycerides  (0.85  and  1.25  ppm)  and 
low creatinine (2.98 and 3.99 ppm) are
visible  from  the  model  spectra  in  the 
north-east  on  the  unit  with  the  lowest
kidney disease  prevalence  (Figure 25A-
C).  Moreover, the interactive version of
the  figure  revealed  that  the  highest 
triglyceride signals were concentrated on 
the south-west corner (data not shown), 
whereas  the  strongest  creatinine  signals 
were located in the west close to the unit 
with  the  highest  kidney  disease 
prevalence (Figure 25A,E).

Mortality was the highest in the areas of
high serum creatinine and triglycerides in 
the south-western quadrant (Figures 26B 
and  27A,B).  The  pattern  is  consistent 
with Publication I, where advanced kid-
ney disease and the metabolic syndrome 
(with  its  high-triglyceride  phenotype) 
were  only  partially  overlapping  on  the 
map, and the risk of death peaked where
there was overlap (Figures 20A,B,E and 
21).

Metabolite yield

The quantification results from Publica-
tion II were replicated indirectly. New re-
gression  models  were  trained  for  the 
larger sample set and then the map was

colored according to the estimates (Fig-
ure 27). The colorings were nearly identi-
cal to the colorings from the non-NMR 
counterparts, which suggests that most of 
the biologically relevant information can 
be  captured  by  the  NMR  experiments, 
even though the quantitative performance 
is not perfect.

The NMR spectra contain also informa-
tion about metabolites that are not among
the standard FinnDiane laboratory data. 
The albumin background was higher on 
the eastern half of the SOM, where also 
the prevalence of diabetic kidney disease 
was  lower  (Figure  25A,C).  Urea  is  a 
waste product of protein metabolism and 
is used by the body to transport  excess
nitrogen in water-soluble form to the kid-
neys  and  out  with  urine.  The nitrogen-
containing amine groups produce signals 
in  the  aromatic  LMWM  region  and  a 
wide peak can be observed between 5.6 
and 5.8 ppm in the areas with a high pro-
portion  of  kidney  patients  (Figure 
25A,E). The signal is strongly correlated 
with creatinine and the highest intensities 
can  be  observed  in  the  middle  of  the 
western edge (data not shown).

Lactate,  acetate  and  glucose  are  three
low-molecular-weight  metabolites  that 
are all involved in carbohydrate metabo-
lism (Figure 28). Increased concentration 
of lactate or lactic acid can be a sign of 
insufficient  oxygenation  of  tissues.  In 
healthy individuals, vigorous exercise of-
ten leads to the accumulation of lactate
beyond  the  normal  clearance  capacity 
[Sircar 2008]. In this dataset,  high con-
centrations of lactate and acetate were as-
sociated with the triglyceride-rich pheno-
type  (Figures  27B and 28A)  and could 
indicate an impaired transport of oxygen 
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into peripheral tissues or reduced clear-
ance by the kidneys [Chatham 1999, Sug-
den 2003].

5.4 Advanced lipoprotein estimates 

from standard measurements

Low-density lipoproteins

Lipoprotein  particle  size  and  composi-
tion is highly heterogeneous and depends
on the type of function the particle ful-
fills  (Figure 6).  Epidemiological studies 
and animal models have shown that the 
small and dense LDL particles are asso-
ciated  with  the  development  of 
atherosclerotic lesions inside arteries, al-
though the LDL phenotype is not likely
to be the only significant factor [Gardner
1996,  Lyons  2006,  Stampfer  1996, 
Davidson  2008].  However,  the  exact 
number  or  size of  the LDL particles  is
difficult to measure in clinical settings.

The work by Friedewald  et al. has been
the basis for LDL estimation in the clini-
cal  practice  [Friedewald  1972].  At  the 
time, lipoproteins were divided into four 
classes (chylomicrons, VLDL, LDLF and
HDL) based on density cutoffs in ultra-
centrifugation  experiments.  Most  blood

samples are taken within the fasting state, 
so chylomicrons can usually be ignored. 
Each VLDL and LDLF particle contains 
a  single  apolipoprotein  B-100 molecule 
and  they  can  be  removed  by  chemical 
precipitation, with the HDL left in the re-
maining fluid. Friedewald et al. used the 
total triglyceride and cholesterol concen-
tration  of  serum and  the  cholesterol  in 
the  HDL  remainder  to  estimate  the 
amount  of  cholesterol  in  the  LDLF 

lipoproteins.

More  sensitive  measurements  have  re-
vealed  additional  details  of  lipoprotein 
metabolism.  The  conventional  LDLF is 
now divided into subclasses and an inter-
mediate-density  fraction  (IDL)  and  re-
searchers began to apply direct measure-
ments by NMR or other methods to in-
vestigate lipoprotein metabolism, instead 
of the Friedewald LDL formula [Groop 
1996].  Nevertheless,  many   prospective 
clinical studies are running out of base-
line  samples,  so  modernizing  the  LDL 
formula is the only way to obtain up-to-
date measures for these cohorts.

Quantification accuracy

Simple surrogate equations of unobtain-
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Figure  28:  Direct  concentration  estimates  from  1H NMR spectra  of  serum by peak area 
integration.  The unit  is  proportional to the intensity of the reference signal of  sodium 3-
trimethylsilyl[2,2,3,3-d4]propionate (TSP).



able measures are preferred in clinical re-
search since they can be applied without
complicated  arithmetics.  On  the  other 
hand, the computer has become a ubiq-
uitous resource and any new estimation 
formulas  need  not  be  human  readable, 
especially in the research setting. In this 
respect, artificial neural networks (Figure 
9) are appealing black-box models for es-
timation problems [Bishop 1996].

In  the  past,  great  emphasis  was  put  on
the topology of the neural net to ensure
reliable estimates. Over-training can also 
be avoided by committees or by estimat-
ing the parameters in a Bayesian frame-
work  [Vanhatalo  2006],  both  of  which 
are  numerically  intensive  approaches.
Here,  an  early-stopping  committee  was
employed to find robust estimates for the
more advanced lipoprotein quantities that 
are not routinely available.

A summary of the cross-validated results 
from Publication IV is listed in Table 4. 
VLDL triglycerides (95% error interval: 
-0.35,  0.36  mmol/l),  IDL cholesterol  (-
0.28,  0.28  mmol/l),  LDL cholesterol  (-
0.99, 0.98 mmol/l), HDL2 cholesterol (-
0.45,  0.45 mmol/l),  and apolipoproteins 
A-I (-22, 23 mg/dl) and B-100 (-14,  16 
mg/dl) were estimated from total triglyc-
erides, cholesterol and HDL cholesterol. 
The IDL estimate was negatively biased
in proportion of  the concentration level 
with a Pearson correlation coefficient r = 
-0.23 between the model residual and ab-
solute value.

The performance of the neural model for 
LDL+IDL  cholesterol  and  the  Friede-
wald equation were similar. However, the 
LDLF  systematically  underestimated  the 
LDL+IDL cholesterol in the training data 
(95% error interval: -1.46, 0.62 mmol/l). 
The most likely cause is the ultracentrifu-
gation  wastage  that  was  not  defined  in 
the study by Friedewald et al.

From a practical point of view, the LDLF 

estimate is close to the pure LDL choles-
terol, since the negative bias balances the 
extra  contribution  from  IDL  particles. 
Consequently, the average levels of LDLF 

that  have  been  reported  in  numerous 
studies  are  likely  to  reflect  the  correct 
concentrations.  Nevertheless,  it  is  diffi-
cult  to  exclude  the  effects  of  ultracen-
trifugation protocols in different labora-
tories.  The  comparison  between  a  35-
year  old  setup  and  more  recent
measurements  cannot,  after  all,  be con-
sidered a rigorous test.

The LDLF cholesterol should not be cal-
culated for those individuals with triglyc-
erides  above  4.52  mmol/l  according  to 
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Table  4:  Cross-validated  quantification  ac-
curacy of the artificial neural network mod-
els for advanced lipoprotein estimates. The 
explained  proportion  of  the  observed vari-
ance is denoted by  r2, and |∆|  indicates  the
mean absolute bias according to the Bland-
Altman method [Bland 1986]. The 95% er-
ror interval around the model estimate is de-
noted  by  ∂.  LDLF was  estimated  by  the
Friedewald formula [Friedewald 1972].

r2  |∆| ∂

mmol/l

HDL2 cholesterol 85% 0.00 ± 0.45

LDL cholesterol 83% 0.00 ± 0.99

LDLF cholesterol 85% 0.42 ± 1.04

IDL cholesterol 61% 0.00 ± 0.28
LDL+IDL cholesterol 86% 0.01 ± 0.93

VLDL triglycerides 96% 0.00 ± 0.36

mg/dl

Apolipoprotein A-I 85% 0.67 ± 23

Apolipoprotein B-100 90% 0.89 ± 15



the original article [Friedewald 1972]. In
Publication  IV,  the  triglyceride  limits 
were  extended  to  9.60  mmol/l  for  the 
lipid measures and to 6.60 mmol/l for the
apolipoprotein  measures.  These  limits
are  based  on  the  range  of  values  that
were available in the training set.

The addition of  the HDL2 subclass and
apolipoprotein  estimates  should  give
clinicians  more  information  on  the  pa-
tient  [Superko  2009].  The  cost  of  the
quantification in silico is negligible and
can therefore be easily incorporated into 
standard hospital protocols.

Clinical significance in type 1 diabetes

The FinnDiane protocol already includes 
the basic apolipoproteins and the HDL2 

(non-HDL3)  cholesterol  is  obtained  by
direct  measurements  of  total  HDL  and 
the  HDL3 subclass.  However,  the  LDL
and  IDL  cholesterol  are  not  available 

directly and they were estimated in Publi-
cation IV.

Separate Cox hazard models [Cox 1972] 
of  all-cause  mortality  were  constructed 
for  each  of  the  estimated  lipoprotein 
measures (Figure 29). The highest hazard 
ratios  were  observed  for  the  estimated
apolipoprotein B-100 (1.57,  P < 0.0001) 
and  for  the  ratio  B-100/A-I  (1.56,  P < 
0.0001).  IDL  cholesterol  was  the  next 
strongest  predictor  of  death  (1.45,  P < 
0.0001).  Both the  estimated VLDL and 
the measured total triglycerides were sig-
nificantly predictive (1.35 and 1.33,  P < 
0.0001). High estimated concentration of 
HDL2 cholesterol was protective against 
premature  death  (0.68,  P <  0.0001),  as 
was also the measured total HDL choles-
terol (0.69, P < 0.0001).

Lipoprotein metabolism has been associ-
ated  with  diabetic  kidney  disease  and 
other  complications.  Lipid-rich  lipopro-
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Figure 29: Results from Cox hazard regression of lipoprotein markers and all-cause mortality 
in 4,048 patients with type 1 diabetes. A separate age- and sex-adjusted Cox model was fitted 
for each marker. The hazard ratio indicates the relative risk of death after having an increase 
of one standard deviation in the target variable.



teins from the liver (i.e. those containing 
apolipoprotein  B-100)  are  increased  in 
type 1 diabetic patients with kidney dis-
ease, including the IDL fraction [Groop 
1996] and the ratio of the apolipoprotein
A-I containing HDL particles and the A-I
& A-II containing HDL particles is nega-
tively correlated with the risk of cardio-
vascular disease [Groop 2007]. Further-
more,  the  clearance  of  the  atherogenic 
IDL particles is impaired in patients with
end-stage  renal  disease  [Ikewaki  2005, 
Shoji 1998].

Apolipoprotein  B-100  and  IDL  choles-
terol  are the most  important  lipoprotein 
predictors  of  death  in  Publication  IV, 
which  is  consistent  with  cardiovascular
events in non-diabetic populations [Kast-
elein  2008].  Interestingly,  the  estimated
LDL  cholesterol  was  not  significantly 
associated  with  mortality,  but  the 
Friedewald LDLF was,  probably via the
contribution from IDL. Based on Publi-
cation I, apolipoprotein B-100 was high-
est  for  those  patients  with  a  metabolic
syndrome  profile,  but  high  concentra-
tions occur also in some individuals with
the  advanced  kidney  disease  phenotype 
(Figures  19E and 20B,E).  Nevertheless, 
the combination of high B-100 and low
A-I is a highly significant risk marker in
both publications and also other studies 
have  reached  similar  conclusions  [Mc-
Queen 2008, Walldius 2006].

5.5 Connecting risk factors and

clinical end-points

Network of continuous factors

It  is  a  challenge to  determine the  most
significant variables in a clinical dataset, 
especially  in  a  cross-sectional  setting 

where the individuals are of varying age 
or  have  other  potentially  confounding 
characteristics.  Linear  regression  is  the 
classical approach, and the model coeffi-
cients indicate the most significant vari-
ables, given the current model. However, 
the relative contribution from biochemi-
cal  and  clinical  traits  may  be  different 
depending  on  what  variables  are 
included. Also, the conventional regres-
sion  models  cannot  show complex  pat-
terns of interaction, that is, they are not 
well suited to study the correlation struc-
ture from a multi-variate perspective de-
spite being multi-variate methods.

The SOM does not give direct informa-
tion on the associations between risk fac-
tors, although it is, in principle, possible 
to quantify the similarity of the observed 
spatial  patterns  between  any  two  vari-
ables.  In  Publication  V,  the  correlation 
structure  of  the  FinnDiane  dataset  was 
investigated directly with a network ap-
proach to  augment  the  information  that 
was  obtained  from  the  patient-centric 
analysis in Publication I.

Figure 30 illustrates the correlation net-
work  of  the  biochemical  and  clinical 
characteristics  for  the  set  of  4,197  pa-
tients  with  type  1  diabetes.  There  are 
strong  links  between  methodologically 
and  biochemically  dependent  variables: 
markers of body mass (weight, BMI and 
WHR), 24h urinary excretion (potassium, 
urea,  sodium  and  creatinine),  HDL-
related  biochemistry  (HDL  cholesterol,
apolipoprotein  A-I  and  A-II)  and  other 
lipoprotein quantities (triglycerides, total 
cholesterol, apolipoprotein B) form posi-
tively  intra-correlated  cliques,  that  is, 
subnetworks  with  densely  connected 
nodes.
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The HDL-clique and the estimated IDL 
cholesterol are inversely correlated. Fur-
thermore,  triglycerides  and  body  mass 
are connected via C-reactive protein, and 
24h urinary albumin acts as the connec-
tor  between  triglycerides,  IDL  choles-
terol,  hemoglobin  A1c,  blood  pressure
and serum creatinine.  Adiponectin links 
HDL metabolism with  urinary  metabo-
lites  and  soluble  RAGE  is  located  be-
tween serum creatinine and body mass. 
Smoking  and  alcohol  intake  are  corre-
lated;  alcohol  consumption  is  also  re-

flected  in  apolipoprotein  A-I  and  A-II 
concentrations,  and  smoking  dose  is 
linked  to  lower  education  and  –  by 
definition – to higher age.

Topological features of albuminuria

The diagnosis of diabetic kidney disease 
depends  on  persistent  urinary  albumin 
excretion;  albuminuria  alone  is  a 
quantitative  risk  factor  for  premature 
death  and  large  vessel  diseases  [Gross 
2005].  Simultaneously,  the  biological 
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Figure 30: A pruned visualization of the correlation structure within the set of 4,197 patients 
with type 1 diabetes. Prior to the analysis, the data were adjusted for gender. Each variable is 
presented with a symbol; those quantities that were measured directly are filled with ink and 
the  open circles  denote  derived  variables.  The width  and color  of  the  links  indicate  the 
correlation magnitude and type, as shown in the legend. The r denotes Spearman correlation.



significance  of  the  correlation  network 
cannot  be  measured  directly  from  the 
graph  topology  due  to  the  heavy  con-
founding effect of variable selection and 
methodological  dependencies.  It  was
therefore sensible to divide the material 
according to the clinical  kidney disease 
classification and then apply the subset 
comparisons  (see  Methods)  to  identify 
the  specific  changes  in  the  network 
topology that are statistically significant.

Table  5  lists  the  significant  changes  in
link weights with respect to the KDNEG 
subset.  Age and blood pressure show a 
mixed trend: diastolic blood pressure has 
a negligible age-dependence in the KD-
NEG subset, but an inverse correlation in
the  macroalbuminuria  subset  (r =  0.02
vs. -0.20,  P = 2.5  10� -5), whereas sys-
tolic  blood pressure  shows stronger  de-
pendence in the KDNEG subset (r = 0.43
vs. 0.28, P = 4.0  10� -4). Adiponectin is 
also age-dependent in the KDNEG sub-
set,  but  uncorrelated  in  the  macroalbu-
minuria subset (r = 0.32 vs. 0.08, P = 8.5

 10� -7).

Serum  creatinine  is  connected  to 
adiponectin (r = 0.05 vs. 0.29, P = 6.3 �
10-8)  and  soluble  RAGE  (r =  0.03  vs.
0.33,  P = 1.5  10� -10) in the macroalbu-
minuria,  but not in the KDNEG subset.
The associations between albumin excre-
tion and other variables are also negligi-
ble in the KDNEG subset. On the other
hand,  urinary  albumin  is  significantly 
correlated with total cholesterol (r = 0.02
vs. 0.23, P = 3.0  10� -6), IDL cholesterol
(r = 0.06 vs. 0.30,  P = 3.0  10� -8) and
triglycerides (r = 0.08 vs. 0.23, P = 3.0 �
10-4) in the macroalbuminuria subset.

Glucose balance, as indicated by hemo-

globin A1c, is not among the most sig-
nificant factors. The result is in  contrast 
with the strong evidence from the Dia-
betes  Control  and  Complications  Trial 
that reported the lasting beneficial effects 
of  intensive  blood glucose  management 
[DCCT 1993, DCCT 2000]. The discrep-
ancy may be explained by the biological 
inaccuracy of  a single  hemoglobin A1c 
measurement  and  the  observational  na-
ture of the FinnDiane Study.

Network of clinical traits

Figure  31  collects  the  clinical  and  bio-
chemical  data  of  the  FinnDiane dataset 
into a single simplified picture. Diabetic 
kidney disease, high-blood pressure and
retinopathy  comprise  the  devastating 
small  vessel  complications  triangle  on 
the  top  part  of  the  figure,  with  strong 
links  to  death  and  to  reduced  working 
ability. Metabolically, the clique connects 
to  high  serum  potassium,  creatinine, 
soluble  RAGE  and  albuminuria,  which 
can  be  attributed  to  impaired  kidney 
function. Genetics and life style may also 
be involved: patients with complications 
have  more  diabetic  siblings  and  have 
smoked more.

Adiponectin is  negatively correlated via 
the  urine  metabolites  (not  adjusted  for 
body surface area) to the body mass indi-
cators.  Women are  smaller  and  tend  to 
have higher concentrations, whereas the 
male gender and obesity (bigger adipose 
mass) is known to reduce the level of cir-
culating adiponectin [Lara-Castro 2007]. 
Importantly,  though,  there  is  a  positive 
correlation  with  the  microvascular 
clique, which was already seen to mask 
the expected behavior in the SOM analy-
sis (Figures 19 and 20).
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Table  5: Comparison of the correlations in the KDNEG subset network against the micro-, 
macroalbuminuria  and  ESRD  networks.  The  links  were  selected  according  to  statistical 
significance (P < 0.01 for at least one comparison) and their topological status (see Methods). 
Urine samples were not available from most patients with ESRD (72% missing); the r values 
presented were obtained from the imputed dataset. The links are sorted alphabetically.

KDNEG
r

Microalb.
r

Macroalb.
r

ESRD
r

Age – Diastolic blood pressure 0.02 -0.15* -0.20** -0.29**

Age – Systolic blood pressure 0.43 0.35 0.28* 0.06**

Adiponectin – Age 0.32 0.30 0.08** -0.01**

Adiponectin – HDL cholesterol 0.45 0.36 0.21** 0.10**

ApoA-II – HDL2 cholesterol 0.13 0.17 0.34** 0.33*

ApoA-II – Waist 0.16 -0.02* 0.02* 0.05

Total cholesterol – Education -0.03 -0.18* -0.08 -0.01

Serum creatinine – Adiponectin 0.05 0.03 0.29** 0.18

Serum creatinine – Diabetes duration 0.07 0.22* 0.17 -0.06

Serum creatinine – Insulin dose -0.01 -0.17* -0.15* -0.13

Serum creatinine – Soluble RAGE 0.03 0.05 0.33** 0.40**

Serum creatinine – 24h-uAlb 0.06 0.07 0.15 0.44†

CRP – Age -0.10 0.09* 0.05* -0.01

CRP – Serum potassium -0.05 0.12* -0.01 -0.02

CRP – Waist-hip ratio 0.18 0.34* 0.23 0.22

IDL cholesterol – LDL cholesterol 0.72 0.63* 0.53** 0.53**

LDL cholesterol – Education -0.01 -0.17* -0.07 0.01

MBL – 24h-urine urea 0.08 -0.10* -0.05 -0.02†

Serum potassium – Diabetes duration 0.27 0.26 -0.02** -0.02**

VLDL triglycerides – 24h-uAlb 0.07 0.12 0.22* 0.51†

24h-uAlb – ApoB 0.07 0.19 0.27** 0.31†

24h-uAlb – Total cholesterol 0.02 0.17* 0.23** 0.16†

24h-uAlb – HDL cholesterol -0.06 -0.04 -0.12 -0.46†

24h-uAlb – IDL cholesterol 0.06 0.16 0.30** 0.50†

24h-uAlb – Triglycerides 0.08 0.13 0.23* 0.50†

24h-uAlb – 24h-urine creatinine 0.11 -0.05* 0.02 -0.36†

24h-uAlb – 24h-urine urea 0.04 -0.06 -0.06 -0.41†

*P < 0.01, **P < 0.0001, comparison with normoalbuminuria; †imputed
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Figure 31: A pruned visualization of the correlation network from regression modeling. The 
data were not adjusted for gender prior to the analysis. Each variable was converted to a 
surrogate linear predictor before computations. The symbols in the figure correspond to the
source of information: directly observed variables are filled, whereas derived variables are 
denoted by open symbols.  A circle  is  used for  continuous quantities,  and a diamond for 
binary traits. The width and color of the links indicate the association magnitude and type, as 
shown  in  the  legend.  The  r denotes  the  correlation  of  the  linear  predictors  and  is  not
comparable with Figure 30. 



The available selection of variables poses
a  critical  bias  to  the  network  structure,
and  should  be  taken  into  consideration 
when interpreting the results. For exam-
ple, the metabolic syndrome is a derived
clinical  construct  the  combines  HDL-
metabolism, triglycerides, obesity, blood
pressure and glucose homeostasis (crite-
ria from Publication I). Accordingly, the 
syndrome definition creates a connector 
between  most  of  the  aforementioned
components.  The  absence  of  the  blood 
pressure link can be explained by medi-
cation: if the original NCEP ATP III cri-
teria [NCEP 2002] were used, then those
patients  with  anti-hypertensive  medica-
tion  would  have  been  “awarded”  one 
point  even  without  exceeding  the  dias-
tolic or systolic limit, which would have
strengthened the link to blood pressure.

The  previous  example  shows  also  the 
dangers  of  applying  clinically  practical 
categorizations  when  trying  to  under-
stand  complex  phenomena.  A  small 
change  in  guidelines  can  cause  signifi-
cant  alterations  in  the  results  and,  to
some extent, also in the conclusions.

5.6 Concluding remarks

Paradigm shift in biomedical research

The standard way to study biomedicine is
i) to create a taxonomy of the observed
phenomena,  ii)  to  isolate  the  potential 
agents that are responsible for the obser-
vations and iii)  to reproduce the condi-
tions of each of the taxonomic classes in
a  controlled  environment  to  verify  the 
findings.  Put  differently,  the  biological 
behavior of an organism is dissected into
distinct mechanisms that each produce a 
specific  symptom. This  reductionist  ap-

proach is highly successful in uncovering 
infectious agents, severe genetic defects, 
trauma to specific tissues or the effects of 
a toxic compound. Reductionism has also 
direct practical applicability in the form 
of differential diagnosis: a set of simple 
rules is an efficient means to isolate the 
correct branch in the taxonomic tree.

At  present,  chronic  metabolic  diseases 
and cancers are the greatest threats to hu-
man health  and  longevity  in  the  devel-
oped  world.  The  “easy”  problems have 
been solved; thanks to the discovery of 
insulin, type 1 diabetes is no longer the 
prelude  to  quick  death.  Reductionism 
worked well here since the phenotype is 
qualitatively  clear  (the  severe  depletion
of  beta-cell  capacity  within  a  relatively 
short time period). Furthermore, the di-
agnosis  can  be  confirmed  by  a  few 
straightforward tests.

Dig a little  deeper and things get  diffi-
cult. The primary causes for the beta-cell 
destruction  remain  obscure  and  the 
mechanisms of the long-term complica-
tions are still hidden. Instead of a single 
causative agent, the two aforementioned 
phenomena may depend on multiple ge-
netic defects that interact with the envi-
ronment.  In the extreme, this can mean 
that every individual has a unique disease 
at  the  molecular  level,  even though the 
perceived symptoms at the physical level 
are compatible.

The uniqueness can be viewed also from
another perspective: there may be a great 
number  of  small  defects  –  which  will 
have a deterministic effect on an individ-
ual in a reductionist fashion – but every 
patient  has  a  unique  combination  of 
them.  The  disease  classification  should 
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therefore cover all the naturally occurring 
combinations.  However,  the  combinato-
rial  explosion  will  quickly  make it  im-
possible to create an accurate taxonomy 
of such a phenomenon.

The explorative analyses produced tangi-
ble  evidence  on  the  magnitude  of  the
phenotyping challenge. The clinical cate-
gories  did  not  form isolated  clusters  in
the data space. If anything, the opposite
was  the  typical  situation:  the  patients 
comprise a point cloud where the preva-
lence  of  kidney  disease  increased  from 
one  side  to  the  other  in  a  continuous 
fashion (Figure 32). Based on the statis-
tics, there does not seem to be an inher-

ent metabolic threshold for the presence 
of diabetic kidney disease. By contrast, a 
clear  separation  could  be  observed  be-
tween healthy non-diabetic controls and 
patients with type 1 diabetes, as expected 
(data not shown).

Clinical significance

Figures 18-21, 30 and 31 are among the 
first multi-variate visualization of a large 
set of patients with type 1 diabetes. They 
reveal a bleak picture for those individu-
als that are affected by chronic complica-
tions but, on the other hand, the majority 
of the Finnish patients seem to cope well 
with their disease. The material did not 
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Figure 32: Principal component analysis of the biochemical data from the FinnDiane Study. 
The training set (from Publication I) includes 4,197 patients, of which only 1,000 randomly 
selected individuals are depicted to avoid clutter. 



contain any direct evidence on the acute
complications such as severe episodes of 
low blood glucose. Nevertheless, younger 
patients and those without serious com-
plications  had  comparable  mortality  to 
the  general  population,  which  suggests 
that the life-preserving insulin treatment 
is highly successful in the short term.

The long-term end-organ damage is the 
true challenge: it causes most of the hu-
man suffering, but the early stages cannot
be  detected  with  the  current  clinical 
means nor has the precise set of disease
mechanisms  been  identified.  The  net-
works  in  Figures  30  and  31  show  no
strong  links  between  the  complications 
clique, lipid clique or the miscellaneous
structures.  In  particular,  there  are  few 
biomarkers that preferentially connect to 
the clinical classifications, except serum 
creatinine and urinary albumin which, by 
definition,  are  connected  to kidney dis-
ease.

It  is  mathematically  impossible  to  find 
the perfect biomarker if the target diag-
nosis is less than perfect. This is proba-
bly the current situation in diabetic kid-
ney disease  and thus  explains  the (lack
of)  observed  connections.  Nevertheless,
the networks do show that obesity, high
blood  pressure,  abnormal  lipoproteins,
aging and unhealthy life-style all contrib-
ute to the disease process.

The results in this thesis indicate a large
biological variance in the cross-sectional
FinnDiane  dataset  and  suggest  that  in-
creasing  the  accuracy  or  coverage  of  a 
measurement at a single time point may 
not  help  to  improve  the  diagnostic  or
prognostic accuracy. Neither cells, organs 
nor people live in isolation, but are con-

stantly  adapting  to  environmental  pres-
sures. Yet clinical epidemiology is almost 
exclusively  focused  on  fasting  blood 
samples in order to exclude environment-
al  effects  such  as  food  ingestion.  It  is 
questionable  whether  these  static 
investigations are sufficient for uncover-
ing the early causative agents that may be 
detectable only during systemic perturba-
tions.

Practical implications

Although multiple time points were not 
available  in  this  thesis,  the  FinnDiane 
dataset provides a unique opportunity to 
develop new ways to integrate metabolic 
and clinical data. There is no shortage of
available  methods  in  the  literature,  but 
the algorithms and models are often de-
signed  for  the  statisticians  themselves. 
Here, the emphasis was on visualization 
and  explorative  analysis,  and  computa-
tional  methods  that  are  accessible  for 
people from a wide range of disciplines.

Methods such as the self-organizing map 
are needed to improve the knowledge dis-
covery  process  from  vast  biological 
datasets. As discussed earlier, the lack of 
clear disease categories and simultaneous
interaction of multiple small defects may 
prevent  the  application  of  the  conven-
tional paradigm with controlled isolated 
effects.  Instead  of  exhaustively  going 
through a great number of combinations, 
the SOM and the networks can quickly 
pinpoint  interesting  multi-variate  phe-
nomena that can then be investigated in 
more detail.

An  engineer's  job  is  to  come  up  with 
technological solutions to difficult prob-
lems.  However,  there  are  two  obstacles 
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for an efficient use of computational re-
sources in biomedical research. First, the 
biologist may not be familiar with the ca-
pabilities  of  modern  statistical  methods 
and  does  not  therefore  pose  difficult 
enough  questions  for  the  engineer.  On 
the  other  hand,  the  engineer  has  little
knowledge of the biological significance 
of the phenomenon and thus tends to fo-
cus on irrelevant technical details instead 
of the scientific objectives.

The multi-variate description of the type 
1 diabetic condition is the main contribu-
tion  to  science  in  this  thesis.  For  the
clinician, the results themselves may not 
be  entirely  new,  but  the  way  the  data
were acquired and presented should in-
spire a new type of thinking and possibly 
invoke more interest in the use of modern
computational  and  analytical  resources.
For the engineer, the self-organizing map

and the network figures offer a fast data-
driven portal to the metabolic features of 
type 1 diabetes and they explicitly show 
the complexity of diabetic complications.

For  the  general  public,  the  message  is 
mixed. Type 1 diabetes is  a serious but 
manageable  disease,  and  most  patients 
can expect a healthy and long life but for 
some,  the  gradual  damage  to  the  body 
causes considerable suffering. On a more
positive note, genetics is not likely to be 
the only determinant; patients themselves 
can affect the course of the disease. This 
thesis  shows  how  a  certain  metabolic 
profile is associated with the absence of 
complications. Metabolism, in turn, is in-
fluenced  by  diet,  exercise  and  mental
health.  Improving the quality of  life on 
all fronts simultaneously is as important 
for the patients with diabetes, as it is for 
everyone else.
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6 Summary and conclusions
1. A quarter of patients with type 1 diabetes exhibit an obesity-related phenotype 

with the characteristic lipids (high triglycerides, cholesterol, apolipoprotein B-
100 and low HDL cholesterol) and chronic inflammation (high C-reactive pro-
tein).  A third of  individuals  have a  diabetic  kidney disease phenotype (high 
urinary  albumin  and  serum  creatinine).  The  combination  of  the  two  was 
associated with the highest population-adjusted mortality.

2. Patients who did not have an adverse metabolic phenotype were not at an in-
creased risk of premature death within the follow-up period. Therefore, the pre-
vention and early treatment of the high-risk phenotypes is the key to improved 
survival in long-standing type 1 diabetes. 

3. 1H NMR spectroscopy of serum is a robust alternative to numerous conventional 
biomarkers and is suitable for the metabolic screening of diabetic complications.

4. The combination of the self-organizing map and the correlation network are mu-
tually complementary unsupervised methods that can visualize the main charac-
teristics of complex heterogeneous datasets. 

5. Advanced lipoprotein estimates are available from the three standard lipid mea-
sures (triglycerides, total and HDL cholesterol). In particular, the IDL fraction 
may be the most significant lipoprotein covariate in the pathogenesis of diabetic 
complications.

6. The variables in this study were methodologically, physically and biochemically 
linked. Separating these components of associations may not be possible, thus
the reductionist approach that relies on controlled environment and isolated ef-
fects may not capture all the relevant features of the phenomenon.
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