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Symbols

Notation:

a,b, c, . . . A,B,C, . . . Vector variables

a,b, c, . . . Scalar variables

A,B,C, . . . Matrix variables

A,B,C, . . . Sets

Symbols:

A Action set

b Query budget

Ber(·|θ) Bernoulli distribution
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di Label for the i-th dimension of the state space

dmsr Describability measure

D Demonstration set

Dir(·|α) Dirichlet distribution

E Entity set

f̂ Feasible parameter range
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F Frequency adverb set

hi,t Belief over HSMM state i at time t

H(p) Entropy of a distribution p

J Jacobian
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{

(s0, . . . , sk) ∈Rk+1
∣∣∑k

i=0 si = 1∧ si ≥ 0,∀i
}

T Transition matrix of Markov Models
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wc,e Relevance of category c for entity e

xcmd Commanded end-effector pose

xmsr Measured end-effector pose

xt Position of the end-effector at time t

X t Observation at time t

X I
t Policy input at time t

XO
t Policy output at time t

γ∗i Descriptor of dimension di for the current state x

δ Scale parameter for the Memory strategy

η Threshold for local measures

π Starting probabilities of Markov Models

ρ Sampling radius for local measures

σ Trade-off parameter for the Hybrid strategy

τ Duration of control time-step
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1. Introduction

Humankind’s interest in building machines that act autonomously is at least
2000 years old. Long before robots were even called robots [1], inventors such as
Heron of Alexandria, Ismail al-Jazari, and Leonardo da Vinci created marvellous
automata [2]. Today, robots are becoming increasingly present in our society.
Firmly established as key components of modern manufacturing processes,
robots are now boldly taking their first steps in application areas like health
care, logistics, agriculture, entertainment and domestic services. As robots
conquer highly unstructured environments where interaction with humans
becomes inevitable, two characteristics become paramount to their widespread
adoption: programmability and adaptability.

Programmability is the ability of a robot to accept instructions from its user
and alter its behaviour accordingly [3]. Programmability represents the main
advantage of robots over standard automation: being programmable allows a
robot to perform a variety of tasks, increasing its usefulness and cost effective-
ness. Most modern robots feature programming interfaces of some sort, with
research continuously improving and innovating such interfaces.

Adaptability refers instead to the ability of a robot to alter its behaviour
autonomously after it has been programmed, for instance while interacting with
the environment. As it is unrealistic to program a robot for every situation it
will ever encounter, making robots adaptable has become a major goal for the
robotics community. The challenge of providing robots with adaptability is often
approached as a Machine Learning (ML) problem, with the goal of allowing
robots to learn in order to adapt to new situations, environments, and their
users’ preferences.

When deployed in everyday environments, robots will be more likely to in-
teract with humans. Hence, this dissertation argues that programmability
and adaptability of robots can be achieved by leveraging their interaction with
people. Joining a corpus of research adopting ML techniques to solve robotics
problems, this dissertation presents learning techniques, based on Learning
from Demonstration (LfD) and Active Learning (AL), that leverage the presence
of the human-in-the-loop in intuitive ways.

Having robots learn from humans nevertheless presents unique challenges.
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With the deployment of robots beyond industrial settings, their target audience
will grow to include a wide variety of users who, while being experts in their pro-
fessional field, may lack the technical skills to understand how robots perceive,
act, and learn. Furthermore, people’s time, patience and attention are limited
resources that require careful managing during the interaction with robots. This
dissertation therefore pays particular attention to the Human-Robot Interaction
(HRI) aspect of robot learning, investigating how the aforementioned learning
methods influence and are influenced by the interactive nature of the training
process.

1.1 Motivation and Contributions

The overarching goal of this dissertation is to provide programmability and
adaptability to service robots that interact with novice users.1 This endeavour
is motivated by the fact that (i) programming robots requires a complex set of
skills from the fields of computer science and engineering, making unreasonable
to assume that every user possesses such a skill set, and that (ii) it is unfeasible,
from an engineering standpoint, to program robots to be able to face every
situation in dynamic and unstructured environments. Instead, novice users
should be able to program their robots and customize their behaviour in natural
and intuitive ways [4]. In other words, novices should be able to program robots
by other means than writing lines of code, such as providing examples of desired
behaviours, or specifying a desired goal without the need to indicate the steps
required to achieve it.

The following sections introduce the publications included in the dissertation,
presenting the core ideas and highlighting the contribution of each work.

1.1.1 Robot Learning from Demonstration

Learning from Demonstration (LfD), also known as Programming by Demon-
stration (PbD) and Imitation Learning (IL), is a way of programming robots by
providing demonstrations, i.e., examples of the desired behaviour or skill [5].
Inspired by the imitation capabilities observed in humans and animals alike [6],
the paradigm requires a teacher to provide a set of demonstrations of the target
skill. LfD approaches vary widely in how the demonstrations are collected, how
many demonstrations are needed, what models are used to encode the learned
skill, and how the skill is finally reproduced [7]. Nevertheless, the main strength
of LfD lies in the intuitiveness of providing demonstrations, unlocking robot
programmability for novice users.

LfD is beneficial also for expert users. Giving multiple demonstrations of a
skill allows the building of models that generalize to new situations, achieving

1In this dissertation, robot users are referred to as novices or non-experts if they lack
the technical skills or education background to program robots in a traditional manner.
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varying degrees of adaptability. Furthermore, some skills can be extremely
hard to encode in declarative terms but are easily demonstrated by an expert
provided with an intuitive demonstration interface. This is especially true for
skills involving complex velocity and acceleration profiles (like table tennis
strokes [8]) or the fine exertion of forces on the environment (e.g., tying a knot
[9]).

In Publication I, we exploited this last feature of LfD, targeting the learning
of in-contact tasks, i.e., tasks that require an accurate exertion of forces in order
to succeed. The main contributions of Publication I are

1. a statistical approach to LfD, using a combination of Hidden semi-Markov
Models (HSMMs) and Gaussian Mixture Regression (GMR) to model both
the spatio-temporal information of the skill and the relevant force profiles
from human kinesthetic demonstrations, and

2. a technique that modulates the stiffness of a Cartesian Impedance Con-
troller (CIC) during the reproduction of the task based on the learned
HSMM, in order to correctly execute both the in-contact and the free-space
portions of the taught skill.

1.1.2 Teaching as a Collaborative Task

When people engage in a collaborative task, they create over time common
ground, i.e., the knowledge, beliefs, and suppositions they believe they share
about the task [10]. Analysing human teaching from a Theory of Mind (ToM)
perspective reveals it to be a collaborative task [11], where the teacher must
understand the learners’ mental models (knowledge, beliefs, desires) to inten-
tionally recognize gaps in their knowledge and act appropriately to reduce them.
At the same time, the learner should support the teacher’s task by exposing such
information.

When humans teach robots, common ground can be hard to find due to the
different nature of the agents involved: robots and humans may not, in fact,
share the same representation of the concept to be taught or the surrounding
environment. Moreover, novice users may misunderstand how robots learn
and consequently apply human teaching techniques that are unlikely to be
optimal for arbitrary ML agents [12]. These discrepancies can prevent the
creation of common ground, lowering the effectiveness of the teaching process
and potentially resulting in mistrust or over-reliance [13].

Learning techniques based on the collection of demonstrations often assume
that the human teacher is able to provide informative demonstrations, i.e.,
demonstrations that allow the ML agent to learn effectively. Given the afore-
mentioned discrepancies between the agents involved, the assumption that the
human teacher will be an expert not only of the target skill but also at teaching
a robot is rather unrealistic [14, 15]. The issue is further exacerbated by the
interaction model of traditional LfD techniques, where the teacher is solely
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responsible for providing the data required for the training. In the unfortu-
nate case that the teacher is unable to provide informative demonstrations,
traditional LfD approaches are forced merely to attempt to cope with such poor
demonstrations.

One solution to this issue is to have the robot behave less passively and partic-
ipate in the training process, sharing the responsibility with the human teacher.
In other words, we argue that the teaching should be treated as a collaborative
task between the user and the robot. To achieve such collaboration, the robot can
influence the training, for example by selecting which human demonstrations to
learn from and discarding others [16] or using demonstrations only to kick-start
learning techniques based on self-exploration, as Reinforcement Learning (RL)
[17] and Inverse Reinforcement Learning (IRL) [18]. This dissertation explores
the idea of robots that can make requests to their teachers to address their
current knowledge gaps.

1.1.3 Robot Active Learning

Recognizing gaps in the learner’s knowledge is a key skill of successful teach-
ers. As mentioned before, in the case of learning robots, human teachers may,
however, lack such skill, hindering the training process. One possible solution is
to equip robots with ways to report their knowledge gaps during training. This
can be achieved, for example, by showing failure cases [19, 20] or by exposing
uncertainties about the current predictions [21] in order to influence the user’s
future teaching.

Going one step forward, learning robots could inspect their current knowl-
edge during training and actively request information to address knowledge
gaps. These active requests, commonly referred to as queries, represent the
core idea behind AL, a ML paradigm where the agent chooses what to learn
from [22, 23, 24], steering the training process to cover its current knowledge
gaps. Instead of waiting for labelled data to become available (e.g., chosen by
humans) or requesting labels for randomly selected samples, AL agents can
query informative samples to learn more efficiently, i.e., with less labelled data
[22, 25].

With the goal of making robots rely less on the possibly suboptimal demon-
strations of human teachers, in Publication II we developed a mixed AL-LfD
approach for the learning of temporal task models. The main contributions
of Publication II are

1. a Bayesian learning approach combining demonstrations and robot-initiated
queries to fit the parameters of a Markov Chain (MC) modelling a temporal
task,

2. the design and integration in the training process of queries that are user
friendly yet informative for the learning task at hand, and

3. a study of the HRI aspects of the proposed AL-LfD technique, focusing on
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ease of teaching, transparency of the training process, and user perception
of robot queries.

1.1.4 Active Learning-aided End-User Programming

ML approaches such as the ones based on LfD and AL introduced in the previous
sections have been successfully employed as alternatives to traditional robot
programming [4, 5, 26, 27, 28]. However, one disadvantage of these data driven
techniques compared to traditional programming is their opaqueness [29, 30],
i.e., the fact that the final product of the training (e.g., the model encoding the
skill learned from demonstrations) is often not directly interpretable by humans.
Model opaqueness makes standard debugging and refining of such models hard
to achieve. For example, many LfD approaches lack the option to be point-wise
modified and instead require the collection of corrective demonstrations to adjust
the model.

In parallel to these ML-based approaches, researchers have also investigated
how traditional robot programming can be modified to be accessible to people
with little or no programming experience. The research area of End-User
Programming (EUP) for robotics aims at this democratization through novel
user interfaces, programming languages, and techniques to aid or fully automate
robot programming [31, 32].

Research in this area has produced tools that allow novice users to create
complex programs from discrete robot actions, with input modalities like visual
programming [33, 34, 35], kinesthetic teaching [36, 37, 38, 39], and natural
language commands [40, 41]. Many of these approaches have been recently
adopted by robotics companies like Franka Emika or Rethink Robotics, whose
robots come with intuitive programming interfaces. Robot actions such as linear
motions and grasping actions are the building blocks of these EUP interfaces.
These actions are often parametrized, with the number and complexity of pa-
rameters depending on the level of abstraction adopted in their design. While
intuitive ways of specifying certain parameters have been proposed (e.g., specify-
ing the goal pose of a robot motion with kinesthetic teaching), other parameters
must be manually tuned via Graphical User Interfaces (GUIs). For example,
the speed of robot motions is often tuned with GUI elements such as sliders, as
kinesthetically moving a robot arm with many Degrees of Freedom (DoFs) at
the desired speed while following the desired trajectory can be challenging [42].

These less intuitive GUI-driven tuning approaches often require the user to
adopt a trial-and-error strategy and execute each action or the whole program
a number of times to find the correct parameter value. In Publication IV,
we tackled the challenges of tedious manual parameter tuning, proposing an
interactive approach whereby the robot iteratively suggests parameter values
and gathers the user’s feedback to find feasible parameter ranges. The main
contributions of Publication IV are

1. the formulation of a 1-dimensional parameter search as an AL problem,
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along with a Bayesian framework that can encode prior knowledge about
such parameter values, and

2. the design of queries as robot action executions and the integration of
directional answers into the interactive tuning process.

1.1.5 Interacting with Learning Robots

Along with the previously highlighted benefits, making learning robots more
interactive creates new HRI challenges. Learning approaches that involve
humans-in-the-loop should take into account their interactive nature [4, 43],
paying close attention to factors like control over the training process [44],
its transparency [21, 45], and people’s ability to be good teachers for machine
learners [12].

These interaction aspects become extremely relevant in the case of AL, where
the robot learner and the human teacher engage in a tight dyadic interaction
structured around the answering of questions. Researchers have therefore
studied the interactive nature of AL robots, investigating their design [44, 46],
their queries [46, 47, 48, 49, 50, 51], the users’ ability to answer such queries
[45, 52], and their timing [53].

In Publication II, we investigated some of these aspects for our AL-LfD ap-
proach by conducting a user study with novice users comparing three different
query selection strategies. Interestingly, we observed how standard AL selection
strategies, solely aimed at efficient information gathering, would choose queries
(or sequences of queries) deemed difficult to answer and distracting by the study
participants. When attempting to answer such queries, the user may teach at a
lower pace or inadvertently introduce errors in the training, ultimately reducing
the efficiency of traditional AL approaches. These observations raised the follow-
ing questions: what happens when we do not consider teachers an ever-present,
infallible source of information? And could query selection strategies adapt
to real users’ idiosyncrasies and potentially perform better than traditional
strategies?

To answer these questions, in Publication III we challenged the idea that AL
sample efficiency reduces the effort required of the user acting as a teacher. More
specifically, the relationship between subsequent queries was considered as the
primary source of difficulty for the teacher. We studied an information gathering
problem where an AL robot learns about the attributes of entities grouped by
categories. With the assumption that entities in the same category are likely
to share the same attribute value, the learning agent could select informative
queries with Uncertainty Sampling [54], a traditional query selection strategy.
We hypothesized that this traditional strategy, while maximizing information
gain, would query about entities that were as distant as possible2 from each

2Distance with respect to the entities’ membership of the provided categories. Following
the animal topic used in Publication III, cows and ibexes are considered close, as
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other, increasing the workload of human teachers, making them slower and
more prone to errors. Informed by cognitive models of memory retrieval [55], we
then proposed a strategy aware of the teacher’s memory efforts that minimizes
the distance between consecutive queries. The main contributions of Publication
III are

1. integration of the concept of memory retrieval into a query selection strat-
egy,

2. simulation study of the performance of such a strategy, compared to a
traditional AL strategy, and

3. study of the effects of these different selection mechanisms with human
teachers, analysing their mental workload, error rates, response times,
and the overall training performance.

1.1.6 Robot Transparency through Policy Explanation

While introducing our research on AL, the argument was made that robot teach-
ing with humans-in-the-loop should be considered a collaborative task requiring
the creation of common ground, with both agents sharing information and influ-
encing each other’s actions. In addition, attention was drawn to the difficulty
of building common ground between robots and humans, due to substantial
differences between these agents. Nevertheless, the accurate perception of a
robot’s capabilities, intent, and limitations – referred to in the literature as
transparency [13, 56, 57] – is pivotal if the users are to trust the system [58, 59]
and correctly calibrate their reliance on it.

As robots’ autonomous capabilities increase, the accountability, fairness, and
safety of intelligent systems become pressing issues. Motivated by the present
popularity of black-box approaches as primary tools to achieve such autonomous
capabilities, researchers have begun to investigate transparency mechanisms
to interpret and explain the internal representations and decision making of
autonomous systems [30, 60, 61, 62, 63].

After observing the effects of transparency (and the lack of it) in our AL robots,
in Publication V we tackled the more general problem of explaining robot policies
through natural language explanations. In particular, we proposed a method
that generates explanations for policies defined on a continuous state space with
discrete actions. The main contributions of Publication V are

1. an explanation generation method that is model agnostic and can be
applied to black-box policy representations as long as the dimensions of
its state space can be described in natural language terms,

they share membership of many categories (e.g., mammals, ruminants and bovidae).
Conversely, lions and cows are to be considered distant, as they share membership of
fewer categories.
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2. a mechanism to make such explanations focused, omitting dimensions
of the state space that, for example, do not locally influence the policy’s
choice or that cannot be reliably described with the available vocabulary,
and

3. a study of the effects of these focused explanations on the user’s under-
standing of the robot’s policy.

1.2 Structure of the Dissertation

The dissertation presents the included publications following the order adopted
in Section 1.1. After an overview of robot LfD, Chapter 2 presents the proposed
LfD framework for in-contact tasks. After introducing the core ideas behind
AL and surveying the robotics literature on AL approaches, Chapter 3 presents
both Publication II and Publication IV, covering the technical details and high-
lighting design considerations to be made when humans are present in the
learning loop. Chapter 4 completes the presentation of our work on AL robots,
examining their HRI aspect and introducing the major results from Publication
II and Publication III. Investigating the problem from the interaction perspective
will lead to the challenges of robot transparency and to the policy explanation
technique of Publication V, presented in Chapter 5. Finally, Chapter 6 reiterates
the main contributions of this dissertation, discussing open research questions
and future challenges.
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2. Learning In-contact Tasks from
Demonstrations

Programming robots to perform tasks that require contact with the environment,
such as ironing clothes or pulling door handles, is rather complex. To accomplish
such tasks, robot manipulators require extra sensing capabilities (e.g., joint
torque sensing to detect contact and collisions), specific programming primitives
(e.g., guarded motions), and appropriate control strategies (e.g., impedance
control). More complex tasks may also require the robot to exert specific force
and torque profiles while in contact with the environment (e.g., pushing with
suitable force while kneading a mass of dough). As these profiles are hard to
encode in a declarative way, traditional programming of in-contact tasks can
quickly become prohibitively complex.

To address the programming of in-contact tasks, in Publication I we proposed
a LfD approach to allow robots both to learn trajectories and force profiles from
human demonstrations, therefore avoiding the declarative encoding of complex
force profiles. This chapter presents the proposed LfD approach, focusing on its
three main aspects: the collection of demonstrations via kinesthetic teaching,
the learning of a suitable task representation through a combination of HSMMs
and GMR, and the task execution using a CIC with varying stiffness.

2.1 The Learning from Demonstration Pipeline

As introduced in Chapter 1, LfD, also known as PbD and IL, is a learning
paradigm that allows the programming of robots by providing examples of the
desired behaviour [5]. LfD is appealing for non-expert users because it translates
their ability to perform a desired task (in the form of demonstrations) into their
ability to program a robot to achieve the task. Viewing the problem from a ML
perspective, LfD is an instance of supervised learning, with the robot learning a
task representation from a labelled dataset (i.e., the demonstrations). Thus, the
generic LfD pipeline consists of two steps: the collection of the demonstrations
and the learning of a suitable task model.

23



Learning In-contact Tasks from Demonstrations

2.1.1 Collecting Demonstrations

For the demonstration collection, the key design choices are (i) the choice of
the demonstrator, (ii) the nature of the demonstrations, and (iii) the choice of
demonstration interface [5]. The demonstrator is often a human (referred to
also as teacher), although demonstrations can be provided by other agents, such
as other robots. What a demonstration practically is (i.e., what kind of data is
considered a demonstration) depends instead on the taught task and the level
of abstraction adopted in the learning phase. Commonly, demonstrations are
time series of sensor readings and commands, but higher level representations
are possible (e.g., datasets of labelled images, to detect pre and post-conditions
for learning task plans). Finally, the choice of demonstration interface depends
on both of the previously presented choices and the sensors available for the
recording. A threefold categorization of demonstration interfaces is presented
in [28], distinguishing between teleoperation, kinesthetic teaching, and passive
observation.

With teleoperation, the teacher demonstrates the task through an external
input device. Teleoperation approaches can take advantage of already available
input devices, such as joysticks and teach pendants. However, depending on
the requirements of the specific application, more advanced input devices can
be used, including haptic devices or virtual-reality interfaces. The teacher can
therefore provide demonstrations for any robot equipped with a suitable input
device; furthermore, demonstrations can be collected for remotely located robots,
unlocking LfD for applications in remote and hazardous environments. In turn,
the main drawbacks of teleoperation are (i) the extra effort required to develop
new interfaces or adapt existing ones to the collection of demonstrations, and (ii)
the availability and cost of the chosen input devices.

With kinesthetic teaching, the teacher demonstrates the task by physically
displacing a backdrivable or gravity compensated robot while the demonstrations
are recorded using the robot’s proprioceptive sensors (e.g., joint positions and
velocities, joint torques, and loads). While providing an intuitive interface that
requires little training for the teacher [64], having the teacher physically move
the robot places stricter requirements regarding the safeness of interaction.
Moreover, the robot requires specific features, such as backdrivable motors and
gravity compensation. Finally, kinesthetic teaching effectiveness decreases as
the number of a robot’s DoFs increases, as simultaneously operating many
DoFs in a coordinated and smooth fashion is extremely challenging. These
requirements restrict the use of kinesthetic teaching to lightweight manipulators
such as the KUKA LWR4+ and the Franka Emika Panda, excluding systems that
are not interaction-safe (e.g., hydraulic industrial manipulators) and systems
with a high DoF count (e.g., humanoid robots).

Finally, with passive observation interfaces, demonstrations are collected
without directly using the robot. Instead, the teachers perform the target
task themselves while their activity is tracked through vision systems, such
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as cameras or motion capture systems, or with sensors placed directly on their
bodies. With passive observation, teachers are able to demonstrate the task
in the most natural way, i.e., by using their own embodiment. This increases
the intuitiveness of providing demonstrations even for systems with many DoF,
such as humanoid robots or complex robotic hands. Furthermore, as with
teleoperation, the co-presence of the teacher and robot is not required. However,
the main drawback lies in the correspondence problem between the teacher’s and
the robot’s embodiment [65]. As demonstrations are recorded in the teacher’s
embodiment, a mapping to the robot’s embodiment needs to be either manually
specified or learned, further complicating the subsequent learning problem.
Moreover, passive observation interfaces inherit the limitations of the sensors
used for the recording, such as occlusion for vision systems.

2.1.2 Model Learning

Once the demonstrations are collected, LfD essentially becomes a supervised
learning problem. We can categorize LfD approaches based on (i) what is learned
from the demonstrations (the nature of the learned model) and (ii) what actual
combination of model and learning method is used. Regarding the nature of the
learned model, a threefold categorization is presented in [5, 28], distinguishing
between learning policies, reward functions, and plans.

The most common approach adopted in the literature is directly learning a
policy, i.e., a function mapping the information available to the robot to an
appropriate action space. As this family of approaches is the most relevant for
the work of Publication I, the other two approaches are only introduced briefly
here. For a more in-depth discussion, numerous surveys are available on the
topic [4, 5, 26, 28].

With IRL, demonstrations are used to infer the function that informs the
robot of what action is beneficial in different situations, i.e., a reward function
[14, 18]. By learning the reward function from demonstrations, IRL techniques
allow the adoption of RL techniques in robot learning problems when it is
difficult to manually specify a reward function but it is instead easy to provide
examples of highly rewarding behaviours. These techniques therefore inherit
RL’s advantages (e.g., self learning based on a reward signal) and disadvantages
(e.g., the credit assignment problem and the exploration-exploitation dilemma).
Another option is to use the demonstrations as high-level descriptors of the
task (e.g., action pre and post-conditions and task goals) and learn sequential
or hierarchical plans of discrete actions. While plans allow the encoding of
more complex tasks, additional techniques (e.g., motion level models) are often
required for the robot to achieve the actual task execution.

With policy methods, the goal is to learn a mapping π : S → A from the state
space S of the robot to its action space A from the demonstration set D. These
methods are particularly suited to trajectory-level encodings, where policies are
often referred to as motion primitives [27].
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Policy methods can be further categorized based on their input and output
spaces [28]. The input of the policy can simply be time, with demonstrations
being time series of any variable necessary for the robot to follow the desired
trajectory; these models are analogous to open-loop controllers, where the robot’s
actions are computed based solely on the current time, without additional
feedback. If perturbations must be handled during task execution, the state
space S can include any variable useful for computing a corrective command, in
a fashion similar to close-loop controllers. In this case, demonstrations consist of
state-action pairs, for example the torque that must be applied at each joint in
order to follow the demonstrated trajectory. Regarding the nature of action space
A, i.e., the output of the policy, the main distinction is between discrete and
continuous action spaces. The nature of the robot actions dictates the underlying
ML problem to be solved: classification for discrete action spaces, regression for
continuous ones.

Finally, the learned policy can be deterministic or stochastic. The following
question provides a good rule of thumb for this design choice: is the provided
demonstration a perfect representation of the desired behaviour, or just one of
many, similarly acceptable, behaviours? In the former case, the policy should
be deterministic, as there is no need to deviate from the perfect demonstration
provided by the teacher. Conversely, in the latter case, a stochastic policy may be
more appropriate, as it can inherently model the uncertainties of the provided
demonstrations.

Once the characteristics of the policy are identified based on the task at
hand and the nature of the collected demonstrations, a suitable model and
related learning approach are selected. Several solutions have been proposed
for learning trajectory-level tasks, from classic regression methods like Locally
Weighted Regression (LWR), Gaussian Process Regression (GPR) and GMR,
to dynamical systems like Dynamic Movement Primitives (DMPs) [66] and
Probabilistic Movement Primitives (ProMPs) [67]. In this dissertation, the
combination of HSMM and GMR as used in Publication I is briefly presented;
the reader is referred to [27] for an extensive review of motion primitive learning.

2.2 Learning from Demonstration for In-contact Tasks

Publication I focused on LfD for in-contact tasks. Three aspects of in-contact
tasks informed our choices regarding the design of the LfD pipeline. First, in-
contact tasks exhibit a tight temporal coupling between the pose requirements,
i.e., the trajectory to follow, and the force requirements, i.e., the force profiles
to exert on the environment. Second, in-contact tasks require the teacher to
demonstrate multiple, and equally important, aspects of the task simultane-
ously (e.g., the trajectory, the force profile, the speed of the motion). Third, the
manipulator must be compliant with the environment and be able to perform
both free space motions and compliant motions.
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Based on these requirements, we made the following design choices. Regarding
the collection of the demonstrations, we adopted kinesthetic teaching with
the simultaneous recording of trajectories and force profiles. To encode the
demonstrated tasks, we chose a trajectory representation based on HSMMs and
GMR, for their ability to encode the fine temporal aspects of the task and to cope
with the foreseeable noise in the users’ demonstrations. Finally, we opted for a
CIC with varying stiffness and a feed-forward force term for the execution of the
learned task on our manipulator of choice, a KUKA LWR4+ [68].

2.2.1 Demonstrating In-contact Tasks

The recording of forces is pivotal for the execution of in-contact tasks, and
demonstration interfaces must therefore allow for the reliable recording of
force profiles. While promising work has shown how contacts can be estimated
using RGB-D cameras when the manipulated objects are known a priori [69],
estimating contact forces through vision is far from reliable, making passive
observation interfaces barely usable. Similarly, placing tactile sensors on the
teacher is not yet a cost effective solution, although research in this area shows
great potential for LfD applications [70, 71].

For teleoperation and kinesthetic teaching, the recording of contact forces
presents challenges that are less related to the actual sensing and more to
the teacher side of the demonstration. Simple teleoperation interfaces, like
joysticks and teach pendants, can rarely provide feedback to the teacher on the
interaction of the robot with the environment (e.g., the amount of exerted force
and potential collisions). The lack of such feedback can lower the quality of the
demonstrations, and consequently of the whole LfD pipeline.

While more complex teleoperation interfaces, such as haptic devices, have
been successfully employed [72, 73], in Publication I we opted for kinesthetic
teaching, as chosen in [74, 75, 76, 77, 78]. For the recording of contact forces
however, we could not rely on the torque sensing capabilities at the manipulator’s
joints. As the teacher moves the robot during the demonstration, the forces
exerted on the environment are produced by the teacher, making the integrated
torque sensing capabilities of the robot uninformative. Hence, a dedicated
ATI mini 45 Force/Torque sensor was mounted between the robot’s flange and
tool. With this configuration, shown in Figure 2.1, the teacher grasps the robot
above the Force/Torque sensor, allowing the recording of forces applied to the
environment through the robot’s tool. Finally, the configuration also allows for
the simultaneous recording of both trajectories and force profiles. This avoids the
adoption of the 2-phase recording scheme presented in [73], where the trajectory
and the force profiles are learned separately, possibly introducing errors due to
the extra synchronization effort required of the teacher.

From a recording phase, a demonstration is obtained, defined as(
X t =

[
xT

t qT
t vT

t ωT
t f T

t

]T
)

with t = 1, . . . ,L, (2.1)
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(a) Sensor configuration. (b) Kinesthetic teaching.

Figure 2.1. The sensor configuration for recording in-contact tasks adopted in Publication I and
related kinesthetic teaching instance, with highlighted robot flange (A), Force/Torque
sensor (B), and tool (C). Adapted from Publication I. © 2016 IEEE.

i.e., an L-time-steps long time series of the pose of the robot’s end-effector
(position xt ∈R3 and quaternion representation of the rotation qt ∈H, expressed
with respect to a fixed reference frame at the base of the robot), its translational
and rotational velocities (vt and ωt respectively), and the force readings from
the Force/Torque sensor (f t ∈ R3, expressed in the end-effector frame). The
demonstrations were recorded at 100 Hz.

While the simultaneous recording of trajectories and forces should allow teach-
ers to provide demonstrations of sufficient quality, we still cannot expect them to
demonstrate correctly all aspects of the task at the same time. For example, the
teacher could make the robot follow the desired path while exerting the required
force at an incorrect speed. Furthermore, a perfect execution may not exist at all
for some tasks. Consequently, it may be beneficial to encode the variability of the
teacher’s demonstrations. Following the reasoning presented in Section 2.1.2, we
therefore collected multiple demonstrations and learned a stochastic trajectory
representation from them.

2.2.2 Learning Models for In-contact Tasks

Once demonstrations have been collected, an appropriate task model can be
trained. We opted for GMR [79], a regression method particularly popular in the
LfD field [80]. With GMR, the regression function is not directly modelled but
is instead derived from a joint probability density function of the variables of
interest. The main advantage of GMR lies in the fact that the computationally
intensive density estimation procedure is performed offline, while the computa-
tion of the robot’s command (i.e., the output of the learned policy) is performed
rapidly at run time. This is achieved through the linear transformation and con-
ditioning properties of Multivariate Normal distributions. Thus, popular choices
for the joint probability density model are Gaussian Mixture Models (GMMs),
Hidden Markov Models (HMMs) [81] with Gaussian observation probabilities,
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and HSMMs [82].
Prior to Publication I, the encoding of force profiles from demonstrations had

been achieved with DMPs [73, 74, 75]. With such a representation, however,
each dimension is encoded separately, and the correlations between pose and
force profiles are not learned. Our contribution in Publication I is the inclusion
of the force information in the HSMM-GMR statistical model first proposed in
[80], allowing for the encoding of the aforementioned correlations between pose
and force profiles. With the chosen representation, each state of the HSMM
models a different portion of the taught trajectory. HSMMs also offer benefits
over models that can be used with GMR, namely GMMs and HMMs. Compared
to GMMs, HSMMs directly model the temporal evolution of the system, allowing,
for example, self-intersecting and cyclic trajectories. Furthermore, HSMMs
can be learned from unaligned demonstrations of different lengths, avoiding
the use of sequence alignment methods required by GMMs and DMPs, such
as Dynamic Time Warping [83]. Finally, the duration of each state is explicitly
modelled, improving on the strictly exponential nature of state duration densities
of standard HMMs.

More specifically, a HSMM with N states is parametrized as

λ= (π,T,μ,Σ,μD ,σD), (2.2)

where π ∈ RN are the starting probabilities and T ∈ RN×N is the transition
matrix, whose element ti j represent the probability of moving from state i to
state j. Each state has an observation distribution, modelling the distribution
of the variables of interest recorded in the demonstrations. Parameters μ ={
μ1, . . . ,μN

}
and Σ= {Σ1, . . . ,ΣN } are sets of means and covariance matrices, one

for each of the N Multivariate Normal distributions modelling the observation
probabilities for each state. Finally, μD = {

μD
1 , . . . ,μD

N
}

and σD = {
σD

1 , . . . ,σD
N
}

are sets of means and variances, one for each of the N Univariate Normal
distributions modelling the duration probabilities of each state.

These parameters are learned from the teacher’s demonstrations by a HSMM-
specific variant of the Baum-Welch algorithm [84]. The number of states N can
be selected as a trade-off between the accuracy and complexity of the model with
model selection techniques like the Bayesian Information Criterion (BIC) [85].
Similarly, the number of demonstrations is chosen by taking into account the
resources required to produce the demonstrations, for example the time and
effort of the teacher and the quality of the trained model.

For our trajectory modelling problem, we characterized the observation X t at
time t as

X t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xt

qt

vt

ωt

f t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[

X I
t

XO
t

]
, (2.3)
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where X I
t is the input of the policy, i.e., the current state, and XO

t is the output of
the policy, i.e., the commands. Following the same reasoning, the mean and the
covariance matrix of each observation distribution is characterized as follows

μi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μx
i

μ
q
i

μv
i

μω
i

μ
f
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[

μI
i

μO
i

]
, Σi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σx
i Σ

xq
i Σxv

i Σxω
i Σ

xf
i

Σ
qx
i Σ

q
i Σ

qv
i Σ

qω
i Σ

qf
i

Σvx
i Σ

vq
i Σv

i Σvω
i Σ

vf
i

Σωx
i Σ

ωq
i Σωv

i Σω
i Σ

ω f
i

Σ
f x
i Σ

f q
i Σ

f v
i Σ

f ω
i Σ

f
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[

ΣI
i ΣIO

i

ΣOI
i ΣO

i

]
.

(2.4)
We can compute through GMR, at each time step t, the probability of observing

the command XO
t given the current state X I

t as

P(XO
t | X I

t)=
N∑

i=1

hi,t N(XO
t |μ̂O

i (X I
t), Σ̂

O
i ), (2.5)

with μ̂O
i (X I

t) and Σ̂O
i defined as

μ̂O
i (X I

t)=μO
i +ΣOI

i (ΣI
i)
−1(X I

t −μI
i),

Σ̂O
i =ΣO

i −ΣOI
i (ΣI

i)
−1ΣIO

i .
(2.6)

The conditional probability of the command XO
t is modelled as a mixture of Mul-

tivariate Normal distributions; we can therefore compute the mean command
XO

t
∗ as the weighted average of each component’s mean as

XO
t
∗ =

⎡
⎢⎢⎣

v∗
t

ω∗
t

f ∗
t

⎤
⎥⎥⎦=

N∑
i=1

hi,t μ̂
O
i (X I

t). (2.7)

The weighting term hi,t in Equations 2.5 and 2.7 represents the contribution
of each state i to the computation of the current command XO

t
∗. For HSMMs,

hi,t is the current belief over the states, i.e., a normalized version of the forward
variable αi,t. More details about the computation of the forward variable αi,t

based on the current observation history
(
X I

1, . . . , X I
t−1

)
are available in Publica-

tion I. With Equation 2.7, we have the commands that allow the robot to follow
the demonstrated trajectories.

Finally, regarding the computation of the command signals presented in Publi-
cation I, while the force command f ∗

t is correctly computed taking into account
both the current position and orientation (i.e., the whole input X I

t , as in Equa-
tion 2.7), the computation of v∗

t does not take into account the current orientation
qt. Similarly, the computation of ω∗

t does not consider the current position xt.
Omitting such terms is equivalent to assuming that the translational velocity
does not depend on the current orientation (i.e., assuming that Σ

vq
i is a zero

matrix). We believe this to be a methodological mistake worth reporting, even
though the task executions in the experiments presented in Publication I do not
seem to be impacted by it.
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2.2.3 Executing In-contact Tasks

For the execution of the learned in-contact tasks, a control strategy that could
handle both free space motions and compliant motions was required. We opted
for Impedance Control (IC) [86], a control strategy that imposes the dynamic
behaviour of a mass-spring-damper system at the interface between the manip-
ulator and the environment. More specifically, we used the CIC of the KUKA
LWR4+ [87], with control law

τcmd = JT (diag(kc)(xcmd − xmsr) + D(dc) + fcmd) + τdyn(q, q̇, q̈), (2.8)

with the Jacobian J, the Cartesian stiffness parameters kc, the Cartesian
damping parameters dc, a superposed feed-forward force term fcmd, and the
dynamic model τdyn(q, q̇, q̈). For our in-contact task scenario, the relevant
terms of the control law are kc, representing the virtual spring between the
commanded pose xcmd and the measured pose xmsr, and fcmd. During the
execution of the learned strategy, xcmd is computed from the commands X I

t
of Equation 2.7 by integration as follows:

xcmd =
[

x∗
t+1

q∗
t+1

]
=
[

xt +τv∗
t

e
1
2τω

∗
t ⊗qt

]
, (2.9)

where τ is the duration of a control time step. Given its feed-forward nature, the
force term fcmd is obtained directly from the f ∗

t of Equation 2.7.

2.2.4 Results and Discussion

We evaluated the proposed LfD pipeline with two experiments: (1) the pushing
of a stiff button (shown in Figure 2.1.b) and (2) the pulling of a door handle. The
results from Experiment 1 are summarized here as they concisely present the
strengths of the proposed pipeline; the reader is referred to Publication I for the
results of Experiment 2.

Figure 2.2.a shows the force profile measured along the tool’s pushing direction
when contact forces are not modelled. In this case, the robot fails to exert
sufficient force to activate the push button, motivating the inclusion of force
profiles pursued by our method. Figure 2.2.b shows instead the proposed LfD
pipeline, with the linear and the angular components of the controller’s stiffness
kc set to a constant value of, respectively, 2000 N

m and 200 Nm
rad . We can see from

the commanded force profile how the HSMM-GMR model can learn the desired
force profile from the demonstrations. However, the measured force profile does
not follow the commanded profile and the robot still fails to activate the push
button. This undesirable behaviour is caused by the interaction of the simulated
spring term and the feed-forward force term of Equation 2.8: during execution,
these two terms can counteract each other and prevent the manipulator from
exerting the commanded f ∗

t .
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selected with proposed mechanism.

Figure 2.2. Force profiles (along the tool’s pushing direction) from the push button experiment
of Publication I. The exertion of the demonstrated force profiles is accurately achieved
only with the proposed stiffness selection mechanism. Adapted from Publication I.
© 2016 IEEE.

To achieve the tracking of both force and position profiles during execution,
a hybrid control method was adopted in [74, 75], switching between different
controllers during the task execution. While effective and simple, this method
requires manually specified switching conditions that are possibly subject to
noisy sensor readings. Kormushev et al. propose, instead, that the desired
stiffness be computed from the variability observed in the positional data from
the demonstrations [73]. We, instead, propose that the stiffness kc be adjusted
based on the force information encoded in the HSMM. In particular, we compute
the probability of each of the states of the HSMM to encode free space motions
or compliant motions by modelling the force readings from the demonstrations
as a two-components mixture, with the type of components selected experimen-
tally. These probabilities allow the stiffness kc to be selected during execution,
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essentially smoothly switching between the CIC and the feed-forward force con-
troller of Equation 2.8. While manually specified, the components of the mixture
are easier to select and more robust than the manually specified thresholds
of [74, 75]. More details on the proposed stiffness selection mechanism can be
found in Publication I. Figure 2.2.c shows how the commanded force profile is
correctly exerted on the environment, allowing the robot to successfully push
the button.

While the work of Publication I focused on learning motions at trajectory-level,
robots often require a skilful combination of low-level motions to carry out their
tasks. As explained in Section 2.1.2, trajectory-level LfD approaches can be
integrated with approaches that create high-level representations of the task,
such as plans [88, 89, 90].

In the proposed approach, the trajectory part of the demonstrations is recorded
in a fixed frame of reference defined at the base of the robot. In the real world
problems described in Chapter 1 however, motions often need to be performed
with respect to relevant objects placed in the robot’s working envelope. Combined
with an appropriate system able to track task-relevant objects (e.g., a vision
system), the proposed approach can be extended to handle such task-oriented
demonstrations by adopting the method proposed in [91].

2.3 Strengths and Weaknesses of Learning from Demonstration

Building on this chapter’s presentation of the general LfD pipeline and of our
contribution to the specific case of in-contact tasks, this section discusses the
strengths and weaknesses of LfD approaches in the light of the dissertation’s
motivations.

As briefly explained in Chapter 1, LfD approaches have the potential to greatly
contribute to the goal of achieving programmability and adaptability for service
robots. Primarily, LfD provides non-expert users with an intuitive yet effective
way of programming robots. Furthermore, LfD approaches allow the program-
ming of complex tasks that are hard to specify in a declarative way, such as the
case of in-contact tasks addressed in Publication I. Another advantage of LfD lies
in its data efficiency. Most LfD approaches can learn task models from less than
10 demonstrations, with some techniques able to learn from even a single demon-
stration. The data efficiency of LfD approaches becomes particularly relevant
when comparing them to techniques based on self-learning and exploration, such
as RL, that require the robot to act in a possibly suboptimal and unsafe fashion
in order to learn. LfD approaches are, however, far from incompatible with
exploration-based learning techniques. On the contrary, demonstrations have
often been used as the starting point for the exploration process [92, 93, 94, 95],
to provide safety boundaries [96, 97], or to learn complex reward functions [98].

However, one of the most evident weakness of LfD approaches lies in the
costs imposed by the collection of demonstrations. As demonstrations determine
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the quality of the learned models, demonstration interfaces should be carefully
designed or selected – a process that is often task-specific, time consuming and
expensive, especially when it requires the integration of extra sensors. On a
more general level, programming robots only through demonstrations can be
restrictive, especially when the learned model presents issues that must be
corrected. Most incremental LfD approaches require the teacher to provide extra
corrective demonstrations to resolve such issues [99]. This is obviously not ideal,
as it requires the teacher to demonstrate the entire task even when corrections
are needed only in portions of it. We therefore believe that LfD approaches
would greatly benefit from allowing more flexible correction modalities, like
partial demonstrations [100, 101].

Finally, one of the major weaknesses of LfD approaches is that they require
the teacher to provide informative demonstrations, i.e., demonstrations that
truly help the training process. This, in turn, requires the teacher to be an
expert not only at the taught task but also at teaching a robot – an assumption
that rarely holds true in real scenarios. For example, the teacher may not know
what requirements the demonstrations must satisfy to be informative or how
many demonstrations are required or how diverse they should be. Likewise,
the teacher may be unable to identify weaknesses and problems in the current
model and consequently fail to provide corrective demonstrations. Moreover,
the teacher may not provide all possible successful demonstrations of a task
simply because of forgetfulness, resulting in the learning of incomplete models.
As discussed in Section 1.1.2, these issues are not specific to LfD approaches
but appear in any approach where there are inevitable discrepancies between
the robot’s model (e.g., the chosen skill representation) and the teacher’s model.
The true weakness of LfD lies in the fact that teachers are solely responsible for
the training process through the demonstrations they provide. In other words,
the learner has no mechanism to react to the user’s sub-optimal teaching and,
consequently, the overall training process is negatively affected. We therefore
believe that LfD approaches should be augmented so as to be interactive, with the
robot learner taking an active part in the teaching process by requesting specific
information, exposing its knowledge gaps and steering the user’s teaching efforts.
This line of reasoning motivates most of the research of this dissertation and, in
particular, the work on AL presented in the next chapter.
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3. Active Robot Learning from Humans:
the Learning Perspective

The previous chapter introduced the LfD paradigm to robot learning and dis-
cussed its advantages and disadvantages. In particular, attention was drawn
to how the information in LfD approaches flows only from the teacher to the
learner and how this can negatively impact the training process when the user
teaches in a suboptimal fashion. One way to address this issue is to have the
learner actively participate in the teaching, steering the learning according to
the knowledge gaps and inconsistencies of the current model. This idea is the
working principle behind AL.

AL is a ML paradigm in which the agent chooses what to learn from [22, 23, 24].
Unlike traditional supervised learning techniques that solely learn from labelled
data, active learners can select informative samples among unlabelled data
– referred to as queries – and obtain labels from a labelling source – referred
to as a teacher or oracle. By selecting informative queries, active learners can
steer the learning process to cover their current knowledge gaps. This search for
informativeness allows active learners to improve their models more efficiently
(i.e., with less labelled samples) compared to passive learning techniques [22,
102], making AL especially beneficial in learning scenarios where unlabelled
samples are plentiful or cheap to obtain but the labelling costs are high.

Robot learning is one such scenario where the collection of labelled data is
expensive. For a robot, learning often requires it to operate on the environment
(e.g., trying grasps on several objects), thereby increasing training time. Training
a robot becomes even more expensive as humans become an integral part of the
learning loop, with the learning process requiring people’s time and patience.
Consequently, AL is a particularly relevant approach, as its learning efficiency
reduces the use of such expensive resources.

Motivated by the successes of AL, we applied it to two robot learning problems
with humans-in-the-loop. In Publication II, we used AL as an extension of a
LfD approach for the teaching of temporal task models. In Publication IV, we
presented an application of AL for the EUP of a robot manipulator, where an AL
technique was developed to guide novice users in tuning the parameters of robot
actions.

Besides proposing a technical solution to the learning problem, in Publication
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II we analysed the training process through the HRI lens, observing how differ-
ent learning strategies influence human teachers and their view of AL robots.
In particular, we observed how different types of queries and query selection
strategies can be double-edged swords, with aspects that can be detrimental
for the teacher. This led to the work presented in Publication III, where we
presented a AL strategy that takes into account the order of its query to assist
the teacher.

This chapter focuses on Publication II and Publication IV, presenting the
design of queries that are human-understandable yet informative, along with the
learning methods we employed. Chapter 4 will instead focus on the interaction
side of AL explored in Publication II and Publication III.

3.1 Active Learning in a Nutshell

AL is a ML paradigm that allows the learning agent to participate actively in the
training process. In the Passive Learning (PL) paradigm, the counterpart of AL,
the agent learns purely by observing its environment [25]. The environment is
therefore assumed to generate the training data necessary for the learning agent.
LfD can be considered a form of PL, since the environment, i.e., the teacher,
provides the learner with all required training data, i.e., the demonstrations.
Conversely, in the AL paradigm, the learner can interact with the environment
and perform actions that impact the generation of training data [25]. The most
common type of action employed in AL is queries, i.e., direct requests for specific
information to the teacher.

Algorithm 1 presents a prototypical AL process where queries are selected
from a pool Q of available queries (pool-based scenario), rather than from a
stream of queries (stream-based scenario) or generated de novo by the learner
(query synthesis scenario) [24]. Until a specified stopping condition is met (often
associated with the exhaustion of a limited resource, like a labelling budget or
the teacher’s time), the learner selects queries from the pool Q to be made to
the teacher. The core idea behind the query selection process is that, given the
current understanding of the problem, i.e., the current model θ, some queries
better inform the learning process than others. Instead of randomly selecting

Algorithm 1 Prototypical pool-based AL algorithm.
Input: Query pool Q, initial model θ, utility score U , teacher, stopping condition
Output: Trained model θ

1: repeat
2: q∗ ← select query from Q according to U and current model θ
3: r∗ ← make query q∗ and obtain answer from teacher
4: integrate 〈q∗, r∗〉 in model θ
5: until the stopping condition is met

36



Active Robot Learning from Humans: the Learning Perspective

queries, it is therefore beneficial to select queries that facilitate learning as
efficiently and as economically as possible. Thus, queries are ranked with utility
scores based on the concept of information gain, helping the learner answer the
question “What query should I make to maximize my learning opportunities?”
These scores operationalize how much each query is expected to contribute
to the improvement of the current model. Query scores are often computed
by analysing, for instance, the current labelling uncertainty of elements in Q
(as in Uncertainty Sampling [54]) or the expected reduction of labelling errors
that making queries would bring to the model (as in Expected Error Reduction
techniques [103]). As queries are made and the related answers are obtained
from the teacher, information from the query-answer pairs is integrated into the
model to improve it and inform the next query selections. The ability to reason
over the current model and steer the learning process accordingly through the
selected queries offers AL agents an advantage over PL agents, which have no
control over new labelled data becoming available. This allows AL agents to
learn efficiently with less labelled data [22, 102].

Beyond the simple AL pipeline summarized here, AL techniques present
myriad complexities and differences. Since the seminal work of Angluin on
membership queries [22], AL has been studied in-depth by the ML community
and applied to both classification and regression problems, providing structure
for the training of a variety of ML models and augmenting other approaches like
RL [25, 102] and IRL [104]. This dissertation focuses on robotics applications of
AL with humans-in-the-loop. For an extensive review of the ML literature, the
reader is referred to [24].

3.2 Active Robot Learning from Human Teachers

In the past two decades, the robot learning community has successfully adopted
AL approaches. The main motivation behind the use of AL is its ability to actively
gather information in a sample-efficient manner. On a more practical level, AL
approaches have essentially been used to solve robotics problems in three ways:
(i) in a standalone manner, to solve classification and concept learning problems
[21, 44, 45, 51, 52, 105, 106, 107], (ii) as a refinement tool augmenting LfD
approaches [46, 108, 109, 110] and IRL [48, 49, 50, 111, 112, 113] techniques,
and (iii) to guide the exploration aspect of RL approaches [114, 115].

This section surveys the robot AL literature, focusing on works where humans
are part of the learning loop and discussing the design of queries and their
integration into various learning methods.

3.2.1 Query Design

Queries and the related answers are the vehicle of information between the
learner and the teacher. Their design must satisfy two, often opposing, principles.

37



Active Robot Learning from Humans: the Learning Perspective

Can I pour
cereal
like this?

Can you
show me
how to add
salt
from here?

Should I
keep this
orientation
at the start?

Can I do
the
following?

How do I
add salt
starting
like this?

Can I pour
at different
heights?

Label queries Demo queries Feature queries

Figure 3.1. Examples of queries for a robot learning manipulation tasks from [46]. © 2012 IEEE.

On one hand, queries must convey the necessary information to tackle the
learning task and be compatible with the robot’s internal representation of it.
On the other hand, queries must be understandable to the human teachers to
help them offer their task knowledge as effectively as possible. Careful query
design is therefore required to obtain maximum benefit from the combined
efforts of learner and teacher.

While ML research often categorizes AL approaches based on how and from
where queries are selected, AL research in robotics focuses more on the nature
of a single query, investigating how different query types can be adopted to
solve robotics problems. In [46], Cakmak and Thomaz propose a threefold
categorization of robot query types: label queries, demonstration queries, and
feature queries. Figure 3.1 shows examples of each query type for a manipulation
task. An important feature of these queries is the possibility for the robot to use
its embodiment to complement queries, referring to query elements such as joint
configurations or whole demonstrations that cannot be expressed or summarized
in an effective manner with natural language alone.

Label Queries
Label queries, the most commonly used query type in the literature, are requests
for labels (or any other variable of interest) for selected unlabelled samples. Best
suited to classification problems, label queries follow templates ranging from
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“Does sample X belong to class Y ?” to “What class does sample X belong to?”,
with a continuum of variations in between, such as “Does sample X belong to
class Y1 or Y2?” Label queries have mainly been used to solve various classi-
fication problems [21, 44, 51, 106, 107, 114] and for learning robot policies, in
combination with LfD [15, 108] and IRL approaches [104, 111, 112, 116].

While straightforward to use when dealing with discrete concepts such as dis-
crete actions or class labels, label queries are less suited to regression problems.
When the variables of interest are continuous or multi-dimensional, such as the
joint configuration of a manipulator, label queries become difficult to process,
evaluate, and answer for the human teacher. When such queries are required,
robots can use their embodiment to avoid this problem and query the user by
showing a concept that is complex to express otherwise. In Publication IV, we ex-
ploited the robot’s embodiment to make queries about continuous variables, such
as end-effector velocities and collision thresholds. When the robot’s embodiment
cannot be leveraged, another solution is to replace the continuous variables in
queries with discrete semantic labels, as in the definition of rules of fuzzy control
systems [117]. We adopted this solution in Publication II, where we avoided the
use of probability values in label queries by overlaying the probability simplex
with natural language concepts based on frequency adverbs.

Another design challenge for label queries stems from the difficult interpreta-
tion of negative answers. The label queries in Figure 3.1 highlight the problem:
if the teacher gives a negative answer, how should the robot interpret it? Was
the entire motion wrongly executed or only a fraction of it? How far was it from
being correct? To avoid this credit assignment problem [46], query selection
strategies can be modified to prioritize questions that are expected to receive
a positive answer, accommodating, at the same time, the human tendency of
teaching through positive examples [43, 118]. Alternatively, label queries and
their expected answers can be augmented to include information that helps the
integration of negative feedback into the model [45]. Following this reasoning,
we proposed the use of directional answers in Publication IV, allowing the users
to provide meaningful feedback if the robot’s execution was not as desired.

Demonstration Queries
With demonstration queries, the robot requests a demonstration from the teacher
with additional constraints imposed specifically to improve the current model.
As shown in Figure 3.1, a robot could request a demonstration with, for instance,
a specific starting pose, a different goal pose, or with constraints on the orien-
tation of the end-effector. Having parallels with the traditional AL problem
of Active Class Selection [119], demonstration queries can also be seen as an
intermediate method between label queries and full LfD demonstrations, where
the teacher is more constrained than with LfD (the demonstration must respect
the imposed constraints) but less restricted than with label queries. Demon-
stration queries are rarely adopted in the literature, with notable exceptions
in [51, 107, 120]. Related to demonstration queries are incremental LfD ap-
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proaches, where aspects of the demonstration interface are adjusted during the
collection of corrective demonstrations [121, 122, 123]. These LfD approaches,
however, alter the demonstration interface mostly to improve the comfort of the
teachers rather than to enforce informativeness of the demonstrations.

Feature Queries
With label and demonstration queries, the AL agent learns from instances of
the learning target. By contrast, with feature queries, the agent learns directly
about the input features of the underlying model [124, 125]. For example, a robot
could ask whether the end-effector speed of a robot motion is a good indicator for
deciding about its safeness or whether the height above a table is an important
feature for pouring motions (as shown in Figure 3.1). The main disadvantage
of feature queries, however, is that they require the queried features to be
understandable to the user. Furthermore, queried features must be strong
indicators for the learning task (i.e., their contribution should be meaningful) for
the teacher to provide relevant feedback [46]. These requirements preclude the
use of feature queries when automatic feature extraction techniques are used,
although human-driven feature selection methods have been recently proposed
[126]. As for label queries, robot embodiments can be used to express complex
features that would be harder to express otherwise, provided that appropriate
methods to showcase such features can be devised.

Comparison-based Queries
In addition to the query types presented in [46], recent work has used comparison-
based queries to elicit preferences from the teacher. These queries, also known
as rank queries in the AL literature [127], ask the teacher to express preferences
between two [48] or more instances [50, 113] of the learning target. Comparison-
based queries are beneficial when it is difficult for the teacher to evaluate or
provide feedback on a single isolated instance, as is the case for the IRL scenar-
ios presented in [48, 49, 50, 113]. Furthermore, comparison-based queries can
also be used to learn about the relative importance of features, as shown in [49].

3.2.2 Learning from Queries

As introduced in Section 3.1, learning from queries requires two steps: the
selection of the query to be made, and the consequent integration of its answer
into the model. Query selection strategies are numerous, with their advantages
and disadvantages depending on the nature of the learning task at hand. While
the reader is referred to the extensive review presented in [24, Chapter 7],
it is worth restating here that all such strategies follow the same underlying
principle: the AL agent must select its queries in order to learn in the most
efficient and cost-effective manner by evaluating the available queries against
the current model. In our work, we adopted two query selection strategies:
Uncertainty Sampling [54] in Publication III and Publication IV, and variations
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of the Expected Error Reduction technique [103] in Publication II and Publication
IV.

Query selection strategies impose requirements on the model being learned.
First, the AL agent must be able to reason on the predictions of the current
model and possibly analyse the uncertainty related to these predictions. Second,
to make the most informative queries at each moment, the AL agent must be
able to reason on the latest and most updated model; thus, it is beneficial to
update the models after each query. This makes probabilistic models that can
be learned incrementally as new observations become available particularly
suited to AL applications. Finally, a requirement especially relevant to the case
of robots learning from humans is that both the selection phase and the model
update must be sufficiently fast to allow smooth interaction. The interaction
offers interesting opportunities for designers of AL robots, as computationally
expensive operations like query selections can be performed while robots perform
other time-consuming actions, like motions and verbal communication.

The next sections build on this analysis of query types and requirements for
AL systems and discuss the choices made in Publication II and Publication IV.

3.3 Active Robot Learning for Temporal Task Models

In order to overcome the major weakness of LfD approaches discussed at the
beginning of this chapter, in Publication II we proposed a hybrid AL and LfD
framework for the learning of temporal task models. Similar to the work pre-
sented in [108], the goal was for a robot to model a temporal task, i.e., a se-
quence of discrete actions performed by the user to achieve a certain goal.
Compared to earlier work focusing on classification and concept learning prob-
lems [12, 44, 46, 105, 106, 114], the temporal nature of the problem posed extra
challenges for query design. The main contributions of Publication II are the
design of queries expressed in natural language that are constrained to the
context of the demonstration performed by the user, their integration into the
learning pipeline along with demonstrations, and the in-depth study of the
effects of different query selection strategies on the teacher-learner interaction.

To model user preferences regarding actions and their relative order in the
target task, we adopted a MC representation, with each state representing one
of the available discrete actions in the action set A. The MC was parametrized
as θ = {π,T}, where π ∈ R|A| are the starting probabilities and T ∈ R|A|×|A| is
the transition matrix, with ti j = p(as = a j | as−1 = ai) being the probability of
performing a j at time step s given that ai was performed in the previous step.
Once trained, such a model can be used to predict the user’s future actions based
on their previous action, in order, for instance, to provide user-specific assistance
in a collaborative task.

Algorithm 2 summarizes the proposed learning approach. The robot, while
observing the teacher demonstrating the task, asks questions expressed in
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Algorithm 2 Hybrid AL-LfD framework proposed in Publication II
Input: Action stream {a1, . . . ,an}, Action set A
Output: User preference model MC

1: while user provides demonstrations do
2: initialize a new demonstration D
3: while user performs action a and a �= end action do
4: D ← attach action a to D and passively update model
5: q∗ ← select most informative query [see Equation 3.1 and 3.2]
6: r∗ ←make query q∗ and obtain answer
7: MC← update with query-answer pair 〈q∗, r∗〉
8: end while
9: end while

natural language about the ordering and probability of performing certain
actions after others. This section discussed the query design, the model update,
and the query selection strategies adopted in Publication II.

3.3.1 Frequency and Disambiguation Queries

For the query design, we proposed two types of label queries applicable to the
learning of both the π and T parameters of the MC: Frequency Queries (FQs)
and Disambiguation Queries (DQs). We designed these queries to aid the human
teacher in two ways. First, the queries avoid direct references to probabilities or
the underlying probabilistic representation of the task. Second, as the teacher
answers the robot’s queries while demonstrating the task, query generation is
constrained to the context of the last performed action.

FQs are label queries that obtain the user’s preference about the ordering of
an action pair, {apre, apost}. FQs use a set of frequency adverbs F , such as never,
sometimes, and always in the following template

FQ: “After apre , do you freq apost ?”.

For the reasons stated in Section 3.2.1, the use of frequency adverbs replaces
the numerical values of the model’s parameters, avoiding impractical queries
like “After apre, do you apost with probability equal 0.9?”

DQs are comparison-based queries that obtain the preferences of the user
with respect to a pair of actions {achoice1,achoice2} after the execution of another
action {apre}. DQs follow the template

DQ: “After apre , do you prefer to achoice1 or achoice2 ?”.

DQs expect the user to reply with one of the following answers: “Either of these
actions”, “achoice1”, “achoice2”, or “Neither of these actions”.
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These queries address the learning of the transition matrix T. These templates
were adapted to learn also the starting probabilities π (e.g., for FQs, “Do you
freq start with ai ?”).
As the querying process is interleaved with the teacher’s demonstration of the

task at hand, the choice of actions that can be placed in the query templates is
restricted. More specifically, the queries either target the previous as−1 and the
current as actions performed by the teacher (FQs and DQs about the past), or
at least the current action as in the apre slot (FQs and DQs about the future).
These constraints prevent context switches during the training, avoiding the
need for the teacher to consider other steps than the current, previous or next
step in order to answer the robot’s queries.

3.3.2 Learning from Demonstrations and Answers

Learning of the MC parameters is achieved by two means: the users’ demon-
strations and their answers to the robot queries. Both the actions belonging
to the demonstrations and the query-answer pairs 〈q, r〉 become available to
the robot in an incremental fashion, i.e., one by one, rather than in batches. To
allow for incremental learning of the MC parameters, we adopted a Bayesian
approach, using a Dirichlet-Categorical model over θ [128, Chapter 3]: Dirichlet
distributions Dir(·|α) act as the prior for the starting probabilities π and for each
row of the transition matrix T, modelled with Categorical distributions Cat(·|α).
Additionally, adopting a Bayesian approach allows for the handling of errors
possibly present in both the demonstrations and the user’s answers to the robot
queries, as each observation will impact the model being learned only through
the currently available priors. To update the model, each observation is, in fact,
combined with the prior distribution to compute the posterior distribution by
mean of the empirical counts (e.g., the number of times a certain action a j is
followed by another action ai). The current estimates of the MC parameters can
be obtained as the mean or the mode of the posterior distributions.

This update scheme is immediately applicable to demonstrations: as a demon-
stration is a sequence of actions, each of its action transitions can be directly
used to increase the matching empirical count. Information from the query-
answer pairs cannot, however, be directly included in the model. Instead, we
must compute the posterior distribution Dir(·|α, q, r) given the query-answer
pair 〈q, r〉 by bridging the probabilistic nature of the model update with the
discrete and linguistic nature of FQs and DQs.

Borrowing ideas from psychological studies on people’s perception of proba-
bilities [129, 130], we designed the membership functions Mfreq(p) :S1 → [0,1],
mapping the linguistic concept of each frequency adverb in F on the probability
simplex. Figure 3.2 shows examples of such membership functions: as an ex-
ample, highly probable events have high values of membership with Malways(p),
while unlikely events (low probability) score low values of Msometimes(p) and
high values of Mnever(p). Similarly, we designed the membership functions
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Figure 3.2. Membership Functions Mfreq(p) for three frequency adverbs. Adapted from Publica-
tion II.
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p(r|q) estimated using the current model. The query q∗ is then selected with

q∗ = argmin
q

ΔHq. (3.2)

3.3.4 Results and Discussion

In Publication II, we experimentally evaluated the proposed Active selection
strategy in simulation, comparing it to

1. a Passive strategy, learning only from demonstrations,

2. a Random strategy, learning from demonstrations and by asking queries
randomly selected from Q, and

3. a Threshold strategy, i.e., a variation of the Active method that avoids
making queries when ΔHq is lower than a manually tuned threshold φ.

As an in-depth analysis of the simulation is available in Publication II, it is
sufficient here to state that the proposed Active and Threshold strategies
outperformed the other methods, especially for a low demonstration count,
with no significant difference between these two strategies. The Threshold
strategy, however, consistently asked fewer questions, with 59% fewer queries
than the Active strategy during the first 10 demonstrations. While the tuning
of threshold φ is non-trivial, we believe the Threshold strategy to be preferable,
as it achieves results comparable to those of the Active strategy with fewer
queries. Chapter 4 further expands on this difference from the HRI perspective,
as the reduced number of queries of the Threshold strategy played a major role
in the user study.

The computational cost of the proposed methods represents their main disad-
vantage, as Equation 3.1 requires the simulation of the update for all possible
query-answer pairs 〈q, r〉. Consequently, the model update must be repeated
a number of times in the order of magnitude of O(|A|2) for DQs and O(|A||F |)
for FQs. Considering that the model update is not available in close form, we
cannot expect these methods to scale well, especially for a larger number of
actions. Nevertheless, in our simulation experiment and follow-up user study
with a set A of 9 actions and 3 frequency adverbs (|F | = 3), the query selection
for the Active and Threshold strategies took 4.2±0.2 s. This allowed for a
smooth interaction, as these computations were performed while the robot was
performing other non-computationally intensive but time-consuming actions,
such as verbal feedback on the teacher’s answers and action choices and various
body motions (e.g., nodding, shaking, pointing).

In summary, the framework presented in Publication II successfully integrated
LfD and AL approaches for the learning of high-level temporal task models. To
fully address the challenges of robot programming by novice users presented
in Chapter 1, the framework should integrate its high-level task modelling with a
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trajectory-level representation of the motions, necessary for the robot to perform
each discrete action. The robot would therefore require a suitable interface to
collect trajectory-level demonstrations, such as the passive interfaces presented
in Section 2.1.1. In Publication II, the actions that composed the temporal task
were known ahead of time, together with labels that verbally described them.
To drop this assumption while maintaining the proposed querying scheme,
the framework would require two extra components. First, a segmentation
mechanism to extract meaningful high-level actions from the trajectory-level
demonstrations would be needed [88, 89]. Second, the robot would require
interaction protocols to solve a symbol grounding problem [132], in order to
negotiate with the human teacher appropriate labels to verbally refer to each
action segmented from the trajectory-level demonstrations. We therefore see the
bridging of high-level task modelling with the trajectory-level nature of tasks as
an interesting and challenging problem for future research.

3.4 Active Learning for Robot EUP

As briefly discussed in Chapter 1, in Publication IV we tackled the tuning of
1-dimensional parameters for robot EUP actions. More specifically, we targeted
the tuning of parameters for which kinesthetic teaching does not provide an
intuitive or sufficiently reliable interface [42], such as the speed of point-to-point
linear motions or the force threshold that triggers the stopping condition of a
guarded motion. While kinesthetic teaching is regularly adopted in commercially
available EUP frameworks for the specification of the goal pose and via-points
of robot motions [36, 37, 38, 39], the parameters targeted in Publication IV
are often specified via GUI elements like sliders. To tune these parameters,
users often adopt a time consuming, trial-and-error strategy, where the tuned
robot action is performed several times while varying the parameter value. This
process becomes even more time consuming for novice users who may not know
what parameter values to try in order to complete the tuning as quickly as
possible (i.e., with the smallest possible number of robot action executions).

To address this problem, in Publication IV we proposed a method to aid the
tuning of such parameters by having the robot select which parameter values
to evaluate. The main contributions of Publication IV are the framing of the
parameter value search as an AL problem, where the robot collects feedback
from the user to estimate a range of feasible parameter values. We validated
our active tuning approach by integrating it into a plausible EUP framework for
a Panda robot manipulator, with a Domain Specific Language (DSL) composed
of five parametrized robot actions, such as linear motions, gripper actions and
synchronization primitives. This section presents the query design and the
query selection strategies proposed in this work.
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Figure 3.4. Comparison between fv(x), extracted from expert tuning for the Translation Speed
parameter of the Linear Motion action, and the resulting fmin(x) and fmax(x) (with
n = 2). Adapted from Publication IV.

3.4.1 Queries with Directional Answers

The goal of the tuning approach is to estimate, for each action’s parameter, a
range of feasible values f̂ = [l̂, û]. First, we assume to have a prior distribution
modelling the probability of parameter value v to assume a certain value x, with
p(v = x)∼ fv(x). This prior is task-agnostic and can reflect how parameters are
usually tuned by experts, or encapsulate safety regulations. Based on fv(x),
we compute two distributions, fmin(x) and fmax(x), i.e., the distributions of,
respectively, the sample minimum and sample maximum, as

p(l = x)∼ fmin(x)=n(1−Fv(x))n−1 fv(x),

p(u = x)∼ fmax(x)=nFv(x)n−1 fv(x),
(3.3)

with Fv(x) being the cumulative distribution function of fv(x). Figure 3.4
presents examples of these distributions for the translation speed of a linear
motion, with fv(x) extracted from programs authored by expert users.

With fmin(x) and fmax(x) acting as prior distributions for the bounds of the
feasible parameter range f̂ , the robot follows Algorithm 3 to select the param-
eter values to query. The robot evaluates each query q ∈Q (i.e., each possible
parameter value) and executes the parametrized action with selected value q∗.
Once the query receives an answer r from the user, the learner computes the
posteriors of both fmin(x) and fmax(x). Once the query budget b is spent, the
bounds l̂ and û are computed as the mode of fmin(x) and fmax(x), respectively.

While in Publication II a query is an actual question expressed in natural
language, in Publication IV a query is an action execution with a parameter
value selected by the robot. In particular, each action execution is essentially a
label query that uses the robot’s embodiment, as shown in Figure 3.5.

Given the 1-dimensional nature of the tuned parameters, the answers available
to the user are directional answers: after each action execution, the user can
express whether the selected parameter is acceptable or whether it should be
lower or higher. Allowing this kind of answers avoids the problem of negative
feedback presented in Section 3.2.1.

Similar to the membership functions presented in Section 3.3.2, directional
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Algorithm 3 Active Learning for Feasible Parameter Range Tuning
Input: Query pool Q, fmin(x) and fmax(x), Query budget b
Output: Estimated feasible range f̂ = [l̂, û]

1: while b > 0 do
2: for all values q ∈Q do
3: Sq ← compute query score [see Section 3.4.2]
4: end for
5: q∗ ← select query based on Sq [see Equation 3.5]
6: r∗ ← make selected query q∗ and wait for answer
7: update fmin(x), fmax(x) given 〈q∗, r∗〉
8: b ← b−1
9: end while

10: f̂ ← [argmaxx fmin(x), argmaxx fmax(x)]

answers are associated with filter functions that update the fmin(x) and the
fmax(x) according to the query-answer pair 〈q, r〉. While more details are avail-
able in Publication IV, Figure 3.6 exemplifies the update of fmin(x): after a query
q∗ is made and the direction answer “lower” is received, the associated filter
function λ−

φ,x0
(x) is used to compute the posterior distribution fmin(x|q∗, r∗).

3.4.2 Query Selection Strategies

For the query selection process, we used the Expected Divergence Maximization
method (ExpDiv), where the divergence between the prior and the expected
posterior over the fmin(x) and fmax(x) distributions is used to operationalize the
information gain brought by different queries. In particular, a score S·

q for each
query is computed as the expected divergence between the prior and posterior

(a) (b)
Query Interface

Figure 3.5. Setup (a) for Experiment 2 and 3 of Publication IV, with a Panda robot mounted on a
desk and the user tuning robot programs through the Active Tuning Interface (b).
Adapted from Publication IV.
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for both fmin(x) and fmax(x) as

S·
q = E

r
[JS(

post-query

f·(x|q, r),
pre-query

f·(x) )]

=
∑

r
p(r|q, f·(x))JS( f·(x|q, r), f·(x)),

(3.4)

where JS denotes the Jensen-Shannon Divergence [133]. Queries are then
selected as

q∗ = argmax
q

{Smin
q ,Smax

q }, (3.5)

i.e., the value q∗ that is expected to provide the most information to either
posterior distribution. The score presented in Equation 3.4 is conceptually
similar to that of Equation 3.1 used in Publication II. Both scores allow the
robot to reason on the current model by (i) predicting the user’s answer r and (ii)
evaluating the effect of the query on it. Similar to the active strategies presented
in Section 3.3.3, the ExpDiv strategy has a complexity of O(|Q|2). However,
as was the case in Publication II, the time required by the query selection is
negligible compared to other actions performed by the robot, i.e., executing
parametrized actions.

3.4.3 Results and Discussion

In Experiments 1 and 2 presented in Publication IV, we evaluated ExpDiv
against a Random baseline (with complexity O(1)) and Split, a simpler strategy
that selects q∗ by finding the value that “splits in half” either the current fmin(x)
or fmax(x) prior (with complexity O(|Q|)). This strategy behaves as Uncertainty
Sampling [54], where the most uncertain instance is queried regardless of the
information gain it is expected to provide. Alternatively, Split can be seen
as a weighted version of a binary search over the priors. While the reader
is again referred to Publication IV for a full analysis of Experiments 1 and
2, in short ExpDiv performed better than Random, while the differences
between ExpDiv and Split were negligible (despite Split being, in general, a
less powerful strategy).
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Figure 3.6. The posterior distribution fmin(x|q∗, r∗) is obtained by updating the prior fmin(x)
through λ−φ,x0

(x), after query q∗ and answer r∗ = “lower”. Adapted from Publication
IV.

49



Active Robot Learning from Humans: the Learning Perspective

To explore the usability of the proposed active tuning approach, we conducted
a user study where eight novice users tuned the parameters of a robot program.
We compared the tuning interface shown in Figure 3.5.b, embedding a version of
ExpDiv, against a standard EUP interface using GUI sliders, for the tuning of
a robot handover program. The study showed how the participants were able
with the active tuning interface to tune feasible parameter ranges that are closer
to the range programmed by experts. Furthermore, the tuning procedure with
the active tuning interface was faster than with the passive interface, with an
average of eight minutes against the 13 minutes of the passive interface.

While promising, the proposed tuning approach nevertheless has room for
improvement. Typically, EUP interfaces allow the user to decide which parame-
ters to tune and whether to tune several of them at the same time. Our active
approach, by contrast, tunes each action parameter separately, in sequence,
spending on each of them a fixed query budget b. One improvement to this strict
tuning scheme would be to have the AL algorithm decide on what parameters the
query budget b should be spent within the tuned action. This extra step would
require the query selection procedure of Algorithm 3 to simulate the update for
each parameter of the current action, increasing, in turn, the computational
costs. We nevertheless believe the computational costs to still be reasonable,
as the number of 1-dimensional tunable parameters per robot action is usually
small by design.1

Furthermore, by tuning each parameter separately, our approach does not
capture the possible correlations between parameters within the same action.
While the simultaneous tuning of multiple parameters is likely to further speed
up the tuning process, it would also require the modelling of the relationship
between an action’s parameters in the prior distributions fv(x), requiring, in
turn, more training data than the current model. Tuning multiple parameters at
the same time would also impact the query design. It is unclear whether users
would be able to discern the effects of different parameters on the displayed
robot action if their values were simultaneously changed. Consequently, it would
be interesting to study whether users would still be able to give directional
answers or if a simpler query design (e.g., binary label queries such as “was the
action execution acceptable?”) should be used instead.

The proposed tuning approach operated on a DSL modelled after commercially
available EUP frameworks, where parameters that cannot be specified via
kinesthetic teaching, such as motion speeds and thresholds, are usually specified
through GUI elements. Our approach can however tune parameters beyond the
one included in the adopted DSL, as long as appropriate methods to communicate
such parameters to the user are provided. As an example, a motion action whose
goal pose can be specified in different frames of reference (attached to relevant
objects in the environment) could be tuned as long as the robot can effectively
refer to these frames. The robot could, for example, directly communicate the

1In the proposed DSL, robot actions had either one or two tunable parameters, as
described in Table 1 of Publication IV.
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selected frame verbally or with pointing gestures, or indirectly communicate
it by performing the motion with respect to it (using the embodiment to make
the query, as discussed in Section 3.2.1). We therefore believe the design and
study of effective methods for AL robots to make more complex queries to be an
interesting avenue for future research.

3.5 Discussion

This chapter presented a brief overview of the AL literature for robot applica-
tions with humans-in-the-loop, along with the main contributions to the topic
from Publication II and Publication IV. While different in terms of applications
and adopted methods, both our studies on AL share the same motivation: to
allow robots to become an active part of the training process in order to deal
with the possibly suboptimal teaching of their human instructors. We focused,
in particular, on the problem of designing AL robots with queries that are under-
standable by humans yet informative for the chosen learning methods, showing
how interfacing humans and AL systems often adds extra layers of complexity
to the learning pipeline.

While the query designs adopted in Publication II and Publication IV clearly
took account of the human nature of the teachers, the query selection strategies
presented were only aimed at the typical AL goal, i.e., to efficiently learn with as
few questions as possible. These query selection strategies assume teachers to
be an ever-present, infallible source of information, often conveniently referred
to as oracles. Nevertheless, this assumption, surprisingly common in the AL
literature, is rarely met in real scenarios. The next chapter addresses this
issue and explores the interaction aspect of AL robots, presenting observations
from the user study of Publication II and the work of Publication III, where
we investigated the impact of different query selection strategies on human
teachers and their response times, error rates, and effort required to answer the
robot’s questions.
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4. Active Robot Learning from Humans:
the Interaction Perspective

Most research investigates AL in a traditional ML manner, focusing on the
learning performance given by, for example, different query types or query
selection strategies. An alternative is to investigate the training process of
AL as the interaction between two actors: the learner and the teacher. On an
abstract level, the learner is an autonomous system trying to solve a task in a
data-driven fashion by making queries to its labelling source, i.e., its teacher. In
practice, the nature of active learners varies widely: from the web application
scouting one’s music tastes with as few questions as possible, to the lawn mower
robot asking whether the tulips should be cut down or neatly avoided.

Analysing AL systems from the interaction perspective raises interesting
research questions about the role of the teacher in the training. As indicated
in the previous chapter, most AL research considers teachers to be oracles,
i.e., infallible and ever-present labelling sources. Nevertheless, recent work
has begun to consider teachers who are not oracles, developing AL approaches
that can handle noisy teachers [49], several disagreeing teachers [134] and
even teachers who are not always available [109]. Another line of research,
mostly conducted in the field of HRI, has investigated, instead, the effects of
AL robots on their teachers, with work analysing the impact of queries and
selection strategies on the quality of teaching [12, 44, 45, 46, 135] and people’s
perceptions of AL robots [21, 44, 46].

Following this line of research, in Publication II we conducted a user study to
investigate the effects of three query selection strategies on the teacher-learner
interaction and on the teachers’ perception of AL robots. We observed how
different queries and selection strategies can influence the training process and
the effort required by teachers. Based on the observations from this study and
the available literature [43, 44, 46, 136, 137], we hypothesized that standard
AL selection strategies may not be always optimal when interacting with real
teachers, i.e., teachers who can make mistakes while answering questions and
can become tired or distracted during the training process.

In Publication III, we therefore tested the effects of a traditional query se-
lection strategy on real teachers, studying how the ordering of queries in an
information-gathering problem can affect their error rates and response times.
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Inspired by the memory retrieval mechanism of the Adaptive Control of Thought–
Rational (ACT-R) model [55], we then proposed a non-performance-driven query
selection strategy that minimizes the difference between consecutive queries and
conducted a user study to compare it to the traditional strategy. This chapter
presents observations on the interactive nature of AL robots from the user study
of Publication II and, in greater depth, from the work of Publication III.

4.1 Interacting with Active Learning Robots

In Publication II, we conducted a user study (within-subject design) to inves-
tigate the three query selection strategies presented in Section 3.3.4, namely
the Active, Threshold, and Random strategies. During the interaction, 18
participants interacted with a NAO robot, Nemo. The participants taught the
robot the steps required for the preparation of sandwiches by (i) demonstrating
such steps and (ii) by answering the robot’s questions. The teaching, which
followed the procedure presented in Algorithm 2, involved the participants
showing each action required by the recipe. After each teacher action, the robot
asked a question q∗, selected using one of the three aforementioned strategies.
The teacher could either reply with one of the answers expected by the query
template (see Section 3.3.1) or with “I don’t know”, triggering no model update.

After receiving the answer r∗ to the selected query q∗, the robot provided
verbal feedback to the teacher, similar to the non-verbal reactions proposed
in [21]. In particular, if the obtained answer r∗ was the expected answer, i.e.,
r∗ = argmaxr p(r|q∗), the robot uttered confirmation expressions such as “I knew
it!” or “I was expecting that”. Otherwise, the robot replied with surprised
utterances such as “Oh really?” and “Good to know”.

After each training session with a selection strategy, the participants answered
the following 1–7 rating scale questions:

1. How well do you think Nemo learnt the recipe (in percent)? (1 = 0%, 4 =
50%, 7 = 100%)

2. While showing the recipe, was it clear to you if Nemo was learning the
recipe? (1 = Not clear at all, 7 = Extremely clear)

3. Were Nemo’s questions bothering or distracting you from your task? (1 =
Extremely distracting, 7 = Not bothering at all)

4. How easy was it to teach Nemo the recipe? (1 = Extremely difficult, 7 =
Extremely easy)

5. How in context were Nemo’s questions with respect to your recipe steps?
(1 = Completely out of context, 7 = Extremely in context)

Each question included an optional “Why? Please explain” question. Table 4.1
presents the descriptive statistics for the score of each questionnaire entry. As
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the reader can find the statistical analysis of the results in Publication II, this
section focuses on the main observations from the user study, separating the
effects of different query selection strategies in two categories: effects on the
teachers’ perception of the robot and effects on the teachers themselves.

4.1.1 Effects on the Teacher’s Perception of the Robot

While we expected the participants to identify the Random strategy as the
worst performing strategy, we did not expect the participants to find differences
between the performance of the Active and the Threshold strategies, as both
strategies operate on the same principle. Nevertheless, the Threshold strategy
was perceived as the best performing approach, with 12 participants preferring
it over the Active (4 preferences) and the Random (2 preferences) strategies.

Entering the study, we expected the participants to assess the robot’s learning
progress through the selected questions and the feedback to their answers. By
exposing current knowledge gaps, the queries act as a transparency mecha-
nism, indirectly exposing the inner working of the selection strategies and their
quality [21, 44]. The participants perceived the questions of the Active and
Threshold strategies as informative and clever, while the queries of the Ran-
dom strategy were described as random and irrelevant. However, surprisingly
few participants mentioned paying attention to the robot’s feedback to their
answers, questioning the usability of such an indirect transparency mechanism.

Further analysis of the participants’ feedback showed that the feature that
resulted in the Threshold strategy being the preferred strategy was its parsi-
monious use of questions. As the Threshold strategy asked an average of 29%
fewer questions than the Active and the Random strategies, the participants
interpreted the reduction of queries over time as a sign of learning and utilized
it to inform their decision about when to stop teaching. Since in this study the
participants could not test the robot’s knowledge with user-initiated queries as
in [21], the reduction in the number of queries made by the Threshold strategy
became the strongest indicator of progress and performance, thus negatively
affecting the participants’ perception of the Active and Random strategies.

The participants also identified patterns in the robot’s queries and interpreted
them in different ways. For example, the repetition of questions was seen by
some participants as a sign of poor learning, while other participants saw it as
tool for the robot to consolidate its knowledge. When the robot asked questions
about actions that were either yet to be performed by the user or simply unusual,
some participants interpreted this as a legitimate learning strategy, allowing the
robot to rule out options. These questions, particularly favoured by the Active
and Threshold strategies due to their maximization of information gain, were,
however, considered useless by other participants, who often commented that
the robot lacked common sense.

The participants’ attempts at interpreting the query selection strategies sug-
gest that people naturally want to understand how AL robots learn, and they
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Table 4.1. Questionnaire scores (1–7) for the query selection strategies: first quartile (Q1),
median, third quartile (Q3). The plot graphically compares the median ratings.
Adapted from Publication II.

Questionnaire scores Random Active Threshold

Performance (7 = best) 4,5.5,6 5,6,6 6,7,7

Transparency (7 = clearest) 3,5,6 5,5,6 6,6,7

Distraction (7 = least distracting) 3,3.5,5 2,4,5 4,5,5

Ease of teaching (7 = easiest) 2,4,5 2,4,5 5,5,6

Context (7 = most in context) 3,5,6 4,6,6 5,6,6

1 2 3 4 5 6 7 Performance

Transparency

Distraction

Ease of teaching

Context

Random

Active

Threshold

often do so by applying familiar learning patterns to the behaviours of robots.
However, these interpretations seldom align with the actual algorithmic rea-
soning or principle behind the robot’s choices and could cause problems related
to over-reliance and mistrust [13]. Chapter 5 builds on these observations and
further discusses the need for effective transparency mechanisms.

4.1.2 Effects on Teachers

The effects of the selection strategies on the teacher side of the interaction were
observed from the participants’ self-reported ease of teaching and distraction,
summarized in Table 4.1. The Threshold strategy was considered easier to
teach compared to the other two strategies, with no differences observed between
the Active and Random strategies. This, again, was a consequence of the abil-
ity of the Threshold strategy to avoid asking questions, with the participants
disliking the constant flow of questions produced by the other two strategies.

While no differences were observed regarding the Distraction score, seven par-
ticipants expressed a preference for the interaction scheme adopted in the study,
with the robot asking questions during the demonstration of the task. An equal
number of participants, however, suggested an alternative interaction scheme
with temporally separated queries and demonstrations to reduce distraction.
The preference for having two temporally distinct phases could also be linked
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to the desire of the teachers of AL robots to be in control of the interaction, as
observed in [44]. Nevertheless, we believe that, given the temporal nature of
the task, separating queries from demonstrations would make answering more
complicated for teachers, forcing them to recollect what had previously occurred
in order to answer the robot’s questions.

The participants answered “I don’t know” to only 1.6% of the robot’s questions,
with all three selection strategies obtaining a high Context score. While the
study did not compare different query designs, we believe these results to be a
good indicator of the success of the query design presented in Section 3.3.1.

Finally, we analysed the participants’ feedback for comments on specific types
of queries. The participants remarked on the tendency of the Active and
Threshold strategies (but not the Random strategy) to select questions that
expected a negative answer and that such queries were unintuitive and hard to
answer. This observation aligns with previous research on people’s bias toward
teaching through positive examples [43, 118].

In summary, the user study of Publication II helped reveal how AL robots, with
their queries and selection mechanisms, can influence their human teachers.
While self-reported measures from the participants were collected, the nature of
the study did not allow for the analysis of other measures, such as error rates,
response times, and training performance. Nevertheless, these observations,
together with the available literature [43, 44, 45, 46, 137], were instrumental
for the work of Publication III, presented in the next section.

4.2 Memory Effort-aware Active Learning

As already stressed in Section 3.1, the main advantage of AL systems lies in their
query efficiency, i.e., their ability to select what to learn from and consequently
reduce the required number of labelled samples. While AL’s query efficiency
is often, and reasonably, associated with a reduction of effort for the human
teacher [138, 139, 140], this claim has never been supported by a direct analysis
of the teacher’s workload. At the same time, research in HRI, including the work
of Publication II, has observed how human teachers can find the questions of AL
robots difficult to answer [43, 44, 46].

Research in the area of cost-effective AL has proposed methods that integrate
the concept of labelling cost into several selection strategies [136, 141, 142, 143].
The estimated time required to answer a query is most commonly used as a
proxy for the cost of a query, with works incorporating measures of labelling
effort for the specific cases of form filling [138] and image annotation [144].
While acknowledging the fact that some queries are harder to answer than
others, these works do not investigate the effects of traditional and cost-effective
selection strategies on the teacher’s workload. In Publication III, we challenged
the idea that the query efficiency of AL strategies is linked to a reduction of effort
for the teacher. The main contributions of Publication III are the proposal of a
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query selection strategy for an information gathering problem that takes into
account the flow of queries to support the teacher, and its comparison, by mean of
a user study, with a traditional AL strategy. In particular, we analysed the effects
of these strategies on teachers’ error rates, response times, and workload. This
section covers the problem statement, the proposed query selection strategies,
and the main results and observations from the user study of Publication III.

4.2.1 Problem Statement

To investigate the effects of different query selection strategies, we targeted a
simple information gathering problem where the agent must learn the value
of an attribute a for a set E = {e1, . . . , eN } of entities by making queries to a
human teacher. A set of categories C = {c1, . . . , cM} is provided to the learner,
along with the relevance wc,e of each c ∈ C for each e ∈ E . With this categorical
information and the assumption that entities belonging to the same category are
likely to share the same attribute value, asking a question qe,a about the value of
attribute a for entity e reveals more than just the correct attribute value. By
modelling the probability of observing attribute a given a category c ∈ C as

p(a = x|c)∼ fc,a(x|θc,a), (4.1)

with fc,a(x|θc,a) being a distribution suiting the nature of a, the teacher’s answer
r to qe,a can act as an observation for the estimation of fc,a(x|θc,a). Modelling the
probability p(a = x|c) allows the learner to make predictions about the unseen
entities through the categories C, computing the probability p(a = x|e) as

p(a = x|e)∼ fe,a(x)=
∑
c∈C

w̄c,e fc,a(x|θc,a), (4.2)

with fe,a(x) being a weighted mixture of fc,a(x) and w̄c,e the normalized category
relevances. While the interested reader can find more details about the learning
procedure in Publication III, it is important here to note how making predictions
about the attributes of unseen entities allows the adoption of AL query selection
strategies, as explained in Section 3.2.2.

For the simulation experiment and user study of Publication III, we designed
the learning scenario around the Animals with Attributes 2 (AwA2) dataset [145].
The dataset contains images of 50 different mammals and their description
using 85 semantic attributes. The aforementioned categorical information was,
instead, extracted by exploiting the hierarchical representation of WordNet,
a lexical database of English [146]. A total of 28 categories were extracted
from WordNet starting from the 50 AwA2 entities, forming the Entity-Category
Tree T , partially shown in Figure 4.1. In our learning scenario, the agent
learns about the attributes of these animals (representing the entity set E)
using the extracted categories C by selecting queries from a query pool Q.
Examples of queries the agent can ask are “Do lions have horns?” and “Do
giraffes eat meat?”. Although of little relevance to real world robotics problems,

58



Active Robot Learning from Humans: the Interaction Perspective

Bu alo

Bovid

Ruminant

...

Mammals

... Carnivore

FelineCanine

Dog

Fox

...

Wolf CatBig Cat

Lion Tiger

...
...

Chihuahua

Pinniped Mammal...

Walrus
Seal

Cattle

Cow
Ox

Sheep Antelope
1

2

43

1

4

2

3

1

2

3 4

i Classic queries
i Memory queries
i Hybrid queries

Category
Entity

Figure 4.1. Part of the Entity-Category tree T and representative query flow for each query
selection strategy. Adapted from Publication III. © 2019 IEEE.

the AwA2 learning scenario was chosen for three reasons. First, the familiar
and relatively easy topic of animal attributes allowed the participants of the
user study to comfortably act as teachers. Second, the availability of the ground
truth allowed for the analysis of the participants’ error rates, a key measure for
the study. Finally, the adoption of a well known dataset like AwA2 improved the
reproducibility of the work.

4.2.2 Query Selection Strategies

We addressed the aforementioned learning problem with three query selection
strategies: a Classic, a Memory, and a Hybrid strategy. The Classic strategy
used Uncertainty Sampling [54], selecting queries based on the entropy of their
current prediction as

Cq =H( fe,a(x)). (4.3)

In practice, the Classic strategy selects the query about which the current
model is the most unsure [24, Chapter 2]. Selecting the most uncertain query
in Q causes the Classic strategy to scatter its questions as far as possible on the
tree T , as shown by its representative query flow in Figure 4.1. In Publication
III, we hypothesized that the context switches caused by these efficient queries
would increase the effort required by the human teachers, causing them to
answer slowly and be prone to errors, consequently hindering the training
process.

We therefore proposed the Memory strategy, using a query selection that
is teacher-aware rather than performance-driven. Inspired by the declarative
memory model of ACT-R [55], we designed the Memory strategy to select
questions that minimize the distance between consecutive queries. This strategy
is based on the concept of associative strength between memory chunks, which
posits that chunks of memory that are frequently associated require less effort
to be retrieved [55, 147, 148]. Since we obviously lacked access to the true
associations of chunks in the teacher’s memory, we used the structure of T as
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an approximation of it. To select its queries, the Memory strategy therefore
maximizes

Mq = e−δd(e,p), (4.4)

where d(e, p) is the distance, defined as the number of edges in T , between the
entity e, target of query q, and the entity p, target of the previous query, with
δ being a scale parameter. The Memory strategy therefore groups its queries
using the structure of T , as shown in Figure 4.1.

Finally, we proposed a Hybrid strategy, a combination of the Classic and the
Memory strategies that maximizes

Hq =σCq + (1−σ)Mq, (4.5)

with σ ∈ [0,1] controlling the trade-off between the two strategies.
It is important to note that, from an AL perspective, the Memory strategy

is not optimal, as it trades information gain for a flow of questions that is, at
least based on the concept of associative strength, easier to answer. Indeed,
the simulation experiment of Publication III demonstrated how the Classic
strategy, unsurprisingly, outperforms the Memory strategy. We refer the reader
to Publication III for the analysis of the simulation, focusing here on the results
of the user study and on the effects of the three query selection strategies on the
error rates and response times of the participants.

4.2.3 User Study

In the user study of Publication III, 26 participants acted as teachers for Nemo,
a NAO robot embodying the three strategies described in Section 4.2.2 (within-
subject design). The robot, shown in Figure 4.2, asked the participants questions
which could be answered on a keyboard1 with “Yes”, “No” or “I don’t know”.
In particular, each participant answered questions about six attributes from
the AwA2 dataset, with two attributes for each strategy following the scheme
of Table 4.2. The training for each attribute lasted 40 seconds, allowing the
participants to answer an average of 15 queries.

Our hypotheses entering the user study were that the Memory strategy
would allow the participants to answer faster and with less errors compared
to the Classic strategy. Furthermore, we expected the Classic strategy to
require more mental effort from the teacher compared to the Memory strategy.
Finally, we expected the Hybrid strategy (with σ manually set to 0.8) to obtain
intermediate results with respect to the other two strategies. To test these
hypotheses, we logged

1. the response times, i.e., the time required to answer a question,

1We chose to use a keyboard as the input device instead of more sophisticated interfaces,
such as voice recognition, in order to reliably observe the small differences in response
time.
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Figure 4.2. Experimental setup and example of question, as shown on the screen. Adapted
from Publication III. © 2019 IEEE.

Table 4.2. Study design from Publication III, with the queried AwA2 attributes. Adapted
from Publication III. © 2019 IEEE.

Session 1 Session 2 Session 3

Visual attributes

(physical features)

Do ___

have paws?

Do ___

have horns?

Do ___

have claws?

Non-visual attributes

(diet)

Do ___ prefer

to eat fish?

Do ___ prefer

to eat meat?

Are ___

herbivore?

2. the selected queries and the participants’ answers used to compute the
participants’ error rates.

After the session with each strategy, we administered the RAW NASA Task Load
Index (NASA TLX) questionnaire [149] and a session questionnaire with the
following 3 Likert statements (1 = completely disagree, 7 = completely agree):

1. The flow of Nemo’s questions felt natural,

2. Nemo’s strategy made my job as teacher easy,

3. Nemo’s strategy was good for its learning.

Each statement included an optional “Why? Please explain” question.

4.2.4 Results and Discussion

The results of the user study, summarized in Table 4.3, did not completely align
with the expectations presented in Section 4.2.3. Surprisingly, we observed
the fastest response times with the Hybrid strategy, with an average of 0.73 s
against the 0.85 s and the 0.90 s of the Classic and the Memory strategies
respectively. The Hybrid strategy also allowed the participants to make less
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Table 4.3. Results from the user study for each query selection strategy. Mean values of response
times, error rates, and prediction percentages. Median of the NASA TLX scores. The
reader is referred to Publication III for a complete statistical analysis of the results.
Adapted from Publication III. © 2019 IEEE.

Classic Memory Hybrid

Response time (RT) [s] 0.85 0.90 0.73

RT with visual attributes [s] 0.80 0.86 0.70

RT with non-visual attributes [s] 0.91 0.96 0.78

Error Rate 21.4% 19.5% 11.4%

Prediction Percentage 81.0% 51.4% 74.1%

Prediction Percentage with oracles 89.4% 55.6% 77.5%

NASA TLX scores Classic Memory Hybrid

Mental Demand 6.5 10.5 6.0

Physical Demand 1.0 1.0 1.0

Temporal Demand 6.0 5.5 5.0

Performance 6.5 9.5 5.0

Effort 6.5 8.5 6.0

Frustration 4.0 5.0 5.0

mistakes, with only 11.4% of its questions answered incorrectly. By contrast,
with the Classic and the Memory strategies, the participants made approxi-
mately double the number of errors (error rates of 21.4% and 19.5% respectively).
However, the high error rate observed for the Classic strategy did not prevent
it from obtaining the highest prediction percentage,2 with an average of 81.0%
correct predictions. Despite the lower error rate, the Hybrid strategy had a
prediction rate of 74.1%, followed by the expected poor performance of the Mem-
ory strategy, with 51.4% correct predictions. To better understand the impact of
the participants’ errors, Table 4.3 shows also the prediction percentage in the
hypothetical case of infallible users. While the Classic strategy still performed
the best, it was also the strategy that lost the most performance (8.4%) due to
participant errors.

While we observed no significant differences for the scores of the session ques-
tionnaire and for most of the NASA TLX scores, the participants feedback helped
us investigate possible explanations for the response times and error rates. In
accordance with the reasoning presented in Section 4.2.2, the participants com-
mented on how the Classic strategy seemed to ask random questions and that
this made their teaching stressful, unpredictable, and more mentally demanding.

2The prediction percentage is the percentage of not queried entities for which the
strategy can correctly guess the attribute at the end of the training session.
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The participants also recognized that the Memory strategy used categories to
group its queries, and remarked on how this made the flow of questions natural
and easier to answer. A recurring comment about the Memory strategy was
that participants took advantage of its use of categories to anticipate future
questions and related answers. However, this predictability potentially caused
the participants to engage in a sort of autopilot, answering mechanically the
robot’s questions, or simply become bored by similar questions, lowering their
attention and causing the unexpectedly high error rates and response times.
As with the Memory strategy, the participants described the questions of the
Hybrid strategy as easy to answer thanks to the grouping in categories. While
some participants also mentioned the ease of anticipating future questions for
the Hybrid strategy, one participant commented on how the slightly less pre-
dictable flow of queries made him more attentive (“The flow seemed natural, but
the slight variation of questions kept me more awake”), a possible explanation for
the lowest error rate and the fastest response time of the Hybrid strategy. This
observation is in line with the findings of [150], where a robot asking off-topic
questions was perceived as easier and more fun to work with by its users.

In summary, the user study of Publication III showed how traditional query
selection strategies focused solely on maximizing information gain such as
the Classic strategy, can make the training process difficult and stressful for
human teachers, causing them to make more mistakes and answer at slower
paces. The study also showed how the proposed Memory strategy, trading
performance for ease of teaching, was a poor alternative, as it failed to speed up
the training with its simple queries, and moreover frustrated the participants
with its poor performance. In other words, the Memory strategy minimized the
effort required to retrieve information from declarative memory but failed to
account for other aspects of the interaction, such as frustration or user attention.
This observation supports a design recommendation made in [44]: AL robots
should avoid asking uninformative or unnecessary questions, as they could
weaken the teacher’s trust in the utility of answering them.

While in our study the Hybrid strategy overcame the limitations of its two
components and yielded overall good results, more research is required on
the factors that influence the interaction between AL robots and their human
teachers. A better understanding of the training process would allow for new
learning mechanisms that adapt to the preferences of the human teachers and
their current state (e.g., their tiredness or task expertise). In summary, while
the experimental setup of Publication III is of little relevance to the real world
robotics problems discussed in Chapter 1, we believe that the presented results
can offer useful insights for the design of interactive robots and motivate future
research on the actual usability of ML approaches for cases where real users are
integral part of the learning loop.
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4.3 Discussion

This chapter focused on the interaction aspect of AL robots, presenting the
user studies of Publication II and Publication III. After observing how query
selection strategies can affect the teacher side of the interaction, Publication
III explored the concept of AL robots whose goal is not to maximize information
gain but to ease the training process for their human teachers. In the user
study, we nevertheless observed how neither of the two extremes, the Classic
and the Memory strategies, benefited the teacher during the training process.
These results suggest that a good balance of features (e.g., ease of teaching,
performance, and predictability) should be considered when designing AL robots,
opening interesting avenues for future research on how to find this balance and
identify the aspects of the training process that can perturb it.

In Publication II, we observed how human teachers naturally attempt to
understand the decision making of learning robots. The transparency offered
by the robot’s queries and the feedback to the teachers’ answers was however
too indirect, resulting in the participants using other features to form their
own mental models of the robot’s capabilities. Leaving the interpretation of
robots’ capabilities and limitations to the guesswork of potentially novice users
is, however, a dangerous path to follow, as misalignments and discrepancies
between the robot’s actual capabilities and the users’ mental models of those
abilities can result in over-reliance and mistrust [13]. The next chapter explores
the topic of robot transparency and presents the work of Publication V on the
autonomous generation of explanations for robot policies.
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5. Robot Transparency through Policy
Explanation

As argued in Chapter 1, the teaching of robots by human teachers should be
considered a collaborative task, with the accurate sharing of knowledge, beliefs,
and suppositions between the involved actors – in a word, transparency – being
key to successful collaboration. Theodorou et al. characterize transparency for
robotic systems as a set of mechanisms for reporting reliability and exposing un-
expected behaviour and decision making [56]. Lyons describes several facets of
robot transparency from an HRI perspective, arguing that transparency should
target not only the robot but the interaction as a whole at different levels [13].
The previous chapters already hinted at the topic of transparency by presenting
how the inner working of AL robots can be exposed either through their queries,
indirectly revealing current knowledge gaps or through purposely devised mech-
anisms, such as the answer feedback adopted in Publication II. Furthermore, it
was shown how human teachers naturally seek to understand learning robots
but will possibly do so by using irrelevant aspects of the interaction if inadequate
or ineffective transparency mechanisms are offered to them.

While difficult to achieve due to the substantial differences between humans
and robots, transparency is of paramount importance, as it can help users trust
robots and rely on them only when appropriate [58, 59]. As stricter regulations
are imposed on the accountability, safety, and fairness of not only robots but
autonomous systems in general [62, 151, 152] and as the popularity of black-
box approaches continues to rise, the urgent need for Explainable Artificial
Intelligence (XAI) and Interpretable Machine Learning (IML) is becoming clear
[30, 60, 61, 63]. In order to increase the transparency of robots for their novice
users, in Publication V we proposed a policy explanation method that answers
“why” questions [153], describing in natural language how the current situation
influenced the decision of which action to take. This model-agnostic method
aims to provide local explanations that are (i) robust to small variations in
the policy and (ii) focused on the variables that truly impacted the policy’s
decision. This chapter presents the working principles behind the proposed
method, along with the main observations from the user study of Publication
V, where we investigated the effect of the generated explanations on the user’s
understanding of robot policies.
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5.1 Focused and Robust Policy Explanations

While the philosophical debate on what constitutes a good explanation is still
open [154], in Publication V we focused solely on explanations that answer
why a system took a particular action, i.e., what policy the system followed
[153, 155]. When generating such explanations, there is a tension between
two characteristics: interpretability and completeness [30]. Interpretability is
the ability of an explanation to be understood by humans. Completeness, also
referred to as fidelity [156], is instead the ability of an explanation to accurately
describe the underlying system. The more an explanation is complete, the larger
is the number of situations in which the system’s behaviour will be correctly
predicted based on the explanation. While both are desirable, these two char-
acteristics are difficult to embed simultaneously in an explanation.1 Complete
explanations can quickly become too complex to be interpretable: listing all the
weights of a neural network is an example of a complete explanation that is,
however, impossible for humans to understand. Furthermore, explanations that
summarize entire policies may also suffer from this problem [157]. Vice versa,
skewing explanations towards interpretability may oversimplify the description
of the underlying decision making process, hindering the user’s ability to build a
faithful mental model of it. Publication V uses local explanations, i.e., explana-
tions that focus only on a single action or decision instead of the whole policy,
producing interpretable explanations without oversimplifying the underlying
decision making process.

Given a stochastic policy π(x) : X → SM defined on a multidimensional con-
tinuous state space X (being a closed subset of RN ) with a discrete action set
A= {a1, . . . ,aM}, a comprehensive explanation for action a taken while the system
was in state x follows the template

The system performed action a because d0 was γ∗0 and d1 was γ∗1 and
. . . and dN−1 was γ∗N−1 ,

where di is a natural language label of the i-th dimension in X . Following
the same reasoning adopted for the design of queries in Section 3.3.1, the
numerical value of each dimension di of current state x is replaced in the
explanation by a natural language descriptor γ∗i , such as fast and slow. These
descriptors are selected based on membership functions εi(xi) that map the
relevance of each descriptor over the dimension di. Figure 5.1.b shows three
membership functions ε0(x0), mapping the relevance of three descriptors (low,
medium, and high) over the dimension d0. In practical terms, comprehensive
explanations describe current state x in a human-friendly manner to expose
what situation made the system take action a, including every dimension of the
state space. For high-dimensional state spaces, comprehensive explanations

1A parallel can be drawn with the trade-off between completeness and interpretability
of explanations and the design requirements of AL queries described in Section 3.2.1.
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can therefore quickly become long and, consequently, difficult to understand.
Moreover, comprehensive explanations can also be overly specific, including
dimensions that did not impact the choice of the policy.

To address these limitations, in Publication V we proposed a model-agnostic
method that generates local explanations focused on the relevant dimensions of
the state space. Instead of requiring policies to be modelled as (or reducible to)
Markov Decision Processes (MDPs) [157, 158] or Partially Observable Markov
Decision Processes (POMDPs) [159], the proposed method does not rely on a
particular policy encoding, requiring only the policy to be evaluated at sampled
locations in the state space to determine the relevant dimensions. The pro-
posed method is analogous to Local Interpretable Model-agnostic Explanations
(LIME) [156], a model-agnostic method that produces non-verbal explanations
for image and text classification models. Methods based on sampling, such as
LIME, have nevertheless been shown to be unstable, i.e., they generate different
explanations for small changes in the policy’s input [160]. Based on four mea-
sures computed by sampling the state space, the proposed method can exclude
dimensions from the explanation where the policy is locally unstable or the
verbal descriptors used to describe it are locally ambiguous.

5.1.1 Dimension Selection

For generating a focused and robust explanation for a state-action pair 〈x,a〉,
the following cases should be avoided. First, an explanation should not be overly
specific, that is it should exclude dimensions that did not impact the action
selection (lack of relevance). Furthermore, an explanation should exclude a
dimension if small changes along such dimension change the policy’s output
(lack of policy stability). Similarly, an explanation should exclude dimensions of
current state x that cannot be reliably described with the available descriptors
(lack of state describability). Finally, explanations about areas of the state space
described by a single descriptor that lead to multiple actions should be avoided
(lack of consistency).

To avoid these four cases, the proposed method computes four measures for
each dimension: local measures smsr and dmsr to guarantee, respectively, sta-
bility and describability, and global measures cmsr and rmsr to guarantee, re-
spectively, consistency and relevance. Local and global measures differ in the
sampling procedure used to compute them. For local measures, v states are
uniformly sampled in a hyper-sphere of radius ρ around the explained state
x. For global measures, the sampling is instead dimension-specific: for each
dimension di, w values of di are sampled while keeping the rest of the dimen-
sions’ values at the value of current state x. While allowing the explanation
of black-box models, the sampling procedure exposes the method to the curse
of dimensionality: as the number of dimensions of the state space increases,
the number of samples v and w required to obtain good estimates of the four
measures increases as well.
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Figure 5.1. Local measures of stability and describability for dimension d0. Adapted from Publi-
cation V. © 2019 IEEE.

While the reader is referred to Publication V for the details of the computation
of the four measures, their working principle is summarized here with the
aid of an example: a deterministic policy with two actions defined on a 2-
dimensional state space. As shown in Figure 5.1.a, areas of the state space close
to the policy boundary are assigned low values of stability score smsr. Similarly,
in Figure 5.1.b the describability measure dmsr for dimension d0 is low for states
where the available descriptors overlap. It is worth noting how dmsr would be
low also in areas of the state space where none of the membership functions of
the available descriptors are high. In other words, areas of the state space that
cannot be described with the available vocabulary of descriptors are assigned a
low describability measure dmsr.

Figure 5.2.a shows the consistency measure cmsr for dimension d0. For values
of d1 between 0.8 and 1, the descriptor high of d0 describes areas of the state
space that lead to different actions. These areas are correctly assigned a low
consistency measure cmsr. Finally, Figure 5.2.b shows the relevance measure
rmsr for dimension d0. For values of d1 lower than 0.6, any value of d0 will
result in action a1 being taken, i.e., d0 is not relevant for the choice of action:
this is captured by low values of rmsr in that area of the state space.

With the four measures computed for each dimension of the state space, the
decision about which dimension to include in the explanation is performed
by comparing each measure with suitable thresholds. In Publication V, we
excluded a dimension from an explanation if any of its measures was lower
than a manually defined threshold η= 0.6. Figure 5.3 illustrates the inclusion
in the explanations of dimensions d0 and d1 in different areas of the state
space, with four states marked by circled numbers. In state 1 , the generated
explanation is “The system took action a2 because d0 was medium and d1

was fast”. In state 2 , instead, dimension d0 is excluded because it was not

68



Robot Transparency through Policy Explanation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d0

d
1

Policy boundary

Descriptor boundary

(a) Consistency cmsr along d0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d0

d
1

Policy boundary

0

0.2

0.4

0.6

0.8

1

(b) Relevance rmsr along d0

Figure 5.2. Global measures of consistency and relevance for dimension d0. Adapted from Publi-
cation V. © 2019 IEEE.

1

2

3

4

Low Medium High

S
lo
w

F
a
st

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d0

d
1

Descriptor boundary

Policy boundary

No explanation

Explanation using d0

Explanation using d1

Explanation using d0 and d1
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relevant to the action selection, generating “The system took action a1 because
d1 was slow” as an explanation. Similarly, in state 3 , d1 is the excluded
dimensions, and the generated explanation is “The system took action a1 because
d0 was high”. The method also avoids explanations in proximity to the policy
boundary and the descriptors boundaries, avoiding issues related to the lack
of robustness [160]. Finally, for state 4 , no explanation is generated, as both
dimensions d0 and d1 are individually deemed irrelevant by the rmsr measure,
given the particular shape of the policy boundary. This case raises an interesting
question: Can combinations of individually irrelevant dimensions be relevant
for an explanation? While not covered by the proposed method, we believe this
case to be worth further investigation.

While the example above demonstrates the ability of the proposed method
to generate explanations for black-box models, it is nevertheless difficult to
perform a rigorous evaluation of the method and its numerous parameters. This
is because the quality of an explanation can be ultimately evaluated only by
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Figure 5.4. User study scenario: a Mars rover exposes to the user (1) its state space x through
bar indicators and verbal descriptors, (2) action a selected by its policy, and (3) a
Focused explanation of the current state-action pair 〈x,a〉, using only two of the
five dimensions of the robot’s state space. Adapted from Publication V. © 2019 IEEE

observing how it helps its human recipients, allowing them, for example, to
better predict the actions of the explained system. In Publication V, we therefore
evaluated the usability of the proposed method with a user study utilizing
manually tuned thresholds and sampling parameters, leaving their automatic
tuning to future work.

5.1.2 User Study

The user study presented in Publication V investigated the usability of the
proposed method, comparing its Focused explanations to the Comprehensive
explanations presented at the beginning of Section 5.1. In this study, 18 partici-
pants interacted with two simulated rovers (a Mars and a Moon rover) through
the GUI shown in Figure 5.4, learning their policy for a space exploration sce-
nario.2 The rovers’ policy was encoded as a decision tree, with a 5-dimensional
state space and five possible actions. For both policies of the two rovers, one
dimension was deliberately made irrelevant (i.e., its value never impacted the
choice of action). The Comprehensive explanations included all dimensions,
using the descriptors shown in Figure 5.4. By contrast, the Focused explana-
tions included up to two dimensions, selected as presented in Section 5.1.1 (the
same threshold, η= 0.6, was used).

Each participant interacted with both rovers (within-subject design) in two
distinct phases: a learning phase and a testing phase. During the learning
phase, a set of 25 state-action pairs was shown to the participants, with each
pair complemented with either a Focused or a Comprehensive explanation.

2The scenario was purposely designed to be unusual for the participants, after we
observed how, in a pilot study with a faulty vacuum cleaner robot, the participants
would disregard the robot’s explanations and trust their own understanding of the
rather common home appliance.
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During the testing phase, the participants were required to select the rover’s
actions for a set of 11 states using their understanding of the policy obtained from
the learning phase or, alternatively, express their inability to do so (answering
“I don’t know”).

The participants’ choices during the testing phase were logged and compared
to the ground truth provided by the policies, allowing the operationalization of
the participants’ understanding of the rovers’ policies as a percentage of the
state-action pairs correctly specified. The participants were also asked to specify
which of the dimensions they thought irrelevant, in order to investigate the
impact of the two types of explanations on the participants’ ability to recognize
the policies’ irrelevant dimensions. While the interested reader can find a more
in-depth analysis of the study in Publication V, this section focuses on these two
aspects of the study.

We hypothesized that Focused explanations would allow the participants to
gain a better understanding of the rovers’ policies and therefore obtain a higher
percentage of correct actions in the testing phase compared to Comprehensive
explanations. With Focused explanations, the participants answered correctly
to 50.5% of the queried states. With Comprehensive explanations, the per-
centage of correct answers was 49.0%, with no statistically significant difference
observed between methods. The number of “I don’t know” answers during the
test was, however, extremely low, with only five such answers out of 198 queries
states with Focused explanations and 12 with Comprehensive explanations.
While the percentages of correct answers are reasonably high (especially con-
sidering the relatively short learning phase), these results indicate that the
explanations may have inflated the participants’ self-assessed understanding
of the policies. This observation suggests that researchers should be aware
that explanations can also be a tool of deception, used, intentionally or not, to
persuade users that they have a good understanding of the explained system
[57, 161].

Figure 5.5 summarizes the results for the participants’ ability to identify the
irrelevant dimension in the rovers’ policies. With the help of Focused expla-
nations, 13 out of 18 participants correctly identified the irrelevant dimension.
With Comprehensive explanations, however, only two participants correctly
recognized the irrelevant dimension, with the remainder either selecting the
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wrong dimension (10) or listing additional dimensions together with the correct
one (6). Thus, while no differences were observed for the percentages of correct
actions during the testing phase, the proposed Focused explanations allowed
the participants to more reliably identify the irrelevant dimension – a result
in line with the observations of [158]. This advantage of Focused over Com-
prehensive explanations, already noticeable with the rovers’ 5-dimensional
state spaces, is likely to be of even greater relevance with more complex policies,
where Comprehensive explanations would be cluttered by a larger number of
irrelevant dimensions.

At the end of the study, the participants were given the possibility to describe
their concept of an ideal explanation. Four participants described their ideal
explanation as short, focused and clear – an observation in line with human
bias for simpler explanations [30, 161]. Three participants stressed instead the
importance of the order used to present the information in an explanation. These
participants’ preferences were met by the proposed Focused explanations, with
the four measures used to sort the relevant dimensions and omit the irrelevant
ones. Finally, while both Focused and Comprehensive explanations expose
the state-action pairing of the policy, six participants expected semantic informa-
tion about the logic used to encode the policy itself. Using the explanation shown
in Figure 5.4 as an example, the explanation would need to be augmented to “I
moved because the Battery Level was high, and I therefore don’t risk running
out of battery power and the Ground Quality is low and my goal is to collect
high quality samples”. Including such information poses serious challenges to
the automatic generation of explanations. In [158], Elizalde et al. proposed
augmenting explanations with information extracted from a hand-coded knowl-
edge base of relations between variables, components, and procedures of the
explained system. However, such detailed semantic information may not be
always available, especially if the policy is learned from data or exploration.
Nonetheless, it would be interesting to study how the goals pursued during
training (for example, the maximised objective function) could be explained to
the user. For example, an RL agent could augment explanations of its behaviour
by reporting which terms of the reward function were the most relevant for the
decision in question.

5.2 Discussion

After introducing the concept of transparency for autonomous systems and
emphasizing its importance in the light of the present popularity of black-box
models, this chapter presented the method proposed in Publication V for the
generation of focused and robust local explanations. While in this work explana-
tion generation was motivated by the need for novice users to understand and
collaborate with their robots, explanations can also be a tool for the designers of
black-box models, helping them debug their models [156, 162], trace the influ-
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ence of training data on models’ decisions [163], assess algorithmic fairness [164],
and provide accountability [165]. The intended use and target audience of an ex-
planation should therefore inform the design of explanation methods, especially
regarding the trade-off between completeness and interpretability. In Publica-
tion V, local explanations were preferred over global explanations because of
their ability to produce concise explanations by locally approximating the policy.
The main issue with local explanation methods lies, however, in the difficult
definition of what is local [151], circumvented in the proposed method by manu-
ally tuning the parameters of the sampling process. A promising alternative to
local explanations are counterfactual explanations [151, 166], i.e., explanations
that, instead of exposing the relevant dimensions behind a decision, present
an actionable perturbation of the dimensions that causes the policy to output
a different decision (e.g., “The system took a1 because d1 was 30. If d1 was
45, however, it would have taken a2”). Similarly, the intended use and target
audience should influence the choice of medium used to convey the explanation.
While this chapter focused on explanations expressed in natural language, such
as those adopted in Publication V and related works [158, 157], explanations can
also be visual, highlighting what areas or features of an input image influenced
the model’s decision [156, 167, 168]. As for the design of AL queries discussed
in Section 3.2.1, the embodiment of robots can also be leveraged as an expla-
nation medium to efficiently communicate robots’ goals, capabilities [169, 170],
and inabilities [20] to their users.

While the user study of Publication V focused on the amount and quality of the
information included in an explanation, the proposed method can also detect the
robustness of an explanation and abstain from explaining when small changes
in the state space change the policy output or when no adequate descriptor is
available. However, simply avoiding explaining is unlikely to be sufficient for
most use cases. At the very least, ways to expose the reasons behind a non-
explanation should be devised. The four measures presented in Section 5.1.1
could be used to explain to the user why no explanation was generated (e.g., “I did
not explain because I cannot describe the current situation with my vocabulary”),
potentially triggering recovery actions by the user [171, 172]. While avoiding
explanations can potentially help users form a faithful mental model of the
policy, this ability is nevertheless likely to heavily influence the users’ trust in
the explained system. We therefore believe that research should continue to
investigate the efficacy of explanation methods in close relation with their effect
on their human recipients.
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6. Conclusions

Pursuing the goal of providing programmability and adaptability to robots,
this dissertation presented a suite of interactive methods aimed at robots that
learn from human teachers. First, the LfD approach of Publication I was
presented for the programming of in-contact tasks, enabling, through the use of
demonstrations collected via kinesthetic teaching, the encoding of force profiles
that are otherwise difficult to specify in declarative terms. When discussing the
weaknesses of LfD approaches, the unidirectionality of the flow of information
during the training process was identified as the most relevant for the case of
novice users. To allow robots to participate in the training process in a more
meaningful way, we therefore applied the AL paradigm to two robot learning
scenarios: for the learning of temporal task models in Publication II and for the
tuning of action parameters in a EUP framework in Publication IV. A crucial
trade-off was explored in the query design of both works, with queries needing
to be understandable and answerable by human teachers while allowing the
training of the underlying model. Given the close interaction required between
AL robots and their human teachers, the usability of the proposed methods
was further evaluated with user studies. Comparing several query selection
strategies, we observed how traditional strategies aiming solely at learning
performance can negatively impact human teachers, raising their error rates and
response times. The memory effort-aware strategy proposed in Publication III
represents a first attempt at including teacher-related variables in the selection
of queries. While the proposed strategy did not yield the expected results, it
revealed how other aspects of the teacher-learner interaction, such as attention
and boredom, have major effects on user perception and the usability of AL
robots and, thus, should be further studied. Analysis of the users’ perception
of learning robots revealed the importance of transparency mechanisms for the
success of the training process. The research in Publication V partially addressed
this transparency issue, contributing to the rapidly expanding literature on XAI
with a model-agnostic policy explanation method that generates robust and
focused explanations expressed in natural language.

Within the development of AL robots, this dissertation placed great empha-
sis on the design of queries. In contrast to classification problems where the
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standard query template “Does this sample belong to that class?” can be often
effortlessly applied, the nature of the problems addressed here raised interesting
challenges for query design. To handle the probabilistic and temporal nature of
the model learned in Publication II, novel query types were proposed, together
with the use of membership functions connecting the user’s answers expressed
in natural language with the underlying learning process. Similarly, using the
robot’s embodiment to ask questions as employed in Publication IV avoided ex-
posing the numerical values of the tuned parameters directly to the user. While
the presented solutions are problem-specific, we believe the principles observed
in the design of these queries to be relevant not only for AL applications but, in
general, for interactive learning methods that must balance between usability
and performance.

Even though applying the aforementioned principles will produce learning
methods that can be used effectively by novice users, the strengths and weak-
nesses of each learning paradigm will remain. We therefore believe that robots
should support multiple learning paradigms when possible in order to leverage
the strengths of each paradigm and offer teachers the most suitable channel
at any one time. While the work of Publication II successfully integrated the
LfD and AL paradigms, the structure of the learning process did not allow the
participants to choose their preferred teaching method. Studying the integra-
tion of different input modalities while allowing the teacher to choose which
modality to utilize would answer interesting questions about the efficacy of
different paradigms either at distinct stages of the training process or in relation
to the expertise of teachers. It would be also interesting to study the extent to
which users adopt human teaching strategies, such as scaffolding and attention
direction, and how these relate to the teaching tools made available to them.

This dissertation presented several studies where novice users taught AL
robots by answering different types of questions. To properly study the usability
of different query selection strategies and query designs, the interaction between
robots and end-users was purposely limited to the training session. Thus, the
study participants did not interact with the robot after the training session and,
as a result, did not reap the benefits of their teaching by, for example, working
alongside the robot or supervising its activities. We believe that, in a more
realistic scenario, users would engage with robots in a more iterative manner,
with training sessions interleaved with exploratory deployment sessions to test
the current capabilities of the robot. Studying robot learning in both its training
and deployment aspects would provide a more faithful depiction of the problem,
leading to a deeper understanding of the interaction aspects already explored
in Publication II and Publication III.

Adopting this holistic view of robot learning would allow researchers to study
not only whether novice users can teach robots but also whether they can evalu-
ate robot capabilities. Moreover, this would reveal the tools that robots should
offer to assist such evaluation, informing, in turn, the development of trans-
parency mechanisms that allow end-users to debug their learning robots. As
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novice users cannot be expected to program robots in a traditional manner,
robots should not be required to effectively explain the intricacies of their learn-
ing methods to users with no understanding of ML. Explanation methods like
the one presented in Publication V could, however, be used to expose what is
currently being learned, aiding the answering of questions such as “Is my robot
making progress?”, “Can my robot do this at the moment?”, and “When should I
stop training my robot?” Similarly to the training phase, a strong case can be
made for the testing phase being bidirectional. Robot-initiated transparency
mechanisms, such as explanations, expressions of inability, and requests of help,
should be paired with user-initiated mechanisms that allow, for example, users
to ask their robots questions or test particular skills.

This dissertation discussed interactive robot learning with humans-in-the-loop,
with a focus on the interaction established between its actors. While this work
was motivated by the fact that robots can not be programmed to face every
situation out-of-the-box, it is nevertheless clear that the robots of the future can
not realistically learn everything after deployment. Just as it is unreasonable to
expect the average computer user to be able or willing to train their email-filter
to reliably detect spam, we can not expect robots to learn entirely from their
end-users how to grasp objects or navigate in buildings. We believe, however,
that service robots should be equipped with a suite of basic capabilities that
can be adapted and incrementally refined, after deployment, by their end-users,
in order to be valuable and cost-effective. This dissertation, with the proposed
learning methods and their evaluation with human teachers, contributes to this
challenging long-term goal.
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Errata

Publication I

At the end of Section 3.A, the correct definition of the quaternion representation of the rotational

velocity is qω ≡ e
1
2 τq̇. The correct definition was used in the implementation.
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