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The thermopower of mesoscopic normal metal/superconductor structures has
been measured at low temperatures. Effect of supercurrent present in normal
part of the structure was studied in two cases: when it was created by applied
external magnetic field and when it was applied directly using extra super-
conducting electrodes. Temperature and magnetic field dependencies of ther-
mopower are compared to the numerical simulations based on the quasiclas-
sical theory of the superconducting proximity effect.

PACS Numbers: 73.50. Lw, 74.25. Fy, 74.50.+r.

1. INTRODUCTION

Thermoelectric properties of hybrid normal-metal/superconductor
(N/S) structures are strongly modified by the superconducting proximity
effect (see Refs. 1 and 2 for review). It was predicted that at low tem-
peratures the thermopower in mesoscopic N/S structures can be as much as
1000 times larger than that in normal metals.3 Moreover, the thermopower
acquires a phase-coherent part as was first observed in Ref. 4, where ther-
mopower oscillations as a function of superconducting phase difference φ

were recorded in a geometry of an Andreev intereferometer (a superconduct-
ing loop connected to a normal part, see review5 for details). According to
theory,6,7 this oscillating part of thermopower should be antisymmetric in
φ and have reentrance in temperature dependence with a maximum at the
Thouless energy, similar to that of magnetoresistance.1 The value of thermo-

1Although, in the previous case the Thouless energy ET =�D/L2 is determined from the dis-
tance L between the superconductors, and in the latter case from the distance of the super-
conductors to the normal terminals.
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power at the maximum can reach a few µV/K. It is worth mentioning that in
quantitative measurements of thermopower,8 where local thermometry tech-
nique based on proximity resistance9 was used, the value of only 100 nV/K
was reported, considerably less than that predicted by theory. While the
above qualitative behavior has been observed in several experiments, some
deviations from it have been reported as well. In particular, large thermo-
power symmetric in φ has been observed,4,10 which is not explained by the-
ory. Close to the supercondicting transition of the superconducting parts
of hybrid mesoscopic NS junctions, a thermopower due to quasiparticle
thermoelectric currents has been reported.11,12 However, the value of the
thermopower observed near Tc in these experiments was considerably larger
than that predicted by theory.13 In structures consisting of a normal ring
with only one superconducting contact a small thermopower periodic and
symmetric with respect to magnetic flux through the normal ring has been
reported.14 Recently, thermal conductivity of Andreev interferometers has
been studied as well, see Refs. 15 and 16.

In this paper we concentrate on the effect of supercurrents flowing
through the normal part of the Andreev interferometer, which were first
highlighted in Ref. 7. We designed our structure so that the supercurrent
can be created by an applied magnetic flux through the superconduct-
ing loop or directly from an external power supply using extra supercon-
ducting contacts. The results are compared with the predictions from the
quasiclassical theory.

2. SAMPLE FABRICATION AND MEASUREMENT

The samples were fabricated using two-stage e-beam lithography.
First, a normal part was made of a thermally evaporated 30 nm thick
Ag film. Then the second layer was made of 55 nm thick Al film used
as a superconductor. To obtain clean interfaces between the layers, the
contact area was Ar+ plasma etched before the deposition of the sec-
ond layer. This insitu etching process produces interface resistance less
than 1 � for contact area of 100 nm × 200 nm. Figure 1 shows the geom-
etry of one of the measured samples. The sample consists of an H-shaped
N wire connected to a superconducting loop with two S contacts, S1 and
S2, and to superconducting contacts S3 and S4. On the left side, the N
structure is connected to a small normal reservoir (which we will call a
quasi-reservoir), which in turn is connected to two superconductor elec-
trodes H1 and H2. By passing current from H1 to H2 we were able to vary
the temperature of the quasi-reservoir. On the right side the N structure
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Fig. 1. SEM micrograph of the measured sample.

is connected to a normal reservoir, which is in good thermal contact with
massive Au pads so that its temperature is fixed by the substrate.

Measurements were performed in a He3 cryostat at temperatures from
0.28 K to 1.5 K with a magnetic field up to 1 mT applied perpendicular to
the substrate. Resistivity, ρ, of the Ag film was about 2 µ�cm with diffu-
sion constants, D, about 130 cm2/s.

Magnetoresistance measurements were performed using conventional
ac bridge technique. Thermopower measurements have been done using two
different methods. In the first method, a heating current, Ih, was a sum of
dc and 0.5 µA ac currents and it was applied between H1 and H2. Thermo-
voltage, Vth, between S2 and N1 was measured using a lock-in amplifier on
the frequency of the ac signal. In the second method, only ac current at the
frequency f was applied to the heater but the signal was measured by the
lock-in amplifier at the frequency 2f . A superconducting magnet was used
to sweep a magnetic field. Zero of magnetic field on all graphs corresponds
to zero current through the magnet. Since there was a small shift due to
magnetic field of the Earth, the relative phase of thermopower and magne-
toresistance oscillations was double checked by repeated measurements to
ensure they were measured with the same reference point.
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3. THEORY

Nonequilibrium electrical properties of diffusive superconductor –
normal-metal heterostructures can be described with the quasiclassical
Keldysh-Usadel theory.2,17–19 We model the experimental sample by a sys-
tem of quasi-one-dimensional wires connected to each other at nodes, see
Fig. 2. The primary object to be described is the Keldysh Green’s function,

Ǧ(E, x)=
(

ĜR(E, x) ĜK(E, x)

0 ĜA(E, x)

)
, ĜA =−τ̂3(Ĝ

R)†τ̂3 , ĜK = ĜRĥ− ĥĜA ,

(1)

where ĜR, ĜA, and ĜK are the Retarded, Advanced and Keldysh Green
functions, ĥ ≡ fL1̂ + fTτ̂3 describes two degrees of freedom of the distri-
bution function, and τ̂i is the i:the Pauli matrix. Each of these is a 2 × 2
matrix in the Nambu particle-hole space. In addition, ĜR and ĜA satisfy
the normalization condition (ĜR)2 = (ĜA)2 = Î , where Î is the identity
matrix. In this notation, symbols with a “check” (such as Ǧ) are chosen
to represent matrices in the Keldysh space, and symbols with a “hat” (Ĝ)
are matrices in the Nambu space.

Usadel equation for Ǧ(E, x), combined with the boundary conditions
in the reservoirs and the nodal conditions, is essentially a circuit theory for
matrix currents

Fig. 2. Schematic system considered in the numerics. Major features of the experiments can
be attributed to the effect of phase gradients across the superconducting interfaces on the
various observables of the system. The phase φz is fixed by current conservation, I6 = −I7;
for a left–right symmetric system φz = 0. The phase φloop can be controlled by the flux
through the superconducting loop, and φS by the applied supercurrent between the contacts
S3 and S4.
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Ǐi ≡σiAiǦ∇Ǧ

flowing in each wire i. Here σi =e2νF,iDi is the normal-state conductivity,
Ai the cross section, νF,i the density of states and Di the diffusion con-
stant of wire i. The gauge-invariant gradient is denoted as ∇Ǧ ≡ ∇Ǧ −
ieA[τ̂3, Ǧ], where A is the vector potential. Not all parts of this current
are conserved, but there are leakage terms due to the finite energy and due
to inelastic scattering,

∇ · Ǐi = e2νF[−iEτ̌3 + �̌in, Ǧ]. (2)

Here τ̌3 = τ̂3 ⊗ Ǐ . This form is valid in a normal metal where the super-
conducting order parameter � vanishes. The first leakage term describes
the dissociation of Cooper pairs entering a normal metal, and it gives the
finite penetration depth ξE =√

�D/E for the proximity effect. The second
term �̌in describes inelastic scattering due to, for example, electron–elec-
tron or electron–phonon interaction. In what follows, we assume that the
latter term is finite only in the electrodes and vanishes inside the wires.

The matrix currents flowing at different wires are connected via the
nodal conditions: the sum of the currents Ǐi flowing into each node van-
ishes and the functions Ǧ are continuous across each node.

For the numerics, it is convenient to parametrize the Retarded and
Advanced Green’s function by the complex parameters θ and χ , such that

ĜR = cosh(θ)τ̂3 + sinh(θ)(cos(χ)iτ̂2 + sin(χ)iτ̂1) (3a)

ĜA =− cosh(θ̄)τ̂3 − sinh(θ̄)(cos(χ̄)iτ̂2 + sin(χ̄)iτ̂1). (3b)

Here θ̄ and χ̄ are the complex conjugates of θ and χ . With this param-
etrization, Eq. (2) can be broken into four scalar equations, two for the
Retarded/Advanced parts,

D∇2θ =−2i(E + i0+) sinh(θ)+ 1
2D

v2
S sinh(2θ) , (4a)

D∇ · jE =0, DjE ≡− sinh2(θ)vS , vS ≡D(∇χ −2eA/�) . (4b)

and two for the Keldysh part,

D∇ · jL =0, jL ≡−DL∇fL −T∇fT + jSfT , (5a)

D∇ · jT =0, jT ≡−DT∇fT +T∇fL + jSfL . (5b)

Equations (4) describe the spectral properties of the system and from their
solution, one finds the local density of states, energy and position depen-
dent diffusion constants, and the spectral supercurrent. The latter two,
Eqs. (5) are the kinetic equations, which describe the behavior of the dis-
tribution functions fL and fT. They can be expressed in forms of static
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continuity equations for the spectral (energy dependent) energy and charge
currents jL and jT. The coefficients of these equations are obtained from
the solutions of the spectral equations,

DL ≡ 1
4

Tr[1− ĜRĜA]= 1
2
(1+| cosh θ |2 −| sinh θ |2 cosh(2Im[χ ])), (6a)

DT ≡ 1
4

Tr[1− ĜRτ̂3Ĝ
Aτ̂3]= 1

2
(1+| cosh θ |2 +| sinh θ |2 cosh(2Im[χ ])), (6b)

T ≡ 1
4

Tr[ĜAĜRτ̂3]= 1
2
| sinh θ |2 sinh(2Im[χ ])), (6c)

jS ≡ 1
4

Tr[(ĜR∇ĜR − ĜA∇ĜA)τ̂3]= Im[− sinh2(θ)vS]/D = Im[jE]. (6d)

Here DL and DT are the spectral energy and charge diffusion constants, T
is an anomalous kinetic coefficient which is finite only in the presence of
the supercurrent, and jS is the spectral supercurrent.

Finally, in the reservoirs the Green functions tend into the bulk func-
tions of those reservoirs. For Retarded/Advanced parts in the absence of
magnetic field this means ĜR =−ĜA = τ̂3 or θ =0 in a normal metal and
they tend to ĜR =gτ̂3 +f (cos(φ)iτ̂2 + sin(φ)iτ̂1) in a superconductor with
the superconducting order parameter �=|�|eiφ , with

g = |E|√
(E + i0+)2 −|�|2

, f = � sgnE√
(E + i0+)2 −|�|2

,

or θ =artanh(|�|/E) and χ =φ.
The reservoir values for the distribution functions fL/T are given by

f 0
L/T = 1

2

(
tanh

(
E + eV

2kBT

)
± tanh

(
E − eV

2kBT

))
,

where eV is the potential and T is the temperature of the reservoir.
There is one exception: for energies below the superconducting gap, And-
reev reflection forbids the energy current into a superconductor. Therefore,
there the Dirichlet boundary condition of fL =f 0

L is changed into the van-
ishing of the energy current, jL =0 into all superconductors.

If one would like to describe the behavior of the superconducting
order parameter � in the superconducting parts of the structure, a self-
consistency equation connecting � with the solution {θ,χ, fL, fT} could
be applied. However, in what follows we assume that all the superconduc-
tors are reservoirs, such that � obtains its bulk value quickly near the
NS boundary. Such an assumption works fairly well for our system, but
it brings some inaccuracy to the exact position of the NS interface as the
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inverse proximity effect suppresses � and θ close to the interface. Gener-
ally these quantities have a healing length of the order of the supercon-
ducting coherence length, ξ0 =√

�D/(2�).
Another consequence of assuming that the superconductors are res-

ervoirs is a boundary condition fT = 0 at the normal-superconducting
interface. For energies below the gap, fT decays into the superconduc-
tors within ξ0, but above the gap, the decay length is much longer, of the
order of the charge relaxation length inside the superconductors.20 The
validity of this assumption may thus be questionable at high tempera-
tures, where thermal quasiparticles inside superconductors play a role. To
simulate the effect of a very long charge relaxation length, we replaced
the Dirichlet boundary condition for the distribution functions at E > �

with a Neumann condition ∂xfL = ∂xfT = 0. This then takes into account
the charge-imbalance voltage due to the quasiparticle current entering the
superconductor, assuming the detailed form of charge relaxation can be
neglected. Compared to the Dirichlet condition, this condition results in
our geometry to a slightly reduced thermopower at high temperatures,
where thermal quasiparticles play a role.

Equations (4) and (5) together with the nodal and boundary condi-
tions need in general to be solved numerically. When the solutions to them
are found, one can obtain, for example, the observable energy and charge
currents flowing in wire i from

IQ,i = Aiσi

e2

∫ ∞

0
dEjL,i (7)

IC,i = Aiσi

e

∫ ∞

0
dEjT,i . (8)

The current conservation and Kirchoff laws for these currents follow nat-
urally from the corresponding laws for jL/T.

The numerical results presented in the remainder of this text have
been obtained by solving the above equations without further approxima-
tions. We model the experimental setup with the schematic system pre-
sented in Fig. 2, where seven quasi-one-dimensional wires are connected to
each other and to two normal-metal and four superconducting reservoirs.
The lengths and areas of the different wires are estimated from the SEM
picture and the resistances of each wire, as most of the latter can be sep-
arately measured. Thus, we estimate L1 = 1.44 µm, L2 = 1µm, L3 ≈ L4 =
340 nm, and L5 = 460 nm, w1 = 120 nm, w2 = 160 nm, w3 ≈ w4 = 100 nm,
and w5 = 100 nm, where Li are the lengths and wi are the widths of the
different wires. Thickness of the wires was assumed constant. This corre-
sponds to the resistances R1 =7.9�,R2 =4.1�,R3 ≈R4 =2.2 �, and R5 =
3�. In R1, we included also the resistance 0.8 � of the quasireservoir. As
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the parameters for the wires 6 and 7 could not be separately measured, we
assume the system symmetric with respect to the inversion around the axis
lying along wires 1, 5, and 2. In all the numerical curves, we use the same
set of parameters, and fit only the diffusion constant D and the self-induc-
tance L of the superconducting loop, see below.

We aim to calculate two separately measured observables for the same
measured structure: the critical supercurrent IC(T ) between the supercon-
ductors S3 and S4 and the thermopower Q ≡ (V2 − VS)/(T2 − T1)|I1=I2=0
between reservoir 2 and the superconductors.

As shown for example in 7 and 2, the presence of the spectral super-
current and the anomalous kinetic coefficient in Eqs. (5) may lead to a
finite thermopower. In the limit where the energy scales of the system are
far below �, there is also an approximate relation between the induced
potentials and the supercurrent flowing in the system,

µsc,1/2 = e

2
R5(2R4/3 +R5)R3/4(IS(T1)− IS(T2))

(R1 +R2 +R5)(R3 +R4 +R5)

= 0.58�e (IS(T1)− IS(T2)). (9)

The numerical value in Eq. (13) is specific to the geometry of the present
system.

It turns out that the phase difference φ between the two NS interfaces
S1 and S2 and the total flux through the superconducting loop are not lin-
early proportional to each other, but one has to take into account both
the kinetic and geometric inductance of the loop to find their relation, as
was shown in Ref. 21. The former is found using the consistency equation
(see for example Ref. 22)

I6(φ)= Iloop(φ). (10)

To find φ(
), we can as a first step assume that the phase gradient in the
loop is small and approximate

Iloop(φ)≈ π |�|
2

tanh
|�|

2kBT

AσvS

D
,

AσvS

D
≈ 2πn−φ +2π
/
0

eRN,loop
, (11)

where 2πn−φ +
/
0 (n∈Z) is the gauge-invariant phase difference over
the superconducting part of the loop, 
 the total flux through it and 
0 =
h/(2e) is the flux quantum. The prefactor in front of vS is found by solv-
ing the Usadel equation inside a bulk superconductor. Applying Eq. (10)
now implies that

φ =2π




0
+2πn− 2e

�
LKI3(φ) , LK ≡ �RN,loop

π |�|
[

tanh
|�|

2kBT

]−1

. (12)
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In our structure, assuming RN,loop ∼ 20 �, and |�|/kB ∼ 2 K yields a
kinetic inductance LK ∼ 20 pH at kBT � |�|. However, one should also
take into account the geometric self-inductance Lgeom of the SQUID,
which modifies the relation between 
 and the external flux. Hence, the
true phase difference between the superconductors is found from

2π

x


0
(mod 2π)−φ = 2e

�
(LK +Lgeom)I (φ)= 2e

�
LI (φ). (13)

In what follows, for each external flux 
x , we calculate the phase φ by
solving Eq. (13) numerically. It turns out (see below) that the results are
fitted with the loop inductance L≈ 500 pH. For a circular loop of radius
R ≈ 2.4 µm and cross section Al = 35 nm × 400 nm, we would estimate a
geometric self-inductance Lgeom = µ0R[ln(8R/Al) − 7/4] = 21 pH. Hence,
the sum LK +Lgeom =40 pH is an order of magnitude lower than the fitted
value. This is most probably due to the inaccuracy in the parameters cho-
sen to describe the experimental structure. It is straightforward to verify
that the Usadel equations (4–5) remain invariant under the transformation

χ 	→−χ, A 	→−A, fT 	→−fT, jT 	→−jT , (14)

also inside the superconductors. Moreover, it turns out that this symme-
try is shared by Eq. (13) and the self-consistency condition, provided that
�=|�|eiφ 	→|�|e−iφ . This implies that for any given solution of the prob-
lem, there is a second solution with inverted magnetic and electric fields,
corresponding to charge and supercurrents flowing in the opposite direc-
tion. For the thermopower this implies that between any pair of reservoirs,

Q≡ �V (φ)

�T (φ)

∣∣∣∣
IC=0

= −�V (−φ)

�T (−φ)

∣∣∣∣−IC=0
=− �V (−φ)

�T (−φ)

∣∣∣∣
IC=0

, (15)

i.e., that its phase oscillations are always antisymmetric. This is a gen-
eral symmetry of the quasiclassical model in a static situation, valid in a
finite magnetic field and also when superconductors are treated self-consis-
tently. This symmetry is in contrast with the cos(φ)-dependent thermopow-
er measured in 4 and 10, or the constant offset thermopower measured
in Ref. 14. At present we do not know a reason for this discrepancy.

4. EXPERIMENTAL DATA

Below we present experimental data for thermopower and resistance
measurements in the presence of temperature gradients created by heater
currents. To avoid heat leak into electrodes H1 and H2 we kept Ih < Ic,
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where Ic is the critical current of the superconducting transition for heater
electrodes H1 and H2. We measured current–voltage characteristic (I–V )
of H1–H2 and found Ic = 25µA, so Ih smaller than 10 µA was used to
ensure contacts H1 and H2 are in the superconducting state.

To characterize the SNS junction, we measured its critical current at
different temperatures. Inset of Fig. 3 shows differential I–V curve of the
SNS junction measured using contacts S3–S4 at T = 0.28 K. The jump at
high currents corresponds to the superconducting transition of the parts of
Al contacts S3–S4, while the second jump at smaller currents corresponds
to the superconducting transition of normal parts L3, L5, and L4. The
critical current was measured as the current value at dV/dI =RN/2, where
RN ≈ 6.3� is the value of resistance of L3–L5–L4 in normal state. Asym-
metry in dV/dI curve can be attributed to the difference in Joule heat
released in the wires when the superconducting transition is approached
from normal state (negative currents in Fig. 3, inset) and that when it
is approached from the superconducting state (positive currents in Fig. 3,
inset). The temperature dependence of Ic is plotted in Fig. 3. A numerical
best fit, based on the quasiclassical theory presented above, to this data is
given as a solid line, which also includes the temperature dependence of
the gap �(T ). We used low temperature value of the gap �(0)/kB ≈ 2 K
estimated from the superconducting transition temperature of Al wires.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

T  (K)

I c
(µ

 A
)

Fig. 3. Critical current Ic of the SNS junction as a function of temperature. Dots: measured
Ic, solid line: fit to the theory (see text). Inset: Differential I–V curve of the SNS junction at
T =0.28 K measured using S3–S4.
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Ω
) 
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Fig. 4. (Color on-line): Amplitude of magnetoresistance oscillations measured with current
probes H1–N1 and potential probes H2–N2. Circles correspond to resistance minimum,
squares, to maximum.

In this fit, we found the Thouless energy ET ≈ 50 mK/kB that best cor-
responds to the measured temperature dependence. The fitted Thouless
energy corresponds to a diffusion constant D ≈85 cm2/s, in accordance to
the value estimated from resistivity.

Figure 4 shows temperature dependence of the resistance measured
using current contacts H1–N1 and potential contacts H2–N2 (see Fig. 1)
at different values of magnetic flux through the S loop. The bottom curve
is for 
= 0 and the top one is for 
=
0/2. At a fixed temperature the
resistance oscillates between these two values as a function of the applied
magnetic flux, see Fig. 5b. The amplitude of the oscillations is affected
by the screening effect discussed in Refs. 21 and 23. The screening
effect was also seen directly as deviation of the shape of magnetoresistance
oscillations from sinusoidal form, see Fig. 5. Figure 5 shows magnetoresis-
tance and thermopower oscillations at the same temperature. The magne-
toresistance was measured using current probes H1–N1 and voltage probes
H2–N2. Thermovoltage was measured using heater current applied to heat-
ers H1–H2. For thermopower measurements presented here the heater cur-
rent was a sum of 4 µA dc and 0.5 µA ac components. The signal was
then measured by the lock-in amplifier at the frequency of ac modulation
between contacts S2–N1. Note that thermovoltage oscillations are antisym-
metric with respect to the direction of magnetic field, in contrast to mag-
netoresistance oscillations (this is seen directly from phase shift of π/2 for
thermovoltage oscillations compared to that of magnetoresistance).

Non-sinusoidal shape of magnetoresistance oscillations indicates the
presence of supercurrent in the normal part of the hybrid superconduct-
ing loop. Indeed, direct measurement of I–V curves using contacts S3–S4
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Fig. 5. Top: Thermovoltage oscillations measured at T =0.28 K with heater current H1–H2

and voltage probes S2–N1. Bottom: magnetoresistance oscillations measured at T =0.28 K
using current probes H1–N1 and voltage probes H2–N2.

confirms this (see Fig. 3) and gives us an estimate of the magnitude of
this supercurrent at different temperatures: the SNS structures formed by
the superconducting loop and its contacts to the normal-metal wires are
very similar to that formed by the S3–S4 contacts. There is one impor-
tant difference, however. The supercurrent between the contacts S3 and S4
has two paths: part of it enters the superconducting loop, and part goes
via the central wire (labelled 5 in Fig. 2). However, the screening super-
current inside the loop has only one path, through the central wire, and
the maximum supercurrent in the loop is hence smaller than that between
S3 and S4. With the parameters specified in Sec. 3 and at the measure-
ment temperature T = 280 mK, the simulations indicate that only 10% of
the supercurrent enters the central wire.

We may thus estimate the effect of screening from the shape of the
thermovoltage oscillations, using this value for the supercurrent. Figure
6 shows the measured thermovoltage oscillations along with three theory
curves calculated with different loop inductances. Note that the amplitude
of the theory curves are scaled to the experimental data, so one should
only pay attention to the shape of the oscillations. The temperature depen-
dence of the measured thermopower amplitude is compared to the theory
in Fig. 10 – the inductance fit is mostly sensitive to the S loop screen-
ing parameter β = LIc,loop/
0, independent of the thermopower ampli-
tude. Here Ic,loop is the part of the supercurrent flowing in the central
wire. We find the best fit with L ≈ 500 pH. This is an order of magni-
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Fig. 6. (Color on-line): Thermovoltage oscillations (filled circles) measured at T = 0.28 K
with heater current H1–H2 and voltage probes S2–N1. Theoretical fits to the shape of the
oscillations with different values of the loop self-inductance: L = 0 (solid line), L = 500 pH
(dashed line) and L=1000 pH (dash-dotted line).

tude larger than the value estimated above, and the lower limit of L ≈
40pH estimated from the shift of the magnetoresistance oscillations in the
presence of the supercurrent applied from a power supply connected to
S3–S4.2 The large discrepancy is probably due to the fact that the param-
eters chosen to describe the connection to the loop (wires 6 and 7 in Fig.
2) were not correct.

There was no hysteresis in either magnetoresistance or thermopow-
er oscillations versus applied magnetic flux. For L= 500 pH and Ic,loop =
0.6µA the screening parameter β = 0.15. According to theory,20 one sees
hysteresis when β > 1/π , so the above estimation of L is consistent with
the absence of hysteresis.

In Fig. 7, we plot the measured thermovoltage oscillations at three
different temperatures, along with similar normalized theory curves as in
Fig. 6 with L = 500 pH. The temperature dependence of the oscillation
amplitude is compared to the theory separately, see below.

Figure 8 shows a temperature increase of the central part of inter-
ferometer Tm as a function of dc heater current at different tempera-
tures. This was measured by comparing temperature dependence of the
resistance of the N wire, measured using current contacts S3–N1 and
potential contacts S2–N2, to the dependence of that on the dc heating cur-
rent (see also Refs. 8, 9, and 11). Measurements using the critical current

2Note that this gives a lower limit, as only part of the supercurrent between S3 and S4 enters
the superconducting loop.
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Fig. 7. (Color on-line): Measured thermovoltage oscillations at three different temperatures,
from bottom to top: T = 0.28 K, T = 0.5 K and T = 0.7 K. The curves have been offset for
clarity and normalized to the values at 
 = 
0/4. The solid lines on top of the data are
the corresponding theory curves calculating with the inductance L=500 pH. One should pay
attention only to the shape of the curves. The temperature dependence of the measured ther-
mopower amplitude is separately compared to the theory in Fig. 10.

of an SNS junction give similar dependences. The solid lines represent
an approximation of low heating current part of the curve to a depen-
dence Tm =T0 +aI 2, where a is a constant, which is valid when aI 2 �T0.
The values of 2a = d2Tm/dI 2 are shown in Fig. 9. However, in order to
calculate thermopower we need to use values of 2a∗ =d2Th/dI 2, where Th
is the temperature of the “hot” end of the structure, which in our case
is the normal quasi-reservoir (see Fig. 1). Numerical simulation based on
the actual geometry and values of resistances R1–R5, which also took into
account the error in measuring Tm using the above method due to the
difference in the interferometer resistance heated uniformly compared to
that in the temperature gradient, showed that a∗ ≈4a, which was accurate
within 10% in the whole temperature range used. Now we can convert the
measured thermovoltage into thermopower. Thermovoltage measured at
the frequency f of the ac modulation part of heating current is given by

Vf = dV

dI
Iac =Q

dTh

dI
Iac =Q2a∗IdcIac, (16)

where Idc and Iac are dc and ac components of the heating current, respec-
tively. Thermovoltage measured at the frequency 2f in case of Idc =0 can
be presented as (see also Ref. 8).
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Fig. 8. (Color on-line): Temperature rise in the middle of the interferometer as function of
heater current H1–H2, measured at T =0.28 K, 0.5 K, 0.7 K, and 0.9 K.

V2f = 1
2

d2V

dI 2

(
1
2
I 2

ac

)
= 1

4
Q

d2Th

dI 2
I 2

ac = 1
4
Q2a∗I 2

ac. (17)

Note that the extra factor 1/2 in (17) arises from the relation I 2
ac cos2 f t =

(1/2)I 2
ac + (1/2)I 2

ac cos 2f t , so that lock-in amplifier output at 2f is pro-
portional to (1/2)I 2

ac.
We have measured thermopower using both methods and found the

two in a reasonable agreement. For example, for T =0.28 K we found Qf =
1.2 µV/K and Q2f = 0.9µV/K. In the range of heating currents Ih < 10
µA, both Vf and V2f always had symmetry of sin φ and showed no phase-
independent component observed in other experiments.
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Fig. 10. (Color on-line): Thermopower as a function of temperature. The circles are exper-
imental data. Lines are numerically calculated amplitudes, for ET/kB = 0.05 K and different
values of the inductance: L = 0 (solid line), L = 50 pH (dashed line), and L = 500 pH (dash-
dotted line). For comparison, similar data calculated for ET/kB = 0.4 K and L= 0 is plotted
as a dotted line.

Figure 10 shows the value of thermopower as a function of bath tem-
perature. The thermovoltage in this case was measured at 2f with Idc =0
and Iac =6µA. Magnetic field during this measurement was such that 
=

0/2. Q was then calculated using (17) and values of 2a found from Fig.
9 by a linear interpolation between the experimental data points.

The temperature-dependent Q calculated from the theory is presented
as lines in Fig. 10. Similar to the experimental data, the theory predicts
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a reentrant thermopower, with the maximum slightly above the Thouless
energy. This is below the maximum point ∼0.47 K found in the experi-
ments. Increasing the Thouless energy in the simulations would lead to an
improved fit of the peak position (see the dotted curve in Fig. 10), but
then the critical current data cannot be understood. In the presence of
screening (finite L), at the lowest temperatures the phase does not reach
the point where the maximum thermopower would be obtained, and thus
the resulting thermopower is reduced, and theposition of the maximum
thermopower is slightly shifted to the right. However, to get the maximum
near the experimentally observed value, a much larger value of L would
be needed, and in this case the calculated Q(T ) is much wider than in the
experiments.

In the geometry of our experiment the effect of supercurrent can be
measured directly. Figure 11 shows the dependence of thermovoltage on
magnetic field measured at different values of dc current between con-
tacts S3–S4. At small currents an extra shift in thermovoltage occurs. The
precise shift depends on the ratio of the supercurrents entering the loop
and flowing in the central wire. According to the simulations, the previous
dominates at the temperatures where the measurements were made, and as
a result the phase shift is close to arcsin(IS/IC).

Measuring Vf as a function of Is at H =0 showed linear dependence
(see Fig. 12 and Eq. (18)). At higher values of current through S3–S4
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Fig. 11. (Color on-line): Thermovoltage oscillations as function of magnetic field at
T =0.28 K at different values of dc supercurrent applied between S3–S4.
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Fig. 12. (Color on-line): Thermovoltage as function of dc supercurrent applied between
S3–S4 at T = 0.28 K. Blue: magnetic field corresponds to a zero flux through the S loop.
Red: magnetic field corresponds to a half flux quantum.

the total current in the central N-wire (applied dc current plus screening
current due to magnetic flux) exceeds the value of critical current of this
part (5 µA, see Fig. 4). In this case a dc voltage will appear between ther-
movoltage probes S1–N1, which is also temperature dependent. Since tem-
perature is modulated at the frequency f , so is the above constant voltage,
leading to an extra contribution to signal measured by lock-in amplifier.

Let us concentrate on the linear response to Is. The effect of Is can be
estimated using Eq. (13). Assuming the supercurrent–phase relation in the
N wire is not strongly temperature dependent, we have Is(T )= Ic(T )f (φ),
where f (φ)≈ sin(φ), and Eq. (13) can be rewritten as

Q(Is)=0.58�
dIs(T )

dT
=0.58�

dIc(T )

dT
sin φ =0.58�

dIc(T )

dT

Is

Ic(T )
. (18)

Substituting dIc/dT =8.7µA/K at T =0.28 K found from Fig. 3 into (18)
we get Q=2.5µV/K for Is =3µA. Comparing with experimental data we
have Vf (3µA) = 20 nV at Idc = 5µA and Iac = 0.5µA, which corresponds
to Q=0.7µV/K. The discrepancy should be attributed to a more compli-
cated dependence between Q and Is due to the presence of the S loop.
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5. ANALYSIS AND DISCUSSION

We have explored the dependence of the thermopower of an Andreev
interferometer on supercurrents created by magnetic field and applied
directly from external power supply. The experimental thermopower was
modelled theoretically using the numerical calculations with the actual
geometry and fitting only the Thouless energy corresponding to the distance
between the superconductors. We find that the thermovoltage oscillates as a
function of the magnetic flux through the superconducting loop. The shape
of these oscillations can be well described by the theory once the loop induc-
tance is taken into account. The theory predicts correct order of magnitude
for the thermopower. However, the calculated temperature dependence does
not fit experimental data. The discrepancy can be attributed to the experi-
mental error in calculating Q due to the ambiguity in determination of true
temperature difference across the interferometer using only one thermome-
ter in the middle of the structure as opposed to two separate thermometers
at hot and cold ends of the interferometer. Another possible reason is a
complicated geometry with its extra superconducting electrodes S3 and S4
in addition to the S loop, and especially the ambiguity in determining the
parameters for the sample geometry.

The effect of supercurrent has been measured directly using extra
superconducting electrodes. The experimental dependence is linear in
agreement with theory. The absolute value of thermopower due to this
supercurrent found experimentally is smaller than that predicted by theory.
This dicrepancy may at least partially be attributed to a more complicated
relation between Q and Is due to the presence of the S loop. When both
externally applied supercurrent and screening current due to magnetic flux
through the S loop are present, the situation becomes more complicated
(see red curve in Fig. 12). In particular, when the total current approaches
the critical value of the N wire, the dependence of the thermovoltage on
Is becomes strongly nonlinear. This cannot be accounted for completely by
only the above mentioned extra contribution to measured signal. This case
will be discussed in detail elsewhere.

When Ih < Ic, the quasi-reservoir is heated locally so that its distri-
bution function is close to equilibrium. The main heat transport chan-
nel is through the N-wire into N reservoir, so that in this regime the
temperature gradient is well defined. We concentrated on this regime to
compare obtained results with the theoretical calculations. When Ih > Ic
(or when the heater electrodes made of a normal metal) heater contacts
turn normal and the quasi-reservoir distribution function has a nonequi-
librium form due to a long energy relaxation length in mesoscopic con-
ductors. The measurements in this regime will be reported elsewhere.



212 J. Zou et al.

ACKNOWLEDGMENTS

This research is supported by EPSRC grant AF/001343 (UK),
EC-funded ULTI Project, Transnational Access in Programme FP6 (Con-
tract RITA-CT-2003-505313), the Academy of Finland and the Finnish
Cultural Foundation. We thank Prof. J. Pekola for an overall support of
this project.

REFERENCES
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