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1. Introduction

Most physical products, of which rare elements dictate the price of e.g.
consumer electronics, are born out of raw materials. Therefore, minimizing
the use of raw material while maintaining product quality reduces manu-
facturing costs. For instance, materials for coatings can be broken down
to smaller and smaller grains to enable thin and even layering. Likewise,
catalyst materials are made more effective by maximizing the surface area.
As catalytic converters in cars use expensive noble metals they are sparsely
dispersed on porous materials. The reduction of particle size to a scale of a
few nanometers has lead to material improvements in e.g. paints, filters,
lubricants and catalysts.

In studying the behaviour of nanoparticles of about 10 to 1000 atoms, we
first tend to describe them using familiar structures, either molecules of
a few atoms or practically infinite crystals [1]. Yet those structures of 1
to 3 nm, so called nanoclusters, do not submit to the molecule or crystal
category but lie in an intermediate position with regard to their properties.
Compared to crystals, nanoclusters display remarkably different magnetic,
optical, and reactivity properties [2, 3, 4, 5, 6].

Properties change because of three main reasons: (i) atoms on the surface
dominate (large surface-to-volume ratio), (ii) atoms on surface edges have
low coordination, (iii) and the core measures only few atomic lengths [7].
The core is sometimes under strain and differently packed than in a crystal.
Nanoclusters can take on a myriad of sizes and shapes, and can be com-
posed of a multitude of elements with different compositions. In the realm
of possible structures, new unique sets of properties wait to be explored
but the field is no longer just of academic interest [8, 9]. With the advent
of new manufacturing methods to control the size of nanoclusters, hope
rose for fine-tuning their properties, and design materials with improved
characteristics [9, 10, 11, 12, 13].

Heterogeneous catalysis is one of the fields which can benefit greatly from
the exploration of nanoclusters. Catalysts are substances which enable
or speed up certain reactions, but do not get consumed. They are called
heterogeneous if they are in a different phase (usually solid) than the reac-
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Introduction

tants (usually liquid or gaseous). This dissertation addresses nanoclusters
in the field of heterogeneous catalysis. In particular, it focuses on the
electrolytic splitting of water. Water splitting can be used to store excess
electricity from the electric grid in the energy carrier hydrogen. Electricity
prices are expected to get more volatile in the future, hence it is a viable
option to produce hydrogen when supply is high and reverse the reaction
at high demand, stabilizing the electric grid [14]. Next to electricity prices,
the catalyst material, platinum, contributes substantially to the technology
cost [15]. Platinum is a rare and expensive noble metal which has been
deemed a critical element due to its industrial importance and high supply
risk [16, 17]. Therefore, reduction in its use, or replacement, is of high
economic and political interest.

This dissertation approaches the search for new catalysts from the the-
oretical side. In computational materials science we rely on simulations
instead of experiments. Simulations have many advantages in vast and rel-
atively unexplored fields. In fact, computational screening is much cheaper
than experimental screening, especially in catalysis where experiments
tend to take long and require elaborate setups. On top of that, it is easier
to uncover underlying trends with a series of simulations in a zero-noise
environment. Computational screening is indeed a good way to sieve out
promising catalyst candidates to eventually select those to study more
in-depth experimentally. However, the search space of nanoclusters is so
large that an efficient screening approach is paramount.

Machine learning has become a popular tool in data-driven materials
science. If many nanoclusters of interest have a similar structure, machine
learning can help interpolate between them, as a result predicting their
properties in batches, by only explicitly simulating a few. This saves
computational resources and enables screening of larger datasets.

Before the actual application of machine learning, the preparation of the
data is a necessary step and can cause the prediction process to succeed
or fail. Machine learning takes the structure, or other known information
about the nanocluster in order to predict properties of interest. The success
of machine learning depends on how the structure is represented and
provided as input. A large part of the dissertation is concerned with how
to transform relevant structural information into machine-readable input,
also known as structural descriptors.

Finally, in order to obtain and manage large databases of nanoclusters,
automation plays an important role in making the results consistent and
reducing chances for human error. Human interaction can be greatly
reduced by automating the whole workflow from the generation and explo-
ration of nanoclusters, via the submission of simulation jobs to the machine
learning prediction.

14



Introduction

1.1 Research Objectives

This dissertation addresses the problem of a large nanocluster search space
and demonstrates methods to efficiently screen it. A large part of my work
pertains to the development of methods, centered around machine learning,
to enable the simulation of large databases. The rest is dedicated to the
application of those methods on catalysis topics of high current interest.
The target nanoclusters and the test catalytic reaction were chosen on that
regard; the hydrogen evolution reaction is simple yet key to many energy
storage applications [18, 19, 20].

The first study is a library of descriptors which I contributed to. By
packaging several state-of-the-art descriptors, it facilitates applying ma-
chine learning to materials science problems with ease. As such, there is
a lower threshold for scientists who are new to machine learning to start
applying these descriptors in their research. The second study leverages
the implementations of descriptors for the library by applying them to a
benchmark on nanocluster adsorption. It was the first extensive machine
learning work on nanoclusters, proving that adsorption energies can be
efficiently learned. The last study builds on the insights acquired from the
previous studies. It expands the toolbox culminating in a library devised
to build cluster-adsorbate structures. The large configuration space is
addressed and machine learning is applied in new ways on nanoclusters as
part of an automated workflow. It enables the creation of large databases
of nanoclusters of arbitrary shapes, sizes and compositions.

The following chapter presents concepts of catalysis in more detail, pro-
viding the theoretical background of the principles and theories that guide
surface-molecule interaction. The third chapter introduces the concept of
descriptors and touches on its link to density functional theory. The fourth
chapter provides a nanocluster application of machine learning, that is
benchmarking of descriptors and hydrogen adsorption energy prediction
on the systems MoS2 and AuCu. The fifth chapter features the tools from
generating nanoclusters to efficient screening of adsorption energy distri-
butions which were ultimately combined to an automated workflow. It
was demonstrated on a dataset of bimetallic nanoclusters for the hydrogen
evolution reaction. In the last chapter, the work is summarized and an
outlook to future challenges and opportunities in theoretical nanocatalysis
is given.
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2. Rational Catalyst Design

In this chapter I explain the foundation of theoretical catalysis excluding
kinetic theories. They stretch from the early concepts of catalysis to d-band
theory. Different levels of approximation of how active a catalyst is are
introduced. The chapter closes with the introduction of the electronic
properties that guide the search for promising catalysts.

2.1 Concepts of catalysis

A catalyst is a substance which takes part in a chemical reaction but
eventually returns to its initial state where it can react again, hence it is
not consumed by the reaction. By definition a catalyst also changes the
path of a reaction favourably so that the thermodynamic equilibrium is
reached faster (usually many orders of magnitude faster) than without its
participation. Additionally, catalysts can enable reactions that would not
otherwise take place under normal conditions. For instance, the splitting
of the stable nitrogen molecule would happen in air only through lightning
strikes but Haber and Bosch developed a process that fixates atmospheric
nitrogen (N2) to produce ammonia (NH3) on an iron catalyst surface [21].
How does a catalyst enable the otherwise impossible? In order for N2 to
take part in any reaction, its strong triple bond will have to break. It either
breaks completely into two N-radicals by, e.g. a high-energy lightning
source, or it breaks step-wise as it happens on the surface of iron. The
latter requires less activation energy, Ea, the energy necessary to transition
N2 to NH3.

The reaction pathway of an educt A to a product B is best illustrated
through the analogy of a journey in a mountainous area. The height of
the mountain is analogous to the energy of the system. The valleys of low
potential energy represent the (meta-)stable states such as A and B. On
a journey from valley A to its neighbouring valley B, mountain peaks of
high energy are states which will not be traversed since the alternative
leading through a mountain pass (saddle point) requires the least energy.
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Rational Catalyst Design

This is the highest point on the path representing the transition state A‡

determining the activation energy of the reaction. It is called activation
energy because the educt requires at least that amount of additional energy
for the reaction to take place. In the example of splitting the nitrogen
molecule, the transition state lies where the bond between the nitrogen
atoms is elongated and almost broken. If the transition state lies too high
making the reaction via the direct path unfeasible, an indirect path could
lead through lower-lying mountain passes (transition states) eventually
reducing the activation energy. A catalyst enables such a detour illustrated
in figure 2.1. The reaction path with the participation of a catalyst passes

Figure 2.1. Illustration of reaction pathways without (black dashed line) and with (green
dashed line) a catalyst. The axes represent reaction coordinates, the meaning
of which depends on the reaction. The x-axis for instance could represent
the elongation and breaking of a bond and the y-axis could represent the
proximity to the catalyst. The educt A, product B and intermediate state C
involving the catalyst are all local minima (valleys). The transition states
(mountain passes) have different energy-levels: A‡ lies the highest so that
the direct path is energetically unfavourable. The reaction would likely go
through C‡

A and C‡
B . The rate-determining step is on the product-side because

C‡
B lies higher than C‡

A.

via, at least, another valley called the intermediate state. In certain cases,
the intermediate state is stable and can be isolated, while in others the
reaction continues so quickly that it is difficult to observe. In the simplest
catalytic reaction, A + * −−→ A* −−→ B + *, the asterisk denoting the
catalyst binding site, there are two transition states. The highest-lying
transition state, C‡

B, in this example, requires the most activation energy,
thus the second step determines the rate of the reaction.
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A heterogeneous catalyst is a catalyst in a different phase from its re-
actants. The fixation of nitrogen is a prime example of heterogeneous
catalysis with high industrial importance. The formation of NH3 from H2

and N2 in the Haber process can be broken down into the following steps:

N2 + 2 * −−→ N2*

N2* + * −−→ 2N*

H2 + 2 * −−→ H2*

H2* + * −−→ 2H*

N* + 3H* −−→ NH3* + 3 *

NH3* −−→ NH3 + *
3H2 +N2 −−→ NH3

(2.1)

The second step determines the rate of the reaction, since the breaking of
the triple bond N ––– N, although aided by the catalyst, requires the most
activation. Similarly, in the fourth step, the hydrogen molecule H2 is split
on the catalyst surface, however, the single bond breaks at a much lower
activation energy.

The reaction rate k, determined by the energy level of the highest transi-
tion state, is temperature dependent and is given by the Arrhenius law [22]:

k(T ) = νe
− Ea

kBT (2.2)

where ν is the pre-exponential factor and kB is the Boltzmann constant.
Changes in activation energy or temperature T lead to exponential changes
in reaction rates. A series of experiments is required to determine the
activation energy. It can be approximated by simulations, yet it becomes
a daunting task the more complex the reaction is. The question arises if
there is a way to express the reaction rate without having to explicitly
calculate Ea. It turns out that, although the absolute reaction rate remains
unknown, the relative reaction rate in a family of similar reactions can
be derived. Since the energies of the minima (valleys) and the energies
of the saddle points (mountain passes) on the energy landscape are not
independent of each other, it is sufficient to know the relative energy levels
of educts and products.

2.1.1 Bell-Evans-Polanyi principle

The reaction energy, ∆Er =
∑︁
Ep − ∑︁

Ee, is defined as the difference
between the total energies of products and educts. Brønsted, Bell, Evans
and Polanyi showed that Ea depends linearly on the reaction energy for a
family of reactions [23, 24, 25, 26, 27, 28].

Ea = E0 + α∆Er (2.3)
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where E0 is a constant energy shift and α is a constant specific for a family
of reactions. The Bell-Evans-Polanyi (or Brønsted-Evans-Polanyi) principle
connects a kinetic quantity (Ea, see 2.2) with a thermodynamic one (∆Er).
It allows one to make relative statements about reaction rates purely from
knowing thermodynamic properties. As a result, computational materials
science leverages such a principle to reduce simulation time considerably.

2.1.2 Sabatier principle

The Sabatier principle as a qualitative catalytic concept states that a
substrate should neither bind too weakly nor too strongly on the catalyst
surface [29]. If the binding is too weak, the reaction path via adsorption
on the catalyst is slow or unfavourable. If the binding is too strong, the
resulting intermediate state can poison the catalyst because the last step,
the desorption of the product, slows down the whole reaction. Hence, an
efficient catalyst needs to keep the adsorption and desorption reactions in
balance. Together with the BEP it is possible to quantitatively predict the
optimal energy-level of an intermediate state.

Let A + * −−→ A* −−→ B + * be an energy-neutral reaction. Furthermore,
let the adsorption A + * −−→ A* and desorption A* −−→ B + * belong to
the same family of reactions. Then the highest activation energy can be
minimized as follows.

∆Er =∆Eads
r +∆Edes

r = 0

∆Eads
r =−∆Edes

r

min
∆Eads

r

max(Eads
a , Edes

a ) =minmax(E0 + α∆Eads
r , E0 + (1− α)∆Edes

r )

=E0 +minmax(α∆Eads
r , (1− α)∆Eads

r )

=E0 with Eads
r = 0

(2.4)

Hence, the optimal energy-level of the intermediate state is aligned with
the energy-level on both educt and product sides. It can be generalized to
non-energy-neutral reactions, where the intermediate state lies optimally
half-way in energy between educts and products.

In conclusion, the adsorption or desorption energy should be around zero
for a good catalyst. Unfortunately, this does neglect entropy as a driving
force which is not an easily-accessible quantity. The reaction energy ∆Er

should therefore be replaced by the reaction free energy ∆Gr. Accordingly,
a good catalyst fulfills [30, 31]:

∆Gads ≈ 0 (2.5)

As the adsorption free energy ∆Gads is directly correlated with catalytic
activity, it is thus called a descriptor [30]. A detailed description of the
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Gibb’s free energy G = E + pV − TS is out of the scope of this work. At
constant pressure and temperature the chemical potential of a reactant i
is the partial molar Gibb’s free energy:

µi =

(︃
δG

δNi

)︃

T,P

(2.6)

The chemical potential has to drop from educts via intermediate states
to products in order for a reaction to take place. It should be noted that the
change in entropy S has a considerable impact even at room temperature.
Since calculating the true ∆Gads is challenging, it is usually approximated
[32, 33]. Despite the existence of other, more expensive, simulation meth-
ods to determine ∆Gads, even a constant shift in a family of reactions yields
good results [32, 34].

2.1.3 Hydrogen evolution reaction

An example of a simple reaction with one intermediate state is the hydro-
gen evolution reaction (HER). It is the cathodic half reaction of electrolytic
water splitting into hydrogen and oxygen [35, 36].

4 e− + 4H+ −−→ 2H2

2H2O −−→ 4H+ +O2 + 4 e−

2H2O −−→ 2H2 +O2

(2.7)

As the reaction is reversible, the simple reaction arrows should be re-
placed by −−⇀↽−− to be precise. However, since the hydrogen oxidation
reaction is part of a different application, I noted only the direction of
interest for simplicity. HER involves the following steps with the last two
competing with each other [37, 38]:

Volmer step: H+ + e− + * −−→ H* (2.8)

Heyrovsky step: H* +H+ + e− −−→ H2 + * (2.9)

Tafel step: 2H* −−→ H2 + 2 * (2.10)

The reactions assume an acidic environment, although HER can also be
conducted in base with analog reactions. At first, in the Volmer step
a proton adsorbs on the catalyst surface which is provided with excess
electrons by applied voltage. The second proton either reacts directly from
the liquid phase (Heyrovski step) or reacts only after adsorption on the
surface to form H2 (Tafel step). The product molecule desorbs quickly from
the surface. Regardless of the reaction pathway, Volmer-Heyrovsky or
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Volmer-Tafel, the intermediate state H* is always part of the mechanism.
The adsorption energy is defined as:

∆Eads = E(H*)− E(*)− 1

2
E(H2) (2.11)

The reaction is endergonic, meaning that it will require energy in the
form of an electrode potential in order to take place. The ideal catalyst
would facilitate the reaction after lifting the free energy level of the educt
side to match the product side. Evidently, the intermediate state would
have to level off, too, as explained by the Sabatier principle (∆Gads = 0).
In practice, the electrode potential even with the best catalyst needs to
be higher to set the reaction in motion. This excess potential is called
overpotential and is an experimental measure of catalytic activity.

HER is only one side of the water splitting process (see 2.7). Since the
oxygen evolution reaction leads through 3 intermediate states, it is a more
complex reaction and ultimately more challenging to find a good catalyst
via simulations [39]. However, the Sabatier principle can be applied here
as well, for each intermediate state independently. The above reactions
and their reverse counterparts are key to mobile and stationary energy
storage applications.

Hydrogen adsorbed on catalytic surfaces is not only of interest in HER.
The Haber process (see 2.1) is only one of many reactions adsorbing hy-
drogen, other industrial examples are methanol production from syngas
and desulfurization. In my work, the hydrogen evolution reaction was the
starting point to develop new methods for catalysis on nanoclusters. Due
to its simplicity and participation in many industrial applications, it is a
prime candidate to showcase new screening methods for nanocatalysts.

2.2 d-band theory

As we exploited the BEP and the Sabatier principle, we could circumvent
determining transition states of catalytic reactions and solely rely on
thermodynamic properties. Is there a way to reduce the computational cost
even further? Is it possible to make predictions on the catalytic activity of
a material without simulating any surface-adsorbate interactions? After
all, the adsorbate remains the same, as does the termination of the surface.
The answer is yes, but at the price of losing accuracy. The d-band theory
links the electronic structure of a surface with the adsorption strength of
atoms or small molecules [30, 40, 41]. Since it cannot reach the accuracy of
adsorption simulations, it is nowadays used in a more qualitative manner
to explain trends in reactivity [42].

As transition metals compose the vast majority of heterogeneous cata-
lysts, the electrons highest in energy which dictate the reactivity usually
occupy d-orbitals. In the periodic table section of transition metals, going
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from scandium to zinc, from yttrium to cadmium and from lanthanum to
mercury, 10 electrons subsequently fill 5 d-orbitals. Atomic orbitals are
spatial representations of the states an electron or a pair of electrons can
exist in around an atom. They can be used to calculate the probability
of finding an electron at a certain point in space around an atom. When
atoms come in close proximity to each other, their orbitals overlap and are
forced to change their shapes, extending the reach of electrons to multiple
atoms. If the resulting force is attractive, it creates bonds which can either
be localized between two atoms or delocalized. In molecules, from two
up to several tens of atoms share electrons with each other. In crystals
the delocalization of electrons becomes so large that the mathematical
description of orbitals transitions into infinite bands of electronic states,
whereas the d-band forms through the overlap of atomic d-orbitals. The
metallic bonds are extended throughout the whole crystal as electrons can
move practically freely among nuclei. Nanoclusters are a particular case,
in which molecular orbitals are still resolved. However, extending over the
whole nanocluster, their energy levels are so dense that they constitute a
quasi-continuum, hence can still be described as bands. It is important
to keep in mind that the finite nature of the system changes the response
of the d-band to an external perturbation (e.g. adsorption) than it would
otherwise be expected in a crystalline material.

Let us consider the adsorption of hydrogen on a family of transition metal
surfaces of the same termination. Hammer and Nørskov derived that the
change in adsorption energy δEd due to the interaction with the metal
d-band can be approximated by freezing the electron density of the metal
and the adsorbate [43]:

δEd ≈ −2(1− f)
V 2

ϵd − ϵH
+ βV 2 (2.12)

where ϵH is the energy of the hydrogen 1s-orbital prior to the interaction
with the d-band and ϵd is the d-band center. The above relation uncovers
trends in the periodic table of elements. Going from left to right the filling
of the d-band f increases. As the d-band becomes filled by more than
half, anti-bonding states get occupied which weaken the adsorption. The
coupling matrix element V on the other hand increases from right to left
as well as going down in the periodic table. It normally strengthens the
adsorption, yet on metals with fully filled d-bands a higher V weakens it
[40]. The above mentioned filling of the d-band and the coupling strength
directly influence how the d-band energy-levels are distributed.

2.3 Electronic descriptors predict adsorption energy

The energy distribution of the d-band determines the chemical reactivity
with substrates such as hydrogen. Although equation 2.12 can make
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useful adsorption energy predictions, it depends on f , V and ϵd. A single
property correlating strongly with the adsorption energy would make the
d-band theory more intuitive. Such a property can be termed an electronic
descriptor, three of which shall be introduced shortly.

We have already encountered the first descriptor. Small changes in the
d-band center ϵd correlate linearly with the adsorption energy [42, 44, 45]:

δEd ≈ V 2

|ϵd − ϵH |2 δϵd (2.13)

This law also holds well for early transition metals, because an increased
V counters the emptying of bonding metal d-states [30, 40, 41].

The second descriptor was devised since deviations occurred in alloys
with almost filled d-orbitals (d9 or d10) where the peak of the hydrogen-
surface anti-bonding state is near the Fermi-level [46, 40]. The deviations
are better accounted for by the quantity ϵwd = ϵd +

Wd
2 which corrects the

d-band center by half of the d-band width Wd [47].
Lastly, the maximum of the d-band Hilbert-transform ϵu as a direct

measure of the d-band edge correlated best with adsorption energies on
late transition metals [48]. Since ϵu describes the shape of the d-band at
the Fermi-level it predicts the energy-level, and hence the filling of the
hydrogen-surface anti-bonding state, well. The Hilbert-transform of the
d-band has a theoretical foundation in the strong chemisorption limit of the
Newns-Anderson model where the minimum and the maximum determine
the positions of adsorbate-metal bonding and anti-bonding states [49, 50].

While the three electronic descriptors are intuitive, they are prone to
information loss. The d-band theory in general does not account for geo-
metric effects either. In the fifth chapter, we will revisit ϵd, ϵwd and ϵu to
consider the limitations of the d-band theory.

2.4 Paradigm shift in designing catalysts

As the materials discovery process evolved from empirical science towards
theories to explain and predict experimental evidence, the field of hetero-
geneous catalysis developed its concepts (Sabatier and BEP) and theories
(d-band, kinetic theories) alongside [22, 51]. When simulations started
in the 1950’s in the advent of computational technology, simulations of
catalytic systems were challenging due to their complexity. Once numeri-
cal solutions of quantum mechanical systems (see section 3.1 Schrödinger
equation) were implemented, they facilitated atomically precise compu-
tation of structures and their properties. Since quantum mechanical
simulations required, in principle, only the atomic structure and no empir-
ical parameters, they were coined ab initio simulations. Throughout the
1970’s and 80’s computational power exploded enabling ab initio simula-
tions on flat surfaces which culminated in the 90’s in systematic studies
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of transition metals and adsorption thereon [41, 52, 53, 54, 55]. To date,
surface reactions on complex systems with stepped edges, large supercells
or co-catalyst interfaces are daunting but manageable, even molecular
dynamics simulations at ab initio level are possible [56]. Such detailed
studies make sense in particular cases in order to support experimental
findings, e.g. uncovering the active site or the rate-limiting step. They
take a supportive role guiding experiments to build on and improve known
catalysts. Detailed studies however fall short in predicting a new catalyst
as it would be like searching for a needle in a haystack. Screening of a
large range of potentially new catalysts is at present not possible with a
full kinetic and thermodynamic analysis.

As materials science turns toward big data, surface science and in partic-
ular heterogeneous catalysis needs effective screening methods to guide
the search for potential catalysts [51, 57, 58, 59, 60, 61]. As introduced
above, the concepts in catalysis allow us to correlate relatively cheap simu-
lations such as the adsorption energies, with catalytic activity. Thanks to
the d-band theory and electronic descriptors, it is even possible to make
qualitative statements about the catalytic activity of a material without
the simulation of a single surface-adsorbate interaction. Inexpensive prop-
erties correlating with catalytic activity are indispensable for screening of
large databases. As data driven catalysis is just beginning and theoretical
catalysis has not provided any major breakthrough in the last 20 years,
empirical catalysis supported by detailed simulations is still the modus
operandi [38].

Thanks to advances in analytical techniques from infrared spectroscopy
in the 1950’s to resolution of surfaces at atomic precision with the scan-
ning tunnel-microscopy, experimental knowledge has always been ahead
of theoretical knowledge [22]. This acknowledges that to date rational cat-
alyst design relies first and foremost on experimental insight. Large-scale
computational screening efforts may however emancipate the simulation
side from a supporting and explaining role to a predicting and guiding role
on the road towards new catalysts [35, 59, 62].
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3. Descriptors

In the previous chapter, I presented a few properties which are cheaper
to compute than and correlate with catalytic activity. We can refer to ϵd,
ϵwd , ϵu and ∆Eads as one-dimensional descriptors which are intuitive and
based on catalytic concepts. However, they compress information about the
system into one quantity. Since machine learning (ML) generally requires
multiple input features for accurate predictions, ML-descriptors should
not consist of a single property. In materials science, a few methods were
proposed to engineer descriptors with multiple features from information
at the atomic level, for example electronegativity, electron affinity, ion-
ization potential and atomic radii [63, 64, 65, 66, 67, 68]. Nevertheless,
encoding structural information is key where small changes in structure
matter. Although several structural properties such as bond lengths, bond
angles and coordination numbers [69, 70, 71], correlate with ∆Eads, they
do not predict it well enough on their own. How are structural features
transformed optimally for machine learning? This chapter provides an
overview of common structural descriptors. In Publication I, I participated
in testing several descriptors for machine learning while incorporating
them in the python library DScribe. These descriptors only rely on types
and positions of atoms in a system and can be fed to any machine learning
model. Figure 3.1 illustrates the role of the descriptor in a workflow going
from structure to predicting a property such as ∆Eads. The generation of
descriptors is an auxiliary step in machine learning, but determines the
success or failure of it. The preparation of the input is just as important
as the ML model itself. Since structural features are transformed into
a different representation, it could also be regarded as an unsupervised
learning method (see below section 3.3).

3.1 Bypassing the Schrödinger equation

Machine learning provides a shortcut from atomic structures to their
properties, however, it requires reference data for training. The refer-
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Figure 3.1. In order to predict a property with machine learning, the Cartesian coordi-
nates and atom types of a structure are first transformed into a descriptor.
It is a numerical fingerprint encoding relevant structural information. This
transformation is computationally cheap and done for both training and test
sets. The machine learning model then both trains and predicts with the
descriptor features as inputs. Reproduced from Publication I.

ence is usually provided by ab initio simulations, which are based on the
Schrödinger equation. Given the atom positions R and nuclear charges Z,
the Schrödinger equation yields the total energy E:

Ĥ(R,Z)Ψ(R,Z) = EΨ(R,Z) (3.1)

As the nuclei are fixed in the Born-Oppenheimer approximation, the Hamil-
tonian Ĥ and the wave function Ψ are functions of R and Z. In practice, the
Schrödinger equation is solved numerically with different degrees of ap-
proximation. For instance, coupled cluster theory with singlet, doublet and
perturbed triplet excitations CCSD(T) often referred to as the ab initio gold
standard generally reaches chemical acccuracy of about 0.04 eV [72, 73, 74].
Since CCSD(T) is currently unfeasible for large numbers of nanocluster
simulations, accuracy needs to be traded off against computation speed.
Density Functional Theory (DFT) is a popular tool among computational
materials scientists which is fast and its accuracy is referred to as about
0.1 eV [75]. A short introduction is given in the next section.

Assuming the property of interest, in particular ∆Eads, as defined by
a set of total energies E (see 2.11), is simulated accurately enough to
draw meaningful conclusions, then machine learning can supplement
simulation data at most at the accuracy of the reference simulations. Since
the computational cost of machine learning is negligible compared to ab
initio, it is a powerful tool to enhance the data manifold.

In summary, solving the Schrödinger equation and machine learning
are not two competing ways to arrive from structure to property, but
complementary. The ab initio simulations provide the property for training
the machine learning model. Machine learning on the other hand is a
computationally cheap surrogate model increasing the data set size at
an accuracy loss. Hence, the Schrödinger equation can only partly be
bypassed.
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3.2 Density Functional Theory

Hohenberg and Kohn formulated an alternative path to the Schrödinger
equation for ab initio simulations. They proved that the ground state
electron density n0 uniquely determines the external potential Vext of the
atomic nuclei and that a density functional exists for the energy E which
minimizes E at n0 [76].

The Hohenberg-Kohn theorem states that such a functional exists, yet
does not disclose its form. After more than 50 years, the exact functional is
still unknown. In need of approximations to the exact solution, Kohn and
Sham introduced a fictitious system of non-interacting electrons [77]. The
Kohn-Sham approach is a reformulation of the problem, allowing one to
make practical approximations to the density functional. At first, equation
3.1 is replaced by the single-electron Kohn-Sham equation:

hKSψi = ϵiψ (3.2)

where hKS is the Kohn-Sham Hamiltonian. The electrons in this picture
are considered non-interacting. The hard-to-solve problem of electrons
interacting with each other, equivalent with not knowing the exact density
functional, is forwarded to the exchange-correlation functional Exc.

E = T + EH +

∫︂
n(r)νext(r)dr + Exc (3.3)

where the kinetic energy T , the Hartree energy EH and the external po-
tential νext(r) are all non-interacting and reappear as their single-electron
analoga (lower-case letters) in the Kohn-Sham Hamiltonian:

hKS = tKS + νH + νext + νxc (3.4)

Since both νxc[n(r)] (of unknown form) and νH =
∫︁ n(r′)

|r−r′|dr
′ depend on the

electron density

n(r) =

occ∑︂

i

|ψ(r)|2 (3.5)

we are posed with a problem of several unknown variables. Supposed we
found the form of the functional νxc[n(r)] or a sufficient approximation to
it, the set of equations 3.2, 3.4 and 3.5 can be solved iteratively. Given an
initial guess of the electron density, the KS-Hamiltonian (3.4) is computed.
Next, the KS-equation (3.2) yields the wave function which in turn can be
used to calculate another electron density (3.5). With every iteration, the
electron density gets closer to its ground state. The loop is stopped once
n and hKS are self-consistent, meaning the difference in change between
two consecutive steps is negligible. This indicates that the ground state n0
is reached.
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As with the Hohenberg-Kohn functional, the exact exchange-correlation
functional is unknown. However, there are approximations to the exchange-
correlation functional which work well in practice. For our problems in
heterogeneous catalysis, we are concerned that the functional needs to
be sufficiently flexible to describe both surface and adsorbate. The local
density approximation (LDA) for instance is not good enough at estimating
bonding energies and distances [78, 79]. It systematically overestimates
the former and underestimates the latter because of the strong assumption
of a homogeneous local electron density. By allowing density gradients
as in generalized-gradient approximation (GGA), the overbinding in LDA
is corrected and agreement with experiment is improved [80]. The inves-
tigated nanoclusters mostly have metallic behaviour which needs to be
mirrored. This is the case for the functional by Perdew–Burke-Ernzerhof
(PBE) as shown in this study on transition metals [79]. The long-range
surface-adsorbate interaction can be taken into account by van-der-Waals
correction. If the only property of interest is adsorption energies DFT-
accuracy is sufficient. However, if one wants to derive electronic descriptors
e.g. band structure, one needs to be careful. LDA as well as GGA tend to
underestimate the band gap significantly.

Density Functional Theory (DFT) offers a good trade-off between speed
and accuracy. As implemented in CP2K, the computation speed scales
effectively linearly with respect to system size [81, 82, 83] which makes
large-scale calculations of nanoclusters feasible. DFT calculations in Publi-
cations II and III were carried out with the CP2K software using the PBE-
functional [84]. The double-ζ valence plus polarization MOLOPT-SR-DZVP
acted as the basis set [85], including norm-conserving Goedecker-Teter-
Hutter (GTH) pseudopotentials [86, 87, 88]. Grimme’s DFT-D3 dispersion
model with Becke-Johnson damping corrected for Van-der-Waals interac-
tions [89, 90]. The DFT calculations in Publications II and III are part of
this dissertation.

3.3 Machine learning and the need for structural descriptors

The field of machine learning can be divided into two subfields, unsuper-
vised and supervised learning [91]. As unsupervised learning is devoid of
labelled data, it transforms a feature vector x into a different representa-
tion for various purposes. Although, there is no correct representation, it is
helpful to detect patterns in the data. For instance, the dimension of x can
be reduced with methods such as linear discriminant analysis, principle
component analysis or T-distributed stochastic neighbour-embedding. It
is helpful for visualizing the data distribution. Otherwise, unsupervised
learning can detect clustering of data as well as outliers and it can assert
that data are identically distributed.
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Supervised learning on the other hand relies on the labelling of data by a
property ytrue. A machine learning model is an arbitrary function fΘ(x) =

ypred mapping a feature vector x to a property y. In this dissertation, x is
usually a structural descriptor and y is the adsorption energy. Since the
choice of parameters Θ determine how well ypred predicts ytrue, the task
in supervised learning revolves around finding the optimal parameters to
reduce the expected prediction error. It becomes a minimization task with
respect to Θ of the expected loss:

EΘL(y
true,ypred) =

1

N

∑︂

i

|ytruei − ypredi | (3.6)

where N are the number of labelled datapoints. Here the loss function is
the mean absolute error (MAE), but there are other common loss functions
such as the mean squared error or the Kullback-Leibler divergence.

Care should be taken as to what data is used for minimization or fitting.
The expected loss states the error on the already seen data, but does not tell
how well the machine learning model generalizes on unseen data. For that
purpose, all available labelled data is split into a training and a test set.
While fΘ is optimized, it is usually observed that the training error drops,
the more complex the model function is. After all, there are no limitations
to f and it can have any number of parameters. At the latest once fΘ
perfectly fits all training points, the data is over-fitted and generally will
not predict unseen data accurately. The model will also fluctuate strongly
with respect to what training data it sees, introducing a high variance.
This problem can be countered by reducing the complexity of the model.
An excessive reduction in model complexity, however, can lead to under-
fitting of the data. As an example, the function f = 0 without parameters
introduces a high bias. Eventually, the complexity of the model should
reflect the complexity of the underlying feature-property relation. How
do you find the optimal bias-variance trade-off, a model which is neither
under-complex (high bias) nor over-complex (high variance)? To that end, a
part of the training set is put aside for validation. The parameters are then
optimized on the reduced training set and the model complexity is chosen
based on the performance of the validation set. In practice, parameters not
optimizable by the loss function can tune model complexity in a family of
model functions. They are called hyper-parameters, those can also include
parameters for the generation of structural descriptors. A robust validation
method is k-fold cross-validation. The training set is first divided into k
equal-sized partitions. The model is then validated on every partition
separately and the validation errors are averaged.

Once and only when the best model is found, it is finally tested on the test
set in order to get an estimate on the generalization error (expected error
on unseen data). If the step of validation is omitted and the test set is taken
for that purpose or part of the test set was seen at any time during the
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process of optimization, the generalization error will be underestimated.
This specifically includes the choice of descriptor and machine learning
model.

Let us consider the input features for machine learning. One might be
tempted to feed raw structure data as input, such as Cartesian coordinates
(list for each atom) or Z-matrix (list of distances and angles) form. However,
the same structure can be expressed in many ways, for instance the list
ordering can be changed at will (permutation) and the structure can be
translated and rotated in space. This at first does not seem problematic,
but results in similar structures having potentially very different represen-
tations. Since machine learning algorithms need to efficiently interpolate
between data, they require a compact and continuous feature space [92].
Learning from Cartesian coordinates is inefficient since besides the un-
derlying target correlation, rotational, translational and permutational
invariances have to be learned as well. This demonstrates the need for a
structural descriptor which should fulfil the following criteria [92, 93]:

• compact - redundant features should be minimised. Especially the
descriptor should be invariant with respect to rotation, translation
and permutation of atom indexing.

• unique - there should be one unambiguous way to construct a descrip-
tor for any given structure

• non-degenerate - structures with different relevant properties do
not have identical descriptor features. If chiral molecules collapse
into the same representation it can be neglected for most properties.
Otherwise, systems with identical representations, but different prop-
erties introduce noise. This might be the case if the descriptor is local,
but there are non-negligible long-range effects.

• continuous in the spanned feature space - similar structures (e.g. two
adsorption sites on a symmetric surface) yield similar representations.
Machine learning models in general assume smoothness in feature
space.

• general - any imaginable combination and arrangement of atoms in
space should be representable including small and large molecules,
clusters and periodic systems

• fast - The overall goal is to save computational time. Hence the time
needed in order to compute the descriptor should be much lower than
to compute the property of interest with DFT.

The DScribe package contains general unit tests to check for rotational,
translational and permutational invariances for all descriptors. The other
criteria are harder to test and are currently not covered.
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3.4 Descriptors in DScribe

In the past years, many structure representations for machine learning
in materials science have emerged [94, 95, 96, 97, 98, 99, 100]. Several
common descriptors are currently implemented in the Dscribe package:
Coulomb matrix [101], Ewald sum matrix [93], Sine matrix [93], Many-
body tensor representation (MBTR) [92], local MBTR, Atom-centered sym-
metry functions (ACSF) [102] and Smooth overlap of atomic positions
(SOAP) [103]. Of those, four descriptors were tested on nanoclusters in
Publication II: Coulomb matrix, ACSF, MBTR, and SOAP.

The descriptors are introduced briefly below. A descriptor can be global,
encompassing the whole structure, or local, centered around a position in
space, e.g. an adsorption site.

The Coulomb matrix is a global descriptor which contains the pairwise
coulomb repulsion of the atomic nuclei in a symmetric matrix:

Cij =

⎧
⎨
⎩

1
2Z

2.4
i , for i = j

ZiZj

|Ri−Rj| , for i ̸= j
(3.7)

where Ri is the position and Zi is the nuclear charge of the atom i. The
diagonal elements encode the nuclear charge or atomic type and are a
polynomial fit to the potential energy of atoms.

The Ewald sum matrix and Sine matrix are two possible periodic ex-
tensions of the Coulomb matrix. In the former, the Ewald technique is
used to sum up the infinite electrostatic interactions. This sum converges
only with a neutralizing background. In the latter, the interaction terms
inspired by the coulomb repulsion are replaced by a sine function which
reduces the computational cost of the descriptor.

ACSF as a local descriptor is a set of symmetry functions encoding
distances and angles of a center atom i to neighbouring atoms. The local
environment within the radius Rc is represented by pairwise and triplet
atomic interactions of atoms therein. The cutoff function fc(Rij) attributes
less weight to neighbour atoms j further away from the center.

fc(Rij) =

{︄
0.5[cos(

πRij

Rc ) + 1] for Rij ≤ Rc

0 otherwise
(3.8)

The pairwise symmetry functions G1
i , G

2
i and G3

i encode the radial distri-
bution around atom i:

G1
i =

∑︂

j

fc(Rij) (3.9)

G2
i =

∑︂

j

e−η(Rij−Rs) · fc(Rij) (3.10)
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G3
i =

∑︂

j

cos (κRij) · fc(Rij) (3.11)

where η, Rs and κ are hyper-parameters. The triplet symmetry functions
G4

i and G5
i encode angular distributions θijk of pairs of neighbour atoms j

and k.

G4
i =21−ζ

all∑︂

j,k ̸=i

(1 + λ cos θijk)
ζ · e−η(R2

ij+R2
ik+R2

jk)

· fc(Rij) · fc(Rik) · fc(Rjk)

(3.12)

G5
i =21−ζ

all∑︂

j,k ̸=i

(1 + λ cos θijk)
ζ · e−η(R2

ij+R2
ik)

· fc(Rij) · fc(Rik)

(3.13)

where ζ and λ are another set of hyper-parameters. In practice, the descrip-
tor is composed of several symmetry functions of each type with different
sets of parameters, in order to enhance the representation of the local
environment.

MBTR is a global descriptor which divides all combinations of the relative
orientations of k atoms to each other by atomic type. The many-body factor
k usually goes up to 3, but can go higher. The resulting features are
arranged in a tensor. The k-body terms are metrics such as (inverse)
distances and angles. The number of occurrences are counted and then
distributed on a 1D-grid with a grid point x:

fk(x, z) =

Na∑︂

I

wk(I)D(x, gk(I)) (3.14)

with the index tuple I = (i1, . . . , ik) ∈ {1, . . . , Na}k. The summation is done
separately for tuples of atoms Na belonging to a set of atomic types. D is
a normal distribution, wk is a weighting function attributing less weight
to atoms further away from each other, and gk is a spatial function with a
metric unique for every k. The resulting (k + 1)-dimensional tensors are
concatenated in practice, forming a size-consistent descriptor.

Since SOAP was the best-performing descriptor in Publication II and was
also utilized in Publication III, I will describe it in more detail here. The lo-
cal descriptor SOAP represents the density of gaussian-distributed atomic
positions in space by coefficients of orthonormal basis functions [103, 104].
It describes the local environment around an adsorption site up to a certain
radial cutoffRc. Not only can adsorption sites among different nanoclusters
be compared, but also the similarity of whole structures can be assessed
by matching all local-environment pairs across structures [104].
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The features at a specific configuration ξ around a chemical environment
x are computed by the powerspectrum P:

Pξ(x) = pαβξnn′l(x) =
∑︂

m

cαξnlm(x)c∗βξn′lm(x) (3.15)

All unique combinations of atom species α and β are concatenated to
give the full descriptor. The coefficients c represent the atomic density
decomposed by a set of spherical harmonics Ylm and a set of radial basis
functions gnl.

ραξ(r) =
∑︂

nlm

cαξnlm(x)gnl(r)Ylm(Ω) (3.16)

The coefficients are solved by:

cαξnlm(x) =

∫︂ Rc

0
dr r2

∫︂

S
dΩ gnl(r)Ylm(Ω)ρ(r,Ω) (3.17)

The atomic density ρ is given by a gaussian-smoothed distribution:

ραξ(r) =
∑︂

i

e−(r−rαξ
i )2/2, (3.18)

where ri is the position of atom i in the structure. In practice, a maximum
radial basis value n = n′ and a maximum angular value l are chosen so
that the machine learning accuracy is converged.

3.5 Impact of library of descriptors

The DScribe package is available as open-source software online [105]
along with documentation [106]. The user only communicates with a
python interface, whereas some heavy descriptor evaluations are written
in C or C++. Continuous integration ensures that current features do not
break while new features are added.

Machine learning in materials science has become popular in the last
decade. At first, following the workflow in figure 3.1, a combination of
descriptor and machine learning model must be chosen. It is not trivial to
know the best descriptor for a machine learning model in advance, which
means in practice that several options should be tested [100]. Several
machine learning frameworks in materials science have incorporated both
steps [107, 108, 109, 110]. In contrast, to facilitate testing of descriptors
against any machine learning model we chose to decouple them and focus
only on the descriptor module in our package, as it is the key first step to
most machine learning tasks. This deliberately excludes methods where
the machine learning is entwined with the structure representation step
such as graph neural networks (GNN) [100, 111, 112, 113, 114]. A GNN
mimics the structure incorporating the descriptor step into the shape of
the neural network.
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DScribe brings several advantages to computational materials science:
it can be used in combination with both unsupervised and supervised
learning methods. Descriptors can be easily exchanged for the purpose
of feature importance weighting. For instance, in order to explain which
part of a structure is responsible for a property, searching for distinctive
features can be easier in some descriptors. And lastly, it has an easy-to-use
python interface consistent throughout all implemented descriptors, so
that benchmarking and switching between descriptors require only few
code changes.

As computational materials science becomes data-driven, many research
areas might start to use machine learning as a tool. Since easy-to-use ma-
chine learning packages such as scikit-learn already exist [115], DScribe
lowers the threshold for new researchers by providing off-the-shelf de-
scriptors. Since some physical properties are determined locally such
as the adsorption energy and some are defined by the whole structure
such as atomization energy, DScribe supports local and global descrip-
tors. As descriptors in materials science are an active research field
[92, 93, 100, 101, 102, 104], the library is open to external contributions.

The DScribe package in its initial state, although not fully launched, was
tested extensively and used to facilitate machine learning on nanocluster
adsorbates in Publication II. Later on, it was a key ingredient to the
workflow automation in Publication III. Apart from that, to the date of
writing, DScribe has been applied to several materials science works
[116, 117, 118, 119, 120].
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4. Machine learning screening
adsorption on nanoclusters

The elements and structures of adsorption sites determine their adsorption
energy ∆Eads (see equation 2.11) which in turn is a descriptor for catalytic
activity. The adsorption energy of a single site is relatively cheap to
compute by DFT but since several diverse sites populate a nanocluster,
screening all of them for many nanoclusters quickly becomes too expensive.
Especially on distorted, irregular surfaces, the adsorption sites can be
similar but hard to classify with heuristic methods. This chapter explores
how machine learning can interpolate ∆Eads both on a single cluster and
on multiple clusters simultaneously and which descriptor does the job most
efficiently.

Machine learning has recently gotten traction in heterogeneous catalyst
research [70, 111, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], yet
studies on nanoparticles and nanoclusters are still scarce [69, 71, 131, 132,
133, 134]. As was mentioned in the last chapter, it is important to find the
best combination of descriptor and machine learning model. Faber et al
compared the accuracy of several machine learning models [100]: gated
graphs, graph convolutions, kernel ridge and random forest regression.
As both graph convolutions and gated graphs are types of graph neural
networks, they could not be combined with descriptors in chapter 3. In
Publication II, I tested both kernel ridge and random forest regression,
whereas the latter can be found in the supporting information [135].

I chose kernel ridge regression (KRR) as the most suitable machine
learning model for the following reasons. First, KRR outperformed random
forest regression by a large margin [135]. Secondly, in the study of Faber
et al, it reached good accuracies throughout the tested properties and was
sometimes the best model [100]. And lastly, it was the ML model of choice
for the inventors of two descriptors: MBTR and SOAP [92, 103, 104].
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4.1 Kernel ridge regression

In conventional regression tasks such as neural network [136] or polyno-
mial regression, sets of parameters are trained or fitted on labelled data.
The trained machine learning model neither has memory of, nor requires
the original data to make predictions on the new data. By contrast, KRR is
a memory-based ML method which encodes training data in a symmetric
kernel matrix K.

K =

⎡
⎢⎢⎣

K(x1,x1) . . . K(x1,xN)
... . . .

K(xN,x1) K(xN,xN)

⎤
⎥⎥⎦ , (4.1)

The size of K is equal to the number of training points N . Each entry is a
similarity metric K(xi,xj) of two feature vectors xi and xj. The similarity
metric has to be a symmetric positive semi-definite kernel function, for
example the radial basis function:

K(xi,xj) = exp(−γ∥xi − xj∥2) (4.2)

where γ is a hyper-parameter optimizable by cross-validation. In order
to predict a property y of a new data point xpred, the matrix needs to be
inverted. Inversion is the speed bottle neck of KRR as the computational
cost scales cubically with the amount of training data. Once the matrix is
inverted, y is given by

y(xpred) = kpred
T (K+ λI)−1ytrain, (4.3)

where the regularization parameter λ is another hyper-parameter and
ytrain is the property vector of the training set. As λ controls the model-
complexity it is also optimized during cross-validation. In order to compute
the kernel vector kpred, the training data is required once more:

kpred =

⎡
⎢⎢⎣

K(xpred,x1)
...

K(xpred,xN)

⎤
⎥⎥⎦ (4.4)

KRR is best-suited for medium-sized datasets; other ML methods would be
more suitable in terms of computation time for datasets larger than 10000

points. As KRR transforms the feature space into an N -dimensional space
of datapoint relations, it is only capable to interpolate and not extrapolate.

4.2 Benchmark

Finding the best ML representation for an adsorbate-surface interaction
requires benchmarking several descriptors on diverse test systems. The
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adsorption energy might be fully local or there might be global effects,
too. The accuracies with respect to ∆Eads of the structural descriptors
Smooth Overlap of Atomic Positions, Many-Body Tensor Representation,
Atom-Centered Symmetry Functions and Coulomb Matrix were compared
against each other. The 2D-material molybdenum disulphide (MoS2) is
a promising catalyst for the HER as it forms nanoclusters of triangular
and hexagonal shapes and can be terminated with different amounts
of sulphur on its edges [137, 138, 139]. The alloy gold-copper (AuCu) is
exemplary for bimetallic alloys where atoms can be arranged in a multitude
of configurations. The two test systems MoS2 and AuCu covered an array of
structural patterns representative of other nanoclusters, such as symmetry
and near-symmetry of adsorption sites on the one hand, but distorted
asymmetric surfaces on the other hand, sharp and smooth edges, as well
as several element compositions at the edges. Figure 4.1 shows learning
curves (error against training set size) for 4 different benchmark systems,
whereas the descriptor and kernel hyper-parameters were optimized via
cross-validation. Figures 4.1a and 4.1b show prediction accuracies of the
potential energy surfaces (PES) of single MoS2 and AuCu clusters.

PES in general describe the energy of a system, with respect to atomic
positions. The nanocluster was kept rigid, moving only the hydrogen atom,
resulting in a 3-dimensional PES. For small molecular adsorbates, the PES
has 3 more dimensions because the molecules rotate relative to the surface.
For molecules with internal degrees of freedom, the amount of dimensions
quickly explodes.

In figures 4.1a and 4.1b, with only 200 to 300 training points, the PES of
both single MoS2 and AuCu clusters could be reconstructed. At that point,
an MAE of 0.1 eV (DFT-accuracy) could be reached by all descriptors except
for the Coulomb Matrix. The learning rates were similar, however SOAP
was most accurate at larger training set sizes. The error could further be
reduced by instead of picking training points randomly from the surface,
they were ordered by their similarity. The most distinct points were
picked first, points identical to any other previous point were ordered last.
The algorithm farthest point sampling (FPS) starts with a random first
point, then iteratively determines the point that maximizes the minimum
distance to all previous points [140]. FPS can speed up ML especially
for highly symmetric structures like MoS2 (D3h) even if the symmetry is
not perfect. FPS harmonizes a training set which otherwise would not be
identically distributed in feature space, reinstating an important machine
learning assumption [91].
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Figure 4.1. Learning curves with mean absolute error (MAE) plotted against training
set sizes. The benchmark shows the accuracy of the descriptors CM, SOAP,
MBTR, ACSF and ACSFH in KRR to predict adsorption energies. ACSFH

are symmetry functions centered around hydrogen. Figures a) and b) show
results on datasets of single MoS2 and AuCu clusters. Figures c) and d) show
the outcome when the model was trained on several MoS2 and AuCu cluster
structures simultaneously. Reproduced from Publication II.
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4.3 Simultaneous screening of nanocluster PES

Machine learning the PES cannot only be done on a single nanocluster
at a time, but on multiple clusters simultaneously. Figures 4.1c and
4.1d show results of 91 MoS2 and 24 AuCu clusters, respectively. The
descriptor SOAP reached DFT accuracy whereas MBTR and ACSF did
not, even at a training set size of 9000. Predicting the PES in batches
has synergistic effects, since the required training points per cluster are
reduced significantly.

As MBTR is a global descriptor, it contributes new information to the
local descriptor SOAP. Although the nanoclusters of MoS2 were of different
size and shapes, the added information turned out to be irrelevant for ML.
Testing the combined descriptor SOAP+MBTR (red curve in figures 4.1c
and 4.1d) revealed that it did not surpass the accuracy reached with SOAP.
It could be concluded that global information is not required and differences
in adsorption energies on different nanoclusters could be explained by the
local environment of the adsorbate. This does not mean that there are
no long-range effects like the size of the nanocluster, but that they can be
learned locally from small changes in bond distances and angles.

4.4 Interpolation and extrapolation

Figure 4.2a shows a parity plot of the predicted PES against the calculated
PES of a single MoS2 cluster. The sampling is not so dense in the high-
and low-energy regions. Since the adsorption sites are the positions of
the local minima on the PES, only the meta-stable states constitute the
adsorption energy distribution. Figure 4.2b illustrates the accuracy of
predicted adsorption site energies of multiple MoS2 clusters.

The MAE was slightly higher at 0.13 eV, possibly due to less sampling in
the low-energy region. Yet, the predicted adsorption energy distribution
agrees well with the calculated distribution. In summary, the combination
of SOAP and KRR allows for an accurate prediction of adsorption energies
along with the position of the hydrogen adsorbate. In order to demonstrate
the limits of this method, the training data of small AuCu clusters (13
atoms) was used to predict the PES of a larger Au40Cu40 cluster. The parity
plot is shown in figure 4.3. The agreement was not good, in particular a
large part of the high-energy region was underestimated. This indicated
that some local environments were not represented in the training set,
hence KRR had to extrapolate far in feature space. This highlights the
importance of picking training points in view of the prediction targets.
For efficient ML, the range of nanoclusters should be determined before
gathering any training data. The presented approach proved successful for
diverse sets of nanoclusters, yet it revealed two disadvantages. Scanning

41



Machine learning screening adsorption on nanoclusters

Figure 4.2. Parity plots of predicted against calculated adsorption energies showcasing
the predictive power of scarcely sampled datapoints on multiple MoS2 clusters
(training set). a) The test set consists of a dense potential energy scan on a
single MoS2 cluster. b) The test set consists of local minima on several frozen
MoS2 clusters. The histogram of predicted (red) and calculated (black) energy
distributions agree very well. The outliers of the scatter plots tended to be
stronger in figure b). Reproduced from Publication II.

Figure 4.3. Parity plot of predicted against calculated adsorption energies showing the
limitations of extrapolation. The training set consisted of small AuCu clusters,
but was tested on a several times larger Au40Cu40 cluster. The histogram of
the calculated (black) energy distribution is shifted slightly towards higher
energies compared to the predicted (red) histogram. The scatter plot features 2
groups of datapoints indicating that some sites were not properly represented
in the training set. Reproduced from Publication II.
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the full PES becomes more expensive with molecular adsorbates and
impractical with larger molecules. Furthermore, the only part of the
PES, more precisely the low-energy region of the local minima, eventually
matters to predict the energy of adsorption sites. The results show room
for improvement in the selection of training points.
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5. Challenges on automation of
screening nanocluster surface
interaction

The search space for nanocluster catalysts is daunting due to the fact that
the element composition and size are practically free variables. In addition,
it is also important to find stable shapes and configurations. In chapter
4 I established that machine learning aids the screening of nanoclusters
as it makes the computation of ∆Eads cheaper. The descriptor SOAP and
machine learning model KRR proved to work in conjunction with each other.
Nevertheless, several challenges remain in efficiently exploring the large
search space. Publication III suggests an automated screening method
which is capable of handling the four search dimensions: composition,
configuration, size, and shape. It was tested on bimetallic combinations
of 6 elements at different compositions and configurations, keeping size
and shape constant due to computational limitations. This chapter is an
overview of the challenges involved in automating a workflow from the
generation of nanocluster configurations to the prediction of ∆Eads.

5.1 Nanoclusters

Although there are numerous nanocluster classes such as transition metal
dichalcogenides (e.g MoS2), I will introduce the class of nanoalloys, nano-
clusters of more than one (transition) metal. It is hard to find the most
stable structures of nanoalloys because of the number of possible isomers.
Given a fixed shape and composition, a bimetallic nanocluster ANA

BN−NA

has N !
NA!(N−NA)! configurations, although some can be equivalent due to

symmetry. The total number of structures of a bimetallic nanocluster of
fixed shape but any composition is 2N . Even for a small nanocluster A13B42

of 55 atoms, the number of configurations amount to 55!
13! 42! ≈ 1.45 1012 and

summing up the compositions of AxB55−x amounts to 255 ≈ 3.60 1016. Even
with the reduction of configurations by symmetry, exhausting the search
space in order to find the global minimum configuration is out of reach. In
section 5.3 I introduce a practical screening approach.

Nanoclusters can have crystalline and non-crystalline shapes. While
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crystalline clusters have closed-packed cores, the non-crystalline clusters
such as icosahedra and decahedra have cores which are under strain.
Instead, non-crystalline nanoclusters exhibit facets which minimize the
surface energy. As the strain has a destabilizing effect and scales with the
volume of the core, icosahedral shapes transition at increasing size into
closed-packed shapes such as octahedra [141, 142]. Figure 5.1 illustrates
a typical transition between shapes from icosahedra via decahedra and
octahedra to Wulff-shapes. Icosahedra, decahedra and octahedra are

Figure 5.1. Illustration of an icosahedron, decahedron and octahedron, followed by a
Wulff-shape construction of a copper cluster. The facets with Miller indices
(111) and (221) dominate the surface. Facets of higher surface energy are
small, however, they get formed once the nanocluster is big enough and can
even dominate the catalytic activity.

terminated by facets with Miller indices (111). However, decahedra and
octahedra usually have capped corners to attain a more spherical shape
like icosahedra. The core of truncated octahedra is already closed-packed
and is congruent with Wulff-clusters at small size. Wulff proposed that the
distance hi from the surface of a specific plane i to the center of the cluster
is proportional to the surface energy γi [22].

hi ∝ γi (5.1)

The Wulff-construction favors low-energy facets while the area of facets
with higher surface energy are usually negligible at small nanocluster
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sizes. Once the nanocluster grows into a nanoparticle however, they can
dominate catalytic activity despite their small contribution to the total
surface area [143]. It depends on the composition which cluster shape is
most stable but there are methods to estimate cross-over sizes [141, 142].

Two metals in a nanoalloy can either mix or segregate internally [144].
The degree of mixing is determined by the bond-strengths between atoms
of the same or different atomic type. An example of a segregated nanoal-
loy is a core-shell nanocluster where a core consisting of one element is
surrounded by a shell of a second element. The driving force behind this
phenomenon is the difference in surface energy, but also the difference
in atomic radii plays a role [144]. For instance, in nanoclusters with a
strained core such as icosahedra, the smaller atoms tend to occupy the core
[145, 146]. In mixed nanoalloys, the elements can either be ordered or ran-
domly arranged. In-situ effects often change the observable configurations.
If the binding-energy to molecules at the interface is considerably stronger
by one element, those atoms tend to segregate to the surface [144, 147].

The finite size of nanoalloys leads to a discretization of the electron
bands. The confinement of the s-electrons of gold, for instance, is effective
at room temperature up to a nanocluster size of roughly 2 nm [1]. At what
size exactly the confinement effects start is hard to measure and most
likely depends on the element composition [7]. Even without those effects,
nanoparticles are usually more reactive than plain surfaces. This is due
to the high surface-to-volume ratio. Since the nanoparticle shapes are
determined by the Wulff-construction, simulations are usually carried out
in parallel on periodic slabs of several terminations instead of explicitly
simulating the whole nanoparticle at once.

5.2 Workflow automation

Although several high-throughput screening for the HER had been re-
ported, they were carried out on periodic slabs, not on nanoclusters [57,
60, 125]. Consequently, it was necessary to devise a specialized workflow.
Since there are several classes of promising catalysts such as single-atom
alloys, high-entropy alloys and metal carbides, nitrides, phosphides and
chalcogenides, a good workflow should be capable of handling various struc-
ture types [148, 149, 150, 151]. Though, for a practical screening instance
it is important to limit the search to a manageable size.

At first, relevant elements should be selected. As the hydrogen evolution
reaction is catalyzed by platinum in industry it provides a helpful refer-
ence. Furthermore, the elements iron, cobalt, nickel, copper and titanium
form stable icosahedral nanoclusters [152] and have catalytic potential
for the HER [39, 153, 154, 155]. Hence, the above 6 elements reduced
the search complexity to only icosahedral nanoclusters. The search was
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further constrained to a nanocluster size of 55 atoms since they are the
smallest icosahedra with a core and do not distort significantly upon hy-
drogen adsorption. The choice of elements, shape and size can be regarded
as input variables for the workflow sketched in figure 5.2.

Figure 5.2. The sketch of the automated workflow shows steps from cluster genera-
tion and selection, adsorption site detection and ranking to the prediction of
adsorption energies in a loop with DFT. Reproduced from Publication III.

The workflow automates the completion of 3 tasks: the nanocluster
generation, the adsorption site detection and the subsequent submission
of jobs in a DFT-ML loop. DFT jobs are submitted in batches while the
machine learning accuracy is tested in each loop until the error is below a
certain threshold. The whole workflow, especially the latter task requires
an architecture to manage computation and storage of simulations. In
materials science the most popular tools are atomate [156], AiiDa [157,
158] and Fireworks [159]. Fireworks is an open-source workflow manager
with a python interface and a comprehensive documentation. It was
developed and tested during the Materials Project [160]. For this project,
I programmed the workflow in Fireworks and made it publicly available
[161].

The first two tasks, the generation of nanoclusters and the detection of
adsorption sites are exclusive to nanoclusters. The challenges to automate
them are discussed below.

5.3 Efficient exploration of nanocluster configurations

Without prior knowledge of how atoms in a cluster are arranged, the
configurations are most efficiently explored if they are picked maximally
different from each other. The clusters were selected based on the global
SOAP similarity metric [104]. For one exemplary composition out of 75,
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figure 5.3 shows the 10 most dissimilar Cu13Co42 structures.

Figure 5.3. 10 example nanoclusters of the composition Cu13Co42. They were generated
with the target of maximizing their dissimilarity. They feature a core-shell,
an ordered and several segregated clusters. Reproduced from Publication III.

The configuration generation method uses Monte-Carlo (MC) with vary-
ing pseudo-energies to construct nanoclusters of a given shape.

E =
n∑︂

i

Ec,i ∗ ci +
n∑︂

i

Ex,i,j (5.2)

where the pseudo-energies Ec and Ex represent core attraction and inter-
action between neighbouring atoms. Neighbouring atoms are defined by
Voronoi-tesselation. The pseudo-energies are depicted in figure 5.4. All
experimentally observable nanocluster classes emerge such as core-shell,
ordered, segregated and randomly configured clusters [144]. Since find-
ing the global minimum configuration is too computationally demanding,
instead the most stable classes of nanoclusters are determined for every
composition.

After the 10 most dissimilar structures for every composition had been
optimized by DFT, their stabilities were compared to each other. The
core-shell trends as well as the miscibility generally agreed well with the
literature [145, 162]. The intensity of exploration can be increased at
will and prior knowledge of miscibility and segregation can be reflected
in the range of pseudo-energies for the MC algorithm. It is even possible
to systematically approach the most stable configuration by Bayesian
optimization of pseudo-energies [91, 163].

5.4 Nanocluster-adsorbate tools

The most common adsorption sites are top, bridge, 3-fold hollow and 4-
fold hollow [22]. On regular periodic slabs they can be determined with
heuristic methods. Since nanoclusters have edges and vertices, an objective
definition of these sites is important. Due to significant distortions, it is
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Figure 5.4. Pseudo-energies of an icosahedral bimetallic nanocluster. The core-pseudo
energies EA and EB mimic surface segregation and the pseudo-energies EAA,
EAB and EBB characterize interaction between atoms which leads to phenom-
ena of mixing or element segregation emerging.
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sometimes hard to tell which atoms belong to the surface. The solution is
an objective method for adsorption site detection and classification depicted
in figure 5.5.

Figure 5.5. Illustration of the surface detection algorithm. The nanocluster is first divided
into tetrahedra with the Delaunay algorithm. The outermost triangles then
determine the surface atoms. Normal vectors of the triangles define the
direction of top (red), bridge (green) and hollow (blue) sites. The algorithm
works not only on highly symmetric clusters such as icosahedra (top), but also
on distorted clusters (bottom). Reproduced from Publication III.

To demonstrate that the method works on any given shape, the example
below shows a platinum nanocluster with a reduced core.

The surface detection algorithm proceeds as follows. The volume of the
nanocluster is first tetrahedralized by the Delauny-algorithm. The open
triangular faces then not only represent the surface, but also determine
3-fold hollow sites and, given their edges and vertices, subsequently bridge
and top sites. The algorithm robustly arrives at uniquely-defined positions
for adsorbates to bind on nanoclusters of arbitrary shapes and does not
require visual checks which is paramount for large datasets. The tools
to generate nanoclusters and detect adsorption sites are gathered in the
python package Cluskit, along with other functionality regarding surface-
adsorbate structures [164].

5.5 Machine learning accuracy

In chapter 4, the adsorption energies were inferred by predicting the whole
PES and hence find the local minima. In Publication III, I chose a different,
arguably more efficient route. The structures of training points on top,
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bridge and hollow sites were optimized to find ∆Eads corresponding to the
closest local minima. The machine learning model was then trained on
the local environments of the initial positions with labels of the relaxed
positions. Thus, for new data, the adsorption energies were predicted
skipping the process of finding local minima entirely. This alleviates the
need to compute and predict high-energy parts of the PES. A similar
approach had been reported in the literature before [165].

The adsorption sites on the most stable bimetallic clusters were ranked
by farthest point sampling (FPS) as in chapter 4 to avoid computing redun-
dant sites. The DFT-ML loop ran until an accuracy of 0.11 eV MAE was
reached at a training set size of less than 10 % of the full dataset. Machine
learning was in this case able to speed up the screening process by an order
of magnitude. A detailed analysis of the errors revealed that there was still
room for improvement in future studies. First, the learning rates differed
depending on the elements constituting the adsorption sites. A Bayesian
optimization approach which detects the slowest-learning element compo-
sitions could potentially increase the learning rate further [166]. Second,
hydrogen tended to traverse from the initial guess to neighbouring adsorp-
tion sites, and that drift had a small effect (about 0.02 eV) on the predictive
power of the model. A model which classifies initial guesses into stable
and drifting adsorption sites could reduce the error even further.

Figure 5.6 summarizes adsorption energy distributions per composition.

Figure 5.6. Hydrogen adsorption energy predicted per composition of bimetallic combina-
tions of Fe, Co, Ni, Cu, Ti and Pt. The distributions are characterized by their
means and standard deviations. Reproduced from Publication III.

Taking platinum as a reference point of a good catalyst, the ordering
of adsorption energies of pure elements agreed well with experiments
[167]. However, the agreement was poor compared to bimetallic catalytic
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activities [168, 169]. The reason(s) for poor agreement can lie on both
the computational and experimental side. On the one hand, experiments
always introduce noise due to experimental conditions that are hard to
control. Additionally, a consistent series of experiments is scarce. Lastly,
the subjects of the experiments are usually nanoparticles of different sizes,
in stark contrast to simulated nanoclusters of controlled size. On the other
hand, simulations try to approximate reality with imperfect models and
they also rely on theoretical assumptions to infer catalytic activity from
∆Eads. It is a descriptor of catalytic activity and it neglects the equilibrium
coverage and entropic contributions.

Comparing the adsorption energy distributions to other computational
datasets of periodic slabs, it became apparent that they were shifted
to lower energies [57, 170]. However, the shift was not constant. This
highlights the importance of the structural model for capturing nanocluster
effects.

5.6 Electronic descriptors evaluation on nanoclusters

The d-band center ϵd, the d-band center plus half the d-band width ϵwd
and the maximum of the d-band Hilbert-transform ϵu were introduced
in chapter 2. They are descriptors of the local density of states of the
d-band. They form a linear relation with ∆Eads of top sites on periodic
slabs [41, 47, 48]. Figure 5.7 summarizes the correlation of the electronic
descriptors with nanocluster adsorption energies.

The correlation coefficient R indicates how good the linear relationship on
nanoclusters is. While the correlation of ϵd and ϵwd is weak, the correlation
of ϵu is moderate. Constraining the adsorption energies to only those
sites consisting of one element, the correlation improves slightly and is
even stronger when restricted to only pure nanoclusters. As descriptors
of a single quantity, ϵd, ϵu and ϵwd are prone to information loss. Yet, the
correlation of ϵu with ∆Eads is strong enough that it could be used semi-
quantitatively to pre-screen nanoclusters. It could filter out nanoclusters in
ranges where the catalytic activity is expected to be low. This process has
the potential to speed up the discovery of catalysts for several reactions at
the same time, since it circumvents simulations of nanocluster-adsorbate
interaction altogether. It is not possible to make predictions of catalytic
activity with electronic descriptors but it is helpful in narrowing down the
search space. Apart from that electronic descriptors could be used as a
property to check the stability of nanocluster configurations.
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6. Conclusions and perspective

Industrial heterogeneous catalysts have improved steadily throughout a
century, lead by experimental scientists and engineers. Catalytic activity
is expensive to determine as it is an ensemble property of surface and
adsorbates. That is reflected by the difficulty to simulate catalytic activity
accurately. Rational Catalyst Design faces challenges to approximate com-
plex real systems with means simple enough for computational screening
methods. In this dissertation I addressed some of these challenges with a
focus on the field of nanoclusters.

In a brief introduction into the concepts behind heterogeneous catalysis I
explained that kinetic properties can be replaced by purely thermodynamic
properties. The d-band theory let us catch a glimpse that the interaction
between catalyst surface and adsorbate need not be explicitly simulated.
In theory, catalytic activity can be predicted by properties of the catalyst
surface only.

In light of the above, the first study focused on structural descriptors
that can describe the surface without the adsorbate itself. I participated
in the implementation of representations of atomistic systems as input
for machine learning in materials science. I presented an overview of
descriptors and introduced Smooth Overlap of Atomic Positions (SOAP) in
more detail. The work resulted in an open-source python library which
has been embraced by the materials science community.

The second study provided the first benchmark of structural descriptors
for nanocluster systems. It proved that machine learning adsorption ener-
gies from sole knowledge of the local environment is possible. As a useful
reference for future work, the descriptor-ML combination SOAP-KRR was
deemed most efficient. Methods were established to make screening of
adsorption energies on nanoclusters more efficient.

Finally, I developed an automated workflow to screen large datasets of
nanoclusters. It is publicly available and supports any catalytic reaction on
any nanocluster class. A bimetallic dataset containing several compositions
of Ti, Co, Fe, Ni, Cu and Pt was generated. New methods were proposed
to address the large search space with respect to composition, configura-
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tion, size and shape. The maximum of the d-band Hilbert-transform was
identified as a potential pre-screening property on the nanocluster level.
The workflow was demonstrated on the hydrogen evolution reaction and
the results were compared to experiments. The results were not satisfying
and underlined that there was still a large gap between simple screening
simulations and experiments.

Rational Catalyst Design is still far from maturity. The goal in data-
driven discovery is to circumvent simulating nanocluster-adsorbate and
adsorbate-adsorbate interactions explicitly. Thus, it is important to develop
and test descriptors to help reach that goal. I presented several descriptors
in this dissertation. The electronic descriptors ϵd, ϵwd and ϵu are intuitive
descriptors. They are not well-suited for machine learning but rather to
understanding catalytic trends. The presented structural descriptors are
less intuitive, however they are efficient fingerprints for machine learning.
Both types of descriptors have their place. The former help in improving
the theoretical foundation of catalysis, the latter help in making data-
driven catalysis predictions as accurate as possible.

Several levels can be tackled to improve computational screening of
nanoclusters. In a screening funnel, potential candidates can be sieved
out on different levels of computation complexity. The levels lower in the
funnel require more computational resources as depicted in figure 6.1.

Figure 6.1. Nanocluster screening funnel. The lower the level in the funnel the more
computational resources are required. Hence, it is paramount to filter out
nanoclusters as early as possible.

I addressed the levels up to the nanocluster-adsorbate level. Pre-screening
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nanoclusters with respect to stability and electronic properties is impor-
tant before simulating nanocluster-adsorbate interactions. The adsorbate-
adsorbate level is not subject of this dissertation, but is currently being
addressed in collaboration. For instance, I implemented an automated
workflow to determine the optimal nanocluster coverage which is currently
subject to testing [161]. It is paramount for future studies to make simula-
tions at the adsorbate-adsorbate level more efficient, since it is the only
way to estimate catalytic activity well and verify theoretical predictions
without relying on experiments.

In the future, it would be highly beneficial to have automatic simulation
feedback loops. On the nanocluster-adsorbate level, screening potential
energy surfaces could be made more efficient with Bayesian Optimization
Structure Search (BOSS) [163] or Gaussian Process Regression [171]. To
generate feedback between different levels (e.g ∆Eads and nanocluster
selection) an ML optimizer needs to be hooked to the automated workflow.
A framework which would allow that is Rocketsled [172]. It is based on
Fireworks (as the developed workflow) and chooses instances of workflows
(with different inputs) on the fly based on an optimization engine. As
summarized in figure 5.2 and explained in detail in chapter 5, these inputs
can range from elements, shapes, sizes to pseudo-energies. The target
property could be stability and ϵu for pre-screening or ∆Eads and ∆Gads at
higher computation complexity.

Ultimately, experiments guide the design of new catalysts. A smoothly
working feedback loop between simulations and experiments lies far in the
future. However, this shall not inhibit collaboration between computational
materials scientists and experimentalists. It can be useful to restrain
the search space to a starting point of manageable size. For instance,
elemental compositions and nanocluster shapes should be chosen based on
experimental evidence. Consistent series of experiments on the catalytic
activity of nanoclusters are still scarce. There are a few unpublished
experiments with controlled size and composition which could be a useful
benchmark. However, there are not enough data to machine learn with
the target property of experimental catalytic activities.

The goal of efficient exploration aside, what can be done to improve our
understanding in nanocatalysis? The proposed workflow can help unveil
trends with respect to nanocluster shape and size if the search space is
chosen accordingly. A sensible next step would be the compilation of a
larger dataset encompassing different common shapes such as icosahedral,
decahedral and Wulff as well as sizes up to 2 nm. The trends in electronic
descriptors and adsorption energies could shed light on the influence of the
local and the global structure. Nanocluster effects of core strain, size, and
low coordination of edges could be resolved quantitatively. Such analysis
could result in refined structurally resolved electronic descriptors.
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