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1. Introduction

1.1 Background and motivation

What distinguishes us, humans, from many other species on earth is our
capacity for complex thinking and reasoning. These abilities have enabled
us to develop innovations that improve our life. As such, progress, in
a variety of indices, has largely been the main theme in human history.
In what is known as “The Great Acceleration” [81], a period from 1750
and onwards, humanity has undergone unprecedented progress in many
aspects of our life and our society. For instance, we have a much longer
lifespan on average than our prehistoric ancestors, because of the advances
in health care and medical science. On the societal level, the idea of racial
and gender equality is commonly accepted after many years of reflection
and reasoning. Traveling across continents, which was once considered
adventurous and could take years, has now become a commonplace service,
which is easily accessible and safe.

In parallel to the betterment of our lives, our impact on this planet has
become so significant that a new geological epoch known as “Anthropocene”
was proposed [80]. While it is still early to assess whether our impacts are
benign or not, some of them are already creating new problems. Increasing
levels of human activity are placing greater pressure on the global ecologi-
cal system. Climate change and environmental pollution are threatening
the survival of many species that have lived on this planet for millions of
years.

To make things worse, our prospective to survive and flourish is facing
increasing uncertainty due to the negative consequences made by us. For
instance, increasing sea level due to the warming climate will ultimately
take away the homes of millions. On our warming planet, large numbers
of wild fires with great scale have been reported, which not only hollow
the habitats of living creatures, but also undermine the already weak
ecosystem. Apart from the problems in the physical world which we

9



Introduction

live in, we are experiencing new challenges in the online sphere. Online
polarization and misinformation [84] have generated large-scale conflicts
and hatred, which have hindered the proper functioning of our societies.

As the eminent psychologist George Miller wrote in 1969 [60], “the most
urgent problems of our world today are the problems we have made for our-
selves. They are human problems whose solutions will require us to change
our behavior and our social institutions.” To put it straightforwardly, we
messed things up and we are the only ones who can fix the situation.

To address the problems created by us, in this thesis we focus on three
categories of problems: epidemics & infodemics, online polarization, and
bias in automatic decision-making. All three problems can be viewed as
the byproducts from the development of information technology, and are
typical challenges in our digitized society. The last problem category is
grounded in the physical world, but is still closely related to the online
world.

Next we discuss each problem category in greater detail and identify
several key issues to address.

Epidemics and infodemics. A part of human history is the long-lasting
struggle with epidemics. The Black Death was one of the most devastating
pandemics in human history, killing 30% to 60% of Europe’s population
in the Middle Ages [87]. With the advances in medical and biological
science, many infectious diseases are not as deadly as before. However,
a few factors, such as increasing population density and higher levels of
human mobility, pose new challenges for epidemic prevention in recent
days. When no effective vaccination against a new disease is available,
prevention becomes critical but challenging. The outbreak of COVID-19
caused by a novel coronavirus (namely SARS-CoV-2) at the end of 2019
has caused 15 581 009 confirmed infections and claimed 635 173 lives until
July 26rd, 2020.1 Yet, there has been no sign of a global turning point by
the time of writing this document.

To contain an epidemic effectively, early identification of infected persons
and timely quarantine are crucial. However, obtaining relevant informa-
tion, such as who are infected, is difficult in practice. On the one hand,
information is usually noisy. For example, the symptoms of COVID-19 are
similar to that of common influenza, thus influenza patients can be mis-
takenly diagnosed as COVID-19 patients. On the other hand, identifying
individuals who are infected but without any symptoms requires testing
people at a massive scale, which is often unrealistic.2

We should not feel hopeless though. A variety of information sources
that can be harnessed bring new opportunities. With the help of the
“right” data, we might be able to identify the patients effectively and

1https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200725-covid-19-sitrep-187.pdf
2https://www.nytimes.com/2020/02/26/health/coronavirus-asymptomatic.html
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efficiently. For example, personal mobility records (e.g., collected from
mobile devices) provide information on where people have been to. Based
on this information, we can further infer who have contacted whom, thus
constructing a human-contact network, and further use this network to
make the inference.

Important questions remain. Based on the constructed network and the
identities of a few infected individuals, how can we identify the remaining
infected population? Furthermore, how can we reliably tell the starting
point of an epidemic and when each infected individual got infected?

Another phenomenon closely related to epidemics is infodemics. An
infodemic refers to an epidemic of misinformation — false or inaccurate
information, especially those that are deliberately intended to deceive. In
fact, during the COVID-19 outbreak, a global epidemic of misinformation,
which spread rapidly through social-media platforms, is happening. As
a consequence, infodemics, which contain misleading and even malicious
information, are posing a serious problem for public health [91].

If social-media users who are hoaxed to believe a piece of misinformation
and may share the information to his friends, who might also believe
the misinformation, it is reasonable to make an analogy of infodemics
using epidemics. The misinformation that disseminates can be viewed as
a “disease” that spreads among the users, and the users who believe the
misinformation can be seen as the individuals that are “infected.” Thus,
similar questions can be asked in the context of infodemics: how can we
identify the starting points of an infodemic as well as which users are
hoaxed to believe the misinformation?

Online polarization in social media. Our world is increasingly inter-
connected thanks to globalization and technological advances. The wide
adoption of social media has been a driving force that makes such inter-
connection happen. Social-media platforms have enabled people, with
different nationalities and diverse beliefs, to communicate and exchange
ideas.

While social media makes it easy for us to publish and access information,
it is not necessarily leading to greater cohesion of our world. As evidence,
researchers point out that social-media platforms are playing a significant
roles in the formulation of polarization [25, 35, 65]. These researchers also
suggest that a few factors such as social homophily (e.g., social network
structure) and algorithmic filtering (e.g., news feed recommendation) have
narrowed down the diversity of the information sources that users digest.
The lack of diversity accelerates the formation of online filter bubbles,
where users only consume content that agrees with their beliefs and ideol-
ogy. As a consequence, people are divided by opposite views, and thinking
from different perspectives becomes hard. This situation ultimately leads
to a polarized society.

We are concerned about the harmful effects of polarization, therefore
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we ask: what can we do to ameliorate the extent of polarization? One
way to tackle this question is through a data-driven approach. Social-
media platforms are typically rich in structural information among the
users, such as which user friends whom. Such relational information can
be encoded using a mathematical model called networks (also known as
graphs). The model of networks and its associated mathematical tools
can help us gain a deeper understanding of the nature of polarization.
Furthermore, insights obtained from the mathematical analysis can assist
experts in applying justified interventions to reduce polarization.

As a concrete example, consider a scenario in which a polarized debate
emerges around a topic discussed in an online social-media platform A
natural question to ask is: can we find groups of users who demonstrate
polarization? That is, we seek to find user groups, in which each group
represents supporters of one opinion about a topic and different groups
hold contrasting opinions.

Being able to find such structures can be useful for computational social
scientists, who are interested in understanding the structure of polar-
ization and the mechanics of their discussions. In addition, finding the
polarized groups can be of interest to the social-media platform, if they
wish to reduce the degree of polarization, e.g., by recommending a thought-
provoking article to the users involved in the argument.

Bias in algorithmic decision-making. It is widely believed that soft-
ware and algorithms that rely on data are objective.3 However, human’s
influence on software and algorithms is unavoidable. For example, software
is designed, written, and maintained by humans. The behaviour of auto-
matic decision systems can be adjusted according to human needs. Also,
the data they rely on may be curated manually. As a result, algorithms
can reflect and even reinforce human bias.

In the United States, for instance, a piece of software is used across the
country to predict the future risk of recidivism. However, researchers have
found that the software is biased against blacks.4 This example, which
demonstrates the unfair aspect of software systems, is not an isolated
one. A study by Datta et al. [24] shows Google’s online advertising system
presents high-income job ads much more often to men than to women.

With the wide adoption of machine-learning techniques in everyday life,
it is crucial to ensure that algorithms are fair. This requirement has
been recognized by researchers and the topic of fairness has recently been
brought into attention.

An active line of research in fairness in machine learning is about clas-
sification problems. A classification algorithm automatically classifies

3https://www.nytimes.com/2015/07/10/upshot/when-algorithms-
discriminate.html
4https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing
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an “object” to a pre-specified set of “labels”. An example is determining
whether a loan applicant (the object to be classified) should be granted a
loan or not (the labels), based on the applicant’s background information.
One topic in this line of research is to codify what it means for a classifi-
cation algorithm to be fair. A variety of notions have been proposed and
studied. For instance, statistical parity states that subjects in different
protected groups (e.g., racial groups) should have an equal probability of
receiving positive outcomes (e.g., being granted a loan). Another topic in
this line of research is to design classification algorithms that achieve a
certain fairness notion.

Data clustering, another important topic in machine learning, studies
how to group a set of objects in meaningful ways. Data clustering has
many important applications such as infrastructure design [26], market re-
search [15], exploratory data analysis [29], and improving the performance
of classification algorithms [78]. Despite its importance, it has received less
attention in the study of algorithmic fairness, compared to classification.

Most of the existing works in clustering with fairness [1, 5, 21] put
their focus on a single type of fairness notion. Failing to study other
fairness notions in clustering limits the usability of fair clustering methods.
Therefore we ask the following questions: for clustering problems, can we
identify the scenarios where current fairness notions are not meaningful?
If yes, can we formalize fairness notions that are meaningful in these
scenarios? Further, can we design clustering algorithms that achieve such
fairness notions?

1.2 Thesis contribution

The main contributions of this thesis are summarized below:

• In Publications I and II, we consider the problem of reconstructing
epidemic processes given partial observations over the epidemics. In
Publication I, we assume that observations contain temporal information,
and propose a novel problem formulation. Also, we develop a set of
combinatorial approximation algorithms. In Publication II, we study the
reconstruction problem in a probabilistic setting and resorts to Monte-
Carlo simulation to reconstruct cascades. We propose two sampling
algorithms with provable theoretical guarantees. For both publications,
we conducted extensive experimental evaluations to demonstrate the
efficacy of our proposed methods.

• In Publication III, we tackle the problem of polarization detection in
social networks. Given some seed nodes as the input, we are asked to
find a polarized community that is relevant to the input seed nodes.
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We propose an algorithm that is both effective in finding high-quality
communities and efficient in handling large graphs.

• In Submitted Article IV, we consider the issue of algorithmic fairness in
the context of data clustering, and propose a new notion of fairness. We
develop two families of algorithms, both with approximation guarantees.
In our empirical evaluation, we demonstrate that our algorithms achieve
the proposed notion of fairness and yield near-optimal solutions.

Most of the source code and datasets (except for the code of Submitted
Article IV) are publicly available at https://github.com/xiaohan2012/.

1.3 Thesis organization

This thesis follows the format of an article-based dissertation, meaning
that it consists of a set of articles, appended at the end of the thesis, and a
compilation part (Chapters 1 to 6) that summarizes the studied problems
and the main findings of the articles.

The compilation part is organized as follows: In Chapter 2, we equip
the readers with the necessary mathematical concepts and notations to
understand the subsequent chapters. In Chapter 3 (based on Publication I
and Publication II), we consider the problem of reconstructing partially-
observed epidemic processes, under two different settings. In the former
setting (Publication I), temporal information is available and is incorpo-
rated into the inference algorithm. In the latter setting (Publication II), we
study probabilistic inference on individuals’ infection status. In Chapter 4
(based on Publication III), we present a method to find polarized commu-
nities in social networks. In Chapter 5 (based on Submitted Article IV),
we discuss fairness issues in data clustering problems, and develop a new
fairness notion as well as two novel algorithms that achieve the proposed
fairness notion. Finally, we draw conclusions in Chapter 6.

The articles are appended in temporal order of their submission dates
and all of them are conference articles.
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2. Preliminaries

2.1 Graphs

A graph is a data structure that captures pairwise relations between ob-
jects. A graph usually consists of two parts: a set of vertices and a set of
edges that connect pairs of vertices. Vertices are also called nodes, and we
use these two terms interchangeably. Graphs have been used to model a
variety of real-world phenomena. For instance, social networks are natu-
rally represented as graphs, in which vertices represent people and there
is an edge between two vertices if the corresponding people are friends
to each other. In road networks, vertices represent different cities and
edges represent the roads that connect the corresponding cities. In biology
research, a protein-protein interaction network models the interaction be-
tween protein complexes. Two vertices are connected if the corresponding
proteins complexes are involved in the same biochemical process. In com-
puter networks, vertices represent computers and there is an edge between
two vertices if the corresponding computers can directly communicate with
each other.

In many situations, edges are associated with weights (e.g., real-valued
numbers). A graph with edge weights is called weighted. Otherwise, it is
called unweighted. Unweighted graphs can be seen as a special case of
weighted graphs in which all edge weights are unit (of value 1).

Edge weights usually carry specific meaning. For instance, they are
used to indicate the “strength” of the associated edges. In social networks,
an edge has a large weight if the corresponding connecting persons are
very close friends. In a protein-protein interaction network, the weight of
an edge may correspond to the activity level of the biochemical reaction
involving the two corresponding protein complexes. In some other cases,
the weights indicate the “cost” of edges. In computer networks, the com-
munication speed among different machines may vary and thus, can be
represented by edge weights. Similarly, edges in road networks can reflect
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Figure 2.1. Illustration of a directed graph and an undirected one. Both graphs are
weighted.

the transportation time between two cities.
Sometimes edge directions are incorporated to capture the asymmet-

ric relations among the vertices. Such edges are called directed edges.
Graphs that distinguish edge directions are called directed graphs. Many
natural graphs are directed. For instance, some roads in a road network
allow vehicles to travel in only one direction. Similarly in online social
media, a user may follow another high-profile user but not the other way
around. Undirected edges, on the other hand, refer to edges without di-
rection. An undirected edge can be decomposed into two directed edges
between the same endpoints but with different directions. From this per-
spective, directed graphs can be seen as a generalization of the undirected
counterparts.

Mathematically, we use the symbol G to denote a graph and a graph is
defined as G = (V ,E,w), where V and E are the set of vertices and edges
in the graph, respectively, and edge weights w maps each element in E
to some real number. If G is unweighted, we write G = (V ,E) for brevity.
We use lower-case v and e to denote a vertex and an edge, respectively.
Sometimes we denote an edge by its two endpoints, i.e., e = (u,v), where
u and v are the two endpoints of an edge e. For a directed edge, (u,v)
represents an edge pointing from u to v. An undirected edge (u,v) is
equivalent to (v,u).

We give examples of a directed graph and an undirected graph in Fig-
ure 2.1. In both examples, the sets of vertices are the same, V = {a,b, c,d, e, f },
and edge weights are shown beside the corresponding edges. In Fig-
ure 2.1(a) where edges are directed, the edges are E = {(a,b), (b,d), (d,b), (d, e),
(b, f ), (e, f ), (c, f )}. In Figure 2.1(b) where edges are undirected, the edges
are E = {(a,b), (b,d), (d, e), (b, f ), (e, f ), (c, f )}.
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Figure 2.2. Illustration of a directed tree (left) and a directed bipartite graph (right)

2.1.1 Special structures

Several structures in graphs are of particular interest. We consider a few
examples next.

Paths. A path in a graph is a sequence of vertices (v1,v2, . . . ,vk) such that
for i = 1, . . . ,k−1, (vi,vi+1) corresponds to an edge in the graph. For example
in Figure 2.1a, in which the graph is directed, (a,b, f ) is a path. The
sequence ( f ,b,a), however, is not a path because neither ( f ,b) nor (b,a) is
an edge. In Figure 2.1b, in which the graph is undirected, both (a,b, f ) and
( f ,b,a) are paths. In addition, for any path (v1,v2, . . . ,vk) in which the edges
are undirected, we consider the path the same as (vk,vk−1, . . . ,v1).

Trees. A tree is an undirected graph in which any two vertices are con-
nected by exactly one path. We give an example of trees in Figure 2.2a. We
can verify the definition of trees using this example. For instance, e and f
are connected only by one path – (e,b,a, c, f ). In addition, we define leaves
as vertices that have only one adjacent edge. In this example, the leaves
are {d, e, f , g}.

Trees can be used to represent many real-world structures. For example,
personnel in organizations (companies, universities, etc.) are sometimes
organized as trees. Edges represent subordinate relations among the per-
sonnel (e.g., a team leader manages a team member). Biologists organize
living organisms into a tree structure. At the top level, all living organisms
are partitioned into several kingdoms (e.g., animals, plants, fungi, etc) and
each kingdom is further partitioned into smaller groups, for instance, the
animal kingdom consists of vertebrates and invertebrates, etc. In many
computer operating systems, files are arranged into directories (also called
folders) and directories can be further organized into sub-directories.

Bipartite graphs. A bipartite graph contains vertices that can be parti-
tioned into two disjoint sets, such that vertices in each set are disconnected
from each other. We give an example in Figure 2.2b, in which the vertices
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consists of V1 = {a,b, c} and V2 = {d, e, f }, and there is no edge between any
pair of nodes in neither V1 nor V2.

Bipartite graphs are suitable to model affiliation relations where usually
two types of vertices are involved. For instance, in a graph of football play-
ers and clubs, there is an edge between two vertices if the corresponding
player is playing for the corresponding club. The node types (player or club)
naturally indicates a vertex bi-partition. As another example, customer
purchase records, in which customers and products are involved, can be
modeled as bipartite graphs. We can represent all customers as one vertex
set and all products as another. If a customer has purchased a product
before, we draw an edge between the corresponding vertices.

2.1.2 Beyond structural information

Besides vertex and edge information, other types of information are some-
times present in graph data. For instance, online social networks usually
contain meta-information about users, e.g., their posts and demographic
background. The edge information can be enriched when there is some in-
teraction between the corresponding users, for example, a user’s comments
under another user’s posts or a video that the two users watched together.

Below we give a few examples of graphs that contain not only vertex-and-
edge information.

Temporal graphs. Temporal graphs, also known as time-varying graphs,
dynamically change their structures over time. Each edge is associated
with an active period, in which it only exists. This characteristic enables
temporal graphs to model many real-world phenomena that plain graphs
(without temporal information) cannot. In a phone-call network, for in-
stance, an edge represents a phone call between two persons and the time
interval of the edge is the time interval of the phone call. In a road network,
roads connecting different cities may be cut off during an earthquake, in
which case the corresponding edges are removed. An airline company may
add a direct flight between two cities that are not connected before, thus
creating new edges between the corresponding vertices.

Signed graphs. In a signed graph, every edge is labeled either positive or
negative. In social networks, edge signs indicate whether the interactions
between the corresponding users are friendly (positive sign) or antagonistic
(negative sign). In protein-protein interaction networks, there exists a
positive (or negative) edge if the corresponding protein activates (or in-
hibits) the functioning of another protein. In Chapter 4, we dive deeper
into signed graphs.

18



Preliminaries

2.2 Spectral graph theory

Spectral graph theory studies the characteristics of the eigenvalues and
eigenvectors of related matrices of a graph, in relation to the properties of
the graph. In this section, we focus on this theory’s application in graph
partitioning.

2.2.1 Laplacian matrix

The Laplacian matrices of a graph are central building blocks in the study
of spectral graph theory. In particular, Laplacian matrices are closely
related to the task of graph partitioning – partitioning all the vertices in
a graph into disjoint subsets, such that some quality function over the
partition is optimized.

Given an undirected graph G = (V ,E,w) with n vertices, m edges and
non-negative weights w, we denote A ∈Rn×n as the adjacency matrix of G:

Ai, j =
{

w(i, j) if (i, j) ∈ E

0 otherwise,
(2.1)

where Ai, j is the value of jth entry in the ith row of the matrix A.
Further we use D ∈Rn×n to denote the degree matrix of G. The matrix D

is a diagonal matrix, with the diagonal entries equal to Di,i =
∑n

j=1 Ai, j for
i = 1, . . . ,n.

The unnormalized Laplacian matrix of G is defined by

L = D− A. (2.2)

For any vector x ∈Rn, the term xT Lx is equivalent to

xT Lx = 1
2

n∑
i, j=1

w(i, j)(xi − xj)2. (2.3)

It follows that xT Lx ≥ 0 and by definition, the matrix L is positive semi-
definite.

Using the positive semi-definiteness of L, it follows that the eigenvalues
of L is non-negative. Let us denote the eigenvalues of L as λ1, . . . ,λn, sorted
in ascending order. Let x1, . . . , xn be the corresponding eigenvectors.

According to the Courant-Fischer Theorem, λ1, . . . ,λn have the following
equivalent forms:

λ1 =min
x �=0

xT Lx
xT x

,

λ2 = min
x �=0

xT x1=0

xT Lx
xT x

,
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λ3 = min
x �=0

xT x1=0
xT x2=0

xT Lx
xT x

,

· · ·

In other words, the kth eigenvector is the non-zero vector that minimizes
xT Lx
xT x and is orthogonal to the previous k−1 eigenvectors.
The eigenvalues and eigenvectors of L of a graph can be used to de-

scribe many properties of the graph. One result relates to the connected
components in G, which is discussed next.

Eigenvectors of L and the connected components in G. Let us first
consider the case G is connected, that is, there exists a path between any
pair of non-identical vertices in the graph. It can be seen from Equation 2.3
that constant vector, i.e., x = [1, . . . ,1] is an eigenvector of L. Furthermore,
the associated eigenvalue is zero. In other words, for any connected graph
we have that:

x1 = [1, . . . ,1] and λ1 = 0.

Then consider the case that G has k connected components, that is, the
graph can be partitioned into k subgraphs such that each subgraph is
connected within itself but disconnected with any other subgraphs. With-
out loss of generality, the unnormalized Laplacian has a block-diagonal
structure shown below:

L =

⎛
⎜⎜⎜⎜⎜⎝

L1

L2
. . .

Lk

⎞
⎟⎟⎟⎟⎟⎠ , (2.4)

where L1, . . . ,Lk correspond to the unnormalized Laplacian matrices of the
k connected components in G, respectively. For the ith component Ci, we
can define a indicator vector 1Ci :

1Ci ( j)=
{

1 if j ∈ Ci

0 otherwise.
(2.5)

It can be shown that, for every i = 1, . . . ,k, 1Ci is an eigenvector of L and
the associated eigenvalue is zero.

Therefore we have the following result:

Fact 1. Let G be an undirected graph with non-negative weights. Then
the multiplicity k of the eigenvalue 0 of L equals the number of connected
components C1, . . . ,Ck in the graph. The corresponding eigenvectors are k
indicator vectors 1C1 , . . . ,1Ck , corresponding to C1, . . . ,Ck, respectively.
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The above result can be used to extract the connected components in a
graph where each connected component corresponds to a unique eigenvec-
tor. In the context of social networks, each connected component can be
thought of as the so-called community – a group of users that are connected
with each other.

However, community structures in real-world graphs are noisy, that
is, two communities, which are densely connected inside each, can be
connected by a few edges in between. Such edges further make the two
communities into one connected component. For this reason, it becomes
less clear how to use the eigenvectors of L to partition a graph into com-
munities.

Next we show that, with the help of another type of Laplacian matrix,
we can address the issue posed by noisy edges and use the eigenvectors of
the new Laplacian to partition a graph.

2.2.2 2-way partitioning and Cheeger’s inequality

Given an undirected graph G = (V ,E), we consider the problem of 2-way
graph partitioning, that is, partitioning V into two disjoint sets S and S̄,
where S̄ =V \ S. For simplicity, we assume G is unweighted.

One reasonable objective function for this purpose is counting the number
of edges between S and S̄. The problem becomes the min-cut problem,
which is solvable in polynomial time. A drawback of this formulation is
that the partition sizes can be very unbalanced. For instance, assume
that G is connected and there exists a vertex v that has only one adjacent
edge. An optimal solution is S = {v} and S̄ = V − {v}, and the cost is 1.
Arguably, such partitions, whose sizes are very imbalanced, convey little
useful information about the graph structure.

Using conductance as the objective function is one way to address the
issue of unbalanced partitions. First we use degree of a vertex i, deg(i), to
denote the number of edges adjacent to the vertex i. Then the conductance
of a vertex set S is defined as

φ(S)= cut(S, S̄)
min

{
vol(S),vol(S̄)

} , (2.6)

where cut(S, S̄) is the number of edges between S and S̄ and vol(S) =∑
i∈S deg(i). Compared to using only cut(S, S̄), which is what the min-cut

formulation uses, conductance penalizes imbalanced partition sizes using
the denominator in Eq. 2.6.

In our new problem formulation, we seek to find a vertex subset S that
minimizes φ(S). Note that the set S automatically leads to a partition (S, S̄).

Further we define the graph conductance of G as

φ(G)=min
S⊂V

φ(S), (2.7)
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that is, the cost of the optimal solution on G. If the graph G has a low
conductance value, it roughly means G has a clear community structure,
that is, the graph can be partitioned into two communities that are densely-
connected within each and sparsely-connected in between.

The conductance of a set S can be related to the Laplacian matrix, which
we illustrate next.

Normalized Laplacian. Given a node set S, we use an indicator vector
x = 1S to represent S. By Equation 2.3, we have:

cut(S, S̄)
vol(S)

= 2 xT Lx
xT Dx

. (2.8)

Note that the left-hand-side term is related to φ(S) (Equation 2.6) as
follows:

φ(S)=max
{

cut(S, S̄)
vol(S)

,
cut(S, S̄)

vol(S̄)

}
.

If we use another vector y= D1/2x, we have:

xT Lx
xT Dx

= yT D−1/2LD−1/2 y
yT y

. (2.9)

The matrix in the middle is called the normalized Laplacian:

L = D−1/2LD−1/2. (2.10)

Next we show how the eigenvector associated with the second smallest
eigenvalue of L can be used to find a good partition. This intuition is
formalized by Cheeger’s inequality.

Cheeger’s inequality. The results in Equation 2.8 and Equation2.9
say that the problem of finding a partition (S, S̄) that minimizes φ(S) is
equivalent to finding a vector y that minimizes

yTL y
yT y

,

subject to:

yi =
⎧⎨
⎩

1�
deg(i)

if i ∈ S

0 otherwise.
.

Next we relax y to be continuous, i.e., y ∈Rn and this problem is equiva-
lent to finding the eigenvector corresponding to the smallest eigenvalue
of L . It can be seen that setting y = D−1/21 is the solution to the relaxed
problem. However, doing so does not give any meaningful partition.

Therefore, we require that y to be orthogonal to D−1/21, which leads to
the problem of finding the eigenvector associated with second smallest
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eigenvalue of L . Finding this eigenvector can be solved in polynomial time
using standard linear algebra software.

Furthermore, denote μ2 as the second smallest eigenvalue of L and y2

as the associated eigenvector, Cheeger’s inequality [16] states that

μ2

2
≤λ(G)≤

√
2μ2. (2.11)

In other words, μ2 is an approximation of φ(G).
Partitioning G by rounding. Last we show how to round y2, the eigen-
vector corresponding to the second smallest eigenvalue of L , so that a good
partition can be found.

Let x = D−1/2 y2, and given some threshold t ∈R, define a set S(t) as:

S(t)= {i : x( j)< t} .

Mihail [59] shows that there exists some t such that

φ(S(t))≤
√

yT
2 L y2

yT
2 y2

.

Note that the right-hand-side term above equals �
μ2. We can find such t

by picking the t value that minimizes φ(S(t)).
Combined with the Cheeger’s inequality (Relation 2.11), we can find a

partition S whose conductance is bounded with respect to the optimal
value:

φ(S)≤ 2
√

φ(G).

We end our introduction to spectral graph theory here. For a more
comprehensive treatment of this topic, one may refer to a book by Chung
and Graham [23]. In Chapter 4, we discuss a similar topic, but in the
context of signed graphs.

2.3 Data clustering

Data clustering refers to the task of grouping a set of objects, such that
objects in every group are similar to each other. Clustering has many
real-world applications. In market research, business analysts partition
consumers into groups and analyze group-level characteristics [70]. Photos
on mobile phones can be clustered so that similar photos appear in the
same group [6]. Mobile-phone users may further keep only one of the
similar photos to save device storage. Text documents such as news articles
are grouped and summarized [66]. Readers can get a quick overview of
the documents by selecting a few representative documents from each
document group.
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To write computer programs that can cluster objects, it is often useful to
represent the objects at hand by numerical values. An image, for instance,
can be represented by pixel matrices, which record color information at
each pixel. Vector representation is another commonly-used representation
form. A common way to represent objects in vector forms is by first selecting
a set of features related to the objects and then defining functions that
compute feature values. A text document, for instance, can be viewed as a
list of words accompanied by their frequencies. Each word is a feature and
its frequency is the feature value. In health-care systems, human subjects’
features may include their demographic information (age, gender, etc.) and
personal health records (blood pressure, body weight, etc.).

2.3.1 Distance functions

A common assumption made when designing clustering algorithms is that
there exists a distance function that computes how dissimilar any two
objects are.

Consider a vector v = [v1, . . . ,vn] of length n, where vi is the ith element
in the vector and n is called the vector dimension. A distance function d
takes two vectors u and v that have the same dimension, and outputs a
dissimilarity score between u and v. It is often desirable for a distance
function d to have the properties below. Let X be the set of all vectors that
d can accept. For any u,v,w ∈ X :

1. Non-negativity: d(u,v)≥ 0,

2. Identity: d(u,v)= 0 if and only if u = v,

3. symmetry: d(u,v)= d(v,u), and

4. Triangle inequality: d(u,v)+d(u,w)≥ d(v,w).

A distance function satisfying all these properties is called a metric.
When designing a distance function, the first three properties are usually
easier to achieve than the last one.

Euclidean distance is an example of a metric. Formally it is defined as:

�2(u,v)=
√

(v1 −w1)2 + (v2 −w2)2 +·· ·+ (vn −wn)2. (2.12)

In the general n-dimensional case, �2(u,v) can be interpreted as the
length of the line segment that connects u and v. To see why, consider the
special case of n = 2 and two vectors u and v shown in the plot below:
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√ (u 1−
v1)

2 + (u 2−
v2)

2

|u1 −v1|

|u2 −v2|

u

v

u1 v1

u2

v2

In the above plot, the points u = (u1,u2) and v = (v1,v2) are shown as black
solid circles. The hypotenuse is the line segment that connects u and v
and its length is equivalent to the Euclidean distance between u and v. It
can be verified as follows: the horizontal (vertical) distance between u and
v is |u1 −v1| (|u2 −v2|), which corresponds to the horizontal (vertical) solid
line segment shown in the plot. Finally, the length of the hypotenuse is√

(u1 −v1)2 + (u2 −v2)2.

2.3.2 Clustering objective functions

Many clustering formulations assume the number of clusters is specified
in the input. In the sequel, we use the symbol k to denote this number.

In the general setting, we are given a set of objects C to be clustered,
and F, a set of candidate cluster centers that each object in C can be
assigned to. A clustering (F ′,ψ) consists of F ′, which is a subset of F and
has size at most k, and an assignment function ψ : C → F ′, which maps
each object to its assigned center in F ′. In some applications, the set F
represents facilities (e.g., hospitals, bus stations) to be deployed and the
set C represents human subjects that use the facilities. In this context, C
and F are referred as clients and facilities, respectively, and the clustering
problems are also called facility-location problems.

To formalize the goodness of a clustering solution, it is necessary to define
an objective function that evaluates the goodness of any clustering. We
describe two classic objective functions.

The k-median objective. Given a distance function d, the k-median
objective over some clustering (F ′,ψ) measures the total distances from all
clients to their assigned centers, and it is defined as:

Φ2(F ′,ψ)=
∑
c∈C

d(c,ψ(c)). (2.13)

The k-center objective. In contrast, the k-center objective measures the
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Input k-median k-center

Figure 2.3. Optimal clustering on a toy dataset under different objectives.

maximum distance among all object-center pairs, and it is defined as:

Φ∞(F ′,ψ)=max
c∈C

d(c,ψ(c)). (2.14)

Once the clustering objective is decided, one then seeks the clustering
that achieves the lowest possible objective value.

When there are no other constraints on the problem formulation, both Φ2

and Φ∞ can be simplified. That is, ψ is implicitly determined by F ′ — for
all c ∈ C, ψ(c) picks the closest center in F ′ to c. Doing so never increases
the solution cost. Then the k-median and k-center objectives depend solely
on F ′:

Φ2(F ′)=
∑
c∈C

min
f ∈F ′

d(c, f ), and (2.15)

Φ∞(F ′)=max
c∈C

min
f ∈F ′

d(c, f ). (2.16)

Last we illustrate the difference between these two objectives on a toy
dataset. We set k = 2 and use the Euclidean distance measure. We consider
the special case of C = F (each object is a candidate center).

The optimal clustering under each clustering objective is shown in Fig-
ure 2.3. On the left, the input data points are plotted. The plots in the
middle and right are the optimal solutions by k-median and k-center, re-
spectively, where the node color indicates the cluster membership. The
cluster centers are plotted as stars.

The definition of the k-center objective makes it is sensitive to outliers
(for instance, the two points at the bottom), and a center is opened at the
bottom. In contrast, the k-median objective, which measures the total
distance value, does not have this sensitivity issue.
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2.4 Optimization problems and approximation algorithms

Many real-world decision problems can be modeled as optimization prob-
lems. Companies, for instance, aim for maximizing profits when making
business plans. When designing structures for buildings and bridges, struc-
tural engineers strive for the most endurable and safest design. Logistic
systems are designed so that it yields the minimum possible transportation
time and cost.

2.4.1 Optimization problems

An optimization problem refers to the problem of finding the best solution,
according to some specific definition of the goodness of solutions. Clustering
problems (described in the previous section) are examples of optimization
problems.

Optimization problems can be further categorized by whether the ob-
jectives are to be minimized or maximized. If lower objective values are
better (e.g., cost, risk), the problem is called a minimization problem. Oth-
erwise, it is called a maximization problem, where the objective can be
some measure of benefit or profit.

An optimization problem usually defines the requirements that a solution
should satisfy. A solution that satisfies the requirements is feasible. For
instance, both the k-median and k-center problems require that: (1) at
most k centers are selected; (2) each object is assigned to only one selected
center. A clustering satisfying these two requirements is a feasible solution
to both the k-median and k-center problems.

Below we describe a classic optimization problem called the minimum
Steiner tree problem.

Steiner trees often arise in network designs. Suppose we are given a set
of locations that must be connected by wires, the objective is to achieve the
lowest possible wiring cost (e.g., measured by the total length of wires).

This problem is formally defined below:

Input: an undirected and weighted graph G = (V ,E,w) and a subset of
vertices U ⊆V , called terminals.

Objective: find a tree T that connects U and has the minimum weight,
that is, the sum of the edge weights in T is minimized.

A solution T is feasible if and only if (1) T is a tree and (2) all nodes in
U are contained in T. A solution is considered better than another if the
former has a smaller weight than the latter. Consider a toy example below,
in which the graph is unweighted. The input graph is shown on the left, in
which the terminals are drawn in red. Two feasible solutions are plotted
next, in which edges colored in green denote the solution. Solution 1 is
better than Solution 2 because the former has a small weight (measured
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in the number of edges) than the latter.
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The following solutions achieve smaller objective than Solution 1 above,
but are infeasible.
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In the following chapters, we will see more examples of optimization
problems, for instance, a variant of the minimum Steiner tree problem in
Chapter 3.

2.4.2 Approximation algorithms

Before defining approximation algorithms, we define a few related concepts.
A polynomial-time algorithm is an algorithm whose execution time is either
given by a polynomial on the size of the input, or can be upper bounded by
such a polynomial. Problems, whose optimal solutions can always be found
by at least one polynomial-time algorithms, are called tractable problems.

Some optimization problems are intractable, that is, no polynomial-time
algorithms for them are known to exist. The minimum Steiner tree problem
defined previously is such an example. Finding optimal solutions requires
brute-force approaches — enumerating all possible solutions and picking
the best feasible solution among them.

Sometimes, people design heuristics for intractable optimization prob-
lems to avoid exhaustive enumeration. The main idea is to trade solution
quality for the computation time, in that sub-optimal solutions are accept-
able. Heuristics are usually evaluated empirically. They might work well
in some cases while failing in others; however, we may not know on which
cases.

Approximation algorithms are a special type of heuristics with the key
characteristic that their performance is analyzed against the optimal
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solutions theoretically. Studying approximation algorithms provides a
mathematically rigorous basis on which to study heuristics.

Approximation ratio is used to quantify how well an algorithm performs
in terms of the solution quality. Given some input instance I of a problem,
for instance, a graph G and some terminals U in minimum Steiner tree
problem, let OPT(I) denote the value of the optimal solution (weight of
minimum Steiner tree). Suppose an algorithm A produces a feasible
solution A(I) given any problem instance I. We want to analyze how well
A performs in comparison to the optimal solution. Consider the following
ratio

A(I)
OPT(I)

.

For minimization problems, the ratio is above 1. And for maximization
problems, the ratio is below 1. The closer to 1 the ratio is, the better
that algorithm A performs on this specific instance I. If this ratio is 1, A
produces the optimal solution on the instance I.

Approximation ratio is designed to consider the worst-case scenario over
all possible problem instances. If the problem is a minimization problem,
the approximation ratio of algorithm A is defined as:

approximation-ratio(A)=max
I

A(I)
OPT(I)

. (2.17)

For any maximization problem, the minimum is taken,

approximation-ratio(A)=min
I

A(I)
OPT(I)

. (2.18)

Note that A is optimal if and only if approximation-ratio(A)= 1.

In the following chapters, we will present several approximation algo-
rithms developed by us, and re-visit the concept of approximation ratio.
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3. Reconstructing propagation
processes

In this chapter, we study the problem of reconstructing propagation pro-
cesses on networks. The word “propagation” is a general term for many
real-world phenomena, such as the contagion of disease among humans.
We first give an overview of common propagation models. Then we describe
important inference tasks related to propagation processes, including
the task of reconstructing propagation processes. Next we explain how
classic Steiner trees can be used to model and reconstruct propagation
processes. In addition, we discuss the limitations of the approach of using
Steiner trees. Finally, to address the limitations of some of the proposed
approaches, we present two variants of Steiner trees and demonstrate
their usage in propagation reconstruction.

3.1 Models for propagation process

The word “propagation” is an umbrella term for many real-world phenom-
ena that involve the spread of a “contagious” state (e.g., disease, opinion)
via the connections between objects (e.g., humans). An example is an
epidemic in which a disease spreads via human contacts. Another exam-
ple is the dissemination of a piece of information (e.g., a news article) in
online social networks. To study the spreading mechanism of propagation
processes, it is often useful to model the process mathematically. Now
we describe a few common propagation models. We assume there is an
underlying network G = (V ,E) in which the propagation occurs.

Susceptible-infected (SI) model [49]. In this model, each node can
be in one of the two states: susceptible (not infected yet, but can be in-
fected) or infected. The whole process breaks down into discrete time
steps, t0, t1, t2, . . .. Each step t is represented by two sets: S(t), the set of
susceptible nodes at time t, and I(t), the set of infected nodes at time t.

At time t0, a few nodes, called seeds, are infected, and they define I(t0)
and the remaining nodes define S(t0). Before the next step t1, the nodes
in I(t0) infect their susceptible neighbours with a certain probability. At
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time t1, the newly-infected nodes are added to I(t1), together with I(t0).
Accordingly, the newly-infected nodes are removed from S(t1). Once a
node becomes infected, it can never become susceptible. The above process
repeats until all nodes become infected.

This model has one parameter p, called infection probability. Between
time t and t+1, for each pair (u,v) such that u ∈ I(t) and v ∈ S(t), node u has
probability p to infect node v. In addition, these random events happen
independently over all pairs of adjacent nodes. Note that a susceptible
node will eventually become infected.

A variant of the SI model is called SIR model, which incorporates a third
state recovered (or removed). Only infected nodes can become recovered
and once they become recovered, they stay recovered. The SIR model has
an additional parameter of q, called recovering probability. At each step
t, each u ∈ I(t) has probability q to recover. The whole process terminates
when all nodes are recovered.
Linear threshold (LT) model [40, 75]. In this model, each node can be
either active (infected) or inactive (uninfected). Different from the SI model
where propagation occurs independently over each edge, the LT model
assumes that propagation takes into account all edges that share one
endpoint. This model has edge-wise weights b and node-wise thresholds
θ. Each directed edge (u,v) is associated with weight buv which indicates
its strength. The values of b satisfy

∑
(u,v)∈Ebuv

≤ 1 for each node v. Each
node v has a threshold value θv ∈ [0,1], which controls how easily v can be
activated.

In this model, all nodes that become active at some point remain active.
For each inactive node v, if the sum of weights from its active neighbours
exceeds θv, node v becomes active. In other words, node v becomes active if

∑
(u,v)∈E,u is active

buv > θv.

Given an initial set of active nodes, the process unfolds deterministically
until all nodes are active.
Independent cascade (IC) model. This model has been studied in the
context of marketing by Goldenberg et al. [37, 38]. Similar to the LT
model, each node is either active or inactive. However, what makes this
model different is that the activation attempt over each edge (u,v) occurs
at most once during the whole propagation process. Model parameters
are edge-wise infection probabilities, puv, which is the probability for node
u to activate node v. At time t, an active node u has probability puv to
activate its inactive neighbor v. If the event succeeds, v becomes active
and remains so. Otherwise, u does not have a second chance to activate v.
If node v neighbors multiple active nodes, the activation attempts can be
ordered arbitrarily.
Continuous-time independent cascade (CTIC) model. A known limi-
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tation of the IC model is its inability to handle heterogeneous time delays of
activation. As a result, a generalization of the IC model called Continuous-
Time Independent Cascade model is proposed by Gruhl et al. [41]. In
this model, node activation can happen at different rates according to
edge-specific parameters. Each edge (u,v) is associated with a probabil-
ity function, which describes the time delay for v to be activated by its
neighbor u. Usually the time delay between (u,v) is sampled from some
exponential distribution, parametrized by a parameter λuv. In case a node
v is activated by multiple neighbours, the neighbor corresponding to the
shortest time delay is chosen as the activator of v. This process terminates
when all nodes are active.

3.2 Retrospective tasks on propagation processes

Next we describe common retrospective tasks on propagation processes in
networks. We call them retrospective because the goal is to infer network
states in the past. In contrast, a different line of tasks focuses on predicting
network state in the future, which we will describe briefly at the end of
this section.

In the sequel, we use the words “infected” and “active” as well as “unin-
fected” and “inactive” interchangeably.
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Cascade: {(b,0), (e,1), ( f ,1), (d,2), (i,2), (g,3)}

source
tb = 0

te = 1

t f = 1

td = 2

ti = 2

tg = 3

Figure 3.1. A cascade on a toy graph.

We use the term cascade to refer to an instantiation of a propagation
process. For an infected node u, let tu be the time that u become infected.
If a node is not infected, we set tu = ∞. A cascade can be represented
by the nodes’ infection time, for example, using {(u, tu)}. By convention,
uninfected nodes are omitted in the representation. We give an example

33



Reconstructing propagation processes

a

b

c

d

e

f

g

h

i
j

t f = 1

td = 2 tg = 3 a

b

c

d

e

f

g

h

i
j

(a) infection time is known (b) infection time is unknown

Figure 3.2. Two types of partial observation: with or without activation time information.

cascade in Figure 3.1. Infected and uninfected nodes are colored in red
and grey, respectively, and there is only one source node. We say a cascade
is partially observed if only a subset of the infected nodes is known. In
addition, the infection time of the observed infections may or may not
be available and both situations are illustrated in Figure 3.2. Observed
infected nodes are colored in red, while both unobserved infected nodes
and uninfected nodes are colored in grey.

In practice, partial observation of a cascade is a realistic assumption. For
instance, during an epidemic outbreak, it is almost impossible to obtain
the complete knowledge of who is infected. But still, we can obtain a
partial picture by diagnosing a subset of the population. Similarly, during
the spread of misinformation in online social media, we might want to
know which users are hoaxed to believe the misinformation. Unfortunately,
acquiring this information is also challenging.

Next we describe some common inference tasks on network propagation
processes.

Source identification. In case the cascades are only partially observed,
can we identify the source of the process and possibly its activation time?
We illustrate this task in Figure 3.3, in which the source is drawn in orange.
In this example, the source is not observed but in general, it can be.

Identifying the source of a cascade has many applications. In epidemi-
ology, the source refers to the first person that was infected, or usually
known as the patient zero. Identifying the patient zero may provide useful
information about the scale of an epidemic and who else could be infected.
In the case of misinformation, the source is also called “rumor source”, the
first person who started a piece of rumor. Detecting the rumor source can
prevent further spread of rumors.

This task has a few problem dimensions, including:
What is the propagation model? The SI model is one common choice [30,

33, 64, 77, 83]. Other models such as the IC model and the CTIC model
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are also considered [32, 53]. A recent trend is a model-agnostic approach
in which no assumption on the underlying cascade model is made. An
example is the work by Rozenshtein et al. [73].

What is observed? Prakash et al. [64] assume that all activated nodes
are observed without temporal information. Sundareisan et al. [83] make
similar assumptions but only a subset of the infected nodes is known.
A different line of work by Rozenshtein et al. [73] and Farajtabar et al.
[32] assumes the knowledge of the infection time of observed infections.
In addition, a common assumption is that the observation is noise-free.
However, the works by Rozenshtein et al. [73] and Sundareisan et al. [83]
break this assumption.

How many source nodes are there? Shah and Zaman [77] and Farajtabar
et al. [32] assume a single source node in a cascade, while other works [53,
64, 73] can deal with k sources where k ≥ 1. In addition, the value of k can
be either specified in the input [64] or determined automatically by the
inference algorithms [73].
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Figure 3.3. Source identification asks to find the source of a cascade that is partially
observed. In this example, the cascade has only one source.

Network structure inference. In some situations, we observe cascades
without knowing the network structure on which the cascades take place.
For instance, a blogger might write an article on their blog after getting in-
spired by another article from a different blogger, but they do not explicitly
refer to the article from which they get inspired. In the case of epidemics,
infections are observed at different times, but without knowing the actual
physical contact network.

The task of network structure inference is to infer the network structure
based on one or more observed cascades. We give an illustration in Fig-
ure 3.4. Another related task is about estimating the edge-specific infection
parameters such as the activation probabilities in the IC model and the
transmission rate parameters in the CTIC model.

35



Reconstructing propagation processes

a

b

c

d

e

f

g

h

i
j

Cascade 1

ta = 0

tb = 1
te = 2

t f = 2

td = 3

ti = 3

tg = 4 a

b

c

d

e

f

g

h

i
j

Cascade 2

ta = 0

t f = 1

th = 2

t j = 3

Figure 3.4. Network structure inference asks to uncover the underlying network structure
based on one or more observed cascades. In this example, we show two
cascades, based on which we want to infer the network edges colored in light
gray.

Existing works on network structure inference usually make assumptions
on the underlying cascade model, as in the case of source identification. An
early work by Myers and Leskovec [62] considers a generalization of the
SIR model. A study by Gomez-Rodriguez et al. [39] assumes the IC model
and they use a global infection parameter over all edges. Rodriguez et al.
[71] assume the CTIC model and attempt to learn edge-wise transmission
rate parameters. A recent work by Du et al. [28] generalizes the previous
work by taking into account the multi-modal nature of transmission time
functions. Specifically, the probability density function of transmission
time can have multiple peaks, instead of one.
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Figure 3.5. The task of cascade reconstruction asks to find out the states of nodes whose
states are unobserved, based on partially-observed cascades.

Cascade reconstruction. Given a partially-observed cascade, the cascade-
reconstruction task asks to infer the states of nodes whose states are un-
observed (we call such nodes unobserved nodes). We illustrate this task
in Figure 3.5. Infected nodes that are observed are colored in red. Unob-
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served infected nodes and uninfected nodes are colored in pink and green,
respectively. In the simplest setting, we are asked to determine whether
each unobserved node is infected or not. In addition, the infection time can
be asked, or the complete propagation trace e.g., who infected whom.

The topic of cascade reconstruction receives relatively little attention. In
the simplest setting [68, 76, 83], one assumes the underlying network is
static and only node infection states (without temporal information) are
observed. The goal is to determine whether any node with unknown status
is infected or not. Chen et al. [17] and Sefer and Kingsford [76] generalize
the previous setting by considering infection time in the observation.

An interesting work by Rozenshtein et al. [73] deals with temporal net-
works, in which the network structures change over time. In addition, they
assume the observed cascade contains infection time information. As the
available information becomes richer, they can infer the complete infection
trace (who infected whom) as well as the cascade sources.

The above works focus on reconstructing a single cascade. Sun et al. [82]
lifts this assumption by reconstructing multiple cascades jointly. Their
method exploits the synergy relationships between co-evolving cascades.
Predictive tasks. These tasks, in general, ask to predict some state of a
propagation process in the future. For instance, a popular predictive task
is to predict the size of a cascade [18, 56, 86]. A more fine-grained task
asks to predict who will be infected in the future. Examples include the
work by Islam et al. [46] and Wang et al. [85]. These works mainly differ
in whether the activation time is part of the prediction or not.

3.3 Using Steiner trees to model propagation processes

Steiner trees are data structures that have many application domains
such as infrastructure design [27], molecular biology [61] and VLSI de-
sign [45]. In this section, we explain how Steiner trees can be used to
model propagation processes.
Tree representations for cascades. Some propagation models such as
the SI model and the IC model require that each infected node is infected
via a single edge, which we call a cascade edge. If we assume there is a
single source for each cascade, then the propagation trace of a cascade
forms a tree, in which nodes in the tree are infected, the source node is the
root of the tree, and tree edges correspond to the cascade edges.

We give an example of a cascade represented as a tree in Figure 3.6. In
this example, the graph is directed. The source node is drawn in orange
and other infected nodes are drawn in red. The cascade edges are drawn
in green thick lines.
Steiner tree representation under partial observation. In practice,
complete knowledge of a cascade is often unavailable. Instead, only a
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Figure 3.6. A cascade represented as a tree.

fraction of activated nodes is observed. Assume that the underlying cascade
is a tree, the task of cascade reconstruction asks the following questions:

Q1: can we find a tree that explains the observed infections?

Q2: if there are multiple such trees, which tree is the best?

The above questions do not have immediate answers. First, the meaning
of “explain” is vague; what does it mean for a tree to explain some observa-
tions? Second, what is the criterion for a tree to be the “best”? To make the
questions less ambiguous, we may first simplify the problem setting. For
instance, we can drop the infection time in the observation. In this view,
we can reduce Q1 to: can we find a tree that spans the observed infected
nodes? A trivial answer is to return a spanning tree since it spans all
observed infections. However, this answer may not be reasonable because
all nodes are considered infected, which is not realistic.

Arguably, a more reasonable answer is to use a Steiner tree, which spans
only a subset of all nodes in the graph. Recall that we introduce Steiner
trees in Section 2.4. A Steiner tree T, given a set of terminals U, is a
tree that spans U, but not necessarily nodes in the entire graph. In our
situation, we set the observed infections to be the terminals U, and we say
a Steiner tree on U explains the observation.

We give two examples of Steiner trees that explain a partially-observed
cascade in Figure 3.7. Tree edges are highlighted in green thick lines.
Observed infections (the terminals) are colored in red in both Steiner
trees. Since the two trees are different, the reconstructed cascade trees
are different. In the tree in Figure 3.7(a), nodes {b, i} are inferred to be
infected, while in the tree in Figure 3.7(b), nodes {e, i} are infected.

To answer Q2, we ask a different question: can we define a quality
function on Steiner trees that determines how good a tree is? First we want
to mention that it is common to assign edge-specific infection probabilities.
For each edge (u,v), let puv denote the probability for node u to infect node
v. Then we can use edge infection probabilities to calculate the probability
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Figure 3.7. Two examples of Steiner trees explaining the same partially-observed cascade.

of any Steiner tree and use the tree probability as a measure for its quality.
The probability of a tree T can be defined as follows:

Pr (T)=
∏

(u,v)∈T

puv. (3.1)

The larger probability a tree has, the more likely it is the underlying
cascade. In Figure 3.8, we plot two trees with edge probabilities shown
beside each edge. The larger probability an edge has, the thicker we plot it.
The probability of T1 is 0.252 according to Eq. 3.1 and the probability of T2

is 0.0042. Therefore, T1 is more likely than T2.

a

b

c

d

e

f

g

h

i
j

0.5 0.
8

0.
9

0.7

a

b

c

d

e

f

g

h

i
j

0.1

0.
3

0.2

0.7

T1 T2

Figure 3.8. Two Steiner trees with different probabilities.

We can use Eq. 3.1 to measure the quality of a tree but there is an
equivalent way to do so. If we take negative logarithm on Eq. 3.1, we have
the negative log-likelihood of the probability of T:

− log(Pr (T))=−
∑

(u,v)∈T

log(puv) (3.2)

Under this transformation, edge weights are transformed by taking
the negative logarithm.1 Accordingly, the best tree is the tree with the

1A benefit of taking the negative logarithm is it mitigates the issue of float-point
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smallest weight. And Q2 becomes: can we find a tree T that minimizes
−∑

(u,v)∈T log(puv) ?
Finally, we combine Q1 and Q2 into a single problem: finding a Steiner

tree that has minimum weight, where edge weights are measured by
− log(puv). This is essentially the minimum Steiner tree problem, which we
introduce in Section 2.4. Though the problem is an NP-hard problem, effi-
cient constant-factor approximation algorithms have been designed [36].

Theoretically sound as this approach seems, it has a few limitations,
which we explain next.
Limitations of using minimum Steiner trees. First, the use of Steiner
trees assumes that the underlying cascade is a tree and further there is
only one source. This assumption does not always hold. For instance,
Steiner trees cannot capture cascades generated by Linear Threshold
model (Section 3.1), in which a node can be infected by the combined effect
of multiple neighbours.

Second, when infection time is also observed, Steiner-tree model could
violate the observation. For instance, the best Steiner tree can produce
an infection order that is inconsistent with the observed order. We will
explain this issue in more detail in the next section.

Third, using a single tree as the reconstruction result is equivalent to
making binary predictions on nodes’ states: a node is considered to be
infected if and only if it is in the tree. However, propagation processes are
stochastic in nature. Instead of making deterministic predictions, can we
predict the probability that a node is infected?

In the following sections, we address two of the above limitations.

3.4 Thesis contribution 1: temporal extension

In Publication I, we extend the aforementioned Steiner tree approach to
the temporal setting. We assume that the observation contains infection
time information and the observations are pairs of (u, t), where u is the
infected node and t is the infection time of u. In addition, we do not assume
any underlying propagation model, which makes it applicable to more than
one propagation model.

Our problem formulation is a generalization of the minimum Steiner
tree problem. Meanwhile, our problem imposes path-related constraints
induced from the temporal information in the observation. Given a tree
T and a candidate source node r ∈ T as the tree root, we consider an
observation (u1, t1), where u1 is an infected node and t1 is its activation
time. We say the path p from the root r to node u1 is an order-respecting
path if there does not exist any other observed node u2 (with activation
t2) on p such that t2 > t1. The intuition of using order-respecting paths is

underflow, which happens when multiplying fractionals.
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that an observed infected node that is infected at t cannot appear after
(in the tree topology) another infected node which is infected later than
t. We say a tree T rooted at r is an order-respecting tree if all paths from
r are order-respecting paths. We illustrate the notion of order-respecting
trees in Figure 3.9. Observed infections are colored in red and the infection
time is shown next to each observed infection. The tree in Figure 3.9(a)
has only one path ( f ,b,d, i, g), which is order-respecting because t f ≤ td ≤ tg.
Therefore, the tree is order-respecting. In contrast, the tree in Figure 3.9(b)
is not order-respecting because a path in it, (d, i, f ), is not order-respecting.
The node f appears after the node d (which is the root) in the tree, but f is
infected earlier than d. We highlight the order-violating path in a brown
and dashed line.
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(a) An order-respecting tree (b) An order-violating tree

Figure 3.9. An order-respecting tree and an order-violating tree.

Our problem is defined as below:

Problem 1. We are given a weighted undirected graph G = (V ,E,w) and a
set of observed infected nodes R = {(u, t)} with u ∈V and t ∈R. The goal is to
find a seed s ∈V and a tree T rooted at s, such that

(1) T spans all the observed infections,

(2) T rooted at s is order-respecting, and

(3) the weight of T,
∑

(u,v)∈T w(u,v) is minimized.

The above problem is a generalization of the minimum Steiner tree
problem, thus it is a NP-hard problem. We present 3 approximation
algorithms. The best algorithm in terms of approximation guarantee gives
O (

�
k)-approximation, where k is the number of observed infections.

We use a toy example of a grid graph to illustrate the performance of our
method. In Figure 3.10, we show the ground-truth cascade on the left and
a solution found by our method on the right. Although the solution does
not match the ground truth exactly, all nodes spanned by the solution tree
are actually infected. In other words, it achieves high precision.

We also evaluate our methods on real-world graphs and found that our
methods usually achieve high precision, that is, nodes spanned by the
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Figure 3.10. Our method aims at reconstructing the underlying cascade given reported
infections (left). The reconstructed cascade (right) is parsimonious and
respects node infection order induced by infection time. Node infection time
is indicated by the colorbar.

solution tree are mostly infected. Meanwhile, our algorithm produces trees
that better respect the infection order, compared to the algorithms under
the minimum Steiner tree formulation (without infection order constraint).
However, low recall is one main drawback of our algorithms. This drawback
is expected since our goal is to find trees with minimum weights.

3.5 Thesis contribution 2: probabilistic extension

In Publication II, we consider the task of probabilistic cascade reconstruc-
tion. We assume only a fraction of infected nodes is observed but without
the knowledge of their infection time. Then given a partially-observed cas-
cade, the goal is to infer infection probability of the nodes whose states are
unobserved. Estimating infection probability makes our approach more
suitable in practice, compared to binary predictors, because real-world
propagation processes are stochastic in nature. In addition, our formula-
tion does not assume any underlying propagation model, which makes it
applicable to more than one propagation model.

We prove that computing nodes’ infection probability is a #P-hard prob-
lem. Thus, we resort to a Monte-Carlo approach — approximating the
infection probability by sampling. We propose the problem of sampling
Steiner trees from a target distribution. Then using Steiner tree samples,
a node’s infection probability is estimated to be the fraction of tree samples
in which the node appears. We outline our approach in Figure 3.11.

Our main theoretical contribution is two novel Steiner-tree sampling
algorithms with provable guarantees on the probability distribution of tree
samples. The problem of sampling Steiner trees with provable guarantees
is a generalization of another problem — sampling spanning trees. Though
sampling spanning trees has been extensively studied [13, 88], Steiner-tree
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(a) Input (b) Tree sampling (c) Inference

Figure 3.11. Overview of our approach: (a) given input observed infections; (b) Steiner
trees are sampled, each representing a possible cascade explaining the
observation. Four samples are shown; (c) node infection probabilities are
estimated from the samples.

sampling is a novel problem. In general, sampling combinatorial structures
(e.g., triangles, trees) is an active research area.

Empirically, our method produces predictions that better align with
ground-truth cascades, compared to the baselines. In Figure 3.12, we
illustrate the difference between our method and the baselines using
a synthetically-generated cascade on a 2D grid graph. The underlying
cascade with observations is shown in Figure 3.12(a). Outputs by differ-
ent methods are shown in the remaining figures. One of the baselines,
NetFill [83] is a state-of-the-art cascade-reconstruction method designed
specifically for the SI model. The other baseline, Min-Steiner-tree solves
the minimum Steiner tree problem by treating the observed infection as
terminals. Both NetFill and Min-Steiner-tree make binary predictions
on nodes’ infection states. In contrast, our method Tree-sampling makes
probabilistic predictions.
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Input Tree-sampling

NetFill Min-Steiner-tree

Figure 3.12. Probabilistic cascade reconstruction, by three methods, on a 2D lattice graph.
Tree-sampling is our proposed method.
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4. Searching for polarization in social
networks

In this chapter, we start by introducing signed graphs, a powerful model to
detect polarization in social networks. Then we discuss three different but
related problems about signed graphs, all related to the task of polarization
detection. Finally, the last problem leads to the contribution of this thesis
and we present our solution to this problem.

4.1 Signed graphs

In many real-world networks, the interactions between two entities can
be labeled as either positive or negative. Two people, for instance, can be
either friendly or antagonistic to each other. Similarly, a country can be
an ally or in conflict with another country. In protein-protein interaction
networks, a protein complex can activate or inhibit the functioning of
another protein. In human languages, two words may exhibit synonym
(e.g., “happy” and “cheerful”) or antonym (e.g., “happy” and “sad”) relations.

Based on these observations, the concept of signed graphs is proposed to
model the interactions that are either positive or negative. We provide a
real-world example of signed graphs in Figure 4.1. This graph encodes the
relations among several tribes in New Guinea. Each tribe is shown as a
node, and friendly (antagonistic) relations are represented by solid green
(dashed red) lines.

Early works in the study of signed graphs are mainly about observational
data from the physical world, for example, the international relations in
Europe from 1872 to 1907 [43] and the relations among Allied and Axis
powers during World War II [4].

Over the years, with the advent of online social media, increasing focuses
have been brought to signed graphs that originate from the online world.
Examples of these graphs include Epinions [57] and Slashdot [52]. Com-
pared to the signed graphs studied at the early times, these graphs are
usually much larger.

Challenges and opportunities. An unsigned graph can be seen as a
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Figure 4.1. New Guinea Highland Tribes graph by Read [69], an example of signed graphs.
Positive edges are shown in green solid lines, and negative edges are shown
in red dashed lines.

graph with only positive edges and thus, it is a special case of signed
graphs. Even though studies on unsigned graphs have been undergoing
for decades, the existence of negative edges in signed graphs creates both
new challenges and new opportunities.

On the one hand, many algorithms for mining unsigned graphs cannot
directly handle negative edges. For example, for community detection
algorithms on unsigned graphs, such as the Louvain method [10] and the
Label Propagation algorithm [67], processing edges with negative signs is
not straightforward.

On the other hand, signed graphs facilitate the study of new theory
such as social balance theory [43] and status theory [55], which cannot be
studied on unsigned graphs. For instance, social balance theory captures a
commonplace notion that “the friend of a friend is a friend” and “the enemy
of an enemy is a friend”. Signed graphs naturally capture this intuition,
which is illustrated in the first two triads on the left (a triad is a graph with
3 nodes and 3 edges) in Figure 4.2. The two triads on the left in Figure 4.2
are called balanced. In contrast, the two triads on the right in the same
figure are unbalanced because they fail to capture the above notion. Note
that unsigned graphs can only model the first triad while signed graphs
can model all of them, due to the addition of edge signs.

Figure 4.2. The four possible signed triads. Positive edges are drawn in green solid lines
and negative edges are drawn in red dashed lines.

In practice, the addition of negative edges brings new opportunities for
traditional graph mining tasks on unsigned graphs. Take community
detection for example, higher-quality communities can be found by consid-
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ering both positive and negative edges, compared to using positive edges
only [31]. Moreover, signed graphs enable us to study new problems that
unsigned graphs are not suitable for. Bonchi et al. [12], Chu et al. [22]
and Xiao et al. [89] use signed graphs to find polarized user groups on
social-media platforms. In biology, signed graphs are used to model protein-
protein interactions and are further used to discover synergetic protein
groups [63].

Constructing signed graphs in practice. Curious readers might won-
der how signed graphs are constructed in practice. We describe a few
general approaches to construct real-world signed graphs.

If a graph has a reasonable size in terms of the number of edges, edge
signs can be inferred manually. An example is the New Guinea Highland
Tribes graph [69], which contains 58 undirected edges. Relations between
tribes were inferred manually by the author Read [69].

When graphs are too large, for instance, graphs from popular social-
media platforms, manually inferring edge signs is costly and time-consum-
ing. A common practice is to leverage auxiliary edge-related information
available from the platforms, to serve as a proxy to the actual edge signs.
The information is a suitable proxy if it contains strong signals of edge
signs. For instance in Slashdot.org, an online discussion site, a user can tag
another user as either “a friend” or “a foe.” In Epinions.com, a consumer
review site, a user can tag another user either “trustful” or “distrustful”.
In Wikipedia.org, community members may vote “support” and “oppose”
to admin candidates during administrator elections. In the modeling of
human languages, determining if two words are synonyms or antonyms
can rely on information from thesauruses such as Merriam-Webster’s
Dictionary [79].

In the cases when no reliable proxy is available, one may resort to other
approaches. Texts, which usually reflect human emotions, are abundant
in social-media platforms. To construct signed graphs from social media,
one can first construct unsigned backbone networks using user-interaction
data (e.g., a user re-tweets/mentions/comments about another user). Then
based on the backbone networks, user-generated texts (e.g., comments,
mentions) can be analyzed, using sentiment analysis algorithms [58] or
crowdsourcing, to determine the edge signs.

A running example of a signed graph constructed using the above ap-
proach is the work by Kumar et al. [51]. They construct a community graph
on Reddit.com, where each node represents a “subreddit” (a community of
users interested in a certain topic). There is an edge between two nodes if
the corresponding subreddits are linked by at least a hyperlink between
the posts in each corresponding subreddit. They further use crowdsourcing
to analyze the text content in the posts to infer the edge signs. Another ex-
ample is from the field of biology, in which a protein may exhibit activating
or inhibiting relations with another protein. Ou-Yang et al. [63] leverage
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yeast metabolic cycle and gene expression microarrays to infer the “signs”
of interactions.

4.2 Polarized structures and the importance of negative edges

To further illustrate the importance of negative edges in signed graphs,
we explain how negative edges can help discover polarized structures in
signed graphs.

Imagine a network of politicians represented as nodes, and there is an
edge between two nodes if the corresponding politicians interact with each
other. The sign of an edge is determined by whether the corresponding
interaction is supportive (positive sign) or opposive (negative sign). We
illustrate this network in Figure 4.3(a). In addition, the politicians in
this example hold two different views about a government policy, and are
unfortunately involved in a polarized debate. Furthermore, the graph
exhibits a polarized structure, because politicians with the same view are
likely to support each other, and those of different views tend to oppose
each other. However, these rules are not strict. For some unknown reasons,
politicians with the same view (or different views) may still have a small
chance to oppose (or support) one another, thus creating some noisy edges
to the polarized structure. Despite so, all politicians can be roughly divided
into two groups, corresponding to each side of the polarized structure, and
each group of the politicians represents a view regarding the government
policy.

Suppose we only know the edges and their signs, can we identify the two
groups of politicians representing each view on the policy? In other words,
can we partition the nodes in the graph, such that inside each partition,
nodes are connected mostly by positive edges, and between two partitions,
edges are mostly negative?

(a) Edges of both signs (b) Only positive edges (c) Only negative edges

Figure 4.3. A synthetic signed graph is shown in (a). Subfigures (b) and (c) represent the
graph, with only positive and only negative edges, respectively.

Instead of describing a solution to the above question, we first discuss
the roles of edges of each sign. We argue that edges of either sign pro-
vides complementary information in terms of the graph structure. In
our example, the graph with only positive edges (shown in Figure 4.3(b))
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has a well-separated structure, in that it can be partitioned into two sub-
graphs, such that each subgraph is densely-connected within itself, but is
sparsely-connected with the other subgraph. In contrast, the graph with
only negative edges (shown in Figure 4.3(c)) has a near-bipartite structure,
which is opposite to the previous case. This graph can be partitioned into
two subgraphs, such that each subgraph is sparsely-connected within it-
self, but is densely-connected with the other subgraph. Both structures
in this example indicate a similar node partitioning, but from different
perspectives. Therefore, edges of both signs are useful to find a good graph
partition.

4.3 Partitioning signed graphs

In this section, we formalize the graph-partitioning problem described in
the previous section and present some known theoretical results.
Preliminaries. We first define signed graphs formally and present some
notations that are used shortly.

We define a signed graph as an undirected graph G = (V ,E+,E–), where
V = {1, . . . ,n} is the set of nodes, E+ is the set of positive edges, and E– is
the set of negative edges. The graph G can be decomposed into the positive
graph G+ = (V ,E+) and the negative graph G– = (V ,E–). The set of all edges
is E = E+ ∪E–.

The adjacency matrix for G+ is denoted A+. The entry A+
i, j is 1 if (i, j) ∈ E+

and it is 0 otherwise. We define A– for the G– accordingly. The signed
adjacency matrix of G is defined as A = A+− A–. For any node i ∈V , denote
the positive degree of i as deg+(i) =∑n

j=1

∣∣A+
i, j

∣∣. The negative degree of i,
deg–(i), is defined similarly. The degree of i is deg(i)= deg+(i)+deg–(i). And
the degree matrix D is a diagonal matrix, whose diagonal entries are
Di,i = deg(i) for i = 1, . . . ,n. Last the volume of a node set S is defined as
vol(S)=∑

i∈S deg(i).
Given a set of edges F and two node sets X ,Y ⊆ V , we define F(X ,Y ) =

{(u,v) ∈ F | u ∈ X ,v ∈Y }, that is, the edges in F that have one endpoint in X
and the other endpoint in Y . For example, E–(X ) is the set of negative
edges between X and Y . When X =Y , we write F(X , X )= F(X ) for brevity.
For example, E+(X ) is the set of positive edges having both endpoints in X .
Graph bi-partitioning. We state our first problem next:

Problem 2. Given a signed graph G = (V ,E+,E–), find a partition (C1,C2)
over V such that C1 ∩C2 =∅, C1 ∪C2 =V and (C1,C2) minimizes the follow-
ing:

q(C1,C2)= |E–(C1)|+ |E–(C2)|+2
∣∣E+(C1,C2)

∣∣
vol(C1 ∪C2)

.

The term q(C1,C2) can be interpreted as the fraction of “noisy” edges, that
is, the edges that undermine the informativeness of (C1,C2) as a partition.
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It is easy to see that q(C1,C2) ∈ [0,1], and the smaller that q(C1,C2) is,
the better partition that (C1,C2) is. If there is some (C1,C2) such that
q(C1,C2) = 0, the graph G is balanced, that is, there is no negative edge
in either C1 or C2, and no positive edge between C1 and C2. If no (C1,C2)
exists such that q(C1,C2)= 0, the graph G is unbalanced.

We give an example of a partition in Figure 4.4, in which the blue dotted
line indicates a partition of (C1,C2). The partition is not perfect since
q(C1,C2)> 0 and there are negative edges inside the subgraph of C2. And
in fact, this graph is unbalanced.

C1 C2

Figure 4.4. A partitioning over the nodes in New Guinea Highland Tribes graph.

Spectral graph theory on signed graphs. Attempts to solve Problem 2
contribute to the development of spectral graph theory on signed graphs.
In this theory, people study the properties of signed graphs in relation
to the eigenvalues and eigenvectors of the matrices associated with the
graphs.

Recall that in Section 2.2, we introduce spectral graph theory and how to
use the graph Laplacians to partition unsigned graphs. Similarly, Lapla-
cian matrices are defined for signed graphs and these matrices can be used
to partition signed graphs as well. Next we explain how.

The unnormalized Laplacian matrix of a signed graph is defined as

L = D− A, (4.1)

and the normalized Laplacian matrix is

L = D− 1
2 LD− 1

2 . (4.2)

Then we can use L to transform Problem 2 into a matrix form. Consider
a vector x ∈ {−1,1}n, which encodes a partition (C1,C2) of the graph, such
that i ∈ C1 if xi = 1 and i ∈ C2 if xi =−1. Then it can be shown that

xT Lx
xT Dx

= |4 E–(C1)|+4 |E–(C2)|+4
∣∣E+(C1,C2)

∣∣
vol(C1 ∪C2)

. (4.3)
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If we replace x with y= D
1
2 x, we have the Rayleigh quotient of y over L :

RL (y)= yTL y
yTy

= xT Lx
xT Dx

. (4.4)

In fact, minimizing RL (y) is closely related to minimizing q(C1,C2) in
Problem 2, since the two terms bound each other by constant factors:

q(C1,C2)≤RL (y)≤ 4 q(C1,C2). (4.5)

If we relax y to be continuous, i.e., y ∈ Rn, then by Courant-Fischer
Theorem, we have that minimizing RL (y) is equivalent to finding the
eigenvector corresponding to the smallest eigenvalue of L . We denote
(λ1,v1) as the eigenvalue and eigenvector pair. The pair (λ1,v1) reveals
important structural information of G. For example, if G is balanced, λ1 = 0
and we can infer a good partitioning from the entry signs in v1. In the
general case, the smaller λ1 is, the closer G is to be balanced.

We end the introduction to signed spectral graph theory now. We will
revisit some of the concepts introduced here in later sections. Curious
readers may refer to a survey about spectral theory on signed graphs
by Gallier [34].

4.4 Finding polarized communities

Real-world signed networks can be huge, up to millions of nodes. It is
unrealistic to assume such graphs are polarized, that is, good partitions of
the graphs exist. Instead, we ask: can we find a polarized subgraph, which
contains only a subset of all nodes in the graph? We define our second
problem:

Problem 3. Given a signed graph G = (V ,E+,E–), find two disjoint sets of
nodes (C1,C2) such that C1 ∪C2 ⊆ V and (C1,C2) maximizes some quality
function

q(C1,C2).

We call (C1,C2) a polarized community, and C1 and C2 are the bands in
this community. Intuitively, the value of q(C1,C2) is large if (1) edges in
E(C1) and E(C2) are mostly positive, and (2) edges in E(C1,C2) are mostly
negative. In Figure 4.5, the polarized community (C1,C2), highlighted in
orange circles, is of high quality, because edges in each band are all positive
and edges in between are all negative.

Next we present some definitions of the quality function q. One way to
measure the degree of polarization is by counting the number of edges that
contribute to a polarized structure. Specifically, we count the number of
positive edges inside C1 and C2, and the number of negative edges between
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C1

C2

Figure 4.5. A polarized community (C1,C2) in New Guinea Highland Tribes graph. Each
band is highlighted by an orange circle.

C1 and C2. Then we have

q(C1,C2)=
∣∣E+(C1)

∣∣+ ∣∣E+(C2)
∣∣+2 |E–(C1,C2)| . (4.6)

However, a drawback of the above definition is that communities with
large number of edges are encouraged, since we count the absolute num-
bers. Larger communities are sometimes considered undesirable than
smaller ones, because the former are harder to analyze, visualize or digest
by humans. To encourage communities with smaller sizes, we can penalize
solutions that are large by normalizing Equation 4.6 with the community
size. Then, we have our second definition of q:

q(C1,C2)=
∣∣E+(C1)

∣∣+ ∣∣E+(C2)
∣∣+2 |E–(C1,C2)|

|C1|+ |C2|
. (4.7)

The third definition of q requires that (C1,C2) should be isolated from the
remaining graph, that is, |E(C1 ∪C2,V \(C1 ∪C2))| is small. This intuition
is a common choice for community definitions in unsigned graphs. And we
have:

β(C1,C2)= 2
∣∣E+(C1,C2)

∣∣+|E–(C1)|+ |E–(C2)|+ |E(C1 ∪C2,V \(C1 ∪C2))|
vol(C1 ∪C2)

,

(4.8)
where we count the number of edges that undermines the degree of polar-
ization. Thus, we want to minimize this measure. Further, this measure is
normalized by the total number of edges adjacent to C1 ∪C2. The measure
of β is referred as signed bipartiteness ratio by Atay and Liu [3]. The
smaller that β(C1,C2) is, the more polarized that (C1,C2) is. Finally, we
define q accordingly:

q(C1,C2)= 1 − β(C1,C2). (4.9)

In fact, finding polarized subgraphs in signed graphs is a nascent topic.
Existing works typically focus on optimizing specific definitions of q. For
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example, Chu et al. [22] considers optimizing a variant of Equation 4.6. In
addition, they allow different bands to overlap in nodes but penalize the
degree of overlapping. In contrast, the work by Bonchi et al. [12] considers
maximizing Equation 4.7. In contrast, Atay and Liu [3] aims at finding the
(C1,C2) that minimizes β(C1,C2).

4.5 Searching for polarized communities

Next we consider the scenario where there are more than one polarized com-
munity in a signed graph. And we assume that we know a few nodes that
belong to a polarized community (C1,C2). We call such nodes seed nodes, or
seeds in short. The question is: can we find a polarized community(C1,C2)
that is relevant to the seeds? We state our third problem:

Problem 4. Given a signed graph G = (V ,E+,E–) and two sets of seeds S1

and S2, find two disjoint sets of nodes (C1,C2) such that S1 ⊆ C1,S2 ⊆ C2

and (C1,C2) maximizes some quality function on the degree of polarization

q(C1,C2).

We illustrate the problem setting in Figure 4.6. In our example, we
show two seeding scenarios. In Figure 4.6(a), setting S1 = {a} and S2 = {b}
produces a polarized community, in which the two bands are drawn in
red and blue, respectively. In Figure 4.6(b), setting S1 = {a} and S2 = {c}
produces a second polarized community, in which the two bands are drawn
in red and green, respectively. Note that the two polarized communities in
this example are overlapping in the red-colored nodes.

For the definition of q, we can borrow the definitions described in the pre-
vious section. However, compared to Problem 3, the additional constraint
related to the seeds makes Problem 4 different. In fact, Problem 3 is a
special case of Problem 4 if we consider S1 = S2 =∅.

Note that the above problem falls into a broader class of problems, called
community search problems. In a typical community search problem, we
are given a graph and some seeds (e.g., nodes), and we are asked to find
a community (e.g., subgraph) that contains the seeds and optimizes some
community quality function.

In the next section, we formalize Problem 4 and describe our solution
to it.

4.6 Thesis contribution

In Publication III, we consider a problem that is an instantiation of Prob-
lem 4. Specifically, given a pair of node set (S1,S2) as seeds, and an integer
k, we seek to find a polarized community (C1,C2) such that:
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(a) Seeds S1 = {a} and S2 = {b} (b) Seeds S1 = {a} and S2 = {c}

Figure 4.6. Finding polarized communities under two seeding scenarios, each asking for
a different polarized community. The seed nodes are drawn in squares. And
each band is drawn in a different color. The New Guinea Highland Tribes
graph is shown.

1. (C1,C2) minimizes β(C1,C2) (Equation 4.8);

2. S1 ⊆ C1 and S2 ⊆ C2;

3. vol(C1∪C2)
vol(S1∪S2) ≤ k;

The last constraint upper bounds the solution size in terms of the number
of edges.

Our contribution is related to three topics: (1) finding polarized sub-
graphs (discussed in Section 4.4); (2) community search problems (men-
tioned in Section 4.5); and (3) spectral graph theory (introduced in Sec-
tion 4.3). Our problem definition is relevant to the first and second topics.
From the theoretical aspect, our algorithm relies on results from the third
topic. In return, our results enrich the studies of all these topics.

Theoretically, our contribution is two-fold. First, our proposed algorithm
has an approximation ratio of O (

�
OPT), where OPT is the optimal value.

Second, our algorithm runs in time O (m logm), which makes it scalable to
large graphs.

We evaluate our algorithm on both synthetic and real-world datasets and
compare it with a state-of-the-art method due to Chu et al. [22]. We find
that our algorithm outperforms the baseline in most of the settings.

In addition, we demonstrate our algorithm’s usefulness in finding over-
lapping communities on real graphs. We consider a graph of English words
represented as nodes and the sign of an edge represents either the syn-
onym (e.g., “happy” vs “joyful”) or antonym (e.g., “happy” vs “sad”) relations
between the corresponding words. The edge weights represent the strength
of similarity, in which case the edge sign is positive, or the strength of
dissimilarity, in which case the edge sign is negative.

Inspired by the phenomena of polysemy (words with more than one
meanings) in natural languages, we consider the word “fair” and two of
its meanings, “without cheating” and “not excessive”. For each meaning,
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we seed our algorithm with words of both similar and opposite meanings.
The goal is to find antonyms and synonyms of fair under each of the two
meanings. The result is illustrated in Figure 4.7. It shows that our method
finds meaningful antonyms and synonyms for either meaning of fair.

trusty

fair

faithful

blonde

honest

foul

cheating
lying

designing

sly

C1

C2

onnon

yyy
ssssssssssssssssssssssssssssssssssseeessssssssssssssssssssssssssssssssssssssssssssssseseee

llllllll ggggnggg

yyyyyy

modest
moderate

fair
medium

radical
extreme

infinite

intensive

E+

E–

fffffff

eeee

lldd
eeee

(a) fair as without cheating (b) fair as not excessive

e.g., a fair game e.g., fair amount of time

Figure 4.7. Two polarized communities centered on fair in a signed graph of English
words. Seed nodes are: (a) S1 = {

fair, honest
}

,S2 = {
cheating

}
; (b) S1 ={

fair, modest
}

,S2 = {extreme};

Besides, we test our method’s scalability on a graph with 1 million
nodes and the algorithm takes 18 seconds on average to find a polarized
community.

55





5. Fair clustering

In this chapter, we present a novel way of clustering data in a fair manner.
We first describe how bias circulates through machine learning systems.
Then we discuss the question of what fairness is and illustrate the inherent
complexity of this question. Next we describe common ways to achieve
fairness in classification, which has received considerable attention in the
study of algorithmic fairness. Later, we discuss an important topic of ma-
chine learning — clustering, summarize existing works on fair clustering
and reason about their limitations. Finally, we describe a new way of fair
clustering to address the limitations of some of the existing approaches.

5.1 Bias in machine learning systems

We give motivation on the study of bias issues in machine-learning systems
in Section 1.1. However, we haven’t understood how bias arises in the first
place. To see how, we use a diagram from the book by Barocas et al. [7]
(Figure 1 in Chapter 1 of the book). The diagram is drawn in Figure 5.1
and depicts the main stages of machine-learning systems. The remaining
paragraphs are structured by the stages in the diagram.

State of the world

Data Model

Individuals

Measurement

Learning

Action Feedback

Figure 5.1. Main stages (corresponding to the arrows) in machine-learning systems.

Measurement. The first stage is about creating the datasets to be used by
downstream machine-learning applications. This stage essentially reduces
the state of the world into a dataset (e.g., texts, images, or a table of values).
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Although the term “measurement” indicates an objective process, it can be
full of subjective decisions.

First, data that is about humans and is collected by humans naturally
encodes human bias. Examples are historical books, which are rich in
cultural prejudices and stereotypes.

Second, our world is complicated and measuring it can be both subjective
and challenging. Let us consider the task of determining the racial identity
of a person. This task can be trickier than imagined. For instance, if
the person’s parents have different racial backgrounds (e.g., Hispanic and
Asian), what racial group should they consider to be? In addition, our
perception of racial identity changes over time. The racial categories
adopted by the U.S. Census in 1790 contain only three choices: “free white
males/females”, “all other free person” and “slaves”.1 While in 2020, fine-
grained categorization is used, including 12 different racial groups.

Third, data imbalance problem, in which data related to certain groups
(e.g., female) is much scarcer compared to that of other groups (e.g., male),
may contribute to further bias. Imagine a project that studies the con-
tributing factors of career successes of machine-learning researchers of
different genders. The fact that only 12 percent2 of machine-learning
researchers are females makes females under-represented. Further, if
only a limited number of samples are obtained and are drawn uniformly
randomly, conclusions about female researchers can be inaccurate, even
misleading.

Learning. The second stage learns from the data collected at the first
stage. Learned models are produced, usually in the form of a set of param-
eter values. This stage is also called “training”.

In general, it is hard to filter out the bias present in the data. On the one
hand, data to be used for model training may contain knowledge that is
useful for the tasks at hand. On the other hand, bias, which is encoded
in the data, can be inherited by the learned models. However, there is no
general way for learning algorithms to separate the useful knowledge from
the bias.

Buolamwini and Gebru [14] study the issue of gender imbalance in an
image classification task. In this task, algorithms are trained to iden-
tify the gender of humans based on images of their faces. Buolamwini
and Gebru found that darker-skinned females are the most misclassified
groups. This conclusion is based on the classification results from three
commercial face-recognition systems. One possible reason for the unfair
results is that the training datasets used by the face-recognition systems
are overwhelmingly composed of lighter-skinned subjects, creating the

1https://www.pewresearch.org/fact-tank/2020/02/25/the-changing-categories-the-
u-s-has-used-to-measure-race/
2https://www.wired.com/story/artificial-intelligence-researchers-gender-
imbalance/
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problem of data imbalance.
Another example of bias in learning is word embedding. A word-embedding

model converts words to low-dimensional vectors. Given a trained em-
bedding model, we can measure the association between two words by
calculating the similarity between the corresponding vectors. In a study
by Bolukbasi et al. [11], the word “she” is most similar to occupations
such as “homemaker” and “nurse”, while the word “he” is most similar to
“maestro” and “skipper” (captain). In other words, gender bias in human
languages is inherited by word-embedding models.

Action. Almost all machine-learning systems are designed to produce
some impacts on the real world. There is evidence that biased algorithms
can potentially create adverse impacts on the life of a certain demographic
group.

A study by Datta et al. [24] shows that Google’s advertisement recom-
mendations are potentially discriminatory by gender. Google uses recom-
mendation engines to display personalized ads in the search results, based
on users’ search queries and their demographic information (e.g., gender,
age). In their analysis, male users are more likely to see high-paying jobs
than female users do. The unfairness in ad-recommendation results may
further contribute to gender inequality in income.

Unfairness caused by machine-learning algorithms is also observed in
justice systems. An algorithm called COMPAS was used across the United
States to assess criminal defendants’ likelihood of becoming recidivists –
criminals who re-offend. Larson et al. [54] tested whether COMPAS was
biased against certain groups. They found that “black defendants were
far more likely than white defendants to be incorrectly judged to be at a
higher risk of recidivism, while white defendants were more likely than
black defendants to be incorrectly flagged as low risk.”.

Feedback. Feedbacks are often used by machine learning systems to
refine the models. For example, a search engine may collect user clicks on
search results and use them to improve the quality of future search results.
However, using biased feedbacks for model refinement can exacerbate the
bias that already exists, finally creating a negative feedback loop.

Furthermore, interpreting feedbacks correctly is challenging. Take user
clicks on search results as an example, do the clicks indicate the clicked
pages are interesting or simply because the pages are on top of the search
results? If feedbacks are handled inappropriately, bias can accumulate,
which can in turn make negative impacts.

To summarize, bias permeates through machine-learning systems. To
reduce bias, we should first understand at which stage of the systems bias
arises and how it arises.
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5.2 Codifying fairness

There are mainly two lines of researches in the topic of algorithmic fairness
— (1) codifying what it means for an algorithm to be fair; (2) designing
algorithms that achieve certain notions of fairness. In this section, we
focus on the former — codifying the notions of fairness.

What is fairness? It is a deep and fundamental question, which has been
at the center of debates among the great minds since long ago. It never
has easy answers. And we do not make the attempts to answer it here.
Instead, we aim to illustrate the complexity of this question and to look
closer at it in different contexts, hoping to gain a deeper understanding.
To do so, we argue that appropriate definitions of fairness depend on both
our perception of fairness and the application domains.

Our perception of fairness. To illustrate how the notion of fairness
varies with our perception of it, we use an example of college-admission
processes. Each year, colleges select students for admission, based on the
candidates’ qualifications such as GPA, scores of standard tests, and their
motivation. However, this process is not always fair among different gender
groups. To promote gender equality, different colleges may take different
approaches. One approach is to require that gender-specific acceptance
rates are equal, that is, female candidates have an equal probability of
being accepted as male candidates. This notion of fairness is often referred
to as statistic parity. A drawback of statistic parity is that it ignores
the correlation between the candidates’ gender and their probability to
succeed. For example, it could be the case that being female is more
positively correlated with future career success than being male.3 Thus, it
is acceptable to have acceptance rates that differ by gender. Nevertheless,
using gender information has the risk of abusing it, therefore, the use of it
should be well-justified. We will formalize the above intuitions of fairness
in the next section.

Application domains. Even for the same notion of fairness, its exact
formalization can vary by the application domains. The aforementioned
college-admission process is an example of a classification problem, in
which we seek to assign a label (e.g., accepting for admission or reject-
ing) to an object (e.g., a student candidate). However, there are many
other problems in machine learning in which the discussion of fairness is
important.

For example, in many online platforms (e.g., Amazon, Facebook), users
are recommended items (e.g., books, news articles) that they might like, by
recommendation algorithms. Researchers have found that many recom-
mendation algorithms can produce biased results for different demographic
groups [48, 90]. To make recommendations fairer, Kamishima et al. [48]

3Note that we do not say candidates’ gender causes their success.
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propose to use the notion of statistical parity, which we introduced before.
Though copying the definition of statistical parity in classification to the
recommendation setting is tempting, doing so rarely works due to the
different nature of the two problems. In other words, an instantiation of
statistical parity that is suitable for recommendation problems is required.
To achieve this goal, Kamishima et al. [48] proposes to penalize the dif-
ferences of predicted item ratings among different demographic groups.

To summarize, for the same problem, the notion of fairness may differ,
depending on what we want to achieve. And even the definition of the
same fairness notion may differ by the application domains.

5.3 Fairness in classification problems

Classification is a fundamental topic in machine learning. Next we present
common fairness notions in classification problems. Though the study of
algorithmic fairness is nascent, fairness research in classification problems
a received considerable amount of attention. Therefore, we feel the need
to discuss this topic in detail. In the following, we first formalize the
problem of classification. Then we present three common fairness notions
in classification.
Classification problems. In a classification problem, we want to train
a classifier using observed data and use the trained classifier to make
predictions. Suppose we observe n data points D = {(x1, y1), . . . , (xn, yn)},
where xi is an input data point (e.g., text document, image) and yi is the
label of xi (e.g., topic of a document, main object in an image). Each input
xi is usually represented by a vector or a matrix and the label yi takes
value from a finite set. We use random variables X and Y to denote some
data point and the label of the data point, respectively, and we assume that
the observed data D is drawn randomly from some unknown probability
distribution on (X ,Y ). In other words, an observation (x, y) can be seen as
a sample drawn from the probability distribution on (X ,Y ). In the sequel,
we consider the special case that the variable Y is binary and its value is
either positive or negative, i.e., Y ∈ {−1,1}. That is to say, we focus on binary
classification problems. We use the convention that Y = 1 is considered
more favorable than Y =−1, e.g., Y = 1 means “being granted a loan” and
Y =−1 means “not granted a loan”.

Essentially, a classifier f is a function, often represented by a set of
parameters, whose values are learned using the observed data D. The
function f takes in an input data point x and outputs a prediction ŷ, i.e.,
ŷ= f (x). Assume that we know y, which is the true label of x. If ŷ= y, we
say the prediction by f is correct. If ŷ �= y, the prediction is incorrect. We
use the variable Ŷ to denote the prediction of a classifier. And we express
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that Ŷ = f (X ).
As an example of classification problems, we consider the problem of

deciding whether a loan applicant should be granted a loan or not. The
variable X encodes the applicants’ background information such as age,
gender, income level, marital status, and past credit records. The variable
Y denotes whether he will default a loan or not in the future, which
determines whether he should be granted a loan or not. If the applicant will
default a loan, we set Y =−1. Otherwise, we set Y = 1. Given some classifier
f under this setting, the variable Ŷ denotes the classifier’s prediction of
whether a random applicant (represented by X ) will default a loan or not,
that is, Ŷ = f (X ). Suppose we know the background information of a person
and his loan history, we have an observation, (x, y), where x is a vector
representing the background and y indicates whether he has defaulted a
loan or not. Further assume that we collected a dataset D = {(xi, yi)}n

i=1 of
historical loan data of multiple persons, we can use it to train a classifier f .
During the prediction phase, the classifier takes an input x representing a
loan applicant’s background and outputs f (x), the prediction of whether he
will default a loan or not.
When does unfairness arise? To answer this question, we need to know
common ways to measure the performance of a classifier. Intuitively, we
want Ŷ to match Y as much as possible. To quantify the degree of match,
one measure is accuracy, which defines the probability of a classifier to
make a correct prediction. Formally, we can express it as Pr

(
Y = Ŷ

)
. A

classifier is considered good if Pr
(
Y = Ŷ

)
is high. Alternatively, we can use

precision Pr
(
Y = 1 | Ŷ = 1

)
, the probability of making a correct prediction if

the predicted label is positive. Or we can use recall, Pr
(
Y = 1 | Ŷ = 1

)
and

Pr
(
Ŷ = 1 |Y = 1

)
, the probability of making a correct prediction if the actual

label is positive.
The issue of bias arises when we incorporate protected attributes (e.g.,

gender, race) and distinguish the classifier’s performance based on the
values of the protected attributes. Consider the loan-applicant example
and using race as the protected attribute. If a classifier makes prediction
such that the accuracy of different racial groups differ, e.g.,

Pr
(
Ŷ =Y | the applicant is black

)<Pr
(
Ŷ =Y | the applicant is white

)
.

One might argue that the classifier is unfair because the accuracy on
white applicants is higher than the accuracy on black applicants.

Next we give a few examples of fairness notions for classification prob-
lems. We use the random variable A to denote the protected attribute and
thus, the data points can be grouped by the values of the associated pro-
tected attributes, e.g., black applicants and white applicants. For simplicity,
we assume A is binary, i.e., A ∈ {a,b}.
Statistical parity. A classifier f satisfies statistic parity if members in
one group have an equal probability of receiving positive prediction as
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members in the other group. This notion is also known as demographic
parity and independence. Formally, this fairness notion requires a classifier
to satisfy:

Pr
(
Ŷ = 1 | A = a)=Pr

(
Ŷ = 1 | A = b) .

Using the loan-application example and assume that A ∈{black,white
}

,
statistical parity says that black applicants should have an equal probabil-
ity of receiving positive prediction as white applicants.

Statistical parity has two major limitations. First, it rules out the pos-
sibility that A is correlated with Y . For instance, racial background can
be correlated with the tendency to default loans [42]. Ignoring such cor-
relation can harm the performance of the classifier. Second, it promotes
laziness. One can achieve statistical parity easily by randomly choosing
the same fraction of members from each protected group, regardless of
other information.

Separation. The notion of separation (also called equal odds) proposed
by Hardt et al. [42] aims at addressing the above limitations of statistical
parity.

This notion allows the protected attribute A to be correlated with Ŷ , only
if the correlation is justified by Y . Formally, separation requires:

Pr
(
Ŷ = 1 |Y = 1, A = a)=Pr

(
Ŷ = 1 |Y = 1, A = b) ,

Pr
(
Ŷ = 1 |Y = 0, A = a)=Pr

(
Ŷ = 1 |Y = 0, A = b) .

One way to interpret separation is by considering true positive rate
and false positive rate, defined as Pr

(
Ŷ = 1 |Y = 1

)
and Pr

(
Ŷ = 1 |Y = 0

)
,

respectively. This criterion requires the same true positive rates and the
same false positive rates among different groups.

Sufficiency A third notion, known as sufficiency, states that the prediction
subsumes the protected attribute information, for the purpose of prediction.
Sufficiency states the following:

Pr
(
Y = 1 | Ŷ = 1, A = a)=Pr

(
Y = 1 | Ŷ = 1, A = b)

Pr
(
Y = 1 | Ŷ = 0, A = a)=Pr

(
Y = 1 | Ŷ = 0, A = b)

An important question is how to achieve any of the aforementioned fair-
ness criteria. Broadly speaking, there are three approaches: via (1) pre-
processing, e.g., removing the bias from input data; (2) training (or in-
processing), e.g., training the classifiers in a specific way such that its
predictions are fair; or (3) post-processing, e.g., treating any classifier as a
black-box and adjusts the predictions according to some fairness criterion.
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In general, the study of algorithmic fairness is an interesting and ongoing
topic. Interested readers might refer to the book by Barocas et al. [7] for
more information.

5.4 Fair clustering

In this section, we consider clustering, which is an important topic in
machine learning, and give an overview of fairness study in clustering.
In Section 2.3, we give some background information in clustering. For
current research on fair clustering, a dominant fairness notion being
considered is referred to as representation-based fairness.

Representation-based fair clustering. Pioneering work in this direc-
tion is by Chierichetti et al. [21]. They consider optimizing standard
clustering objectives such as the k-means objective and the k-center objec-
tive. In addition, they assume each data point is associated with one of
two pre-specified labels. In other words, the data points can be partitioned
into 2 disjoint groups, in which each group contains the points of one label.
The notion of fairness is incorporated as representation-based constraints
in the optimization problems, e.g., by requiring that in each output cluster
the different data groups should be represented within pre-specified pro-
portions. In Figure 5.2, we illustrate this fairness notion using an example,
which is borrowed from Chierichetti et al. [21]. In this example, data points
are grouped by the colors (purple and pink), into {x, y, z} and {a,b, c}. An
intuitive non-fair clustering ignoring the group information is {x, y, z} and
{a,b, c}. Clustering concerning representation-based fairness partitions the
points by the dashed line, into {x,a,b} and {y, z, c}. In each cluster of this
clustering, the colors of the data points are more balanced, compared to
the non-fair clustering.

y
z

x

a

c

b

Figure 5.2. A toy example illustrating representation-based fair clustering. The dashed
line indicates a clustering that adheres to the representation-based fairness
notion. Nodes are grouped by the colors and the cluster centers are highlighted
in thick black border.

We use two examples to motivate representation-based fairness. Consider
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clustering news articles. In addition, each article has a label indicating
its political leaning (e.g., demographic or republic). Representation-based
fairness requires that within each cluster, different political views are bal-
anced, that is, no political view is over-represented nor under-represented.
A second example is about clustering experts and experts are labeled by
their genders. Representation-based fairness translates to gender balance
inside each cluster.

Most subsequent works [1, 2, 5, 8, 9, 50, 72] on fair clustering build
upon the work by Chierichetti et al. [21]. They propose variant notions of
representation-based fairness. These variant notions can be written in a
general form as follows.

Let Cf denotes a cluster f and Gi denotes the ith color group, then Gi∩Cf

is the set of points in group Gi that are in cluster Cf . In addition, group-
specific parameters αi and βi (0≤αi ≤βi ≤ 1) are given as inputs. Then in
general, any representation-based fairness constraints can be written as:

αi ≤
∣∣Gi ∩Cf

∣∣∣∣Cf
∣∣ ≤βi for any cluster f and any group i. (5.1)

Intuitively, setting αi high prevents the group i from being under-represented,
while setting βi low prevents group i from being over-represented. The
values of αi and βi can be set to fine-tune the exact notion of fairness. For
instance, Rösner and Schmidt [72] set αi > 0 and βi = 1, which only prevents
under-representation of all groups. In contrast, Ahmadian et al. [1] aim at
preventing over-representation by setting αi = 0 and βi > 0. Bera et al. [8]
studies the more general case, in which both αi and βi are adjustable.

A limitation of representation-based fairness. One observation on
representation-based fair clustering is that points may not be assigned its
closest center. For example in Figure 5.2, a fair clustering assigns point x
to a, however z is its closest center.

This property is undesirable in some practical scenarios. Consider a
city council that plans to construct a number of facilities (e.g., hospitals)
to serve its citizens. The representation-based fair clustering framework
would assign citizens to facilities so that all demographic groups are pro-
portionally represented in each cluster. To achieve this constraint, some
citizens may not be assigned to their closest facility, causing them an in-
convenience. Why would citizens have to go to facilities that are further to
the closest ones?

In the next section, we address the above limitation using a different
fairness notion.
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5.5 Thesis contribution

We propose a different fairness notion for clustering. Consider again the
scenario in which a city council plans to construct a number of facilities to
serve its citizens. Given a set of opened facilities, our proposed fairness
notion assigns any citizen to their closest facilities, therefore addressing
the aforementioned limitation of representation-based fair clustering. In
our setting, for a demographic group, we measure the group-level cost as
the average distance of data points in that group to their closest facilities.
Our objective seeks to minimize the maximum group-level cost among all
groups, that is, no group incurs too high a cost.

We refer to our framework as distance-based fair clustering, or in short,
D-fair clustering. In contrast, we refer to representation-based fair cluster-
ing as R-fair clustering.

Next we formalize our problem definition. The data to be clustered is
denoted by a set C, and a metric d is used to measure the distance between
any pair of points in C. Data points in C are associated with some protected
attribute and can be partitioned into � disjoint groups, G1, . . . ,G�, such that
C =⋃�

i=1 Gi and Gi ∩G j =∅ for i �= j.
Given some j ∈ C and some S ⊆ C, we define:

d( j,S)=min
f ∈S

d( j, f ).

Given S ⊆ F as the candidate centers, we define the average cost of a
group Gi with respect to S as

Φavg(Gi,S)= 1
|Gi|

∑
j∈Gi

d( j,S). (5.2)

We state our problem below:

Problem 5. (D-fairk-median) Given a set of n clients C, a set of m facilities
F, a distance function d on C ∪ F, and a partition of C into � groups
{G1, . . . ,G�}, we seek to find a set S ⊆ F of at most k points so as to minimize
the cost

Φfair(S)=maxi∈[�]Φavg(Gi,S). (5.3)

D-fair k-median is a generalization of k-median and k-center problem,
both of which are NP-hard problems. Thus, D-fairk-median is an NP-hard
problem.

In Figure 5.3, we use a toy example to illustrate the difference between
our problem formulation and a R-fair formulation. In this example, data
points shown in Figure 5.3(a) are partitioned into three groups, indicated
by the node color. We consider the case C = F (each data point is a candidate
center) and we set k = 2. The optimal clustering under D-fair and R-fair
formulations are shown in Figure 5.3(b) and Figure 5.3(c), respectively.
Cluster centers under each formulation are shown as stars, and points
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(a) Input (b) D-fair clustering (c) R-fair clustering

Figure 5.3. Optimal solutions under D-fair and R-fair clustering.

are connected to their centers by either red (1st cluster) or gray lines (2nd
cluster). Note that D-fair clustering assigns each node to its closest center.
In contrast, R-fair clustering does not necessarily do so because of the
representation-based fairness constraints.

To solve the proposed problem, we design two approximation algorithms.
The first algorithm uses k-median k-center objectives to bound the objec-
tive in D-fair k-median, respectively. Then it employs blackbox k-median
solvers and blackbox k-center solvers to approximate D-fair k-median. The
algorithm makes further improvement using a local-search subroutine. We
name this algorithm LS (the acronym of “local search”) We show that the
algorithm LS achieves an approximation ratio of O (min{�, smax}), where � is
the number of groups and smax is the maximum group size.

The second algorithm D&C employs a divide-and-conquer approach. The
algorithm D&C consists of two phases. First, it divides the problem into �

sub-problems, each of which corresponds to a k-median problem instance on
points from a different color group. And the algorithm optimizes Φavg(Ci,S)
for each group i. Second, it aggregates the opened facilities from the
previous step into F ′, solves a k-center problem instance on F ′ and returns
the solution. We show that the algorithm D&C yields an approximation
ratio of O (k).

To get an intuitive feeling of how D-fair methods perform in practice,
we use a real-world dataset consisting of local communities in Los An-
geles, United States. Each data point corresponds to a local community
and the group label of a data point is determined by the income level of
the residents in the corresponding community. We end up with 6 groups,
representing 6 income groups. We compare our algorithm LS with two
standard clustering algorithms under the k-median and k-center formu-
lations, respectively. We name the baselines kM and kC, respectively. We
set k = 3 and plot the clustering results in Figure 5.4, with the objective
value show on top of each subfigure. All data points are assigned to their
closest opened facilities. The algorithm kC opens facilities on the periphery
because of the definition of the k-center objective. In contrast, the locations
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Input LS Φfair = 0.141

kM Φfair = 0.179 kC Φfair = 0.19

Figure 5.4. Facilities opened by LS, kM and D-kC in Los Angeles (k = 3): each data
point maps to a local community. Communities are partitioned into 6 groups.
Euclidean distance is used. We made this plot for illustration purpose only.

of the facilities opened by kM are more similar to that by LS, compared to kC.
Nonetheless, the facilities opened by LS spread out more than those opened
by kM. For example, kM opens a facility in the middle of the red points
(G1 and G2), while LS opens one facility closer to the left, to accommodate
the green points on the left (G5 and G6). We do not show the results by
R-fair methods because clients are not necessarily assigned to their closest
facilities and thus, it produces counter-intuitive results.

We also conduct quantitative evaluations to demonstrate our methods’
capability in achieving our proposed notion of fairness. We consider three
real-world datasets denoted as EURLex, Wiki, and Amazon. In the first
two datasets, each data point represents a text document and group labels
are determined by the topics of the documents. Both datasets contain 2 400
data points. The third dataset contains review data for Amazon products.
Each point represents a review record and the group label corresponds to
the product category. The dataset contains 1.2 million data points.

We compare the algorithm D&C with two state-of-the-art R-fair meth-
ods [8], which are denoted by R-kM and R-kC and optimize the k-median

68



Fair clustering

EURLex Wiki Amazon

Figure 5.5. Comparison of the algorithm D&C, R-fair methods and vanilla clustering
methods on three real-world datasets.

objective and the k-center objective, respectively. We also compare with
vanilla k-median and k-center clustering algorithms, named kM and kC,
respectively, which do not consider any fairness notions.

The evaluation metric we use is Φfair, which is the loss function in Equa-
tion 5. We consider clustering different k values and the results are plotted
in Figure 5.5. It can be seen that the algorithm D&C is consistently among
the best, while R-fair methods perform much worse in general. Note that
R-kM and R-kC fail to scale up to large data sets such as Amazon.
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6. Conclusions

Innovations created by us, humans, improved our life and society funda-
mentally. Meanwhile, these innovations brought about unexpected changes
that harm both ourselves and our surroundings. In this thesis, we study
three problems among the many, in an attempt to make our society a better
one. The problems are: epidemic & infodemic, online polarization and bias
in automatic decision-making. All of them have strong connections with
the online digital world, while the last problem has its root in the physical
world.

To study these problems rigorously, we model them mathematically.

• We study the problem of reconstructing propagation processes on net-
works, which can facilitate the early detection of epidemic & infodemic
outbreak. We formulate two different problems based on Steiner trees,
one leverages node infection time (Publication I) and the other makes
probabilistic predictions (Publication II).

• We study online polarization in the context of social networks and inves-
tigate the problem of searching polarized communities in signed graphs,
given input seeds (Publication III);

• To reduce bias in automatic decision-making, we focus on data clustering,
propose a novel notion of fairness for clustering and design clustering
algorithms that adhere to our proposed fairness notion (Submitted Article
IV).

To solve our proposed problems, we design novel algorithms and analyze
their theoretical properties. We extensively test the empirical performance
of our algorithms on both synthetic and real-world graphs and compare
them against strong baselines.
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6.1 Challenges and future work

Our proposed problem formulations and algorithms make several assump-
tions, which are not necessarily true in practice. In this section, we discuss
these assumptions, illustrate their limitations, and give directions for
future work. We focus on each task separately.

Reconstructing propagation processes. One of the main challenges
is data availability. Our proposed methods assume that the underlying
contagion networks are available and are free from noise. In practice,
high-quality networks are usually difficult to obtain. For example, human
contacts often do not leave any traces that can be recorded easily. Auxiliary
technology can be used for graph construction purposes. Wireless sensor
network technology, for instance, is used by Salathé et al. [74] to track
people’s locations, which are further used to infer human-contact history.
Still, measurement errors on people’s location can potentially undermine
the quality of the network structure. Furthermore, the usage of people’s
location is subject to privacy infringement. Can we design robust data
construction methods that are both accurate and privacy-preserving?

Another challenge is the lack of data with ground-truth annotations (the
true infection states of individuals in an epidemic). Because of this chal-
lenge, we have to test our algorithms on synthetically-generated datasets
that contain ground truth. However, such datasets cannot faithfully reflect
the reality — properties and patterns in real cascades.

Last, all our algorithms assume that a propagation process has only one
source node and can be represented as a tree. However, this is assump-
tion is not always true. For instance, multiple users on a social media
platform can start sharing the same piece of information if the informa-
tion is from some external source (e.g., news websites), therefore creating
multiple source nodes of a cascade. In fact, there exist real-world cascade
datasets that have multiple sources, such as one dataset constructed from
Digg.com.1

Searching for polarization in signed graphs. Our study deals with
signed graphs in which edges have signs. But edge signs are not always
free to obtain; in fact, there are no direct means to infer edge signs in many
social networks. Therefore, the difficulty to obtain signed graphs limits the
applicability of our method.

Because of this challenge, inferring edge signs in social networks is
an active research direction. Examples in this direction include the work
by Chiang et al. [19, 20], Hsieh et al. [44] and Javari and Jalili [47]. Notably,
many of these works assume that the signs of a small set of edges are
available beforehand and they rely on this knowledge to infer signs on other
edges. However, the assumption may not be true. So can we infer edge

1https://www.isi.edu/ lerman/downloads/digg2009.html
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signs without any prior knowledge of edge signs? Moreover, online social
networks are usually rich in multi-media information, such as text, images,
and videos. Can we leverage these information sources to infer edge signs?
A work by Kumar et al. [51] achieves this goal by crowdsourcing. They
hired human annotators to label the sentiment of user-generated text on
Reddit.com. However, the process is manual and can be costly and time-
consuming. So an interesting direction is to automate the labeling process,
for example, using machine-learning techniques.

Other directions are related to using different definitions of polarized
communities. On the one hand, we consider a specific notion of polarity
measure called “signed bipartiteness ratio” [3]. Other polarity measures
are known, for example, one proposed by Bonchi et al. [12]. So optimizing
other polarity measures is worthwhile trying. On the other hand, our
definition of polarized community consists of only two groups (2-way polar-
ized community). However, in practice, more than two groups can be in a
polarized community. Thus, searching for k-way polarized community is a
possible extension of our work.

Fair clustering. We assume each data point belongs to only one group, in
other words, there is a disjoint partitioning over all points. This assumption
can fail in practice when a data point belongs to multiple groups. For
example, a person can belong to multiple racial groups, or a document can
be labeled with more than one topic. Our proposed objective function fails
to capture this scenario. Thus, defining an appropriate objective function,
which captures the above setting and adheres to our proposed fair notion,
is an interesting direction.

A second direction is to improve the approximation ratios of the fair clus-
tering problem proposed by us. Recall that we design two approximation
algorithms, which achieve approximation ratios O (min{�, smax}) and O (k),
respectively. However, we do not give any tightness analysis on the approx-
imation ratios. Are the ratios tight? If not, can we design constant-factor
approximation algorithms?

Another direction is about combining representation-based fairness no-
tions with our fairness notion. These two fairness notions are orthogonal
because one is incorporated as constraints, while the other expressed as
the problem objective. So can we combine these two fairness notions into
one clustering problem? If yes, can we design approximation algorithms
for this new problem?

Last, a more general direction is to develop new fairness notions for
clustering. Since the study of algorithmic fairness is relatively nascent and
the study of fairness in data clustering is even more recent, compared to
what is done for supervised machine learning. Can we, for example, adopt
some fairness notions in supervised machine learning to the clustering
settings?
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