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1 INTRODUCTION AND THE OUTLINE OF THE STUDY 
 

The properties of surfaces can be modified by adjusting solution properties or by 

adding polymers or nanoparticles, and thus affect interactions between surfaces. 

Polymers or nanoparticles can be added either sequentially forming layered structures 

or together as a complex. For versatile possibilities, they are used to control stability 

(or flocculation) in macroscopic systems – up to industrial scale. The understanding of 

the relationship between interactions and stability, and the effect of solution properties 

and additives are important to a variety of industries, also to the paper industry.  

 

A widely studied and well-understood way to modify the interactions is to add a 

single polymer, but it is also a starting point to more complex systems. The effect of a 

single cationic polyelectrolyte on interactions in cellulosic systems has been 

extensively reviewed (Hartley 1999; Hodges 2002; Claesson et al. 2005). We try to 

elucidate this field further in paper I, where a comparison between different 

molecular weights and charge densities of a cationic polyelectrolyte was considered in 

order to clarify the effect of polyelectrolyte properties on the flocculation mechanism. 

In the macro scale, the adsorption of polyelectrolyte can cause charge neutralization 

or a bridging attraction favoring flocculation, or on the other hand, it can cause charge 

reversal or steric repulsion favoring stabilization. The mechanism depends upon the 

polyelectrolyte layer structure. One component systems are reported to be beneficial 

e.g. in papermaking, improving retention and shear stability (Lindström 1989; 

Dickinson and Eriksson 1991; Swerin et al. 1996; Solberg and Wågberg 2003).  

 

Taking one step further, two polymers can be added to build up more sophisticated 

layer structures to affect the interactions. Surface forces between polyelectrolyte 

multilayers, PEMs, (sequential addition) and polyelectrolyte complexes, PECs, 

(premixed addition) have been studied to some extent (Lowack and Helm 1998; 

Blomberg et al. 2004; Kulcsar et al. 2004 and 2005; Gong et al. 2005; Notley et al. 

2005). Surfaces forces between multilayer structures are mostly determined by the 

outer layer of the system, whereas the effect of PECs is depending on the properties of 

PEC. The effect of PECs was more closely studied in paper II.  
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The surface to be modified plays an important role when considering the system 

stability. In this thesis, three different cellulose surfaces were used: mostly amorphous 

cellulose sphere containing also cellulose II regions, low charged nanofibrillar 

cellulose I surface and high charged carboxymethylated nanofibrillar cellulose I 

surface. Nanofibrillar cellulose (NFC) surfaces were developed in paper III. The 

NFC surface consisting the areas of crystalline cellulose I and amorphous regions and 

having fibrillar structure serves as excellent models for the pulp fiber surface.  In this 

context, the effect of salt and pH on surface forces between cellulose surfaces was 

studied. Adjusting the properties of solution is the simplest way to affect colloidal 

stability. In this way, electrostatic double layer forces and the behavior of system can 

be changed directly.  

 

NFC surface was also used in paper IV, where nanoparticles were studied together 

with polyelectrolytes. Microparticles and nanoparticles have been noted to improve 

the papermaking process (Andersson and Lindgren 1996; Swerin and Ödberg 1996); 

however, interactions in nanoparticle-polyelectrolyte systems have been rarely studied 

(Sennerfors et al. 2000). To understand the structure of nanoparticle-polyelectrolyte 

assembly, the surface forces in these systems and the mechanism behind flocculation 

phenomena, we have studied the effect of silica nanoparticles and cellulose 

nanofibrils on adsorption on cellulose and on interactions between cellulose surfaces 

using two addition strategies in paper IV.  

 

The final step at work was to deepen the understanding of the PEC system behavior 

learned from the surface force measurements. The solution properties of the PECs and 

the effect of PECs on dewatering were studied in paper V. Already a low amount of 

anionic component in the complex was found to show a large effect on surface forces 

and to be clearly beneficial for dewatering. All in all, a dual polymer system has 

shown superior properties compared to one component systems in papermaking 

(Petzold et al. 1998; Wågberg et al. 2002; Gärdlund et al. 2003; Nyström et al. 2003; 

Eriksson et al. 2005; Lingström 2006) and the mechanism behind this are further 

discussed in Chapter 4.3 and in papers II and V. 

 

Some of these forces are well-known, as well as the effect of polymers in flocculation 

on a practical level have been well studied. However, the link between surface forces 
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and the flocculation mechanism has not been thoroughly studied. Most of the studies 

reported in literature have been made on mineral surfaces, despite the fact that the 

base surface may have an influence e.g. on multilayer structures in the few first layers 

and on the polymer introduced interactions (Wågberg et al. 2008). The need for the 

utilization of the cellulose surfaces was obvious. Indeed, in this thesis, we have 

studied the effect of polymeric surface modification on surface forces between 

cellulose surfaces using atomic force microscope. The aim of this work is to clarify 

the surface forces in flocculation and to deepen the understanding of the molecular 

level mechanisms of flocculation in papermaking. These results can be generalized 

and utilized in other industrial processes. 
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2 BACKGROUND 
 

2.1 Surface forces 
 

Interactions between surfaces, or colloidal particles, are often a combination of 

different types of forces (Israelachvili 1992). Generally, surface forces have been 

widely studied with direct force measurement methods (Hartley 1999; Hodges 2002; 

Butt et al. 2005; Claesson et al. 2005), and the connection between measured forces 

and the DLVO theory is well established. However, there are several other forces in 

technical processes than those described in DLVO theory. In this section, the main 

types of interactions relevant to cellulosic systems in aqueous environment are 

described briefly to give background information for the experiments. 

 

2.1.1 DLVO forces 

 

The DLVO theory describes the interactions between charged surfaces (Derjaguin and 

Landau 1941; Verwey and Overbeek 1948). The DLVO forces are the sum of the van 

der Waals forces and the electrostatic double-layer forces. The theory predicts that 

electrostatic double-layer forces dominate at large separations, when the ionic strength 

is low enough, while van der Waals forces become dominating at short separations.  

 

The van der Waals forces consist of three different types of forces that originate from 

time-dependent dipoles in atoms or molecules. These are Keesom forces for 

permanent dipoles, Debye interactions for permanent dipole and induced dipole, and 

London dispersion interactions for two induced dipoles. To calculate the van der 

Waals forces between two macroscopic surfaces, the Hamaker-method assuming pair-

wise additivity can be used (Hamaker 1937). The different force contributions are 

integrated over all pairs of molecules. The interaction energy per unit area between 

two flat, parallel surfaces, Wflt/flt, at a separation X, is given in the following equation: 

 

2/ 12
)(

X
A

XW H
fltfltvdW π

−=      (2.1) 
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where AH is the material dependent Hamaker constant. To avoid drawbacks of the 

assumptions in Hamaker approach, the Lifshitz theory can be used to calculate the 

Hamaker constant (Lifshitz 1956). In this approach, the effect of neighboring atoms 

and the influence of medium are taken into account. Furthermore, the Hamaker 

constant depends on separation decaying more rapidly at distances beyond about 5 nm 

due to retardation effects. The van der Waals interactions between identical bodies in 

a medium are always attractive, as it is case in the cellulose-cellulose system. 

 

Electrostatic double-layer forces are present between charged surfaces in liquids 

containing electrolyte (Israelachvili 1992). The charging of the surface may be due to 

several different mechanisms including desorption of lattice ions, dissociation of 

surface groups or adsorption of charged species. A system strives for electroneutrality 

and hence, in the presence of electrolyte, surface charge is balanced by an oppositely 

charged region of counterions. Some of these are very strongly bound to the surface in 

the so-called Stern layer. Others form a diffuse layer around the surface containing 

more counterions than the bulk solution and containing also co-ions. The diffuse layer 

neutralizes the charge of the surface. The Poisson-Boltzmann equation (2.2) describes 

the distribution of ions in the diffuse double-layer as a function of the separation from 

surface, x, and it assumes ions as point charges and non-interacting. When the 

Poisson-Boltzmann distribution is integrated twice, it gives the surface potential ψ, 

the electric field and the counterion density at any point x.  

 

kTZei e
Zen

dx
xd /

0
2

2 )( ψ

εε
ψ −−=      (2.2) 

 

where Z is the valency of counterions, e the electron charge, ni the ion concentration, ε 

the dielectric constant of water, ε0 the permittivity of the vacuum, k the Boltzmann 

constant and T the temperature. However, the solution of the Poisson-Boltzmann 

equation can not be done exactly and analytically; either numerical solutions or 

analytical approximations are needed (Chan 1983). Only the analytical approximation 

can be mathematically fitted to experimental data. Overlap of similar electrical 

double-layers give rise to repulsive osmotic pressure originating from the entropy loss 

of the ions. The interaction energy between identical surfaces can be calculated from 



 

8 

the pressure caused by the overlapping double-layers by integrating from the 

separation X to infinity. Assumptions of boundary conditions are needed in the 

solution. The assumption of constant potential or of constant charge gives the lower 

and upper limits of the interactions energies, respectively. The linearized solution of 

Poisson-Boltzmann equation for constant charge (2.3) and constant potential (2.4) 

leads to the following equations: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛= − 1

2
coth2)( 1

2
2

/
X

kT
e

kTnZXW s
ifltflt

κκ
ψ

σ   (2.3) 

 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛= −

2
tanh12)( 1

2
2

/
X

kT
e

kTnZXW s
ifltflt

κκ
ψ

ψ   (2.4) 

 

which are valid at distances larger than the Debye length and provided the surface 

potential is low (< 25 mV) (Derjaguin et al. 1987). Here, ψs is the surface potential 

and κ-1 is the Debye length, which is the inverse parameter of the Debye-Huckel 

parameter describing the decay length of the electrical double-layer. The Debye 

length (2.5) indicates the distance from the surface where the distribution of ions in 

the solution is affected by the presence of a charged surface. The Debye length 

decreases when the electrolyte concentration increases. 

 

∑
=−

i
ii nZe

kT
22

01 εε
κ       (2.5) 

 

In DLVO theory, it assumed that the van der Waals and electrostatic interactions are 

independently additive. To obtain the DLVO interactions, the equations (2.3) or (2.4) 

and (2.1) are summed. However, it is more realistic to assume that the real surface 

force is somewhere between the two boundary conditions (2.3 and 2.4). The charge 

regulation model is one proposed intermediate solution (Ninham and Parsegian 1971). 

 

Further, the surface forces between two macroscopic surfaces are calculated using the 

Derjaguin approximation assuming that the radius of the sphere is much larger than 

the distance between surfaces. In the Derjaguin approximation, the force can be 
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obtained by integrating the forces acting on small circular regions from the surface 

and from the opposite surface. This leads to different equations for different 

arrangements of the bodies, where the interaction energy is multiplied by the radii (ri) 

of the spheres (Derjaguin 1934). Equations for two spheres (2.6) and for a sphere and 

a plate (2.7) are presented in the following:  

 

fltfltDLVOsphsphDLVO XW
rr

rrXF /
21

21
/ )(2)(

+
= π    (2.6) 

 

fltfltDLVOfltsphDLVO XWrXF /1/ )(2)( π=      (2.7) 

 

The numerical solutions of DLVO forces for two identical surfaces with surface 

potentials of 20 mV, assuming constant potential or constant charge are shown in 

Figure 1 along with the contribution of van der Waals forces. The comparison 

between numerical solutions (symbols) and the linearized Poisson-Boltzmann 

equations (lines) shows that the approximations deviate from numerical solutions only 

close to contact, below the separation of the Debye length, 9.6 nm, where the 

approximations are not valid anymore. The resultant surface potential, according to 

eq. (2.3) and (2.4), are 18.2 mV for the constant charge approximation and 19.7 mV 

for the constant potential approximation, giving less than 10% error compared to the 

numerical solutions. Besides, the DLVO theory often fails to describe the interactions 

at very short separations. This can be because the continuum theory breaks or there 

are other non-DLVO forces present (Israelachvili 1992). 
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Figure 1. Example of calculated surface forces using DLVO theory between similarly 

charged surfaces. The symbols illustrate numerical solutions of the DLVO theory 

assuming constant charge (□) and constant potential (○). ψs = 20 mV and κ-1 = 9.6 

nm for 1:1 electrolyte. The solid lines represent the linearized solutions of Poisson-

Boltzmann equation fitted to the numerical solution of the DLVO theory for constant 

charge (black) and constant potential (grey). The resultant surface potentials are 18.2 

mV for constant charge and 19.7 mV for constant potential. A dashed line indicates 

the effect of van der Waals forces (AH = 0.8*10-20 J). 

 

2.1.2 Polymer induced forces 

 

In many natural systems, it is not enough to assume contributions of only van der 

Waals forces and electrostatic double-layer forces. E.g. in the presence of the 

polymers, the DLVO theory is often not adequate to describe the interactions. The 

surface itself might be polymeric, or polymers may adsorb to the surface and thus 

influence the interactions. In addition, simply the presence of the polymers in solution 

may affect the forces (e.g. depletion force). A polymer adsorbed on the surface has 

tails and loops extending out into the solution. Depending on the solution properties, 

the surface forces may be either attractive or repulsive, when two polymer layers 

overlap. In a good solvent at high surface coverage, the surface force is repulsive 

(Figure 2A.), which is a common case in this study. The reason for osmotic repulsion 

is the loss of the entropy due to reconformation of polymer chains and the loss of 
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enthalpy due to reduced solvent-polymer contacts, when polymer layers are 

overlapping. This repulsion is called steric repulsion. On the other hand, the surface 

force is attractive in a poor solvent due to the enthalpy gain, when polymer-solvent 

contacts are replaced by polymer-polymer contacts (Figure 2A.). However, steric 

repulsion is also present at short separation. 

 

The simplest cases of steric repulsion are rather well described. The steric force 

depends on adsorption or grafting density, surface affinity, polymer structure, the 

structure of the polymer layer and solvency condition. The steric force can be 

calculated based on lattice mean field theory or scaling theory (Dolan and Edwards 

1974; de Gennes 1979, 1987 and 1982; Milner et al. 1988; Fleer et al. 1993). Scaling 

theory has been further developed involving charged end-grafted polymers by Pincus 

(1991). It was concluded that the polyelectrolyte layer diminishes the effect of Debye 

screening due to the polymer elasticity. The model of a three force regime was 

presented. Interactions are mostly electrostatic before the overlap of polymer layers. 

When the layers are overlapping, two effects contribute - the steric effect from the 

entropy loss of polymer and compressing of the polymer charges. Polymer brushes 

having a fixed and well-defined layer structure are ideal cases. In the case of an 

adsorbed polymer, when the structure is more random and the polymer is not 

anchored to the surface, two force regimes of steric repulsion can be observed 

(Sonntag et al. 1982). Weaker repulsion at larger separations is due to the overlap of 

the tails, and stronger repulsion at smaller separations when also the loops are 

overlapping. However, these cases are still rather limited regarding the systems in this 

thesis. Here, the polymers were charged, random co-polymers and freely adsorbing; 

also, the addition of a second component in the system complicated the situation 

further. In two component systems, the system is often kinetically trapped in the non-

equilibrium state (Decher and Schlenoff 2003). Furthermore, adsorbed layers were not 

in thermodynamic equilibrium during the approach of surfaces, when polymer layers 

were overlapping because of the limited time. 
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Figure 2. Interaction forces between polymer-coated surfaces. Graph A. shows the 

interaction between polymer-coated surfaces with high surface coverage in a good 

solvent (solid line) and in a poor solvent (dashed line). In graph B. the corresponding 

situation is shown for polymer-coated surfaces with low surface coverage. The scales 

are arbitrary. (According to Israelachvili, 1992; Hiemenz and Rajagopalan, 1997.) 

Image by courtesy of Arja Paananen (2007). 

 

At low surface coverage of polymer, an attractive force called bridging is possible 

(Figure 2B.). In this case, the polymer can attach (adsorb) to both surfaces forming a 

bridge between them (La Mer and Healy 1963; Almog and Klein 1985; Ji et al. 1990). 

The mechanism behind the attraction is that the system gains enthalpy from the 

decrease of polymer-solution contact. After the bridge formation, the polymer 

experiences an entropy gain at first, when the surfaces come closer. If the polymer is 

oppositely charged compared to the surface, bridging can occur when part of 

polyelectrolyte crosses the electrostatic double-layer (Åkesson et al. 1989; Miklavic et 

al. 1990). When the surfaces are separating, bridging can keep surfaces together due 

to energetic binding. Bridging adhesion is relatively long ranged (Rand et al. 1979; 

Biggs 1995). 

 

A. B. 
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When the polymer is charged, double-layer forces can also affect the interactions. 

This type of force is often referred to as electrosteric force, which is a more specified 

description of steric force (Poptoshev and Claesson 2002). However, it is not always 

unambiguous to distinguish steric and electrosteric force, and thus in this thesis steric 

force is used to describe forces also in the case, when there might be an electrostatic 

contribution.  

 

Another subtype of steric force is hydration-steric force (Israelachvili 1992; Rutland 

and Christenson 1990). This force includes the effect of bound water in polymer layer. 

Because some of the systems in this thesis are water-swollen, repulsive hydration 

forces may also contribute to the force profile. While these forces are usually very 

short-ranged, the situation is slightly different when water molecules are bound to 

polymer structure. Here, hydration forces may be present between protruding chains 

as well as within the swollen gel and hence they may affect the force curve also at 

longer distances. However, these forces without doubt can not be separated from the 

steric effects based on our results.  

 

The above mentioned theories have been equilibrium theories, but equilibrium is most 

likely not achieved during force measurements in polymeric systems due to long-

lasting relaxation procedures of polymers layers, when surface are approaching each 

other. First, the solvent has to flow out through the polymer layer, second, the 

polymer layer must reorder as they become compressed, third, new binding sites and 

bridges have to be formed, and fourth, a certain fraction of polymer molecules may 

enter or leave the gap.  Entanglement of polymer molecules slow down these 

processes substantially and it can take days to reach true equilibrium. In the case of an 

adsorbed polymer, where the structure is more random and the polymer is not 

anchored to the surface, the measured surface forces depend on the rate of approach 

and hysteresis is often observed (Klein and Luckham 1984; Luckham and Klein 

1990).  

 

2.1.3 Hydrodynamic forces and other water induced forces 

 

Oscillatory structural forces and solvation forces, or hydration forces in the case of 

water molecules, due to step-like removal of trapped solvent or polymer molecules are 
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usually not observed in cellulosic systems due to a roughness and porosity of the 

surface and due to steric forces observed at the proximity of the surface. The 

oscillatory structure of force is evened out. The remaining contribution may be seen 

as a repulsive hydration force or an attractive hydrophobic force (Marcelja and Radic 

1976; Marcelja et al. 1977; Van Olphen 1977; Stanley and Teixeira 1980; Jönsson 

1981; Pashley 1982; Horn et al. 1989; Ducker et al. 1992). This is caused by the 

ordered structure of water molecules at the surface and the affinity difference between 

surface-water and water-water molecule contacts. The repulsive hydration force 

decays exponentially and ranges only a few nanometers. It is regulated by ion 

exchange. The effect of hydration force may be augmented by the polymer layer 

leading to stronger steric repulsion.  

 

The studied systems are often dynamic systems. This introduces another solvent 

induced force. When water drains from the gap between two approaching surfaces, a 

hydrodynamic force is produced resulting from viscous dissipation (Chan and Horn 

1985; Claesson et al. 2001; Butt 2005). The hydrodynamic force depends on viscosity 

of solution and velocity of approaching surfaces. An adsorbed polymer layer can 

increase the viscosity of the solution near the surface, and thus the hydrodynamic 

effect can increase near the contact (Fredrickson and Pincus 1991).   

 

2.1.4 Observations in cellulosic systems 

 

Cellulose surfaces are relevant e.g. for papermaking because cellulose is one of the 

main materials in wood fiber. Therefore, the interactions between cellulose surfaces 

have gained an interest in literature. The features of these interactions are briefly 

described here. The surface forces between pure cellulose surfaces are repulsive. Two 

force regions, steric and electrostatic, are usually observed for cellulose II surfaces 

(Rutland et al. 1997; Carambassis and Rutland 1999; Poptoshev et al. 2000a and 

2000b; Zauscher and Klingenberg 2000; Notley et al. 2004; Paananen et al. 2004; 

Notley and Wågberg 2005; Stiernstedt et al. 2006a and 2006b). Cellulose has a low 

negative charge. The range of electrostatic repulsion decreases with increasing ionic 

strength as predicted in DLVO theory. The range of the steric force for cellulose 

depends on the cellulose used in the experiments, but the range is only a few tens of 

nanometers with the most surfaces used. The crystallinity of cellulose affects the 
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nature of interactions (Eriksson 2006; Stiernstedt et al. 2006b). For amorphous 

cellulose surfaces, mainly steric forces have been observed (Neuman et al. 1993; 

Holmberg et al. 1997a; Österberg and Claesson 2000; Notley et al. 2004 and 2006; 

Notley and Wågberg 2005; Eriksson 2006). Increasing pH increases the repulsion 

between cellulose surfaces (Carambassis and Rutland 1999; Poptoshev et al. 2000a; 

Österberg and Claesson 2000; Notley et al. 2004; Notley and Wågberg 2005; Eriksson 

2006). This is caused by the dissociation of carboxyl groups in cellulose, hence 

surface charge increases with pH. Also steric repulsion increases due to the more 

extended form of charged cellulose tails and due to swelling. Generally, the pull-off 

force between pure cellulose surfaces is quite low in mild salt solution. 

 

When polyelectrolytes are adsorbed on cellulose surfaces, first, the electrostatic 

repulsion between cellulose surfaces decreases (Holmberg et al. 1997b; Poptoshev et 

al. 2000b). Close to the charge neutralization point (cnp), attractive forces like van der 

Waals forces or patch-wise attraction are typically dominating. Further adsorption 

leads to charge reversal and thus electrostatic repulsion increases again. If the charge 

density of polyelectrolyte is decreased, the polyelectrolyte adsorbs in a looser 

conformation containing more loops and tails. These can introduce a repulsive steric 

contribution to interactions even at large distances. The range of steric interaction can 

be several hundred nanometers (Zauscher and Klingenberg 2000; Poptoshev and 

Claesson 2002). Close to charge neutralization, bridging attraction can be seen. This 

attraction is usually lower, but it ranges further than with high charged 

polyelectrolytes (Poptoshev 2001) because of the lower affinity of the low charged 

polyelectrolyte to the surface. On separation, pull-off forces are highest when surfaces 

are partly covered, i.e. close to cnp (Poptoshev et al. 2000b; Zauscher and 

Klingenberg 2000; Poptoshev and Claesson 2002). When more polyelectrolyte 

adsorbs, the pull-off force decreases. 

 

2.2 Colloidal stability in papermaking 
 

Colloidal stability regarding papermaking is only briefly described here. For a more 

thorough discussion on the subject, books by Stenius (2000) and Laine (2007) and 

review articles by Lindström (1989), Swerin and Ödberg (1997), Norell et al. (1999), 
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and Hubbe and Rojas (2008) are recommended. Here, we concentrate on flocculation 

and retention of fines. 

 

2.2.1 General aspects of stability  

 

The papermaking stock is a heterogeneous mixture of substances originating from the 

wood as well as additives and electrolytes. Some of them are in the size range from 

nanometers to millimeters. Hence, papermaking system is often considered to be a 

colloidal system. In the wet end of a paper machine, different additives adsorb on 

particles, i.e. cellulosic fibers, fines and fillers, and thus they affect surface forces 

between these particles, and further the stability of the system. The most important 

factors in adsorption and surface forces are surface properties of particles, properties 

of additives, solution properties and hydrodynamic conditions. Prediction of the 

stability is complex due to the amount of factors affecting to the system. 

 

On high speed machines, behavior of the system is a balance between colloidal 

interactions and hydrodynamic forces. The collision of particles is limited by the 

hydrodynamic forces. Two different size particles can not collide without attractive 

force (or Brownian motion) ranging over the limiting trajectory (van de Ven and 

Mason 1981; Stenius 2000). The collision rate is determined by shear forces and on 

the rate of diffusion (Stenius 2000), and affects the kinetics of the flocculation (Norell 

et al. 1999). 

 

Repulsive forces cause stabilization, whereas flocculation is due to attractive forces. 

Thereby, the type of stabilization or destabilization can be grouped according to 

causative surface interactions. System can be electrostatically stabilized, in which 

case it is possible to destabilize (or flocculate) the system by adding salt, as predicted 

by DLVO theory. Polymers can be used both for stabilization and destabilization. 

Stability in this case is a matter of dosage (Stenius 2000). If polymers are used to 

stabilize system, it is referred to as a steric stabilization. Polymers can also flocculate 

system, if only low amount of the polymer is added. Flocculation can be due to 

different mechanisms, which are discussed more detailed in following chapters.  
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Fibers contain mostly cellulose and the surface of fiber is slightly anionic. The surface 

of fiber is laminated and fibrillated along the process (Laine 2007; Hubbe and Rojas 

2008). Hence, the surface of fibers, and also the surface of fines, behaves like a 

polyelectrolyte gel in water. Anionic fiber surface swells due to uneven ion 

distribution between outer and inner phase due to Donnan effect (Donnan 1912; 

Procter and Wilson 1916). Thus, factors like pH, ionic strength and valence of ions 

affect the swelling of the fiber surface. When adding polymers into solution, they mix 

with the microfibrillar surface structure of the fiber, which further complicates the 

situation.  

 

Water-soluble cationic polymers, i.e. polyelectrolytes, are used as retention chemicals, 

but also for draining, fixing and increasing paper strength. They adsorb on the 

negatively charged surface of fibers and fines, and thus they change the surface forces 

between these particles. Adsorption is mainly electrostatically driven. Adsorption is 

depending on the properties of polymer (molecular weight, charge density, cross-

linking, structural restrictions, branching), solution conditions and the surface 

properties of the particles (surface area, surface charge, surface chemical composition 

and porosity). Depending on these factors, polymer may adsorb in different 

conformations (Fleer et al. 1993; Wågberg 2000; Saarinen 2008). High charged 

polyelectrolytes tend to adsorb in a flat conformation while low charged 

polyelectrolytes adsorbs in a loose conformation forming a thick layer containing a lot 

of loops and tails. Rather high molecular weight polymers are usually used because of 

the surface structure of fibre and requirement of the process (hydrodynamic forces).  

 

The main rationale for using cationic polymeric retention and drainage aids is that 

they are thought to bind anionic fine material through charge neutralization and 

bridging onto the long anionic fibers already in the stock suspension before the fiber 

mat is formed (Forsberg and Ström et al. 1994; Scott 1996; Norell et al. 1999). To 

ensure higher retention of fines and fillers with effective dewatering, without a loss of 

even formation of fiber web due to fiber flocking, and without of a loss of paper 

quality, the basic mechanism of flocculation needs to be understood in depth. 
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2.2.2 Single polymer systems 

 

Charge neutralization and patch-wise flocculation are closely related and are hard to 

distinguish from one another. The charge neutralization mechanism is based on 

attractive van der Waals forces. When the surface charge of the particles has been 

neutralized by changing pH or by adding an oppositely charged polymer in solution, 

or when the range of electrostatic repulsion has been diminished by adding a high 

amount of salt, attractive van der Waals forces dominate the interactions and the 

particles flocculate. This is referred to as charge neutralization flocculation. On the 

other hand, the patch-wise mechanism originates from the electrostatic attraction 

between oppositely charged areas in two particles, also comparable to hetero-

flocculation. The mechanism of the patch-wise flocculation is based on 

polyelectrolyte addition (Gregory 1973; Borkovec and Papastavrou 2008). An 

oppositely charged polymer adsorbs on the surface of the particle, partly covers it and, 

thus, forms charged patches. These charge patches attract the oppositely charged 

regions of another particle (Miklavic et al. 1994). This leads to flocculation and is 

referred to as patch-wise flocculation. Polyelectrolytes used in these cases are 

typically high charged polyelectrolytes. The flocs formed by these mechanisms are 

dense and break easily under shear (Lindström 1989).  

 

Another mechanism of single polymer induced flocculation is polymer bridging (see 

chapter 2.1.2). In bridging, the polymer adsorbs in an extended conformation with 

many loops and tails. These loops and tails “adsorb” to another surface forming 

bridges. Also, a free polymer can form a bridge, if attracted to two bare surfaces 

simultaneously. Bridging is common for high molecular weight and low charged 

polyelectrolytes because they tend to adsorb in extended conformations on surfaces 

(Wågberg and Lindström 1987a; Lindström 1989; Swerin and Ödberg 1997). The 

flocs formed by bridging are looser than flocs formed by charge neutralization. The 

flocs formed by bridging resists shear well (Dickinson and Eriksson 1991).  

 

Many retention aids are based on bridging flocculation mechanism, because large 

extension of polymer is needed in order to achieve a good retention under 

hydrodynamic conditions. This is best achieved with high molecular weight, low 
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charged polyelectrolytes, whereas high charged polyelectrolytes are often used for 

fixing, i.e. capturing disturbing substances (Laine 2007). 

 

Single polymer mechanisms are very sensitive to polymer dosage and overdosing of 

polyelectrolyte leads to stabilization (Stenius 2000). In charge neutralization or patch-

wise flocculation, the optimum dosage is at the charge neutralization point, whereas 

the dosage for flocculation is optimum in the bridging mechanism when half of the 

surface is covered with polymer. The effect of the polyelectrolyte dosage has been 

seen in flocculation experiments of a fiber suspension with and without fines 

(Wågberg and Lindström 1987; Lindström 1989; Swerin et al. 1996; Solberg 2003; 

Solberg and Wågberg 2003). Flocculation passed through a maximum when the 

dosage was increased and the charge of suspension was neutralized.  

 

2.2.3 Dual polymer systems 

 

Dual polymer systems can be conventionally formed by adding oppositely charged 

polyelectrolytes in sequences to increase effectiveness of high speed papermaking. 

For expense reason, cationic polyelectrolyte with high charge and low molecular 

weight is added first causing charge reversal. After a shear stage the anionic 

polyelectrolyte with low charge and high molecular weight acts as a bridging 

flocculant between the cationic floc fragments forms. In this way, polyelectrolytes 

form bilayer structures, which resembles the polyelectrolyte multilayer (PEM). In 

some cases, two cationic polyelectrolytes are used together in similar way. The layer 

structure can be tuned by changing polyelectrolyte properties or by an adding method. 

After multiple collisions and the influence of the shear forces, one can assume that the 

multilayer structure is partly mixed towards the less ordered structure of a complex. 

 

If flocculation is too effective, the paper quality may suffer due to fiber flocculation. 

The use of polyelectrolyte complexes (PEC) is a possible solution to this problem. 

Even the PECs are not in commercial use yet, they have been found to improve the 

flocculation and to broaden the optimum concentration range compared to single 

polyelectrolyte systems (Petzold et al. 1996 and 1998; Buchhammer et al. 1999; Lu et 

al. 2002; Nyström et al. 2003). PECs has been reported to form more stable flocs than 

single polymer systems (Petzold et al. 1998; Nyström et al. 2003). In addition, 
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positive effects of PECs have been reported on paper strength (Gärdlund et al. 2003 

and 2005; Torgnysdotter and Wågberg 2006; Vainio et al. 2006; Ankerfors 2008) and 

on retention (Petzold et al. 1996; Nyström and Rosenholm 2005) without harming 

sheet formation (Bessonoff et al. 2006). Also, PEMs have been reported to increase 

paper strength, when compared to single polyelectrolyte systems (Wågberg et al. 

2002; Eriksson et al. 2005; Lingström 2006). Dual polyelectrolyte systems are able to 

increase the polymer amount in the fiber web making the fiber surface smoother, and 

thus increasing the bonded area between fibers (Lingström 2006). This, however, only 

partly explains why the paper strength is increased. In addition, PECs have been 

reported to yield better retention and strength properties than the sequential addition 

of polymer (Nyström and Rosenholm 2005; Lingström 2006;Ankerfors 2008). Only 

by increasing the layer number of PEM, i.e. the amount of the polymer, could similar 

levels of strength be achieved (Ankerfors 2008). 

 

2.2.4 Microparticle-polyelectrolyte systems 

 

A microparticle system deviates only slightly from the dual polymer system. In the 

microparticle system, one of the polyelectrolytes is replaced by microparticles, 

usually negatively charged, such as colloidal silica, alumina, or montmorillonite. 

Polyelectrolyte and microparticle is added in sequence. The role of the microparticles 

is to provide links between adsorbed polymer layers (Asselman et al. 2000). 

Microparticles are proposed to form unbranched, short chains called pearl necklace 

structure (Cabane and Duplessix 1982). The layer structures obtained using 

microparticles are different compared to dual polymer system, but similar benefits are 

achieved. 

 

A clearly positive influence on flocculation has been reported when microparticles are 

added in suspension, compared to the situation where only C-PAM is added (Swerin 

and Ödeberg 1996). It has been found that the charge density of microparticles 

determines the addition level necessary to attain the maximum retention (higher 

charge density gives lower addition level) (Andersson and Lindgren 1996). The 

microparticle systems differ from other dual retention systems in their ability to 

reflocculate after floc breakage (Andersson and Lindgren 1996; Swerin and Ödeberg 

1996). The dual polymer system gives the largest degree of flocculation and the 
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largest average floc size, whereas the microparticle system give a much smaller floc 

size at the same flocculation index (Wågberg and Lindström 1987b). The use of the 

microparticle system enhances also dewatering because microparticles bind less water 

than polyelectrolytes (Swerin et al. 1992; Wågberg et al. 1996). 
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3 EXPERIMENTAL 
 

The materials and methods used in the experiments included in this thesis are 

described in detail in the attached Papers I-V. Thus, this chapter gives a more general 

overview of the experimental design and provides some background on the methods 

used. The methods section focuses on the main instrument used, the atomic force 

microscope (AFM). 

 

3.1 Materials 
 

3.1.1 Cellulose surfaces 

 

In AFM force measurements, precipitated spheres of cellulose II regenerated via the 

viscose process (Kanebo Co., Japan) were used as colloidal probes in all surface force 

measurements, and also as a lower surface in Papers I and II. They were 5–35% 

crystalline and slightly negatively charged (Carambassis and Rutland 1999). Their 

radius was 15–30 μm, as determined in situ in electrolyte solution by using an optical 

microscope and a digital camera. 

 

Low charge nanofibrillar cellulose (NFC) was used as a substrate in the quartz crystal 

microbalance with dissipation monitoring (QCM-D) and atomic force microscope 

(AFM) measurements in Papers III and IV. In order to remove larger aggregates prior 

to film formation, the 2% nanofibril gel (Pääkkö et al. 2007) was first diluted to 1.67 

g/l and disintegrated with an ultrasonic microtip, a Branson Sonifier S-450 D 

(Danbury, USA).The microfibril dispersion was then centrifuged. The charge of the 

low charge nanofibrils were 44.2 μeq/g (Pääkkö et al. 2007). Then the cellulose films 

were prepared by spin-coating the clear supernatant fluid with the nanofibrillar 

dispersion onto silica coated QCM-D crystals (Q-Sense AB, Sweden) or onto smooth 

silica wafers (Oktometic Oy, Finland). 3-aminopropyltrimethoxysilane (APTS) was 

used as an anchoring substance. The spin-coated surfaces were rinsed with water, 

dried gently with nitrogen gas, and heat-treated before use. The thickness of the films 

was about 11 nm (Ahola 2008) and the crystallinity of the surface (of cellulose I) was 

70 % (Aulin et al. 2009). 
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3.1.2 Additives 

 

Polyelectrolytes were used to build different molecular architectures on surfaces. The 

monomer unit of poly(diallyldimethylammonium chloride)s (PDADMAC) and the 

building blocks of the cationic and anionic polyacrylamides (C-PAM and A-PAM) 

copolymers are presented in Figure 3. C-PAMs and A-PAMs (Kemira Chemicals Oy, 

Finland) with different molecular weights and different charge densities and 

PDADMAC (Allied Colloids Ltd., England) were used in the surface force 

measurements. Their properties are presented in the Table 1. For surface force 

measurements, polyelectrolytes were ultra filtrated with different cut-offs to narrow 

the molecular weight (Mw) distribution. In Paper II, the polyelectrolyte complexes 

were formed using C-PAM and A-PAM by mixing either high charged and low 

molecular weight polymers or low charged and high molecular weight polymers in a 

mass ratio of 9:1 (C-PAM:A-PAM), which have shown promising results in 

adsorption studies (Saarinen et al. 2008). Furthermore, the solution properties of the 

polyelectrolyte complexes and the effect of PECs on dewatering were studied in Paper 

V. The properties of the polymers used in these studies are presented more detail in 

Paper V. 

 

Table 1. The properties of polyelectrolytes and polyelectrolyte complexes (PEC) 

appearing in force measurements. Mw = molecular weight, CD = charge density. 

  

Mw  

106 g/mol 

CD 

 meq/g Referred as 

PDADMAC 0.39 6.1 Low Mw, high CD 

C-PAM 1.40 1.8 High Mw, low CD 

C-PAM 1.40 1.80 
PEC 1 

A-PAM 2.40 1.80 
 High Mw, low CD 

C-PAM 0.40 3.10 
PEC 2 

A-PAM 0.22 6.30 
Low Mw, high CD 
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Figure 3. The molecular structures of monomers forming polyelectrolytes. Monomer 

A forms PDADMAC and the uncharged monomer B forms a copolymer of C-PAM 

with cationic monomers C or a copolymer of A-PAM with anionic monomers D. 

 

In addition, inorganic silica nanoparticles (SNP) and high charged cellulose 

nanofibrils were used to form complexes and multilayers with low charged and high 

molecular weight C-PAM in Paper IV. The SNP had a surface area of 130 m2/g and a 

particle size of 25 nm (Bindzil 40/130, Eka Chemicals, Sweden). They were 

negatively charged with a charge density of 150 μeq/g as determined by 

polyelectrolyte titration. They were used as received from the supplier. Cellulose 

nanofibrils with high charge density, received from STFI-packforsk, Stockholm, 

Sweden, were prepared by performing a carboxymethylation pretreatment for the pulp 

(Wågberg et al. 2008). The dispersion was prepared similarly to the dispersion of low 

charged cellulose nanofibrils used for cellulose surface preparation. The charge of the 

high charged nanofibrils was 515 μeg/g (Wågberg et al. 2008). 
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Measurements were performed in fresh polymer solutions, varying the concentration 

of either salt or polyelectrolyte. The solutions were prepared using ultra pure water 

(Elga UHQ system, UK). NaHCO3 was used to buffer the pH. The electrolyte 

concentration was adjusted using analytical grade NaCl. Surfaces were allowed to 

equilibrate in an electrolyte solution overnight before the measurements. When 

changing the solution, the system was allowed to stabilize for 1 h. 

 

3.1.3 Pulp 

 

The composition of stock used in dewatering measurements (Paper V) was 50 % 

bleached thermomechanical pulp (TMP) and 50 % chemical pulp. The TMP was from 

UPM-Kymmene Oy (Kaipola, Finland). ECF bleached kraft pulp made mainly from 

spruce was from Metsä-Sellu (Äänekoski, Finland). The bleached mechanical pulp 

was hot-disintegrated to a freeness of 40 CSF according to SCAN-M 10:77. The 

chemical pulp was beaten to SR 22 in a Valley Beater according to SCAN-C 25:76, 

and washed into sodium form according to the procedure described by Swerin et al. 

(1990).  

 

3.2 Methods 
 

3.2.1 AFM imaging 

 

To characterize the coverage, morphology and roughness of the structures formed, 

AFM imaging was performed using a Nanoscope IIIa multimode scanning probe 

microscope (Digital Instruments Inc., Santa Barbara, USA). The atomic force 

microscope (AFM) was invented in 1986 and since then it has increased its popularity 

(Binnig et al. 1986; Butt et al. 2007). The basic principle of AFM is shown in Figure 

4. The sample interacts with a sharp tip attached to the free end of the cantilever. The 

radius of curvature of the tip is usually 10 nm. The changes of the interactions due to 

surface features leads to a bending of the cantilever in contact mode or a change in 

amplitude (A) of the oscillating cantilever in tapping mode. The motion of the 

cantilever is detected in a photodetector as a shift of the laser reflecting from the back 

of the cantilever. The scanner corrects the changes in the bending of the cantilever or 
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the change in the amplitude, in order to keep the cantilever state constant. It also 

moves the sample during scanning. This produces a topographical image from the 

sample (height image) recorded from the scanner movement. Tapping mode is often 

useful for soft samples because it reduces the tip-sample contact time and can also 

collect phase data (Zhong et al. 1993). Phase (phase-shift) data is an extension to 

tapping mode and is recorded simultaneously with height data. It is the phase 

difference between the oscillation fed to cantilever and the oscillation detected from 

cantilever. The tapping force transmitted to surface is determined by the free 

amplitude (A0) and the set-point amplitude (Asp) (Bar et al. 1997; Magonov et al. 

1997; Cleveland et al. 1998; Whangbo et al. 1998). The damping ratio (Asp/A0) 

specifies what properties are emphasized in the phase image. The phase image is 

proposed to be sensitive to stiffness at moderate tapping (Asp/A0 = 0.4-0.7) and to 

capillary forces and adhesion between the tip and the sample at light tapping (Asp/A0 = 

0.8-0.9), indicating the chemistry of the sample. At hard tapping (Asp/A0 < 0.3), the 

phase image is reversed compared to moderate tapping and indicates the domination 

of the tip-sample contact area. In the first place, the free amplitude needs to be large 

enough, i.e. tapping force is high enough, to go through a water or contamination 

layer on the sample. In addition, the edges of surface features are highlighted in the 

phase image due to the delay in the response in AFM device.  

 

 

Figure 4. The basic principle of AFM in tapping mode. 
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The images in this thesis were scanned in tapping mode in air (i.e. samples were dried 

after force measurements and before imaging) using silicon cantilevers 

(NSC15/AIBS) delivered by MicroMasch, Estonia. The drive frequency of the 

cantilever was 310-350 kHz. No image processing except flattening was made. The 

imaging was performed at 30–40% relative humidity at 25 °C. A Scanning Probe 

Image Processor (SPIP, Image Metrology, Denmark) was used to analyze RMS 

roughness (ISO standard 4287/1) and to perform grain analysis to analyze surface 

features. When analyzing the surface features, the influence of the shape and size of 

the tip was paid attention to. In addition, scanner hysteresis, creep and drift as well as 

tip contamination are possible source of error, but these are rather easy to detect and 

to avoid. 

 

3.2.2 AFM force measurements 

 

AFM was also used to measure surface forces between cellulose surfaces using the 

colloidal probe technique in solution, represented in Figure 5 (Butt 1991; Ducker et al. 

1991). A cellulose sphere was glued to the tipless end of the AFM cantilever with a 

reported spring constant of 0.06 N/m (Veeco Instruments, USA). The surface forces 

between the colloidal probe and the surface is detected from the deflection of the 

cantilever (Δz), while scanner is moving sample toward or away from the tip. The 

deflection is converted to surface force using Hooke’s law (3.1) where the cantilever 

acting like a spring with a spring constant, k.  

 

zkF Δ=        (3.1) 

 

Repulsion, denoted as a positive force in force curves, bends the cantilever upward, 

whereas attraction, negative force, bends tip downward. Both approaching and 

retraction curves are recorded. The force observed on retraction is referred to as the 

pull-off force indicating the force needed to separate surfaces. The separation between 

surfaces is calculated from contact point, scanner movement and deflection. The 

contact point at zero separation, is the beginning of the constant compliance region, 

where the deflection is only caused by scanner movement, i.e. the probe is in contact 

with the surface. Further, the slope of the constant compliance region (the sensitivity 

parameter) is used to determine the sensitivity of the system to convert the unit of the 
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deflection to nanometers. A more detailed description about the setup of surface force 

measurements and the conversion of force curves can be found elsewhere (Claesson et 

al. 1996 and 2001; Senden 2001; Butt et al. 2005; Ralston et al. 2005). 

 

 

 

Figure 5. A schematic drawing of the force measurement setup. Colloidal probe 

method of AFM. 

 

In practice, the raw data (cantilever deflection vs. piezo movement) were converted 

into force curves (force vs. separation) using the SPIP. The curves were further 

handled within the Origin software package (OriginLab Co., USA). The spring 

constants of the cantilevers were determined by the thermal noise method, and the 

result was controlled by the reference spring method (Hutter and Bechhöfer 1993; 

Torii et al. 1996; Tortonese and Kirk 1997). To facilitate a comparison to other 

studies, the forces in this study were normalized to the radii of the interacting 

cellulose spheres. The results were fitted to the interactions predicted by the DLVO 

theory using the linearized Poisson-Boltzmann equation for constant charge and 

constant potential, which are valid at distances larger than the Debye length and 

provided the surface potential of cellulose surfaces is low (< 25 mV) (Chapter 2.1.1). 

In the van der Waals part of the DLVO theory, a Hamaker constant of 0.8*10-20 J was 

used for cellulose in water (Bergström et al. 1999). For fitting, the plane of charge 
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was fixed to zero separation. The surface potential was a variable, whereas Debye 

length was a constant depending on the ionic strength of the solution. One should 

remember that the quantification of the surface potentials were also affected by the 

possible experimental errors in the spring constant, sphere radius, and the apparent 

zero separation.  

 

The hydrodynamic forces were not included in the predictions, but measures were 

taken to minimize their influence on the experimental results. Thus, the approach 

velocity of the cellulose beads to each other was kept fairly low. Typical approach 

velocities were between 100 and 500 nm/s. We did not observe any effect of velocity 

on the interactions at the two approach velocities used, and 200 nm/s has previously 

been reported to be sufficiently low for hydrodynamic forces between cellulose 

surfaces to be negligible (Stiernstedt et al. 2006a). However, nanofibrillar cellulose 

and polymers tended to form gel-like layer, and thus we can not rule out a dynamic 

effect due to an increase in viscosity near the surface, but no such effect was 

observed. 

 

A clear constant compliance region could not be reached for the all systems due to 

compressibility of the layers. This may lead to erroneous result, if it is not taken into 

account (Rutland et al. 2004). In these cases, raw data (deflection versus piezo 

movement) was transferred to force curves by using the sensitivity value obtained for 

cellulose-cellulose contact. For cellulose–cellulose contact, a constant compliance 

regime was attained due to the low spring constant of the cantilevers used in the 

experiments. Compressibility (load/indentation, μN/m) of such surfaces was also 

analyzed from the force curve. Owing to the same reasons, exact separation between 

cellulose surfaces was not known. Some of the polymer was always pressed and 

trapped between the surfaces, when AFM senses the surfaces to be in contact. Hence, 

the range of the surface force does not represent the layer thickness of the polymer. 

This should be borne in mind when interpreting results. However, the analysis of the 

compressibility provides a tool to estimate this effect. The concept of the surface and 

of the contact is determined relatively to compress force, and is thus comparable 

between measurements. 
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3.2.3 Other methods used 

 

Quartz crystal microbalance with dissipation monitoring (QCM-D, Q-Sense, 

Gothenburg, Sweden) measures the mass adsorbed on a quartz crystal by measuring 

the change in frequency of a quartz crystal resonator (Rodahl et al. 1995; Höök 1998). 

By measuring several frequencies (overtones) and the dissipation, i.e. the energy loss 

of the crystal movement in water solution, it becomes possible to determine whether 

the adsorbed film is rigid or water-rich (soft). QCM-D was used for studying the 

swelling of the NFC surfaces in Paper III and the adsorption of C-PAM, SNP and 

NFC in Paper IV. The QCM-D data comprised valuable information for surface force 

measurements by providing more information about surface structure and the 

development of adsorption.  

 

Solution properties of polyelectrolyte complexes and the complexes of the 

nanoparticles and polyelectrolyte were in supporting role by giving information of the 

structure of the complexes in Papers II, IV and V. The average size of the complexes 

was measured by the means of dynamic light scattering using a N4 and N5 Submicron 

Particle Size Analyzer (Beckman Coulter Inc., USA). Electrophoretic mobility was 

measured by Laser-Doppler electrophoresis (Coulter Delsa 440SX, Coulter 

Electronics Ltd., UK) in order to determine the charge of the complexes. 

 

A dynamic drainage analyzer (DDA) was used for recording the dewatering time in 

Paper V. The standard deviation of the method is about 9 %. Turbidity of the filtrate 

after dewatering was measured with an Analite Nephelometer and was taken as an 

indicator of fines retention. The remaining charge in the supernatant fluid was 

determined by polyelectrolyte titration (Koljonen et al. 2004). 
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4 RESULTS AND DISCUSSION 
 

This chapter summarises the most important findings of this work. More detailed 

results can be found in the attached Papers I-V.  

 

4.1 Surface forces between different cellulose surfaces without added 

polyelectrolyte 
 

The surface type is highly relevant in force measurements. It affects surface forces as 

well as adsorption. In this study, different cellulose surfaces have been used. In 

surface force measurements, the colloidal probe was a mostly amorphous cellulose 

bead having crystalline cellulose II regions. The substrate, however, varied between 

Papers I-IV. In Paper I and II, the cellulose sphere was acting also as a substrate, 

whereas a new native cellulose substrate was developed in Paper III and it was then 

used in Paper IV. The new substrate contained both amorphous and crystalline 

cellulose I regions and was prepared by spin-coating aqueous cellulose nanofibril 

dispersions onto silica. The crystallinity of the surface was approximately 70 % 

(Aulin et al. 2009). These films differ from previous model cellulose films both in 

crystallinity, chemical composition (including the residual portion of hemicelluloses) 

and fibrillar structure. Since both their morphology as well as crystal form resembled 

the structure of native cellulose, they serve as excellent models for the pulp fiber 

surface. The morphology of the spin-coated film is presented in Figure 6. Low 

charged fibrils formed a fully covered but porous network structure. A highly charged 

nanofibrillar cellulose surface was also developed from carboxymethylated cellulose 

in Paper III, but here we will concentrate on the low charged nanofibrillar cellulose as 

they are in native cellulose fiber. More throughout discussion about cellulose model 

surfaces and interactions between cellulose surfaces can be found in publications by 

Kontturi et al. (2006) and Ahola (2008).  

 



 

32 

 
Figure 6. AFM height image (a) and phase image (b) of NFC. Size of images is 5x5 

μm and height scales are a. 40 nm and b. 100°. RMS roughness for surface was 3.5 

nm. (Paper III) 

 

The effect of salt and pH on the surface forces is well known in cellulosic systems, 

and the effect of salt is treated only cursorily here (more details in Paper III). The 

surface forces on approach between a cellulose sphere and a low charged nanofibrillar 

cellulose film were repulsive in all measured electrolyte solutions (Figure 7). At low 

electrolyte concentration, the forces at long distances were rather well explained by 

DLVO theory. This implies that the origin of the interactions was mainly double-layer 

repulsion due to accumulation of counter-ions close to the charges on cellulose. The 

obtained surface potentials indicated a low surface charge, which has been observed 

in Paper I and II and reported earlier for cellulose spheres (e.g. Rutland et al. 1997; 

Carambassis and Rutland 1999). However, increasing the electrolyte concentration 

did not result in a decrease in decay length of the forces as would be expected for 

purely electrostatic interactions. Hence, steric forces also affected the interactions 

between the cellulose surfaces, although these were dominated by the double-layer 

repulsion at low electrolyte concentration. The range of steric forces is usually very 

short between two spheres of the kind we used (Paper I and II, Chapter 2.1.4). Thus, it 

can be concluded that the observed electrosteric forces were due to the cellulose 

nanofibrils. In addition, the crystallinity of cellulose as well as the roughness of the 

surface affects the nature of interactions (Notley et al. 2004 and 2006; Stiernstedt et 

al. 2006b). The NFC surface, in this thesis, was highly crystalline and rather smooth. 

Because the nanofibril films are water-swollen, repulsive hydration forces may also 

contribute to the force profile. Here, hydration forces may be present between 
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protruding chains as well as within the swollen gel, and hence may affect the force 

curve also at longer distances. However, these forces can not be separated from the 

steric effects. Furthermore, the swelling of the surface shatters the plane of charge, 

which affects the accuracy of the fittings, and hence the observed surface potentials. 

Overall, the surface forces agreed well with changes in swelling measured with QCM-

D. The swelling increased the contribution of steric repulsion. 
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Figure 7. The effect of electrolyte concentration on surfaces forces between a 

cellulose sphere and a nanofibrillar cellulose surface with low charge. The lines are 

the best fits according to DLVO theory assuming constant charge (solid line) and 

constant potential (dotted line) in the respective electrolyte concentrations. The 

surface potentials for the cellulose surfaces giving the best fits were -9 mV for 1 mM 

NaHCO3 and -15 mV for 1 mM NaHCO3 + 10 mM NaCl. (Paper III) 

 

4.2 The effect of a single cationic polyelectrolyte on surface forces 
 

The effect of polyelectrolyte addition was studied using PDADMAC and C-PAMs 

with different charge densities and different molecular weights (Paper I). It was 

observed that the repulsion between the cellulose spheres decreased initially when a 

small amount of cationic polyelectrolyte was added. Near the charge neutralization 

point (cnp), an attractive contribution to the surface forces was observed (Figure 8A). 
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Further addition of polyelectrolyte led to charge reversal. When the concentration of 

polyelectrolyte was high, surface forces at large distances were well explained by the 

DLVO theory in the case of highly charged, low molecular weight polyelectrolyte, 

implying that the origin of repulsive interactions at large distances was mainly 

electrostatic; however, when a low charged, high molecular weight polyelectrolyte 

was added to the solution, a mainly electrostatic behavior turned into steric repulsion 

at high polymer concentrations. The range of steric repulsion was about 300-400 nm, 

indicating a thick and loose layer of polyelectrolyte, which is typical for low CD, high 

Mw polyelectrolytes. This steric repulsion is still affected by salt concentration 

because charges in the polymer layer are affected by changes in electrostatic double-

layer (Paper I), and thus the repulsive force can be considered electrosteric repulsion 

(Chapter 2.1.2). The observed range was consistent with the results obtained by other 

research groups on low charged polyelectrolytes (Zauscher and Klingenberg 2000; 

Poptoshev and Claesson 2002) and the range is reasonable when considering the 

hydrodynamic radius of similar C-PAMs in solution (420 nm for degree of 

substitution 20% and Mw 1.4 million, Mabire et al. 1984). 

 

The forces on separation were also depended on the properties of polyelectrolyte 

(Figure 8B). While a sharp minimum was found in the presence of a polyelectrolyte 

with high charge density and low molecular weight, the detachment was gradual with 

attractive forces observed at separation of hundreds of nanometers for a 

polyelectrolyte with low charge density and high molecular weight (Figure 8B). The 

pull-off force, i.e. attractive force on retraction, was at its largest near the charge 

neutralization point, where the surfaces were only partially covered and the 

polyelectrolyte was able to effectively bind the surfaces together. The pull-off force in 

C-PAM solutions was long ranged and the detachment of the surfaces was gradual. 

Similar findings have been reported by Poptoshev et al. (2000a), Zauscher and 

Klingenberg (2000) and Poptoshev and Claesson (2002), using low charged cationic 

polyelectrolyte. Joints formed via bridges can be assumed to be long ranged and 

flexible, which leads to a gradual detachment of surfaces keeping them connected at 

large separation. In contrast, a sharp minimum in pull-off force was found in the 

presence of highly charged polyelectrolyte, in agreement with the observation by 

Poptoshev et al. (2000b). The range of pull-off force, as well as the attractive 

contribution between approaching surfaces, of highly charged PE was unaffected by 
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molecular weight. This was due to the flat conformation of the adsorbed 

polyelectrolyte enabling only the formation of short bridges. In both cases, the pull-

off force was weaker at high polymer concentration and mainly due to entangled 

polymer molecules. 
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Figure 8. The effect of highly charged, low molecular weight PDADMAC (▲) and 

low charged, high molecular weight C-PAM (■) on surface forces between cellulose 

spheres presented close to the charge neutralization point (cnp) concentration and at 

high concentration. Closed symbols are for forces measured on approach (A) and 

open symbols are for pull-off force, forces measured on retraction (B). In image A, 

The points are connected for clarity close to cnp concentration. Solid lines represent 

DLVO fitting results at high concentration of polyelectrolyte. Note that the scales 

differ between images A and B. (Paper I) 
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The effect of different C-PAMs on dewatering of the pulp suspension is compared in 

Figure 9 (Paper V). In all cases, dewatering goes through a minimum as a function of 

C-PAM dosage. The fastest drainage coincides with the dosage that renders the 

residual particles in the filtrate neutral. In the presence of C-PAM, the negative fines 

are nearly neutralized, the double-layer forces are reduced and the fines start to 

flocculate due to attractive van der Waals force or due to the attractive bridging force 

as was seen in force measurements. Thus, at least under the conditions used in this 

investigation, the charge neutralisation of surface and polymer bridging seems to be 

important factors in the formation of an easily drainable sheet. The best dewatering 

was achieved using high molecular weight, low charged C-PAM. The ability to form 

longer and more flexible bridges seems to be the key factor for good dewatering. In 

addition, long ranged attractive forces due to the long bridges more easily overcome 

the repulsive hydrodynamic barrier in the presence of shear. The importance of 

bridging is emphasized when surfaces are withdrawing. This is easy to understand in 

the light of the observed pull-off forces why particles connected with long and 

flexible polyelectrolyte bridges stay together even in shear (Dickinson and Eriksson 

1991). On the other hand, at C-PAM dosages higher than the optimum dosage, the 

surface charge of fibers and fines is reversed due to the adsorption of excess polymer. 

This leads to electrostatic repulsion in the case of low Mw, high charged 

polyelectrolytes and to steric repulsion in the case of high Mw, low charged 

polyelectrolytes, which restabilizes the fine material, reduces fines retention and 

slows down dewatering. The effect of high charged C-PAM on dewatering is weaker 

than the effect of the low charged C-PAM. The high charged polymer adsorbs in a 

flatter configuration on the surface of particles, which has a negative effect on 

bridging force on separation and thus on bridging flocculation (Abson and Brooks 

1985). 
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Figure 9. The effect of different C-PAMs on dewatering time of pulp. Note that the 

properties of C-PAMs differ slightly from ones used in surface force measurements 

(see Table 1). (Paper V) 

 

Our results indicated that the main mechanism in flocculation was bridging 

irrespective of which cationic polyelectrolyte was used. Bridging is schematically 

illustrated in Figure 2B. Patchwise attraction is often presented as a parallel 

mechanism with bridging. Patchwise flocculation mechanisms can be seen as an 

intermediate of heteroflocculation and charge neutralization. It’s a matter of the size 

of the patches. However, it should be noted that the possibility to detect patchwise 

attraction in the force measurements has been criticized, because the measurement 

system used is static, not freely rotating, and surfaces are macroscopic (Poptoshev 

2001). Furthermore, no repulsive contribution was observed in the surface force 

measurement near the charge neutralization point, which should statistically be a 

consequence of the static setup of force measurements in the patch-wise mechanism. 

Patch-wise flocculation may have a minor role in some specific cases during 

flocculation, but the force holding the flocs together is due to bridging, and this is 

more important in the flocculation of the system under shear. 
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4.3 The effect of PEC on surface forces 
 

The adsorption of polyelectrolyte complexes on a negatively charged cellulose surface 

had a strong influence on the interactions between the surfaces, and the forces were 

clearly different as compared to single polymer systems (Figure 10 and Paper II). The 

interactions between the adsorbed polyelectrolyte complex layers were mainly steric 

and repulsive, even at low polymer concentrations. The comparison between two 

polyelectrolyte complexes (mixing ratio of 1:9 = A-PAM:C-PAM) showed that the 

complex formed by high molecular weight and low charged polyelectrolytes induced 

a steric force ranging farther than the steric force induced by the complex of low 

molecular weight (Mw) and high charge density (CD) polyelectrolytes. The steric 

force ranged over 1.0 μm in the 100 mg/l PEC solution formed by high Mw, low CD 

components, whereas the range was below 300 nm in the PEC solution formed by low 

Mw, high CD polymers. For comparison, the range of steric repulsion in high Mw, low 

CD C-PAM was only ca. 200 nm at 1.0 mM NaHCO3. The explanation is that high 

molecular weight, low charged polyelectrolytes form larger complexes in solution 

than low Mw, high CD polyelectrolytes (Paper V). In addition, large Mw, low CD 

PECs have been shown to form a looser and thicker layer in adsorption experiments 

(Saarinen et al. 2008). The electrolyte concentration did not affect the surface forces 

significantly in the case of the large PEC. PECs are reported to contain a large amount 

of water, even close to 90 % (Gärdlund et al. 2007; Ankerfors 2008). Hence, one may 

assume that trapped water also affects the surface forces and hence the repulsion 

could also be due to a hydration-steric force. 
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Figure 10. The effect of PEC properties on surface interaction between approaching 

cellulose surfaces at high polymer concentration and at 1.0 mM NaHCO3. Note 

logarithmic scale in both axes. (Paper II) 

 

When recording the force curves between PEC layers on withdrawal, it was observed 

that also the pull-off forces was extremely long ranged for the large PEC (Figure 11). 

The magnitude of the pull-off force was, however, rather low and the curve had three 

minima. In contrast, the shape of the pull-off force curve in the case of PEC formed 

by low Mw, high CD C-PAMs was clearly different. It was sharper and only one force 

minimum was found at much smaller separation. The shape difference in pull-off 

force curve indicated that PECs from high Mw, low CD polyelectrolytes are flexible, 

whereas molecules in PECs from by low Mw, high CD polyelectrolytes are binding 

and stiff (Gong et al. 2005). The flexibility of the larger PEC is further supported by 

adsorption measurements that showed that high Mw, low CD PEC is able to rearrange 

during the adsorption (Saarinen et al. 2008). In addition, it was observed that the PEC 

from high Mw polyelectrolytes had a larger optimum range of the maximal pull-off 

force than the PEC of low Mw components. Compared to one component C-PAM, two 

observations can be made. Although the magnitude of the pull-off force was 

approximately the same, the range of the pull-off force increased from a few hundred 

nanometers for the single component system to microns for the PEC system, 

containing only one tenth of A-PAM. Another difference was that the maximum pull-

off force was reached near the charge neutralization point for one component system 
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while the pull-off force between PEC layers was observed also at high surface 

coverage.  
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Figure 11. The effect of PEC properties on pull-off force at high polymer 

concentration. The concentration of NaHCO3 was 0.1 mM for high Mw, low CD PEC 

and 1.0 mM for low Mw, high CD PEC. (Paper II) 

 

The comparison of phase data in Figures 12 and 6 indicates that PEC formed by high 

Mw, low CD C-PAMs is almost fully covering the surface, although the structure 

beneath the PEC layer is seen through in Figure 12. This together with long ranged 

repulsion and long ranged, gradual pull-off force indicated that pull-off force is based 

on A-PAM linking rather than complex bridging at high polymer concentration. In 

complex bridging, the PEC forms bridges between two cellulose surfaces, whereas in 

A-PAM linking, the A-PAM molecules act as a link between C-PAM molecules. 

These mechanisms differ from each other most clearly in regard to the optimal surface 

coverage. A-PAM linking is possible between fully covered surfaces, whereas the 

complex bridging is favorable between partially covered surfaces. The three minima 

in the pull-off force correspond to the detaching of links between C-PAM and A-

PAM. C-PAM and A-PAM attracts electrostatically each other forming the link, and 

detaching them from proximity to each other requires work observed as the minimum 

in the pull-off force curve. In other words, when the complex layers are overlapping, 

it is favorable for A-PAM molecule to be in the proximity of the C-PAM molecule in 
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the opposite complex layer (Decher and Schlenoff 2003). A-PAM and C-PAM can 

even undergo complexation reaction forming a new temporary complex. This is 

possible only when the complex layers are loose. A potential and speculative 

mechanism for the A-PAM linking between PEC covered surfaces is proposed in 

Figure 13 (only one complex is illustrated for the sake of the clarity). The 

detachments indicate the bonding of the A-PAM molecule to the C-PAM molecule of 

the opposite complex layer in a different level of the layer. The first detachment is due 

to detachment of A-PAM from the C-PAM close to the cellulose surface. The second 

minimum is due to break off of the link between C-PAM on the side of A-PAM and 

topside A-PAM, when the complexes are slightly offset. The third detachment is 

between the end of the strands of C-PAM and A-PAM. The A-PAM linking is 

possible due to flexible nature of the complex enabling the mixing of layers and due 

to the low A-PAM content regulated by the use of complexes. However, to verify this 

model, one should investigate the complex layers more detailed. 

 

 
 

Figure 12. AFM height image (a) and phase image (b) show the layer structures of 

the adsorbed PECs formed by high molecular weight, low charged C-PAM and A-

PAM (at mass ratio of 9:1). Size of images is 5x5 μm and Z scales are a. 30 nm and b. 

100°. Samples were rinsed and dried before imaging, and imaged in air. RMS 

roughness was 2.7 nm. (Unpublished result) 
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Figure 13. A schematic drawing of A-PAM linking mechanism. Image A represents 

the approaching surfaces covered with PECs (only one complex is shown). Images B-

D represent the stages of break-off of A-PAM links while surfaces are separating, 

simulating the minima in pull-off force. Dotted lines demonstrate the locations of the 

break-off. B. The full-overlap of layers and first detachment between A-PAM and C-

PAM closest to the cellulose surface. C. Second detachment, when the PECs are at 

slight offset. D. Third break-off of A-PAM link between A-PAM and topmost C-PAM. 

 

The fact that the interaction forces are totally different using polymer complexes as 

compared to single polymer systems can have a drastic effect on e.g. water removal 

efficiency, as well as flocculation during the formation of the paper web. In fact, it 
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was shown in Paper V that the use of PECs as drainage and retention aids enhanced 

the drainability of papermaking stock compared to C-PAM alone (Figure 14), or to 

the sequentially added polymer system (see Figure 16). Dewatering studies of 

different polyelectrolyte complexes revealed that the most effective drainage aid was 

the largest PEC containing the largest Mw, low CD polyelectrolytes (Figure 15), and 

that a small amount of A-PAM was enough to reach optimum influence. In addition, 

the optimum concentration range of the dewatering effect induced by A-PAM/C-PAM 

complexes was broader than that of single C-PAM. The decrease in dewatering time 

at low additions of PEC was probably mainly caused by the formation of complex 

bridges, which presumably was further promoted by A-PAM molecules acting as a 

link between C-PAM molecules in the complex. The deviations between the 

dewatering times of C-PAM and PEC at higher amounts of polyelectrolytes may be a 

sign of changing from complex-induced bridging to an A-PAM promoted linking of 

complex layers when the complexes are fully covering the surfaces. 
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Figure 14. The comparison of the dewatering times between high molecular weight 

C-PAM and PEC. A-PAM : C-PAM  charge ratio in the complex was 0.28:1. The 

polymers are the same as in Figure 15. (Paper V) 
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Figure 15. The effect of complex composition on dewatering time. Low Mw, high CD 

PEC (▲) contains C-PAM with Mw of 0.60*106 g/mol and CD of 4.1 meq/g and A-

PAM with Mw of 0.77*106 g/mol and CD of 6.3  meq/g, whereas high Mw, low CD 

PEC (■) is formed by C-PAM with Mw of 6.0*106 g/mol and CD of 1.0 meq/g and A-

PAM with Mw of 1.67*106 g/mol and CD of 1.8  meq/g. (Paper V) 

 

The large size of the PEC is beneficial for two reasons. First, it can attract the 

opposite surface from far away and thus overcome the barrier of hydrodynamic 

repulsion due to shear. Second, the attraction has to be stronger than the shear forces 

present for the flocs to be stable. The fact that the pull-off forces are weak but very 

long ranged implies that the flocs formed by these PECs would be rather flexible. This 

means that to detach two particles completely, the particles have to be drawn more 

than one μm apart, whereas the pull-off forces in single cationic polyelectrolyte 

systems were stronger, but shorter than in PEC systems. This could be a reason for the 

unique behavior of the polyelectrolyte complexes where flocculation may be 

increased without affecting the strength and the formation negatively (Chapter 2.2.3).  

 

A more conventional way to add polyelectrolytes in dual polymer system is to add 

them sequentially. In polyelectrolyte multilayer systems, the surface forces are 

determined mainly by the outermost layer of the system (Lowack and Helm 1998; 

Blomberg et al. 2004; Kulcsar et al. 2004 and 2005; Gong et al. 2005). The outermost 

layer affects also the multilayer structure (Lösche et al. 1998; Decher and Schlenoff 
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2003; Eriksson et al. 2005; Notley et al. 2005; Saarinen et al. 2008). Although PEMs 

has been reported to increase the pull-off force between mineral surfaces (Lowack and 

Helm 1998; Blomberg et al. 2004; Kulcsar et al. 2004; Gong et al. 2005; Notley et al. 

2005), the smaller effect on dewatering (Figure 16) and retention (Nyström and 

Rosenholm 2005) is probably caused by their more ordered structure, compared to 

PECs, weakening the linking ability of the anionic polyelectrolyte. The structure of 

the layer seems to be a crucial factor. In congruence with the observation in PEC 

systems, a flexible PEM structure is beneficial for paper strength (Wågberg et al. 

2002; Eriksson et al. 2005; Hubbe et al. 2005; Notley et al. 2005; Enarsson and 

Wågberg 2007). Sequential addition is capable of introducing more polymer into the 

system, increasing the number of the layers, and thus become more effective than 

PEC systems; however, the benefits of using PECs compared to PEMs in an industrial 

setting are ease of use (only one addition step), the low amounts of polymer needed 

and a wide optimum concentration range. 
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Figure 16. The effect of addition strategies of C-PAM and A-PAM on dewatering. The 

C-PAM concentration was kept constant at 1 % of pulp. The Mw of C-PAM is 1.6*106 

g/mol and CD is 1.6 meq/g. The Mw of A-PAM is 0.5*106 g/mol and CD is 2 meq/g. 

(unpublished result) 
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4.4 The effect of the multilayer and complex of nanoparticles and 

polyelectrolyte on surface forces 
 

The effect of nanoparticles on surfaces forces was studied in Paper IV. Two different 

nanoparticles were used together with high molecular weight, low charged C-PAM, 

which showed most promising results in polyelectrolyte and polyelectrolyte complex 

systems. Inorganic silica nanoparticles (SNP) represent the conventional nanoparticle 

used in papermaking (Chapter 4.4.1) while nanofibrillar cellulose (NFC) is a rather 

new innovation (Chapter 4.4.2), and thus there are a lot of expectations for its 

exploitation in industry.  

 

4.4.1 Silica nanoparticles and C-PAM 

 

The formation of polyelectrolyte-nanoparticle layers was studied using silica 

nanoparticles (SNP) and cellulose nanofibrils together with C-PAM. The results were 

compared to the surface structure of the complexes. The plot of the QCM-D results in 

Figure 17 shows the decrease in Δf upon the stepwise adsorption of C-PAM and 

SNPs. A rather high amount of SNP was adsorbed on C-PAM, although the 

dissipation change was not outstandingly high. After the addition of a second layer of 

C-PAM, the dissipation decreased slightly, indicating that the layer became denser. 

This suggests that silica nanoparticles are able to penetrate into the C-PAM layer and 

replace bound water in the layer. Further analysis of the QCM-D data revealed, in 

Paper IV, that the good correlation among the 3rd, 5th and 7th overtone data indicated 

that the layer is behaving quite uniformly (Johannsmann et al. 2008).  
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Figure 17. QCM-D results (3rd overtone) during C-PAM-SNP layer formation showed 

the changes in frequency (open square) and in dissipation (grey filled circles) when 

C-PAM and SNP are adsorbed on nanofibrillar cellulose surface at 1 mM NaHCO3. 

After each layer the system were rinsed with buffer solution. (Paper IV) 

 

The build-up of the C-PAM – silica nanoparticle – C-PAM layers affected surface 

forces between the cellulose sphere and the low charged nanofibrillar cellulose film. 

Surface forces during multilayer formation are shown in Figure 18. Repulsion 

increased step by step as layer formation progressed. Cationic C-PAM adsorbed onto 

cellulose and overcompensated the negative charge of the surface. Further, negatively 

charged nanoparticles adsorbed on the C-PAM layer. This increased repulsion only 

slightly. Again, C-PAM adsorbed on the C-PAM – silica nanoparticle layer, which is 

assumed to be neutral or negative charged. Repulsion in any solution did not follow 

the DLVO theory. Thus, the repulsion was concluded to be mainly of steric origin due 

to the overlapping of the layers.  
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Figure 18. Surface forces between cellulose sphere and nanofibrillar cellulose film 

measured in the formation of the layer structure C-PAM – silica NP – C-PAM at 1 

mM NaHCO3. The solid line represents the fitting of DLVO forces with a constant 

charge assumption, resulting in a surface potential of 24 mV. In each step, the 

concentration of solution was 100 mg/l of C-PAM or of silica nanoparticles. (Paper 

IV) 

 

AFM images showed that a fully covered surface was observed in the multilayer 

formation (Figure 19a). When C-PAM and silica nanoparticles were complexed in 

solution (in a mass ratio of 1:1) and then added, the surface became only partially 

covered, revealing the nanofibrillar cellulose structure underneath. In addition, AFM 

images showed that both structures were formed from similar granules, which were 

further organized into larger clusters. This indicated that the addition of SNP caused 

the C-PAM molecules to associate tightly together with nanoparticles. Because the 

size of the clusters were close in size to the complexes in solution, it is probable that 

the clusters formed by the smaller granules correspond with the complexes. Therefore, 

the complex of C-PAM and SNP can be seen as a collapsed pearl necklace structure 

on the surface (Cabane and Duplessix 1982). 

 



 

49 

 
 

Figure 19. AFM height images: a. the layer structures of C-PAM – SNP – C-PAM 

and b. the complexes (at mass ratio of 1:1) of SNP and C-PAM.  Size of images are 

5x5 μm and height scales are a. 400 nm and b. 150 nm. Samples were rinsed and 

dried after force measurements, and imaged in air. RMS roughness were a.  24 nm 

and b. 17 nm. (Paper IV) 

 

When C-PAM and silica nanoparticles were added together in solution as a complex, 

it was observed that surface force and pull-off force strongly depended on the location 

where the measurement was made. This was expected from the AFM results, where 

only partial coverage of the surface was observed (Figure 19b). Interactions between 

partly complex-covered cellulose surfaces did not follow DLVO forces, indicating the 

presence of steric repulsion (Paper IV). The surface interactions with the complex 

structures differed clearly from the layered structures in the matter of pull-off force. 

The range and magnitude of pull-off force between complex layers increased, when 

complex concentration increased (Figure 20). Logically, the pull-off force of the 

complex originates from the partial coverage, whereas the absence of pull-off force in 

the layered structure was likely due to a fully covered surface and the structure of the 

layer. Complexes were able to attach to both surfaces forming complex bridges when 

the surfaces were pressed together. Thereupon when surfaces were withdrawn, 

complex bridges stretched and detached slowly from the surface. SNPs and C-PAM 

formed a rather dense complex, whereas A-PAM and C-PAM formed a flexible PEC. 

This explains the difference between the complexes. A-PAM is able to link the layers 

together in the PEC systems, but the SNP-C-PAM complex bridges the surfaces 

together.  
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Figure 20. Pull-off force (open symbols) in 100 mg/l complex of C-PAM and SNP (in 

mass ratio of 1:1) solution at 11 mM electrolyte concentration. Filled symbols are for 

approaching data. (Paper IV) 

 

From the observations above, the uniform layer structure, the high amount of 

adsorbed SNP and the similarities in AFM images, it was concluded that nanoparticles 

are able to penetrate inside the polyelectrolyte layer due to their small size. We 

propose the hypothesis for the behavior of silica nanoparticles with loose 

polyelectrolyte layer schematically in Figure 21A. At high salt concentration, the 

charges of polyelectrolyte are more randomly located due to screening of the charges. 

Hence, negatively charged nanoparticles are located all over the layer. This leads to 

strong repulsion between segments, which for its part leads to an increase in a layer 

thickness and repulsion after addition of SNP (Paper IV). At low salt concentration, 

the charges of the polyelectrolyte layer were located only very close to the cellulose 

surface, instead. Therefore, nanoparticles tend to adsorb near the cellulose surface, 

where the charges of C-PAM are. This keeps the outermost polymer layer fairly 

unchanged, which was seen in the range and magnitude of repulsion (Figure 19). All 

together, silica nanoparticles are able to move freely inside layer and thus they are 

forming quite similar layers with C-PAM compared to complex layer, which were 

freely forming in solution before adsorption. 
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Figure 21.  A schematic image of A. C-PAM-SNP-C-PAM layer growth and B. C-

PAM-NFC-C-PAM layer growth at high salt concentration. The indicated scale given 

for each layer is based on the range of repulsion in force measurements at 11 mM 

electrolyte solution. However, the exact layer thickness is unknown due to uncertainty 

at zero separation. 

 

Freely moving, charged silica nanoparticles tend to act as a binding site between 

charges. Earlier Jiang et al. (2008) suggested that nanoparticles act as physical cross-

link points. This idea definitely supports the observations that nanoparticle-

polyelectrolyte systems have shown a better re-flocculation ability than dual polymer 

systems (Andersson and Lindgren 1996; Swerin and Ödeberg 1996). Freely moving, 

binding nanoparticles may re-organize the layer structure of nanoparticles and 

polyelectrolytes, and thus broken flocs may reflocculate.  

 

4.4.2 Cellulose nanofibrils and C-PAM 

 

In order to evaluate the effect of nanoparticle type on interactions, adsorption and 

surface forces were also studied in a solution of cellulose nanofibrils with C-PAM. 

These results were compared to the interactions of C-PAM in the presence of 
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inorganic silica nanoparticles. The size, shape and chemistry are totally different in 

these two cases. The adsorption of nanofibrils forms an extremely loose and 

viscoelastic layer which can be seen as a dramatic increase in dissipation observed 

with QCM-D (Figure 22). Similar behavior has earlier been seen by Ahola et al. 

(2008a) and Aulin et al. (2008). This behavior is most probably due to the very high 

water binding capacity of the cellulose nanofibrils. In addition, QCM-D studies based 

on the differences in the data recorded with the different overtones indicated that the 

layers were only partially mixing (Paper IV; Johannsmann et al. 2008). This is easy to 

understand, when considering that the large size and the network forming ability of 

nanofibrillar cellulose (NFC) prevent the penetration of the nanofibrils freely into C-

PAM layer. Furthermore, the AFM image shows that the layers of C-PAM and NFC 

covered the cellulose surface fully and evenly, and that the layer structure was well-

organized and similar to a NFC surface without any added layers (Figure 23, compare 

to Figure 6).  
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Figure 22. The QCM-D results (3rd overtone) during C-PAM-NFC layer formation 

shows the changes in frequency (open square) and in dissipation (grey filled circles) 

when C-PAM and NFC are adsorbed sequentially on a nanofibrillar cellulose surface 

at 11 mM electrolyte concentration. After each layer the system was rinsed with buffer 

solution. (Paper IV) 
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Figure 23. AFM height image of the layer structures of C-PAM – NFC – C-PAM. Size 

of images is 5x5 μm and height scale is 50 nm. Sample was rinsed with water and 

dried after force measurements, and imaged in air. RMS roughness was 2.6 nm. 

(Paper IV) 

 

The normalized surface force between the cellulose sphere and the low charged 

nanofibrillar cellulose surface are presented as a function of the relative separation 

during layer formation of high molecular weight C-PAM and highly charged cellulose 

nanofibrils in Figure 24. Repulsion increased substantially when highly charged 

nanofibrils were added into solution after a C-PAM step. The range of repulsion was 

more than 1500 nm. Evidently, NFC forms a very thick and loose layer structure. This 

introduced long ranged repulsion between cellulose surfaces. Interestingly, repulsion 

decreased clearly, when C-PAM solution was added for the second time, although 

QCM-D data indicated opposite. This indicates that the adsorption of C-PAM 

collapsed the topmost part of the highly charged nanofibrillar cellulose layer and 

possibly released water molecules. A schematic representation of the layer build-up is 

shown in Figure 21B. Surface forces during layer formation did not follow DLVO 

theory, and thus it may be concluded that the interactions are mainly influenced by 

steric forces. NFC systems are known to contain much water (Ahola 2008b; Aulin et 

al. 2008), and thus this repulsion can also be called hydration-steric force.  
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Figure 24.  Surface forces between cellulose surfaces measured in the formation of 

the trilayer structure C-PAM – high charged NFC – C-PAM at 1 mM NaHCO3 + 10 

mM NaCl. In each step, the concentration was 100 mg/l of C-PAM or NFC. (Paper 

IV) 

 

Cellulose nanofibrils are long and, in addition, they tend to form networks. 

Nanofibrillar cellulose builds a loose and open network with long-range interactions, 

which stretch even farther than on the PEC covered surface. It is plausible that NFC is 

able to create a nanonetwork inside the macroscopic fiber web. This opens 

possibilities to use the NFC forming network structure as a strength or flocculation 

additive. In matter of fact, a positive effect on paper strength has been reported (Ahola 

et al. 2008a). The flocculation mechanism could be similar to network flocculation 

(Stenius 2000). 
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5 CONCLUDING REMARKS 
 

Surface force measurements are able to deepen our knowledge about the molecular 

level mechanisms of flocculation. The measured surface forces correlate well with 

practical observations of e.g. dewatering of fiber suspensions, illustrating that the 

surface layer structure has a great influence on the behavior of particles. Even slight 

changes in the properties of additives or of solution may lead to a different layer 

structure, and further, to a different behavior of the system. Polyelectrolyte systems 

were considered from the aspect of papermaking in this thesis, but the molecular level 

observation of the flocculation mechanisms can be adapted to any similar colloidal 

suspension. 

 

The key observation in single cationic polyelectrolyte system was that the optimum 

concentration for flocculation was narrow and near the charge neutralization point. 

This led to the appearance of pull-off force and a decrease in repulsion. Large 

molecular weight and low charged polyelectrolytes were able to form longer bridges, 

and thus hold floc together better than highly charged polyelectrolytes. 

  

Experiments with polyelectrolyte complex systems showed that PECs have a large 

optimum concentration with respect to dewatering due to A-PAM’s linking ability. 

The mechanism of flocculation changes from complex introduced bridging to A-PAM 

linking with increasing polymer concentration. The size and flexibility of PECs were 

crucial for A-PAM linking, and further for dewatering efficiency. The best results in 

polyelectrolyte linking and dewatering were achieved when the complex was formed 

by high molecular weight, low charged polyelectrolytes. In addition, the low amount 

of anionic component favors A-PAM linking due to the self-regulation of the amount 

of the linking agent. PECs act as flexible “glue” in the fiber web. When once attached, 

the system stayed well together, but a bonding PEC layer remained formable and 

elastic under shear and mechanical forces. Due to their flexibility, PECs are capable 

of increasing flocculation and paper strength without harming sheet formation. 

 

When studying the layer formed by nanoparticles and polyelectrolytes, NPs were 

observed to be able to penetrate into the layer structure, if their size was small enough 
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and the polyelectrolyte layer was loose. Nanoparticles bound the polyelectrolyte 

molecules together, and the layer structure covered the whole surface. Meanwhile, the 

self-regulation of complex adsorption left the surface only partially covered, leading 

to complex bridging. This might improve flocculation. Furthermore, nanoparticles act 

as links for the polyelectrolyte and thus favors reflocculation.  

 

Nanofibrillar cellulose was long and tends to form a network structure, and hence, 

formed its own layer. The size and networking prevented it penetrating inside the 

polyelectrolyte layer as silica nanoparticles do. Nanofibrillar cellulose showed a large 

repulsion and thick layer structure. NFC could be seen as a potential agent for 

network flocculation or for paper strength. 

 

The knowledge of the surface structure and its influence on surface forces is essential 

for controlling system behavior, such as flocculation. Based on these results, some 

concepts for a future flocculant can be drawn. The long reaching and networking 

ability of nanofibrillar cellulose provides an opportunity for a good flocculant, if it is 

combined with a linking polyelectrolyte or nanoparticle. The proportion of the linking 

polyelectrolyte in an adsorbed layer might be useful to control using complex 

addition. The high water content of NFC layer may, however, lead to trouble in 

dewatering, but this can be diminished by using linking polyelectrolyte or 

nanoparticles which are also able to remove water from the layer. 

 

Regardless of the many answers gained about the flocculation mechanisms and the 

layers structure, some questions remained open for the future. AFM force 

measurements and QCM-D are not capable to determine the exact layer thickness. 

The determination of the layer thickness could provide new and important information 

regarding the layer structures. Surface force apparatus (SFA), ellipsometry and 

surface plasmon resonance (SPR) could illuminate the structure further. Moreover the 

transmission electron microscope using cryofixation, cryo-TEM, could be used to 

analyse the detailed structure of the layer. Also, the existing data could be analysed 

with the theories of the steric forces and of the viscoelastic properties of the layer to 

clarify the details of the physical structure of the layer, if theoretical models are 

developed onwards. In addition, the precise mechanism and the principle of the A-
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PAM linking would need more research with different types of PECs to verify the 

proposed mechanism and details. 
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