Transport Mode Detection and
Classification from Smartphone
Sensor Data Using Convolutional
Neural Networks

Adam Bako

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 29.07.2020

Supervisor

Prof. Alexander Ilin

Advisor

Julien Mineraud

,, Aalto University
School of Science

Copyright (©) 2020 Adam Bako

School of Science www.aalto.fi

A’ , Aalto University Aalto University, P.O. BOX 11000, 00076 AALTO
Abstract of the master’s thesis

Author Adam Bako

Title Transport Mode Detection and Classification from Smartphone Sensor Data
Using Convolutional Neural Networks

Degree programme EIT Digital Master School

Major Data Science Code of major SCI3095

Supervisor Prof. Alexander Ilin

Advisor Julien Mineraud

Date 29.07.2020 Number of pages 63 Language English

Abstract

Transportation is a significant component of human lives and understanding how
individuals travel is an essential task in many fields. Understanding the modes of
transport individuals use can lead to improvements in urban planning, traffic control,
human health, and environmental sciences. The goal of transport mode detection and
classification is to use smartphone devices as human behavioural sensors, to detect
and classify individuals movement continuously. Smartphone devices are suitable
for transport mode detection, as they are proliferated in modern societies and
contain sensors that are suitable for transport mode detection. These sensors include
GPS, accelerometers, gyroscopes, magnetometers, barometers, or microphones. The
research in this thesis will focus on transport mode detection and classification
using data from motions sensors; accelerometers, gyroscopes, magnetometers, and
barometers as they do not contain the sensitive private data that is collected when
using GPS or microphones.

Currently, there are two approaches in state of the art in transport mode detection.
In the first approach, time and frequency domain features are extracted from the
signals of the motion sensors and used as input to decision tree or neural network
machine learning models. In the second approach, Convolutional Neural Networks
extract features by finding spatial relations in the signal data and using these for
classification. This thesis investigates the use of Convolutional Neural Networks, as
they have shown to outperform models trained using time and frequency domain
features extracted from the data in the state of the art research.

This research studies the effect of different model architectures on the accuracy
of Convolutional Neural Network models when using multiple different sensors as
input, as well as focusing on which combinations of sensors produce optimal results.
Furthermore, the focus will be evaluating the models on real-world data in order to
evaluate the feasibility of deploying applications utilizing transport mode detection.
This research compares an optimized model architecture along with preprocessing
techniques to state of the art Convolutional Neural Network architectures on real-
world data. The best baseline algorithm achieved an overall F1 score of 0.57, while
the final optimized achieved an overall F'1 score of 0.72 on the testing dataset. The
optimal combination of motion sensors is with the accelerometer, gyroscope, and
barometer.

Keywords Transport mode detection, Convolutional Neural Network, Smartphone,
Motion Sensors, Accelerometer, Gyroscope, Magnetometer, Barometer

Acknoledgements

In this part of the thesis, I would like to give thanks to all people that provided me
with support during the research and writing of my thesis. Firstly, I would like to
thank my supervisor professor Alexander Ilin for his tips and expertise in the area of
Neural Networks. I would like to thank the advisors from the company, MOPRIM,
where I performed my research, Julien Mineraud and Esko Nuutila. They provided
a lot of insight into the domain of transport mode detection as well as providing
motivation during the process of research. I would also like to thank Luca Scotton
for his feedback and advice in the implementation of certain aspects of my code as
well as Ignacio Rodriguez Burgos for his feedback and tools provided during the
writing of this thesis.

Otaniemi, 29.07.2020

Adam Bako

Contents

Abstract

Acknoledgements

Contents

Symbols and abbreviations

1 Introduction
1.1 Use cases of transport mode detection.
1.2 Smartphones and sensors
1.3 Methods for transport mode detection
1.4 Problem definition oo

1.5 Thesis structure

2 Background
2.1 Sourcesofdata
2.2 Data Preprocessing o
2.3 Gravity estimate and removalo o000
2.4 Random Forest models for transport mode detection
2.5 Deep Learning models for transport mode detection

2.6 Creation of travel chains

3 Real-world data and its characteristics

3.1 Challenges with real world data

4 Materials and Methods

4.3 Baseline convolutional neural networks

4.4 Model optimization

4.5 Technologies used

5 Results

5.1 Baseline convolutional neural networks

5.2 Model optimization Lo

6 Discussion

6.1 Future work

References

37

37

39

40

41

46

47

47

o1

57

58

60

Symbols and abbreviations

Abbreviations
TMD Transport Mode Detection
PCT Personal Carbon Trading
FFT Fast Fourier Transform
CNN Convolutional Neural Network
DNN Deep Neural Network
NN Neural Network
LSTM Long Short Term Memory
RNN Recurrent Neural Network
GPS Global Positioning System
A-GPS Assisted Global Positioning System
ACC Accelerometer
GYR Gyroscope
MAG Magnetometer
BAR Barometer
KEH Kinetic Energy Harvester
ReLLU Rectified Linear Unit
EF Early Fusion
MF Middle Fusion
LF Late Fusion
AF Axis Fusion
SavGol Savitzky-Golay filter

1 Introduction

Transportation is a significant component of the life of humans, whether travelling
to work, meeting others or performing other activities. Individuals have a multitude
of options in the transport modes they use. All methods of transportation have their
positives and negatives; the speed of transport, comfort, cost, and carbon footprint,
among others. These characteristics influence the choices of transportation of people
across the world. The process of discerning the movement of people is transport
mode detection, and it is necessary to understand human movement.

Understanding how and why people move in specific ways is a crucial activity for
urban planning, human health, and environmental science. In order to understand
the transportation of populations, it has been standard to perform travel studies and
creating action plans based on the information gained from these studies. However,
large-scale studies are expensive in both the monetary cost and effort and therefore,
can only be performed in minimal intervals.

With the widespread adoption of smartphones, there is a possibility to create
real-time transport monitoring, that can lead to faster action from the perspectives
of urban planning, human health, and the environment. This thesis will focus on
research into methods to achieve near-real-time transport mode detection using these
smartphone devices.

1.1 Use cases of transport mode detection

The uses of transport mode detection and classification are broad, depending on the
problem at hand. This section will illustrate these use-cases to motivate the need for
transport mode detection. The main uses of this technology are in transport studies,
carbon monitoring and trading, and also fitness and personal mobility tracking.

Transportation studies

Transportation studies are studies performed by cities to discern how people move
through them. They help the municipalities make informed decisions on how to
improve traffic in the city during the short-term and help make decisions for urban
planning in the long term. Classic transportation studies utilize large-scale surveys of
citizens, asking about what modes of transport they use and the details surrounding
them. However, these surveys only provide static data of a specific period, that
might not entail the full detail of people’s movement. These studies are very labour-
intensive and challenging to implement correctly and are, therefore, not optimal or

10

practical [1][2]. Transportation studies which implement transport mode detection
with smartphones have the advantage of being continuous, scalable and contain more
detail on the nuances of travel that could be difficult to capture using traditional
methods.

Carbon monitoring

Personal transportation is one of the significant contributors to carbon emissions of
individuals. Knowing more precisely in which ways a single person or a community
uses various modes of transport can help reduce carbon emissions [3]. Individuals can
use a smartphone application which monitors transport modes and converts these to
values of emissions. Viewing how different modes of transport are less polluting than
others can help individuals decide which mode of transport to take. Gamification
can be implemented into these applications to motivate users [4], as well as viewing
individuals emissions compared to their community.

Carbon Trading

Carbon Trading, or in the case of individual citizens; Personal Carbon Trading (PCT)
is still a novel research field. It is the process of allocating citizens with a specific
amount of emissions credits and letting people who produce fewer emissions trade
these credits with higher emitters. Pilot studies of the impacts of these kinds of
policies have been made in various locations, for example in Norfolk Island, Australia
[5] or the city of Lahti, Finland. In the city of Lahti, the citizens can opt into the
project and receive special credits for emitting less carbon. Citizens use these credits
to purchase goods or services in certain stores. The citizens use an application, as
shown in Figure 1 and Figure 2. This application uses transport mode detection on
smartphones to constantly monitor all modes of transport and visualizes this data to
the users. The purpose of smartphone applications like this is to visualize how people
move, suggest more sustainable modes of transport and transform how people move
every day. Transport mode detection enables such application to monitor changes
in the behaviour of citizens over long time frames with great detail. However, the
accuracy of these systems is still not sufficient to be used on a large scale.

Fitness Tracking

Fitness tracking is a useful technology for the monitoring of personal movement for
health. Applications that provide these insights track physical activities such as
walking, running, and bicycling. Tracking is either done by having the user start and
stop the tracking of the activity, during which the application uses GPS and other

11

®23

Market

0

Categories
/17 kgC02
821,9%m ®0,0 pr— — e
m m =
All Food Sports Events Di
{ Y (1] & Drink

< 14 Jun >

R (=
Walk Car
© 0kgCO2 © 1.5kgC02
© 1157 1m © 1158 36m Heijastin CitiCAP - Kassi
2 0.1km 2 79km ® 60 ® 100
(< ~

Leaderboard y : ;
w
Figure 1: CitiCap application
monitoring transport modes main Figure 2: CitiCap application car-
page. bon trading store.

sensors to gather data about the physical activity, or can be done automatically by
applications monitoring when users start and stop physical activity. An excellent
example of this automatic approach to fitness tracking would be the Apple Health
application. Such applications utilize transport mode detection and classification to
find the movement of their users, classify it into specific categories and give further
data to the users such as step count or speed.

1.2 Smartphones and sensors

Traditionally transport mode detection has been done by vast surveys and travel
studies, which help countries and cities figure out how people in their borders move.
In novel approaches, smartphone devices are suitable for transport mode detection,
as they are proliferated in modern societies and contain sensors that are suitable for
transport mode detection. These sensors include GPS, accelerometers, gyroscopes,
magnetometers, barometers, or microphones. The GPS, or Global Positioning

12

System, gains information on where a smartphone is at a specific time. Monitoring
this movement over time is how many transport mode detection models classify
transport modes. Motion sensors such as the accelerometer and gyroscope sense the
motion of devices, and barometers, which sense pressure can be used to identify the
current elevation of devices, and can be used to measure displacement in elevation.
These sensors are becoming very common in smartphone devices nowadays due to
their uses in various applications.

The research in this thesis will focus on transport mode detection and classification
using data from motions sensors; accelerometers, gyroscopes, magnetometers, and
barometers as they do not contain the sensitive private data that is collected when
using GPS or microphones.

1.3 Methods for transport mode detection

Transport mode detection using sensors from smartphones has become a topic of
research in the past 10 years. The early research in this topic focused on extracting
time and frequency domain features from sensor data and training decision tree
models to distinguish between various modes of transport. However, in recent years,
the research has become more focused on deep learning models with advancements
in Convolutional Neural Networks and Long Short Term Memory Networks. Convo-
lutional Neural Networks (CNN) are conventional models in image classification that
can be used to classify raw signal data, viewing it as a one-dimensional image. The
advantages of the CNN is the ability for it to classify signal data instead of features
extracted from this data, as feature extraction is a difficult task that requires domain
knowledge and can overlook certain essential artefacts in the raw data. However, for
CNNs to learn, they require extensive training datasets. Long Short Term Memory
Networks are also conventional techniques used in transport mode detection due to
their proficiency in remembering long term dependencies in the data. The current
state of the art implementations of LSTM networks utilizes convolutional layers
for feature extraction, which result in higher accuracies than utilizing handcrafted
features.

The research in this thesis investigates the implementation of CNNs using multiple
smartphone sensor data as well as the optimal model architecture used for sensor
fusion. Improvements in the model architectures of CNNs in transport mode detection
with multiple sensors will lead to improvements in the CNN-LSTM architectures in
future work.

13

1.4 Problem definition

This thesis will focus on how to detect various modes of transport using sensors
commonly found in smartphone devices using Convolutional Neural Networks. These
sensors being the accelerometer, gyroscope, magnetometer and barometer. The
following research questions guide the focus of the research in more detail:

e What is the model architecture that is best suited for a Convolutional Neural
Network using multiple sensors as input for transport mode detection?

e Which combination of motion sensors produces the best results in transport
mode detection?

e How can raw sensor data be preprocessed to help Convolutional Neural Networks
converge optimally and generalize well to real-world data?

The success of the Convolutional Neural Network will be evaluated against state
of the art CNN architectures.

1.5 Thesis structure

This thesis contains six different chapters; the Introduction, Background, Real-world
data and its characteristics, Materials and Methods, Results, and Discussion.

The Background chapter describes state of the art in transport mode detection.
First, it describes all sources of data for transport mode detection and their results.
Second, it explains data preprocessing techniques for models utilizing feature extracted
data and models utilizing raw signal data are defined. Finally, it explains the different
state of the art machine learning models that are used in transport mode detection.

The Real-world data and its characteristics chapter explains the differences
between real-world and synthetic lab data. Explaining the challenges of collecting
data on various smartphones, by various users, in different conditions and how these
can affect the accuracy of transport mode detection. The chapter will also address
why the specific state of the art methods are implemented to address these issues.

The Materials and Methods chapter proposes the methods used for collecting
the data and explains the characteristics of the data set used for the training of the
CNN. It provides explanations for the methods used in recreating state of the art
models and their preprocessing techniques. It also proposes the methods used in
optimizing the model architecture as well as selecting the optimal set of preprocessing

14

techniques on the data, to achieve fast convergence of the model. Finally, the chapter
will describe the technologies used to preprocess the data and train the CNN models.

The Results chapter presents the results obtained by implementing the methods
of the previous chapter. While the Discussion chapter discusses the results, compares
them to the state of the art results and proposes the future work to be done.

15

2 Background

This chapter describes state of the art in transport mode detection. First, it describes
all sources of data for transport mode detection and their results. Second, it explains
data preprocessing techniques for models utilizing feature extracted data and models
utilizing raw signal data are defined. Finally, it explains the different state of the art
machine learning models that are used in transport mode detection.

2.1 Sources of data

In recent years, research in transport mode detection has shown promising results
using a plethora of different data sources. The data sources from different sensors
from smartphones all have different advantages and disadvantages. This subsection
describes how different sensors are applicable to transport mode detection and what
results they have been able to achieve. Furthermore, the datasets, as shown in
Table 1, from various research papers are discussed along with the amount of data
collected, how data was collected, and the specific sensors they collect.

Global Positioning System

The Global Positioning System (GPS) is a system used to detect the location of
devices utilizing satellites in the orbit of the planet [18]. GPS receivers are standard
features of smartphones, which receive messages from multiple satellites and use
this information to estimate their location. These aggregated GPS points can be
used to determine velocities, accelerations, and paths of the device, which lead to
the inference of the mode of transport taken by the individual. More concretely,
modern smartphones utilize Assisted GPS technology (A-GPS) that enhance the
availability of location detection by utilizing cell tower data in combination with
satellite data. However, these A-GPS smartphone devices still have a lower location
accuracy than dedicated GPS devices [19]. Most smartphone applications can set
the required accuracy of the location to a specific radius, as well as the frequency at
which this data is collected. Higher frequency and a smaller radius will improve the
accuracy but will have a large impact on the battery consumption of the smartphone
devices.

Furthermore, the use of GPS data of individuals brings up many privacy concerns,
as to track the modes of transport means to track an individuals position constantly.
Therefore, there are many drawbacks to the GPS data with specific trade-offs; mainly
accuracy, battery consumption, and privacy.

The use of GPS in transport mode detection has been studied using various

16

Number

Hours

Number of
Users

Collection

Sampling

Sensor Data of modes | of data | collecting | settings Frequency Ref
data
Phone
ACC,GYR 6| - 2 | constant in | 50Hz (6]
waist bag
Constant
ACC 7 14 | - routes in 50Hz [7]
small area
Phone in
ﬁi%%i% 8 366 1| front right | - 8]
pocket
ACC 6 2000 29 | - 20Hz [9]
ﬁi%’GYR’ 5 8311 224 | - 30Hz [10]
Data from
ACC 6 150 16 | various 100Hz [11]
countries
Using a
custom built
KEH 7 38.6 6 | data 100Hz [12]
collecting
device
gggl’\IGDYR’ 5 31.7 13 | - 20Hz [13]
ﬁi%’GYR’ 10 212 | - - 30Hz [14]
different
ACC,GYR, 8 79 8 | routes and 100Hz [15]
MAG
lengths
ACC 6 24 15 | Smartphone | ,o) [16]
in pocket
4 phone
locations:
SOUND 8 2812 | hand, 16kHZ [17]
torso,
hips
bag

Table 1: Descriptions of datasets used in various studies.

17

techniques. Yu et al. [20] used features extracted from GPS trajectories to classify
five distinct travel modes using a recurrent neural network to achieve an accuracy of

92.7%.

Jiang et al. [21] use features extracted from GPS trajectories and points passed
through a recurrent neural network to classify seven different travel modes with an
accuracy of 97.3%

GPS data has also been used to attempt to differentiate between different types
of vehicles. In the research of Simoncini et al. [22] features from GPS data are input
into a recurrent neural network to classify car types into small-duty, medium-duty,
and heavy-duty vehicles, based on their characteristics, namely weight and size. The
accuracy of such classifiers was only 56.2%.

Accelerometer

The accelerometer is a sensor that measures the acceleration of the device in 3-
dimensional space. It is a typical sensor in modern smartphones due to the appli-
cations of the data in mobile gaming, motion input, and orientation sensing [23].
Transport mode detection utilizes the accelerometer by identifying specific patterns
of acceleration in the 3-dimensional space and match these patterns to specific modes.
The accelerometer sensor also measures the acceleration of gravity. Depending on
the orientation of the device, the gravity component will be present on different axes.
Gravity is removed from the measurements to create an orientation independent
view of the acceleration of the device. The Data preprocessing section of this chapter
discusses the removal of gravity in more detail.

The accelerometer can be sampled with various sampling frequencies, which will
impact the battery consumption and accuracy of the sensor. The advantage of the
accelerometer is that the privacy concerns are not as strong as in the case of GPS,
because monitoring the acceleration of the movement of a phone does not give as
much private information as tracking their exact location.

The use of the accelerometer in transport mode detection has been studied using
various techniques. Immer et al. [24] used features extracted from accelerometer data
to classify four different types of transport modes using a recurrent neural network
with an accuracy of 92%.

Liang et al. [7] used raw accelerometer data to classify seven different types of
transport modes using a convolutional neural network with an accuracy of 94.5 %.

Han et al. [9] used raw accelerometer data with a convolutional neural network
to classify different types of human activity, such as moving downstairs, upstairs,

18

jogging, walking, sitting and standing, with an accuracy of 98.83%. However, the
smartphone device with the accelerometer was set at a fixed position and angle. Most
studies specify the strict conditions of data collections, where the accelerometer is
set in a fixed position, which does not reflect a real-life use-case, as people use their
smartphone devices during modes of transport.

Gyroscope

The Gyroscope is a sensor that measures the angular velocity of the device in three
axes and can be used to discern the orientation of the device [23]. They are common
in smartphones nowadays due to their uses in mobile gaming. When combined with
the accelerometer data, they can provide data about the orientation independent
acceleration of the device, and help reduce the noise of the accelerometer data. The
Gyroscope itself can only give limited information about transport mode, but when
used in conjunction with multiple sensors can give more accurate results [15].

Zhou et al. [6] used features extracted from accelerometer and gyroscope data to
classify six different types of transport modes using a recurrent neural network with
Long short term memory with an accuracy of 92.8%.

Tambi et al. [25] used spectrogram data from raw accelerometer and gyroscope
data to classify four modes of transport with a CNN with 91 %.

Magnetometer

The magnetometer is a sensor that measures the magnetic field strength in three
axes. It measures the Earth’s magnetic field using the hall-effect [26]. However, the
sensor contains noise from its surroundings. The noise can come from the magnetic
fields produced by the components of the smartphones. Noise from magnetic fields
also come from devices in the surroundings of the device [27]. As with the Gyroscope,
this sensor cannot be used solely for the transport mode detection, but when used in
conjunction with multiple sensors, can give more accurate results.

Asci et al. [14] combined the features of an accelerometer, gyroscope and mag-
netometer to use as inputs into a recurrent neural network to classify 10 different
transport modes with an accuracy of 97.07%.

Guvensan et al. [15] used features extracted from an accelerometer, gyroscope
and magnetometer to use as inputs into a random forest classifier; the initial classifi-
cation accuracy was 82.3%. However, after post-processing the data using a custom
algorithm, the overall accuracy was increased to 95%.

19

Barometer

The barometer is a sensor that measures the air pressure surrounding it; this is a
single value in hectopascal. This value of pressure can monitor changes in pressure
over time; which happen during changes in elevation, changes in pressure due to
tunnels, for example in metros, or changes in pressure of a vehicle, for example in
aeroplanes [8]. However, barometers are only present in higher-end smartphones
as they are not a necessity for the standard uses of cheaper devices. Therefore the
implementation of this as a data source can be limiting when addressing the needs
of detecting the transport modes of a broad population with different smartphone
devices.

Jeyakumar et al. [8] and Qin et al. [28] combined the data from the accelerometer,
gyroscope, magnetometer and barometer as inputs for a classifier. They both used a
combination of a convolutional neural network and a recurrent neural network and
respectively achieved an F1 score of 96.4% and an accuracy of 98.1%.

Sound

The microphone, present in all smartphone devices, is used in transport mode
detection by distinguishing specific artefacts in the noise of various modes of transport.
The challenge is to isolate the sound of the transport from the environmental noise
such as human speech or noise from the location of the device (e.g. friction in pocket).
This sensor can distinguish between specific modes of transport, for example, tram
and metro, where the acceleration footprints are very similar. However, there are
privacy concerns in monitoring the microphone of a smartphone device constantly.

Wang et al. [17] used raw sound data with a convolutional neural network to
classify eight different transport modes and achieved an accuracy of 86.6%. When
adding the data from extracted features from an accelerometer and gyroscope with
the sound data, Carpineti et al. [13] achieved an accuracy of 93% using a random
forest classifier.

Bluetooth and WiFi

Location-specific networks such as Bluetooth beacons and public WIFI networks do
not hold enough information to classify modes of transport by themselves. However,
they can be used to aid in the precision of transport mode detection algorithms.
These networks are becoming more widely available in cities—for example, public
WiFis in various modes of public transport. Cardoso et al. [16] completed a study
in the city of Porto with the use of features extracted from accelerometers and

20

the monitoring of public WiFi networks. Cardoso classified five various modes of
transport with an accuracy of 95.6%.

Kinetic Energy Harvester

Kinetic Energy Harvesters (KEH) are parts of personal devices that generate electrical
energy from vibrations of the device. The output signals of these KEHs, which is
the amount of energy they are producing, can be analyzed to classify various modes
of transport. The advantages of the KEH as a sensor is in power consumption,
which is far lower than an accelerometer. The accelerometer consumes about 85mW
while monitoring the KEH signal can consume only 480uW [12]. However, these
KEHs are mostly available in smartwatches and fitness, which are not as common as
smartphone devices.

Xu et al. [12] used extracted features from the KEH output signal and classified
seven different modes of transport with an accuracy of 97%.

2.2 Data Preprocessing

Data preprocessing is an essential step for training machine learning models. There
are two main ways approaches to data preprocessing; feature extraction and raw data
preprocessing. With feature extraction, the goal is to extract meaningful information
from the signal data so that these features can be used to discriminate between
various modes. For raw data preprocessing the goal is to prepare the data in a way
that models can learn more quickly and generalize better for unknown data and
preparing it so the model can easily extract features from the data. This section
will explain the process of windowing the data, which is necessary for both feature
extraction and raw data preprocessing. After this, feature extraction and raw data
preprocessing will be explained in more depth.

Windowing

The windowing of the data entails splitting the sensor signal into small fragments,
that can be classified individually. Windowing is necessary as windows can be easily
compared to each other if they have the same amount of data points. Some models
have a fixed input size, where the input data must always be the same number of
data points, which requires windowing. Windows are set for an exact number of
samples, but can also have an overlap. An overlap in windows means that a certain
percentage of the data in one window will be present in the following window, as
shown in Figure 3.

21

WINDOW 1

WINDOW 2

WINDOW 3

WINDOW 1

WINDOW 3
1L

, WINDOW 5

WINDOW 2 WINDOW 4

Figure 3: Windowing of data, example a shows windowing with no overlap and b
shows windowing with 50% overlap.

The sizes of windows vary due to the different models that use these windows.
Bedogni et al. [29] tested various window sizes from 5 seconds to 240 seconds with a
Random Forest classifier and found 120-second windows to be most effective. When
training a different Random Forest model using a more extensive list of features,
Guvesan et al. [15] found 60-second windows with 40% overlap to achieve the best
results. However, when training an LSTM model, Guvesan et al. [14] found that
12-second windows performed better than larger 24-second windows. Zhou et al.
[30] found that for their Random Forest classifier 20-second windows achieved the
highest accuracy. Therefore, window sizes and overlap have to be set and optimized
for specific models and extracted features individually.

The most common sizes for windows in raw data preprocessing are 10 seconds.
For example, Liang et al [7] and Han et al. [9] use a window size of 10 seconds with
no overlap. While some researchers, for example, Tambi et al. [25], use a larger
window size of 30 seconds with 50% overlap. The overlap is more necessary for larger
windows, as multiple transport modes can be present in such large windows.

Feature Extraction

In order for decision tree models to be able to distinguish between various modes
of transport, they must be given specific data to be able to discriminate between
the modes. Raw data cannot be used as input due to the complexity of the signal.
Features extracted from the raw data better describe the motion that is captured by
the sensors. These features include the variance of the data points or the range of
the values in the signal. Features can give information on the speed of the transport
mode and the acceleration profiles. There are various approaches to the amount
of complexity in feature extraction. There are statistical, frequency domain-based,

22

Feature Reference
e Mean, Standard Deviation, Minimum Value,
Statistical Maximum Value [11],[13],[15],[14]
Variance, Median, Range [11],[15],[14]
Interquartile Range, Kurtosis, Skewness, RMS | [11], [14]

Minimum Reduction, Maximum Reduction,
Maximum Increase, Minimum Increase,
Covariance, Harmonic Mean, Quadratic Mean, | [15]
Arithmetic Mean of Instant Exchange,
Quadratic Mean of Instant Exchange

Time Integral, Double Integral, Auto-Correlation [11]
Mean-Crossing Rate [11], [14]
Zero-Crossing Rate [14]
FFT DC 1,2,3,4,5,6 Hz , Spectral Entropy,

Frequency | Spectrum Peak Position, Wavelet Entropy, [11]
Wavelet Magnitude
Spectral Energy [11], [14]
Spectral Centroid, Spectral Spread,

Spectral Flatness, Spectral Roll-Off, [14]
Spectral Crest, Spectral Kurtosis
Peak Volume, Intensity, Length, Kurtosis, Skewness | [11],[28]
Segment Variance of Peak Features, Peak Frequency, (11],[28)

Stationary Duration, Stationary Frequency

Table 2: Features extracted from motion sensor data from various studies.

time-domain based, peak based and segment based features, as shown in Table 2.
The table shows the feature type on the leftmost column, the feature names in
the middle column and the studies that utilize these specific features in the right
column. The statistical features are statistics of the values of the data points. The
time-domain features take features from the signal as a whole. The frequency-domain
features take information from the frequency domain by using an FF'T. The peak
and segment based features are based on the research of Hemminki et al. [11], where
they extract features when acceleration and deceleration periods are found in the
acceleration profile.

Raw Data Preprocessing

Raw sensor data must be preprocessed for it to be used as input for a CNN model.
Once the data has been windowed, the data can also be processed to help the weights
of the CNN to converge more easily. This processing is done by normalizing the
data to a more consistent range. The most common technique for normalization in
transport mode detection using motion sensors is Z-Score normalization [9][28][31][32].

23

In Z-Score normalization the each data point in a list is normalized using the mean
and the standard deviation of that list[33] :

, T;; —mean(z;)
=) 1
g std(x;) (1)

In this equation, the i represents the index of the window that is being normalized
and j represents the index of a data point in the list of data points in the window
being normalized. Some CNN studies utilize MinMax scaling:

, x;; — min(z;)

Tii = max(z;) — min(z;) @)

Where the minimum and maximum values are used to normalize the data, to set the
range of the data points in the sensor signal between one and zero.

Different approaches to preprocessing the data exist in order for the CNN model
to generalize better for the testing data and for the weights and biases to converge
stably [28]. The first issue these preprocessing steps are attempting to solve is the
effect of gravity on the accelerometer data, as the orientation of the smartphone
device will affect which axes are affected by the force of gravity. The removal of the
gravity is discussed in the Section 2.3. The second issue these preprocessing steps are
attempting to solve is the signals in three axes being impacted by the orientation of
the device. The horizontal acceleration of the vehicle will be present in different axes
of the accelerometer in different orientations of the device. In order to remove this
orientation dependence, one possibility is to take the magnitude of the accelerometer:

MAGaee = \/ acci + accy + accs (3)

Liang et al. [7] argue this removes the issue of varying orientations. The other
possibility is to implement a "fusion' layer in the CNN, implemented by Han et
al. [9]. This fusion layer is a convolutional layer that takes the three axes of the
accelerometer and outputs a single activation map. Han et al. argue that this process
also removes the issue of varying orientations.

In a different approach to data preprocessing a spectrogram of the frequencies
present in the accelerometer is used as input to the CNN. This method is implemented
by Tambi et al. [25]. They argue that this preprocessed data allows the CNN to
learn more quickly using a smaller architecture of the model, enabling it to be used
on smartphones with limited storage and computing capabilities.

2.3 Gravity estimate and removal

The accelerometer measures the acceleration in three axes. Due to gravity, which
is a constant acceleration directing downwards to the earth, the accelerometer

24

measurements will be impacted. Depending on the orientation of the device during
measurements, the gravitational acceleration will be present on different axes in
differing magnitudes. Therefore to decouple the measurements of acceleration caused
by transport modes, the impact of gravity on the three axes must be estimated and
removed.

There are various filtering methods in order to achieve gravity estimation and
removal. Liang et al. [7] propose using a low pass filter to estimate the gravity
component and subtract it from the accelerometer values. Hemminki et al. [34]
propose a more sophisticated method for removing gravity. Their approach is to
detect points in the data where the user is either stationary or moving at a constant
velocity, which they call keypoints. In these points, due to the lack of acceleration
from other sources, the accelerometer signal contains the gravity component. Once
these keypoints are generated, they interpolate the gravity component over time.
During this recording of keypoints, they also measure the signal of the gyroscope.
When the gyroscope shows a substantial change in orientation, the gravity estimation
restarts. The gravity estimate signal in three axes is then removed from the three
axes of the accelerometer. In modern smartphones, virtual gravity sensors are present
that calculate the gravity using the accelerometer and gyroscope, and record the
gravity estimate as a signal in three axes.

2.4 Random Forest models for transport mode detection

Random Forest models are an implementation of the Decision trees that generalize
better on data outside of the training data set. Decision trees are models that
resemble tree graphs, where features in the data are used to discriminate between
specific modes of transport. Random Forest models create an ensemble of decision
trees by using subsets of features from the data and during inference gather the
results from the ensemble of trees and take the result of the majority as the final
classification. In terms of transport mode detection, there have been studies utilizing
various features from various sensors with different results, as shown in Table 3.
Random Forest models are conventional techniques used to classify transport modes
and are often used as baseline algorithms to compare to other models. Random
Forest models produce the highest accuracy when compared to other supervised
learning algorithms that are not implementations of neural networks, for example,
Support Vector Machine classifiers or Naive Bayes classifiers [7].

2.5 Deep Learning models for transport mode detection

In this section, the applications of deep learning models to the task of transport
mode detection and classification will be discussed. The two main approaches that

25

. Overall Number
Model type Sensor data | Preprocessing accuracy | of modes Reference
ACC, GYR,
Random Forrest SOUND FE 93 5 [13]
ACC,GYR,
Random Forrest MAG FE 92 8 [15]
AdaBoost ACC FE Prec: 64 | 6 [11]
LSTM ACC,GYR | R 93 6 6]
CNN ACC R 94 7 7]
ACC,GYR,
CNN-LSTM MAG BAR R 96 8 8]
CNN ACC R 99 6 9]
ACC,GYR,
DNN MAG FE 95 5 [10]
LSTM KEH FE 97 7 [12]
ACC,GYR,
LSTM VA FE 97 10 [14]
J48 ACC FE 96 6 [16]
CNN SOUND R 87 8 [17]

Table 3: State of the art models for classification of transport mode and their
characteristics. FE is feature extracted, R is raw data.

have shown valuable results have been Convolutional Neural Networks (CNNs) and
Recurrent Neural Network (RNN) with the application of Long Short-Term Memory
(LSTM). Both of these approaches will be discussed in the following subsections, and
their current results in the state of the art will be evaluated. Research into various
neural network models have had varying results in accuracy, as shown in Table 3.

Neural Networks

Neural networks are machine learning algorithms built from layers of interconnected
nodes, also named neurons, that feed a fixed size input through hidden layers of
neurons to a fixed-sized output. Each neuron has a set of weights for its connections
to neurons in the previous layer and a bias. These weights and biases are then used
to calculate an input that is passed through an activation function:

y =Y wi; +b) (4)

i=1
where y is the output of the current neuron, z; is the output of the i-th neuron
in the previous layer, w; is the weight of the connection of the i-th neuron in the
previous layer and the current neuron, and b is the bias of the neuron. The ¢ is the

26

activation function of the neuron. These activation functions vary, depending on the
data and model type. Neural networks contain multiple layers of multiple neurons
that transform the input to an output, as shown in Figure 4.

Input layer Hidden layer Output layer

Wih ;@ Who
Figure 4: Simple Neural Network architecture with one hidden layer [35].

Neural networks learn by taking in labelled training data, feeding it through the
model layers and calculating the error, also called the loss. The loss shows how the
current output of the model differs from the desired or correct output. The loss is
calculated by a specific loss function, which is set in accordance with the problem at
hand. The loss is then minimized by calculating the gradient of the loss function.
The gradient, calculated by a backpropagation algorithm, shows how the weights
of the network should be adapted to lower the loss of the output. Therefore, the
network of neurons learns by adapting these weights over multiple steps and reaching
the desired minimum loss.

There are many variables, hyperparameters, that influence how well and how
quickly a neural network can be trained to classify inputs effectively. The learning
rate is the central hyper-parameter that influences how the neural network learns.
The learning rate is used to update the parameters of the model; the higher the
learning rate, the more drastically the weights will be adjusted using the error
gradient. The error gradient can be used to adjust the weights of the network in
different ways, utilizing different optimizer algorithms, that improve convergence to
a minimal loss. Furthermore, the number of layers in the network and the number of
neurons in each layer can be set to improve the performance of the neural network.
Finally, the number of epochs or amount of times the whole dataset is iterated over
will impact how the neural network will converge to a minimal loss, and the time it
will take to train the model.

There are two main issues when training neural networks; overfitting and under-
fitting. A neural network that overfits learns patterns specific to the training data
and then generalizes poorly to data that is outside of the training set. A neural
network that underfits does not sufficiently learn the underlying patterns in the data

27

and does not converge to a desired minimal loss. Tuning the hyperparameters of the
network reduces this overfitting and underfitting. Choosing the optimal learning rate
is the first important task. A learning rate that is too high causes the network to
adjust the weights too quickly and not be able to converge correctly, while a learning
rate that is too low will increase the training time, as the adjustments to the weights
will be minimal. When the model is underfitting at an optimal learning rate, the
network architecture can be modified to be more complex. Increasing the number
of neurons per layer, or increasing the number of layers in the model can help the
neural network learn more complex patterns. Training through more epochs will also
help decrease the loss of the model. If the model is overfitting, this can be an issue of
too high complexity, too many epochs, or an insufficient size of the training dataset.

Convolutional Neural Networks

With the adoption of smartphones becoming widespread, and the possibilities to
record and store more data, the use of data-driven models has become more ap-
proachable for the detection of modes of transport. Convolutional Neural networks
(CNN) are deep learning models that are widely used in the field of computer vision
and; more generally, with data having spatial relationships, such as images [36]. The
central concept behind the CNN is the mathematical operation of a convolution
from which the CNN takes its name. This operation recreates the functionality of
a scanner which, analyzing the input image, extracts essential features. Multiple
convolutions layers in sequence can extract higher-level features from the images.
Furthermore, CNNs can also be used to classify signals as well, reducing the standard
two-dimensional space of an image into a single dimension and sliding filters over
this one dimension.

The layers of the CNN contain filters of a specific size that slide over the input
data and produce output maps, also called activation maps or filter maps, as shown
in Figure 5. The activation map is calculated by taking the dot product of the filter
and each section of the input map, applying multiple filters over the input map yields
multiple activation maps, as shown in Figure 6. The filters of these convolutional
layers are the parameters of the neurons that are trained in the network. By adding
multiple convolutional layers to the network, it can learn more complex patterns in
the data. After multiple convolutional layers, the outputs maps are inputted into a
final stage of the CNN with a fully connected neural network that produces the final
output.

To increase the performance of the CNN, pooling layers are used in between
convolutional layers to help with generalization and reduce computation time. Pooling
layers, commonly in the form of max-pooling layers, reduce the activation map size
by finding the maximum value of an m x n size chunk of the output map of the
convolutional layer and reducing it to a single 1 x 1 chunk in the output of the

28

Filter
Output
map

Figure 5: Diagram of a convolutional filter [37] .

(24.24) @1,21) (LD

HH HHE Convolution HEEEE BHOp0O—+Y1

o Ke=K, =4 Pooling T B O—=Y2
5, =5,=3 3 |

Convolution
K, =K, =4

4 AN LN N LN
¥ Al ¥ Y Al
Input Image 1% Convolution Layer 1% Pooling Layer 2" Convolution Layer 2"¢ Pooling Fully-connected
Layer and Output Layers

Figure 6: Simple architecture of a CNN with two convolutional layers and pooling
layers followed by a fully connected network [38].

pooling layer, as shown in Figure 6. This pooling layer reduces the size of the output
maps, which can speed up computation time and also achieve spatial invariance of
the features detected by filters [39]. To increase the generalization capabilities of
the CNN, regularization in the form of dropout can be added to the fully connected
neural network at the end of the CNN. Dropout is a technique used during training,
where random neurons and their connections are removed, this forces the neural
network not to have neurons that co-adapt and generalize better [40]. Furthermore,
the generalization can be improved by adding data augmentation, altering the input
data to adjust for variations in the data that might not be present in the training
dataset. When dealing with three dimensional signal data of an accelerometer, this
can mean rotating the signal in the three axes.

Convolutional Neural Networks in Transport Mode Detection

Convolutional Neural Networks are the primary approach for transport mode detection
when dealing with raw signal data. The convolutional layers function as a feature
extractor for the later fully connected layers, where the modes of transport are finally

29

classified. In this section, the different approaches for transport mode detection using
CNNs will be investigated, as there are many architectures that can be applied to
the problem at hand.

Most CNN architectures in transport mode detection are created from the same
basic elements of CNN networks. They utilize one dimensional convolutional layers
with a ReLLU [7] activation function:

()

ReLU(x):{ zifx >0 }

0ifz <0

In some cases a Leaky ReLU is utilized :

(6)

.f O
LeakyReLU (x) = { Z;pl ifma:>< 0 }

where a is a small constant, commonly 0.01 [7]. The output maps of the convolutional
layers are decreased with max-pooling layers. These convolutional and pooling layers
repeat a certain amount of times and feed into a final fully connected layer.

Liang et al. [7] used a simple CNN architecture with six convolutional layers with
one hidden fully connected layer, as shown in Figure 7. As an input, they used the
magnitude of the acceleration, the sum of the squares of the signals from the x, y,
and z-axis of the accelerometer. Using this approach, the accuracy of 94.48% was
achieved. The model was used to classify seven various modes; stationary, walking,
bicycling, taking bus, car, subway, and train.

Unlike Liang et al., Han et al. [9] input the three axes of the accelerometer into
the CNN and used a fusion convolutional layer to fuse the data of the axis, as shown
in Figure 8. This model produced an accuracy of 98.83% while classifying six various
human activities; walking downstairs, walking upstairs, sitting, standing, walking,
and jogging.

When implementing a CNN that uses multiple sensors as input, Qin et al. [2§]
developed a parallel CNN architecture for extracting features, that were fed into an
LSTM network. Each sensor was processed by their own CNN and then concatenated
together, as shown in Figure 9. The model was able to classify eight various modes
of transport; stationary, walking, running, bicycling, taking bus, car, subway, and
train with an accuracy of 98.1%.

Tambi et al. [25] proposed a different CNN architecture that utilized the data
from the spectrogram of the accelerometer and gyroscope. This spectrogram showed
the magnitudes of various frequencies present in specific time windows. These
spectrograms were passed through two 1D convolutional layers and a single fully
connected layer. Tambi et al. classified four modes of transport with an accuracy of

91%.

30

Convolution

] / ol Max pooling

N “convolution
& max pool” Fyl| connection
= / / _

Bx64 Output

20051

25632

sizxl

1D Acceleration 12x32

Figure 7: CNN architecture of Liang et. al. using accelerometer magnitude as input
[7].

“XZOM 1X194x50

n 1x200x 1/
Input layer

3x200x1/\ ,f//'/ ’

1><97><50 1><9l><50
1x45%50

000000
l

,’ —) _—
AN Fod /4
/ | / - (/ 4L Pooling layer
| | 4-- 1-#S
| V W/ Poolmg layer Convolutional layer 12 filter
‘ / "/// Convolutional layer 1x2 filter 1%7 filter Softm
oftmax
/ 4 w7 filter Flatten Jayer
Data fusion layer Concatenate layer layer
3x1 filter

Figure 8: Single-channel CNN architecture of Han et al. fusing the 3 axis accelerom-
eter into a single activation map [9].

Long Short Term Memory models in Transport Mode Detection

Long Short Term Memory (LSTM) models are types of Recurrent Neural Networks
(RNN) that are neural networks that are used to process sequential data. Most
commonly used in natural language processing or audio processing, they can also
be applied to the problem of transport mode detection. LSTM networks have the
capability of learning long term dependencies in the data, which is why they are
suitable for the problem of transport mode detection. This is accomplished by
having specific architectures, utilizing input gates, forget gates, and memory cells

31

'j Concatenate A;| |
(MaxPoolinng) (MaxPoolinng)
1 1

f T

Concatenate Concatenate Concatenate Concatenate

MaxPooling1D MaxPooling1D
Convolution1D Convolution1 D (Convolut:on 1 D) (Convolutlon 1 D)

P @ @

Figure 9: CNN architecture of the multi-sensor feature extractor created by Qin et
al. [28].

MaxPooling 1D

(MaxPoolinng) (MaxPooling]D)

[41]. The LSTM models in transport mode detection either utilize many-to-one or
many-to-many classification. In many-to-one classification, a window is split into
multiple smaller time frames, and a final classification is made after the final frame is
passed through the network. Each frame contains data from a specific time range and
remembers specific features from that data. When multiple frames of data from a
window are passed through the LSTM network, these specific features from previous
frames are used when processing later frame. The final classification is made once all
frames are passed through the LSTM. A diagram from Guvesan et al. [14], as shown
in Figure 10, illustrates how these frames in windows are passed through the LSTM
model. In many-to-many classification, the whole trip is taken into consideration
and windows of a set time are continuously classified by the network until the trip
ends. With many-to-many classification, longer time dependencies are found by the
LSTM networks.

There are two conventional approaches in the literature in the implementations
of LSTM networks for transport mode detection. In one approach, as discussed
previously, features are extracted from the time and frequency domain from frames of
a specific size. These features are the same that can be used in Random Forest models,
as shown in Table 2. In the case of Guvesan et al. windows containing 10 frames are
used, with each frame containing data of 252 distinct features (padded with zeros to
ensure the input space is in the size of a power of two). These features are calculated
from the x, y, and z axes of the accelerometer, gyroscope, magnetometer, as well as
their calculated magnitude, which results in 12 different signals. Twenty-one features
are extracted from these 12 signals resulting in a total of 252 features. The optimal
window size was found to be 12 seconds, meaning each frame is 1.2 seconds long. The
research of Qin et al. [28] illustrates the second approach to use LSTMs in transport

32

Windows

5
000 - 0
oooo - O

= (nu[nu] (u]

5

5 4

= = -

s 2 Dataset -

~ 2

s Frames
e
ooog - o

Feature Extraction and Normalization

- o
= 7

Frame

LST™M

Figure 10: Simple Long Short Term Memory architecture with features extracted
from frames [14].

mode detection. In their research, instead of using handcrafted features from the
data, they utilize convolutional layers to extract meaningful features from specific
time windows. Instead of utilizing windows with a specified amount of frames, the
classification happens continuously. In this case, long term patterns in the data can
be observed, as the memory is not limited to the set windows as implemented by
Guvesan et al. They argue that finding long term patterns in the data, such as how
often a transport mode starts and stops, can be the difference between identifying a
train or a metro. The combination of using CNNs for feature extraction and LSTMs
to find temporal relations in the data is a CNN-LSTM model.

2.6 Creation of travel chains

This section focuses on the creation of travel chains from the outputs of models that
researchers create. The process of creating travel chains from the output of these
models is based on grouping of the windowed results into segments of a single transport
mode of varying length. In this grouping of windows, errors made by the models can
be fixed. Guvesan et al. [15] propose a "Healing" algorithm, a similar concept to what
other researchers do for grouping. In this Healing algorithm, three different types
of segments are classified, pedestrian, stationary, and transportation. Stationary
periods are classified as stationary if they are right before or right after a pedestrian
segment, or are in between transportation segments and the stationary period are
5 minutes or longer. After this, all the transportation segments use the windows
within them and take the most common label. The results of this algorithm, as

33

shown in Figure 11, update the wrongly classified bus windows to metro windows, as
the majority of windows in the segment are labelled as a metro. The implementation
of a healing algorithm on the outputs of the model can significantly improve results.
Guvesan et al. show that their healing algorithm increased the overall recall of the
transport modes by about 12%. However, for these healing algorithms to be practical,
the prediction for walking and stationary must be high.

Figure 11: Healing algorithm of Guvesan et al. [15] where first row is the output of
their model and the second row shows the changes made by the healing algorithm.

34

3 Real-world data and its characteristics

There are significant differences between synthetic lab generated data for transport
mode detection and real-world data. Synthetic data is data that has a controlled
process of collection, with a specific smartphone or sensor setup, which is constant
for the collection of data. This type of data is common in transport mode detection
research as it can be reproducible and produces a baseline goal that is the limit of
what can be achieved with real-world data. In this section, the real-world data and
the challenges it poses will be explained. With insights from the analysis of the issues
with the real-world data, these issues can be addressed, and the accuracy results in
the real world scenario can approach the results observed with controlled lab data.

3.1 Challenges with real world data

In data collection on real-world devices, errors can occur with the data collected
from the sensors. The following subsections will explain these errors and how this
research will attempt to address those errors.

Inconsistent sampling frequency

When collecting sensor data from various devices, different devices allow for different
sampling frequencies. As well as when the sampling frequencies are set, they are
not consistent over time, due to processes running on smartphone devices outside of
the scope of data collection. For example, when another application is using up the
computational resources of the smartphone in the foreground, the data collection
application in the background can be impacted with a lower sampling frequency.
On the other hand, if another application in the foreground is collecting the same
sensor data as the data collection application for transport mode detection at a
higher frequency, then the sampling frequency of the data collection application also
increases. Therefore, in order to deal with the inconsistent sampling frequencies, the
data will be downsampled or upsampled to a specified sampling frequency that could
be achieved by the sensors and then linearly interpolated. In the case of upsampling
the data, there might be a reduction of accuracy compared to the standard sampling
frequency. However, this issue cannot be solved.

Inconsistent orientation of sensors in devices

When collecting sensor data from various devices, different users can store their phone
in different orientations which causes the sensors to output different data for this

35

different orientation. Furthermore, different smartphone devices have the orientation
of their motion-sensing chips in differing orientation. For example, Apple devices
have the orientation of the z-axis sensors flipped in comparison to most Android
devices. In order to deal with the inconsistent orientation of sensors, the data can be
augmented by rotating the axis of the rotation dependent sensors and trained on the
augmented data. Collecting data for training from a broad range of various devices
from different manufacturers can also improve the generalization of the models on
real-world data during inference.

Inconsistent location of devices

Different users of smartphones store their smartphones in different locations; in their
pockets, hands, backpack, or purse. Different storage locations can cause the outputs
of sensors to vary in noise and orientation, more so than when dealing with the
inconsistent orientation of devices. In order to deal with the inconsistent orientation
of devices, the only possible solution is to collect data with the smartphones stored
in different locations. The more representative the training data, the better the
generalization will be. Filtering of the sensor data might help with the generalization
of the model for varying locations. However, this might lead to a loss of essential
artefacts in the data and must be tested.

Inconsistent sensors in devices

Different smartphone devices used in transport mode detection have differing sets
of sensors based on the models of devices; for example, some cheaper models of
smartphones might not include a barometer in their sensor set. Furthermore, some
sensors in cheaper devices can have lower quality and precision in the signals recorded.
To fix issues with sensors of differing quality, the model should be trained on a wide
array of sensors with these differing signal qualities, to achieve realistic results. In
order to accommodate smartphone devices with various sets of sensors, various models
can be built; of course, this can lead to a decrease in the accuracies of transport mode
detection. Therefore, studying the achievable accuracies of models with different
sensor sets is essential to understand the possibilities of implementations of transport
mode detection on various devices.

Non-monotonous data from sensors

In real-world data collection due to the limited processing power of smartphones
dealing with multiple processes, non-monotonous data collection can occur. This
entails data from sensors arriving in inconsistent intervals, while at times being

36

unordered. In such cases, it is not possible to achieve real-time transportation mode
detection. However, due to the nature o the problem, it is not necessary to process
data in real-time. Therefore, it is not an issue when dealing with the processing of
the sensor data at a later time. However, it is necessary to understand the limitations
of transport mode detection and its implementations in real-time.

Inconsistent settings in data collection

Issues in transport mode detection arise when dealing with various users of these
applications in various locations. The settings in which data is collected profoundly
impact the signals that sensors produce. These settings are, for example, road
or track conditions or different models of the vehicle used for transportation. For
example, a car will produce vastly different sensor data when riding on a highway
with constant velocity, where the signal appears to imply that the user is stationary,
or when the car is riding on a dirt road with constant velocity, where the terrain of
the road significantly impacts the sensor signal output. Some of these differences
can be reduced through filtering of the signal. However, this filtering can remove
specific artefacts in the data that can be used to differentiate between a car and a
bus, for example, where a car and a bus on the highway will look more similar than
a car on a highway and a car on a dirt road. The solutions to these problems lie
with the data used in training. The more diverse and complete the training data
is, the better it will perform in a real-world scenario. When dealing with transport
mode detection in different countries, it is a good idea to create new training data
for models specific to those regions if possible.

Data privacy concerns

When dealing with the data describing the daily movement of people, there are many
issues with data privacy. The main issue is with tracking the exact location of users
for 24 hours a day in order to monitor their transport mode use habits accurately.
This information is very sensitive and contains information on where people live,
work, and spend their time at exact times during the day. Due to the sensitivity
of this data, many users do not accept the constant tracking of their locations for
transport mode detection with GPS data. For this reason, research has been focused
on using data from sensors such as accelerometers, gyroscopes, magnetometers,
and barometers that are able to detect transport modes while simultaneously not
containing as much personal data about the users. Some research, as described in
the Background section of this thesis, uses sound data for transport mode detection.
Sound data typically also contains a lot of sensitive user information, that many users
might not be willing to share, for example, personal conversations. Therefore, this
research will focus on transport mode detection using sensors that do not contain
sensitive data to users; accelerometers, gyroscopes, magnetometers, and barometers.

37

4 Materials and Methods

This chapter proposes the methods used for collecting the data and explains the char-
acteristics of the data set used for the training of the CNN. It provides explanations
for the methods used in recreating state of the art models and their preprocessing
techniques. It also proposes the methods used in optimizing the model architecture
as well as selecting the optimal set of preprocessing techniques on the data, to achieve
fast convergence of the model. Finally, the chapter will describe the technologies
used to preprocess the data and train the CNN models.

4.1 Data

Data collection

Data collection is performed using a data collection application on smartphone devices,
as shown in Figure 12. This application allows users to collect all necessary sensor
data for various modes of transportation at a specified frequency. The application
works by the user pressing the transport mode buttons once a change in transport
mode has been made. Every stop in the transportation mode, for example, a bus
stopping at a bus stop requires the user to press the stationary button, and once the
bus resumes travel and starts moving again, then the bus button is pressed again.
The list of possible transport modes collected is:

e Stationary e [ce-Skate e bus

o Walk e Row-boat e Car

e Stairs e Sailboat e Electric car
e Run e Escalator e Motorbike

e Bicycle e Elevator e Scooter

e Kickscooter e Metro e Airplane

e E-Kickscooter e Train e Ferry

e Skateboard e Tram e Motorboat

The application records the sensors that this research will use in transport mode
detection; Accelerometer, Gyroscope, Magnetometer and Barometer. The Accelerom-
eter, Gyroscope, and Magnetometer are mostly sampled at a frequency of 50Hz; some
trips are recorded at 100Hz. The barometer is mostly sampled at 5 Hz; some trips are
sampled at 1Hz or 10Hz. The data is collected in two different fashions, one for the
training and one for testing. In the training data, each data file for training contains
only one mode of transport along with stationary periods. In the testing data, whole
travel chains are recorded. For the models of transport mode detection, only 10

38

Transport Mode | Training Data Hours | Testing Data Hours
Car 102.8 6.9
Bus 37.3 8.4
E-Kickscooter 36.8 1.1
Airplane 28.4 5.4
Stationary 27.0 22.5
Metro 25.0 18.4
Train 24.2 13.4
Bicycle 17.9 1.4
Pedestrian 14.7 24.6
Tram 6.5 3.2

Table 4: Amounts of data in hours of each transportation mode in the training and
testing data sets.

modes are taken into consideration due to the lack of data in other categories. The
amounts of data of each mode, as shown in Table 4, is collected by multiple users.
Eight different users collect the training data on 17 devices, six different iPhone
models and 11 different Android models. The testing data was collected by 12 users
from 19 different device models, six different iPhone models and 13 different Android
models. Due to the unbalanced nature of the dataset, the models will be trained on
balanced batches of data. Therefore, data from classes with lower amounts of data
will be replicated in each epoch.

Data splitting

The training data is used for the development and testing of the various data
preprocessing techniques, data augmentation, and model architectures. It is split
into a training set containing 80% of the data and a development set containing
20% of the data from the data collected for training, as shown in Table 4. Once an
optimal model is selected using comparisons with the development set, it will be
tested on the testing set, as shown in Table 4. The baseline CNN models will be
trained and tested on the same data as the models proposed in this thesis, and a
final comparison of the results will be made using the results of all these models on
the testing data set.

Data prepossessing

The data was preprocessed in multiple stages, as described in the raw data processing
section of the Background. First, the signal data is taken in and up-sampled or
down-sampled to match 50Hz, then the data is windowed to the specified length.

39

Current modality: Walk - 2s
Recording - 4s

SEHEIER
Bicycle Kickscooter

atebo.
t*
+

Escalator Elevator

77
o]

7N

OO
Bus
MOtorbike

-

Motorboat

Ferry

STOP DATA COLLECTION

Figure 12: Application used for the collection of transport data.

After this, if applicable, the specified filtering technique or gravity removal technique
is applied to the windowed signal data. Finally, if applicable, the data is normalized
using a specified normalization technique.

4.2 Evaluation metrics

In this research, the macro-averaged F1-score will be used to determine the success
of these models as the purpose of transport mode detection requires both high recall
and precision. The formula for precision, recall and F1 are described in Equations 7,8,
and 9 where TP is the number of true positives, FP is the number of false positives,

40

and FN is the number of false negatives.

TP

Precision = TP FP (7)
TP
Recall = m (8)

P19y Precision x Recall ()

Precision + Recall

The F1 score is calculated for each class and then the macro-averaged F1-score is
calculated by taking the average of these Fl-scores. In this thesis, for simplicity, the
macro-averaged F1l-score of the model is simply referred to as the F1l-score of the
model.

4.3 Baseline convolutional neural networks

This section will focus on how the various baseline convolutional neural network
models will be trained and evaluated.

Convolutional Neural Network of Liang et al.

To implement the Convolutional Neural Network of Liang et al. [7] that has been
discussed in the Background section, the data must be processed according to their
methodology. In their method, the accelerometer signal is sampled at 50 Hz and
windowed into windows of 10 seconds. The gravity is removed from the raw data
using a low-pass filter at 0.8 Hz. After this, the data is smoothed using a Savitzky-
Golay filter, and the magnitude of the acceleration is calculated by taking the root
of the sum of the squares of the three axes of the accelerometer. Finally, the data
is normalized using a z score normalization. The data is then used to train a CNN
with seven convolutional and pooling layers with a Leaky ReLLU as the activation
function, followed by a fully connected layer.

Convolutional Neural Network of Han et al.

To implement the Convolutional Neural Network of Han et al. [9] that has been
discussed in the Background section, the data must be processed according to their
methodology. In their method, the accelerometer signal is sampled at 20 Hz and
windowed into windows of 10 seconds. After this, the data is normalized using the Z

41

score data normalization technique and used to train the CNN. The CNN architecture
consists of one "Fusion" layer, which takes the three axes as a three-channel input
and outputs one channel using a kernel with a size of one and a stride of one. Then
the three input channels and the one fused channel are stacked and passed through
two convolutional and pooling layers followed by a single fully connected layer.

Convolutional Neural Network of Tambi et al.

To implement the Convolutional Neural Network of Tambi et al. [25] that has been
discussed in the Background section, the data must be processed according to their
methodology. In their method, the accelerometer and gyroscope signal is sampled at
50 Hz and windowed into windows of 30 seconds. The data is then processed by using
a Short-time Fourier transform(STFT), this processing results in spectrograms that
represent a set number of frequencies and their squared magnitude values. There are
six total spectrograms, three generated from the three axes of the accelerometer and
three generated from the three axes of the gyroscope. These spectrograms are then
passed through 2 convolutional layers, a pooling layer and a final fully connected
layer.

4.4 Model optimization
Normalization techniques

First, the optimal normalization technique for data preprocessing will be tested on
the raw sensor data. The background section described Z-score normalization as the
most common in transport mode detection with CNNs. However, research does not
show if it is optimal to normalize the data of each sensor signal individually or on
the scale of the sensor. Individually, in this case, meaning the mean and standard
deviation of each axis of a sensor will be used to normalize that given signal of the
axis. While normalizing on the scale of a sensor, meaning that a global mean and
standard deviation are calculated from the three axes of a sensor and are used to
normalize the three axes.

This individual and sensor normalization will be tested on an initial CNN inspired
by the network proposed by Liang et al., which is chosen as it is the state of the art
architecture that most closely resembles the models proposed in this thesis. The
model will consist of 4 separate groups of convolutional layers, one for each sensor;
accelerometer, gyroscope, magnetometer, and barometer. Each of these groups of
convolutional layers will contain the architecture of the CNN proposed by Liang et
al. and will flow into a final fully connected layer. During these experiments, the
optimal learning rate will be found for each normalization technique, and one will

42

be selected to be used in the further research of model architectures. The Adam
optimizer will be used for updating the parameters of the models during training as
this is the standard in CNNs in transport mode detection.

Model architectures

Once an optimal normalization technique and learning rate is found, the optimal
model architectures will be investigated. There are four main model architectures
that will be investigated; Early Fusion, Middle Fusion, Late Fusion, and Axis fusion.
Early Fusion, as shown in Figure 13, takes all sensors and the signals produced by
their axes and use them as input to 1D convolutional layers, with the first one having
the 10 channels of the sensors as input. After passed through convolutional and
pooling layers, the output is passed through a fully connected layer. Middle Fusion,
as shown in Figure 14, takes the sensors and the signals produced by their axes and
use them as inputs into multiple groups of convolutional and pooling layers. Each
sensor and its x,y, and z-axis signals have their own group of convolutional layers, as
well as the barometer that only has one axis. The outputs of these convolutional
layers are then stacked and passed through another set of convolutional and pooling
layers, followed by a fully connected layer. Late Fusion, as shown in Figure 15, also
takes the sensors and the signals produced by their axes and use them as inputs
into multiple groups of convolutional and pooling layers. Each sensor and its x,
y, and z-axis signals have their own group of convolutional layers, as well as the
barometer that only has one axis. The outputs of these convolutional layers are
concatenated and passed through a fully connected layer. Finally, Axis Fusion, as
shown in Figure 16, has a group of convolutional layers for each x, y, and z-axis of
the sensors, as well as a separate group of convolutional layers for the barometer. So,
in Axis Fusion, the x-axis of the accelerometer, gyroscope, and magnetometer are
used as three input channels passed through a group of convolutional and pooling
layers, same for the y and z axes. The outputs of these four groups of convolutional
layers are then concatenated and passed through a final fully connected layer.

To fully evaluate the different architectures, different sizes of each architecture
are tested. There are four sizes of networks tested with each network, characterized
by the number of convolutional layers they contain. Models with 2, 4, 7, and 10
consecutive convolutional and pooling layers are tested. Each having parameters
that are inspired by the network of Liang et al.. The first convolutional layer in each
model uses a kernel size of 15 for each filter with a stride of 1. The second and third
convolutional layer has a kernel size of 10 with a stride of 1. In cases of the model
having only two convolutional layers, the third layer is not applied. In the models
where it is applicable, the following convolutional layers have a kernel size of 5 with
a stride of 1.

In Early Fusion, the first convolutional layer uses 128 filters, and in the following

43

layers, 256 filters are applied. In Late and Axis fusion, as there are four different groups
of convolutional layers, the number of filters in each group is reduced. Therefore,
there are 32 filters used in the first convolutional layer of each group, and 64 filters
used in the following convolutional layers. In Middle Fusion, the first half of the
convolutional layers are in the structure as with Late Fusion and the later half uses
the same structure as the Early fusion architecture. For example the Middle Fusion
architecture of size 7, there are four groups of 4 convolutional layers, the first having
32 filters and the rest having 64 filters, the outputs are then stacked into a 256 deep
input channel and fed through an additional three layers with 256 filters.

The first seven convolutional layers are all followed by a pooling layer with a
kernel size of 4 and a stride of 2. The activation function for each convolutional layer
is ReLU. During these experiments, an optimal model architecture and the number
of convolutional layers will be found and will be further optimized in the following

research steps.
M
=

acc z
ayrx

ayry

gyrz

¥

convolutional and
pooling layers

l

‘ fully connected layer

h

‘ output

Figure 13: Simplified diagram of Early Fusion model architecture.

Model hyperparameters and architecture

Once the optimal model architecture between Early, Middle, Late, and Axis Fusion
is chosen, further test on the model architecture and hyperparameters will be tested.
The amount and size of fully connected layers after the convolutional layers will be
tested. Adding regularization using dropout will be tested as well as the optimal
probability of dropout. The number of filters in each convolutional layer and the
size of the kernels will also be tested. Different placements of pooling layers are

ayrx

accx /\/\

ayry

e e

accz

h

convolutional and
pooling layers

convolutional and
pooling layers

Y

gyrz

Y

convolutional and
pooling layers

‘ fully connected layer

h 4

‘ output

Figure 14: Simplified diagram of Middle Fusion model architecture.

acc x ayrx

acey

ayry

accz

h

convolutional and
pooling layers

gyrz

Y

convolutional and
pooling layers

‘ fully connected layer

Figure 15: Simplified diagram of Late Fusion model architecture.

44

also investigated, where for example, pooling layers are applied after every two
convolutional layers. Finally, the results of models with ReLU and Leaky ReLU
activation functions will be compared. These investigations will lead to the final
model architecture and hyperparameters used in the final testing process.

45

Tl /\ﬁ Tl Tl
accx accy accz
ayrx ayry ayrz
v ¥ ¥
convolutional and convolutional and convolutional and
pooling layers pooling layers pooling layers

v

| fully connected layer |

A 4

| output |

Figure 16: Simplified diagram of Axis Fusion model architecture.

Window sizes

Once the model architecture and hyperparameters are set, the optimal window size
will be investigated. Windows of size 5, 10, 20, 40, and 60 seconds will be generated
from the training and development data, and their results on the development set
will be evaluated.

Filtering and data augmentation

Once the optimal model hyperparameters, architecture, and window size are found,
further filtering and data augmentation techniques will be tested. Gravity removal
techniques using a low-pass filter and using the signal from the gravity sensor will be
tested. Once the gravity is removed, the data augmentation with the rotation of the
axes will be tested, where random angles will be generated, and the data within the
three axes of the accelerometer, gyroscope and magnetometer will be augmented by
rotating the values based on the random angles. The application of a high-pass and
Savitzky-Golay filter will also be tested to remove noise from the data. Finally, the
application of Min-Max scaling on the barometer will be tested instead of using z
score normalization. This process will lead to the final preprocessing technique used
for the CNN.

Sensor data used

The final testing will occur on models using different combinations of sensors. Each
combination of sensors will be evaluated on the same model architecture. The

46

evaluations will be made on the final testing data set; the results will then be
compared to the final results of all the baseline models. The following sensor
combinations will be tested :

Accelerometer

Accelerometer and Gyroscope

Accelerometer, Gyroscope, and Magnetometer

Accelerometer, Gyroscope, Magnetometer, and Barometer

4.5 Technologies used

The training and evaluating of the models will be done on the cloud using services
from AWS. The models are trained on available GPUs; Tesla K80, NVIDIA V100
and Tesla T100 depending on the availability of these devices. The models are
programmed using the PyTorch [42] Python library. The data preprocessing is also
carried out using Python [43] with the NumPy [44], SciPy [45], and pandas [46]
libraries.

47

5 Results

5.1 Baseline convolutional neural networks
Convolutional Neural Network of Liang et al.

The Convolutional Neural Network of Liang et al. was implemented using the
methodology described in the Materials and methods section of this thesis. The
average F1 score of the results on the development dataset was 0.691, where the
the confusion matrix, as shown in Figure 17, describes how the model performed
classifying the different transport modes with the development set. The average F1
score of the results on the testing dataset was 0.551, where the the confusion matrix,
as shown in Figure 18, describes how the model performed classifying the different
transport modes with the testing set.

Convolutional Neural Network of Han et al.

The Convolutional Neural Network of Han et al. was implemented using the method-
ology described in the Materials and methods section of this thesis. The average F1
score of the results on the development dataset was 0.761, where the the confusion
matrix, as shown in Figure 19, describes how the model performed classifying the
different transport modes with the development set. The average F1 score of the
results on the testing dataset was 0.561, where the the confusion matrix, as shown
in Figure 20, describes how the model performed classifying the different transport
modes with the testing set.

Convolutional Neural Network of Tambi et al.

The Convolutional Neural Network of Tambi et al. was implemented using the
methodology described in the Materials and methods section of this thesis. The
average F1 score of the results on the development dataset was 0.831, where the
the confusion matrix, as shown in Figure 21, describes how the model performed
classifying the different transport modes with the development set. The average F1
score of the results on the testing dataset was 0.566, where the the confusion matrix,
as shown in Figure 22, describes how the model performed classifying the different
transport modes with the testing set.

airplane

bicycle

bus

ekickscooter

Actual

metro

pedestrian

stationary

train

bus

alirplane
icyc!

metro

tram

pedestrian
stationary

Predicted

ekickscooter

Figure 17: The confusion matrix of the CNN network of Liang et al.
on the development data set.

airplane

bicycle

-07

ekickscooter

Actual

metro

pedestrian

stationary

train

- - -
2 o 3 ® 7 e H < £ E
H] o o a i] o o
> o [7) = c b b

a [=1 £ 2 S
[H o £ a 5
= = o o t=]
]) — T:E

[]]

k3 Q

U

Predicted

Figure 18: The confusion matrix of the CNN network of Liang et al.
on the testing data set.

airplane X 0.02 0.03 007 004 01

bicycle ﬂ 0 0 0.03 0.01
-038
GV 0.01 0 ﬂ 003 001 001 0.02 0.08 0.02

[gl 0.03 0 X 0.01 007 0.02

ekickscooter 0.01 0.02

Actual

metro 0.01 . 5 0.01 . 001 005 . 0.06

pedestrian 0.03

stationary 005 002 0.04 0.05 0o - 0.05 003
L 0.01 001 007 004 001 007 0 0.04 -

- 002 002 01 007 001 009 0 0.06 0.06

L) L] [l [s . =
e ¢ & § & £ 5 T £ E
L} = - =] o = = B 8
=1 o o £ 0 o
o k] ¥ E v =
;= = b [=]
(] 4] =] m

o [Gl

£ o

[T

Predicted

Figure 19: The confusion matrix of the CNN network of Han et al.

on the development data set.

-09
airplane 0.4 002 002 005 009 002 X 0.05 003

-038

hicycle W] 0 0.2 0.01 001 004 001 001
- o - . - o -07

S 0.01 0 - 005 002 003 0.04 01 0.03

car 0.1 0.02 0.2 0.5 0.06 0.05 0.1
— ekickscooter 0.04 0.06
!
< metre 0.02 0.1 .02 X 0.07
pedestrian 002 0.01 0.05 0.01
DELLntaa 007 002 0.07 0.08 . 0.4
train 005 001 X X 0.06
eom 0.01 0.01 . } 2 .2 0.07
u E w L b o = = c £
= = = &] i) " © m m
e g7 & & § g > *
= = u = i =
(] 4] =1]
Y] Gl
5 o
[T
Predicted

Figure 20: The confusion matrix of the CNN network of Han et al.
on the testing data set.

airplane X ? 0.01 X 0.02

bicycle 0 0 0.03 0
-038
bus 0 ﬂ 0.09 0 0.01 0.02
{gl 0.02 0.01 ﬂ 0 0.01 001 002

ekickscooter

™
=
=
< metro 0.05 .2 0.01
pedestrian
stationary 01 0.02 X 0.05 0.07 001
train O 0.05 .2 - 0.01
tram 0.07 0.03 . .2 0.01 P06
¢ % % 8 ¥ 2 5 & § ¢
L} = - =] 7] = -] = g
5 = it £ A S
® @ 8 i 3
H ¥ T
5 a
[T
Predicted

Figure 21: The confusion matrix of the CNN network of Tambi et
al. on the development data set.

airplane . .2 ! 0.5 0.03
hicycle 0.01 001 001 0.02 -08
bus) X 2 0.04 0.04 0.01
car . . 2 .08 001

ekickscooter 002 001

Actual

metre 0.07 . X 0.02

pedestrian 0.01

stationary 0.2 0.04
LET 0.06
ram I 1o . 3 006
v u] [. o = - -
e § % 8 B £ § F § 5
e s ¥ 5 5 5 ¢
B =] c g
" = i O =
"3 = m
[¥) L] t—.l‘
i a
[T
Predicted

Figure 22: The confusion matrix of the CNN network of Tambi et
al. on the testing data set.

ol

5.2 Model optimization
Normalization techniques

The individual and sensor-based z score normalization were used for training the
Late Fusion model with seven convolutional layers as described in the Materials and
methods section of this thesis. The training loss was monitored over 10 epochs; the
results, as shown in Figure 23, show how the loss decreases over multiple epochs.
The Individually normalized data led to faster convergence and resulted in a higher
F1 score on the development set as well, 0.769 versus the 0.736 F1 scores of the
sensor normalized data. The optimal learning rate was found to be 0.00008.

w= Individual == Sensor
1.00

0.75

0.50

Train Loss

0.25

0.00

2 4 6 8 10

Epoch

Figure 23: Comparison of training loss for the individual and sensor based normal-
ization over 10 epochs.

Model architectures

The Early, Middle, Late and Axis Fusion architectures were trained with the individual
z score normalized data with the 0.00008 learning rate. Each model was trained
with two, four, seven, and 10 convolutional layers followed by a fully connected
layer as described in the Materials and methods section of this thesis. The optimal
number of convolutional layers for the Early and Axis fusion was 4, while Late and
Middle Fusion performed better with seven convolutional layers. After 10 epochs, the
training losses decreased fastest for Axis and Early Fusion, as shown in Figure 24.

The F1 scores on the development set after 10 epochs were:

52

1. Early Fusion: 0.836 F1
2. Middle Fusion : 0.764 F1
3. Late Fusion : 0.807 F1

4. Axis Fusion: 0.811 F1

w= LF == EF MF == AF
1.00
0.75
&
S 050
C
I
'—
0.25
0.00
2 4 6 8 10
Epoch

Figure 24: Comparison of training loss of Farly Fusion, Middle Fusion, Late Fusion
and Axis Fusion architectures of the CNN.

Model hyperparameters and architecture

The Early Fusion architecture with four convolutional layers was found to be the most
effective by the results shown in the previous section. Further tests were made to find
optimal kernel sizes, amounts of fully connected layers, placements of and amounts
of pooling layers, the addition of Dropout and setting of the activation functions, the
following parameters found had the highest F1 score on the development data set:

1. Constant kernel size of 10 with a stride of 1

2. Pooling layers following each convolutional layer
3. Dropout with a probability of 0.5

4. ReLU activation function

5. Only one fully connected layer

93

The Early Fusion architecture with four convolutional layers and the settings
above reached an F1 score of 0.870.

Window sizes

Networks using window sizes of 5, 10, 20, 40, and 60 seconds were all trained, and
the F1 scores of each on the development set are shown in Figure 25. Windows of 20
seconds performed the best.

1.00

0.95
¥
0.90
&
=
=
(=]
% 0.85
L
0.80
0.75
10 20 30 40 50 G0
window sizes

Figure 25: Comparison of development set F1 results for various window sizes on
the development set.

Filtering and data augmentation

Various filtering and data augmentation techniques were tested; the F1 scores on
the development set are shown in Figure 26. The best results came with the gravity
removed accelerometer data using Min-Max scaling for the barometer instead of Z
score; the gravity was removed in this case using the signal of the gravity sensor of
the phone. The low-pass filter was set at 0.8Hz to remove gravity was set at 0.8
Hz, and the band-pass filter used the same low frequency of 0.8Hz and filtered out
frequencies higher than 13Hz. The rotation of the accelerometer, gyroscope, and
magnetometer was set at angles between 0, and 45 degrees, more significant changes
in the angles added too much noise to the data and resulted in poor results. For each
window in the testing set, the rotation was applied with two random angles. This
resulted in the training set being three times larger. The Savitzky-Golay filter was
applied using the same parameters as applied in the preprocessing of Liang et al..

54

1.00
0.95
0.90

0.891
0.889 0.883
0.85 0867
0.843
0.80
0.75

Gravity Gravity Low-pass Bandpass SavGol Gravity
Removed - Removed Removed
Bar MinMax Rotated

Figure 26: Comparison of development set F1 results for various filtering and
augmentation techniques.

Sensor data used

The final Early fusion model was trained on the data from various combinations of
sensors. The only differences in these models were the number of input channels
in the first convolutional layer depending on the number of signals present in the
sensor combinations. The optimal sensor combination was found to be accelerometer,
gyroscope an barometer, as shown in Figure 27.

Final results of the optimized model

The final Early fusion model using the accelerometer, gyroscope, and barometer
was evaluated on the development and training data set. The average F1 score of
the results on the development dataset was 0.893, where the the confusion matrix,
as shown in Figure 28, describes how the model performed classifying the different
transport modes with the development set. The average F1 score of the results on
the testing dataset was 0.723, where the the confusion matrix, as shown in Figure 29,
describes how the model performed classifying the different transport modes with
the testing set. The total number of parameters in this network is 4,997,108.

95

1.00

Figure 27: Comparison of the various sensor combinations and their resulting F1
score on the testing set.

airplane

bicycle
- 08
bus
car
- 0.6
— ekickscooter
°
=
< metro
- 0.4
pedestrian
stationary
- 0.2
train
tram
W] w = v o [= c E
g S a 8 o s 2 I B ©
> ©] c e B
a U S E a 5]
L) a 2 =] b=
® = 9 o Ic
] @ #
= a
]
Predicted

Figure 28: The confusion matrix of the optimized Early Fusion
model on the development data set.

airplane

bicycle -08

— 0.6
— ekickscooter
]
=
=
< metro
- 04
pedestrian
stationary
- 0.2

train

[n [- > c =
g 5 el 7] 2 S [c £
5 2 o 8 3 = 2 B 8
2 o £ 7] o b
c o E $]
]] o ©

= @ #

2 a

o

Predicted

Figure 29: The confusion matrix of the optimized Early Fusion
model on the testing data set.

57

6 Discussion

This chapter discusses the results and findings from previous chapters and draws
conclusions from them. The focus of this thesis was detecting various modes of
transport using sensors commonly found in smartphone devices using Convolutional
Neural Networks with three points of focus. The first point of focus was on which
preprocessing techniques applied to the raw signal data of motion sensors help
Convolutional Neural Networks converge optimally and generalize well to real-world
data. The second point of focus was on which model architecture is best suited for
a Convolutional Neural Network when using multiple sensors as input. The final
point of focus was which combinations of motion sensors produce the best results
in transport mode detection. Each of these points is addressed in the following
paragraphs.

The optimal preprocessing techniques on the raw signal data proved to be using
the gravity sensor of the smartphone to remove the gravity component from the
three axes of the accelerometer and later normalizing the data. Z score normalization
proved to be the most optimal technique on the accelerometer, gyroscope, and
magnetometer while processing the barometer using Min-Max scaling. Through
testing, the optimal window size was found to be 20 seconds. However, band-pass
filtering of the signal provided similar results to gravity removed results. Therefore, in
devices where a gravity sensor is not present, band-pass filtering can be an acceptable
method for filtering out the gravity component.

The optimal model architecture when using multiple sensors as input is Early
Fusion. Various architectures with different amounts of convolutional layers were
tested. The optimal solution was a four convolutional layer Early Fusion architecture
that directly inputs all sensor signals as multiple input channels. Processing specific
groups of signals before fusing them did not prove to be more effective than processing
them all together.

The optimal set of sensors for transport mode detection using the Early Fusion
architecture is the accelerometer, gyroscope, and barometer. Adding the magnetome-
ter slightly decreased the performance of the model, most likely due to the noise
present in the signal of the sensor.

There were large differences between the F1 score results between the development
data set and the testing data set. These differences most likely come from the issues
with real-world data discussed in previous chapters. The training data set was not
large enough to train the CNN model to generalize well to data coming from various
settings in data collection. Filtering, augmenting and normalizing the data could
not fix this issue of lacking data. This can be seen from the baseline CNN models
performing poorly as well. From their research, the baseline models all achieved
around 98% accuracy classifying their specific modes of transport. In this research,

o8

the number of modes was increased to ten, which could understandably decrease
the accuracy of predictions. However, the main differences came in the form of the
data collected. Where many users using different devices collected data in different
settings. This data showed a more accurate representation of real-world data and
indicates that results from synthetic lab data are not indicative of real-world results.
The algorithm proposed in this research outperformed state of the art CNN models
due to the introduction of multiple sensors as input, optimized preprocessing, and
optimized model architectures.

6.1 Future work

The results from transport mode detection and classification of the Early Fusion CNN
model outperform state of the art CNN models. However, the differences between
the development data set results, and the training data set results to show that these
models still cannot be used as reliable methods in transport mode detection, as an
F1 score of 0.72 will cause a lot of mislabeled modes of transport. Further work must
be done in order to help the models generalize on a broad range of data.

Firstly, more data should be collected from a broad context of environments, so
the CNN model can learn how to classify transport modes in this broad context. The
influence of the imbalanced data set can be seen from the confusion matrix, where
modes with less data often had a poorer F1 score. Furthermore, multiple models can
be trained and used to label the data in an ensemble method. This ensemble labelled
data can then be used to train a final model, which can lead to an improvement in
precision and recall.

Second, further testing of preprocessing techniques should be made, evaluating,
for example, ZCA normalization of the signals. Furthermore, optimizing the pa-
rameters of filters used on the data, for example, the band-pass, filter could lead to
improvements in classification results. Furthermore, overlapping windows and their
effect on results in training and inference should e investigated, as no overlap was
tested in this research.

Third, the CNN model should be implemented into a CNN-LSTM model in order
to learn essential features in more extended time frames. From the research in the
Background of this thesis, it has been shown that CNN-LSTM models work well
in transport mode detection. However, they require more massive datasets to train
correctly, as the data sets used in the research of these models were thousands of
hours large.

Finally, the four different architectures should be investigated further. The
differences with Early Fusion, Axis Fusion, and Late Fusion were not large during
the initial phases of the model optimization. Once data processing and augmentation

99

was finalized, the Early Fusion model had a significant increase in performance; this
increase could be larger or smaller with the different fusion architectures.

60

References

1]

[10]

[11]

D. Shin, D. Aliaga, B. Tuncer, S. M. Arisona, S. Kim, D. Ziind, and G. Schmitt,
“Urban sensing: Using smartphones for transportation mode classification,”
Computers, Environment and Urban Systems, vol. 53, p. 76-86, 2015.

K. Sasaki, K. Nishii, N. Ohmori, M. Nakazato, and N. Harata, “Activity diary
surveys using gps mobile phones and pda,” 01 2006.

J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Harrison, and
J. Landay, “Ubigreen: Investigating a mobile tool for tracking and supporting
green transportation habits,” pp. 1043-1052, 10 2009.

S. Wells, H. Kotkanen, M. Schlafli, S. Gabrielli, J. Masthoff, A. Jylhé, and
P. Forbes, “Towards an applied gamification model for tracking, managing,

encouraging sustainable travel behaviours,” ICST Transactions on Ambient
Systems, vol. 1, p. e2, 10 2014.

Y. Parag and T. Fawcett, “Personal carbon trading: a review of research
evidence and real-world experience of a radical idea,” Energy and Emission
Control Technology, vol. 2014, pp. 23-32, 10 2014.

H. Zhao, C. Hou, H. Alrobassy, and X. Zeng, “Recognition of transportation
state by smartphone sensors using deep bi-Istm neural network,” Journal of
Computer Networks and Communications, vol. 2019, p. 1-11, Mar 2019.

X. Liang and G. Wang, “A convolutional neural network for transportation
mode detection based on smartphone platform,” 2017 IEEFE 1/th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2017.

J. V. Jeyakumar, E. S. Lee, Z. Xia, S. S. Sandha, N. Tausik, and M. Srivastava,
“Deep convolutional bidirectional lstm based transportation mode recognition,”
Proceedings of the 2018 ACM International Joint Conference and 2018 Inter-
national Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers - UbiComp 18, 2018.

X. Han, J. Ye, J. Luo, and H. Zhou, “The effect of axis-wise triaxial acceleration
data fusion in cnn-based human activity recognition,” IEICE Transactions on
Information and Systems, vol. E103.D, p. 813-824, Jan 2020.

S.-H. Fang, Y.-X. Fei, Z. Xu, and Y. Tsao, “Learning transportation modes
from smartphone sensors based on deep neural network,” IEEE Sensors Journal,
vol. PP, pp. 1-1, 08 2017.

S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation
mode detection on smartphones,” Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems - SenSys 13, 2013.

[12]

[13]

[23]

61

W. Xu, X. Feng, J. Wang, C. Luo, J. Li, and Z. Ming, “Energy harvesting-based
smart transportation mode detection system via attention-based lstm,” IEFEE
Access, vol. 7, p. 66423-66434, 2019.

C. Carpineti, V. Lomonaco, L. Bedogni, M. D. Felice, and L. Bononi, “Custom
dual transportation mode detection by smartphone devices exploiting sensor
diversity,” 2018 IEEFE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2018.

G. Asci and M. A. Guvensan, “A novel input set for Istm-based transport mode
detection,” 2019 IEEFE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2019.

A. Guvensan, B. Dusun, B. Can, and I. Turkmen, “A novel segment-based
approach for improving classification performance of transport mode detection,”
Sensors, vol. 18, no. 2, p. 87, 2017.

N. Cardoso, J. Madureira, and N. Pereira, “Smartphone-based transport mode
detection for elderly care,” 2016 IEEFE 18th International Conference on e-Health
Networking, Applications and Services (Healthcom), 2016.

L. Wang and D. Roggen, “Sound-based transportation mode recognition with
smartphones,” ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019.

S. Dabiri and K. Heaslip, “Inferring transportation modes from gps trajecto-
ries using a convolutional neural network,” Transportation Research Part C:
Emerging Technologies, vol. 86, pp. 360 — 371, 2018.

K. Merry and P. Bettinger, “Smartphone gps accuracy study in an urban
environment,” Plos One, vol. 14, no. 7, 2019.

J. J. Q. Yu, “Travel mode identification with gps trajectories using wavelet
transform and deep learning,” IEEE Transactions on Intelligent Transportation
Systems, p. 1-11, 2019.

X. Jiang, E. Souza, A. Pesaranghader, B. Hu, and D. Silver, “Trajectorynet:
An embedded gps trajectory representation for point-based classification using
recurrent neural networks,” 05 2017.

M. Simoncini, L. Taccari, F. Sambo, L. Bravi, S. Salti, and A. Lori, “Vehicle
classification from low-frequency gps data with recurrent neural networks,”

Transportation Research Part C: Emerging Technologies, vol. 91, p. 176191,
2018.

M. Kok, J. D. Hol, and T. B. Schon, Using Inertial Sensors for Position and
Orientation Estimation. 2017.

[24]

[25]

[20]

[27]

[28]

[29]

[30]

62

A. Immer, F. Stock, and P. Wagner, “Joint travel mode detection and segmen-
tation using recurrent neural networks,” 09 2017.

R. Tambi, P. Li, and J. Yang, “An efficient cnn model for transportation mode
sensing,” Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, 2018.

Y. Cai, Y. Zhao, X. Ding, and J. Fennelly, “Magnetometer basics for mobile
phone applications,” vol. 54, 02 2012.

W. Shao, F. Zhao, C. Wang, H. Luo, T. M. Zahid, Q. Wang, and D. Li, “Location
fingerprint extraction for magnetic field magnitude based indoor positioning,”
Journal of Sensors, vol. 2016, p. 1-16, 2016.

Y. Qin, H. Luo, F. Zhao, C. Wang, J. Wang, and Y. Zhang, “Toward transporta-
tion mode recognition using deep convolutional and long short-term memory
recurrent neural networks,” IEEE Access, vol. 7, p. 142353-142367, 2019.

L. Bedogni, M. Di Felice, and L. Bononi, “By train or by car? detecting the
user’s motion type through smartphone sensors data,” in 2012 IFIP Wireless
Days, pp. 1-6, 2012.

X. Zhou, W. Yu, and W. C. Sullivan, “Making pervasive sensing possible:
Effective travel mode sensing based on smartphones,” Computers, Environment
and Urban Systems, vol. 58, pp. 52 — 59, 2016.

H. F. Nweke, Y. W. Teh, G. Mujtaba, U. R. Alo, and M. A. Al-Garadi,
“Multi-sensor fusion based on multiple classifier systems for human activity

identification,” Human-centric Computing and Information Sciences, vol. 9,
no. 1, 2019.

A. K. Chowdhury, D. Tjondronegoro, V. Chandran, and S. G. Trost, “Ensem-
ble methods for classification of physical activities from wrist accelerometry,”
Medicine Science in Sports Fxercise, vol. 49, no. 9, p. 1965-1973, 2017.

C. Saranya and G. Manikandan, “A study on normalization techniques for
privacy preserving data mining,” vol. 5, pp. 2701-2704, 06 2013.

S. Hemminki, P. Nurmi, and S. Tarkoma, “Gravity and linear acceleration
estimation on mobile devices,” Proceedings of the 11th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014.

K. Jahr, R. Schlich, K. Dragos, and K. Smarsly, “Decentralized autonomous
fault detection in wireless structural health monitoring systems using structural
response data,” 07 2015.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to convolu-
tional neural networks for computer vision,” Synthesis Lectures on Computer
Vision, vol. 8, no. 1, p. 1-207, 2018.

[37]

[38]

[39]

[40]

[41]

[42]

63

H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, “Malware
analysis of imaged binary samples by convolutional neural network with attention
mechanism,” pp. 127-134, 03 2018.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. Inman, “1d
convolutional neural networks and applications: A survey,” 05 2019.

D. Scherer, A. Miiller, and S. Behnke, “Evaluation of pooling operations in
convolutional architectures for object recognition,” Artificial Neural Networks —
ICANN 2010 Lecture Notes in Computer Science, p. 92—-101, 2010.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929-1958, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, pp. 1735-80, 12 1997.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, eds.),
pp. 8024-8035, Curran Associates, Inc., 2019.

G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. Carey, I. Polat, Y. Feng, E. W. Moore, J. Vand erPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261-272, 2020.

Wes McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference (Stéfan van der Walt and
Jarrod Millman, eds.), pp. 56 — 61, 2010.

	Abstract
	Acknoledgements
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Use cases of transport mode detection
	1.2 Smartphones and sensors
	1.3 Methods for transport mode detection
	1.4 Problem definition
	1.5 Thesis structure

	2 Background
	2.1 Sources of data
	2.2 Data Preprocessing
	2.3 Gravity estimate and removal
	2.4 Random Forest models for transport mode detection
	2.5 Deep Learning models for transport mode detection
	2.6 Creation of travel chains

	3 Real-world data and its characteristics
	3.1 Challenges with real world data

	4 Materials and Methods
	4.1 Data
	4.2 Evaluation metrics
	4.3 Baseline convolutional neural networks
	4.4 Model optimization
	4.5 Technologies used

	5 Results
	5.1 Baseline convolutional neural networks
	5.2 Model optimization

	6 Discussion
	6.1 Future work

	References

