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Abstract

The effect of natural convection on the uncertainty calculation of the MIKES dynamic
gravimetric gas mass flow measurement system (DWS) is studied in this paper. The magnitude
of the uncertainty component due to varying shear stress rate at the wall of the cylinder is
studied theoretically at two different varying temperature models. Based on the obtained
results, the contribution of the component may be significant, if the temperature difference
between the wall of a gas cylinder and ambient air increases 1 K during one measurement
cycle. Then the contribution of the shear stress can be above 92% of the combined standard
uncertainty at the gas mass flow rate 0.1 mgs~'. Correspondingly, the contribution at the same
temperature difference is below 1% at the mass flow rate 625 mgs~'. Applying the Monte
Carlo uncertainty estimation method, the assumption of independent variables was shown to

be reasonable.

1. Introduction

A dynamic gravimetric mass flow determination provides a
fundamental method to calibrate small gas flow meters: the gas
mass flow rate value is determined solely from mass and time
measurements. Thus, this method establishes a traceability
link from flow measurements to realizations of mass and time
units. The dynamic determination means that a gas vessel
placed on a weighing pan of a balance is continuously weighed
while gas is flowing out from the vessel. The mean gas mass
flow rate can be obtained from recorded mass and time values,
for example by calculating the slope of the linear fitting of the
air buoyancy corrected balance indications over time values.
In mass measurements, the effect of convective forces is
minimized by letting a weight and the balance reach thermal
equilibrium if possible. Glaser and Do [1] studied the effect of
these forces on the apparent masses of different mass standards
as a function of temperature and time. In another paper by
Glaser [2], appropriate waiting times for different types of
weights are concluded from studies on heat transfer effects
around different mass standards. After the appropriate waiting
times, the thermal equilibrium is assumed to be achieved and
the effect of convective forces can be neglected. Lofstrom [3]
studied the manufacturing of gas compositions by the weighing
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method. He also studied the response of an apparent mass to
thermal gradients [3] and presented an equation for the mass
change of a cylindrical surface due to convective forces as

Sme = CAh' AT™. (1

In equation (1) ém., A, h and AT are the change in the balance
indication due to natural convection in grams, the vertical
surface area of the cylinder in square centimetres, the height
of the cylinder in centimetres and the temperature difference
between the wall of the cylinder and ambient air, respectively.
Constants C = —9.2 x 1077 gem™>» K 'andn = 1.

The apparent mass change due to the natural convection
of ambient air has been studied numerically with the CFD-
program by Mana et al in [4]. They found that the experimental
and numerical results were in reasonable agreement. They also
derived sensitivity coefficients for a mass change as a function
of temperature for a 1 kg stainless steel mass standard and a
spherical density standard made of silicon.

In contrast to precision mass measurements, thermal
equilibrium cannot be reached in gas mass flow measurements
because the flow measurement process is highly dynamical
by nature. When gas flows out from the gas vessel, the
gas pressure in the vessel decreases. This in turn induces a
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temperature drop in the vessel. The thermal non-equilibrium
between the gas vessel wall and ambient air continuously
increases during the measurement. The natural convection
flow induced by the temperature difference causes shear stress
on the wall of the vessel. It varies as a function of temperature
difference between the wall and ambient air.

The smaller is the mass flow rate the stronger the effect
of varying shear stress that can be detected, because of the
small gas mass loss from the vessel during one measurement
cycle. At mass flow rates less than 21 mgs~!, a quite long
measurement time (>400s) is needed to obtain the mass
loss required to achieve a good accuracy. Usually, however,
thermal non-equilibrium at the very small gas mass flows is
not generated by a fast pressure drop but more probably by
inadequate temperature stabilization after the cylinder filling
or rapid fluctuations of the temperature of ambient air.

In a previous study at MIKES, the effect of the natural
convection flow was experimentally investigated by inducing
a thermal non-equilibrium between the gas vessel wall and
ambient air and then allowing the system to reach equilibrium.
The order of magnitude for the effect was found by monitoring
the temperature difference and indications of the balance as a
function of time [5]. This was included in the uncertainty
budget after multiplying by a safety factor of two.

To increase our knowledge of the natural convection effect,
further theoretical and experimental investigations have been
carried out at MIKES [6]. The obtained results provide a good
basis for improving the uncertainty analysis of the MIKES
primary flow standard (DWS).

In this work, shear stress on a cylindrical wall in a time
dependent situation is calculated using the similarity solution
of laminar boundary layer equations. This calculation method
is presented in [6], where theoretical results were validated
through experimental results. In the analysis, it is assumed
that the temperature of the wall is known as a function of time
during the gas mass flow measurement. The estimate for the
total effect of varying shear stress on the measurement result is
obtained as a time average of instantaneous shear stress rates on
the cylinder wall. The method presented in [6] can be applied
to the cylinders mounted vertically (the bottom of the cylinder
on the weighing pan of the balance) or horizontally (the longest
side on the weighing pan).

If the gas pressure decreases fast, the wall of the cylinder
cools down rapidly and the water vapour from laboratory air
can condense onto the wall. This phenomenon near the dew-
point is not, however, included in this study.

In this paper, the calculation of standard uncertainty for
the MIKES dynamic gravimetric gas mass flow standard is
first briefly presented. Then the estimation of the uncertainty
component due to natural convection flow is described. The
significance of this component is studied by calculating
the combined uncertainty of the gas flow standard in four
cases with two different temperature difference models. The
numerical Monte Carlo method (MCS) was applied to study
the possible effect of correlation and to validate the obtained
uncertainty calculation based on the law of propagation of
uncertainty (LPU). As an example of the validation process,
the Monte Carlo procedure was applied to the flow rate
of 0.1mgs~'.
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2. Uncertainty analysis method

2.1. Mathematical model for generated gas mass flow

In a dynamic gravimetric gas flow standard, the instantaneous
net force F acting on the load cell of a balance is

F=um, (1—%)g+5FT+8FC+8FL, )
t

where m¢, pa, pr, &, 6 Fr, §Fc and § F1 are the true mass of
the gas cylinder, the density of the surrounding air, the effective
density of the gas cylinder, the acceleration due to gravity,
the sum of forces caused by the connecting tube, the force
due to natural convection and the force due to leakage out of
the gas cylinder, respectively. The indication of the balance /
is I = L + 61, where L is the net force divided by the local
acceleration of the gravity and § I includes errors due to balance
mechanics (resolution, linearity, stability and zeroing). Thus
it can be written

1=am, (1 - @) +81 +8my +8me +dmL. (3
Pt

where @ = (1 — puo/p)™", po = 12kgm™>, p, =
8000 kg m~> and 8mry, dmc, Smy are contributions to the
indication due to the connecting tube, natural convection and
leakage, respectively. The true mass of the gas cylinder is

I—81—8mT—8mC—8mL
0{(1—&>
Pt

By writing the total differential of (4) and dividing it by a
differential time dt, one gets the mass flow

“

my =

mtzﬁ[i—si—%pa—mt—f“pt—am—amc—sm],
t t
(5)

where B = (a(1 — pa/p))~".

When applying equation (5) to a dynamic weighing based
system, a large number of consecutive short time intervals are
studied and the following discrete approximation is used:

. B
tie (AL = AST = miApa/ o= miApepa] 9]

—Adémt — Admc — Admy]. ©6)

Sensitivity coefficients are derived from equation (6) for
the calculation of the combined standard uncertainty. The
uncertainty components are presented in table 1. In practical
calculations, the uncertainty component u(Ap) and the
uncertainty of acceleration due to gravity are assumed to
be so small that they can be neglected. Assuming that all
variables are independent of each other, the combined standard
uncertainty is calculated in the following way [7]:

10

g (i) ~ ul(Amy) = ciu (). (7)
i=1

An example of the uncertainty budgets can be found from
table 2.
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Table 1. Uncertainty components.

i Vi Annotation

—

u(ASI) kg
2 u(Al) kg

Resolution of the balance and its stability
Gas mass difference, including contributions due to a balance nonlinearity and a standard

deviation of the mean of the difference between the linear fit of the balance indications and
the instantaneous indication of the balance

3 u(p,) kgm™  Air density
4 u(Apy) kgm™  Air density change during the measurement
5 u(p) kgm™  Density of the gas cylinder
6  u(Ap) kgm™  Density change of the gas cylinder during the measurement
7  u(At) S Time measurement
8 u(Admr) kg Effect of connection tube during the measurement
9 u(Adém.) kg Effect of natural convection during the measurement
10 u(Aémp) kg Leakage out of the system during the measurement

Table 2. Uncertainty budgets at different gas mass flow rates at AT = 1 K.

—1
cu(y) gm/(mgs™)

(mgs~h) 625 312 21 0.1

ciu(yr) 1.6 x 107° 8.4 x 1077 9.0 x 107° 6.3 x 10710
cu(yy) 0.05 0.2 2.1 x 1074 7.9 x 1076
c3u(ys) 1.4 x 1073 6.8 x 1074 1.0 x 1073 48 %1078
cau(ys) 2.2 x 1073 6.3 x 107° 6.1 x 1078 4.7 x 1071
csu(ys) 0.006 43 x 1073 4.1 x 107 5.1 x 107
cot(Ye) 0 0 0 0

cru(y7) 0.06 0.03 2.1x 1073 9.8 x 107°
csu(ys) 0.7 0.3 0.01 1.2 x 1074
cout(y9) 0.06 0.02 2.6 x 1073 4.6 x 1073
crou(¥10) 29 x 1074 2.9 x 1074 5.8 x 1073 5.8 x 1073
ut 0.72 0.33 0.014 0.0005

* Combined standard uncertainty.

2.2. An improved method for estimating the effect of natural
convection flow

As shown in [6], the time average equation can be used as the
estimate of varying convective forces (shear stress rate) during
one measurement cycle

. d 1 !

Here, + — ' is the measurement time and 7, (AT (t)) the
gas cylinder wall shear stress as a function of temperature
difference. The instantaneous shear stress rate at the wall of
the gas cylinder is calculated as follows:

du 2 (G \E L,
rw=pavd—“=—“[xﬁgAT(r)]z< r) £0), ()
y x 4

where v is the kinematic viscosity, u# the velocity along
a surface of the cylinder, u the absolute viscosity, Sg
the buoyancy parameter, AT (¢) the temperature difference
between the cylinder wall and ambient air at the time ¢ and
Gry local Grashof number at the distance x from the leading
edge [6]. The second derivative at zero of the dimensionless
similarity function is calculated by solving numerically the set
of coupled non-linear differential equations (10) and (11) [8,9].
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These equations give a similarity solution for a laminar two-
dimensional boundary layer equations.

"+ @+m+n)ff =2(0+m+n)f?+0© =0, (10)

an

In equations (10) and (11), primed quantities indicate
differentiation with respect to a similarity parameter n, and
Pr is the Prandtl number. Variables f and ® are functions of
n with boundary and initial conditions

£(0) = f(0) = f'(c0) =0,
Q) =1

O"+B+m+n)Pr fO —4m Pr f'© = 0.

12)
13)

The gas cylinder wall temperature is assumed to obey the power
law. Therefore, the standard cases are determined by m = 0
(Ty is a constant) and m = 1/5 (heat flux gy, is a constant).
Each value of n corresponds to a particular body contour. For
n = 0, a flat plate is obtained, which is used for calculating
the velocity profile around a gas cylinder placed vertically on
a balance. The value n = 1 corresponds to the stagnation
point flow along a rounded surface, for example a circular gas
cylinder placed with the longest side on the weighing pan of a
balance.

With equation (8), it is possible to obtain an uncertainty
estimate for the effect of natural convection flow after

O(c0) = 0.
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Figure 1. The temperature difference model between the wall of the gas cylinder and ambient air as a function of a dimensionless
measurement time. The model was used for simulating a situation where the temperature of the gas vessel or ambient air increases or

decreases during a measurement cycle.

completing the measurement. It is assumed that an adequate
number of grid node points is used to get a grid independent
numerical solution of the boundary and initial value problem
(equations from (9) to (13)). Then the numerical calculation
uncertainty is negligible.

3. The contribution of natural convection flow to the
combined standard uncertainty

To study the significance of the natural convection in the
uncertainty budget at different mass flow rates, the presented
theory was implemented as a computer code. Calculations
were carried out for two cases with different time dependences
of the temperature difference between the gas vessel and
ambient air. In the first one the dependence was obtained using
a theoretical model which was developed for calculating the
thermal stabilization times for weights [2]. Here, the total
change in the temperature difference between the wall and
ambient air during the time period of interest was 1 K. The
temperature difference as a function of measurement time is
presented in figure 1. This temperature model was used for
simulating a situation where the temperature of the gas vessel
or ambient air increases or decreases during a measurement
cycle. In the second case, the temperature difference was
assumed to change in the same way as measured inside the
wind shield of the MIKES system very near the wall of the gas
vessel during one gas mass flow measurement. As can be seen
from figure 2, the temperature difference fluctuated around the
initial temperature value less than £0.2 K. This temperature
difference model simulates weighing conditions without any
major temperature increase or decrease.

In the calculation of measurement results, the effect of
varying shear stress rate is taken into account only in the
measurement uncertainty, i.e. the estimate of §mc is assumed
to be zero but its uncertainty is included in the uncertainty
budget. Therefore, the effect of varying shear stress can only
be seen in the change in the combined standard uncertainty.
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Figure 2. The temperature difference model between the wall of
the gas cylinder and ambient air as a function of a dimensionless
measurement time. The model was used for simulating normal
measurement situation.

When comparing the uncertainty calculations obtained
with the two temperature difference models, all other
uncertainty components except the one related to the shear
stress were assumed to be constant in all cases. Only
the calculation method for u(Aémc) and the temperature
difference model were changed.

In the calculations, four different mass flow rates were
studied: 0.1 mgs™', 21 mgs~!, 312mgs~' and 625mgs~!.
The corresponding uncertainties for all mass flow rates were
calculated using four different values for u(Admc). In the first
case, the temperature difference model was adjusted giving
AT = 1K during one measurement cycle. Also the varying
shear stress was taken into account as in equation (8). The
second case was similar to the first one, but now the second
temperature difference model (AT = 0.2 K) was used. The
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third case was calculated by omitting the shear stress effect
and using the same temperature difference model (AT = 1K)
as in the first case. The last case was similar to the third one,
except now the second model was used giving AT = 0.2K at
maximum. An example of the uncertainty budgets in the first
case is given in table 2.

The summary of combined standard uncertainties from
calculated test cases is presented in table 3. At the mass
flow rate of 625mgs~!, the differences between the largest
and the smallest calculated mass flow values were within
0.01 mgs™!, corresponding to an increase of less than 0.01%
in combined standard uncertainty. For the mass flow rate of
312mgs~! the corresponding differences were 0.01 mgs™!
and 0.01%. At the mass flow rate of 21 mgs~' there were no
significant differences in mass flow rates, but a 0.01% increase
in uncertainties at the maximum. The analysis of the smallest
mass flow rate of 0.1 mg s~! showed that the uncertainties were
between 0.49% in the first calculation case and 0.13% at the
minimum and there was no significant alteration in mass flows.

Tables 4 and 5 present individual relative contributions
of each uncertainty component to the combined standard
uncertainty. In the tables, numbering of the uncertainty
components in the first column refers to the numbering used
for each uncertainty component in table 1. Components are
compared with each other in the above described four test cases
and four different mass flow rates. Percentages in the tables are
obtained by dividing each squared product of the uncertainty
component and its sensitivity coefficient by the sum of squares
of all ten components:

2.2
* % Cl-l/t~

i=1"%i"i

Table 3. The summary of combined standard uncertainties for the
studied four test cases.

625mgs~'  32Imgs™! 2Imgs™! 0.1mgs~!
Case u. x 100 u: x 100 ue x 100 wu. x 100
1 0.12 0.11 0.08 0.49
2 0.12 0.10 0.07 0.17
3 0.12 0.10 0.07 0.13
4 0.12 0.10 0.07 0.13

The uncertainty component due to the connection tube (Admr)
usually has the largest contribution to the combined standard
uncertainty, as can be seen from tables 4 and 5. However,
if the temperature condition during the measurement cycle
is not stable, the situation can be different, as can be seen
from table 4. At the gas mass flow rate 0.1 mgs~', even
small temperature differences during the measurement cycle
can increase the combined standard uncertainty significantly.
When the calculation model for the shear stress was not in
use, in tables 4 and 5, the contribution of shear stress is zero.
At the gas mass flow rates larger than 200 mg s~ the risk of
increasing temperature difference between the cylinder wall
and ambient air grows dramatically. This is due to fast pressure
loss in the gas cylinder causing the gas cooling. However,
the gas mass loss from the cylinder is so large that the effect
of varying shear stress almost vanishes. This can be seen
from table 5, where the uncertainty of the connecting tube
is dominating at the temperature difference of 1 K.

4. Numerical method for calculating the
approximation for a standard uncertainty of DWS

As can be seen, the air temperature measurement at the
boundary layer of a gas cylinder is used for calculating both
the shear stress on the cylinder wall and the air density for
buoyancy correction of the indication of the balance. However,
the use of equation (7) assumes independent uncertainty
components. To ensure that the assumption of independent
variables is tenable, the measurement uncertainty for DWS
was calculated numerically as well. The numerical method
was based on Monte Carlo simulation and was carried out
according to [10].

The simulation was carried out for a gas mass flow rate of
0.1 mgs~! at a temperature difference of 1 K, because at these
conditions the effect of varying shear stress was found to be
the most pronounced among the studied cases. The simulation
method for other flow rates is similar.

In the simulation, 10000 Monte Carlo trials were
calculated. The input variables used and their distributions are
listed in table 6. In every trial, the air density was calculated
using the equation presented in [11] and the true mass of the
gas cylinder was obtained with the help of equation (4). The

Table 4. Comparison of the contribution of different uncertainty components with the combined standard uncertainty at mass flow rates of

0.1mgs~' and 21 mgs~'.

0.1 mgs™! 21 mgs™!

AT 1K 02K 1K 0.2K 1K 02K 1K 02K
u(Aéme) Yes Yes No No Yes Yes No No

ciu(yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cu(y;) 0.03 0.23 0.36 0.36 0.03 0.03 0.03 0.03
c3u(ys) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cau(yy) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
csu(ys) 0.01 0.10 0.15 0.15 0.09 0.09 0.09 0.09
ceut(Ye) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cru(y7) 0.04 0.36 0.56 0.56 2.32 2.35 2.41 2.41
cgu(yg) 5.98 51.12 79.52 79.52 93.94 95.09 97.47 97.47
cott(y9) 92.48 35.72 0.00 0.00 3.62 2.44 0.00 0.00
crou(¥10) 1.46 12.48 19.41 19.41 0.00 0.00 0.00 0.00

Metrologia, 45 (2008) 249-255

253



S Sillanpaa and M Heinonen

Table 5. Comparison of the contribution of different uncertainty components with the combined standard uncertainty at mass flow rates of

312mgs~! and 625mgs~!.

312mgs™! 625mgs™!

AT 1K 0.2K 1K 0.2K 1K 0.2K 1K 0.2K
u(Adm) Yes Yes No No Yes Yes No No

cru(yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cu(yr) 0.23 0.23 0.23 0.23 0.47 0.48 0.48 0.48
c3u(ys) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
caut(ys) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
csu(ys) 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
ceu(ys) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cu(y7) 0.88 0.88 0.88 0.88 0.77 0.78 0.78 0.78
csu(yg) 98.37 98.86 98.87 98.87 97.98 98.73 98.74 98.73
cou(yo) 0.50 0.00 0.00 0.00 0.77 0.00 0.00 0.00
crou(y10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Input variables with their distributions used in Monte Carlo
simulation.

& gi(&) Annotation

1 Gaussian Indication of the balance

T Gaussian Air temperature in the boundary layer
t Gaussian Time measurement

p Rectangular  Air pressure

h Rectangular  Air humidity

dmr Rectangular  Effect of the connecting tube

dmyp  Rectangular Leakage out of the system

effect of varying shear stress was obtained with the help of
equations (8)—(13) and the mass flow was calculated from
equation (6). Al was determined as the slope of the linear
fit of the buoyancy corrected balance readings.

Table 7 shows the obtained results as compared with
those obtained earlier using the LPU method. The values
of the output quantity y (mass flow) and the 95% coverage
intervals (CIs) are presented in the table. The distribution of
the probability density function of the output quantity is shown
in figure 3.

5. Discussion and conclusions

The presented results show that the uncertainty due to the effect
of varying shear stress rate at the wall of the gas cylinder is
one of the three largest uncertainty components in the dynamic
gravimetric gas mass flow measurement at MIKES. The others
are the uncertainty due to the parasitic force caused by the
connecting tube and the uncertainty of time measurement.
These three uncertainty components contribute over 98% of
combined standard uncertainty at studied mass flow rates. If
AT is small and the flow rate high, then the shear stress related
component can be omitted.

The relative contribution of varying shear stress rate
increases when the gas mass flow rate decreases. When using
the presented uncertainty calculation method and AT = 1K,
the contribution is over 92% of the combined standard
uncertainty at the gas mass flow of 0.1mgs~!. For the
mass flow of 21 mg s~! the contribution decreases to less
than 4%. At mass flow rates 312mgs~! and 625 mgs~! the
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Table 7. Comparison of the uncertainty calculation methods at gas
mass flow 0.1 mgs~! for MIKES DWS.

Method y u(y) 95% CI
LPU 0.0969 0.0005 (0.0959, 0.0979)
MCS 0.0970  0.0005 (0.0961, 0.0979)
0.05 : : : :
0.045 - 1
0.04 - 1
_ 0035} 1
% 0.03 4
=
2 0025 ¢ 1
g 002 -
o
0.015
001} 1
0.005 - " ]
Ll -
0005 00955 0096 00965 0097 00975 0098 00985 0099 0.0995

q, 1 (mgls)

Figure 3. The distribution of the probability density function of
M = 10" values of Y at the gas mass flow of 0.1 mgs~'.

corresponding contributions are less than 1% at both mass
flows. The effect of shear stress increases rapidly when the gas
mass flow rate is smaller than 21 mg s~!. Atthe mass flow rates
from 312mgs~! to 625mgs~! the contribution of the effect
is not significant. As can be seen, the contribution of varying
shear stress should be taken into account in the uncertainty
calculation if the gas mass flow is smaller than 21 mgs~! and
temperature variations in the laboratory air may be expected.
This is an interesting point, because at higher flow rates the gas
(and gas cylinder) cooling is very efficient and it was expected
that in this case the effect of shear stress should be taken into
account. Due to cooling, the surface temperature is usually
monitored for avoiding the dew-point temperature and water
condensation on the cylinder wall.

When using the presented theory in estimating the
uncertainty due to varying shear stress, the temperature of a

Metrologia, 45 (2008) 249-255
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gas cylinder surface is assumed to be known as a function
of the measurement time. It is also assumed that the wall of
the gas cylinder is isothermal, so the temperature variations
at the different locations on the cylinder surface are so small
that they can be neglected. This assumption is based on the
experiments presented in [6], where the surface temperature of
the gas cylinder was studied with the help of a thermographic
camera during a measurement cycle. For the temperature
measurement, small thermistors with a very short time constant
were used with thin connecting wires.

At the small gas flow rates, where the measurement times
are long, the pressure decrease in the gas cylinder is not the
only probable reason for the temperature difference. It may
exist due to unsatisfactory climate control in the wind shield
of the system. Also, heat trapped during gas filling may cause
the temperature difference, or the temperature in the laboratory
may fluctuate due to some other heat source.

To decrease the effect of the varying shear stress rate,
the height of vertical surfaces should be minimized. On these
surfaces, the velocity fields due to natural convection and shear
stress may grow due to temperature differences. Cylindrical
objects are traditionally weighed such that the bottom of a
cylinder is on the weighing pan of a balance. To minimize the
height of the vertical surface, it should be placed by setting
the longest side on the weighing pan. Also the isolation of
a cylinder with some heat resistive material would reduce the
effect, but this is seldom technically feasible.

By looking at the uncertainty estimates for u(Aémc)
obtained by time averaging equation (1) and the method based
on equations (8) and (9), some observations arise. Assuming
that both methods are applied to the first temperature difference
model, where AT = 1K, it can be seen that the time averaging
of equation (1) gives a similar estimate for u(Admc) to the
method based on equations (8) and (9). However, equation (1)
is valid only for vertically placed cylinders and it cannot be
applied to any other cylinder positions.

The presented calculation method for the varying shear
stress is used for obtaining an uncertainty estimation.
This method includes many assumptions (for example,
isothermal cylinder walls) and simplifications (for example,
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two-dimensional solution for a flat plate or stagnation point
flow) which are taken into account in calculating the combined
standard uncertainty of the method. In [6], a value of
uc(tw(AT)) = 0.7mPaK~! is obtained at AT = 1K.

As can be seen from table 7, the LPU and MCS give
practically the same values for output quantity, uncertainty
estimate for the output and 95% CI. The possible effect of
correlated input variables seems to be negligible.

Based on the results and analysis presented in this study,
the effect of varying shear stress should be taken into account
in the uncertainty calculation. If the temperature difference
between the gas cylinder and ambient air increases or decreases
during the gas mass flow measurement, a careful inspection of
the measurement result and the corresponding uncertainty is
even more vital.
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