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III S. Sillanpää and M. Heinonen, The contribution of varying shear stress to

the uncertainty in gravimetric gas mass flow measurements, Metrologia 45,

249 - 255 (2008).
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1 Introduction

The history of flow measurement can be traced back to the time of ancient Egypt,

about 3000 years ago. The irrigation of fields was an important activity for agri-

culture there. The first water meters were a crude type of weir installed in water

channels [1]. A basis for the idea of the traceability of flow measurement can be

found in the studies of the Greek mathematician Hero of Alexandria. He understood

that the volume flow rate was a function of area and velocity, qv = Av [1].

In ancient Greece, a metronomoi was a supervisor of weights and measures at market

places. Five of them worked in Athens and another five in Pireas. To make sure

that the weights and measures were consistent in both cities, they needed commonly

acknowledged reference standards. From these needs, the discipline of studying

measurements and traceability, called metrology [2], started to develop. Based on

the invention of Hero of Alexandria, the accurate measurement of fluid volume

flow rate can be verified today with a traceability chain. It is an unbroken chain

of comparisons with stated uncertainties, from the definition of the unit to the

measurement equipment used for routine work.

The goal of sustainable development and environmental protection at economically

reasonable costs increases the need for accurate and traceable measurements. A

good example is the monitoring of air quality and measurement of the number of

fine particles in aerosols. It has been estimated that as many as 6 % of all deaths

in the area of Central Europe are caused by the pernicious impact of these fine

particles [3; 4]. As a result, a more reliable data for the surrounding environment

needs to be achieved. With the data analysis, the preventive activities can be

allocated more precise.
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To produce an accurate gas mass or volume flow rate, a widely acknowledged mea-

surement standard is needed. In 2001, the Advisory Commission for Metrology in

Finland proposed that a national standard for small gas flow rates should be de-

veloped. In February 2002, the developing project towards the realization of the

standard was started at the Centre for Metrology and Accreditation (MIKES). As a

result of the project, the first version of a dynamic gravimetric measurement stan-

dard (DWS) was developed.

The operating principle of the DWS is to set a gas cylinder filled with a suitable test

gas on the weighing pan of a balance. The gas cylinder is connected to a pipeline

with flexible tubing. During the measurement, gas flows out from the cylinder at a

constant flow rate, and indications on the balance with corresponding time values

are recorded. The average mass flow rate can then be calculated by dividing the gas

mass loss by the time needed for gas depletion.

In the Master’s thesis of the author [5], the design, implementation and preliminary

testing of the DWS apparatus were studied. In the work included in this thesis,

the DWS was improved to meet the requirements of the national standard for small

gas flow. According to an international evaluation in November 2004, this goal was

achieved and the MIKES Flow Laboratory was nominated to work as a national

standards laboratory (NSL) for small gas flow and liquid density in January 2005 [6].

Themes for research for this thesis emerged during the further development of the

equipment used at the MIKES Flow Laboratory. In the field of fluid flow metrology,

DWS (small gas flow rate), a wind tunnel system (WTS, air velocity) and a hydrom-

eter calibration system (HCS, liquid density) have the same type of thermodynamic

problems, for example, the effect of temperature gradients during the measurement.

In this thesis, the main research problem is to show that the realization of fluid flow

quantities can be improved by studying the thermodynamic phenomena of each

measurement standard.
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To prove the international applicability of the measurement results carried out with

DWS, the metrological competence study of the measurement standard has been

carried out. To improve the accuracy of the measurements and the uncertainty

calculation, the effect of thermal non-equilibrium between the weighed gas cylinder

and ambient air has been studied.

At MIKES, the unit of mass flow rate has been taken as a base unit of fluid flow.

Thus, a key problem is to show that the traceability link between the air velocity

standard and the realization of mass flow rate unit can be established.

To carry out the conversion from mass flow rate to the volume flow rate or vice versa,

an accurate measurement of fluid density is needed. The density measurement of

liquid can be carried out with a hydrometer. Usually, the vertical temperature distri-

bution in the liquid is not homogenous. For that reason, a method of compensating

for the effect of vertical temperature gradients in the HCS calibration liquid bath

will be studied.

In this thesis, section 2 defines the traceability of a measurement result. Then,

a short introduction to the calculation of measurement uncertainty is given. Sec-

tion 3 presents primary calibration methods for small gas flow meters, anemometers

and hydrometers. These sections give the background information for observations

presented in Papers I-V and reported in section 4.

In Paper I, a metrological competence study of DWS to meet the requirements of

the national standard for small gas flow rate has been presented. The uncertainty

analysis and bilateral equivalence between two primary standards based on different

operating principles were studied. The theoretical model for calculating the vary-

ing effects of natural convection on shear stress rate on cylindrical surfaces and its

experimental study were performed in the work reported in Paper II. Paper III

includes the study of the contribution of varying shear stress to the uncertainty in
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gravimetric gas mass flow rate measurements. A novel method to establish a trace-

ability link between air velocity standards and national standards of mass and time

has been presented in Paper IV. Also, the uncertainty estimation and validation

process of the method have been presented in the paper. Paper V presents a math-

ematical model by which the effects of temperature gradients on the hydrometer

reading can be compensated.
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2 Traceability and measurement uncertainty

2.1 Traceability

In the International System of Units (Le Système international d’unités, SI), mea-

surement standard is defined as a measuring instrument or reference material which

is used to realize, conserve or reproduce a unit or one or more values of a quan-

tity [2]. By comparing a measurement device against a measurement standard, the

metrological properties of a measurement device are established. As a result of this

comparison, called calibration, the calibration corrections or errors with the corre-

sponding uncertainties are obtained. Thus, the calibration of a measurement device

is a basic procedure to ensure the quality of the measurement result. The result is

traceable if it can be related to stated references, usually national or international

standards, through an unbroken chain of comparisons which all have stated uncer-

tainties [2]. The chain of comparisons is called a traceability chain. An example of

it is shown in figure 2.1, where a simplified hierarchy of measurement standards and

traceability is presented.

At the top of the chain, there is the definition of the SI unit. For example, the

definition of the second is: ”the duration of 9192631770 periods of the radiation

corresponding to the transition between the two hyperfine levels of the ground state of

the caesium 133 atom” [7]. The kilogram is defined as ”the mass of the international

prototype of the kilogram” [7]. Primary standards are used for realizing the unit

according to the definition. They are designated or widely acknowledged as having

the highest metrological qualities, and their values are accepted without reference

to other standards of the same quantity [2]. Secondary standards are calibrated

against the primary standard of the same quantity, and are used for calibration of

working standards which are in everyday use in the field.
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Figure 2.1: At left, the traceability chain in general, from the definition of the unit
to end users, and at right, example of the chain relating to gas flow rate measure-
ments.

A derived quantity is defined and realized with independent base quantities. For

example, the velocity (m/s) is realized according to its definition in terms of the

base quantities length and time. A primary standard of a derived quantity bonds it

to the appropriate base quantities of SI. Thus, the traceability of a derived quantity

is based on the realization of the base quantities.

2.2 Measurement uncertainty

The measurement result, after correcting all known systematic errors, is still an

estimate of the value of the measurand [8]. To be useful, the measurement result

should also include the uncertainty of the estimate. The uncertainty of the estimate

reflects the lack of exact knowledge of the value of the measurand.
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According to the Guide to the Expression of Uncertainty in Measurement (GUM),

the estimate y of the measurand Y is obtained from input estimates x1, x2, . . . , xN

for the values of the N quantities X1, X2, . . . , XN . Then, the output estimate is

obtained from [8]

y = f (x1, x2, . . . , xN) . (2.1)

The uncertainties for input estimates evaluated according to GUM are denoted by

u(xi) and are called standard uncertainties. If the input estimates are assumed to be

independent, the quadrature of combined standard uncertainty uc(y) is calculated

as [8]

u2
c (y) =

N∑
i=1

(
∂f

∂xi

)2

u2 (xi) . (2.2)

In equation (2.2), ∂f/∂xi is called a sensitivity coefficient. In the case of dependent

(correlated) input estimates, the combined standard uncertainty is calculated as [8]

u2
c (y) =

N∑
i=1

(
∂f

∂xi

)2

u2 (xi) + 2
N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj

u (xi, xj) . (2.3)

In equation (2.3), u (xi, xj) is the estimated covariance of xi and xj.

The expanded uncertainty is obtained by multiplying the standard uncertainty by a

coverage factor k. The value of the coverage factor depends on the effective degrees

of freedom and desired level of confidence. If y is normally distributed, the coverage

factor k = 2 produces a 95 % level of confidence.

GUM is currently considered the most important document in the evaluation of

measurement uncertainty. Although supported by the international metrology com-

munity, ISO and many other standardization bodies, it has some limitations. For

example, this can be seen by applying the GUM method to automated instruments.

These instruments have embedded software with algorithms invisible to the end user.

This makes the characterization of individual uncertainty components at each step

very difficult or impossible [9]. Therefore other methods for measurement uncer-

tainty evaluation, such as polynomial chaos theory [10] or unscented transform [11]
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based methods, have been suggested. In accredited calibration laboratories, the

derivative of GUM, EA-4/02, is in use [12].

The GUM method has been implemented in computer programs such as GUM Work-

bench, which is supported by the Danish Technological Institute. It has been consid-

ered handy in many practical applications [13]. In the supplement of GUM [14], the

alternative numerical Monte Carlo method is presented for uncertainty calculation.

This method can be used, if the GUM method is not adequate [15]; for example, if

the measurement model is not exactly known.
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3 Primary calibration methods for small gas flow

meters, anemometers and hydrometers

3.1 Units and traceability

Units of gas mass flow rate (kg/s), gas volume flow rate (m3/s), air velocity (m/s)

and liquid density (kg/m3) are derived from the base units of SI. Corresponding pri-

mary standards bond these derived units to the base units of mass, time and length;

these are realized in Finland at MIKES [16; 17; 18]. Thus, the ultimate sources of

traceability in flow measurements are from the realization of these base units. In

small low-pressure gas mass and volume flow rate measurements, submultiples of

units are used. Units such as mg/s, ml/min or l/min are more practical in these

applications.

The concept of small gas flow can be understood to cover gas volume flow rates up to

100 l/min. In metrological applications, the velocity of moving air is from a couple

of mm/s to 50 m/s and the liquid density range is from 600 kg/m3 to 2000 kg/m3

at temperatures between 10 ◦C and 40 ◦C [19].

3.2 Small gas flow meters

3.2.1 Methods based on mass flow rate

Mass is a property, which is independent of temperature or pressure. When mea-

suring the mass flow rate, the use of standard temperature and pressure conditions

is unnecessary. Two different gravimetric methods are used in metrology to deter-
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mine the gas mass flow rate: the discontinuous static gravimetric method and the

continuous dynamic gravimetric method.

In the static gravimetric method, the gas vessel is weighed before and after the flow

measurement. The mass flow rate is calculated by dividing the gas mass loss by the

time needed for gas depletion. The disadvantage of the method is that the vessel

has to be disconnected from the measurement set-up to perform the weighing. The

method has been formerly used, for example, as the national standard for small

gas flow at National metrology institute in Japan (NMIJ) [20] and in an accredited

calibration laboratory [21]. The expanded (k = 2) uncertainty of 0.1 % at mass

flow rates up to 83 mg/s for the static gravimetric method has been reported in the

article by Nakao et al. [20]. The static gravimetric method has also been used for

the preparation of primary standard gas mixtures [22; 23; 24].

Today, most of the gravimetric systems used as the primary gas mass flow rate

standards are based on dynamic weighing. This method has the advantage that

more than one gravimetric comparison can be taken without removing the gas vessel

from the system. The dynamic gravimetric method saves time compared to the

static method, but has a challenging design problem: The flow connection from the

gas vessel to the flow system prevents the bottle from being completely free from

parasitic force influences as it rests on the balance. Flexible tubing can be used to

limit the effect of the connection, but the gas pressure in the tube must be very

stable to minimize the influence of an unstable Bourdon effect.

Dynamic gravimetric gas mass flow rate measurement systems are used in at least

seven NMIs [25], and have been described in literature; for example, in Paper I

(0.1 mg/s. . . 625 mg/s, U = 0.8 %. . . 0.3 %), in articles by Sillanpää and Niederhauser

et al. [26; 27] (8 mg/s. . . 250 mg/s, U = 0.2 %), and in the paper by Knopf et al. [28]

(0.5 mg/s. . . 40 mg/s, U = 0.01 %. . . 0.3 %). In the dynamic gravimetric method, the

gas vessel filled with suitable test gas is placed on a balance as in figure 3.1. After
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reaching a stable gas flow, the indications of the balance are recorded simultaneously

with timer readings. The average gas mass flow rate during the measurement period

is then determined, for example, as a slope of linear fitting of buoyancy corrected

balance indications and time values [Paper I].

At MIKES, the dynamic gravimetric method provides a base for traceable gas mass

flow rate measurements. With the traceability chain, the improvements in the mea-

surement accuracy of DWS improves, for example, the measurement accuracy of

the number concentration of fine particles in aerosols. The dynamic gravimetric

method also provides a basis for producing traceable gas mixtures [29; 30]. These

mixtures are used, for example, for calibrating air quality measurement devices or

gas analyzers [31].

Figure 3.1: Schematic figure of dynamic gravimetric gas mass flow rate measure-
ment standard at MIKES. 1: Connection tube hanger, 2: casing, 3: connection
tube, 4: outflow, 5: pressure regulator, 6: one-way valve for filling, 7: gas vessel, 8:
balance on a stone table.
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3.2.2 Methods based on volume flow rate

A primary standard for volume flow rate is usually an application of a piston-cylinder

assembly. Primary standards of this type are in use, for example, in the Swiss Federal

Office of Metrology and Accreditation (METAS) [32] (200 ml/min. . . 20000 ml/min,

U = 0.1 %) and in the National Institute of Metrological Research (INRIM, formerly

IMGC) in Italy [33; 34; 35] (0.1 ml/min. . . 2000 ml/min, U = 0.02 %. . . 0.05 %).

In a piston-cylinder standard, the velocity of a rising piston is determined from the

length of the movement and the elapsed time. When the average velocity of the pis-

ton during the measurement period is known, the volume flow rate can be calculated

assuming uniform motion of the piston and using the effective cross-sectional area of

the cylinder. The obtained volume flow rate is usually converted to some standard

conditions, for example, at the temperature of 273.15 K and pressure of 101325 Pa.

A modified piston-cylinder assembly has also been used as a measurement standard

for leak rates [36].

Static expansion systems, or PV Tt standards, have been used in flow metrology

since the beginning of 1970s, first reported by Olsen and Baumgarten [37]. In this

method, gas flow is determined using a technique in which a steady flow is diverted

into a nearly empty collection tank with a known volume during a measured time

interval. The average gas temperature and pressure in the tank are measured before

and after the filling process. These measurements are used to determine the density

change in the collection volume attributed to the filling process. In principle, the

mass flow rate can be determined by multiplying the density change by the collec-

tion vessel volume, and dividing the result by the collection time. The method was

developed further by Wright [38] and Johnson et al. [39; 40] (1 l/min. . . 2000 l/min,

U = 0.02 %. . . 0.05 %). A very small gas flow rate version, down to 0.01 mg/min,

was developed by Nakao [41] (0.01 mg/min. . . 5 mg/min, U = 0.0001 %. . . 0.2 %).
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3.3 Anemometers

3.3.1 Pressure difference based methods

The operating principle of the Pitot tube was first discovered by French hydraulic

engineer Henri de Pitot in 1732 [42]. A Pitot tube is made up of two concentric

tubes. The inner tube is open, and the annular space between the tubes is sealed

at one end (see figure 3.2). The band of small, radial holes through the wall of the

outer tube is located about eight outer tube diameters from the sealed end. The

tubes are set parallel to the direction of the flow with the sealed end facing into

the flow [43]. The other ends of the tubes are connected to the differential pressure

gauge between the inner tube and the annular space. The inner tube senses both

the static and dynamic pressures due to the motion of the fluid. The radial holes

sense only the static pressure. The measured differential pressure is due only to

the motion of the fluid, and the speed of the fluid flow can be calculated from the

equation

v =

√
2∆p

ρ
, (3.1)

where ∆p and ρ are the differential pressure between the parallel tubes and the

density of flowing fluid, respectively.

The uncertainty of the Pitot tube at lower fluid flow velocities is dominated by

the differential pressure measurement. For that reason, the usable lower velocity

limit for a Pitot tube is around 2 m/s. Below that velocity, the uncertainty of the

differential pressure measurement is too large.

Before the adoption of the laser anemometer (LDA), the Pitot tube was considered to

be the primary standard instrument for air speed measurement at national standards

laboratories [44; 45] (0.5 m/s. . . 50 m/s, U = 20 %. . . 0.4 %, k = 3). With the Pitot

tube, the traceability of air velocity measurement can be traced back to the primary

realization of units of mass, length, time and temperature.
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Figure 3.2: Schematic figure of a Pitot tube.

3.3.2 Light scattering based methods

The measurement technique of laser anemometry is presented in figure 3.3. In its

simplest form, it is based on splitting a laser beam into two separate beams and

then coupling them through a small intersection angle. The coherence of the two

beams in the intersection forms an interference pattern. The distance between the

bright bands in the pattern can be calculated from

d =
λ

2 sin
(

θ
2

) , (3.2)

where λ and θ are the wavelength of the laser light and the angle between the two

beams, respectively. The distance d is called as the calibration factor of the LDA

system. The intersection of the two beams is the test volume of the system. When

small particles inserted into the fluid pass through the test volume, they reflect light.

The average flow velocity at the test volume can then be calculated by dividing d

by the average frequency of detected reflections [46; 47].
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Nowadays, LDA is the most commonly used primary measurement method for air

velocity in metrological wind tunnels at many NMIs [46; 48] and accredited labora-

tories [49]. The traceability link between the air velocity measurement and the SI

base units of length and time can be built using a light scattering particle on the

rim of a disk with known radius and circumferential speed. By calculating the linear

speed of the particle, the calibration factor of LDA can be determined [46]. With

LDA based measurement techniques, expanded uncertainties such as 0.006 m/s can

be achieved even at very low flow velocities [46]. However, Pitot tubes together

with thermal anemometers are still used as transfer standards in inter-laboratory

comparisons [50] and as reference standards in accredited laboratories.

Figure 3.3: Operating principle of a laser anemometer.

3.3.3 Other methods

Various methods based on different operating principles are presented in the liter-

ature. They are mostly used for calibration of thermal anemometers at low fluid

velocities, or in particular operation conditions.

Measurement standards at low air velocities are based on mechanical systems which,

for example, drive the anemometer at a desired constant speed [51] (measurement
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range 0 m/s...0.15 m/s, expanded uncertainty U = 4.1 %) and [52] (0 m/s...0.350 m/s,

U = 0.001 m/s). Standards can be also based on different techniques generating

a laminar velocity profile in a pipe [53] (0 m/s...2.9 m/s, U = 1.5 %) and [54]

(0.1 m/s...0.9 m/s, U = 0.02 m/s).

In the method suggested by Elgerts and Adams [55], a vibrating piston in a cylinder

produces a reference velocity field for an orifice plate placed at the opposite end of the

cylinder. The apparatus is used for calibrating thermal anemometers in oscillating

flow in the velocity range from 0.2 m/s to 2.3 m/s. The result of the calibration is

a dynamic Nusselt number with an expanded uncertainty of 12 %.

3.4 Hydrometers

3.4.1 Constant mass hydrometer

According to Archimedes’ law, the mass of liquid displaced by a freely floating hy-

drometer is equal to the mass of the hydrometer, if surface tension is assumed to be

negligible [56]. Hydrometers can be divided into constant volume and constant mass

hydrometers. By putting appropriate weights on the constant volume hydrometer,

it is adjusted to float up to a specific mark in liquids with different densities. The

constant mass hydrometer (see figure 3.4) floats at different heights in the liquid,

and its mass is not changed by weights during normal use. In this thesis, only the

constant mass hydrometers are considered, because they are now more widely used,

and their specifications and measurement procedures are well documented by the In-

ternational Organization for Standardization (ISO) [57; 58; 59; 60; 61], Organisation

Internationale de Métrologie Légale (OIML) [62], Association Française de Normal-

isation (AFNOR) [63], American Society for Testing and Materials (ASTM) [64; 65;

66; 67], British Standards Institution (BSI) [68; 69; 70; 71] and Deutsches Institut

für Normung (DIN) [72; 73; 74].
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Figure 3.4: Constant mass hydrometer.

Hydrometers are widely used, for example, in refuelling aircrafts. The fuel supplier

is interested in the volume of the fluid, but the airline needs the net weight of the

fuel to calculate the take-off weight of the aircraft.

3.4.2 Cuckow’s method

Cuckow’s calibration method for hydrometers was initially developed at the National

Physical Laboratory (NPL) in the United Kingdom by Cuckow [75]. In this method,

a hydrometer is first weighed in air. Then it is submerged to the required level and

its apparent mass is measured in the liquid of known density. The reference density

value is calculated from the difference in the weighing results in air and in the

reference liquid. The density of the reference liquid can be measured by hydrostatic

weighing of a body of a known volume [19].

Various implementations of the method exist. Different calibration liquids such as

n-nonane, petroleum and ethanol are in use, and a variety of techniques adjusting

the hydrometer to the desired scale mark are exploited. The adjustment can be

done by lowering or raising the hydrometer or the liquid surface [76]. The alignment

of the hydrometer in Cuckow’s method can be automated by taking advantage of

machine vision applications based on the charge-coupled (CCD) or complementary

metal oxide semiconductor (CMOS) [77; 78; 79] cells. For Cuckow’s method, the

best reported expanded (k = 2) relative calibration uncertainty is 24·10−6 [80].
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3.4.3 Other methods

Although Cuckow’s method is the most commonly used and the most accurate multi-

point calibration method for hydrometers [80], other methods, like the direct com-

parison method and the ring method [81; 82], are in use at some laboratories. In the

direct comparison method, the calibrated hydrometer is immersed in the calibration

liquid together with the reference hydrometer, and the readings are compared. The

ring method consists of finding the position on the scale, with possible additional

weights, where the hydrometer freely floats in a liquid of known density and surface

tension. If the apparent mass of the hydrometer, body diameter and the distance

from the freely floating point are known, the reference value for any other point on

the scale can be calculated. The disadvantage of the method is that hydrometers

with different scales need various calibration liquids with different densities, because

they have to be able to float freely.
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4 Thermodynamic studies of primary standards in

flow metrology

4.1 Metrological competence study of the MIKES dynamic gravi-

metric gas mass flow rate standard (Paper I)

4.1.1 Metrological competence study

The traceability of a measurement result consists of an unbroken chain of compar-

isons with stated uncertainties, from the definition of the unit to the measurement

device used, use of documented and generally accepted measurement procedures,

and personnel with adequate professional skills. The metrological competence of a

laboratory includes the professional skills of the personnel and the sufficient metro-

logical performance of measurement standards.

The metrological competence study can be carried out by comparing two primary

measurement standards in different NSLs. This inter-comparison on a transfer stan-

dard allows evaluating metrological performance of the primary standard in both

laboratories, and the equivalence of the calibration methods and services. In addi-

tion, the creditability of the traceability chain and the uncertainty estimation can

be studied.

The metrological competence study with data analysis of the MIKES dynamic gravi-

metric gas mass flow rate measurement standard is presented in Paper I. The study

was carried out by arranging a bilateral comparison with the Swiss Federal Office

of Metrology and Accreditation (METAS). In the study, the results of the MIKES

dynamic gravimetric gas mass flow rate measurement system were compared against

the volumetric standard based on a piston-cylinder assembly at METAS. A good
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quality commercial transfer standard based on laminar flow elements having good

short-term stability was used. The calibration measurements were first carried out

at MIKES and then the transfer standard was transferred to METAS. After the mea-

surements, the standard was shipped back to MIKES and calibration measurements

were repeated.

4.1.2 Analysis of the results of a bilateral comparison between MIKES and

METAS

The comparison results were analyzed according to the outlines presented in articles

by Cox [83; 84]. The equivalence between two laboratories at each measurement

point was calculated as

dij = ∆qri −∆qrj, (4.1)

where ∆qr is the relative difference between the reference and transfer standard.

Subscripts i and j refer to measurements carried out at MIKES and METAS, re-

spectively. The associated expanded uncertainty is U(dij) = 2u (dij), where

u2 (dij) = u2 (∆qri) + u2 (∆qrj) . (4.2)

The normalized difference is

Dn = dij/U(dij). (4.3)

Table 4.1 presents the relative differences between the reference and transfer stan-

dards at MIKES and METAS in percents, the degrees of equivalence and their

expanded uncertainties in percents, and the normalized differences. The parameters

of MIKES were calculated from the second calibration set only, because the analysis

showed that the uncertainty of the flow control with needle valves and its effect on

the measurement result was larger than assumed. At MIKES and METAS, each

comparison point was measured four times, and the average relative difference was

used as a result. The maximum relative difference between the laboratories was
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1.3 % at the mass flow rate of 0.42 mg/s, as can be seen also from figure 4.1. For

the second calibration set at MIKES, the needle valves were replaced by thermal

mass flow controllers.

Table 4.1: The results of the comparison in the flow range from 0.42 mg/s to
625 mg/s.

Flow / ∆qr (MIKES) / ∆qr (METAS) / dij / U(dij) / Dn

(mg/s) % % % %

0.42 0.22 0.27 -0.05 0.36 -0.13

2.1 -0.14 -0.05 -0.09 0.34 -0.28

6.3 -0.06 -0.04 -0.02 0.25 -0.07

10.4 0.04 -0.02 0.06 0.25 0.22

14.6 0.03 0.00 0.03 0.25 0.09

18.8 -0.07 0.00 -0.08 0.25 -0.31

20.8 -0.02 -0.02 0.00 0.25 0.00

41.7 -0.16 -0.21 0.05 0.25 0.20

125 0.03 -0.09 0.12 0.25 0.49

250 0.01 -0.01 0.02 0.28 0.06

377 0.01 0.02 -0.02 0.28 -0.04

500 -0.03 0.00 -0.03 0.28 -0.12

625 -0.28 -0.13 -0.15 0.28 -0.53

A rule of thumb for analyzing the results was presented in [85]. The comparison

results between the two laboratories are acceptable, if the normalized difference

fulfils |Dni| < 0.5 ∀ Dni, i = 1 . . . N, where N is the number of comparison

points. It means that the independent results from similar measurements made at

the two laboratories can be expected to agree to within dij with a 95 % confidence

interval. The rule usually estimates the 95 % confidence interval correctly, but can

underestimate it in some cases. In this comparison, the above presented criteria is

exceeded only at one measurement point, 625 mg/s, and only slightly.

The analysis showed that the improved flow control produced results which were

more congruent with results obtained in the recognized NSL. After the improvement,

the uncertainty calculations performed at MIKES were tenable. In addition, the

mathematical measurement model and the calculation method for measurement
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results were correct. The largest uncertainty sources seemed to be the stability of

a balance indication, time measurement and the parasitic effect of the connecting

tube.

In the study presented in Paper I, the mass and volume flow rate based primary

standards were compared. The results of the study showed that these two methods

are comparable and equal in realizing small gas flows. This agrees with the results

reported by Niederhauser and Barbe [27].

Figure 4.1: Relative difference between the reference and the transfer standard
(∆qr) measured at points (qm) from 0.42 mg/s to 20.8 mg/s. 2: MIKES April 2003,
4: METAS May 2003, ×: MIKES June 2003.
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4.2 Method for estimating the varying shear stress rate induced

by natural convection flow on cylindrical surfaces (Paper II)

4.2.1 Drag

The force resisting the movement of a solid object through a liquid or gas is called

drag. It is the sum of all aerodynamic or hydrodynamic forces in the direction

of movement. Three types of drag can be categorized: parasitic, lift-induced and

wave drag [86]. In this study, the parasitic drag is in focus, because lift-induced

and wave drag appear on wing profiles and flow velocities near the speed of sound,

respectively.

Parasitic drag consists of skin friction, pressure drag and interference drag. Because

very low fluid flow velocities are studied here, the latter two are assumed to be

negligible. Thus, skin friction is the only component of parasitic drag, and it is due

to shear stresses in the boundary layer [87].

4.2.2 Shear stress induced by natural convection

In a dynamic gravimetric gas mass flow rate measurement, a thermal non-equilibrium

between a weighed gas cylinder and ambient air cannot be prevented. The non-

equilibrium causes heat transfer between ambient air and the weighed object. If the

heat transfer is based on natural convection, a flow field upward or downward around

the object arises. This natural convection flow originates when a body force acts

on a fluid containing density gradients. The net effect is a buoyancy force, which

drives the fluid motion. In this study, density gradients are assumed to originate

from temperature gradients, and gravity is the body force.
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Assuming that there is no slip on the wall (i.e., the fluid velocity on the wall is zero).

Then, for a Newtonian fluid, the shearing stress on the wall and the rate of shearing

strain (the velocity gradient) can be linked together with

τw = µ
du

dy

∣∣∣∣
w

, (4.4)

where τw, µ and du/dy are the shear stress on the wall, absolute viscosity and

velocity gradient, respectively.

The first scientific study of flow field due to natural convection was presented by

Schmidt et al. [88]. And in metrology, the effect of shear stress induced by natural

convection was studied widely by Gläser et al. [89; 90; 91]. The convection effect

was illustrated and studied experimentally with the method proposed by Matilla

et al. [92] and Tian et al. [93]. The method was based on infrared thermal imag-

ing. The convective motion has been studied numerically, first in two-dimensional

cavities having different aspect ratios, and later in three dimensional boxes filled

with different gases or liquids [94; 95]. The first study about convective forces using

computational fluid dynamics (CFD) code was reported by Mana et al. [96]. The

stability of natural convection flow along a vertical plate has been studied by direct

numerical simulation by Aberra et al [97]. For a steady state solution, a lattice

Boltzmann based algorithm has been proposed in the paper by Zhou et al. [98].

In Paper II, the method for estimating the net effect of time-dependent, varying

shear stress rate driven by natural convection flow on cylindrical surfaces was devel-

oped. The method is based on the numerical similarity solution of laminar boundary

layer equations.

The idea of a boundary layer was first presented by Prandtl in 1904 [99]. His

work was based on the equations first presented by Navier [100] and Stokes [101].

Prandtl’s idea was to divide the velocity field into two areas: the boundary layer

and the area outside it. In the boundary layer, the viscosity is dominant, whereas
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outside it, the viscosity can be neglected without significant effect on the velocity

field (see figure 4.2). By taking into account the Boussinesq approximation (see, for

example, [102; 103; 104]), the basic equations for a laminar boundary layer driven

by natural convection are
∂u

∂x
+

∂v

∂y
= 0, (4.5)

u
∂u

∂x
+ v

∂u

∂y
= gβ (∆T ) +

∂2u

∂y2
, (4.6)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
. (4.7)

Here, u is the velocity component along the plate and v is normal to it. The buoy-

ancy parameter gβ depends on the fluid (β = (dρa/dT ) /ρa), whereas the thermal

diffusivity α = k/ (ρcp) is assumed to be constant. ∆T = Tw − T∞ which is the

temperature difference between the plate and ambient air. ν is kinematic viscosity.

The similarity solution of equations (4.5) to (4.7) was first presented by Schmidt et

al. [88] and developed further for arbitrary geometry by Pop and Takhar [105]. The

idea of the solution is to introduce at first a similarity parameter

η =

(
Grx

4

) 1
4 y

x
Grx =

βg (Tw − T∞) x3

ν2
, (4.8)

where Grx is a local Grashof number. Next, the stream function is defined as

ψ (x, y) = f (η)

[
4ν

(
Grx

4

) 1
4

]
. (4.9)

To satisfy the continuity equation exactly, it has to be set

u =
∂ψ

∂y
v = −∂ψ

∂x
. (4.10)

After differentiation, the velocity components u and v are

u = 2 (xβg (Tw − T∞))
1
2 f ′ (η) (4.11)

v =

[
βg (Tw − T∞) ν2

4x

] 1
4

(ηf ′ (η)− 3f (η)) , (4.12)
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where a prime indicates differentiation with respect to η. When the dimensionless

temperature difference is defined as follows

Θ =
T − T∞
Tw − T∞

, (4.13)

the similarity variables reduce the system of partial differential equations to the two

non-linear differential equations

f ′′′ + (3 + m + n) ff ′′ − 2 (1 + m + n) f ′2 + Θ = 0, (4.14)

Θ′′ + (3 + m + n) PrfΘ ′ − 4mPrf ′Θ = 0 . (4.15)

In equations (4.14) and (4.15), f , m, n, Θ and Pr are the similarity parameter, con-

stants relating to the heat transfer and geometry, dimensionless temperature ratio

and Prandtl number, respectively. The detailed description about the transforma-

tion process from equations (4.5) through (4.7) to equations (4.14) and (4.15) can

be found, for example, from [88]. The first numerical solution for equations (4.14)

and (4.15) was given by Ostrah [106]. The shear stress can now be expressed with

similarity variables, when the flow field around the surface of the cylinder is known

and the fluid is to be assumed Newtonian

τw = ρν
du

dy
=

2µ

x
[xβg (Tw − T∞)]

1
2

(
Grx

4

) 1
4

f ′′ (0) . (4.16)

The shear stress rate is a function of temperature difference, and the temperature

difference is a function of time. It is shown in Paper II that the effect of the average

shear stress affecting the surface at some arbitrary time interval from t′ . . . t can

be calculated as a time average of instantaneous shear stresses

∆τw =
1

t− t′

∫ t

t′
τw (∆T (t)) dt, (4.17)

where τw is calculated with the equation (4.16). With the proposed calculation

method and an appropriate surface temperature measurement of the cylindrical ob-

ject, it is possible to estimate the flow field around it, as presented in figure 4.3. The

method was studied experimentally by using a balance and measuring the surface

temperature of the gas cylinder in the DWS with a thermistor or thermal imager.
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Figure 4.2: Development of boundary layer on a vertical plate, Tw > T∞.

Three measurement cycles were performed with the heated cylinder. In cycles 1

and 3, the wall temperature of the cylinder as a function of time was monitored

every two seconds with a small thermistor attached on the wall. In cycle number 2,

the thermistor was detached and the wall temperature was observed with a thermal

imager. Concurrently with the temperature measurements, the indication of the

balance was recorded to find out the corresponding shear stress rate. The results

of the comparison between the theory and experiments are presented in figure 4.4.

Based on the comparison, the assumption of zero pressure and interference drag

seems to be realistic. Figure 4.5 illustrates an interesting finding from the theoreti-

cal study: the horizontal arrangement of the cylindrical object will reduce the effect

of shear stress.
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Figure 4.3: Example of calculated velocity profiles for the vertical gas cylinder at
a temperature difference of 10 K at different distances from the leading edge. Small
ticks: x = 100 mm, dotted line: x = 200 mm, dash-dot line: x = 300 mm, dashed
line: x = 400 mm and solid line: x = 500 mm.

Figure 4.4: Measurement results and theoretical curve for the vertical gas cylinder.
+: measurement 1, ◦: measurement 2, ×: measurement 3. Dash-dot line: theoretical
curve.



53

Figure 4.5: Theoretical effect of natural convection. +: vertical, ∗: horizontal gas
cylinder.
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4.3 Contribution of varying shear stress to the uncertainty in

gravimetric gas mass flow rate measurements (Paper III)

4.3.1 Measurement model and uncertainty

In Paper II, equation (4.17) was used for estimating the effect of varying shear

stress. From this equation, the effect on the balance indication of a gravimetric gas

mass flow rate standard can be obtained. By integrating equation (4.17) with regard

to the surface area of a gas cylinder and differentiating it, the following equation is

obtained

δṁC =
d

dt

1

g

∫
∆τw dA, (4.18)

where δṁC is the effect of shear stress due to natural convection.

In the DWS at MIKES, the gas mass flow rate is determined continuously recording

the indications of a balance and their corresponding time values. The mass flow

rate is then calculated by a slope of linear fitting of air buoyancy corrected balance

indications and corresponding time values. The measurement process is modeled

with the equation

ṁt = β

(
İ − δİ − mt

ρt

ρ̇a − mtρa

ρ2
t

ρ̇t − δṁT − δṁC − δṁL

)
, (4.19)

where mt, I, δI, ρt, ρa, δmT , δmC and δmL are the true mass of the gas cylinder,

indication of the balance, errors due to balance mechanics, effective density of the

gas cylinder, density of ambient air, effect of the connecting tube, effect of shear

stress due to natural convection and leakage out of the system, respectively. β =

(α (1− ρa/ρt))
−1, where α = (1− ρa0/ρr)

−1, ρa0 = 1.2 kg/m3 and ρr = 8000 kg/m3.

Dots indicate differentiation with time.
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For the calculation of the measurement result including uncertainty, the following

discrete approximation is used

ṁt ≈ β

∆t

(
∆I −∆δI −mt∆ρa/ρt −mt∆ρtρa/ρ

2
t −∆δmT −∆δmC −∆δmL

)
.

(4.20)

For uncertainty calculation, a more detailed description of components {∆I . . . ∆δmL}
is presented in table 4.2. Assuming that the components are independent of each

other, the combined standard uncertainty can be calculated with equation (2.2).

Table 4.2: Uncertainty components

i xi Unit Annotation

1 ∆I kg Gas mass difference, including contributions due to balance

nonlinearity and a standard deviation of the mean of the

difference between the linear fit of the balance indications

and the instantaneous indication of the balance

2 ∆δI kg Resolution of the balance and its stability

3 ρa kg/m3 Air density

4 ∆ρa kg/m3 Air density change during the measurement

5 ρt kg/m3 Density of the gas cylinder

6 ∆ρt kg/m3 Density change of the gas cylinder during the measurement

7 ∆t s Error in time measurement

8 ∆δmT kg Effect of connection tube during the measurement

9 ∆δmC kg Effect of natural convection during the measurement

10 ∆δmL kg Leakage out of the system during the measurement

4.3.2 Effect of varying shear stress on the uncertainty

During the dynamic gravimetric weighing process, parasitic forces such as δmT and

δmC affect the indication of a balance. Also, forces generated by ambient condi-

tions, such as the density of air (buoyancy), electrostatic forces, condensation and

thermal gradients and, in the case of ferromagnetic materials, magnetic forces, may
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affect the measurement result [89]. Buoyancy can be estimated by calculating the

density of surrounding air according to equations presented first by Giacomo [107]

and then specified twice by Davis [108] and Picard et al. [109]. Local gravita-

tional, electrostatic and possible magnetic forces can be assumed constant during

the measurement, and therefore neglected. The condensation of water is prevented

by ensuring that the measurement is conducted above the dew-point temperature.

Paper III presents the effect of convective forces (temperature gradients) on the

uncertainty in dynamic gravimetric gas mass flow rate measurement. Four test

cases were studied. The uncertainty calculation including the theory presented in

Paper II was implemented as a MATLAB-code. In the first case, the temperature

difference model between the gas vessel and ambient air presented in figure 4.6 was

used. This model gave a temperature difference of 1 K at the maximum. The effect of

varying shear stress was calculated according to equation (4.18). The measurement

uncertainty was evaluated by using equation (4.20) as a measurement model. The

second case was similar to the first one, except the temperature difference was now

as stable as possible. In that model, the maximum temperature difference was

0.2 K. The third and fourth cases were similar to the first and second ones, except

the effect of shear stress was not taken into account in the uncertainty calculation

(∆δmC = 0). In these two last cases, variations in temperature were only taken into

account by calculating the buoyancy correction to the indications of the balance.

Table 4.3 gives a summary of results of the combined standard uncertainties for the

studied test cases at four mass flow rates from 0.1 mg/s to 625 mg/s. As can be

seen, at the larger gas mass flow rates the effect of varying shear stress was almost

negligible. By comparing cases one and three at the gas mass flow rate of 0.1 mg/s,

the combined standard uncertainty was over 3.75 times larger in case one than in

case three. This shows that the effect of varying shear stress has to be taken into

account in uncertainty evaluation, especially for smaller gas mass flow rates.
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Table 4.3: Summary of combined standard uncertainties in four studied test cases.

625 mg/s 321 mg/s 21 mg/s 0.1 mg/s

Case uc / % uc / % uc / % uc / %

1 0.12 0.11 0.08 0.49

2 0.12 0.10 0.07 0.17

3 0.12 0.10 0.07 0.13

4 0.12 0.10 0.07 0.13

Figures 4.7 and 4.8 show the relative distribution of uncertainty components at two

gas mass flow rates: 0.1 mg/s and 625 mg/s. The numerical values of contributions

with four significant digits can be found in tables 4 and 5 in Paper III. If the

contribution of any component in the tables is smaller than 0.005 %, it has been

marked as 0.00. From the figures, it can be seen that the uncertainty due to natural

convection flow dominates at the mass flow rate of 0.1 mg/s, if the temperature

change during the measurement is large. Otherwise, the most significant component

is the effect of the connecting tube.

Table 4.4: Comparison of the uncertainty calculation methods at gas mass flow
rate of 0.1 mg/s for the DWS.

y / u (y) / 95 % CL or CI /

Method (mg/s) (mg/s) (mg/s)

LPU 0.0969 0.0005 [0.0959, 0.0979]

MCS 0.0970 0.0005 [0.0961, 0.0979]

Equation (2.2) is based on the assumption of independent uncertainty components.

The air temperature measurement at the boundary layer of a gas cylinder is used for

calculating both the shear stress on the cylinder wall and the buoyancy correction of

the indication of the balance. To show that using the same temperature distribution
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Figure 4.6: Temperature difference model between the wall of the gas cylinder and
ambient air as a function of dimensionless measurement time. The model was used
for simulating a situation, where the temperature of the gas vessel or ambient air
increases or decreases during a measurement cycle.

for both purposes will not have an effect on the combined standard uncertainty, the

calculation was carried out numerically (MCS) according to the ISO guidelines [14].

The gas mass flow rate of 0.1 mg/s was chosen, because at this flow rate the effect

of varying shear stress was found to be the most significant. During the MCS, the

number of trials M = 104 and each temperature value from the model in figure 4.6

was assumed to be normally distributed. The probability density function is shown

in figure 4.9, where 95 % coverage interval (CI) is marked with vertical dotted lines.

In table 4.4, results obtained analytically (LPU) and numerically (MCS) for the

gravimetric gas mass flow rate standard DWS are compared, and 95 % confidence

level (CL) or coverage interval (CI) are presented. Figure 4.9 shows the normal

distribution of the output estimate y. The results of the comparison showed a good

agreement between the LPU and MCS methods. From this can be concluded that

using the same temperature difference model for calculating both the shear stress

and the buoyancy correction will not have a notable effect on the combined standard

uncertainty.
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Figure 4.7: Comparison of the contribution of different uncertainty components to
the combined standard uncertainty at mass flow rate 0.1 mg/s. Numbers on the x -
axis refer to the numbering of uncertainty components in table 4.2. Numbers 8 and
9 correspond the effect of the connecting tube and the effect of natural convection,
respectively.

Figure 4.8: Comparison of the contribution of different uncertainty components to
the combined standard uncertainty at mass flow rate 625 mg/s. Numbers on the x -
axis refer to the numbering of uncertainty components in table 4.2. Numbers 8 and
9 correspond the effect of the connecting tube and the effect of natural convection,
respectively.
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Figure 4.9: The probability density function of the output quantity at M = 104

values of Y at the gas mass flow rate of 0.1 mg/s.
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4.4 Novel method for linking air velocity to the national stan-

dards of mass and time (Paper IV)

4.4.1 Mixing method

In Paper IV, a new mixing method (MM) is proposed for linking air velocity to the

national standards of mass and time. Instead of establishing different primary stan-

dards for different flow quantities, gravimetric mass flow standards are used as the

primary source of traceability in the whole gas metrology field at MIKES. A mixing

method was developed for creating a traceability link to air velocity measurements.

When humidifying air in the wind tunnel with a constant mass flow rate, the hu-

midity of air in the test section is directly proportional to the air velocity. It is

calculated as

v3 =
ṁv2

ρa3A3

[
(rw1 + 1)

∆rw

+ 1

]
, (4.21)

where A3, rw1 and ∆rw are the cross section area of the test section, the mixing

ratio (ratio of water vapour and dry air) of incoming air rw = ṁv/ṁa and the

mixing ratio difference between the air inlet and the test section ∆rw = rw3 − rw1,

respectively. Numbers in subscripts refer to the locations in the wind tunnel as

specified in figure 4.10.

4.4.2 Application of the mixing method at MIKES

MM was applied to an open-circuit wind tunnel at MIKES. The design of the tun-

nel was based on the rules of thumb presented by Mehta et al. [110]. The shape of

the contraction is a sixth-order polynomial, based on the study of Laine and Har-

jumäki [111]. The exit diffuser was designed exploiting the experimental test results

and CFD-simulation, reported in papers by Bell and Mehta [112] and Gullman-

Strand et al. [113], respectively.
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Figure 4.10: Schematic drawing of the MIKES wind tunnel. a: humidification
unit, b: blower, c: wide angle diffuser, d: settling chamber, e: contraction, f: test
section, g: exit diffuser. The humidification process of air: 1: mixing of feed water
vapour and make-up air, 2: dilution of components in the blower, 3: air flow with
homogeneous mixing ratio.

In the MIKES system, the mass flow rate of evaporated water is determined with

a dynamic gravimetric method. The mixing ratio is measured indirectly with a

dew-point hygrometer and barometer. The water vapour pressure is calculated

from the dew-point temperature using Sonntag’s formula [114]. Near the laboratory

conditions (t = 20 ◦C, φ = 50 %), the water vapour is assumed to obey the ideal

gas law. Then, the mixing ratio can be presented as a function of total barometric

pressure and partial pressure of water

rw =
Mw

Ma

pv

pa

≈ 0.6220
pv

p− pv

, (4.22)

where the molar masses of water Mw = 18.015 g/mol [115] and air Ma = 28.964 g/mol [115]

are assumed to be constants.

A Pitot tube installed at the centreline of the test section was used for studying

the performance of the MM at four measurement points in the air velocity range

from 5.5 m/s to 30 m/s. At each point, the measurements were repeated three

times. The average results are presented in table 4.5. Air velocity values measured

at the centreline of the test section were used as the indication of the Pitot tube.

It is shown in Paper IV that the maximum non-uniformity of the velocity profile

is less than 1.5 %. The non-uniformity was taken into account in the measurement

uncertainty of the Pitot tube. The maximum difference between the methods was
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0.7 % at the velocity of 5.5 m/s. The difference was smaller than 0.5 % elsewhere.

Based on the results, the MM seems to be feasible in the studied flow range.

Table 4.5: Comparison of air velocities measured by the mixing method (MM) and
Pitot tube.

MM / U (k = 2) / Pitot / U (k = 2) MM - Pitot / MM - Pitot /

(m/s) (m/s) (m/s) (m/s) (m/s) %

5.50 0.2 5.46 0.7 0.04 0.7

10.3 0.4 10.3 1.1 0.00 0.0

21.1 0.8 21.0 2.2 0.07 0.3

29.3 1.6 29.2 3.1 0.13 0.4
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4.5 Effect of temperature gradients on the indication of hydrom-

eters (Paper V)

4.5.1 Measurement procedure

When measuring the density of liquid with a hydrometer, temperature gradients at

the immersion depth in the liquid will affect the measurement result. In the study

presented in Paper V, a method for compensating for the effect of temperature

gradients on the hydrometer reading was developed.

The study was carried out using the MIKES hydrometer calibration system (HCS),

which is based on Cuckow’s method. A detailed description of the HCS can be

found in publications by Heinonen [116] or by Lorefice et al. [76]. The range the

hydrometer used was from 1950 kg/m3 to 2000 kg/m3, with a scale division of

0.5 kg/m3 to ensure a proper immersion without additional weights to the ethanol

bath.

The effect of temperature gradients in the ethanol bath of HCS was studied by

changing the liquid level with respect to the top of the jacketed glass vessel in two

calibration sets. In both sets, the five calibration points were measured twice. In the

first calibration set, the ethanol surface was about 60 mm above the liquid surface

in the jacket, to produce a significant vertical temperature gradient in the liquid.

For the second calibration set, the ethanol surface was dropped about 7 mm below

the liquid surface in the jacket, to minimize the temperature gradient. The vertical

temperature distribution in the liquid was measured in both sets at ten points using

two small Pt-100 probes of a digital thermometer. Each point was measured four

times. The temperature in the bath was set to 15 ◦C and ambient temperature was

25 ◦C. A comparison of the vertical temperature profiles in the ethanol is presented

in figure 4.11. The maximum temperature gradient in the first calibration set was
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0.05 K/mm, producing a significant density gradient located near the liquid surface.

Figure 4.11: The measured vertical temperature distributions in the HCS in the
two cases. Distances are measured from the surface of liquid. ¨: first calibration
set, ×: second calibration set.

4.5.2 Compensation for the effect of density gradients

It is assumed in Paper V that there are only vertical density gradients in the liq-

uid, and that the hydrometer is symmetrical with respect to its vertical axis. The

correction due to non-uniform density can be estimated by

δFb ≈ πg∆z

4

n∑
i=1

[ρl (zi)− ρl0] d
2
h (zi) , (4.23)

where dh(zi), ρl(zi) and ρl0 are the diameter of the hydrometer, actual liquid density

at a point zi and bulk density of the liquid, respectively. The idea of the method is

to determine the net correction to the buoyancy force due to the density gradients.
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By taking into account δFb, the equation for the density value in Cuckow’s method

is

ρx = ρa +
(ρl − ρa)

[
Ia

(
1− ρa

ρr

)
+ πdγx

g

]
[1 + β (T − Tr)]

Ia

(
1− ρa

ρr

)
− Il

(
1− ρ′a

ρr

)
− δFb

g
+ πdγl

g

. (4.24)

In equation (4.24), ρ′a, ρl, Ia, Il γl γx, d, T , Tr and β are density of air during weighing

in liquid, density of the calibration liquid, balance indication when weighing the

hydrometer in air and in liquid, surface tension of the calibration liquid, surface

tension of the liquid in which the hydrometer is normally used, stem diameter of the

hydrometer at the meniscus level, temperature of the liquid, reference temperature

and cubic thermal expansion coefficient of the hydrometer material, respectively.

The reference density of ethanol was determined with hydrostatic weighing and was

checked against the equation presented in the article by Bettin et al. [117].

Figure 4.12: Calibration results without density gradient correction (ρx = refer-
ence density, ρL = indication of the hydrometer) ¨: first calibration set, ×: second
calibration set.

The results of the first calibration set with larger density gradients and without the

correction according to the equation (4.23) are compared to the results obtained
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from the second set in figure 4.12. In figure 4.13 calibration results are re-calculated

using equation (4.24). As can be seen from the results, the difference between the

two calibration sets is now less than a scale division of the hydrometer.

Figure 4.13: Re-calculated calibration results (ρx = reference density, ρL = indica-
tion of the hydrometer) ¨: first calibration set, ×: second calibration set, 2: original
results from the second set.

With the developed method, it is possible to compensate for the effect of vertical

temperature gradients on the hydrometer reading. However, to carry out the com-

pensation properly, vertical temperature gradients have to be measured with very

short steps.
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5 Discussion and conclusions

A metrological competence study of the MIKES dynamic gravimetric gas mass flow

rate standard to meet the requirements of the national measurement standard was

carried out. The obtained results proved the international equivalence of the DWS

and confirmed that the uncertainty calculations are realistic. This has been shown

in Paper I.

A mathematical model for describing the average force due to the time-dependent

varying shear stress driven by natural convection flow on cylindrical surfaces was

developed in Paper II. Based on this model, the improved measurement model for

DWS and the effect of the force on the combined standard uncertainty was presented

in Paper III.

The results of the work reported in Paper III showed that the rapid changes of shear

stress due to temperature variation during a measurement cycle cannot be ignored,

and should be included in the uncertainty budget of a dynamic gravimetric gas

mass flow rate standard. When the equilibrium between the weighed gas cylinder

and ambient air was disturbed, the shear stress variation was one of the three most

dominating uncertainty components in the uncertainty budget at gas mass flow rate

0.1 mg/s. The theoretical and experimental studies carried out in this thesis showed

that the presented theoretical model was an adequate tool for estimating the varying

shear stress on cylindrical surfaces.

Papers I - III proved that the results from two primary calibration methods based

on the realization of mass and volume flow rates were comparable. The standard

measurement uncertainty of the DWS at MIKES is a little bit higher than in other

NSLs. However, by exploiting the results from Papers I - III, the calculation meth-

ods for the measurement result and combined standard uncertainty of DWS are

excellent.
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A mixing method gives a novel and less expensive way to link the air velocity cali-

brations to the SI base units of mass and time. The method presented in Paper IV

is suitable for a Pitot tube calibration in a wind tunnel at flow velocities from 5 m/s

to 30 m/s. A disadvantage of the method is that it is sensitive to changes in the

ambient mixing ratio difference. The humidification affects air temperature. To

improve the accuracy of the results, a dew-point hygrometer was used instead of

capacitive sensors.

A mathematical method for compensating for the effect of density gradients in the

liquid on the measurement result of a hydrometer was developed in the study pre-

sented in Paper V. The obtained results showed that the method can be used for

improving the quality of hydrometer measurements and calibrations. Also, it can be

exploited for estimating the uncertainty related to temperature gradients and den-

sity gradients in general. The improved accuracy of the liquid density measurement

reduces the uncertainty of conversion from volume flow rate to mass flow rate, or

vice versa.

Results of this thesis include a collection of new mathematical models and a new

measurement method. The first model can be used for a more accurate assesment of

the impact of varying natural convection flow on the weighed gas cylinder wall and

its contribution to the combined standard uncertainty of the dynamic gravimetric

gas mass flow rate standard. The second model describes correction to the indication

of a hydrometer, if vertical density gradients are present in the liquid. The mixing

method gives a novel and less expensive way to establish the traceability link from

air velocity measurement to the national standards of mass and time, instead of

length and time.

The results presented in this thesis improve the accuracy of the realization of fluid

flow units. Both mathematical models are already implemented as a part of the

DWS and HCS measurement systems at MIKES. DWS with the improvements pre-
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sented in this thesis has been already used for calibrating of instruments used for

air quality monitoring. Topics for future research could include a time-dependent

CFD-simulation of the dynamic gravimetric system to improve the calculation accu-

racy of the effect of varying shear stress. With a laser anemometer, the potential of

the MM will be clarified even at air velocities less than 5 m/s. By refining the evap-

oration process to be more stable and developing the mixing of vapour and air, the

uncertainty of the method could be improved. In addition, the use of a psychrom-

eter instead of a dew-point hygrometer would reduce the cost of implementation of

the MM.
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Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei

natürlicher Konvektion. Forschung im Ingenieurwesen 1, pages 391–406.
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