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Abstract

Robust portfolio modeling (RPM) [Liesiö, J., Mild, P., Salo, A., 2007. Preference programming for robust portfolio
modeling and project selection. European Journal of Operational Research 181, 1488–1505] supports project portfolio
selection in the presence of multiple evaluation criteria and incomplete information. In this paper, we extend RPM to
account for project interdependencies, incomplete cost information and variable budget levels. These extensions lead to
a multi-objective zero-one linear programming problem with interval-valued objective function coefficients for which all
non-dominated solutions are determined by a tailored algorithm. The extended RPM framework permits more compre-
hensive modeling of portfolio problems and provides support for advanced benefit–cost analyses. It retains the key features
of RPM by providing robust project and portfolio recommendations and by identifying projects on which further attention
should be focused. The extended framework is illustrated with an example on product release planning.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Resource allocation and project portfolio selection are focal strategic decisions in public administration
(e.g., Golabi et al., 1981; Ewing et al., 2006; Kleinmuntz, 2007) and industrial firms (e.g., Stummer and
Heidenberger, 2003). Often these decisions – which can pertain to any discrete proposals from which only
a subset will be implemented – are made with regard to multiple evaluation criteria on the basis of incomplete
information. There may also exist project interdependencies (e.g., mutually exclusive projects) that put con-
straints on feasible portfolios, as well as project synergies that offer extra benefits and/or cost savings when
particular project combinations are started. Moreover, the budget constraints may be ‘soft’, in the sense that
it is meaningful to adjust the budget depending on what benefits can be secured at different levels of resource
expenditure (Lindstedt et al., in press, among others). In the presence of these complex considerations,

0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.06.049

* Corresponding author.
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the deployment of systematic methods and tools for portfolio selection increases the rigor and transparency of
decision making. Ideally, such models should capture all relevant aspects of portfolio decision making so that
they can be deployed in different contexts; yet they should be simple and flexible enough so that they can be
readily accepted by practitioners (e.g., Archer and Ghasemzadeh, 1999; Cooper et al., 1999).

Robust portfolio modeling (RPM) (Liesiö et al., 2007) is a framework for project portfolio selection with
independent projects and fixed budget. In RPM, an additive multi-criteria value model (see, e.g., Keeney
and Raiffa, 1976; Belton and Stewart, 2001) is employed to capture the values of both individual projects
and project portfolios (Golabi et al., 1981; Ewing et al., 2006). Building on the concepts of Preference Pro-

gramming (e.g., Salo and Hämäläinen, 1992; Salo and Hämäläinen, 2001; Mustajoki et al., 2005), incomplete
information about criterion weights is captured through linear inequalities (Salo and Punkka, 2005, among
others), while projects’ criterion-specific evaluations are described through lower and upper bounds. Based
on the computation of all non-dominated portfolios, RPM features a project-specific core index, which helps
identify those projects that should be surely selected or rejected in view of incomplete information. The core
index also suggests borderline projects as candidates for the elicitation of additional information. These fea-
tures of RPM have been appreciated by decision makers (DMs) in applications in contexts such as strategic
product portfolio selection (Lindstedt et al., in press), screening of innovation ideas (Könnölä et al., 2007),
development of a national research agenda (Könnölä et al., in press), and evaluation of newly established
spin-off companies (Salo et al., 2006).

In this paper, we extend the RPM framework by: (i) admitting a wide range of project interdependencies
(cf., Stummer and Heidenberger, 2003), (ii) modeling incomplete information about project costs, and (iii)
considering variable budget levels. The key results on decision recommendations and additional information
in Liesiö et al. (2007) still hold with these extended features. The modified model structure necessitates changes
in the computation of non-dominated portfolios: instead of the knapsack-type problem in the original RPM
model, we have a general multi-objective zero-one linear programming (MOZOLP) problem with interval-
valued objective function coefficients. This problem has not been widely studied, wherefore we develop a
new algorithm for computing the non-dominated portfolios.

These conceptual and computational advances permit new modes of support for portfolio decision making.
First, the framework helps determine the budget level through an advanced portfolio-level benefit–cost anal-
ysis in view of project interdependencies and incomplete information on projects’ benefits and costs. The anal-
ysis also shows how budget variation impacts the relative status of projects. Second, project synergies can be
estimated via an interval, which can model situations where synergies may arise but are not certain. The role of
the synergies can also be analyzed by core index values to see whether or not they should be pursued. Third,
the RPM methodology supports interactive analyses: it offers robust recommendations subject to incomplete
information and helps identify projects and model parameters on which further attention should be focused.

The paper is organized as follows. Section 2 introduces the extended RPM framework and its key concepts.
Section 3 presents how incomplete cost information and budget variations can be modeled. Section 4 develops
an algorithm for the computation of non-dominated portfolios. Section 5 provides an illustrative example, and
Section 6 concludes.

2. Robust portfolio modeling

2.1. Portfolio value

In the RPM framework, m project proposals X ¼ fx1; . . . ; xmg are evaluated with regard to n criteria. The
score vector vj ¼ ½vj

1; . . . ; vj
n� contains the evaluation scores of project xj with regard to the criteria i ¼ 1; . . . ; n.

These vectors form the rows of the score matrix v 2 Rm�n such that ½v�ji ¼ vj
i . The overall value of project xj is

captured through an additive value function, i.e., V ðxjÞ ¼
Pn

i¼1wiv
j
i , where the weight wi measures the relative

importance of the ith criterion. The weights w ¼ ðw1; . . . ;wnÞT are scaled so that

w 2 S0
w :¼ w 2 Rnjwi P 0;

Xn

i¼1

wi ¼ 1

( )
: ð1Þ
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The weight wi relates a unit increase in the criterion-specific value to an increase in the overall value. A pro-
ject is preferred to another if it has higher overall value than the other.

A project portfolio p � X is a subset of available projects; thus, the set of all possible portfolios is the power
set P: = 2X. The overall value of a portfolio is the sum of the overall values of its projects. For a given score
matrix v and criterion weights w, the overall value of portfolio p is

V ðp;w; vÞ :¼
X
xj2p

Xn

i¼1

wiv
j
i ¼ zðpÞTvw; ð2Þ

where z(Æ) is a bijection z : P ! f0; 1gm such that zj(p) = 1 if xj 2 p and zj(p) = 0 if xj 62 p. For instance, with
m = 5 projects, portfolio p ¼ fx1; x2; x4g corresponds to zðpÞ ¼ ½1; 1; 0; 1; 0�T.

2.2. Portfolio feasibility and project interactions

In RPM, the set of feasible portfolios is defined by a set of linear inequalities whose coefficients are recorded
in matrix A 2 Rq�m (aj

l ¼ ½A�lj) and vector B ¼ ½b1; . . . ; bq�T 2 Rq. The set of feasible portfolios is

P F :¼ fp 2 P jAzðpÞ 6 Bg; ð3Þ
where 6 holds componentwise. The following constraint types are common in project portfolio selection, and
they can be modeled as linear inequalities (see, e.g., Stummer and Heidenberger, 2003):

• Budget constraints with fixed project costs cj and the budget level R. Note that cjs can be negative if they
correspond to cost saving projects.

• Logical constraints model mutually exclusive projects and other rigid interdependencies, such as follow-up
projects.

• Positioning constraints help ensure that the composition of the portfolio is aligned with strategic require-
ments, such as starting a minimum number of projects in different technological or geographical areas.

• Threshold constraints help ensure that the performance of the portfolio and its constituent projects fulfil
minimum requirements: for example, the aggregate net present value may have to exceed a minimum
acceptable level (cf., Kleinmuntz, 2007).

Project synergies (or cannibalization), i.e., when the overall value and/or the cost of a set of projects differs
from the sum of the individual projects’ overall values and costs, can also be modeled with linear constraints
and dummy projects xs 2 X. For instance, assume that synergy occurs if at least m 0 projects are selected from
the set X 0 � X (xs 62 X 0). The scores vs

i and cost cs represent the additional value and cost savings which are
obtained if the condition is met. Two constraints are needed to ensure that xs is included in the portfolio if
and only if at least m 0 projects from X 0 are included in the portfolio (Stummer and Heidenberger, 2003). Sit-
uations where the synergy occurs if at most (exactly) m 0 projects from X 0 are selected can be modeled equiv-
alently with structures of two (four) constraints.

Even though synergies are exceptions to value additivity, the RPM optimization model remains linear.
From the DM’s perspective, decisions are taken only about real projects which determine whether or not syn-
ergies occur (i.e., are the corresponding dummy projects included in the portfolio or not). For the given
weights w, scores v, costs c and budget R, the most preferred feasible portfolio maximizes the overall value
(2). This portfolio is obtained as a solution to the integer linear programming (ILP) problem

max
p2P F

V ðp;w; vÞ ¼ max
zðpÞ
fzðpÞTvwjAzðpÞ 6 B; zðpÞ 2 f0; 1gmg: ð4Þ

2.3. Incomplete information and dominance

Because elicitation of exact weights and scores can be difficult (e.g., Salo and Punkka, 2005), RPM employs
incomplete information modeled by set inclusion: instead of point estimates for weights and scores, the anal-
ysis is based on sets of feasible parameters that are consistent with the DM’s preference statements. These
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statements are converted into a set of feasible criterion weights Sw � S0
w. We assume that Sw has a polyhedral

convex hull which also allows for incomplete ordinal statements (Salo and Punkka, 2005). The extreme points
of the convex hull and the extreme point matrix are denoted by

fw1; . . . ;wtg :¼ extðconvðSwÞÞ ð5Þ
W ext :¼ ½w1; . . . ;wt� 2 Rn�t: ð6Þ

Incomplete score information is modeled through score intervals ½vj
i ;�v

j
i � that contain the ‘true’ scores vj

i . Lower
and upper bounds of all score intervals are denoted by matrixes v and �v, respectively. The set of feasible scores
is the set of matrixes Sv ¼ fv 2 Rm�njv 6 v 6 �vg. The information set of feasible weight and score parameters is
the Cartesian product S: = Sw · Sv. Thus, ðw; vÞ 2 S is equivalent to w 2 Sw and v 2 Sv.

When different weights and scores are selected from the information set S, the overall values of portfolios
vary so that an interval of values can be associated with each. Even if the value intervals of two portfolios
overlap, it may be possible to identify one of them as inferior through the dominance concept.

Definition 1. Let p; p0 2 P . Portfolio p dominates p 0 with regard to the information set S, denoted by p�Sp0, if
V ðp;w; vÞP V ðp0;w; vÞ for all ðw; vÞ 2 S and V ðp;w; vÞ > V ðp0;w; vÞ for some ðw; vÞ 2 S.

We denote p � p 0 when there is no risk of confusion about the information set S. Because the overall value
is linear in weights and scores, dominance can be checked by comparing the portfolios’ values at the extreme
points of conv (Sw).

Theorem 1. Let p; p0 2 P and information set S = Sw · Sv. Then

p�S p0 () zðp n p0ÞTvW ext P zðp0 n pÞT�vW ext

zðp n p0ÞT�vW ext 6¼ zðp0 n pÞTvW ext;

(
where P holds componentwise for the row vectors, Wext is given by (6) and p n p0 :¼ fxj 2 pjxj 62 p0g.

A rational DM who seeks to maximize the overall portfolio value will not choose a dominated portfolio.
Dominated portfolios can thus be discarded and the analysis can be focused on the set of non-dominated
portfolios

P NðSÞ :¼ fp 2 P Fj 9= p0 2 P F s:t: p0�Spg: ð7Þ
We denote PN � PN(S), when there is no risk of confusion about the information set S. The computation of
the set PN is a key step in supporting project portfolio selection under incomplete preference information – it
eliminates unacceptable (dominated) portfolios from further consideration while retaining the interesting
(non-dominated) ones.

2.4. Decision recommendations

Dominance between feasible portfolios depends on the information set S. Loose preference statements and
wide score intervals typically result in a large number of non-dominated portfolios whereas point estimates
give a unique optimal portfolio. In RPM, additional information refers to narrower score intervals and/or
additional constraints on the feasible weights. This additional information reduces the initial information
set S to eS � S. For technical reasons, RPM assumes that the revised information set eS is not entirely con-
tained on the border of S, i.e., intðSÞ \ eS 6¼ ;, where int(S): = {s 2 S| "s 0 2 S $ d > 0 such that
s + e(s � s 0) 2 S "e 2 [0,d]}. As a consequence, additional information can eliminate some non-dominated
portfolios, but cannot add new ones.

Theorem 2. Let eS ; S be information sets such that eS � S and intðSÞ \ eS 6¼ ;. Then, P NðeSÞ � P NðSÞ.

A major computational implication of Theorem 2 is that the set of non-dominated portfolios needs to be
computed with the dynamic programming algorithm (Section 4) for the initial information set S only. Later
on, the set P NðeSÞ can be obtained from PN(S) by pairwise dominance checks (Theorem 1)
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P NðeSÞ ¼ fp 2 P NðSÞjp0¤eS p 8p0 2 P NðSÞg: ð8Þ

The RPM framework helps analyze the robustness of individual projects subject to incomplete information.
The notion of the project-specific core index, defined as the share of non-dominated portfolios that include the
project, is one of the key concepts of RPM.

Definition 2. For a given information set S we define

Core index of project xj : CIðxj; SÞ ¼ jfp 2 P NðSÞjxj 2 pgj=jP NðSÞj;
Core projects : X CðSÞ ¼ fxj 2 X jCIðxj; SÞ ¼ 1g;
Borderline projects : X BðSÞ ¼ fxj 2 X j0 < CIðxj; SÞ < 1g;
Exterior projects : X EðSÞ ¼ fxj 2 X jCIðxj; SÞ ¼ 0g:

All core projects can be surely recommended and all exterior projects can be safely rejected, because core
projects do and exterior projects do not, respectively, belong to all non-dominated portfolios even if additional
information was given. Efforts to specify additional score information can be focused on the borderline pro-
jects, because narrower score intervals for core or exterior projects do not have an impact on the set of non-
dominated portfolios.

Corollary 1. Let eS � S such that intðSÞ \ eS 6¼ ;. Then, X CðSÞ � X CðeSÞ, X EðSÞ � X EðeSÞ. Furthermore, ifeSw ¼ Sw and ~vj ¼ vj, e�vj ¼ �vj 8xj 2 X BðSÞ, then P NðSÞ ¼ P NðeSÞ.
RPM also features decision rules for determining robust portfolios. The maximin rule recommends the

portfolio which yields the highest minimum overall value over the information set. The minimax-regret rule
recommends the portfolio for which the worst case overall value difference compared to other feasible port-
folios is the smallest. These rules coincide with the absolute robustness and robust deviation measures, respec-
tively, in robust discrete optimization (Kouvelis and Yu, 1997).

maximin : P min :¼ arg max
p2P N

min
ðw;vÞ2S

V ðp;w; vÞ

¼ arg max
p2P N

min
i2f1;...;tg

V ðp;wi; vÞ ð9Þ

minimax-regret : P mmr :¼ arg min
p2P N

max
p02P N;
ðw;vÞ2S

½V ðp0;w; vÞ � V ðp;w; vÞ�

¼ arg min
p2P N

max
p02P N;

i2f1;...;tg

½V ðp0 n p;wi;�vÞ � V ðp n p0;wi; vÞ� ð10Þ

The DM is advised to start with loose preference statements, which imply large feasible sets of the param-
eter values and typically result in a large number of non-dominated portfolios. Core index analysis helps iden-
tify core and exterior projects; it also helps focus the efforts of eliciting additional information on borderline
projects. Due to narrower score intervals and stricter weight statements, the set of non-dominated portfolios
becomes smaller and new core and exterior projects may be identified. Finally, decision rules (9) and (10) can
be consulted to recommend one of the remaining non-dominated portfolios.

The concepts of incomplete score information and core index apply to synergies as well. Synergy effects are
often hard to estimate, wherefore the use of lower and upper bounds may be convenient. The intervals ½vs

i ;�v
s
i �

of the corresponding dummy project xs then contain the ‘true’ magnitudes of the synergy effect. Specifically, if
the lower bound is set to zero, the possibility that the synergy does not occur is taken into account. Further-
more, the upper bound can be set based on an optimistic expectation.

The core index of the dummy project CIðxs; SÞ shows the share of non-dominated portfolios in which the
synergy is active. It illustrates how significant the synergy is at the portfolio level: for example, core synergies
(for which CIðxs; SÞ ¼ 1) are major drivers of portfolio value even with the most pessimistic estimate of their
additional value. Note that any portfolio where an exterior synergy (CIðxs; SÞ ¼ 0) is active or a core canni-
balization effect (CI(xs,S) = 1) is inactive would be dominated.
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3. Incomplete cost and budget information

3.1. Efficient portfolios

In many cases, the budget is a ‘soft constraint’ that can be adjusted to some extent: for instance, industrial
firms can obtain additional funding if there are good enough projects to be funded. Furthermore, projects’
exact costs are often uncertain, and optimization with point estimates does not inform the DM about how
the results would change if the costs vary. Thus, it is beneficial to: (i) conduct a benefit–cost analysis on
the overall value of the portfolio as a function of the budget level, and (ii) analyze the robustness of projects
and portfolios in the view of incomplete weight, score, cost and budget information.

To analyze incomplete cost and budget information, we remove the budget constraints from set of feasibil-
ity constraints defined by A and B in (3). Thus, PF denotes the set of portfolios that satisfy the other feasibility
constraints (i.e., positioning and threshold requirements, for example). The total cost of portfolio p is denoted
by

Cðp; cÞ :¼
X
xj2p

cj ¼ zðpÞTc;

where c ¼ ½c1; . . . ; cm�T are costs of projects x1; . . . ; xm, respectively.
Project costs are estimated via an interval ½cj;�cj�. In keeping with the notation in Section 2, the set of fea-

sible costs is denoted by Sc ¼ fc 2 Rmjc 6 c 6 �cg and the resulting cost of portfolio p is the interval
½Cðp; cÞ;Cðp;�cÞ�. The information set S = Sw · Sv still corresponds to the feasible regions of weights and scores
associated with the n evaluation criteria.

The set of non-dominated portfolios in (7) is determined by the range of overall values that the port-
folios can assume over the information set S subject to the (rigid) budget constraint. To incorporate
incomplete cost and budget information, we expand the notion of ‘interesting portfolios’ (cf. non-domi-
nated) to efficient portfolios: a portfolio is efficient if no other feasible portfolio gives a higher overall value
at a lower cost.

Definition 3. The set of efficient portfolios with regard to information set S = Sw · Sv and cost information Sc

is

P EðS; ScÞ ¼ fp 2 P Fj 9= p0 2 P F such that
V ðp0;w; vÞP V ðp;w; vÞ 8ðw; vÞ 2 S

Cðp0; cÞ 6 Cðp; cÞ 8c 2 Sc

� �
;

with at least one strict inequality for some ðw; vÞ 2 S or c 2 Sc.

The set of efficient portfolios is analogous to the set of non-dominated portfolios in that a rational DM
would not choose a portfolio outside the efficient set. If she were to do so, there would exist an efficient port-
folio which yields a higher overall value for all feasible weights and scores, and costs less no matter what the
project costs are within their intervals.

To compute the set of efficient portfolios, the total cost Cðp; cÞ is modeled as a criterion to be minimized.
Thus, the (n + 1)th score of project xj is the opposite of its cost, i.e., �cj. The cost is associated with a weight
wn+1 which varies so that wnþ1 2 ½0; 1�.

Theorem 3. Consider information set S = Sw · Sv and cost information Sc. Let the extended information setbS ¼ bSw � bSv be defined by:

bS v ¼ f½v;�c� 2 Rm�ðnþ1Þjv 2 Sv; c 2 Scg; ð11Þ

bSw ¼ w 2 bS 0
wj

1

1� wnþ1

ðw1; . . . ;wnÞT 2 Sw;wnþ1 < 1

� �
[ fw 2 bS 0

wjw1 ¼ 	 	 	 ¼ wn ¼ 0;wnþ1 ¼ 1g; ð12Þ

where bS 0
w ¼ fw 2 Rnþ1jwi P 0;

Pnþ1
i¼1 wi ¼ 1g. Then, P EðS; ScÞ ¼ P NðbSÞ.
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Theorem 3 has important implications. First, the dynamic programming algorithm for solving the set of
non-dominated portfolios in Section 4 can be used to solve the set of efficient portfolios, since convðbS wÞ is
polyhedral and bSv is a set of m · (n + 1)-dimensional score matrixes. Second, additional information eS � bS
can only reduce the set of efficient portfolios, because P NðeSÞ � P NðbSÞ by Theorem 2 and P NðeSÞ is obtained
from P NðbSÞ by pairwise checks between portfolios as in (8). Third, the share of efficient portfolios which con-
tain project xj can be interpreted as the core index of project xj for the information set bS , i.e., CIðxj; bSÞ. Cor-
ollary 1 implies that narrower cost intervals for core projects X CðbSÞ or exterior projects X EðbSÞ cannot reduce
the set of efficient portfolios.

3.2. Benefit–cost analysis

Efficient portfolios help analyze how the portfolio overall value changes as a function of the budget level.
Since both overall values and costs are intervals, efficient portfolios do not result in a unique benefit–cost
curve; rather they form a band in the overall value – total cost plane. For the analysis, we define the set of
feasible portfolios PF(c,R) that are attainable with fixed c 2 Sc and R 2 R and the corresponding set of non-
dominated portfolios P NðS; c;RÞ with regard to information set S:

P Fðc;RÞ ¼ fp 2 P FjCðp; cÞ 6 Rg; ð13Þ
P NðS; c;RÞ ¼ fp 2 P Fðc;RÞjp0¤Sp 8p0 2 P Fðc;RÞg: ð14Þ

The set P NðS; c;RÞ contains all non-dominated portfolios in terms of overall value, if project costs are c and
the budget is R. Thus, dominance is determined by incomplete information on weights and scores ðw; vÞ 2 S,
and P NðS; c;RÞ is an alternative notation to PN(S) defined in (7) to highlight the dependence on c and R.

The set of efficient portfolios corresponds to the union of all sets of non-dominated portfolios in the sense
that: (i) every efficient portfolio is included in the set of non-dominated portfolios for some fixed costs c 2 Sc

and budget R, and (ii) non-dominated portfolios for any fixed c 2 Sc and R are efficient. However, there is an
exception to the latter property: if two non-dominated portfolios have equal overall value for all feasible
weights and scores, only the less expensive one is efficient, by definition. Theorem 4 formalizes the relationship
between P EðS; ScÞ and P NðS; c;RÞ.

Theorem 4. Consider information set S = Sw · Sv and cost information Sc. Then

ðiÞ p 2 P EðS; ScÞ ) 9R 2 R; c 2 Sc such that p 2 P NðS; c;RÞ
ðiiÞ p 2 P NðS; c;RÞ ) 9p0 
 p; p0 2 P NðS; c;RÞ such that p0 2 P EðS; ScÞ;

where 
 is the equivalence relation p 
 p0 () V ðp;w; vÞ ¼ V ðp0;w; vÞ 8ðw; vÞ 2 S.

Theorem 4 implies that P NðS; c;RÞ can be obtained from P EðS; ScÞ for any given values of c and R: discard
portfolios that do not meet the budget constraint Cðp; cÞ 6 R and use pairwise dominance checks (14) in the
resulting P Fðc;RÞ to obtain P NðS; c;RÞ. Although the budget level R can be adjusted continuously, the com-
position of P NðS; c;RÞ for some fixed c can change at levels R 2 fCðp; cÞjp 2 P EðS; ScÞg only. Thus, the number
of such budget levels is limited from above by the number of efficient portfolios.

The benefit–cost band describes the ranges of overall values that non-dominated portfolios can assume at
different levels of R, subject to incomplete information ðw; vÞ 2 S and c 2 Sc. For each budget level R, this
band is defined by the interval

min
p2P NðS;c;RÞ
ðw;vÞ2S

V ðp;w; vÞ; max
p2P NðS;c;RÞ
ðw;vÞ2S

V ðp;w; vÞ

264
375: ð15Þ

The bounds are attained by maximizing/minimizing the overall portfolio value while project costs vary within
their intervals c 2 Sc. The optima are achieved when all costs are at their lower bounds (c = c), where the bud-
get is least restrictive, i.e., P NðS; c;RÞ � P NðS; c;RÞ 8c 2 Sc. The lower bound does not necessarily increase
with R, because a higher budget may suffice to fund a new portfolio which is non-dominated but has a lower
worst case overall value. Instead, we examine how the maximum worst case overall value develops over
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P NðS;�c;RÞ when R increases. Note that any portfolio in P NðS;�c;RÞ is feasible no matter what the costs are
within their intervals ðCðp; cÞ 6 R 8c 2 ScÞ. The following measures describe the overall portfolio value as a
function of the budget level.

Maximal overall value : MVðRÞ :¼ max
p2P NðS;c;RÞ

max
ðw;vÞ2S

V ðp;w; vÞ

Guaranteed overall value : GVðRÞ :¼ max
p2P NðS;�c;RÞ

min
ðw;vÞ2S

V ðp;w; vÞ

The GV(R) curve shows the increase in the value of the maximin portfolio (9) over P NðS;�c;RÞ. Both MV(R)
and GV(R) are non-decreasing in R.

3.3. Budget-dependent core index

The sets P NðS;�c;RÞ also help analyze the robustness of individual projects as a function of R. Budget-
dependent core index of project xj measures the share of non-dominated portfolios which contain xj and
are certainly attainable (c ¼ �c) at budget level R.

Definition 4. Budget-dependent core index of project xj at budget level R is

CIðxj; S;RÞ ¼ jfp 2 P NðS;�c;RÞjxj 2 pgj
jP NðS;�c;RÞj

:

If Cðxj; S;RÞ ¼ 1, project xj is included in the set of non-dominated portfolios attainable with �c and R regard-
less of the incomplete information ðw; vÞ 2 S. Interestingly, the core index is not necessarily increasing in R.
For instance, a small increase d in R may be enough for a new portfolio p to enter P NðS;�c;Rþ dÞ. This
new portfolio may not contain project xj that is contained in all portfolios in P NðS;�c;RÞ. However, the new
portfolio p must contain projects that are alternatives to xj: they fit into the budget R + d even if c ¼ �c and
yield a higher overall value than xj for some ðw; vÞ 2 S. Thus, project xj can lose its core status when these
alternative projects become attainable at the higher budget R + d.

3.4. Implications for decision support

The guaranteed overall value curve GV(R) and the budget-dependent core indexes CIðxj; S;RÞ are helpful in
budgeting and robustness analysis. For instance, the budget may be set at level R where the guaranteed overall
value GV(R) first exceeds a given threshold. Guaranteed and maximum benefit–cost ratios are obtained from
the GV(R) and MV(R) curves, and they can be employed in determining the final budget. The CIðxj; S;RÞ plot
links the budget decision to the project-specific yes/no decisions. For instance, the DM can identify a budget
level R* at which a reference project first enters a non-dominated portfolio. The CIðxj; S;RÞ plot shows which
other projects belong to all, some or none of the non-dominated portfolios at R*. If the DM were to choose the
reference project into the portfolio at a lower budget level than R*, or she does not choose (reject) all core
(exterior) projects at R*, the resulting portfolio would be dominated. The CIðxj; S;RÞ plot also illustrates where
the core indexes are sensitive to small budget variations.

A narrower budget range and narrower cost intervals work similarly as stricter weight statements and nar-
rower score intervals, respectively: they leave a smaller (sub)set of efficient portfolios, which retains the estab-
lished core and exterior projects and may yield new ones from earlier borderline projects. Furthermore,
narrower score and cost intervals have an impact on efficient portfolios only when applied to borderline
projects.

The RPM framework with incomplete cost and budget information opens further possibilities, too. First,
portfolio cost could be used as a weighted criterion among others; the form of the extended information set bS
in Theorem 3 makes it possible to restrict the feasible values of the weight of the cost criterion wn+1. The DM
could set a lower bound, for example, for the marginal rate of added value per dollar on criterion i through the
weight ratio wi/wn+1. Second, the model would allow for multiple resources with incomplete information on
consumption (cost) and availability (budget). In this case, Definition 3 (efficiency) can be extended to form
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another cost inequality for each additional resource, and Theorem 3 can be applied successively to incorporate
resources one by one into the extended information set.

4. Computation of non-dominated portfolios

The computation of non-dominated and efficient portfolios is identical in the sense that the set of efficient
portfolios is equal to the set of non-dominated portfolios with regard to the extended information set (The-
orem 3). Thus, we only consider the computation of the set PN without taking stance on whether or not the
information set includes the cost criterion.

Solving the set PN is related to the multi-objective zero-one linear programming (MOZOLP) problem (see,
e.g., Kiziltan and Yucaoglu, 1983). With point estimate scores v ¼ v ¼ �v, the computation of non-dominated
portfolios is equivalent to finding all Pareto-optimal solutions to the t-objective MOZOLP problem

vmaxzðpÞfzðpÞTvW extjAzðpÞ 6 B; zðpÞ 2 f0; 1gmg; ð16Þ

where matrix vW ext 2 Rm�t contains the overall values of the m projects at the t extreme points of conv(Sw). A
feasible solution z(p) to MOZOLP problem (16) is Pareto-optimal if there exists no feasible solution z(p 0) such
that z(p 0)TvWext � z(p)TvWext (where � denotes greater than or equal to on each component and strictly great-
er on at least one). This is equal to the dominance check in Theorem 1 when v ¼ v ¼ �v. Furthermore, if there is
no weight information (Sw ¼ S0

w), Wext is an identity matrix and the condition coincides with the general def-
inition of Pareto-optimality of criterion vectors (zðp0ÞTv�zðpÞTv). Thus, the computation of non-dominated
portfolios in the RPM framework is a multi-objective zero-one linear programming problem with interval-val-

ued objective function coefficients.
Building on the work of Villarreal and Karwan (1981) on MOZOLP algorithms, we build our approach on

dynamic programming which, in this case, is equivalent to the breadth-first search strategy. Let us define
P0 = {;} and a recursive iteration scheme

P k ¼ P k�1 [ fðp [ fxkgÞjp 2 P k�1g ð17Þ
for 1 6 k 6 m. Clearly, Pm = P and each auxiliary set Pk has the property that if p 2 Pk then p \ fxkþ1; . . . ;
xmg ¼ ;. Since P N � P F � P , a complete enumeration approach would start with P0 and go through the
iteration (17) for all k 2 f1; . . . ;mg to obtain P. Infeasible portfolios could be discarded using the feasibility
check (3), and PN could be computed from PF using pairwise dominance checks (7). However, since the size of
P is 2m this approach becomes infeasible in terms of memory requirements and computational time when m

grows (see Stummer and Heidenberger, 2003).
Therefore, at each kth stage of the iteration, we identify and discard portfolios p 2 Pk that cannot become

non-dominated even if projects from the set {xkþ1; . . . ; xm} are added to them. Computational benefits of dis-
carding such portfolios are amplified by the iteration scheme, since if p 2 P k is discarded, any portfolios
p0 ¼ p [ p00; p00 � fxkþ1; . . . ; xmg are not included in any of the auxiliary sets Pk+1, . . ., Pm.

Infeasibility of portfolio p 2 Pk is not a sufficient condition for discarding it. Lemma 1 presents a sufficient
condition for discarding p on the basis that it cannot become feasible, and thus non-dominated, by including
projects from the set fxkþ1; . . . ; xmg.

Lemma 1. Let p 2 Pk. If
P

xj2paj
l þ
Pm

j¼kþ1 minf0; aj
lg > bl for some l 2 f1; . . . ; qg, then (p [ p00) 62 PN for any

p00 � fxkþ1; . . . ; xmg.

Lemma 2 compares the overall values and constraint values of two portfolios p; p0 2 P k to determine if p

cannot become non-dominated.

Lemma 2. Let p,p 0 2 Pk. If p 0 � p and Az(p 0) 6 Az(p) (where 6 holds componentwise), then (p [ p00) 62 PN for

any p00 � fxkþ1; . . . ; xmg.

Lemma 3 states that a feasible portfolio p 2 Pk \ PF cannot become non-dominated, if it is full, i.e., no pro-
jects can be added to it without losing feasibility, and there exists a feasible portfolio p 0 2 PF that dominates p.
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Lemma 3. Let p 2 Pk \ PF. If
P

xj2paj
l þminj2fkþ1;...;mga

j
l > bl for some l 2 f1; . . . ; qg, then p is full (i.e.,

(p [ p00) 62 PF for any nonempty p00 � fxkþ1; . . . ; xmg). Furthermore, if there exists p 0 2 PF such that p 0 � p, then

(p [ p00) 62 PN for any p00 � fxkþ1; . . . ; xmg.

Lemma 4 can be used to discard portfolio p 2 Pk based on an upper bound of how much its overall value
can still be increased. Thus, we are interested in the maximal overall value of portfolio p00 � fxkþ1; . . . ; xmg,
measured at the extreme point wi of conv(Sw), achievable with the slack in constraints eB ¼ B� AzðpÞ. This
corresponds to an ILP problem

max
~z2f0;1gm�k

f~zT~vwijeA~z 6 eBg; ð18Þ

where ~v ¼ ½�vkþ1T
; . . . ;�vmT �T 2 Rðm�kÞ�n and eA ¼ ½akþ1; . . . ; am� 2 Rq�ðm�kÞ. An exact solution at each extreme

point may be too time-consuming. Instead, we solve the Lagrangian dual of (18) with subgradient optimiza-
tion, which gives an upper bound Ukþ1

i ðeBÞ for the exact solution with less computational effort (see, e.g.,
Bertsimas and Tsitsiklis, 1997).

In Lemma 4, the overall value of portfolio p 2 Pk plus the upper bound of the increase, denoted by vector
Ukþ1ðeBÞ ¼ ½Ukþ1

1 ðeBÞ; . . . ;Ukþ1
t ðeBÞ�T, is compared to the overall value of a reference portfolio p 0 2 PF to deter-

mine if p cannot become non-dominated.

Lemma 4. Let p0 2 P F and p 2 Pk. If zðp0 n pÞTvW ext�zðp n p0ÞT�vW ext þ U kþ1ðB� AzðpÞÞ (denoted by p0�U p),

then (p [ p00) 62 PN for any p00 � fxkþ1; . . . ; xmg.

For Lemma 4 to discard portfolios effectively, the reference portfolio p 0 should have a high overall value
over the whole information set S. The first step is to generate a set of reference portfolios PD � PF by solving
the ILP-problem (4) with random feasible weights and scores. Algorithm for the computation of non-domi-
nated portfolios (CND) is formulated as follows.

PN = CND(W ext;�v; v;A;B){
1. Generate PD

2. P0 {;}
3. For k ¼ 1; . . . ;m do

(a) P k  fðp [ fxkgÞjp 2 P k�1g [ P k�1

(b) P k  fp 2 P kj
P

xj2paj
l þ
Pm

j¼kþ1 minf0; aj
lg 6 bl 8l 2 f1; . . . ; qgg

(c) P k  fp 2 P kjp0¤U p 8p0 2 P Dg
(d) P k  fp 2 P kjp0¤U p 8p0 2 fp0 2 P k \ P Fjp00¤p0 8p00 2 P Dgg
(e) P k  fp 2 P kj 9= p0 2 P k such that p0 � p;Azðp0Þ 6 AzðpÞg

4. P N  fp 2 P mjp0¤p 8p0 2 P mg
}

In Step 3, the algorithm runs through the iteration scheme (17) for all k ¼ 1; . . . ;m; in Step 3(a), Pk is struc-
tured by taking each portfolio in Pk�1 with and without project xk. Step 3(b) discards portfolios that cannot
become feasible by Lemma 1. Steps 3(c) and 3(d) discard portfolios by Lemma 4, first using portfolios in PD as
reference portfolios (c) and then using feasible portfolios in Pk that are not dominated by any portfolio in PD

as reference portfolios (d). By Lemma 3, zero upper bounds are used for full portfolios p when determining if
p 0 �U p in Steps 3(c) and 3(d). Step 3(e), discards portfolios within Pk by Lemma 2. Finally in Step 4, Pm � PF

since all infeasible portfolios have been discarded in Step 3(b). Thus, PN is obtained from Pm by discarding
dominated portfolios.

5. Illustrative example

In product release planning, it is typically necessary to consider several customers with different preferences
for the product features, logical requirements and value and cost synergies (Ruhe and Saliu, 2005; Salo and
Käkölä, 2005). Here, we present an illustrative example where a technology company has to select a feature
portfolio from 40 feature candidates (cf. projects), denoted by x1; . . . ; x40. Each customer (cf. criteria), indexed
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by i ¼ 1; 2; 3, has given its own evaluations on how valuable each feature would be to it, by using the most
preferred feature as a reference. These scores, denoted by vj

i , are scaled so that the sum of each customer’s
scores is 1000. For the company, each additional feature increases the total development cost. The uncertain
feature-specific costs cj are evaluated as intervals. The maximum budget is 800,000 euros, but the final expen-
diture is based on benefit–cost analysis. The features’ scores and costs (in thousands of euros) are in Table 1.

The company uses an additive value model for the overall value of each feature. The relative importance of
each customer is evaluated based on its size and market power, expected order volume of the new product and
the history of business partnership. The company evaluates the importance through the ranking: Customer 1
is the most important, Customer 2 is the second and Customer 3 is the least important. This corresponds to the
feasible weight set Sw ¼ fw ¼ ðw1;w2;w3ÞT 2 S0

wjw1 P w2 P w3g, i.e., a unit increase in the first customer’s

Table 1
Benefit scores and costs of the features

Name Customer 1 (vj
1) Customer 2 (vj

2) Customer 3 (vj
3) Cost (cj)

Feature A1 50 0 22 [82,90]
Feature A2 21 10 0 [38,40]
Feature A3 23 9 28 [46,50]
Feature A4 16 6 22 [39,40]
Feature A5 0 0 0 [58,60]
Feature A6 57 0 0 [149,150]
Feature A7 25 22 45 [9,10]
Feature A8 10 50 20 [29,30]
Feature A9 33 23 0 [59,60]
Synergy 1 0 0 0 [�50,�40]
Feature B1 20 0 9 [27,30]
Feature B2 18 30 31 [179,190]
Feature B3 52 3 34 [99,110]
Feature B4 8 60 13 [67,70]
Feature B5 55 6 33 [75,80]
Feature B6 19 52 53 [64,70]
Feature B7 70 0 47 [68,70]
Feature B8 55 0 23 [38,40]
Feature B9 65 27 48 [67,70]
Feature B10 4 0 24 [108,120]
Feature B11 76 26 0 [28,30]
Feature B12 0 16 27 [446,490]
Feature B13 68 61 38 [49,50]
Feature B14 13 60 1 [113,120]
Synergy 2 0 [30,50] 0 [0,0]
Feature C1 0 5 13 [86,90]
Feature C2 0 47 32 [127,130]
Feature C3 33 14 28 [116,120]
Feature C4 0 63 2 [164,180]
Feature C5 11 55 20 [113,120]
Feature C6 24 40 32 [49,50]
Feature C7 0 0 51 [255,260]
Feature C8 0 29 4 [30,30]
Feature C9 0 40 9 [67,70]
Feature C10 0 0 47 [59,60]
Feature C11 40 49 30 [28,30]
Feature C12 0 2 26 [163,170]
Feature C13 4 3 0 [88,90]
Feature C14 17 9 15 [346,380]
Feature C15 89 38 43 [63,70]
Feature C16 6 31 8 [99,100]
Feature C17 0 4 24 [9,10]
Synergy 3 0 0 [0,30] [0,0]
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benefit is preferred to a unit increase in the second customer’s benefit, which is preferred to a unit increase in
the third customer’s benefit. The set Sw also contains the equal weight vector w ¼ 1

3
; 1

3
; 1

3

� �T
, which corresponds

to the average of the customers’ scores.
The overall value of the feature portfolio (2) is to be maximized subject to varying budget levels and incom-

plete information on the features’ benefits and costs. In addition, the following properties have to be
accounted for:

• Product positioning. To promote novelty and scope of the product, at least three features from each tech-
nological area (A,B,C) must be included in the product.

• Follow-up features. Technical properties require that Feature A2 cannot be included unless A1 is included.
Similarly, B3 is possible only if both B1 and B2 are included, and Feature C4 calls for C1, C2 and C3.

• Cost synergies. Features A8 and A9 can be implemented jointly at a lower cost than separately. This is mod-
eled with a dummy feature ‘Synergy 1’ which has a negative cost interval [�50, �40] (Table 1). That is, sav-
ings between 40,000 and 50,000 euros are gained in comparison with the sum of the ‘stand-alone’ costs of
these features.

• Value synergies. Customer 2 has stated that Features B13 and B14 together yield an extra benefit to it. This
is modeled by dummy feature the ‘Synergy 2’ with a zero-cost and positive score interval for Customer 2. If
Features C14–C17 are all included in the product, Customer 3 may gain an extra benefit. This is modeled by
the zero-cost dummy feature ‘Synergy 3’ with a positive score interval ranging from zero for Customer 3.
The dummy features are also listed in Table 1.

Cost is included in the model as a criterion to be minimized. Eqs. (11) and (12) in Theorem 3 are used to
formulate the extended information set bS ¼ bSw � bSv. The extreme points of convðbS wÞ are ð1; 0; 0; 0ÞT;

1
2
; 1

2
; 0; 0

� �T
; 1

3
; 1

3
; 1

3
; 0

� �T
and (0,0,0,1)T. Computation of the set P EðS; ScÞ took some 7 min on a personal com-

puter (Intel Centrino Duo, 1.83 GHz, 1 GB) and resulted in 737 efficient feature portfolios. A total of 6 core
features X CðbSÞ were included in all efficient feature portfolios, while 17 exterior features X EðbSÞ were not
included in any of them. By Theorem 2, the company can focus further analysis on the 20 borderline features
X BðbSÞ. The release planning was started with wide cost intervals for all 43 features/synergies; now only 20 of
them can impact the results if they became narrower. With point estimate costs for the borderline features
(chosen randomly from the intervals in this example), the number of efficient feature portfolios is reduced
to 449.

The overall values and compositions of the 449 efficient feature portfolios are characterized in Figs. 1 and 2.
Fig. 1 illustrates how the maximal and guaranteed overall values develop as a function of the budget level R.
First, the GV curve shows that R = 227 is the lowest budget level which guarantees that a feasible portfolio
can be constructed (three features from A, B and C). From MV we see that the cost of this first portfolio
may be as low as R = 210. The range [GV(R),MV(R)] expands with increasing budget R, since the more expen-
sive portfolios include more features that add to the overall value and cost intervals. Benefit–cost ratios
(MV(R)/R and GV(R)/R) reach their maximum at R = 287, whereafter both ratios decrease in R. This is
because the efficient portfolios at lower budget levels include mostly features with the highest individual
benefit–cost ratios. As the budget level increases, features with less attractive benefit–cost ratios are added
to maximize the overall value of the portfolios.

Fig. 2 characterizes efficient portfolios at different budget levels by showing the budget-dependent core
indexes of the 40 features and 3 synergies. Let us highlight some results:

• Robustness of the features. Features A7, A8, A9, B11 and C11 (and Synergy 1 from A8 and A9) are core
features for all feasible budget levels R 2 ½227; 800�. These features are relatively inexpensive with high ben-
efit–cost ratio intervals. Features C15 and B9, on the other hand, are exterior at low budget levels, but
become core from R = 276 and R = 472 forward, respectively. These two features yield high benefits to
the customers; however, they are more expensive and thus become core features only when the budget is
high enough. Features B1 and C8, in turn, offer relatively little value at low cost. Their core indexes vary
across the budget range, depending on whether there is slack in the budget for these ‘small’ features; when
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the budget increases further to accommodate another higher value feature, their core indexes decrease until
there is additional slack so that they can be implemented.

• Role of the positioning constraints. The first efficient portfolio at R = 227 consists of the three least expensive
features from technological areas A, B and C (taking into account the synergy between A8 and A9). At the
budget level R = 236 feature B8 is replaced by the more valuable B13, whereafter features B1, B8, B13, C6
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Fig. 1. Guaranteed and maximal overall values as a function of the budget level.

Fig. 2. Budget-dependent core indexes CIðxj; S;RÞ of the features.
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and C8 come and go in short intervals as the budget increases. All positioning constraints remain binding
until R = 315. As the budget level increases, the positioning constraints become redundant.

• Role of the synergies. Synergy 1 provides a substantial cost saving relative to the sum of Features’ A8 and
A9 stand-alone costs. Feature A9 alone would probably not be a core feature, but combined with A8 and
the resulting Synergy 1, these features belong to all efficient portfolios. Synergy 2, which is activated by
including Feature B14 on top of B13, holds potential for a relatively high added value for Customer 2.
However, B14 and B13 together are expensive and the overall value interval of Synergy 2 is wide. Thus,
Synergy 2 (and Feature B14) are not included in any efficient portfolio until the budget level reaches
R = 510, and even thereafter their core indexes vary. Synergy 3, which requires that all Features C14–
C17 are implemented, is exterior throughout the budget range. This is because the group of features
C14–C17 is very expensive, and the added value of Synergy 3 is relatively small, uncertain and yields benefit
to Customer 3 only. Thus, all synergies are not pursued in the efficient portfolios.

The company sets the final budget at R = 650. At this level the sum of the features’ scores is above 330 (one
third of the maximum) for all customers. Also, the guaranteed overall value exceeds 500 (Fig. 1), which is half of
the overall value achieved if all features were included. Third, the core indexes are rather stable around R = 650,
meaning that small budget variations would not change the sets of core, borderline and exterior features.

The set P NðS;�c; 650Þ contains 15 portfolios, whose overall value intervals are shown in Fig. 3. The core
indexes CIðxj; S; 650Þ, (see Fig. 2 at R = 650) show that there are 11 borderline features (and one synergy)
at R = 650. The maximin decision rule (9) recommends portfolio #7 as the final choice. However, Fig. 3 shows
that portfolio #6 offers a higher maximum value while the minimum value is almost the same. Furthermore,
the upper bound of the cost of portfolio #6 is 641,000 euros, while it is 643,000 for #7, and the portfolios differ
by one feature only (B1 in #6 and C8 in #7). Thus, the company chooses to release the product with feature
portfolio #6, marked with asterisks in Fig. 2.

6. Conclusions

In this paper, we have extended the RPM framework (Liesiö et al., 2007) to: (i) incorporate project inter-
dependencies, such as synergies and portfolio positioning requirements, (ii) admit interval-valued estimates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
400

450

500

550

600

650

700

O
ve

ra
ll 

va
lu

e

Feature portfolio # 

Fig. 3. Overall value intervals of the non-dominated feature portfolios P NðS;�c;RÞ at budget level R = 650.
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about project costs and (iii) consider variations in the budget level and benefit–cost analysis. Based on the
computation of all efficient portfolios, the budget-dependent core index helps identify which projects are robust
choices at any given budget level. It also suggests how to focus further efforts to elicit interval-valued score and
cost estimates. Furthermore, portfolio-level measures show how the maximal and guaranteed overall values
develop as a function of the budget level. Overall, the extended RPM framework helps examine the effects
of incomplete information (weights, scores, costs and budget). It helps focus attention to those projects and
model parameters where additional information is likely to matter most.

Computationally, the extended RPM leads to a multi-objective zero-one linear programming problem with
interval-valued objective function coefficients. Our experiments with the dedicated dynamic programming
algorithm suggest that problems with some 60 projects, 5 criteria and 10 constraints can be solved with a per-
sonal computer in a reasonable time, although the solution time is highly dependent on the types of constraints
and correlations between project scores and constraint coefficients; here, further simulation studies are needed
to characterize how the solution time depends on problem properties. It would also be of interest to examine
how depth-first type MOZOLP algorithms (e.g., Kiziltan and Yucaoglu, 1983) can be extended to account for
interval-valued objective function coefficients, and how they would perform compared to our breadth-first
algorithm. Furthermore, approximative or heuristic algorithms are needed to determine a representative sub-
set of efficient portfolios for large problems (e.g., 200 projects). Also, the first set of efficient portfolios may be
computed prior to a decision workshop, for example. The ensuing phase of interactive analysis is computa-
tionally straightforward, because all subsets of efficient portfolios are obtained by pairwise comparisons
between portfolios. Thus, the decision support process is not too sensitive to the solution time of the dynamic
programming algorithm.

This work paves way for future research on large decomposed project portfolio selection problems under
incomplete information. For instance, a company may have several business units that are confronted with
both local and shared budget constraints. In such cases, the sets of efficient portfolios for each subproblem
could be employed to support the allocation of the total budget among the business units and for determining
the the optimal project portfolio within each business unit.
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Appendix

The proofs of Theorems 1,2 and Corollary 1 are presented in Liesiö et al. (2007) using a slightly different
notation.

Proof of Theorem 3. Assume p�Ŝ p, which by definition is equal to

V ðp;w; ½v;�c�Þ�V ðp;w; ½v;�c�Þ 8ðw; ½v;�c�Þ 2 bS
() V ðp;w; ½v;�c�Þ�V ðp;w; ½v;�c�Þ 8w 2 extðconvðbSwÞÞ; ½v;�c� 2 bSv;

where � means that the inequality is strict for some values. Since the extreme points of bS w are those of Sw

together with unit vector en+1 we have

()
V ðp;w; vÞP V ðp;w; vÞ 8w 2 extðconvðSwÞÞ; v 2 Sv

�zðpÞTc P �zðp0ÞTc 8c 2 Sc

�
()

V ðp;w; vÞP V ðp;w; vÞ 8ðw; vÞ 2 S

zðpÞTc 6 zðp0ÞTc 8c 2 Sc

�
with at lest one inequality strict. Thus, p 2 P NðbSÞ if and only if p is efficient. h
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Proof of Theorem 4

(i) Let p 2 P EðS; ScÞ. Choose ĉ 2 Sc such that ĉj ¼ c; xj 2 p, ĉj ¼ �c; xj 62 p and bR ¼ Cðp; ĉÞ. Contrary to the
claim assume that p 62 PN(S,c,R). Then there exists p0 2 P NðS; c;RÞ such that p 0 �S p and Cðp0; ĉÞ 6bR ¼ Cðp; ĉÞ. This implies that for any c 2 Sc we have Cðp0; cÞ � Cðp; cÞ ¼ Cðp0 n p; cÞ þ Cðp0 \ p; cÞ�
Cðp\p0;cÞ�Cðp np0;cÞ6Cðp0 np;�cÞþCðp0 \p;cÞ�Cðp\p0;cÞ�Cðp np0;cÞ¼Cðp0; ĉÞ�Cðp; ĉÞ6 0. Thus
p 0 �S p and Cðp0;cÞ6Cðp;cÞ 8c2 Sc implying p 62 PE(S,Sc), which is a contradiction. Thus p2 P NðS;c;RÞ.

(ii) Let p 2 P NðS; c;RÞ and denote ½p� ¼ fp0 2 P NðS; c;RÞjV ðp0;w; vÞ ¼ V ðp;w; vÞ 8ðw; vÞ 2 Sg which is non-
empty since p 2 ½p�. Contrary to the claim assume that ½p� \ P EðS; ScÞ ¼ ;. Then for every p0 2 ½p� there
exists p00 2 P EðS; ScÞ such that V(p00,w,v) P V(p 0,w,v) "(w,v) 2 S, Cðp00; cÞ 6 Cðp0; cÞ. Also p00 2 P FðR; cÞ,
since Cðp00; cÞ 6 Cðp0; cÞ 6 R. If the first inequality is strict for some ðw; vÞ 2 S then p00�S p0 which implies
p00 �S p 62 PN(S,c,R) which is a contradiction. On the other hand if V ðp00;w; vÞ ¼ V ðp0;w; vÞ 8ðw; vÞ 2 S,
then p00 2 [p] which contradicts ½p� \ P EðS; ScÞ ¼ ;. h

Proof of Lemma 1. Let p 2 Pk. Contrary to the claim assume that for some l
P

xj2paj
l þ
Pm

j¼kþ1 minf0; aj
lg > bl

and there exists p00 � {xk+1, . . ., xm} such that ðp [ p00Þ 2 P N. Since PN � PF, (p [ p00) 2 PF and thus
Az(p [ p00) = Az(p) + Az(p00) 6 B (because p \ p00 = ;). Since all feasibility constraints are satisfied, bl PP

xj2paj
l þ
P

xj2p00a
j
l P

P
xj2paj

l þ
Pm

j¼kþ1 minf0; aj
lg > bl, which is a contradiction. h

Proof of Lemma 2. Let p,p 0 2 Pk. Contrary to the claim assume that p 0 � p, Az(p 0) 6 Az(p) and there exists
p00 � fxkþ1; . . . ; xmg such that (p [ p00) 2 PN. Since PN � PF, (p [ p00) 2 PF which corresponds to Az(p [ p00) =
Az(p) + Az(p00) 6 B, since p \ p00 = ;. However by assumption, Az(p 0 [ p00) = Az(p 0) + Az(p00) 6 Az(p) +
Az(p00) 6 B and thus (p 0 [ p00) 2 PF. The overall value difference V ðp0;w; vÞ � V ðp;w; vÞ is equal to zðp0ÞTvw�
zðpÞTvw ¼ zðp0ÞTvw� zðpÞTvwþ ðzðp00ÞTvw� zðp00ÞTvwÞ ¼ V ðp0 [ p00;w; vÞ � V ðp0 [ p00;w; vÞ, since p 0 \ p00 =
p \ p00 = ;. Thus, p 0 � p implies (p 0 [ p00) � (p [ p00) and therefore (p [ p00) 62 PN which is a contradiction. h

Proof of Lemma 3

(i) Let p 2 Pk \ PF. Contrary to the claim assume that there exists l such that
P

xj2paj
l þminj2fkþ1;...;mga

j
l > bl

and there exists p00 � {xk+1, . . ., xm}n; such that (p [ p00) 2 PF. If aj
l < 0 for some xj 2 p00, then, since p

is feasible, bl <
P

xj2paj
l þminj2fkþ1;...;mga

j
l 6

P
xj2paj

l 6 bl, which is a contradiction. On the other hand,
if aj

l P 0 for all xj 2 p00 then, since p00 is not empty, bl P
P

xj2paj
l þ
P

xj2p00a
j
l P

P
xj2paj

lþ
jp00jminxj2p00a

j
l P

P
xj2paj

l þminxj2p00al
j P

P
xj2paj

l þminj2fkþ1;...;mgal
j > bl which is a contradiction.

(ii) If p is full, then (p [ p00) 62 PF for all p00 � {xk+1, . . ., xm}n;, and thus (p [ p00) 62 PN. If p00 = ; then
PF 3 p 0 � p = (p [ p00) 62 PN. h

Proof of Lemma 4. Let p 0 2 PF, p 2 Pk, p00 � fxkþ1; . . . ; xmg and

zðp0 n pÞTvW ext�zðp n p0ÞT�vW ext þ Ukþ1ðB� AzðpÞÞ: ð19Þ
If (p [ p00) 62 PF then (p [ p00) 62 PN and the lemma holds. Contrary, if (p [ p00) 2 PF then Az(p [ p00) 6 B which
implies Az(p00) 6 B � Az(p), since p and p00 are disjoint. Thus, Ukþ1ðB� AzðpÞÞP zðp00Þ�vW ext which can be used
to approximate (19) by noting that p and p00 are disjoint: zðp0 n pÞTvW ext�zðp n p0ÞT�vW ext þ U kþ1ðB� AzðpÞÞ�
zðp n p0ÞT�vW extþ zðp00ÞT�vW ext ¼ zððp[ p00Þ n p0ÞT�vW extþ zðp00 \ p0ÞT�vW ext�zððp[ p00Þ n p0ÞT�vW extþ zðp00 \ p0ÞTvW ext.
Rearranging the terms result in the inequality zðp0 n ðp[ p00ÞÞTvW ext�zððp[ p00Þ n p0ÞT�vW ext. Furthermore, since
zðp0 n ðp[ p00ÞÞT�vW ext P zðp0 n ðp[ p00ÞÞTvW ext 6¼ zððp[ p00Þ n p0ÞT�vW ext P zððp[ p00Þ n p0ÞTvW extwe have PF3p 0 �
(p [ p00) 62 PN. h
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Salo, A., Hämäläinen, R.P., 1992. Preference assessment by imprecise ratio statements. Operations Research 40, 1053–1061.
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