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Mikkel N. Schmidt, Aki Vehtari and Patrick Rinke. Deep Learning
Spectroscopy: Neural Networks for Molecular Excitation Spectra.
Advanced Science, 6, 1801367, January 2019.

v





Author’s Contribution

Publication I: “Atomic structures and orbital energies of 61,489
crystal-forming organic molecules”

The author curated the data and carried out calculations at the DFT-
and G0W0-level of theory. The author postprocessed and validated the
calculations and co-wrote the manuscript.

Publication II: “Efficient hyperparameter tuning for kernel ridge
regression with Bayesian optimization”

The author developed the ML models and the algorithms for hyperparam-
eter optimization. The author performed all simulations and wrote the
manuscript.

Publication III: “Chemical diversity in molecular orbital energy
predictions with kernel ridge regression”

The author carried out calculations at the DFT-level of theory for 134k
small organic molecules. The author postprocessed and analyzed the
data, developed the ML models, performed the simulations and wrote the
manuscript.

Publication IV: “Deep Learning Spectroscopy: Neural Networks for
Molecular Excitation Spectra”

The author carried out calculations at the DFT-level of theory for 134k
small organic molecules that serve as training data for the deep neural

vii



Author’s Contribution

network models. The author postprocessed the DFT calculations to pro-
vide broadened spectral lines for the continuous learning. The author
contributed to the analysis of the neural network models and the results.

viii



Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

BO Bayesian Optimization

CM Coulomb Matrix

CNN Convolutional Neural Network

DFT Density Functional Theory

DTNN Deep Tensor Neural Network

GP Gaussian Processes

GPR Gaussian Process Regression

HOMO Highest Occupied Molecular Orbital

KRR Kernel Ridge Regression

KS Kohn-Sham

LUMO Lowest Unoccupied Molecular Orbital

MBTR Many-Body Tensor Representation

MAE Mean Absolute Error

MO Molecular Orbital

PES Photoelectron/Photoemission Spectroscpoy

QM Quantum Mechanics

RMSE Root Mean Squared Error

RSE Relative Spectral Error

ix





1. Introduction

1.1 Chemical space exploration and data-driven materials science

The concept of chemical space is widely used in materials design and drug
discovery, for example to design chemical libraries, to classify or select
chemical compounds or to explore structure-property relationships. How-
ever, a precise and unique defintion of chemical space is not simple, and an
even more challenging task is the navigation through this largely unknown
space. In the most widely accepted definition, chemical space is the set
of all possible stable compounds that are distributed according to their
structures and properties [1, 2]. This includes an inconceivable number
of possibilities. Even when only considering small organic molecules with
fewer than 30 atoms, there are not enough atoms in the universe (esti-
mated to be 1078 to 1082) to synthesize a single molecule for each of the
1060 possible atomic permutations [3, 4]. Exploring such a vast space is
a formidable task, especially considering that the largest current pub-
lic database of molecules that have already been synthesized, PubChem,
contains only around 70 million molecules [5].

Materials discovery aims to design new materials of industrial relevance
to address technological challenges, such as creating improved solar cell
materials to collect energy from the sun, new battery materials for energy
storage or quantum materials for novel forms of computing. One of the
major limitations in materials discovery is the need to identify relevant
molecules or materials from the vast chemical space of possible targets.
How would we decide which molecules to synthesize for a given task or
application? How would we find the ones that feature the best properties?
Nobody knows what exceptional materials might hide in chemical space,
only waiting to be discovered. It is very well possible that some hidden
treasures will never be found – or that we are already stumbling through
the most fruitful area of chemical space.

Conventional forms of materials discovery and chemical space explo-
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ration are experimentation and computation. Advances in experimental
techniques have continuously increased the resolution, volume and applica-
tion domain of measurements. However, experiments are often restricted
to examine only one compound at a time and therefore not suitable to
explore chemical space on large scale. Theoretical methods based on mod-
ern quantum-mechanical (QM) first principles can be used to complement
experiments. Computer resources have progressed to a level where ma-
terials properties can be calculated with reasonable accuracy for many
properties. However, the computational cost increases rapidly with system
size, and accuracy requirements limit the number of tractable compounds
once again. Hence, chemical space exploration with current experimental
or theoretical approaches remains selective and restricted.

Past advances in experimental and computational methods created an
abundance of molecular and materials data. The availability of more and
more data has given rise to data-driven materials science as a new scien-
tific paradigm [6,7]. Outcomes from many experiments and simulations
are now stored in large materials repositories, such as NOMAD [8], the
Materials Project [9, 10], the Cambridge Structural Database [11], the
Cambridge Crystallographic Data Centre (CCDC) [12] or the Materials
Cloud [13]. The view on data has changed significantly over the last decade
in the natural sciences. Data are now regarded as a resource instead of
only a by- or endproduct of simulations or experiments. Many of the read-
ily available data from experiments or simulations are correlated. For
instance, QM calculations that are run with the same method for various
similar compounds will yield outputs with repetitive information. Hence,
instead of running another QM calculation, it makes sense to apply sta-
tistical tools that can discover relationships in the available outputs, thus
profiting from the redundancy in the data. Especially machine learning –
a subfield of artificial intelligence (AI) – has seen a steep rise of popularity
in materials science. Machine learning utilizes statistical tools and algo-
rithms that are able to learn from data [14]. Applied to numerous chemical
systems, they can predict the outcomes of computationally demanding
electronic structure calculations. Plenty of excellent review articles are
available in the literatures that demonstrate the importance of machine
learning in materials science [15–24]. The trend of utilizing and exploiting
publicly available materials data from experiments and simulations allows
an accelerated exploration of chemical space and constitutes the base for
the study described in this dissertation.

1.2 Research objective

The objective of this dissertation is to implement machine learning models
that accelerate scientific discovery and help us with chemical space ex-
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ploration. Specifically, I am interested in models that can predict spectra
and spectroscopic properties of organic molecules based on their chemical
structure.

Spectroscopy – the interaction between matter and radiation – is of fun-
damental importance to the natural sciences and one of the dominant
experimental techniques to characterize materials [25]. The response of
matter to radiation (e.g. electro-magnetic, sound, particle beams) reveals
different kinds of characteristic spectroscopic properties and spectra that
are relevant for various technological applications. For example, vibra-
tional spectra can be used to find new thermo-electrics for waste heat
recovery, X-ray spectra to discover new medical diagnostic materials or con-
ductivity spectra to manufacture new batteries with high storage capacity.
Photoemission spectra expose the distribution of electronic energy levels
in a material and play an essential role in the development of new opto-
electronic devices. While semiconductors used in solid-state electronics are
prevalently based on inorganic materials – such as gallium, germanium
or silicon – organic semiconductors have recently emerged as a new class
of electronic and optoelectronic materials [26–32]. Organic semiconduc-
tors are solids whose building blocks are small molecules or conjugated
polymers made up mainly of carbon and hydrogen atoms [33]. They can
be employed in various applications, such as organic photovoltaic devices
(OPVs), organic light-emitting diodes (OLEDs) and organic field-effect
transistors (OFETs). The advantage of organic semiconductors over in-
organic semiconductors lies in their low cost, light weight, mechanical
flexibility, processability and the ability to tune their properties. Organic
materials therefore provide the possibility to realize novel applications
such as flexible displays, biological sensors, wearable electronics and solar
cells. While significant technological developments have been achieved in
the field of organic optoelectronics, there is a high demand for new organic
solids with advanced properties before the large-scale production of organic
electronic devices becomes possible. To improve, for example, the device
performance of OLEDs, which are progressively adopted as a standard dis-
play technology for TV and phone screens, new materials need to be found
or created that exhibit a specific band gap. The band gap of a material
defines the wavelength of the light that the material is able to emit and
is given by the energy difference between the HOMO (highest occupied
molecular orbital) and LUMO (lowest unoccupied molecular orbital). For
this aim, it is desirable to know the HOMO and LUMO energies for a large
number of possible materials, so that one can pick the best suited material
for a specific OLED application.

In regard of this demand for new organic compounds in optoelectronic
applications, I will develop machine learning models that can predict
photoemission spectra and frontier molecular orbital energies of organic
molecules. The ability to produce instant energy and spectra predictions
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Figure 1.1. Schematic diagram of the workflow described in this thesis. The machine
learns from mapping reference molecular structures to their spectral properties. Once
the training is finished, the model is able to make out-of-sample predictions for unseen
molecules.

with machine learning will be be useful to bypass conventional laborious
approaches in the materials design process. One could predict photoemis-
sion spectra with machine learning for a wide range of molecules at low
computational cost in order to narrow down the number of candidates tried
in laboratory tests. Experimental photoemission spectra would have to be
measured only for a small number of compounds.

The machine learning models developed in this dissertation have the
potential to systematically change and facilitate the chemical space explo-
ration and materials discovery process. Instead of experimentally mixing
chemicals to see how they behave, scientists and manufacturers will be
able to instantly screen through a database of materials with their pre-
dicted spectra to find those that exactly show a desired spectral behavior,
before these materials are even fabricated. Molecular structures could be
identified in a matter of seconds based on their predicted spectra, revealing
which one makes, e.g., a good converter of solar energy to electricity. Mate-
rials modeling will be brought closer to industrial and societal exploitation.

1.3 Research approach and questions

To achieve the objective of this thesis, I will follow the schematic procedure
sketched in Figure 1.1 throughout this dissertation. It shows the four
basic components of my machine learning workflow: Training data, a data
representation, the machine learning algorithm and a prediction target.
For every component in this workflow, I formulate a research question that
will be addressed in one or more of the publications throughout this thesis.

Training data The foundation of any machine learning model lies in trust-
worthy data of high quality. Therefore, the first step in the development of
my machine learning model is to assemble my own reference datasets and
to find appropriate and useful molecular structures that are relevant for
optoelectronic applications. There are several molecular datasets available
that are well known in the machine learning community. But which one is
suitable for our needs, if any? Moreover, the data should be of high quality,
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consistent and reliable, that is, computed with the same computational
method. Therefore, once I have chosen what kind of molecules to use for
model training, I will assemble my own datasets of reference spectra and
orbital energies, computed with first-principle QM methods. The output
of these QM reference computations will serve as input to my machine
learning model.

This leads to the first research question:

RQ1 What kind of datasets should I use to train my machine learning
model and how can I obtain reliable reference data of high quality?

Data representation Before I can input the computed reference data into
the model, I have to think about how to make them accessible to the ma-
chine. That is, the 3D structures of the molecules and their corresponding
spectra need to be represented appropiately in a mathematical form such
that the model can process them. This is not a trivial problem, and a lot of
research has been put into finding an adequate molecular representation.
Therefore, I will try different representations in this dissertation. I ask
the following research question:

RQ2 How can molecules and their spectra be numerically represented in
such a way that the machine can establish a relationship between
each molecule and its spectra?

Machine learning algorithm Another fundamental question is which ma-
chine learning method to use for the problem at hand. The choice of method
to generate the best spectra predictions is not always obvious due to the
large variety of available machine learning techniques. Moreover, most
machine learning models involve hyperparameters, which are parameters
that can usually not be learned by the model itself, but instead must be
specified separately before training. This is often a burden for machine
learning practitioners, requiring intuition, expert knowlegde or large com-
puting resources for brute-force search over a wide range of possible values.
Once the right method has been chosen and the hyperparameters have
been set, I can train the model on my generated reference data. The
following research question arises:

RQ3 Which machine learning methods should I choose and how can I
determine the hyperparameters of my models?

Predictions When the training is finished, the machine learning model
needs to be validated on a set of test molecules that were not used for train-
ing to see how well the model can predict spetcral properties. I will assess
model performance based on predefined quality metrics andwill compare
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various algorithms. Then, I need to determine whether the predictions
of the model are good enough with respect to the reference data. Finally,
when the model delivers predictions of satisfying quality, it can be used to
produce fast and accurate approximations of spectra and orbital energies
for unseen molecules that have not been used in the training or validation
phase of the model. This yields the following questions:

RQ4 How can machine learning methods be applied in practice to predict
molecular orbital energies and photoemission spectra and to explore
chemical space?

1.4 Thesis structure

The dissertation is structured as follows. Chapter 2 dives into the subject
of photoemission spectra and describes how they are traditionally obtained
experimentally and computationally. Chapter 3 reviews currently available
molecular datasets that can be used for developing and benchmarking
machine learning models in material science. I will discuss Publication I,
which provides a new benchmark spectroscopy dataset of high numerical
accuracy. Chapter 4 explains the general concept of machine learning
and introduces three methods: kernel ridge regression, artificial neural
networks and Bayesian optimization based on Gaussian processes. I then
discuss Publication II, which deals with the tuning of hyperparameters in
machine learning models, employing Bayesian optimization. Chapter 5
discusses the results obtained in Publications III and IV. In Publication
III, kernel ridge regression is applied to three different molecular datasets
to predict HOMO energies. In Publication IV, neural networks are used
to predict photoemission spectra for small organic molecules. The results
are put into context with other state-of-the art machine learning models
in materials science. A general discussion and concluding remarks are
presented in Chapter 6. The publications are presented after Chapter 6.
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2. Photoemission spectroscopy

Having learnt about the importance of photoemission spectra and orbital
energies for the design of new functional materials, I will now review exper-
imental and computational techniques that can determine these quantities.
One central spectroscopic technique is photoelectron spectroscopy (PES),
also known as photoemission spectroscopy, which determines the ener-
gies and shapes of electronic states in atoms and molecules. This chapter
explains what photoemission spectra are, how they are obtained experi-
mentally and computationally and how I aim to predict them with machine
learning. At the end of this chapter, I will be able to partly answer the
second research question,

RQ2 How can molecules and their spectra be numerically represented in
such a way that the machine can establish a relationship between
each molecule and its spectra?

2.1 Experimental photoemission spectroscopy

Experimental PES measures the energy of electrons emitted from a sub-
stance by the photoelectric effect in order to disclose the binding energies
of electrons in the material. Thereby, the bonding in molecules or the
elemental composition of materials can be studied. In PES, a sample is ex-
posed to visible or ultraviolet light (UPS) or to X-rays (XPS) in synchrotron
facilities, which causes electrons to be ejected from their bound states
within the sample, as sketched in Figure 2.1a). An energy analyzer records
the kinetic energies of the ejected electrons, and then a detector counts the
number of photoelectrons at various kinetic energies.

The energy that is required to emit an electron from a substance is the
electron’s ionization potential (IP), also known as the energy required to
remove an electron from a bound state ϵs that lies below the Fermi level
ϵF . By monitoring the kinetic energy Ekin of the ejected photoelectron, the
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Figure 2.1. a) Schematic principle of the photoemission process. An incoming photon
of energy hν excites an electron from an occupied valence state ϵs into the continuum.
Adapted from [25]. b) Example illustration of a photoemission spectrum.

IP can be reconstructed as

IP = −ϵs = hν − Ekin − Φ, (2.1)

where hν is the energy of the incoming photon and Φ is the work function,
which is specific to the sample. The ionization potential of an electron in an
atom or molecule depends on its location relative to the nucleus. Valence
electrons have the lowest ionization potential since they are on average
farther away from the nucleus and more shielded by other electrons. Core
electrons are closer to the nucleus and less shielded, therefore exhibiting
higher ionization potentials.

Figure 2.1b) shows an example valence spectrum resulting from a pho-
toemission process. The photoelectron count is plotted as a function of
energy. The spectrum shows several peaks at different energies, which
correspond to electronic states in the sample. The peaks represent the
energy required to remove an electron from its state, and the intensity rep-
resents the number of electrons in that state. Thus, photoemission spectra
reflect the electronic structure of energy levels within a sample. PES is one
of the most accurate and sensitive methods for determining the energies
and shapes of electronic states, atomic orbitals and molecular orbitals.
Every element and molecule is characterized by its own photoemission
spectrum. By analyzing the distribution and intensities of the peaks in a
photoemission spectrum of unknown origin, one can identify the elemental
composition of the sample. However, the experimental implementation is
expensive and time consuming and therefore, it is not feasible to produce
experimental photoemission spectra for a high number of new substances.
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2.2 Computational photoemission spectroscopy

Computer simulations are a fundamental part of scientific research, allow-
ing researchers to complement experimental measurements. The growth
in available computing power and the developments of new methods are
responsible for the increasing impact of computational methods in materi-
als science and their practical applications to real systems. Simulations
can serve as a means of confirming already existing experimental results,
or as a means of guiding and predicting future experimental outcomes.

The most commonly used computational methods to calculate the elec-
tronic and atomic structure of matter are first-principles quantum me-
chanical approaches, such as wave function based methods (Hartree-Fock,
Quantum Monte Carlo), Green’s function based methods (GW [25, 34])
or density based methods, such as density functional theory (DFT) and
time-dependent density functional theory (TDDFT). In this thesis, GW

and DFT are employed to generate large sets of reference molecular or-
bital energies that can later be used for model training. GW is now the
standard approach to calculate ionization energies of molecules and solids
as measured in photoemission experiments. However, it is computation-
ally intensive and it is not feasible to compute molecular orbital energies
for a large amount (e.g. tens of thousands) of molecules. Since DFT is
computationally cheaper, it is the dominant method used in this thesis to
generate reference spectra and orbital energies for machine learning. DFT
is a strict ground-state theory and thus describes photoemission spectra
only approximately. However, approximate spectra are sufficient to build
my methodology, and enable me to use large volumes of training data that
can be produced at manageable cost. The methodology can later be refined
with more accurate GW spectra, if necessary.

In the following, I first describe the DFT framework, followed by the GW

approach. Then, I explain how discrete orbital energy values resulting
from DFT calculations are turned into approximate photoemission spectra,
and how these spectra will numerically be represented to the machine for
learning.

2.2.1 Density functional theory

Density functional theory (DFT) has become a standard tool in compu-
tational chemistry, physics and materials science due to its favorable
computational scaling. DFT is derived from the N -particle Schrödinger
equation and is completely formulated in terms of the ground state density
n0(r). It is applicable to nuclei, atoms, molecules and solids, reducing the
computation of ground-state properties of systems of interacting particles
to the solution of single-particle equations. The fact that DFT is applica-
ble to relatively large systems of several hundreds of atoms explains the
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success of this method.
DFT is usually formulated in the Born-Oppenheimer approximation [35],

which postulates that nuclear positions can be considered as fixed, since
the nuclear motion is of many orders slower than the motion of electrons.
The motion of electrons is then governed by a fixed external potential
Vext, which is the Coulomb potential imposed by the fixed nuclei. This
approximation greatly simplifies the solution of the Schrödinger equation
ĤΨ = EΨ, where Ψ is the molecular wavefunction, Ĥ is the Hamiltonian
operator and E is a proportionality constant corresponding to the total
energy of the system.

In 1964, Hohenberg and Kohn [35,36] derived density-functional theory,
in which the electron density n(r) replaces the wavefunction Ψ as the
central quantity in the Schrödinger equation. The electron density n(r)

can be interpreted as the probability of detecting an electron at the position
r. For a system of interacting electrons that move in an external potential
Vext, Hohenberg and Kohn showed that the external potential Vext and the
ground-state wavefunction Ψ are uniquely determined by the ground-state
electron density n(r). With that, all other observables of the system, such
as kinetic energy or electronic properties, are uniquely determined by the
ground-state electron density as well.

Kohn-Sham DFT In 1965, Kohn and Sham replaced the system of inter-
acting electrons by a fictitious system of non-interacting electrons that
move within a local effective Kohn-Sham (KS) single-particle potential
Veff [35–37]. The KS method is still exact, as it produces the same ground-
state density as the interacting system, but largely facilitates the solution
of the Schrödinger equation. The energy of the whole system is given as a
unique functional of the electronic density n(r) [37]:

E[n(r)] = T [n(r)] + Eel[n(r)] + EHa + Exc[n(r)], (2.2)

where r denotes the position of electrons T is the kinetic energy of the
non-interacting electrons, Eel is the external potential energy acting on the
interacting system – usually resulting from interactions with nuclei – EHa

is the Hartree energy (the electrostatic interaction energy between elec-
trons) and Exc is the non-classical exchange-correlation energy. Exc[n(r)]

incorporates all exchange and correlation effects that are not captured
by the Hartree term and, moreover, the difference between the kinetic
energy of the non-interacting system and the fully interacting system. The
effective KS potential is defined as

Veff(r) = Vext(r) + e2
∫︂

n(r′)

|r − r′|dr
′ + vxc(r), (2.3)
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where the last term is the exchange-correlation potential given by

vxc(r) =
δExc[n(r)]

δn(r)
. (2.4)

This leads to the central equations in Kohn-Sham DFT, that is, the set of
one-electron Schrödinger equations:

(︃
− ℏ2

2m
∇2 + Veff(r)

)︃
ϕi(r) = ϵiϕi(r). (2.5)

Here, ϕi(r) are the KS one-electron orbitals with corresponding KS eigen-
value ϵi. The electron density for the N electron system is defined as

n(r) =
N∑︂

i=1

|ϕi(r)|2. (2.6)

Since the effective potential Veff(r) relies on the electron density n(r),
the KS equations (2.5) are solved self-consistently. In practice, Veff(r) is
constructed from an initial guess of the ground-state density n(r), and
Eq. (2.5) is then solved for the KS orbitals Φi(r). With these orbitals, the
ground-state density is updated and the cycle repeats until convergence is
reached. The final ground-state energy is obtained from Eq. (2.2) using the
final electron density. If each term in the KS energy functional in Equation
(2.2) was known, one could obtain the exact ground-state density and total
energy. However, the exact form of the exchange-correlation functional
Exc[n(r)] is not exactly known and therefore has to be approximated.

Exchange-correlation functionals There is an almost infinite number of
approximate exchange-correlation functionals with different levels of com-
plexity. The exchange part in the exchange-correlation functional emerges
from the Pauli principle, which states that two electrons cannot take the
same quantum-mechanical state. The correlation term includes screening
effects of electrons, which move collectively in order to reduce the net
interaction among any pair of electrons [37].

The most widely used approximation is the local-density approximation
(LDA), which treats the electron density locally as a homogeneous electron
gas. LDA assumes that the exchange-correlation energy at each location
in the system is the same as that of a uniform electron gas of equal density.
Thus, the functional only depends on the density at the point where the
functional is computed. Most local parameterizations suit the description
of the uniform electron gas, for which the exchange-correlation energy is
known accurately. Such LDA functionals are a good approximation when
the densities are close to that of a uniform electron gas, as is the case for
simple metals.

Generalized gradient approximations (GGA) goes beyond the LDA by
incorporating the gradient of the electron density. The most common
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functional of this type is PBE (Perdew-Burke-Ernzerhof) [38], where well-
defined limits are used to calculate the values of certain parameters in
the functional. PBE is generally more accurate for ground-state problems
than LDA, but strongly underestimates orbital energies and energy gaps.
This is due to the delocalization error of local and semi-local DFT func-
tionals and the absence of the derivative discontinuity. Delocalization
errors occur for systems with fractional charges, for which GGA is not
able to properly interpolate between the electronic energy and fractional
charges, which leads to an artificial tendency towards the delocalization
of electrons. These limitations can be remedied by including a fraction of
the exact exchange. Such functionals are called hybrid functionals. The
exact exchange is given by the Hartree-Fock expression, which is computa-
tionally much more expensive than evaluating purely density or gradient
dependent exchange-correlation expressions. An additional challenge is
to choose the right fraction of exact exchange. Hybrid functionals such as
PBEh have been shown to better describe materials properties than LDAs
and GGAs [37].

Limitations of DFT DFT is strictly a ground-state theory, although in
principle, any excited state property that could be expressed as a functional
of the ground-state density would also be accessible by DFT. However, in
practice, no known (approximate) functionals exists that map the ground
state density to excitation energies or other excited-state properties. Thus,
excited states and their properties are practically unreachable by DFT.

One exception is the highest occupied molecular orbital (HOMO). Accord-
ing to the IP-theorem [39–41], the KS eigenvalue corresponding to the
highest occupied molecular orbital (HOMO) equals the exact first vertical
ionization potential. For all other (occupied and unoccupied) orbitals, no
such theorem exists, i.e. the KS eigenvalues are not equal to ionization
potentials. However, while ground-state properties and the HOMO can
in principle be computed exactly with DFT, the approximate exchange-
correlation functionals introduce errors, such as incorrect description of the
long-range behavior of the electron density [42] and self-interaction [43].
In the latter case, DFT predicts a non-physical self-interaction energy for
a system of just one electron. Semi-local functionals such as PBE typically
underestimate the ionization potential of the HOMO. Hybrid functionals
typically do better for orbital energies, but their success hinges on finding
a suitable fraction of exact exchange.

Despite the above mentioned limitations, KS eigenvalues from DFT have
been used quite extensively in the literature to complement photoemission
spectroscopy and to gain useful insight from the comparison of experimen-
tal measurements with DFT calculations [44].
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2.2.2 The GW method

The GW approximation for the computation of quasiparticle energies was
first proposed by Hedin in 1965 [45]. However, it was not before the mid-
eighties that this method gained track in large-scale electronic structure
computations. Nowadays GW has become the standard method to compute
electronic structure properties related to photoemission spectroscopy, such
as molecular excitations and band structures.

Excited states and quasi-particle energies are calculated based on many-body
perturbation theory (MBPT). The quasi-particle energy of an excitation
corresponds to the energy required to remove or add an electron to a
many-body system. In the DFT framework, the response of a system of
interacting electrons to an external potential Vext is replaced by the re-
sponse of a system of non-interacting electrons to an “effective” potential.
A similar idea assumes that the long-range and fairly strong Coulomb
forces screen single electrons with a charge cloud of the other surrounding
electrons. These electrons with their surrounding screening cloud are
known as quasi-particles. The response of interacting electrons can be
expressed in terms of weakly interacting quasi-particles.

The mathematical formulation of quasi-particles is founded on the single-
particle Green’s function G(r, t, r′, t′), also known as propagator. It repre-
sents the probability amplitude for the propagation of an electron from
position r′ at time t′ to the position r at time t. The exact computation of
the Green’s function requires the complete knowledge of the quasi-particle
self-energy Σ. The self-energy holds all quantum-mechanical exchange
and correlation interactions of the hole created in an excitation process
and its surrounding electrons. It can be approximated using a perturbative
expansion with respect to the quasi-particle interaction. A working scheme
for the quantitative calculation of excitation energies is the "dynamically
screened interaction", or GW approximation.

In practice, GW is carried out within first-order perturbation theory
(G0W0) and often starts from DFT single-particle orbitals ϕn and corre-
sponding eigenvalues ϵn [25,34]. For a molecular orbital ϕn, the corrections
to the DFT-KS orbital energies ϵn are given by

ϵG0W0
n = ϵn + Re

⟨︃
ϕn

⃓⃓
⃓⃓Σ
(︁
ϵG0W0
n

)︁
− vXC

⃓⃓
⃓⃓ϕn

⟩︃
, (2.7)

where ϵG0W0
n are the G0W0 quasiparticle energies, and vXC is the exchange

potential from DFT. The self-energy Σ is the product of the noninteracting
KS Green’s function G0 and the screened Coulomb interaction W0

Σ(r, r′, ω) =
1

2π

∫︂
dω′eiω

′ηG0(r, r
′, ω + ω′)W0(r, r

′, ω′) (2.8)

with η > 0. The self-energy is usually split into a correlation part ΣC

and an exchange part ΣX . The correlation part ΣC is computed from
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WC
0 (r, r′, ω) = W0(r, r

′, ω)− v(r, r′), where v(r, r′) is the Coulomb interac-
tion. The exchange part ΣX is the Hartree-Fock exact exchange self-energy.
The mean-field Green’s function is given by

G0(r, r
′, ω) =

∑︂

m

ϕm(r)ϕm(r′)

ω − ϵm − iη sgn (ϵF − ϵm)
, (2.9)

where ϵF is the Fermi energy. The sum involves all occupied and unoccu-
pied KS orbitals ϕm with the corresponding KS orbitals ϵm. The screened
Coulomb interaction in the random phase approximation (RPA) is defined
as

W0(r, r
′, ω) =

∫︂
dr′′ϵ−1(r, r′′, ω)v(r′′, r′), (2.10)

where ϵ is the dielectric function.

2.2.3 Numerical representation of spectra

Despite the limitations in DFT mentioned in Section 2.2.1, I will use DFT-
KS energies within this dissertation to approximate molecular ionization
energies, and with that, photoemission spectra. Compared to GW , DFT is
cheaper and thus it will be more convenient to compute reference datasets
containing large numbers of molecules. My focus in this thesis lies on the
development of machine learning models for spectra and energy predic-
tions. The methodology can always be refined with more accurate data,
for example with the dataset produced Publication I, which consists of 5k
molecules and their orbital energies computed with GW .

In order to predict spectra, the discrete KS energies need to be trans-
formed into a continuous curve, so that the model is able to map each
molecular structure to its corresponding photoemission spectrum. Within
this thesis, two types of spectral representations are employed:

i. Discrete energy spectrum made up of a defined number of KS energies
from the molecular valence energy region (starting from the HOMO).
The task of the machine learning model is to predict all KS energies
simultaneously.

ii. Approximate photoemission spectrum resulting from broadening
the discrete KS energies within a pre-defined energy range. The
continuous curve is discretized into 300 points, and the task of the
machine learning model is to predict all 300 points simultaneously.

Figure 2.2 shows how the discrete energy spectrum of KS eigenvalues is
transformed into an approximate photoemission spectra. Each eigenvalue
that lies within a pre-defined valence energy region (in this example from
-30 to 0 eV) is broadened with a Gaussian distribution. These distributions
are then added together to form a continuous curve.
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Figure 2.2. Numerical representation of photoemission spectra: For each molecule,
the DFT-computed KS eigenvalues are broadened into Gaussian distributions and then
transformed into a continous spectrum by adding the distributions.

2.3 Summary

Photoemission spectroscopy (PES) determines the energies of electrons in
atoms and molecules. In experimental PES, a sample is ionized by exposing
it to high-energy radiation. The kinetic energies of the ejected electrons are
measured, converted to binding energies and plotted as a spectrum. The
energy locations of the peaks in the spectrum correspond to the electronic
energies states in the atom or molecule. Computational photoemission
spectra can be obtained using first-principles quantum mechanical meth-
ods derived from the Schrödinger equation, ideally excited-state theories
such as TDDFT or GW . In this thesis, I will use approximate photoe-
mission spectra computed with ground-state DFT serving as reference
spectra to train my machine learning models. Although DFT-KS energies
have limited accuracy, it is convenient to assemble large and consistent
molecular datasets with DFT to develop my methodology. While not yet
used within my machine learning model framework, I also generated a
spectroscopy benchmark dataset containing molecular orbital energies of
5k compounds computed with the more accurate G0W0 approach. This
and other public molecular benchmark datasets will be discussed in the
following chapter.

This chapter gives a partial answer to the second research question,

RQ2 How can molecules and their spectra be numerically represented in
such a way that the machine can establish a relationship between
each molecule and its spectra?

I will represent spectra by Gaussian-broadening the DFT-KS energies
into a continuous curve that resembles a photoemission spectrum. The
curve is discretized into 300 points, and the task for the machine will be to
predict these 300 points simultaneously. The second part of RQ2, how to
represent molecular structures, will be addressed in the next chapter.
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3. Molecular datasets

In the previous chapter, experimental and quantum mechanical computa-
tional methods were presented that can determine the electronic structure
and properties of molecules. In this chapter, I will now present molecu-
lar databases that contain structures and properties resulting from such
methods. Given the relatively high cost of computing spectra, only a lim-
ited number of available molecular datasets provide spectral properties
useful for my work. In this chapter, I will assess a dataset’s value for my
work based on 7 criteria. Then, I will elaborate how I generated my own
molecular datasets using DFT and GW , in order to provide consistent ref-
erence data to my machine learning model. In particular, I processed and
standardized two already existing datasets and created a new spectroscopy
dataset of 62k diverse molecules computed with accurate state-of-the-art
first principles computations. This new dataset was published in Publica-
tion I, which is summarized within this chapter. Previously, we learned
how the target (molecular spectra and energies) will be numerically rep-
resented to the machine. At the end of this chapter, I will explain how
molecular structures can be turned into machine-readable and exploitable
input. The first two research questions will be addressed,

RQ1 What kind of datasets should I use to train my machine learning
model and how can I obtain reliable reference data of high quality?

RQ2 How can molecules and their spectra be numerically represented in
such a way that the machine can establish a relationship between
each molecule and its spectra?

3.1 Data-driven materials science and existing datasets

With ever growing amounts of data that is openly shared from experiments
and computations in materials science, researchers have begun to change
their attitude towards data. Data is now frequently regarded as a resource
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itself, and scientists aim to extract knowledge from materials datasets.
This paradigm shift of effectively using existing data to obtain desired
results is often referred to as data-driven materials science [7]. However,
the technological developments in data-driven materials science are still
far from reaching the proportions in e-commerce or social media, where
infrastructures, algorithms and analysis tools are available for large-scale
data. Especially in spectroscopy, data generation is slow and expensive.
Data are often high-dimensional and difficult to store or share, and there
tools to utilize large amounts of spectroscopic data do not yet exist.

However, for machine learning applications it is crucial to train and vali-
date on large quantities of high quality data. The quality of the resulting
models and their predictions will only be as good as that of the data used
for training. Hence, datasets should be chosen carefully. In this thesis, I
select molecular datasets for my machine learning framework according to
the following criteria:

i. Relevance The molecules in the dataset should be relevant for tech-
nological applications, such as photovoltaic devices or OLEDs. In
particular, I am looking for datasets of organic molecules or polymers.
Preferably, the molecules should exhibit great structural diversity.

ii. Properties All relevant information about the molecules should be
available in the dataset. This includes molecular 3D structures and
photoemission spectra or molecular orbital energies.

iii. Availabilty The dataset should be publicly available or at least
freely available.

iv. Size The dataset should be large in size, i.e. contain several thou-
sands of molecules. The prediction error of a machine learning model
typically decreases with more available training data. Therefore,
it is important to have large volumes of training data from which
the learning algorithm can draw relationships. A large dataset size
furthermore ensures that a variety of different structures is included,
i.e. the dataset is likely to be diverse.

v. Diversity Formally, diversity within a dataset is characterized by
the distribution of data points. If the deviation of data points from
their collective average is low, then all data points most likely have
similar values. High deviations infer that the points in the set are
far from the mean and from each other, and the dataset is called
diverse. Similarity in datasets can be the result of a biased data
collection procedure by humans and by systematic factors, resulting
in a distribution mismatch between dataset and reality.

To broaden and enrich the correlations made by my machine learning
model during training, I am looking for datasets that are as diverse
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as possible. The datasets should contain many different molecular
structures, different bonding patterns and a variety of different ele-
ments. This ensures that the training data represent the full range
of cases that the model is likely to confront in real-world applications.
When working with diverse datasets, it is especially important to
have large data sizes so that the model sees enough examples of
different structures throughout training.

vi. Accuracy and consistency Accuracy and consistency of a dataset
can be described by its bias and variance. Bias describes systematic
errors in experimental or computational data resulting from, e.g.
incorrectly calibrated experimental equipment, inaccuracies in the
measuring devices, errors in the computation software or the use of
different numerical methods or settings. This leads to a systematic
offset from the true result. Variance describes random errors in the
data. Random errors are unavoidable and emerge from the uncer-
tainty inherent in the measuring or computation process, or from
the variation in the quantity that is being measured. This causes a
probabilistic deviation of the data from the true results which is likely
clustered around the true value. The variance in computational data
is usually insignificant since there is little unpredictability or uncer-
tainty in the simulation process. However, the bias of computational
data can be significant, that is, the offset from experimental results
or from more accurate computational methods. For experimental
data, a classification into bias and variance is not always possible.
Systematic and random errors are both the consequence of insuf-
ficient adjustment of the measured system, lack of resolution and
unpredictable interactions between the sample and the environment.

When utilizing different datasets for machine learning, it is impor-
tant that the data are compatible within and across datasets, that is,
low in bias. Data generated with different numerical settings, differ-
ent computational methods (e.g. GW or DFT or different exchange-
correlation functionals), different experimental methods or different
instruments can lead to systematic deviations in the computed or
measured spectra, which can negatively affect the predictive accuracy
of my machine learning models.

vii. Format When working with multiple datasets from different sources,
the data need to be presented in a consistent format to the machine
learning algorithm. Machine learning algorithms can only provide
valid results and predictions if the data is correctly formatted. Pub-
lished data resulting from experiments or computations are available
in a variety of different forms and formats, often in a form that only
suits a particular study. Moreover, computational or experimental
data is in many cases not published in its entirety, however, metadata
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or results that seem unimportant for a particular study often prove
valuable for another one.

Equipped with a list of criteria that a suitable machine learning dataset
should fulfill, we can now take a look at several specific materials datasets
that might be of use for my work. In the following, I present computational
datasets that are publicly available and discuss their usefulness with
respect to my machine learning framework.

GDB A convenient source for obtaining large amounts of simple molecular
structures is the Generated DataBase (GDB) universe, a set of databases
that exhaustively enumerates parts of organic chemical space. GDB lists
billions of combinatorial possible molecules that have not been chemically
synthesized so far, exceeding by far the number of known molecules of
similar size. The subset GDB-17 [46] includes 166.4 billion small organic
molecules with up to 17 heavy atoms made of C, N, O, S and halogens (the
term ’heavy’ atoms refers to non-hydrogen atoms). To date, GDB-17 is
the largest publicly available database of small organic molecules. Other
databases of this project are GDB-11 [47, 48] of 26.4 million structures
with up to 11 heavy atoms of C, N, O and F, and GDB13 [49] of 977 million
structures with up to 13 heavy atoms of C, N, O, S and Cl. One drawback of
the GDB databases is that they contain only molecular structures, but no
properties. Several studies therefore computed their own reference prop-
erties with QM methods for subsets of the GDB-13 and GDB-17 datasets,
listed in the following.

QM9 The QM9 dataset [50] is a subset of GDB-17 and contains 133,885
molecules with up to 9 heavy atoms of C, N, O and F. It includes optimized
geometries and 18 different molecular properties calculated in DFT using
the B3LYP functional. This dataset is known as the golden standard for
machine learning studies in materials science and is used to benchmark,
for instance, the prediction of atomization energies [51,52] or a wide variety
of other molecular properties [53].

I choose this dataset for the early-stage development of my machine
learning framework. QM9 is one of the standard datasets for machine
learning studies in materials science and hence it will be easy to compare
my work to other studies. Moreover, its size provides decent training
ranges; more than many other datasets offer. QM9 contains small organic
molecules, with simple and similar structures that will be relatively fast
and easy to learn. The QM9 dataset contains 3D structure information and
DFT-computed frontier orbital energies, but no other orbital energies of
deeper states. Therefore, I computed the HOMO energies and other molec-
ular orbital energies employing my own DFT calculations, as described in
the next section. Another problem with QM9 is the lack of diversity. QM9
is made of small molecules of only H, C, N, O and F, and thus, there is not
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a big variety of different molecular structures. Considering the large size
of the dataset, the structures only differ slightly from each other. The high
degree of redundancy within QM9 will produce machine learning models
that are not necessarily generalizable to molecules with more complex
structures. However, QM9 will constitute a good starting point to build
a simple machine learning "prototype" model. At a later stage, when the
model works as expected, other datasets containing larger molecules with
technological relevance can be considered.

QM7/QM7b The QM7 dataset [54] is a subset of GBD-13, consisting of
7,165 molecules with up to 7 heavy atoms of elements C, N, O or S. It
includes relaxed structures and atomization energies calculated with the
Perdew-Burke-Ernzerhoff hybrid functional (PBE0). Many machine learn-
ing models for predicting the atomization energy with the QM7 dataset
have been studied using KRR [51,54–57]. The QM7b dataset [58] extends
the QM7 dataset to molecules containing Cl and includes, in addition to
the atomization energy, 13 properties including spectroscopically relevant
HOMO and LUMO energies, excitation energies and polarizabilities, calcu-
lated at numerous levels of theory (ZINDO, SCS, PBE0, GW). This vast
range of properties has facilitated past development of multi-output regres-
sion and neural network models that are able to predict various properties
simultaneously [55,57,58].

The QM7(b) dataset is also used within this thesis for the same reasons
elaborated above for QM9 (except for its size). QM7(b) provides easy
and free access to structures of small molecules that are widely used
for benchmarking in other studies. Containing 7k molecules, QM7(b) is
considerably smaller in size than QM9, and also includes molecules that
are on average smaller (molecules with up to 7 heavy atoms in QM7(b) vs.
molecules with up to 9 heavy atoms in QM9). The QM7(b) dataset includes
molecules with sulfur, which is not present in QM9, and thus adds to the
overall element diversity.

QM8 The QM8 dataset is a subset of GDB-17 and the result of recent
work [46,59]. It contains the lowest two vertical electronic excited states
computed with TDDFT and second-order approximate coupled-cluster
(CC2) for 20k small organic molecules with up to 9 heavy of C, O, N or F.

I will not consider this dataset further within my thesis. While this
dataset comprises high-quality results for excited states, I am not inter-
ested in predicting electronic transition energies and oscillator strengths
with machine learning, but photoemission spectra.

AA The AA dataset [60] contains 45,892 conformers of amino acids and
dipeptides with DFT-relaxed structures (PBE+vdW, light), total energies
and KS eigenvalues (PBE+vdW, tier2 bases, tight). Dipeptides are flexible
chains of amino acids linked by amide bonds and may fold and assem-
ble into organized 3D-structures. Many peptides are biologically active
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(hormones, antibiotics, toxins). The AA dataset has been used in several
studies to develop machine learning models [61–63].

This is the second dataset chosen for my machine learning framework.
The dataset is large in size and more diverse than QM9 and QM7(b).
The compounds are on average larger and show more variety in chemical
structures. The AA dataset contains 3D structures and orbital energies
computed with the same DFT functional I chose for the other datasets in
my study, thus providing data without introducing new bias. No further
computation is needed for this dataset in order to be usable for my work.
I can use this dataset after my first prototype machine learning model is
validated on the small organic molecules datasets from GDB.

10k diastereomers of C7H10O2 constitutional isomers This dataset [64]
comprises structures of 9,868 diastereomers isomers of parent C7H10O2

isomers, which were relaxed at the B3LYP level of DFT. The original 6,095
isomers are part of the QM9 dataset.

This dataset is used in Publications III and IV to showcase the applicabil-
ity of my machine learning model. After training the model on structures
from other datasets, it was applied to the 10k previously unseen diastere-
omers to predict spectra and orbital energies.

Clean Energy Project Database The Clean Energy Project Database (CEPD)
[65] contains molecular structures and DFT calculations of 2.3 million
molecules and polymers resulting from the Harvard Clean Energy Project
[66]. It represents the most extensive first-principles quantum chemical
investigation ever conducted. The library was built using a combinato-
rial molecule generator based on around 10k molecular motifs that are of
potential interest for small molecule organic photovoltaic applications.

The CEPD fulfills many of the criteria for a suitable dataset, especially
with regard to size and diversity. However, during my Doctoral studies I
was generated my own dataset (OE62) with diverse structures from the
Cambridge Structural Database (CSD). While there was not the need for
me to utilize the CEPD to develop my machine learning models, it surely
would have been a valuable alternative.

Harvard organic photovoltaic dataset The Harvard organic photovoltaic
dataset [67] contains 350 small molecules and polymers that were used as
p-type materials in organic photovoltaic devices in the literature. For each
compound atomic coordinates, experimental properties and corresponding
quantum-mechanical calculations including HOMO and LUMO energies
are provided.

The molecules in this dataset and their properties are suitable for my
machine learning objective, however, with only 350 molecules this dataset
is not large enough for my purposes.

Dataset of chemical shifts Paruzzo et. al developed a machine learning
framework to predict nuclear magnetic resonance (NMR) chemical shifts in

22



Molecular datasets

solids [68]. For model training a reference dataset of DFT-calculated chem-
ical shifts was produced for organic structures taken from the Cambridge
Structural Database (CSD), which is available on Materials Cloud [69].
The dataset contains relaxed structures and chemical shifts calculated for
2,500 molecular solids made of H, C, N and O.

With 2.5k structures, this dataset is comparably small and includes only
four different elements. Moreover, I am not interested in predicting NMR
spectra, but photoemission spectra. Therefore, I will use the OE62 dataset
within this thesis instead, which was generated in the scope of Publication
I. It is also derived from the CSD, but considerably larger in size (62k
structures), exhibits a higher element diversity, and includes molecular
orbital energies that can be used to predict photoemission spectra.

Multi-fidelity bandgap database This dataset contains bandgaps of 599
double perovskite halides (or elpasolites), computed with DFT at two fi-
delity levels of DFT [70]. For all 599 compounds, the crystal structures
were relaxed and bandgaps were computed using the PBE functional
(low-fidelity dataset). For a subset of 250 compounds, bandgaps were calcu-
lated employing the hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-
correlation functional (high-fidelity dataset), starting from DFT-PBE re-
laxed structures.

Similar to the previous dataset, this dataset is too small in size to be
of use for my machine learning objective. Moreover, I am interested in
molecules, not solids.

There are plenty of other datasets for different materials and electronic
properties. For example, the Automatic Flow for Materials Discovery
(AFLOW) [71] database and the Materials Project [9, 10] provide large
datasets for solids, computed with DFT. AFLOW includes more than 3 mil-
lion materials that were structurally relaxed with the same DFT functional
and numerical settings for all calculations to keep consistency. Utilizing
these databases for my purposes would require the extraction of suitable
molecules from the crystal structures of these databases, along with their
corresponding spectral properties. This is a laborious task, and it is easier
to use pre-existing datasets of molecular structures and to compute, if
neccessary, missing electronic structures with DFT or other methods.

Materials data from experiments is available only to a limited extent.
Obtaining precise and accurate results from measurements requires spe-
cialized instruments, human supervision and time. As a result, there is
only a finite number of experimental datasets available, and these are typ-
ically much smaller than the computational datasets described above. One
example is a compilation of 370 high entropy alloys (HEAs) and complex
concentrated alloys (CCAs) that were published in the literature between
2004 and 2016 [72]. One of the few larger experimental databases is the
High Throughput Experimental Materials (HTEM) database [73] that
consists of 140k inorganic thin film materials.
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The reason for the limited availability of experimental data is that these
are often generated by informal processes adapted based on a specific
research question. The resulting data depends on unique experimental
designs and specialized instruments, which makes it difficult to assess
and compare the quality of data resulting from different sources. Another
problem is that there are generally no accepted standards on how to
store data from experiments. Data is often saved in various formats
that are not consistent with forms from other sources. Every institution
has the freedom to choose to what extent the research data is saved and
made publicly available, and meta-data is often provided incompletely.
Experimental data are especially prone to systematic and random errors
that emerged during measurement due to lack of control over the measured
system, inaccurately calibrated equipment, problems with the measuring
device or the variation of quantities over time.

Computational materials data, on the contrary, are currently more freely
available in larger numbers and sizes. The resulting data are less prone to
variance and easy to standardize. Within this thesis, I will therefore only
use computational materials data to develop my machine learning models
for spectra and energy prediction.

3.2 Generating molecular datasets

The computational datasets chosen in the previous section – QM9, QM7(b)
and AA – fulfill most of the listed criteria for a suitable machine learning
dataset. However, the properties in these three datasets are computed in
DFT with different exchange-correlation functionals, and for that reason
are not yet consistent with each other. Moreover, for QM9 and QM7(b), not
all orbital energies are available. QM9 and QM7(b) contain energies only
for the frontier orbitals, computed with the B3LYP exchange-correlation
functional in references [54, 58], while AA provides all orbital energies
computed with PBE+vdW. In order to establish consistency among the
three datasets, I performed DFT computations for QM9 and QM7(b) with
the PBE+vdW functional (tight settings, tier2 basis sets) in FHI-aims [74].
In particular, I optimized the structures towards their energy minimum
(structure relaxation) and computed the KS eigenvalues serving as or-
bital energies. More computational details about the FHI-aims code are
described in the Appendix. For QM9, 71 out of 133,885 structure re-
laxations did not converge, and these molecules were excluded from my
reference dataset. The number of molecules in the QM9 dataset is so large
that 71 fewer reference molecules is not a big loss. The remaining 133,814
molecules constitute my reference QM9 dataset. For QM7, 239 calculations
out of 7102 calculations failed to converge during structural optimization
and were discarded. The remaining 6,926 molecules constitute my QM7
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Figure 3.1. The three datasets employed in this dissertation. QM9 contains small organic
molecules with simple bonding patterns, while more complex structures are found in AA
and OE62. The amino acids and dipeptides in AA share a common backbone, but vary in
the sidechains and dihedral angles. OE62 contains a diverse collection of large organic
molecules that exhibit conjugated and complex aromatic backbones.

reference dataset. QM7 and QM9, together with the AA dataset, will be
used to train and validate my machine learning models.

The large size of the dataset and the small size of the molecules that it
contains makes QM9 an ideal dataset for the early stage development of
machine learning models. However, the small molecular structures do not
represent molecules that are usually used in optoelectronic applications.
As shown in Figure 3.1, the bonding patterns of the molecules in QM9 are
relatively simple. For realistic machine learning applications, one would
wish to train models on a more diverse set of molecules that contains larger
and more complex structures. However, as mentioned in the previous
section, publicly available datasets that provide reliable spectroscopic
properties of technologically relevant molecules are rare.

OE62 In the scope of Publication I, I participated in the creation of a
new, structurally diverse benchmark spectroscopy dataset of 62k large
molecules, referred to as the OE62 dataset. This dataset is based on a
diverse collection of organic crystals taken from the Cambridge Structural
Database (CSD) [75]. For each crystal, the molecular structure that makes
up the organic crystal is extracted. The obtained molecular geometries
were then relaxed in vacuum at the PBE+vdW level of DFT for all 62k
molecules. Moreover, total energies and orbital eigenvalues were computed
at the PBE and PBE0 levels of theory. In addition, total energies and orbital
energies were computed in a water solvent at the PBE0 level of theory, for
a subset of 31k molecules. Finally, for a subset of 5k molecules in vacuum,
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Figure 3.2. Comparison of the three molecular datasets used in this dissertation. a) Distri-
bution of molecular size including H-atoms. b) Distribution of element types. Reproduced
from Publication III.

quasiparticle energies at the G0W0 level were calculated. This latter subset
constitutes a rare and valuable benchmark dataset of molecular orbital
energies computed at high numerical accuracy.

The new OE62 dataset provides molecular structures and quantum chem-
ical properties of technologically relevant molecules. Figure 3.2 shows
distributions of molecular size and element types for OE62 in compari-
son with QM9 and AA. While QM9 and AA both contain similar sized
molecules, OE62 exhibits a much broader distribution in molecular size,
with molecules of up to 174 atoms. Moreover, OE62 includes a large range
of different organic elements, while QM9 and AA are restricted to a smaller
set of elements. Figure 3.1 further illustrates that OE62 spans a diverse
combinatorial space of scaffold-functional group pairings. For instance,
OE62 contains molecules with conjugated and aromatic backbones and
offers many structures with different functional groups. This degree of
chemical diversity cannot be found QM9 or AA. Detailed illustrations of
the scaffold diversity in OE62 can be found in [76,77].

Figure 3.3 shows the spread of 3k randomly picked molecules from each
of the QM9, AA and OE62 datasets, produced with the dimensionality
reduction technique t-SNE [78]. In a), molecular structures are repre-
sented by the Coulomb matrix (CM) and in b), molecules are represented
by the many-body tensor representation (MBTR). These two molecular
descriptors are introduced in the following section. In both cases a) and b),
molecules of OE62 are widely spread out, while QM9 and AA molecules
form clusters that are restricted in chemical space. Figure 3.3 again illus-
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Figure 3.3. Chemical diversity within the datasets QM9, AA and OE62, as seen through
the a) CM and b) MBTR molecular descriptor. Reproduced from Publication III.

trates the chemical diversity in OE62 compared to the other two datasets.
OE62 contains both small and large organic molecules, while QM9 and AA
include small molecules of similar size and similar element composition.
The AA dataset includes amino acid conformers with different protona-
tion states of the backbone and sidechains. Moreover, different divalent
cations (Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+) are attached to some
of the amino acids and dipeptides. The chemical diversity of the three
datasets and their impact for learning is further discussed in Section 5.1,
where Publication III is summarized. In Publication III machine learning
performance was investigated with respect to the three datasets QM9, AA
and OE62.

3.3 Numerical representation of molecular structures

My aim in this dissertation is to learn spectra from the atomic structure
of molecules alone, without having to supply any additional information
to the machine, such as molecular properties. However, simply inserting
Cartesian coordinates of atomic positions as input to the machine would
not prove successful, since fixed coordinates are not invariant to transla-
tion of the molecule. That is, when the molecule moves with respect to a
reference coordinate system, a new set of Cartesian coordinates is needed
to describe the molecule. The same molecule can thus be represented by
many different sets of atomic positions. Moreover, Cartesian coordinates
alone do not reflect any prior knowlegde about the molecule. In order to
model molecular spectra and energies, it would be desirable to include
information about the underlying physics into the molecular representa-
tion. All relevant information about the molecule should be appropriately
encoded into the representation, so that the machine learning algorithm is
able to draw the proper relation between structures and spectra.
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An ideal molecular descriptor fulfills the following requirements [51]:
i) invariance to translation, rotation and permutation of the same ele-
ment in the structure, ii) uniqueness, iii) continuity, iv) generality, and
v) efficiency (both in terms of the representation being fast to evaluate
as well as requiring the least amount of data points in training). Given
finite datasets, the last point can make a considerable difference in the
predictive performance and may necessitate alternative representations.
The choice of molecular representation is a prevalent area of research in
machine learning, and various descriptors that fulfill most of the above
stated requirements have been developed. Examples are the Coulomb
matrix (CM) [54], bag of bonds (BoB) [57], bispectrum [79], smooth over-
lap of atomic positions (SOAP) [80], symmetry functions [81], bonding
angular machine learning [82] or the many-body tensor representation
(MBTR) [83]. Other representations satisfy the requirements only partly,
such as cheminformatics fingerprint descriptors [84], the Fourier series
of atomic radial distribution functions [52], partial radial distribution
functions [85], and rotationally invariant internal vectors [86]. In this
dissertation, two of the aforementioned molecular descriptors are used:
The CM, because it is a simple representation that is cheap to compute
and widely used in other studies, and the MBTR, which is computationally
more expensive, but describes molecular structures more accurately than
the CM, as demonstrated in Chapter 5.

CM The CM represents each molecule by a matrix C, whose entries are
given by

Cij =

⎧
⎨
⎩
0.5Z2.4

i if i = j
ZiZj

∥Ri−Rj∥2
if i ̸= j,

where Zi is the atomic number (nuclear charge) of atom i and Ri is the
atomic position. A typical CM is shown in Figure 3.4. The main diagonal
of the CM embodies a polynomial fit of atomic nuclear charges to the total
energies of the free atoms, encoding element types. Off-diagonal elements
express the Coulomb repulsion for each pair of nuclei in the molecule,
encoding geometry. The CM is symmetric and the number of rows and
columns corresponds to the number of atoms in the molecule. The CM is
a unique representation of data in the sense that no two molecules will
have the same CM unless they are identical or enantiomers. However, one
problem of the CM is that is has no well-defined ordering of atoms, that is,
there are many different CMs representing the same molecule. One way to
uniquely order the atoms in the CM is to permute the matrix so that rows
and columns of the CM are ordered by their norm. Another drawback is
that the CM is size-dependent, that is, the size of the CM is determined
by the number of atoms in a molecule. However, machine learning models
need inputs of constant size. This issue can be solved by "zero-padding"
matrices of smaller molecules up to a size that corresponds to the largest
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molecule found in a given dataset. Filling matrices with zeros, however,
adds no new information to the problem. The machine learning model
might interpret meaning into the zeros it is given as input, while there is
none. Since the zeros in the matrices do not represent actual vacancies in
the molecular structure, they are physically meaningless, but the machine
learning model is not aware of that.

Figure 3.4. In the Coulomb matrix representation, a 3D molecular structure is trans-
formed into a matrix, based on atomic coordinates Ri and nuclear charges Zi. The matrix
represents one atom per row (and column) and is symmetric. The main diagonal of the
matrix contains atomic self-interactions (encoding atom types) while off-diagonal elements
contain interactions between different atoms (encoding geometry information). The shown
matrix is governed by self-interactions and pairwise interactions resulting from heavier
atoms in the molecule (Cl). Reproduced from Publication III.

MBTR The MBTR is a more sophisticated molecular descriptor than the
CM, encoding not only geometry and atom types, but also bonding and
angle information. Molecular structures are encoded by decomposing them
into a set of many-body terms (species, interatomic distances, bond angles,
dihedral angles, etc.). A set of constant sized vectors represents each k-body
term, where k numbers the level of the many-body term. One-body terms
(k=1) encode the element types that exist in the molecule. Two-body terms
(k=2) encode pairwise inverse distances between any two atoms (bonded
and non-bonded). Three-body terms (k=3) encode angular distributions for
any triple of atoms. A geometry function gk transforms each configuration
of k atoms into a single scalar value. These scalar values are broadened
into continuous representations Dk by a Gaussian distribution:

Dl
1(x) =

1

σ1
√
2π

e
− (x−g1(Zl))

2

2σ2
1 (3.1)

Dl,m
2 (x) =

1

σ2
√
2π

e
− (x−g2(Rl,Rm))2

2σ2
2 (3.2)

Dl,m,n
3 (x) =

1

σ3
√
2π

e
− (x−g3(Rl,Rm,Rn))2

2σ2
3 , (3.3)

where σk are the broadening widths for the different k-terms. The vari-
able x runs over a pre-defined range of possible values for the geometry
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Figure 3.5. Visualization of the many-body terms that constitute the MBTR molecular
descriptor. a) Inverse distance distributions (k=2 terms). Cl and O atoms are relatively far
apart in the molecule. Therefore, a peak occurs at small inverse distances. In contrast, O
atoms are located closer to other O atoms. b) Angle distribution (k=3 terms). There is a
high number of C atoms in the molecule, which gives rise to several C-C-C spikes in the
angle distribution. Contrary, there is only one possible configuration for O-Cl-O angles,
yielding a single peak in the distribution.

functions gk. For k = 1, 2, 3, the geometry functions are given by g1(Zl) = Zl

(atomic number), g2(Rl,Rm) = |Rl − Rm| (distance) or g2(Rl,Rm) =
1

|Rl−Rm| (inverse distance), and g3(Rl,Rm,Rn) = cos(∠(Rl−Rm,Rn−Rm))

(cosine of angle). For each possible combination of k elements occurring in
the dataset, a weighted sum of distributions Dk is produced. For k = 1, 2, 3,
these final distributions for each many-body term are given by

MBTRZ1
1 (x) =

|Z1|∑︂

l

wl
1Dl

1(x) (3.4)

MBTRZ1,Z2
2 (x) =

|Z1|∑︂

l

|Z2|∑︂

m

wl,m
2 Dl,m

2 (x) (3.5)

MBTRZ1,Z2,Z3
3 (x) =

|Z1|∑︂

l

|Z2|∑︂

m

|Z3|∑︂

n

wl,m,n
3 Dl,m,n

3 (x). (3.6)

The sums over l, m, and n run over all atoms with atomic numbers Z1, Z2

and Z3. The weighting functions wk balance the relative importance of
different k-terms and/or limit the range of inter-atomic interactions.

The MBTR contains many levels of information about the molecular
structure, which clearly exceeds the information content encoded by the
CM. Another advantage of the MBTR is that each molecular structure
is represented by a vector or tensor of same dimensions, hence, it is a
constant-size descriptor.

3.4 Summary

In this chapter, I first defined seven characteristics that a materials dataset
should have to be of use in my machine learning framework, thereby
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answering the first part of the research question:

RQ1 What kind of datasets should I use to train my machine learning
model and how can I obtain reliable reference data of high quality?

Materials datasets used within this thesis should contain compounds
relevant for organic electronic applications, including 3D structures and
spectral properties. The datasets should be publicly and freely available,
large in size and diverse. Moreover, the data should be accurate (low
bias and variance), consistent within and across datasets and presented
in a compatible format. While consistent experimental data are rare in
materials science, there are plenty of computational materials datasets
that fulfill the majority of mentioned criteria. Among those are the QM9
and the QM7 datasets of 134k and 7k small organic molecules, as well as
the AA dataset of 44k amino acids and dipeptides. These three datasets
are used within this thesis as reference datasets. To guarantee reliability
and consistency across these three datasets I employed my own DFT
computations for QM9 and QM7, while the AA dataset did not need any
further processing. As a result, I am equipped with three large molecular
datasets that contain a diverse collection of organic molecular structures
and their orbital energies, all of which are calculated at the same level
of DFT. I also generated a new molecular dataset, OE62, which contains
62k diverse molecular structures extracted from the CSD. In addition to
DFT-computed structures and orbital energies, OE62 contains high-quality
results of G0W0 computations for a subset of 5k molecules. This dataset
constitutes a valuable spectroscopy benchmark dataset for computational
materials science and is published in Publication I.

Moreover, after having learned about the representation of spectra in the
previous chapter, this chapter introduced two types of representations for
the molecular structure, thereby providing an answer to

RQ2 How can molecules and their spectra be numerically represented in
such a way that the machine can establish a relationship between
each molecule and its spectra?

For the numerical representation of molecular structures, the Coulomb
matrix (CM) and the many-body tensor representation (MBTR) will be
employed. The CM is a simple and computationally affordable descrip-
tor encoding information about atomic positions and types. The MBTR
is a more sophisticated but computationally more expensive descriptor
encapturing information about atomic types, bonds and angles.
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4. Machine learning approach

Having generated enough reference data of molecular structures and their
orbital energies, I now review suitable machine learning methods for my
research objective of mapping molecular structures (in form of a numerical
descriptor) to corresponding energies (scalar values) or spectra (continuous
curve of multiple values).

Three machine learning methods are used within this thesis: Kernel
ridge regression (KRR), artificial neural networks (ANNs) and Bayesian op-
timization (BO). Each of these machine learning methods serves a slightly
different purpose. KRR seeks to infer a relationship between one or more
input values and one output. In other words, it maps multi-dimensional
inputs to scalar outputs. I will therefore use KRR to predict a single
spectral property for each molecule in my datasets, that is, the energy
of the HOMO. The results of HOMO energy predictions with KRR are
summarized in Chapter 5. BO is a technique to direct an efficient and
effective global minimum search. Hence, I will employ BO to optimize
the parameters of my KRR machine learning model. ANNs are highly
adaptable machine learning tools consisting of multiple interconnected
processing units that receive inputs and deliver outputs. They are able
to map multi-dimensional input to multi-dimensional output. Hence, I
will use ANNs to predict molecular photoemission spectra that consist of
multiple data points. In the last section, I will discuss Publication II, which
tackles the optimization of model hyperparameters in machine learning.
At the end of this chapter, I address the third research question,

RQ3 Which machine learning methods should I choose and how can I
determine the hyperparameters of my models?

4.1 Machine learning principle

Many definitions of machine learning are available in the literature, re-
flecting the immense popularity and versatility of this fast developing field.
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For instance, machine learning is described as a "field of study that gives
computers the ability to learn without being explicitly programmed" [87],
the "computational study of algorithms that improve performance based on
experience" [88] or as a "process through which we use data to train mod-
els" [89]. At its root, machine learning is a subfield of artificial intelligence
(AI) that can be further categorized into three main branches: Supervised
learning, unsupervised learning and reinforcement learning [14,90].

In supervised learning, both the input data x and the target data t are
available, and the machine learning algorithm learns a mapping function
f(x,θ) with internal parameters θ from input data to target data. The
goal is to fit the parameters θ of the mapping function so well that targets
can be predicted for new input data that was not used for fitting. The
mapping function f(x,θ) is called the machine learning model and the
parameters θ are called the model parameters. Supervised learning is the
most extensively applied form of machine learning. Further sub-branches
of supervised learning are regression and classification. In regression, the
targets can take any possible value, while in classification, the targets can
take only discrete values.

In unsupervised learning, there are only inputs x, but no targets t. The
task of the learning algorithm is to find patterns in the input data. This
technique is mostly used as a clustering method to group samples [91].

Reinforcement learning algorithms learn how to behave in an environ-
ment by taking actions and quantifying the results [92]. The training is
based on exploration and exploitation [14], which is an important concept
in Bayesian optimization, as explained in Section 4.4. During exploration,
the algorithm searches over the whole training sample space, gathering
information that might lead to better decisions in the fututure. During
exploitation, this information is used to exploit only promising areas of
the sample space that are close to already found minima. Applications of
reinforcement learning include game theory or control theory [93].

In this thesis, I focus on supervised learning, since the task of mapping
molecular structures to spectra conveniently fits this type of learning
principle. From a mathematical standpoint, the task in supervised machine
learning is to find a function f ∈ F that maps an input vector x onto a
corresponding target value t, where F is the space of possible functions
that depends on the learning method. In the beginning, the data are
divided into a training set and a test set, where the test set typically
comprises 10-30% of the whole data. Both training and test data contain
input/target pairs. Given a set of n training data {(xi, ti)}ni=1 that consist
of input vectors x ∈ Rd and corresponding target values t ∈ R, the goal
during model training is to find a function f ∈ F that predicts the target
t for a new input x, while minimizing an error function E. This task is
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formulated as the following minimization problem:

arg min
f

E(t,f(x)) with f ∈ F , (4.1)

where f(x) is a vector containing the model outputs f(x) for all training
inputs x, and t is a vector containing the corresponding training targets
t. The error function E quantifies the quality of the model output f(x) by
comparing it to the target vector t. A popular choice for the error function
is the mean absolute error (MAE)

MAE =
1

n

n∑︂

i=1

|ti − f(xi)|, (4.2)

the mean squared error (MSE)

MSE =
1

n

n∑︂

i=1

(ti − f(xi))
2, (4.3)

or the root mean squared error (RMSE)

RMSE =

⌜⃓
⎷⃓ 1

n

n∑︂

i=1

(ti − f(xi))2, (4.4)

where i runs over all n input/target pairs.
When all training pairs (x, t) were seen by the model during training,

the model is evaluated on the test set data. Test data x are given as input
to the final model f and the model output f(x) is recorded. The prediction
error on the test set is then computed by using, for example, the MAE
metric in Equation 4.2, which is based on the deviation between model
outputs and test targets.

With increasing training set size, it is expected that the prediction error
on the test set decreases. The evolution of the test prediction error with
training set size is known as learning curve. In many machine learning
applications, the prediction error E is found to be inversely proportional to
the number of training data n to some power b > 0 [58,94,95]:

E ≈ a

nb
, (4.5)

As a double logarithmic plot, the learning curves are then expected to
decrease linearly with slope b and offset a:

log(E) ≈ log(a)− blog(N). (4.6)

Learning curves not only illustrate how well a machine learning model
performs with increasing amount of training data, but also allow to com-
pare different model settings or algorithms. The law in Eq. (4.6) reveals
that a good machine learning model is linearly decaying, has a low offset
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Figure 4.1. Prediction error on the test set as a function of training set size n, plotted on
a double logarithmic scale. The error decay with increasing training samples can be fitted
with a straight line.

a (achieved for example by using a more suitable representation of the
model input) and has a steep learning slope, i.e. large b. Figure 4.1 shows a
typical example for such a learning curve. Learning curves also expose the
ideal amount of training data needed to obtain an acceptable prediction
error. Knowing the minimal amount of data that will yield sufficient model
performance is especially useful when working with small datasets where
no large volumes of training data are available.

Each machine learning algorithm is a combination of model function
f , error function E and optimization strategy. There is no recipe of a
universally best learning algorithm – each of these components need to
be selected with regard to a specific problem at hand, guided by human
intuition and experience. In this dissertation, I employ two machine
learning models based on kernel ridge regression (KRR) and artificial
neural networks (ANNs), which are widely used in the context of applying
machine learning in materials science. Moreover, I employ Bayesian
optimization (BO) to optimize the hyperparameters of my KRR model. In
the following, I will give an overview over these three methods.

4.2 Kernel ridge regression

Kernel-based methods have been popular in machine learning since they
emerged in the 1990s [96–98]. They are based on linear regression, com-
bined with regularization and the kernel trick [97–99].

Linear regression We first consider linear regression, the simplest regres-
sion technique. Given the input x, linear regression algorithms compute
the model output f(x) as a linar combination of the features of the input
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vector, each weighted by a regression weight wi

f(x) =
d∑︂

i=1

wixi = wTx, (4.7)

where d is the dimension of the input space and w is a vector containing all
regression weights wi. The goal of the learning algorithm during training
is to find regression weights wi that minimize the error on new training
inputs. The optimization problem from Equation 4.1 can be rewritten as

arg min
w∈Rn

∥Xw − t∥22 , (4.8)

where X is a matrix containing all training input vectors x and t is a vector
containing all training targets t. Here, the L2 or Euclidean norm ∥x∥2 =
∑︁n

i=1

√︂
x2i is used as a specific choice for the error function. The problem

with this approach is that the model is fitted exactly to the training inputs
and targets. This means that any noise in the data, such as deviations in
the data due to, e.g. different implementations or numerical settings, are
fitted exactly as well. Fitting these meaningless differences in the data can
lead to large regression weights wi that almost balance out the training
inputs xi. The corresponding model has low errors on the training data,
but cannot generalize well to new data and therefore exhibits high errors
on the test set. This problem is known as overfitting.

Ridge regression Ridge regression is linear regression in combination
with regularization to prevent overfitting. Regularization minimizes the
regression weights by adding a penalty term based on the squared norm of
the weights to the minimization problem of 4.8, yielding

arg min
w∈Rn

∥Xw − t∥22 + α ∥w∥22 , (4.9)

where α is a hyperparameter that determines the strength of the regular-
ization. The combination of the two terms in Equation 4.9 ensures that
among all regression weights w that map inputs x to corresponding targets
t well, the smallest ones are chosen. This results in the simplest and least
complex possible model, which should then also generalize well to unseen
data. It is possible to apply complexity measures other than the norm,
however, using the squared norm is a convenient choice since it allows
for a simple analytic solution of Equation 4.9. It should be noted that
solving the minimization problem only determines the regression weights
wi, but not the regularization strength α. This hyperparameter has to be
set separately, typically by cross-validation, which will be further discussed
in the next section dealing with the optimization of such hyperparameters.

Kernel ridge regression Linear regression and ridge regression algorithms
produce outputs based on a linear combination of training inputs. The
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Figure 4.2. In 2D input space, the two classes (red squares, green circles) are not linearly
separable through a line. When mapping them into 3D feature space with a suitable
mapping function Φ, they become linearly separable through a decision surface.

drawback with these methods is that they can only be applied to input
data that are linearly separable with respect to the relationship between
the inputs and the targets. For a 2-dimensional input space this means
that two sets of input data can be separated by a line such that all data of
one set are on one side of the line and all data from the other set are on
the other side of the line.

For many machine learning problems, the input data are not linearly
separable. In the real world, data are often randomly distributed, which
makes it difficult to make predictions based on linear relationships be-
tween the input data. This is when kernel-based methods become relevant,
such as KRR, support vector machines (SVM), [100], principal component
analysis [101], or Gaussian process regression [102]. KRR constructs non-
linear learning algorithms from linear learning algorithms by projecting
the input data into a higher-dimensional space and employing the linear
learning algorithm there. In Figure 4.2, there are two classes of data in
input space: green circles and red squares. There is no way to divide them
by a linear line. But if there was a way to map the input data from the
2-dimensional space into a 3-dimensional space, then a decision surface
could be drawn that separates the two classes. However, it is not easy to
find an appropiate mapping function Φ(x).

This is when the kernel trick is applied [103]. The kernel trick allows
to operate in the original input space without knowing the coordinates of
the data in the higher-dimensional space or doing any computations in
that space at all. As an example, consider a 3-dimensional input space
with two vectors x = (x1, x2, x3) and y = (y1, y2, y3). Let us assume these
vectors need to be projected into a 9-dimensional space in order to linearly
separate the input data. The mapping may be accomplished by applying
the following mapping functions:

Φ(x) = (x21, x1x2, x1x3, x2x1, x
2
2, x2x3, x3x1, x3x2, x

2
3)

T (4.10)
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Φ(y) = (y21, y1y2, y1y3, y2y1, y
2
2, y2y3, y3y1, y3y2, y

2
3)

T (4.11)

In this 9-dimensional feature space, where the input data are linearly
separable, a linear learning algorithm (e.g., linear regression) may then be
applied for learning. However, finding the appropiate mapping functions
and applying them might be difficult. The kernel trick takes advantage of
the fact that many machine learning algorithms only require the evalua-
tion of scalar products between input vectors. In feature space, the scalar
product between the input vectors is

Φ(x)TΦ(y) =
3∑︂

i,j=1

xixjyiyj . (4.12)

However, if we had applied the function k(x,y) = (xTy)2 in the original
3D input space, we would have reached the same result:

k(x,y) = (xTy)2 (4.13)

= (x1y2 + x2y3 + x3y3)
2 (4.14)

=
3∑︂

i,j=1

xixjyiyj . (4.15)

Thus, we could have avoided the complicated computation in the 9-
dimensional feature space. The function k(x,y) = Φ(x)TΦ(y) is known as
a kernel function. A kernel function is a function that operates on data in
input space, but whose output corresponds to the scalar product between
mapped input data to a higher-dimensional space. In other words, kernel
functions can replace the mapping of input data into higher dimensional
space and instead evaluate dot products between input data in the origi-
nal space. A kernel function can be interpreted as a similarity measure
between inputs. Commonly used kernel functions are the Gaussian kernel

k(x,y) = exp

(︃
− 1

2γ2
∥x− y∥2

)︃
(4.16)

or the Laplacian kernel

k(x,y) = exp

(︃
− 1

γ2
∥x− y∥

)︃
. (4.17)

The kernel width γ is another hyperparameter that needs to be chosen
separately before model training. Given the input x, KRR models compute
the model output f(x) as a linear combination of kernel outputs, each
weighted by a regression weight wi

f(x) =

n∑︂

i=1

wik(xi,x), (4.18)
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where the sum runs over all n training inputs. The corresponding mini-
mization problem is

arg min
w∈Rn

n∑︂

i=1

(f(xi)− ti)
2 + α ∥f∥2Φ (4.19)

=arg min
w∈Rn

∥Kw − t∥22 + αwTKw, (4.20)

where ∥f∥2Φ is the norm of f in the higher-dimensional feature space and
K ∈ RnXn is the kernel matrix between training inputs, with its elements
defined as Kij = k(xi,xj). An analytic solution for the regression weights
is obtained by setting the gradient to zero:

∇w(∥Kw − t∥22 + αwTKw) = 0 (4.21)

⇐⇒ w = (K + αI)−1t (4.22)

Predictions can then be made for new inputs using Equation 4.18

f(x) =
n∑︂

i=1

wik(xi,x) (4.23)

= wTk(x) (4.24)

= (K + αI)−1tTk(x), (4.25)

where k(x) is a kernel vector with elements ki = k(xi,x). Without the
kernel trick, one would have to carry out an expensive matrix inversion of
mapped inputs in high-dimensional feature space. By reformulating the
regression problem with a kernel, one can instead invert the kernel matrix
in a much smaller input space of size n× n.

However, the inversion of the kernel matrix is still computationally
expensive and therefore, it is usually not practicable to apply KRR to
very large datasets of hundreds of thousands of data entries. On the
other hand, KRR is fairly transparent due to its exact analytical solution,
unlike many other machine learning methods. Predictions are based on
mathematical principles and can be interpreted more easily. Moreover,
KRR involves only two hyperparameters and thus, little hyperparameter
engineering is needed (as long as the descriptors do not introduce many
hyperparameters).

4.2.1 KRR for HOMO energy prediction

KRR methods are widely applied in materials science to predict scalar
properties of molecules [104–106] and crystals [107–109]. The resulting
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models provide results within chemical accuracy. For example, predictions
for atomization energies of small organic molecules are reported with an
MAE of 1 kcal/mol [108], using only 2000 training molecules. Formation
energies of bulk systems are predicted with an MAEs of 0.1 eV/atom [107].

In this thesis, KRR is employed to predict molecular HOMO energies.
The input for KRR are molecular structures represented either by the
CM or the MBTR, and the prediction target is the scalar HOMO energy.
KRR maps each molecular structure to its corresponding HOMO energy.
Predicting multiple outputs of full photoemission spectra consisting of
several hundreds of data points is not feasible with KRR. While a few
regression approaches exist that deal with the task of predicting multi-
dimensional outputs [110, 111], these approaches are challenging and
costly. Generally, multi-output regression methods can be categorized as
problem-transforming methods and algorithm-adaption methods. Prob-
lem transforming methods transform the multi-output problem into inde-
pendent single-output problems, each using an expensive single-output
regression routine. Algorithm adaption methods adapt a particular scalar-
output method, e.g. KRR, to produce multiple outputs. These are typically
even more challenging than problem-transforming methods since they not
only predict multiple targets but also draw relationships between these
targets. Hence, multi-output regression methods are costly in time and in
computational resources, and are not always guaranteed to deliver desired
accuracy. Recently, a study on multi-output KRR for the prediction of
multiple excited-states of CH2NH+

2 cations was published [112], employ-
ing the algorithm-adaption method. Ab-initio calculations of electronic
states were encoded explicitly in the inputs (in addition to the molecu-
lar representation) in order to predict multiple excited-state properties
simultaneously, such as forces, nonadiabatic couplings between different
states and transition dipole moments. However, when learning all proper-
ties simultaneously, significantly worse results were reported than when
learning only one target at a time. Therefore, I will use KRR to predict a
only scalar targets, in this case the HOMO energy. The results of HOMO
energy prediction with KRR are summarized and discussed in Chapter 5.
For multiple-output predictions, ANNs are naturally a better fit. They are
able to map multi-dimensional inputs to multi-dimensional outputs, as
explained in the following.

4.3 Artificial neural networks

Artificial neural networks are versatile machine learning algorithms that
yield state-of-the-art results in a varierty of different fields such as text
classification [113], information retrieval [114], image recognition [115–
117], speech processing [115,118,119] and machine translation [120]. At its
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base, a neural network model is a function f that maps inputs to outputs
and that consists of a set of interconnected units, called neurons [121]. An
example neuron is shown in Figure 4.3.

Figure 4.3. Single neuron with its inputs xi, weights wi, bias b and output y.

The input to a neuron is the sum of weighted outputs from other neurons,
plus a bias term. Then, a so-called activation function is applied, resulting
in a single scalar output y for each neuron, which is given by

y = a

(
K∑

i=1

wixi + b

)
, (4.26)

where a is the activation function, xi are signals coming to the neuron from
other neurons, wi are the weights and b is the bias term. The activation
function transforms the linear combination of incoming signals in Equation
4.26 into a nonlinear scalar output of the neuron. This is the reason why
ANNs are able to learn nonlinear relationships between input and output.
Commonly, smooth functions such as the sigmoid function

σ(z) =
1

1 + e−z
(4.27)

or the hyperbolic tangent

tanh(z) =
ez − e−z

ez + e−z
(4.28)

are used as activation functions, since they are easy to interpret and
differentiable, which facilitates training [122]. The neurons are placed
in a layered architecture with an input layer, output layer and a hidden
layer, as shown in Figure 4.4. Every element in the input layer is linked
to every element in the hidden layer via wkl, which is the weight of the
link between the kth input element and the lth hidden neuron. The same
connection structure is present between the hidden layer and the output
layer with w′

lm, which is the weight associated with the connection between
the lth hidden neuron and the mth output neuron. Output neurons usually
employ another type of activation function than input neurons and hidden
neurons, since the output is typically represented by a larger range of
values than the information within hidden layers.
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Figure 4.4. Example of a simple feedforward ANN with one hidden layer. The layers of
the network consist of N input neurons, L hidden neurons and M output neurons. The
input x = {x1, ..., xN} flows to the hidden layer h = {h1, ..., hL} and from there to the
output y = {y1, ..., yM}. The outputs from preceding neurons are weighted and biased
before being passed to neurons in the next layer, where the inputs are processed by an
activation function.

In a simple feedforward neural network, each hidden neuron is linked to
each hidden neuron in the following layer. The information travels from
the input layer to the hidden layer and then to the output layer. In this
process, the output from the previous layer is used as input for the next
layer. During training, the weights and biases are optimized with respect
to an error function in such a way that the computations performed by
the neurons lead to a desired output, as further explained in the next
paragraph. One might think that simply placing small computational
units in a series of layers and connecting them through activations would
not approximate the underlying phenomena in the data properly. However,
according to the universal approximation theorem, a feedforward ANN
with only a single hidden layer can fit practically any continuous func-
tion [123, 124]. Thus, a network that has a sufficient number of hidden
layers, each containing many hidden neurons, can fit almost any complex
dependency between inputs and outputs. Thus, neural networks are highly
flexible and adaptable to specific problems.

However, when the neural network becomes too large, tuning the model
parameters during training can be challenging. Model training is typi-
cally done by employing the backpropagation algorithm [125,126], which
subsequently repeats two cycles: propagation and weight update. Input
data xi ∈ {x1, ..., xN} travels layer by layer forward through the network
until reaching the output layer. The prediction of each neuron yi in the
output layer is then compared to the desired target. The resulting error
values are then propagated backwards from the output to the input layer.
After this backward pass, each neuron in the network is associated with
an error value, which approximately corresponds to its contribution to the
overall error. In order to minimize the overall error function, the gradient
of this error function is computed with respect to weights and biases. This
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gradient is then passed to an optimization method, commonly a gradient
descent algorithm, which updates the weights and biases according to their
overall error contribution.

When applying ANNs to real-life problems, the most demanding task
is the selection of the network architecture. While there is usually not
much freedom in the design of input and output layers of a neural network,
the structure of hidden layers is in most cases not straightforward. It is
often not that obvious which activation function to apply for which layers,
how many hidden layers to employ and how many neurons within these
layers to connect with each other. Fully connected architectures, such as
feedforward ANNs tend to be computationally expensive, since all neurons
are connected with each other. Hence, these architectures are not feasible
for data that require a large number of input neurons or for large datasets.

4.3.1 ANNs for photoemission spectra prediction

Like many other fields, also materials science exploits the broad applicabil-
ity of ANNs. ANNs have become powerful tools for large-scale molecular
dynamics (MD) simulations to predict forces and potential energy sur-
faces [81,127–130] significantly faster than most of the efficient electronic
structure methods, thereby enabling MD simulations of large systems.
Moreover, relationships between molecular structures and correlation en-
ergies [131] as well as bond dissociation enthalpies [132] were successfully
modeled by ANNs.

Within this thesis, when applying neural networks for the prediction
of molecular photoemission spectra, large molecular datasets of several
thousands of molecules are used. The input layer, represented by the
molecular descriptor, involves hundreds to thousands of entries, which
requires a large amount of input neurons. Therefore, fully connected
neural networks are computationally too expensive for the prediction of
molecular photoemission spectra. Instead, I will consider two types of deep
neural networks: convolutional neural networks (CNNs) and deep tensor
neural networks (DTNNs). Deep learning networks typically involve a
large number of hidden layers, but with fewer neural connections than
fully connected networks [126,133,134]. Due to the large number of hidden
layers, deep neural networks are able to adapt to very complex problems
while little feature engineering is needed, that is, raw data can often be
used as input. Many deep neural networks are able to learn internal
parameters or to form an efficient representation of input features. The
increasing amount of available data in almost all fields of research and
industry is the driving source for the rapid development of deep learning
algorithms, which vitally require large amounts of training data. The first
computational model for neural networks was created in 1943, but it was
only over the last two decades when large amounts of data was available
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to adequately train them.

Convolutional neural networks Convolutional neural networks are net-
work architectures whose layers are not fully connected, offering a com-
putationally affordable training for large quantities of data and for data
with large input dimensions [122,135]. The connectivity scheme between
neurons in CNNs is motivated by the arrangement of the animal visual
cortex, which contains a complex structure of cells that are responsive
to small sub-regions of the visual field. The cells act as local filters to
the visual field and are able to exploit strong local correlations in images.
Instead of fully-connected layers, CNNs employ a local connectivity scheme
between neurons of neighbouring layers, thereby processing spatial input
structures. CNNs are widely used in image and video recognition, rec-
ommendation systems and language processing [115]. Also in materials
science, CNNs have been applied to various recognition problems, such as
classifying structures by the symmetry of their diffraction patterns [136],
characterizing complex molecular assemblies on surfaces from scanning
tunneling microscope (STM) images [137] or identifying molecules from
atomic force microscopy (AFM) images [138].

Figure 4.5 shows the CNN architecture used for the prediction of photoe-
mission spectra developed in Publication IV. The CM is used as molecular
descriptor, representing the input layer of the CNN. The number of in-
put neurons equals the number of CM entries, which in turn depends on
the number of atoms of the largest molecule in the dataset. For QM9,
the largest molecule has 29 atoms, hence, the input layer consists of
29 × 29 = 841 input neurons. The input layer is connected to the first

Figure 4.5. CNN architecture for the prediction of photoemission spectra. Each molecule
is represented by its CM, which is passed through a multilayer network consisting of
convolutional layers and subsequent max-pooling layers. The second max-pooling layer is
fully connected to the output, which either contains 16 neurons corresponding to 16 discrete
excitation energies, or which contains 300 neurons corresponding to the 300 discretized
points of the photoemission spectrum.

convolutional layer, which consists of several feature maps made up of hid-
den neurons. In each feature map, the hidden neurons exploit a different
feature of the input. In contrast to fully-connected feed-forward neural
networks, not every input neuron of the CNN is connected to every hidden
neuron in the feature maps. Instead, each neuron in the feature maps is
connected to only a small region of the CM, called the local receptive field.
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The local receptive field is slid across the CM entry by entry to connect
to another neuron in each feature map. This is done simultaneously for
all feature maps, until each feature map is fully built. During training,
the neurons in the feature maps analyze their receptive fields and learn
a corresponding weight and bias. In the same layer, each feature map
uses the same set of weights for all of its neurons, which implies that
each of the hidden neurons in one particular feature map learns the same
features for its local receptive field. This way, all neurons of the same
feature map detect exactly the same feature of the input, but at different
locations in the CM. The weights defining the feature map are thus called
shared weights, and the bias defining the feature map is the shared bias.
Using shared weights and biases notably lowers the number of parameters
determining the network, which results in faster training of the CNN.

After the convolutional layer follows a max-pooling layer, which simplifies
the information from the convolutional layer by preparing a condensed
feature map. Each unit in the pooling layer outputs the maximum value of
its input region. This adds scale-invariance to the learning process of the
network and again helps reduce the number of parameters needed in the
following layers and adds scale invariance. Max-pooling is applied to each
feature map separately, resulting in 5 max-pooling layers. After the max-
pooling layer follows another another pair of convolutional and pooling
layers. Finally, the output layer represents the photoemission spectrum,
which is numerically described either by 16 discrete KS eigenvalues or by
300 discretized data points of the Gaussian-broadened spectral curve.

Deep tensor neural network Another type of neural network used in Pub-
lication IV is the deep tensor neural network (DTNN), which is a custom
designed deep neural network by Schütt et al. [135]. This type of network
can adapt to the complex task of building its own molecular representation
based on atomic positions in the molecules. Thus, no CM is needed as input,
but only (x, y, z) coordinates of atomic positions within the molecule. The
DTNN transforms these positions into its own representation by building
a coefficient vector according to their species and nuclear charges. The
coefficient vectors are subsequently refined in a sequence of interaction
passes by embedding each atom in its neighbourhood with other atoms.
In the first interaction pass, interatomic distances are learned. In the
second interaction pass, angles between atom triplets are encoded. In
subsequent passes, higher order interactions, such as dihedral angles are
learned. Thus, by decomposing atomic interactions within the molecule
the DTNN is able to learn an efficient representation of embedded atoms,
which encodes local atomic environments in a similar way as the MBTR.
The DTNN then passes the embedded representation of atoms through two
fully connected neural layers. For each atomic coefficient vector, an energy
contribution is predicted, which contributes to the final photoemission
spectrum in the output layer.
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Figure 4.6. Simplified diagram of the DTNN for the prediction of photoemission spectra.
Molecular XYZ structures are given as input to the network by a vector of nuclear charges
(blue squares) and an interatomic distance matrix (pink squares). According to its nuclear
charge, a coefficient vector (grey block) is assigned to each atom. Parameter tensors (red
squares) transform the coefficient vectors and the interatomic distance matrix into a refined
coefficient vector. This refinement is repeated multiple times, building up more complex
interactions between atoms with each pass. Two fully-connected layers (grey blocks) are
employed to obtain the final spectral contributions from each atom for each point of the
spectrum. The sum over all spectral contributions gives the total predion for a given point
in the spectrum. Adapted from Publication IV.

The results from Publication IV, where the above described CNN and
DTNN were used for the prediction of molecular photoemission spectra are
summarized and discussed in Chapter 5. Before machine learning models
are able to make reliable predictions, problem-specific hyperparameters
need to be fine-tuned. This will be the objective of the following section,
explained in combination with KRR.

4.4 Hyperparameter optimization

An often difficult challenge when applying machine learning algorithms to
real-world data is the choice of so called hyperparameters. Hyperparame-
ters are specific to the machine learning method and to the problem, but
cannot be learned by the algorithm itself during training. Instead, they
have to be selected separately. For example, KRR involves two hyperpa-
rameters, namely the regularization strength α and the kernel width γ,
while the regression weights w are internal parameters of the model that
are tuned during training via Equation 4.1. In more general terms, one
can also view the kernel function k, the error function E or the machine
learning algorithm itself as a hyperparameter. For ANNs, there are con-
siderably more hyperparameters, such as the activation function a, the
number of hidden layers, the number of neurons in the hidden layers, the
number of connections between the neurons as well as the optimization
algorithm (e.g. backpropagation) to minimize the error. Just like internal
model parameters, hyperparameters crucially influence the performance
of machine learning.
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However, it is not always obvious which hyperparameter values lead to
a good overall model performance. Unfortunately, there is no equation
that balances model performance with respect to the hyperparameters.
Therefore, hyperparameters are often chosen based on intuition, prior
knowledge or trial and error. Another option is to apply suitable search
algorithms capable of finding the optimal set of hyperparameters that
minimize the machine learning prediction error. Within this thesis, two
algorithms based on grid search and Bayesian optimization were envoked
to tune the hyperparameters of machine learning with KRR.

4.4.1 Grid search

Within a grid search, a grid of values is setup for each hyperparameter.
The dataset is first divided into training and test set and then, a validation
set is split off from the training set [139, 140]. Each possible combina-
tion of hyperparameters from the grid is used once for model training on
the remaining training data, while the prediction error is estimated on
the validation data. The hyperparameter combination with the lowest
prediction error is chosen. The advantage of splitting off a validation set
from the training set is that the optimal hyperparameter settings can be
determined on the validation set, while leaving the test set completely un-
touched. Using the best performing combination of hyperparameters, the
final prediction error can then be reported on the test data. In other words,
the remaining training set is used for learning the model parameters (re-
gression weights wi when using KRR), the validation set for learning the
hyperparameters (e.g. regularization strength α and kernel width γ) and
the test set for evaluating the performance of the trained model.

For very small datasets, however, splitting off validation data from the
training data leaves little data to train the model, and the reported pre-
diction errors will be unreliable. In this case, k-fold cross-validation [141]
can be used, where the training data is split into k subsets. For each
combination of hyperparameters, each subset is used once for training and
once for validation, and the validation errors from individual splits are
averaged. The combination of hyperparameters with the lowest average
error is chosen, and the prediction error is evaluated on the untouched test
set. However, the drawback of grid search is that it is compuationally and
time-wise expensive to try every possible combination of hyperparameters.
Each combination requires training and validation, which can quickly eat
up computational resources, especially when dealing with large datasets or
complex machine learning methods that involve many hyperparameters.
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4.4.2 Bayesian optimization

Another, more efficient and effective approach to automate the hyper-
parameter search is the use of global optimization algorithms, such as
Bayesian optimization (BO) [90,142–144]. BO seeks to find the minimum
of an objective function f(x), given data x within the domain X . In this
thesis, BO is applied to find the optimal set of KRR hyperparameters α

and γ that minimize the prediction error (in terms of the MAE) of my KRR
model. In this problem set up, the objective function is the unknown MAE
as a function of model hyperparameters. The output of this function is only
known after evaluating it at a selected point x of hyperparameters. Each
evaluation of the objective function for a certain setting of hyperparame-
ters involves the training of the KRR model. Due to the matrix inversion
that is involved in KRR training, querying many hyperparameters can
quickly eat computational resources. Thus, the number of calls to the
unknown objective function should be kept as low as possible.

A number of other global optimization approaches different from BO ex-
ist [145]. For machine learning, stochastic approximation is a popular con-
cept for the optimization of unknown objective functions [146] that is used
in reinforcement learning [93,147,148], for Boltzmann machines [149,150]
or deep belief networks [151]. However, stochastic approximation requires
a large number of samples, and is therefore not suitable for problems
where drawing samples is expensive. The key idea of BO approaches is to
use prior knowledge and evidence in order to sample efficiently, drawing as
few samples from the unknown objective function as possible. BO utilizes
past evaluation results to form a probabilistic model – the surrogate model
– of the objective function. To decide where to sample next, BO employs
an aquisition function, which assesses the surrogate model for the most
promising hyperparameters. These are then evaluated on the objective
function in the next iteration. After each objective function evaluation, the
surrogate model is updated. BO therefore becomes more accurate with
more given data. BO methods determine the next set of hyperparameters
based on past trials, while making as few calls to the objective function
as possible. This process of informed decision-making is the reason for
the success of BO approaches for hyperparameter optimization in machine
learning.

In the following, I explain the general working principle of BO. Then, in
Section 4.4.3, I summarize and discuss my results of KRR hyperparameter
optimization based on BO.

There are two key ingredients for a BO model: A probabilistic model
based on Gaussian process regression (GPR) and an acquisition function
that determines the next hyperparameters to evaluate on f . Let x ∈ Rn be
a vector encoding n hyperparameters to be optimized. At iteration i, the
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objective function f is sampled at the data point xi ∈ X , yielding the scalar
value yi = f(xi) as a result of evaluating f . After N iterations, let the
ensemble of N sampled data points xi and N corresponding observations
yi constitute the dataset (x,y) = {(xi, yi)}Ni=1.

Gaussian process regression Since the true objective function f is ex-
pensive to evaluate, BO seeks to approximate f by a surrogate model.
Gaussian process regression (GPR) can be used to build this surrogate
model as the mean of a Gaussian process (GP). In general, a GP is a proba-
bility distribution over functions [142]. Applied to BO, the GP provides a
prior probability distribution over possible objective functions

f(x) ∼ GP
(︁
µ(x), k(x,x′)

)︁
, (4.29)

where µ(x) is the mean function and k(x,x′) is the covariance function
of the GP, which is a kernel function. GPs provide a prior belief about
the space of possible objective functions that are consistent with already
observed data x. The prior distribution returns the mean µ(x) (which
is typically assumed to be zero) and the variance k(x,x′) of a normal
distribution over possible values of f at x. In other words, the true objective
function f is modelled by a GP prior with zero mean. A typical choice for
the covariance function is the squared exponential function

k(x,x′) = exp

(︃
− 1

2θ2
⃦⃦
x− x′⃦⃦2

)︃
, (4.30)

where θ is a GP-internal hyperparameter controlling the width of the
kernel. The squared exponential function describes how closely two points
in input space are correlated to each other and determines the smoothness
of sample functions drawn from the prior distribution.

The goal in GPR is to compute the GP posterior distribution from the
prior distribution. The posterior distribution is the surrogate model of the
objective function. This posterior is computed by applying the Bayes’ rule
and by combining prior belief (about the initial distribution of functions)
and evidence (provided by sampled data).

As new data points x∗ are acquired, the prior distribution is updated,
producing the posterior. The posterior distribution at the new point x∗, con-
ditional on previously sampled data (x,y) and on the GP hyperparameter
θ, is again a normal distribution

x∗|(x,y), θ ∼ N (µ(x∗), σ
2(x∗)), (4.31)

where

µ(x∗) = kTK−1y, (4.32)

σ2(x∗) = k(x∗,x∗)− kTK−1k. (4.33)
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The posterior distribution in Equation (4.31) is the surrogate model of
the objective function f . Hence, the surrogate model is defined by the pos-
terior mean µ(x∗) and the posterior variance σ2(x∗). The prediction of the
surrogate model for a new set of hyperparameters x∗ is given by evaluating
the posterior mean µ(x∗). The variance σ2(x∗) describes the uncertainity
of the model and indicates which regions of the hyperparameter space are
less known.

The optimal point x̂ predicted by the surrogate model and its correspond-
ing global minimum are given by

x̂ = argmin
x∗∈X

µ(x∗), µmin = µ(x̂) (4.34)

The convergence of the surrogate model can be monitored as µ(x̂)− f(x̂),
which describes the difference between the global minimum prediction of
the surrogate model and the true function at the predicted optimal point.

Acquisition function The acquisition function determines which point x∗
within the domain X to evaluate next on the objective function f , hence
guiding the search for the global minimum. The location of the next
acquisition x∗ is typically selected by maximizing the acquisition function
a:

x∗ = argmax
x∗∈X

a(x∗) (4.35)

The acquisitions a depend implicitly on the previously sampled data
(x,y) and on the GP-internal hyperparameter θ:

a(x∗) = a(x∗;x,y, θ). (4.36)

The corresponding observation is y∗. In the following iteration, (x∗, y∗) is
added to the dataset. The best observation from all acquisitions is denoted
as (xbest, ybest).

4.4.3 Comparison of Bayesian optimization and grid search for
KRR hyperparameter tuning

In machine learning, BO is widely used for the optimization of various
learning algorithms such as random forest, deep neural network, deep
forest or kernel methods [152–156]. However, the machine learning
algorithms are mostly applied to standard datasets from the UCI ma-
chine learning repository [157]. It is not yet common to apply BO to
optimize machine learning setups in materials science, where typically
high-dimensional hyperparameter spaces are encountered. The objective of
Publication II is to quantify the efficiency and accuracy of BO against grid
search for the optimization of up to 4 hyperparameters. From a more prac-
tical perspective, this work also intends to provide a guideline to machine
learning practitioners who work in materials science or related fields, in
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order to help them choose possible starting points for similar optimization
problems. For this aim, landscapes of the MAE are generated across the
hyperparameter phase space. Visualizing hyperparameter landscapes pro-
vides insight into how the prediction performance of the machine learning
model changes across a range of possible hyperparameter configurations.

Setup of the study In Publication II, the Bayesian Optimization Struc-
ture Search (BOSS) [158] tool is used to optimize the hyperparameters
of my KRR machine learning model for the prediction of HOMO energies.
The target property is the MAE of the KRR model, which BOSS seeks
to minimize. For this aim, BOSS employs BO based on GPR to generate
surrogate models of the target property. I first defined a range of hyperpa-
rameter values for the hyperparameter search domain, which is applied to
BO as input. BO then conducts a fully automated search to find the best
combination of hyperparameters. For each new acquisition, the molecular
descriptor (either CM or MBTR) is computed and KRR with 5-fold cross
validation is performed. The average MAE of the 5-fold cross validation is
returned to BO to refine the surrogate model and then the next acquisition
begins.

Three different datasets are employed, QM9, AA and OE62, while molec-
ular structures are represented by two different descriptors: the CM and
the MBTR. The KRR method itself requires the optimization of the two hy-
perparameters α and γ. The CM representation has no hyperparameters,
thus, when the CM is employed as molecular descriptor, the hyperparame-
ter search space is 2-dimensional. The MBTR on the other hand has many
hyperparameters, 14 in total. Through pre-testing it was found that only 2

of the 14 MBTR-internal hyperparameters have a noteworthy influence on
the KRR performance, namely the two broadening widths σ2 and σ3 (for
the definitions of these MBTR parameters please see Section 3.3). Thus,
the MBTR introduces 2 hyperparameters to the optimization problem. In
combination with the 2 KRR hyperparameters, the search space within
this setup is 4-dimensional. The objective function of the optimization
problem is the MAE on the test set, which is minimized by tuning the KRR
and MBTR hyperparameters.

In grid search, the natural logarithmic grid

{ei|i = [−10,−9, ..., 0]} (4.37)

is used as search space for the KRR hyperparameters α and γ. For the
MBTR hyperparameters σ2 and σ3, the logarithmic grid

{ei|i = [−6,−5, ..., 0]} (4.38)

is employed. In BO, the boundaries of these intervals are used as input
for the search domain. The acquisition function can choose any real number
between these bounds to evaluate on the objective function.
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Figure 4.7. Convergence in BO as a function of iterations for three different training
set sizes of QM9 data. In a) the CM descriptor and in b) the MBTR descriptor is used.
The convergence criterium ∆x̂ describes the difference between the currently lowest true
function value and the lowest true function value after the maximum number of iterations.
Adapted from Publication II.

BO computational methodology in Publication II During GPR, a surrogate
model of the MAE is computed as the posterior mean of a Gaussian process
(GP), based on sampled MAE data. The posterior mean fits the MAE data,
while the computed posterior variance points to regions in phase space that
are less well explored. Given the mean and the variance, the acquisition
function is computed. The global minimum of the acquisition function
indicates the combination of hyperparameters to be evaluated next on
the objective function. Once this point is evaluated, the resulting MAE is
added to the dataset and the cycle repeats. With each additional datapoint,
the MAE surrogate model is improved.

The choice of the acquisition function defines how exploration and ex-
ploitation of the surrogate model is balanced. I chose the exploratory
lower confidence bound (eLCB) acquisition function [142], which combines
data exploration (searching previously unvisited regions of phase space)
with exploitation (searching near known minima) to determine the global
minimum with as few iterations as possible.

BO convergence I determine the convergence in BO by monitoring the
global minimum location x̂ of optimal hyperparameters, as predicted by
the surrogate model. The objective function at this minimum location
f(x̂) is evaluated and the lowest value ever observed is kept track of. The
convergence is then computed as the difference between the currently low-
est observed true function value, fmin_current, and the lowest true function
value observed after the maximum number of iterations fmin_end:

∆f(x̂) = fmin_current − fmin_end. (4.39)

The maximum number of iterations in the 2D search case (CM) is 100
iterations and 300 iterations for the 4D search case (MBTR). Within this
thesis, the convergence criteria for BO is defined as ∆f(x̂))≤ 10−2. Figure
4.7 shows that f(x̂) quickly decreases with progressing iterations. In the
2D optimization case, the surrogate model is already converged in fewer
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Figure 4.8. MAE landscapes from 4D hyperparameter optimization with BO for three
different molecular datasets QM9, AA and OE62, using the MBTR descriptor. In a), b) and
c), the predicted MAE µ(x) is shown as a function of hyperparameters α and γ, evaluated
on a logarithmic grid. In d), e) and f), a cut of the MAE landscape through the logarithmic
(σ2, σ3) plane is provided. From each dataset, a subset of 2k molecules was used for training.
Optimal hyperparameters are shown as red stars. Reproduced from Publication II.

than 20 iterations for all training set sizes. In the 4D search case, the
surrogate model reaches convergence before iteration 50 for the training set
sizes 1k and 2k, while it almost takes 100 iterations to reach convergence
for a training set size of 4k. In all cases, global minima are reached in
fewer than 100 iterations.

In the following, I will first analyze the MAE landscapes produced by the
BO surrogate model µ(x). Then, I will compare the BO performance with
minima found by grid search.

KRR hyperparameters α and γ Figure 4.8 shows BO landscapes resulting
from the 4D-optimization problem when the MBTR descriptor is employed.
Results are shown for the three datasets QM9, AA and OE62. Two dimen-
sional cross-sections are extracted at the global minimum x̂ (marked as a
red star). The upper panels a), b) and c) in Figure 4.8 illustrate logarithmic
(α, γ) cross-sections for QM9, AA and OE62, while σ2, σ3 are held constant
at their optimal values. While varying in small details, the qualitative
behaviour of the MAE as a function of α and γ is consistent across all
three datasets. For QM9, the optimal parameter region can be found on a
diagonal and on a horizontal line at the bottom of the map. In the diagonal
part, the hyperparameters are mutually dependent, that is, the choice of α
and γ equally contributes to the KRR performance. In the one dimensional
part at the bottom of the map, only the choice of γ is important, while α can
take any value. For AA, the triangle in the landscape is filled, revealing
a wide range of optimal hyperparameters. For OE, there is no horizon-
tal line at the bottom. For all three datasets, the location x̂ of optimal

54



Machine learning approach

hyperparameters lies within the same region.
While Figure 4.8 shows results of the 4D-search when the MBTR is

used as molecular descriptor, a qualitatively equivalent MAE landscape
is observed when employing the CM (see Figure 4 in Publication II). In
this case, the search space is only 2-dimensional since only the two KRR
hyperparameters need to be optimized. The overall MAE values are higher
than in the 4D case with the MBTR descriptor, since the CM is unable to
capture all molecular information necessary for learning. The performance
of CM vs. MBTR will be further discussed in Section 5.1.

MBTR hyperparameters σ2 and σ3 In the lower panels d), e) and f) in
Figure 4.8, the 4D landscapes are cut through the logarithmic (σ2, σ3)
plane, while α and γ values are held constant at their optimal values. All
three datasets feature a cross-like shape of low MAE values. For QM9
and OE62, the optimal MAE values are constrained to a relatively narrow
region that roughly lies on the crossover point. In contrast to the KRR
hyperparameters, varying the σ2 and σ3 values throughout the map does
not significantly influence the MAE. Thus, all combinations of σ2 and σ3
are reasonably good choices for learning. For AA however, no cross-like
shape is observed. The choice of σ2 and σ3 significantly affects the MAE
for AA.

For both logarithmic hyperparameter planes, (α, γ) and (σ2, σ3), the
optimal MAE values vary considerably across the three datasets. The
MAE values are lowest for the QM9 dataset of small organic molecules,
which is easiest to learn among all three datasets. Higher MAEs are
observed for the AA and OE62 datasets, which are more difficult to learn
due to the more complex molecular structures. A more comprehensive
discussion on the predictive power of KRR in dependence on the complexity
of the underlying dataset will be given in Chapter 5.

We have seen so far that BO provides easily readable MAE landscapes
that enable a deeper analysis of my KRR model and facilitate the choice of
possible starting points for KRR model training. Next, the performance of
BO in comparison to grid search is discussed, which is the central aspect of
Publication I. First, MAE landscapes of BO and grid search are compared
to ensure that BO is able to find the same or lower MAE as grid search.
Then, the efficiency of BO with respect to grid search is discussed.

BO vs. grid search Figure 4.9 shows a comparison of the MAE landscapes
produced by grid search and BO for the QM9 dataset. The grid search
landscape is made up of discrete points since the search was performed on
a grid of 10× 10 points for α and γ and of 6× 6 points for σ2 and σ3. The
BO search on the other hand is not constrained to a grid but interpolates
the MAE between individual acquisitions. BO and grid search produce
qualitatively and quantitatively consistent MAE landscapes and optimal
solutions x̂, f(x̂) and µ(x̂). Moreover, the optimal hyperparameter solution
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Figure 4.9. MAE landscapes for the 4D optimization problem with the MBTR descriptor.
Panels a) and b) show 2D slices through the logarithmic (α, γ) plane, while panels c) and
d) show 2D slices through the logarithmic (σ2, σ3) plane. In a) and c), the MAE from grid
search and in b) and d), the MAE from the BO surrogate model µ(x) are presented. Both
grid search and BO were applied to a subset of 2k molecules taken from the QM9 dataset.
Optimal hyperparameters are shown as red stars. Reproduced from Publication II.

x̂ found by BO and grid search are located in the same hyperparameter
region of low log(α) values and high log(γ) values. Thus, BO is capable
of reproducing grid search solutions in terms of accuracy. But can it find
the optimal solution more efficiently in terms of time and computational
resources than grid search?

To answer this question, we take a look at Figure 4.10, which shows the
total computing time for grid search and BO as a function of training set
size. The total time mainly depends on two quantities: The number of
times that the descriptor has to be built (ndesc) and the number of times
that cross-validated KRR needs to be performed (nKRR) in order to find
the optimal solution. While ndesc scales linearly with training set size, the
crucial quantity is nKRR, which scales cubically with training set size due
to the inversion of the kernel matrix that is performed during KRR model
training. Panel a) shows the total time for the 2D search case, when the
CM is used as molecular descriptor. Grid search clearly outperforms BO,
especially for large training set sizes. The reason for this is that in BO,
the molecular descriptor has to be built and cross-validated KRR has to
be performed every single time the objective function is evaluated (see
Algorithm 3 in Publication I). That is, the cost of the BO approach depends
on the number of iterations neccessary to reach convergence, which is in
this case 100. Contrary, in grid search, the effort depends on the type
of descriptor and on the size of the hyperparameter grid. When the CM
is used in grid search, the descriptor needs to be built only once at the
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Figure 4.10. Total times for hyperparameter optimization by BO and grid search. In a)
the CM is used (2D search) and in b) the MBTR is used (4D search). Timings are shown for
optimization on the QM9 dataset. Adapted from Publication II.

beginning of the search routine (see Algorithm 1 in Publication I), since
the CM does not have any hyperparameters. Cross-validated KRR is then
performed 121 times, for each combination of α and γ.

However, in the 4D search case, when the MBTR is used as molecular
descriptor, BO is significantly faster than grid search, as shown in panel
b). Now, grid search needs to compute the MBTR for each combination of
σ2 and σ3, i.e. 36 times and perform cross-validated KRR for each possible
combination of α, γ, σ2 and σ3, i.e. 4, 356 times (see Algorithm 2 in Publica-
tion I). This is so costly that already for a training set size of 8k, it is not
feasible to perform a 4D-grid search. BO, in contrast, requires only 300
iterations to reach convergence and clearly outperforms grid search.

In summary, Publication II shows that for hyperparameter optimization
in machine learning, BO is many times more efficient than grid search
when the search space is larger than two dimensions, while delivering the
same, or superior accuracy. BO is not limited to a grid, but can instead pick
any continuous value to evaluate on the objective function. Moreover, BO
provides an efficient way of generating easily readable score landscapes
that enable a deeper analysis of machine learning performance.

4.5 Summary

In this chapter, I gave an introduction to machine learning and can now
answer the third research question

RQ3 Which machine learning methods should I choose and how can I
determine the hyperparameters of my models?

I choose three methods for the machine learning framework within this
thesis: Kernel ridge regression (KRR), artificial neural networks (ANNs)
and Bayesian optimization (BO).
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KRR is able to map multi-dimensional inputs to scalar outputs and
will be used to predict the molecular HOMO energy, given molecular
input structures. ANNs are more flexible and are able to map from multi-
dimensional inputs to multi-dimensional outputs. I will use them to predict
photoemission spectra consisting of multiple data points.

Before KRR or ANN models are able to make reliable predictions for
orbital energies or photoemission spectra, they need to be fine-tuned by
optimizing problem-specific hyperparameters of the models. These are
parameters that the machine learning model can not learn by itself during
training, and thus they need to be specified separately, which is often a
burden. Optimization algorithms can facilitate and automate the selection
process, but commonly used methods such as brute-force grid search are
expensive in terms of time and resources. Tools based on BO find minima
in fewer evaluations, since they are able to pick promising hyperparame-
ters in an informed manner based on past results. For the problem setup
of predicting HOMO energies with KRR, I employed the Bayesian opti-
mization tool BOSS to tune two KRR hyperparameters and two MBTR
hyperparameters. All four hyperparameters are optimized within reason-
able effort, while grid search can efficiently tune only two hyperparameters
simultaneously. These findings are published in Publication II.

Now that the hyperparameters are tuned for my KRR model, it can be
applied for large-scale predictions of HOMO energies. ANNs include even
more hyperparameters than KRR due to the large freedom in the design of
neural network architectures. In Publication IV, BO is also used to optimize
ANN hyperparameters when predicting photoemission spectra. Results of
KRR and ANN predictions are presented in the following chapter.
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With the first four steps of the machine learning workflow completed – the
aquisition of data, the numerical representation of these data, the selection
of suitable machine learning methods and the optimization of hyperpa-
rameters – it is now time to put the whole machinery into motion. This
chapter elaborates on the application of machine learning for the predic-
tion of photoemission spectra and molecular orbital energies. Results from
Publications III and IV are presented. In Publication III, a KRR model is
developed to predict molecular orbital energies and in Publication IV, three
types of neural networks are applied for the prediction of photoemission
spectra. After presenting and discussing the results from these studies, I
will showcase the applicability of these developed KRR and neural network
models to explore chemical space, addressing the final research question of
the thesis,

RQ4 How can the chosen machine learning methods be applied in practice
to predict molecular orbital energies and photoemission spectra and
to explore chemical space?

5.1 Prediction of molecular orbital energies with kernel ridge
regression

In Publication III, the energy of the highest occupied molecular orbital
(HOMO) is predicted with KRR for three different molecular datasets,
using the CM and the MBTR descriptors. Orbital energies of organic
molecules play an important role in many technological applications, such
as OLEDs, and have thus become the target of many machine learning
studies in materials science [58,62,105,108,159–168]. All of these studies
utilize either the QM7/QM7b collection of small organic molecules, or the
expanded version QM9. Both are subsets of the GDB database enumer-
ating billions of combinatorial possible molecules of small size and with
similar structures. While machine learning models trained on QM7 and
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QM9 are reported to perform well when predicting properties for similar
molecules, it is not obvious how these methods would perform when trained
on other, more diverse molecular datasets. With regard to optoelectronic
applications, I am interested in predicting HOMO energies for larger and
more diverse organic molecules, such as the molecules covered in the OE62
dataset. As described in Section 3.2, OE62 is a diverse collection of 62k
organic molecules with complex aromatic backbones and diverse func-
tional groups, which differ remarkably from the QM9 molecules. Another,
more diverse dataset than QM9 is the AA dataset of 44k conformers of
proteinogenic amino acids.

In Publication III, these two less known datasets – OE62 and AA – are
used for KRR training in order to predict HOMO energies. The objective
in Publication III is to demonstrate learning performance of KRR on these
more complex and diverse datasets that contain more realistic structures
than offered in QM9. In addition, I also include the standard QM9 bench-
mark dataset of 134k small organic molecules into this study to enable the
comparison of KRR performance across these three datasets of different
chemical diversity. The inclusion of QM9 furthermore facilitates the com-
parison with findings from other machine learning studies. For all three
datasets, pre-calculated reference HOMO energies with DFT are used for
model training and testing. The desired accuracy in terms of MAE for
my HOMO energy predictions is 0.1 eV or lower. In experiments, HOMO
energies are commonly determined with a resolution of several tenth of
eV, while errors of state-of-the-art computational spectroscopy methods
typically range between 0.1 and 0.3 eV.

In addition to three different datasets, I also compare KRR performance
based on two molecular descriptors. The first one is the widely-used CM,
which is a simple and easy to compute representation of molecular struc-
tures, usually yielding fast predictions at low cost. The second descriptor
is the constant-size MBTR representation based on interatomic many-
body terms including bonding and angular information. While previous
work already found that the CM descriptor can easily be surpassed in
terms of machine learning performance by more sophisticated represen-
tations [105, 159, 165], my aim is to specifically quantify the accuracy
achieved with the CM in comparison to the costlier MBTR.

In the following, I first describe the learning curves resulting from KRR
training on the different datasets. Then, I quantify the accuracy of my
HOMO energy predictions with respect to the desired accuracy of 0.1 eV.
After that, I compare the performance between MBTR and CM. Finally, I
discuss KRR peformance with respect to chemical diversity of the three
different datasets.

Learning curves Figure 5.1 shows the MAE on the test set as a function
of training set size – the learning curves – for the three different datasets
QM9, AA and OE62, using both the CM and MBTR descriptors. For each
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Figure 5.1. MAE as a function of training set size ("learning curves") for molecular orbital
energy predictions with KRR trained on three different datatets QM9, AA and OE62.
The MAE predictions are reported on 10k out-of-sample molecules from the test set of
the respective dataset. Two different molecular representations CM and MBTR are used.
Reproduced from Publication III.

dataset, a KRR model is trained on differently sized training sets (1k, 2k,
4k, 8k, 16k and 32k). For each training size, a 5-fold cross-validation is
performed to determine the KRR hyperparameters, whose optimal values
are in accordance with results from Publication I. For simplicity, MBTR
hyperparameters are fixed to their optimal values found in Publication I
and therefore are not part of the cross-validation routine within this work.
After model training, HOMO energies are predicted for 10k molecules from
the test set of the respective dataset, which were not used for training.
These out-of-sample predictions on the test set are performed for each
training set size, yielding the MAE between predicted and DFT-computed
reference HOMO energies. This procedure of cross-validated training and
out-of-sample testing is repeated 10 times for each training set size and
the average MAE over these 10 runs is reported in the learning curves.

As expected, the MAE decreases with increasing training set size for all
datasets. QM9 exhibits the lowest MAE, followed by AA for slightly larger
training set sizes. Contrary, the MAEs for OE62 are roughly twice as high
as those for QM9, throughout all training set sizes. The learning curves of
AA have the steepest slope ("fast learning"), while the curves for OE62 are
almost flat.

Quantifying the accuracy of HOMO energy predictions The highest accu-
racy for HOMO energy predictions is achieved for the QM9 dataset. For
a training set size of 32k molecules, an MAE of 0.086 eV is obtained with
the MBTR descriptor and an MAE of 0.151 eV is obtained with the CM
descriptor. Thus, my objective of accomplishing a prediction error below
0.1 eV is fulfilled for the QM9 dataset when using the MBTR descriptor.
This is also true for the AA dataset, where a prediction error of 0.100 eV is
obtained (training size of 32k, MBTR descriptor). However, for the OE62
dataset, the prediction error amounts to 0.173 eV for the largest train-
ing set size of 32k in combination with the MBTR descriptor. Thus, my
goal of MAEs below 0.1 eV is not yet achieved for OE62. Larger training
set sizes might be neccessary to improve the KRR performance on this
more complex dataset. Future work might also consider the use of more
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sophisticated methods, such as MBTR descriptors that include torsional
angle information of the molecule (four-body terms), or artificial neural
networks.

The results achieved on the QM9 dataset allow a comparison with previ-
ous work. Recently, Faber et al. [105] reported HOMO energy predictions
with an out-of-sample MAE of 0.095 eV, using a molecular representation
based on interatomic many-body expansions including bonding, angular
and higher-order terms, [165], which is very similar to the here applied
MBTR. The MAE reported in [105] was achieved with a KRR model trained
on 118k molecules from the QM9 dataset. For the CM descriptor, an MAE
of 0.133 eV was reported in the same study. My results with the QM9-
trained KRR model are in excellent agreement with this work, while the
training set sizes employed in my study are notably smaller.

CM vs. MBTR Next, I compare the performance of the two molecular
descriptors. It can be seen in Figure 5.1 that for QM9 and OE62, the
learning curves associated with the MBTR descriptor exhibit significantly
lower MAEs than those associated with the CM. This is true throughout
all training set sizes. Hence, the MBTR clearly outperforms the CM for
these two datasets. This is in line with results from Publication II and
can be explained by the high amount of information on atom types, their
bond lenghts and angles encoded in the MBTR. Contrary, for AA the
MBTR and CM learning curves lie within the same statistical errors. The
complexity in AA is dominated by the torsional angles, however, the MBTR
employed in Publication III lacks torsional angle information (four-body
terms). Meanwhile, the redundant chemical information of similar bonding
patterns in AA benefits the performance of the CM. Also for the other two
datasets, the qualitative performance of the CM is acceptable, considering
that CM-training is performed at a fraction of the cost necessary for MBTR-
based training (CM-based training with cross-validation takes about 2
hours for a training set size of 2k, vs. 12 hours for MBTR-based training).
The CM representation is simple to compute, provides benchmark results
that can be compared to related studies and constitutes a convenient tool
to preliminarily study large unknown datasets.

Chemical diversity of the datasets Based on a first diversity analysis of
the datasets in Chapter 3, I will now further study the chemical diversity
governing the three datasets. Figure 5.2 illustrates the dataset diversity
in input and output space. Panel a) represents the diversity in input
space and shows a histogram of pairwise Euclidean distances between 2k
randomly chosen molecules within each dataset. The molecules are rep-
resented by their MBTRs. Euclidean distances between molecules within
QM9 and AA are centered around small values, indicating high molecular
similarity within these two datasets. Contrary, the OE62 distances are
distributed evenly over a large and wide range of values, indicating a high
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Figure 5.2. Illustration of dataset diversity within QM9, AA and OE62. a) Dataset
diversity in input space, as seen by the MBTR descriptor. Shown is the distribution of
pairwise Euclidean distances within each dataset between 2k randomly chosen molecules.
The molecules are represented by their MBTRs. Euclidean distances within QM9 an AA are
confined to small values, while distances within OE62 are distributed evenly over a larger
and wider range. b) Dataset diversity in target space. Shown are distributions of DFT-
computed reference HOMO energies. Almost all energies of QM9 and OE62 are centered
around -6 eV, while the majority of HOMO energies in AA are distributed over a wider
range of values. Example molecules from AA are shown together with their energy location.
HOMO energies with large negative values correspond to amino acids or dipeptides with
one of six added metal cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+ or Hg2+. HOMO energies
centered around -6 eV represent structures with no added cation. Reproduced from
Publication III.

degree of dissimilarity between the molecules. This is consistent with
the findings in Figure 3.3 in Section 3, where the diversity of molecular
input space is visualized by the t-SNE tool, which is also based on pairwise
similarities between molecules. Moreover, the distribution of Euclidean
distances in Figure 5.2 resembles the distributions of molecular size and
element diversity shown in Figure 3.2. Hence, there here employed analy-
sis of the input space confirms that OE62 is the most diverse of all three
datasets. OE62 consists of large and structurally diverse molecules, offer-
ing a variety of different backbones and functional groups. QM9 and AA
both contain similar structures of smaller-sized molecules.

Panel b) of Figure 5.2 reveals the dataset diversity in target space by
showing distributions of the DFT pre-computed HOMO energies. The
HOMO energies in QM9 and OE62 are centered around the same value
at -6 eV, while HOMO energies in AA are widely distributed over negative
values. These energies correspond to amino acids or dipeptides with one
of six metal cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+ or Hg2+ added to the
bare structure. The metal ions are responsible for the shift towards lower
energies. Only a fraction of the HOMO energies in AA is located around
-6 eV. These correspond to bare structures without cations.

Dependence of KRR performance on dataset diversity With information
about the diversity of the three different datasets, I will now elaborate
on the KRR performance previously seen in Figure 5.1. The chemical
diversity of the datasets is reflected in the KRR learning curves. The MAE
for QM9 is low, even for small training set sizes. Given the high similarity
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of the QM9 input and output space, KRR benefits from mapping similar
molecular structures to similar HOMO energies.

The AA dataset exhibits high MAEs for small training set sizes, which
quickly decrease with increasing training set size. This can be explained
by the fact that AA contains many similar amino acid sidechains, but with
different attached metal cations. For small training set sizes the prediction
error is high because there are not enough similar structures per cation
available for learning. With increasing training set size, more similar
structures with the same cation are presented to the learning algorithm
and the error decreases quickly.

The prediction errors for the OE62 dataset are high for all training
set sizes. OE62 exhibits high similarity in target space, but the input
structures are widely spread throughout chemical space. It is therefore
challenging for KRR to map from the diverse chemical space of input struc-
tures to its confined target space of HOMO energies. Thus, the learning is
slow. For a training set size of 32k the MAE on the test set is still as high
as 0.173 eV, which is above the earlier mentioned desired accuracy of 0.1
eV for orbital energy predictions.

In summary, Publication III demonstrates that the KRR prediction error
crucially depends on the diversity of the dataset it was trained on. QM9
has become the standard benchmark for machine learning predictions
of various molecular properties and yields models with very low predic-
tion errors. However, this dataset exhibits low chemical diversity. When
developing KRR models on other datasets of real molecules with more
complex structures, one should not expect a similar good model perfor-
mance. Recently, another study [168] came to a similar conclusion. In
particular, the performance of QM9-trained machine learning models were
assessed on a subset taken from the more diverse PubChem database.
Then, PubChem-trained models were used to predict properties from QM9.
It was found that the latter case yields considerably better predictions
accuracies. For future work, it would thus be interesting to examine the
generalization ability of my OE62-trained KRR models. That is, one could
use my OE62-trained model to predict HOMO energies for QM9 and AA,
and vice versa. Since OE62 is the most diverse dataset among them, I
expect that my OE62-trained KRR model will be able to predict properties
of QM9 and AA molecules with satisfying accuracy.

5.2 Prediction of photoemission spectra with deep neural networks

In Publication IV, I participated in predicting photoemission spectra with
deep neural networks. In the past years, several studies in materials
science have addressed the prediction of spectra or spectral properties with

64



Machine learning application

machine learning. Examples include the prediction of spectral features,
such as peak intensities of MS2 spectra with ANNs [169] or the prediction
of absorption spectra based on images of materials [170] with deep neural
networks. Recently, a study was published that employs surface-enhanced
Raman scattering (SERS) spectra of DNA molecules as input for a deep
neural network in order to identify specific DNA targets [171]. Other stud-
ies applied bundles of SERS spectra to a CNN model in order to quantify
the concentration of single molecules [172,173]. However, to the best of my
knowledge, the mapping of molecular structures to photoemission spectra
has not yet been attempted.

In Publication IV, three types of neural networks are compared for the
prediction of DFT-based photoemission spectra: A simple multilayer per-
ceptron (MLP) network, a convolutional neural network (CNN) and a deep
tensor neural network (DTNN). The architectures of these networks are
described in Section 4.3. The task of each network is to map molecular
structures – using the QM7 and QM9 datasets – to their photoemission
spectra. While the MLP and the CNN use the CM descriptor as input, the
DTNN learns its own internal representation based on nuclear charges
and atomic interactions, which is similar to the MBTR. Thus, the DTNN
only requires Cartesian coordinates of the atomic positions as input. To nu-
merically represent photoemission spectra, the two approaches introduced
in Section 2.2.3 are employed. The first type of spectra representation
constitutes a discrete spectrum of 16 KS energies. The task of the network
is to predict these 16 energies simultaneously. The second representation
is obtained by broadening these 16 KS energies into a continuous curve
made up of 300 discretized points on the energy range [-40, 0] eV. The task
of the neural network is to predict these 300 points simultaneously.

Prediction of discrete energy states For the prediction of 16 discrete ener-
gies, we tested all three network types. However, the MLP is only applied
to the QM7 dataset of 6k molecules, since training the fully-connected
MLP on the QM9 dataset of 134k molecules was computationally too de-
manding. Figure 5.3 shows the resulting root mean squared errors (RMSE)
of the three networks for each energy state. For QM9, the DTNN performs
uniformly well for all energy states, with an average RMSE of 0.186 eV
over all 16 states. The CNN exhibits low RMEs for energy states in the
middle region, while high and low states exhibit larger errors. For the QM7
dataset, the DTNN performs worse than for QM9, especially for energy
levels with high and low state numbers. The same dependence of model
performance on the state location is true for the other two networks. This
trend can be explained by the fact that for small molecules, the deeper
states (11 to 16) correspond to electronic core states, which have a signifi-
cantly higher absolute energy value than valence states. Due to the small
size of QM7, not enough reference data are available to learn these core
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Figure 5.3. Performance of the DTNN, CNN and MLP for the prediction of 16 discrete
molecular energy states. Shown are the root mean square error (RMSE) for each of the 16
states and for the two datasets QM9 and QM7. The energy states are labeled in descending
order beginning from the HOMO (state number 0). Adapted from Publication IV.

states properly. The DTNN performs notably better for all QM7-states
than the CNN and MLP. Another finding worth noting is that all neural
networks perform better on the larger QM9 dataset than on QM7. This
confirms our previous findings from Publication III, where the prediction
error decreases when more training data is available. However, the DTNN
trained on QM7 almost outperforms the CNN trained on QM9, proving
that a carefully designed network architecture can learn from very little
data.

Spectra prediction For the prediction of continuous spectra, only the
CNN and the DTNN were employed. The MLP was left out, because
its architecture would require 300 output neurons, which is too large for
training on QM7 or QM9. For the CNN and the DTNN, 90% of the QM7
and QM9 data are used for training and the rest for testing. Figure 5.4
shows the spectra predicted by the CNN and DTNN on a test set of 13k
QM9 molecules. The left panels show the relative spectral error (RSE)
between the predicted and the reference spectrum. The RSE distribution is
narrow, with an average RSE of 4% for the CNN and 3% for the DTNN. For
both networks, three predicted spectra (orange) are shown with respect to
the reference spectrum (green). These spectra represent the best, average
and worst predictions made by the CNN and DTNN. The best predictions
are able to capture all features of the reference spectrum. The average
prediction of the CNN misses spectral features, but captures the average
shape of the spectrum well, while the worst CNN prediction does not
resemble the reference spectrum well. In contrast, the DTNN is able to
capture most spectral features in the average and even worst prediction,
while averaging through some features.

The DTNN outperforms the CNN in the prediction of 16 discrete energy
states as well as in the prediction of continuous photoemission spectra.
The reason for this is that the DTNN builds its own internal molecular
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Figure 5.4. Comparison of CNN and DTNN performance on spectra prediction. The first
column shows RSE histograms for 13k test molecules of QM9. The three following columns
show spectra for the best, an average and the worst predictions and the corresponding
DFT-based reference spectrum. The colored circles mark positions of selected molecules in
the RSE histogram. Reproduced from Publication IV.

representation, which is similar to the sophisticated MBTR descriptor.
Contrary, the CNN uses the CM descriptor as input. We saw in the previous
Section 5.1 that for machine learning with KRR, the MBTR typically leads
to a better prediction performance than the CM. I expect the same to be
true for the CNN. Therefore, for future work, it would be interesting to
employ the CNN in combination with the MBTR descriptor and to compare
its performance again to the DTNN.

5.3 KRR and ANN predictions for materials discovery

The discovery of new materials would be greatly facilitated if one could
scan through a large list of possible candidate compounds and filter this
list based on pre-computed properties that give information about the
usability of the material for a certain application. In Publications III and
IV, such lists containing spectral properties and energies were generated
by applying the KRR and DTNN models to a dataset of 10k diastereomers
(in the following referred to as ’10k dataset’), which is introduced in Section
3.1. Made up of 9, 868 isomers of 6, 095 parent C7H10O2 isomers from the
QM9, the 10k dataset is a special dataset of same-sized molecules and
highly similar structures. Hence, this dataset is used only to illustrate the
principle of how the developed methodology could be used to gain instant
energy predictions for a collection of new molecules with unknown spectra,
but not to discover any new or useful compounds.

The 10k dataset contains only molecular structures, but no pre-computed
orbital energies or spectra. Computing the orbital energies with DFT
would require significant time and effort. In Publication III, I therefore use
my KRR model – trained on 32k QM9 molecules with the MBTR descriptor
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Figure 5.5. Distribution of predicted HOMO energies for 10k diastereomers, produced by
the QM9-trained KRR model. MBTR descriptors of the 10k diastereomers were used as
input for the KRR model. Molecules falling within a certain energy range can easily be
detected and further studied for potential applications, e.g. organic electronic applications.
Reproduced from Publication III.

– to predict the HOMO energies of all molecules in the 10k dataset.
In this case, it is a good choice to use my QM9-trained KRR model because

the target molecules in the 10k dataset – while not part of QM9 – are highly
similar to their 6, 095 parent isomers from QM9. Hence, my QM9-trained
KRR model will likely deliver reliable HOMO energy predictions for the
10k isomers, especially since it yields very low MAEs on the QM9 test set.
To predict the HOMO energies for the 10k dataset, all that needs to be
done is compute the input MBTRs for the 10k molecules and use them as
input for my KRR model.

As a result, we instantly obtain a spread of predicted HOMO energies, as
shown in Figure 5.5. The distribution of HOMO energies gives an instant
overview over the energetic characteristics of the new 10k dataset. By
scanning the distribution, one can quickly identify potentially interesting
molecules based on a pre-defined range of energy values. These molecules
could subsequently be further studied with more accurate computational
or experimental methods to better assess their applicability for a certain
desired application. This shows that my KRR model can produce fast
and cheap energy predictions serving as a preliminary scan to discover
promising structures within a certain energy range.

In a similar fashion, the DTNN from Publication IV trained on 120k
QM9-molecules is employed to produce continuous photoemission spectra
for all 10k diastereomers. Since the DTNN builds its own molecular
representation, only the x, y, z-molecular structures are needed as input,
which are already available in the dataset. Instant spectra predictions are
obtained at no further computational cost. Figure 5.6a) shows a scan of
spectral weights for all 10k molecules. The spectral weights indicate at
which energy location the peaks of a predicted molecular spectrum occur.
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Figure 5.6. Scan of predicted spectra for the dataset of 10k diastereomers, produced by the
DTNN. XYZ structures were used as input for the DTNN. Panel a) shows the distribution of
spectral intensities for the 10k molecules. The four molecules with spectral weight around
-20 eV are outliers. Panel b) shows six molecules that have the highest spectral intensity.
Panel c) depicts the average predicted spectrum of all 10k molecules (red line). The grey
lines represent the deviations from this average spectrum. Reproduced from Publication
IV.

For the 10k dataset, spectral weights are uniformly distributed between
-18 and -2 eV. Individual molecules can be easily detected, for example, the
four outlier molecules with lowest spectral weights, whose peaks in the
predicted spectrum lie below -18 eV, or the six molecules shown in panel b)
with highest spectral weight values. Numerous promising structures, e.g.
molecules with peaks in a particular region of its spectrum, can be further
studied to determine their functional properties for future applications.
The average predicted spectrum of all molecules in the dataset is shown in
panel c). This is the typical photoemission spectrum to expect for molecules
of this dataset.

While the size of the 10k dataset is by far not large and diverse enough
to explore chemical space, one can easily transfer this idea to larger and
more diverse datasets that contain more interesting molecules. My KRR
model trained on the OE62 dataset would potentially be able to produce
insightful energy scans for large collections of organic molecules that might
be of interest for optoelectronic devices. However, the current prediction
error of my OE62-trained KRR model is too high to apply it to new datasets.
Alternatively, the DTNN might be able to achieve lower prediction errors
on OE62. Hence, future work may focus on improving the accuracy of
my OE62-trained KRR model, or on training the DTNN or other types of
deep neural networks on OE62. To further increase the accuracy of future
machine learning models, the subset of 5k molecules from OE62, whose or-
bital energies were computed with the GW method, might prove especially
valuable. While KS eigenvalues from DFT computations were used for
simplicity so far, the KRR and ANN methods presented in this dissertation
are in principle transferable to datasets of better computational accuracy.

However, due to the high computational cost of GW , there will always
be more data available from lower fidelity methods such as DFT, which
can produce large datasets of KS eigenvalues at manageable cost. Future
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work might consider ∆-learning techniques that are able to utilize data
computed at different fidelity levels, by learning the difference between
these data [59,64,70].

5.4 Summary

In this chapter, results of Publications III and IV were presented, providing
an answer to the final research question in this thesis,

RQ4 How can the chosen machine learning methods be applied in practice
to predict molecular orbital energies and photoemission spectra and
to explore chemical space?

The success of machine learning for molecular spectra and energy pre-
dictions is an interplay between many factors: One needs to choose a
suitable molecular descriptor, acquire large, diverse and consistent data,
employ a machine learning method that fits the problem and tune the
model hyperparameters.

Publication III, which applies KRR to three molecular datasets of differ-
ent chemical composition using two types of molecular descriptors, empha-
sizes the interdependence of different factors in machine learning. The
predictive performance of KRR not only depends on the training set size
and molecular representation, but also on the chemical diversity within the
dataset. Fast decreasing learning curves and low MAEs are observed for
the standard QM9 dataset of small organic molecules and simple bonding
patterns. This is also true for the AA dataset which comprises a limited
collection of amino acids and dipeptides. OE62, on the contrary, is more
difficult to learn. This dataset consists of comparably large molecules
with complex electronic structures and rare functional groups. As a result,
nearly flat learning curves and high MAEs are observed. Publication IV
employs three types of neural networks for photoemission spectra predic-
tion. It is shown that, besides the training set size, the type of neural
network critically determines the predictive accuracy. The DTNN achieves
an accuracy of 97% on the QM9 dataset and is able to capture most fea-
tures of individual spectra, while the CNN typically misses certain spectral
characteristics, such as peaks.

Once trained, both the KRR and the DTNN models have the potential
to explore chemical space and facilitate the discovery of new materials.
Within the blink of an eye and at no further computational cost, predictions
can be made for large collections of new molecules for which spectral
information is not yet available.
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This chapter summarizes my research objectives and achieved results. An
outlook to future work concludes this dissertation.

6.1 Summary

The objective of this dissertation was the implementation of machine learn-
ing models to advance the discovery of new materials and to facilitate the
exploration of chemical space. The desired models learn to map molecu-
lar structures to their corresponding photoemission spectra and orbital
energies.

The first chapter of the thesis motivated the importance of photoemission
spectra and frontier orbital energies. Spectroscopy is an important concept
in the natural sciences and one of the primary techniques to characterize
materials. Photoemission spectra and frontier orbital energies play an
important role in the discovery and development of materials for opto-
electronic applications, such as solar cells or OLEDs, which are made of
organic molecules or polymers. Experimental measurements of photoe-
mission spectra in synchrotron facilities are laborous and time-consuming.
The same is true for state-of-the-art quantum-mechanical calculations with
GW or density functional theory (DFT). While constituting indispensable
parts of scientific research, experimental and computational spectroscopy
are not (yet) suitable to explore chemical space on a large scale. Due to
the unmanageable size of the chemical compound space, it is impossible to
explore all structures case by case.

The key idea of this thesis was to exploit redundancy in DFT reference
calculations by using machine learning. DFT calculations performed for
a series of related molecules often contain redundant information. This
redundancy can be utilized by performing only a limited number of ex-
pensive reference DFT computations and interpolating between them to
obtain approximate results for the remaining molecules. This approach of
interpolating between given data and inferring estimated solutions for the
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rest is what machine learning is based on.
Motivated by this idea, I followed a 5-step machine learning workflow:

(i) acquiring reference data, (ii) representing them so that the machine
has all neccessary information about the molecule, (iii) choosing a suitable
machine learning method, (iv) optimizing the model hyperparameters and
finally (v) train the model on the aquired reference data to preditct spectra
and energies. For each step I formulated a research question, which I
answered throughout the dissertation.

The first step – aquiring and curating reference data – was one of the
most time-consuming steps of the entire workflow. I first reviewed existing
datasets in the materials science field and then defined criteria that a
dataset should fulfill to be of use for my work. The three chosen datasets –
QM9, QM7 and AA – all include molecular structures in form of Cartesian
coordinates of atomic positions, but not all provide molecular spectra or
orbital energies. I therefore produced my own reference data by optimizing
molecular structures and computing orbital energies with DFT, using the
same method and settings for all datasets to ensure consistency. While DFT
is not able to correctly describe excited states, I used the KS eigenvalues
from DFT to approximate molecular orbital energies. For large datasets
of tens of thousands of molecules, GW would be too expensive. Within
Publication I, I generated a new diverse spectroscopy dataset, OE62, that
contains 62k organic molecules including orbital energy calculations with
DFT, as well as GW results of higher numerical accuracy for a subset of
5k molecules. This 5k subset may be used in future work to refine the
methodology presented in this thesis.

The second step was to represent the spectra and molecules in such a
way that the machine is able to relate molecular inputs to spectral outputs.
In this thesis, two descriptors of the molecular structure were used, i.e.
the simple and cheap Coulomb matrix (CM), encoding atom types and
positions, and the more sophisticated many-body tensor representation
(MBTR), encoding atom types, pairwise interactions and angular infor-
mation. Spectra were represented by either 16 discrete DFT-based KS
energies or by broadening these discrete energy values into a continuous
curve of 300 points.

Next, I presented the machine learning methods applied in my work:
kernel ridge regression (KRR), artificial neural networks (ANNs) and
Bayesian optimization (BO). KRR can map multi-dimensional inputs to
one-dimensional outputs, which is the reason that I chose this method for
the prediction of scalar HOMO energies. ANNs are able to map multiple
inputs to multiple outputs simultaneously and were therefore a natural
choice for the prediction of photoemission spectra. Before applying these
methods in practice, an important step is the choice of the model hyperpa-
rameters. This can often be a burden, since it is not always obvious wich
hyperparameters perform best for a given problem setting. In Publication
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II, I applied the BO tool BOSS to optimize up to 4 hyperparameters of
my KRR model and compared the efficiency of BOSS with the commonly
used grid search method. In the 4D search, BOSS was significantly faster
in finding the optimal hyperparameter solution, requiring only a fraction
of iterations necessary in grid search. Moreover, BOSS provided scoring
landscapes in hyperparameter space that enabled a deeper analysis of my
KRR model and that may facilitate the choice of starting points for related
problems in the future.

In the final step, I applied KRR and ANNs to the generated reference
datasets for the prediction of HOMO energies and photoemission spectra.
In Publication III, KRR was used to predict HOMO energies of QM9, AA
and OE62 molecules. Due to the different chemical diversities within these
datasets, KRR performance varied notably. The standard QM9 dataset
and the AA dataset of amino acids are easy to learn due to their relatively
simple and small molecular structures. KRR models trained on these two
datasets are able to achieve MAEs below or equal to 0.1 eV, which is the
desirable accuracy for orbital energy predictions in this thesis. Contrary,
the OE62 dataset of complex and technologically relevant molecules is
more difficult to learn.This underlines the effect of a dataset’s diversity
on machine learning performance. While QM9 is the golden standard
for many studies in materials science, it is relatively easy to achieve good
machine learning results with models trained and tested on QM9. However,
it is not realistic to achieve the same or a comparably good performance
on other, more complex molecular datasets. To further improve the KRR
performance on the OE62 set, larger training set sizes, a more sophisticated
molecular descriptor or the employment of ANNs might prove helpful.

In Publication IV, two types of deep neural networks and one feed-forward
neural network were employed to predict photoemission spectra. The deep
tensor neural network (DTNN) is the most sophisticated network and
is able to predict QM9 spectra with an accuracy of 97%, capturing all
essential charateristics of the reference spectra.

In the final step of the thesis, I also showcased the applicability of my
machine learning models for chemical space exploration. For a dataset of
previously unseen molecules, for which no spectra or energies are available,
the KRR and DTNN models were employed to produce instant predictions
and negligible computational cost. Within seconds, distributions of HOMO
energies and spectral intensities were produced, from which interesting
molecules that fell within a certain energy range could be easily identified.
These structures could be studied in more detail with electronic structure
methods or experiments. This example showcased that sructures no longer
need to be randomly picked from a pool of candidates, but can be selected
in an informed manner based on approximate energy predictions. This
closes the circle to the initial idea of advancing chemical space exploration
with machine learning.
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6.2 Outlook

As new materials data continue to emerge in public databases, the devel-
oped machine learning methodology in this dissertation will be a valuable
tool for future work. Many of my co-workers already employ my KRR
model developed in this thesis for their own research. I here discuss open
questions that might be worth addressing and potential future research
based on the results of this dissertation.

First, the KRR and ANN models employed in this thesis were trained
on DFT-computed KS orbital energies, since they are cheaper to produce
for large datasets compared to GW . This proved a convenient way to
build "prototype" machine learning models and to develop my methodology.
However, future work might consider training KRR and ANNs on energies
computed with a more appropiate method, such as GW . Orbital energies
computed with GW were made available for a 5k-subset of OE62 within
this thesis. While this dataset is not large in size, one could combine its
high-fidelity data with lower-fidelity data from DFT computations, which
are available for the entire 62k molecules. This approach is known as
multi-fidelity learning.

This hints to the second open point, which is the low predictive KRR per-
formance on the OE62 datsaet. It might help to include high-fidelity data
of the 5k subset into the KRR training in order to improve the performance
of the model. As mentioned before, other options are using different molec-
ular descriptors that include torsional angle information or to training a
deep neural network on OE62 data.

Another interesting question is how well machine learning models trained
on OE62 would perform on a simpler and less diverse dataset, such as
QM9 or AA. I would expect that due to the high diversity of OE62, KRR
models trained on OE62 data will be able to predict the energies of QM9
and AA molecules easily.
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Appendix A: FHI-aims package

Within the scope of this dissertation, the DFT package FHI-aims [74] is
used to produce spectroscopic reference data that serve to develop our
machine learning models. FHI-aims is an all-electron electronic structure
code based on numeric atom-centered orbitals. It is suitable to perform
efficient modeling of molecules, clusters, surfaces, interfaces and bulk ma-
terials. Properties like total energies, band structures, electron densities,
KS orbitals and density of states can be efficiently modeled. Basis func-
tions are organized in ’tiers’ to form different basis sets, where each tier
contains a different number and different types of basis functions (mostly
hydrogen-like basis functions are used). FHI-aims is equipped with three
different pre-defined grid settings for all atomic species which govern the
numerical accuracy. Those settings are light, tight and really tight. While
tight settings yield results with a high level of accuracy, the computational
time to converge the KS equation usually takes long. Light settings are
the right choice for fast prerelaxations. In order to optimize the positions
of atoms in a molecule or molecular cluster towards the energy minimum,
calculations known as structure relaxation can be carried out.
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