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Computer-Aided Pronunciation Training (CAPT) Systems are designed to help
users acquire speaking skills in a non-native language (L2 Language). Generally,
CAPT systems employ speech recognition techniques to give a wellness score
for an utterance. The score helps the learner evaluate themselves and gives the
support to improve their pronunciation. Scoring from such systems correlate well
with human-annotated scores when the uttered sequences are long and the speak-
ers are adult. However, in the Say It Again Kid (SIAK) project, a CAPT game
built for children, utterances are short, and consequently the correlation between
scores of the system and human annotator is weak. The unavailability of chil-
dren’s speech data for training is the main reason for the poor performance. The
thesis shows how to mitigate the problem of the unavailability of transcribed data
by generating them using a modern text-to-speech (T'TS) system. Such systems
have shown to reach a human level of naturalness. In this work, a TTS system
is trained to generate Finnish speech in children’s accents. The system utilizes
a large quantity of adult speech and a small set of children’s speech to generate
speech with children’s accents. Finnish accented English is generated from the
same system by mapping English words to their nearest Finnish phonetic repre-
sentation and inputting them into the T'TS system. Thus, the thesis proposes a
simple way of achieving accented speech.

We add the generated data to the training of the phonetic recognition model
employed in STAK. The thesis shows that this technique improves the recogni-
tion accuracy of the model: the Phoneme Error Rate (PER) reduced from 0.27
to 0.13 for the Finnish children’s test set. Unfortunately, this improvement in
recognition results does not imply an improvement in the STAK scoring. This was
due to a mismatch between the data used for training and testing the recognition
system and the target game words: even though the generated speech resembles
the target game words, they belong to different distributions.

Keywords: Pronunciation training, text-to-speech, synthetic, kids,
phoneme, voice, game, score

Language: English
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Chapter 1

Introduction

The goal of this work is to improve the pronunciation evaluation system of
the Say it Again Kid(SIAK) game, which helps Finnish children learn to
speak English.

1.1 L2 language learning

A language is a tool for communication. We express ourselves through lan-
guage and speech. As humans evolved, the need for sophisticated forms of
communication led to the development of a large number of languages, with
roughly 6500 spoken languages spoken in the world today [1]. Studies have
found that learning multiple languages is essential for many reasons. First,
knowing multiple languages enables us to communicate with more people and
better integrate into different cultures. Learning multiple languages has also
been shown to help our brains by improving planning and problem-solving
skills. Furthermore, in the business world, knowing more than one language
is a necessity to be able to build better global relationships [2].

In terms of language acquisition we all know that newborns learn their
mother tongue (L1 language) naturally. According to neuroscience, an es-
sential task for infants in language acquisition is to make sense of the sounds
they hear in speech; i.e., infants learn to differentiate between sounds and
categorize them [3]. These categories are similar to the linguistic defini-
tion of phones, which are the basic unit of sound in speech. Infants acquire
the language-specific phonetic rules by learning the distribution of sounds
in speech. This language acquisition ability, particularly in terms of phonic
identification, has been found to deteriorate with age. This has led to the
question of whether adults are incapable of acquiring a non-native language
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(L2 language). However, this is not the case; it simply becomes a little harder
than it is for infants [4].

There is no singular, definitive method for language learning. Linguists
and language teachers use different methods with the main source of agree-
ment being that it involves acquiring the pronunciation and vocabulary
through repeated exposure. To be able to understand a new language, it
is imperative to understand the words in it, and how it will be used. i.e., the
vocabulary and grammar of the language. To be able to speak a new lan-
guage, a learner must listen and grasp the statistical distribution of phones
in the language and be able to identify and produce new phones which were
absent in his or her native language.

Not everyone has the time, resources, or the necessity to opt for a human
coach to acquire an L2 language. Naturally, a variety of tools have been de-
veloped to assist the language learning process including books that teach vo-
cabulary, games with audio-visual features, digital flash-cards, movies, songs,
and audio. With the maturing of computer systems, mobile phones, and Au-
tomatic Speech Recognition(ASR), a lot of computer-aided language learn-
ing tools have emerged, such as; Duolingo, Babel and Busuu. These provide
learning content, exercises and automated evaluation, which gives the learner
real-time feedback.

1.2 Say It Again Kid

Say It Again Kid(SIAK) is a computer-based game, which aims to assist
Finnish children to learn better English pronunciation skills. STAK was de-
veloped in the department of signal processing and acoustics, Aalto Univer-
sity, in collaboration with Helsinki University. The project was developed
with the following goals:

e Finnish children learn English in classrooms, but it is often impossible
to assist every child with pronunciation as it takes so much time. STAK
is designed to alleviate this problem.

e To validate the hypothesis that using an engaging gaming environment
increases the speed of learning.

e To determine if automated feedback on the pronunciation quality ben-
efits the learning process.
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1.2.1 Game description

SAMSUNG

s

Figure 1.1: A screenshot from Say It Again Kid

The game is aimed at Finnish children with little or no experience in
English. The game has 27 levels, and its vocabulary consists of frequently
used English words. In each level, the player must complete a path that is
obstructed by rotating card icons, as seen in 1.1. When the player clicks on
the card they will see a picture of an object and hear the associated word
first in Finnish, then in English. The player should try to repeat the word in
English while trying to imitate the model pronunciation. After attempting,
the player will then hear the model pronunciation and their own utterance,
followed by an accuracy based score between 1 and 5. If the score is above
1, the path opens and leads to the next card in the path. If the score is
below 1, the player is asked to try again. The game is not currently available
for public consumption and is used for research and development only. The
scoring is calculated using speech technologies. If the scoring is accurate,
then the scores can be used to track the learning process of the children and
modify the sequence of presented words based on their current level. The
game does not require any reading skills, and the L2 language phonemes are
learned by repeating and feedback, which is similar to how children learn
their mother tongue.
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1.2.2 SIAK game data

A corpus of 20,000 game utterances was collected and scored on a scale of
0-100 by a single teacher, in order to develop the scoring model. The children
included 24 UK English native speakers and 153 Finnish children between 8
and 12 years of age. The details of this dataset can be found in chapter 4.
Different scoring models have been built for the game with an aim to model
and follow human scoring.

1.3 Scoring System for STAK

There are primarily two approaches to build a scoring system for pronun-
ciation using Automatic Speech Recognition (ASR) techniques. The first
approach uses output of the ASR model for the game words to calculate
a score for the utterance [5], [6]. A Hidden Markov Model-Gaussian Mix-
ture Model(HMM-GMM) or Deep Neural Network(DNN) acoustic model is
trained on the target language of the game, or a combination of the native
language and target language. Based on acoustic model predictions for the
utterance, a goodness score is calculated either from data or using hand-
crafted rules. For this to work the speaking style of the players should match
the training data used to train the ASR model.

The second approach is to create forced alignment between the utterance
and its phonetic representation using Hidden Markov Models and analyz-
ing these individual audio segments for the corresponding phoneme using a
discriminative DNN model[7], [8]. The accuracy of the scoring system is de-
termined by the accuracy of the phonetic segmenter and the DNN model.

Previously, models using both of these approaches have been developed
for the STAK game [9], [10]. Both of these systems achieve a correlation of
around 0.5 between the predicted score and the score given by the teacher.
A much higher correlation is desirable, but the data inherently poses some
challenges in achieving this which are discussed in the next section.

1.3.1 The challenges

When the utterances are long, i.e., above 3 minutes, pronunciation scoring
systems have been built, which correlate very well with the human scores[11].
The correlation is as high as 0.85 for a few datasets, but this degrades when
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short speech segments have to be evaluated. The various challenges with
scoring SIAK game words are as follows.

e There is no in-domain data for training the model.

e The target data is speech from children, whereas the training data is
mostly speech by adults.

e The target utterances are short, and the training data contains predom-
inantly long utterances. It is possible to segment the long utterances
into shorter ones, but this will inherently add some error to the training
setup.

e The target utterance might contain phones which come from both En-
glish and Finnish. There is no such transcribed data available for train-

ing.

e Training data only contains the correct pronunciation for every word in
either language. The model might over learn the phonetic distribution
of either language and be biased against predicting a mixed phonetic
representation for an utterance.

e Since the utterances are short, it is not easy for the teacher to score
them well. The human bias in the STAK game data might make the
challenge more difficult, resulting in a worse correlation.

1.3.2 The approach

It seems that the challenge in building a good scoring model for STAK game
data is that there is no in-domain data for training. There are sizeable au-
dio corpora for English and Finnish, but the portion of child speakers within
them is significantly small. Moreover, there is no L2 English transcribed data
spoken by Finnish children; the pronunciation scoring model has to be built
on L1 data while being expected to capture the mispronunciations of L2 data.

Significant leaps in Text to Speech Synthesis(TTS) technology have been
achieved in recent years with end-to-end sequence-to-sequence encoding tech-
niques [12]. The state-of-the-art systems have been able to obtain speech
naturalness close to human speech [13]. These sequence to sequence archi-
tectures allow conditioning for speaker, prosody, and other characteristics,
enabling controllable human-like speech synthesis [14]. These results have
led to the further exploration of:
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e [f in-domain data for the SIAK game can be generated using TTS
synthesis, i.e., synthesizing Finnish accented English data in children’s
voices. The aim is to generate mispronounced utterances which are not
found in the L1 English.

e Will using the synthesized data for training the CAPT models improve
the correlation between human expert score and the CAPT system
score?

Chapters 2 and 3 describe how such a system can be built, while Chapter 4
details the experiments that were conducted to evaluate the effect of synthetic
speech on the scoring model.



Chapter 2

Phonemes and Phonology

All languages have an inherent structure which is formulated as the rules
of that language. The rules governing the structure of the language are its
grammar, while the collection of all the words in a language is its lexicon.
Words in the lexicon are combined using grammatical rules to form sentences.
Any number of concepts can be communicated with the same framework,
and native speakers need not think about these rules while communicating
through language, as They are internalized. Notably, the structure and the
vocabulary of a language are not fixed; rather, these are subject to constant
change, and languages are constantly evolving[15]. In this chapter, the basics
of linguistics and phonology are discussed as these form the basis for Finnish
accented English speech generation.

2.1 Phonemes

While grammar and lexicon model the composition of a language, phonemes
and phonology model the speech. "Phonemes are defined as the smallest unit
of sound that may cause a change of meaning of an utterance within a lan-
guage” [16]. By themselves, phonemes do not have any meaning. However,
for every word in a language, a phonetic representation is defined depending
on the sounds in its pronunciation. For example, consider the word “tear”
which can either mean “to pull something apart” or “a drop of liquid from the
eye”. The difference in meaning arises from how it is pronounced; if "tear” is
pronounced /t €1/ which is the phonetic representation for the word, then it
means ”to pull something apart” and if it is pronounced /t 19/ then it refers
to 7a drop of liquid from the eye.” Here; t, €1, 1, 9 represent the individ-
ual phonemes corresponding to the individual unique sounds, which create a

13
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change in meaning English.

An important point to observe is that although a standard phonetic repre-
sentation for every word can be defined, all the different ways people vocalize
a single word cannot be uniquely characterized by a single set of symbols.
So often, phonemes are viewed as an abstract underlying the representation
of pronunciation, and the speech signal, as a realization of that representa-
tion. In other words, phonemes represent a sound or set of sounds that are
perceived similarly by people of one particular L1 language[17]. The sounds
that are perceived to be different in a language can be perceived as the same
in another language. For example, /k/ and /k"/is perceived to be the same
phoneme in English while it is two separate phonemes in French as it can
change the meaning of a word.

This impreciseness gives rise to the possibility of transcribing the same
language with a different set of phonemes. ASR systems which require precise
representation for the utterance, usually use triphone representation for extra
precision. A triphone representation assumes that the realization of a phone
is dependent on its adjacent phones. Consider the word "that”; a regular
phonetic representation of it would be /o a t/. An ASR system which uses
triphone representation would transcribe it as / {-d a} {0at} {at-} /. So
there is no single correct phonemic representation for the language, but it is
necessary to choose a system that is useful for the application at hand[18].

2.2 International Phonetic Alphabet

International Phonetic Association was formed in Paris in 1886 to develop
and use phonetic notations in schools to help children learn foreign languages.
In the early 19*® century, the association grew, with language teachers from
Western Europe joining the association, and the International Phonetic Al-
phabet (IPA) was created. The alphabet aims to provide an internationally
agreed set of symbols for the sounds of languages.[16]. IPA has become a
standard in phonetic representation and is used by phoneticians world-wide.
In TPA, phones are represented either as single letters or as a combination
of letters and diacritics, which are signs around a letter that give additional
information about the exact pronunciation. The alphabets in IPA are orga-
nized as a chart, as described in Figure 2.1.

At the top of the table, 59 pulmonic consonants are represented, which are
produced by obstructing the mouth or vocal cords and subsequently letting
out the air from the lungs. The different consonants are further categorized
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THE INTERNATIONATL PHONETIC ALPHABET (revised to 2018)

CONSONANTS (FULMONIC) © 2018 TPA
Bilatal [Labiodsnial| Denal | alveolar [Postalveclar| Retoflox | Palaal | Velar | Uvular |Pharyngel | closal
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Tl B T R
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Bt tk
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et 1 L] & =

Symbols to the tight in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible

CONSONANTS (NON-FULMONIC) VOWELS
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- Close IE R et uIsu
(%) Bilabial b eiabial Examples:
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i - .
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OTHER SYMBOLS Open AeE aeD
M Voiceless labialvelar fricative (3 75 Alvealo-palatal fricatives S T A A AR
10 the tight represents a rounded vowel,
W Vaiced labial-velar approxismant T Vaiced alveotar tateral fap
T Veiosd Iabial palsel spprosiment [)  Simloacone [ aad X SUPRASEGMENTALS
I J?
H Voiceless epiglottal fricative Primary stress -
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- joined by a fie bar if necessary, . "
% Epiglottal plosive ! k4 a4 1 Long el
7 Half-long €7
5
DIACRITICS Some diacritics may be placed above a symbol with a descender, c.g, T) il e é
Vaiceless nd Breadyvoiced D & Dental t d )
o -l . T o o o Miner (foot) group
. Veleed 3 t o SRR O b g o, Al E El || Major (intonation) group
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% 2
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Figure 2.1: The International Phonetic Alphabet

into rows, based on how exactly they are produced (manner of articulation)
and into columns based on where they are produced within the vocal tract.
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These consonants make up most of the sounds that humans produce to com-
municate through languages.[19]

The position of the tongue while producing a vowel is used to place the
different vowels in the IPA Chart. Vowels vertical position is determined by
vowel height, i.e., The height of the tongue in the mouth while pronounc-
ing the vowel. The horizontal position of the vowel is determined by vowel
backness, i.e., how back or front the tongue is placed in the mouth while
pronouncing the vowel.

Non-pulmonic consonants are those whose production does not depend
on the airflow of the lungs. Clicks, implosives, and ejectives make up this set
of symbols. Although IPA has 173 symbols, only a small subset of these is
used to represent any language.

2.3 Phonesets of English and Finnish.

Each language has its own speaking style and rules which govern the possible
distribution of phonemes. The speaking style of a language is characterized
by,

e The phoneme set that is used in the language

e The distribution of phonemes in the language.

e The manner in which the different phonemes are stressed.
e The rhythm and intonation that is used in sentences.

These details are difficult to grasp for a language learner if these patterns
are missing in their native language and it is not straightforward to list how
exactly two languages sound different. The usual pitfalls of a new language
learner can be listed; for example, the following observations have been made
about the Finnish L1 speakers learning to speak English.

e Finnish learners have difficulty pronouncing English words that contain
front vowels and back vowels in the same word. This is because the
Finnish language follows vowel harmony, where front vowels and back
vowels never appear together in a word.

e Finnish learners sometimes confuse long vowels for short and vice-versa;
for example, ”sip” and "seep.”
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e Among consonants, /0/ is often mispronounced as /s/ or /f/; for ex-
ample "thick” and "three.”

e English words that cluster more than two consonants together are often
difficult to pronounce for Finnish speakers, as such patterns are absent
in Finnish; for example, "street,” ”stretch” and ” Christ.”

e The stress pattern in English words and sentences is difficult to grasp
for Finnish speakers. In Finnish, the first phoneme of the word is
usually stressed, which is not the case in English.

e [t is difficult for Finnish speakers to produce sentences in a rising tone,
which is a requirement in English.

e In Finnish, /p/, /t/, /k/ are never aspirated, which is not the case in
English.

e In Finnish, /t/ has a dental place of articulation, meaning it is produced
with the tongue against the upper teeth. Also /r/ is usually trilled in
Finnish. So, related phonemes in English can be difficult to pronounce
for a Finnish learner.

2.4 Phonological features

For a long time, phonemes were considered as the basic units of speech repre-
sentation. In the 1980s, however, linguists realized that individual phonemes
could be seen as a surface form realization of the combination of fundamen-
tal units, which are termed as phonetic features[20][21]. Taking an analogy
from physics, Phonetic features can be seen as the subatomic particles that
make up the atom, which is a phoneme. Following this abstraction, linguists
could express phonemes through a smaller set of features. A phoneme is
represented by either presence or absence of phonetic features, which can
be better understood with an example. The phonological features for three
phones which represent the word ”pin” are described in the table 2.1.
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syllabic
sonorant
continuant
high
back
voiced

(e NeNoNoNolNolho]
—_ O O = = -
—_ 0 O O OB

Table 2.1: Phonetic Feature representation for the phonemes p,i,n

The vector representation of the phoneme enables analytical manipula-
tions, which are used in this thesis. Again, it should be noted that the choice
of phonetic features to represent a phoneme is not unique and is dependent
on the application[20]. The phonetic features that are used in this work are
listed in tables 2.2 and 2.3.

Phonetic Features for Vowels
dipthong, long, rhotic, unround-schwa front
nearfront, central, nearback, back, open
nearopen, openmid, mid, closemid, nearclose, close, rounded, unrounded
diphthong-forward, diphthong-backward
diphthong-opening, diphthong-closing, diphthong-rounding
diphthong-unrounding

Table 2.2: Phonetic Feature for Non-Vowels

Phonetic Features for Non-Vowels
affricate, approximant, fricative, plosive, nasal, trill, alveolar, bilabial
coronal, dental, dorsal, labial, labiodental
lateral, postalveolar, velar pulmonic, retroflexed
syllabic, palatalized, aspirated, lenis, fortis
labialized, voiced, unvoiced, geminated

Table 2.3: Phonetic Feature for Non-Vowels
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2.5 Distance measure between phones

The phonetic feature vector representation for each phone allows the defini-
tion of a distance metric over the phone space. The distance, d;; between
two phones p; and p; is given by,

Number of dissimilar features between p;,p;

iy = (2.1)

Total number of features

The above equation provides an approximate measurement of the distance
between two phones. It is approximate, since not every feature will affect
the acoustic realization of the phone in the same way. Once a distance mea-
sure between two phones is defined, it is straight-forward to define a distance
measure between phone sequences. Levenshtein Distance can be used as a
metric to measure this.

2.6 Finnish to English phonetic mapping

As discussed in the introduction, a large quantities of Finnish accented En-
glish needs to be generated, utilizing a TTS system. It is achieved by map-
ping English phonemes to the nearest Finnish phonemes and inputting them
to a Finnish TTS system. Ideally, English phonemes should be mapped to
nearest Finnish phonemes in an automated way, as hand-coding will require
much effort. The method of automatically generating Finnish phonetic rep-
resentation for English words is described below.

e An English phonetic representation is obtained for the English words
by looking up a dictionary.

e A shared phone space is defined for English and Finnish, and the
phoneme distance map between each phone is calculated using the
equation in 2.1.

e For each phoneme in the English transcript, the three nearest phonemes
in the Finnish phonetic system are obtained by looking up the phoneme
distance map. Only three nearest phones are sufficient as, for every
English word with 'n’ phonemes, we get '3 nearest representations in
Finnish considering all the combinations.

e Twenty Finnish transcripts are chosen at random from these 'n® com-

binations. The choice of twenty is arbitrary; however it represents a
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sufficiently large number from which to create a large corpus. It is as-
sumed that the 20 random choices will incorporate the common errors
made by the learner: since handpicking the words based on observed
error pattern is time consuming.

The Table 2.4 below lists the five nearest Finnish phoneme representations
for a SIAK English game word. The transcripts are generated automatically

by a script.
Game | English | Nearest | 5 Finnish Representations
Word | Rep Finnish
Rep

girl g3t gil ‘gil’gil’,’gin’,’gal,’'gael
hello helou hily 'hily, 'hilg, helgy, fe i ¢
book buk byk byk’,’byp, ' bsk’, myk’, mop
learn l3:rn lin Tin, ’lind,Tird,lTan’,’l an?
tree t i torrix trrid, vt 1, bt e, 't 1i0, e 1,

tleed,tni’, tni, 't nel’
more m oI m o 'mo’, ' mu’, mu’,’bo’,’bu

Table 2.4: Finnish Phonetic Representation for Game Words

Finnish accented English is generated by inputting these transcripts into
a Finnish TTS system. The hypothesis here is that the output will sound
similar to Finnish accented English. It can be seen that these transcripts
indicate subtle changes in the pronunciations. The aim is to determine if the
TTS system can reproduce these minute variations without errors. The next
chapter describes the text-to-speech system that is used to generate speech
from the above transcripts.



Chapter 3

Speech Synthesis

3.1 Background

3.1.1 Types of text to speech system

Text-to-speech synthesis is a sequence to sequence mapping problem in which
a shorter input sequence of text has to be mapped into a much longer wave-
form sequence whose output waveform has to be intelligible and natural.
Also, a single input representation can have multiple output representations
based on speaker, dialect, accent, prosody, and other vocal characteristics.
This challenge has interested inventors and researchers for a long time. Me-
chanical and electrical systems were built to produce speech before the era
of computers; historically, text to speech systems found use cases in assistive
technologies with applications such as giving voices to people with deformed
vocal tracts, or the production of audio-books for the blind. In recent times
with the improvement of technology, more avenues have opened up for its
use; voice assistants like Amazon Alexa, Google Home, and Siri are enabling
people to interact with machines with their voices. The four prominent meth-
ods of speech synthesis which have found commercial use cases over the past
few decades are listed below.

e Corpus-based concatenative speech synthesis.
e Rule-Based F0 formant synthesis.

e Statistical parametric speech synthesis.

e End-to-end neural network speech synthesis.

The methods are described briefly below.

21
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In concatenative speech synthesis, speech is generated by joining together
small segments of recorded speech. An extensive database of audio segments
corresponding to phones, diphones, words, or other defined units, is created
from a corpus using ASR hard-alignment techniques. These segments are
then indexed with acoustic metadata. Speech is synthesized by selecting the
best audio segments that correspond with the text by using weighted decision
trees and joining the segments together. Digital smoothing filters are applied
to the joined frames to reduce the artifacts of joining. The advantage of
this method of synthesis is that the resulting audio sounds natural. The
drawbacks of the system are, a need for an extensive database, and not
having an option to condition the audio on different speakers, accents, and
styles[22].

Rule-based FO synthesis is developed based on the source-filter model of
speech synthesis. As the name indicates in the source-filter model, speech is
modeled to be produced by applying a filter(vocal tract) to sound source(vocal
cords). The distinct characteristics of the source, i.e., the fundamental fre-
quency(F0), and the filter can be identified for each phone. The source for
all voiced phones is modeled as a periodic waveform, while for non-voiced
phones, the source is modeled as noise. The shape of the vocal tract and
the position of the tongue determine the transfer characteristics. For speech
synthesis, these transfer characteristics are hand-coded for each phone. The
design of these rules is complex and is done manually. Speech is reconstructed
using the source model and the designed filter characteristics. Algorithms
and techniques involved in the production of the audio waveform from vocal
or filter parameters are referred to as Vocoder. [22].

In Statistical Parametric Speech Synthesis(SPSS), the probability distri-
bution of the output waveform is learned from the data conditioned on the
input text sequence. During training, the acoustic model is estimated auto-
matically from a large speech corpus. At the time of synthesis, acoustic fea-
tures are predicted from the learned acoustic model. The parameters modeled
are usually spectral parameters such as Mel-Frequency Cepstral Coefficients
(MFCC) and excitation parameters like fundamental frequency(F0). These
parameters are modeled and conditioned on context-dependent input text
sequence using a Hidden Markov Model. Speech is reconstructed from these
features. This method has better flexibility compared to previous methods.

All the above techniques requires careful parsing and cleaning of text
data to convert it into a detailed phonetic representation. This is usually re-
ferred to as text front-end and might involve many steps; text normalization,
part of speech tagging, phonetic disambiguation, and phonetic clustering
for context-dependent phonetic representation. Producing speech from pho-
netic representation is often referred to as speech back-end. For SPSS, the
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back-end involves training the HMM-acoustic model, training the duration
model for each context-dependent phone, synthesizing the acoustic parame-
ters corresponding to text, fine-tuning the parameters, and synthesizing using
Vocoder. All the different techniques mentioned above make text to speech
synthesis a complex and laborious task requiring expert domain knowledge
and hard-coding information. Errors at any stage of the process can accu-
mulate through the pipeline, resulting in inferior synthesis.

3.1.2 Neural network based speech synthesis

In the past few years, the power of Deep Neural Networks(DNNs) in learning
complex nonlinear features from massive labeled datasets has been under-
stood [23]-[25]. Breakthrough results in visual object detection have pro-
pelled the use of DNNs for every complex discriminative machine learning
problem. The ability to stack neural network layers, and form complicated
architectures depending on the problem, make neural networks extremely
versatile statistical models. Complicated neural network architectures with
millions of parameters are made possible because of backpropagation; a sim-
ple way to learn those parameters using enough labeled examples.

DNNs have been used in various ways to tackle the problem of speech
synthesis. DNN models have been used to build the different components of
SPSS systems. Deep-Voice is a text to speech system in which every part
of the SPSS pipeline is replaced with a Neural Network Alternative [26]. In
addition, Wavenet was introduced by Google, which replaced the Acoustic
Model and Vocoder of a speech synthesizer with an autoregressive Neural
Network model [27]. These advances improved the quality of synthesized
speech; still, the systems required the design of multiple moving parts. This
challenge was finally solved with Tacotron which is a neural network ar-
chitecture that maps the input text directly to the output waveform [12].
Compared with the models discussed earlier, Tacotron has the following ad-
vantages:

e The model can be trained on a < text,audio > pair with no need
for a text backend, and an acoustic model, reducing the number of
components in the system.

e A sentence-level alignment between text and audio is sufficient to train
the model, making it possible to train it on large datasets.

e A sequence to sequence framework makes it possible to condition the
output waveform on different characteristics like speaker, prosody, and
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language.

All the above advantages make Tacotron an ideal choice for the task of
generating Finnish accented English, the goal being to condition the out-
put waveform on speakers and accents. The model architecture of tacotron
is an Encoder-Decoder model with Attention. Sequence-to-sequence Neural
Network models are discussed in the next section, followed by the tacotron
system description.

3.2 Seq-to-Seq Learning With Neural Net-
works

3.2.1 Recurrent neural networks

To train DNNSs, inputs and outputs must be represented as vectors of fixed
dimensions. When it comes to sequences, the input and outputs will be of
different lengths, making it difficult to use the DNNs as they are. Recurrent
neural networks tackle this issue by making use of recurrent connections in
the hidden layer. A simple recurrent neural network can be described as
follows: For a sequence of inputs (x1,22,...x7) and a sequence of outputs
(y1, Y2, ...yr), the RNN maps inputs to outputs as follows,

he = fWhz, + WA, _)) (3.1)
yo = F(W"™hy) (3.2)

In the above equation, h; represents the hidden layer at time step t, W
represent the weights given to each of the inputs, and W"" represents the
weights given to the previous hidden-state values. While learning this model,
we backpropagate through time to learn the optimal model parameters.
Through these recurrent hidden connections, the model learns the long term
dependencies in the data. Practically though, it fails to learn long term
dependencies due to the vanishing gradient problem. Long Short Term
Memory(LSTM) networks and Gated recurrent networks(GRU’s) are recur-
rent neural networks with better architectures to handle vanishing gradient
problem. If the alignments between input and output sequences are already
known, RNNs can be used to model the system, but when the relationship
between the inputs and outputs is complex or not known, they cannot be
used.
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3.2.2 Encoder-Decoder architecture

Neural networks with Encoder-Decoder architecture tackle sequence to se-
quence problems with complicated input-output relationships. The architec-
ture is as follows: the input sequence is mapped into a fixed vector using an
RNN, which encapsulates all the information needed to predict the output.
The mapped vector is then fed into another RNN, which will in turn pre-
dict the output one time step at a time based on the fixed vector and the
previously predicted output sequence. Mathematically this can be described
as follows. Given a sequential input (1, xs,...z7=), the encoder maps the
sequence into a fixed length vector s as seen below:

hy = f(xy, he—1) 3.3)
S = g(hl, thTx) (34)

Intermittent hidden state representations are learnt for each time step, with
an LSTM, bidirectional LSTM, or GRU model. This is represented in equa-
tion 3.3. The fixed length vector is obtained as a function of all the hid-
den states. This can be the hidden state at time step 7' or more compli-
cated depending on the problem at hand. The decoder outputs the sequence
Y1, Y2...Y7v, conditioned on s and the previous outputs.

TY

p(y) = Hp(yt|ylay2---yt—173) (3.5)

t=1

3.2.3 Bahdanau attention

Even though the Encoder-Decoder architecture enables modeling complex
sequence-to-sequence problems using neural networks, it has an inherent
drawback: the path length of information flow is large, from input to output.
In some sequence-to-sequence mapping examples, input at the first time step
can affect the output at the last time step. In such cases, because of the large
path length, the model fails to learn the dependencies. The fixed-length vec-
tor acts as an information bottleneck, making it difficult for the model to
work effectively when the sequences are long and interdependent. The at-
tention mechanism solves this problem. Rather than using one fixed-length
vector to encode all information, the model keeps all the hidden states of the
encoder at all the time steps, and the decoder attends to the relevant hidden
state while outputting at any timestep. There are different ways to achieve
this. Tacotron utilizes Bahdanau Attention, which is described below.
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Encoder follows the same equation as equations 3.3 and 3.4. The output
probabilities are calculated using an RNN as follows.

PWelyr, Yoo Y1, ) = f(ye—1, Pe, 5¢) (3.6)

Where p; is the hidden state of the decoder RNN computed as

Pt = g(st17yt—17 St) (37)

sy is the fixed-length context vector, which is computed at every time
step. It should ideally represent the input hidden state information, which
is most relevant to predict the next output. It is calculated as the weighted
sum of the encoder hidden state outputs.

Tl‘
St = Z ﬁtqhq (38)
q=1
The weights 3, is calculated as,
exp(etq)
Buy=—F (3.9)
! ZqT:1 exp(etq)
where,
erg = a(hg, pi—1) (3.10)

Here, the weight of any input hidden states depends on e, which is a
function of the decoder hidden state in the previous time step. The goal of
this mechanism is to make the network choose the hidden state, which will
give the maximum information to predict the next output. Since the weights
e;q are designed as part of the network, it is learned through backpropagation.
As s; is calculated as an average over encoder hidden states, the alignment
between input and output is referred to as soft alignment. Output at time ¢
is dependent on h, with probability 3,

This mechanism makes the entire input sequence available for the decoder
at every timestep, and the pathlengths to decode any output are significantly
reduced. Since the encoder and decoder can be made deeper with different
architectures, the attention mechanism is used in a wide variety of complex
sequences to sequence tasks. Tacotron builds on the Encoder-Decoder ar-
chitecture with attention, with a sophisticated encoder and decoder design.
The architecture of the model is explained below.
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3.3 Tacotron model architecture

The Tacotron model architecture was implemented as described in [12]. The
architecture is illustrated in Figure 3.1.
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Figure 3.1: Tacotron model architecture

3.3.1 Encoder

The input phonetic transcripts are vectorized as one-hot encoded vectors.
The embeddings then pass through two fully connected RELU layers with
dropout. Following this, The data is transformed into encoder outputs by
the CHBG module which is made up of three layers. The first layer consists
of one-dimensional convolutional filters; the second layer is a highway net-
work, and the third layer is a bidirectional gated recurrent net(GRU). The
convolutional filters model the contextual features of the input text and the
modeling is similar to n-gram language modeling. Highway networks model
high-level features; the GRU net model the sequential information present in
the text.
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3.3.2 Decoder and attention

The target for the decoder is an 80-band Mel-scale spectrogram. Theoreti-
cally, even though the whole waveform can be directly mapped as the output,
it is not preferred as this complicates the task of learning the alignment be-
tween the input characters and the output waveform. Once the Mel-scale
spectrogram is recovered, it is straightforward to obtain the waveform in the
time domain, through vocoders. The decoder is made to predict five frames
of audio for every input time step. This helps to make predictions faster and
reduces the computations required to learn alignment. The previous output
frame is fed to the attention RNN through a Prenet. While training, the true
frame is fed to the attention RNN, and during synthesis, the generated frame
is fed to the attention RNN. Based on the principles described in the previ-
ous section, a context vector is calculated from the encoder outputs and fed
to the decoder RNN. GRU with residual connections is used as the decoder
RNN.

The linear scale spectrogram of the waveform is calculated from the Mel-
scale spectrogram using a CHBG post-processing net. The time-domain
waveform is calculated from the spectrogram using the Griffin-Lim algorithm,
which performs the frequency inversion.

The synthesis can be conditioned on the speaker by providing the neces-
sary information to the attention RNNs. The network does not output the
stop word; instead, it is made to predict until a fixed time.

3.4 Experiments and results.

3.4.1 Speecon dataset

The Speecon (Speech-Driven Interfaces for Consumer Devices) data-set con-
tains 192 hours of Finnish adult speech data and 12 hours of children’s speech
data. The data was collected to enable the development of speech applica-
tions in consumer devices, and was a collaborative project between corpo-
rate companies to collect speech corpus for over twenty languages, with the
Finnish speech corpus being recorded by Nokia [28].

The corpus contains speech from 550 adults and 50 child speakers. Among
the adult speakers, 276 are Male, and 273 are female. The data was collected
using four separate microphones, kept at different distances from the speak-
ers. The data was collected in 4 different environments; offices, home environ-
ments with background noise, in cars, and in public spaces. The choice of the
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environment was based on the possible use cases of speech applications. The
corpus contains 173600 utterances of both reading and spontaneous speech
data. The share of spontaneous speech is small, with just 5500 utterances,
most of which were usually short, with an average duration of 3 seconds.
A histogram of utterance duration in the Speecon database is shown in the
figure 3.2. As the target of the synthesizer was to generate short words, the
training data matched the requirements of the task.

Histogram of Utterance Duration in Speecon
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Figure 3.2: Histogram of Utterance Duration in Speecon Database

3.4.2 Training the model

Both input text and output waveform are preprocessed for training. The
input text is represented phonetically from its entry in the dictionary. The
output audio waveform is divided into 50ms frames with a 12.5 ms frameshift,
each frame of which is converted to the frequency domain by 2048-point
Fourier transform. The log magnitude spectrogram is obtained with Hann
windowing. The model is trained with a batch size of 32. Since the model
does not predict the end of synthesis through a stop token, all the inputs
and outputs are padded to a max length of 12s. The choice of max length is
arbitrary. The model is optimized using Adam optimizer with learning rate
decay.

The model is trained on all of the Speecon data, for up to 500k time-steps.
Training loss at different steps is plotted in the Figure 3.3. The model starts
converging early, and the loss curve almost flattens after 100k steps. Similar
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Figure 3.3: Training Loss vs training steps for Tacotron model

loss curves and convergence is observed when the model is conditioned on
learned speaker embeddings.

Learning the alignment between the input and output is very important
for the model’s convergence. The attention weights at different stages of
training give a clear indication of how the model is learning the alignment,
while completely scattered attention weights indicate that the model has not
learned the alignment. As the model is trained, the attention weights start
to align in almost a continuous manner. A clear improvement in alignment
can be seen as the training steps progress from 10k to 20k to 50k in Figure
3.4.

3.4.3 Evaluation of generated audio

The standard way to analyze the speech synthesis results is through Mean
Opinion Scores(MOS). The synthesized audio is rated by human listeners on a
scale of 1 to 5 on parameters such as naturalness and voice similarity. The av-
erage score measures how good the synthesized speech is on these parameters.
Since the goal is to use generated audio to train a Phoneme Recognizer, MOS
is not used for Tacotron results. The synthesized audio is analyzed qualita-
tively and is shared on the website https://sujithpadar.github.io/tacotron/
[29]. Refer the audio samples in the website corresponding to the results
discussed below.

The parameters of the analysis were voice similarity and voice consis-
tency. Voice similarity is evaluated by comparing the audio generated for
ten different speakers, at random. It is noticeable that the model was able
to discern the gender and variability in the voice of different speakers. Even
though the voice in the generated audio and the reference are not identical,
they sound similar. Voice consistency was evaluated by listening to audio
samples generated from the same speaker. It can be seen that the voice for a
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particular speaker remains consistent for different input prompts. However,
there are a few examples where the voice diverges.

The quality of the output audio degrades as the length of the input text
sequence increases. As the training data chiefly consists of small utterances
with few words in each, it is natural for the model to follow the training data.
This is not a problem for training the Phoneme recognizer for STAK, as the
target of the recognizer is short utterances.

3.4.4 Different input representations

Two different input representations were trialed for the text, to see if it affects
the training and convergence. The two configurations are:

e Finnish phonetic representation for the data. Each phoneme is one-hot
encoded.

e Free-flowing Finnish text representation, where different characters that
make up the Finnish language are one-hot encoded.

It was determined that these two different configurations did not affect
the convergence and resulted in similar synthesis results. The results were in
line with what was reported in the original publication. [12]

3.4.5 Experiments with children data and adult data

Since the Speecon dataset consists of 192 hours of adult data and just 10
hours of children’s speech, it was important to establish if it was possible to
synthesize with just 10 hours of children’s data. The attention mechanism
failed to align the audio and text when only 10 hours of speeconkids speech
was used. The shortness and non-variability (children repeat the same text
prompt in the data-set.) of input data in children’s data make it challenging
for the Tacotron model.

3.4.6 Speaker embeddings experiments

It has been shown that the synthesized speech from Tacotron can be con-
ditioned on parameters like the speaker’s voice, speaking rate, pitch, and
prosody [14], [30]. Voice cloning, which enables the generation of audio from
a speaker sample not seen during training,[14] is of interest as it will allow
the creation of cloned player audio samples in STAK player voices. However,
these results have been reported on Tacotron-2 and not Tacotron, while the
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experiment attempted to replicate the voice cloning results using Tacotron.
Tacotron-2 has a much simplified encoder-decoder architecture and uses lo-
cation sensitive attention over Bahdanu attention.

Speaker embeddings for all Speecon speakers were obtained by using
Aalto’s Spherediar speaker diarization model[31]. The speaker embeddings
are concatenated with encoder outputs. The Tacotron model converged com-
paratively more quickly with this setup. First, the outputs of this system
were compared against model trained with one-hot encoded speaker repre-
sentation (which does not allow speaker cloning). Both the models fared well
in synthesizing audio based on the speakers seen in the training.

When new speaker embeddings that were unseen in training (SIAK speak-
ers, and speeconkids test speakers) were used, while synthesizing, the model
failed to generate coherent speech, instead outputting unintelligible utter-
ances. It can therefore be inferred that Tacotron fails to clone voices, and it
requires architectural refinements to achieve voice cloning as in Tacotron-2
[14].

3.4.7 Finnish-accented English generation

Knowing that the Tacotron produces good quality audio corresponding to
Finnish words does not directly indicate whether it will succeed in gen-
erating audio corresponding to English words. These transcripts that are
generated as described in section 2.6, are not naturally present in Finnish
and might include phonetic distribution, which is not natively present in En-
glish. An analysis of phonetic distribution in generated transcript and native
Finnish will give conclusive results in this regard, but this is skipped because
of the time constraint of the work. These transcripts are given as inputs
to Tacotron, and the generated outputs are analyzed. The audio resembles
the Finnish accented English spoken by children. The subtle variations in
the words were produced successfully by the model and it can be observed
that about 10% of the generated audio was incomprehensible, and the gen-
erated audio does contain a significant amount of noise. However, this is
easy to detect as the Tacotron will produce a long audio sequence which is
dis-proportionate to its transcript sequence length when it fails to generate
correctly. A total of 60 hours of speech was generated to be used by the
recognition system of STAK.
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Scoring Model

The previous chapter describes how the Finnish accented English speech is
generated from SIAK game words. The experiment aims to determine if
this synthetic speech will improve the phoneme recognizer used to score the
SIAK game words and whether it will improve the correlation of computer
generated scores for the STAK data set with that of a human score. The STAK
game words are scored by building a regression model over the posterior
predictions of the Phoneme Recognizer. The architecture of the phoneme
recognizer and the experiments and results are discussed in this chapter.

4.1 Recognition Model

The Phoneme Recognizer used for scoring STAK is a deep GRU neural net-
work with a Connectionist Temporal Classification loss(CTC). The CTC loss
is explained in the next section.

4.1.1 Connectionist Temporal Classification

Recurrent neural networks and encoder-decoder models which tackle the
sequence-to-sequence problems are discussed in the previous chapter. CTC
is an algorithm that resolves the alignment issue between input and output
sequences for training a recurrent neural network model. Given an input
sequence (x1, T, ...x7«) and an output sequence (yi, Yo, ...yrv) the aim is to
find a mapping between the two sequences. For any X, CTC gives probability
distribution over all possible Y’s.

The algorithm has an interesting way of achieving this. At every time
step t, the model outputs the probability for all possible outputs p(y|X) and
an empty token e. ¢ signifies an empty token or the transition from one

34
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output to another. For CTC to work, the possible number of outputs should
be finite. The algorithm makes two assumptions regarding the alignment.

e The alignment is monotonic; that is, the current output does not de-
pend on future input. For speech recognition, this can be safely as-
sumed.

e The mapping between the input to output is many to one, i.e., many
inputs can correspond to the same output, but a single input can-
not correspond to more than one output. This assumption holds for
speech recognition as text or phonemes are a compressed representa-
tion of speech, and the same phone will correspond to multiple frames
of speech.

The alignment and loss are calculated from the probabilities at each time
step p(y|X). An output sequence is computed by merging the repeated
outputs in the consecutive time steps and removing the e. Multiple sequences
of outputs can lead to the same output sequence Y. For example, the output
sequences, Y1, Y1, €, Y2, Yo and yq, €, Ya, Yo, Y2 both correspond to Y = yq, ys.

The probability of the output sequence is computed as the product of
probabilities at each time step Hle pe(y|X). Furthermore, the probability
of a single output sequence Y is calculated by marginalizing over all the
possible sequences, which will result in Y.

p(Y|X)= Y Hpt ui| X) (4.1)

AGAxyt 1

For a training set D, model parameters are learnt to minimize the negative
log likelihood,

L= > —logP(Y|X) (4.2)
X,YeD
If calculated directly, these computations can be too expensive as the prob-
ability for all possible Y’s needs to be calculated. However, this can be
solved by efficient dynamic programming algorithms. At inference time, the
most probable output sequence is calculated using the modified beam search
algorithm.

4.1.2 Scoring mechanism

For STAK scoring, a 5-layer GRU network is used with CTC loss as a phoneme
recognizer. The model is trained using multi-lingual data, and Adam opti-
mizer with momentum. The n-best list of output sequences is calculated for
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each input utterance. For the STAK game words, the model predicts output
probabilities and the possible true pronunciation. The output probabilities
are used to build a score regressor, which will try to model the human predic-
tion for the same game words. Different regression methods are used to score
the words, including Phonetically weighted Levinstein distance and random
forest regression[9]. The next section describes the experiments that have
been conducted and the results.

4.2 Experiments and Results

4.2.1 Training data simplification

Previously, a multilingual dataset listed in table 4.1 was used to train the
phoneme recognizer, the outputs of which were used to score SIAK game
words. A shared phoneme representation was developed by Reima Karhila
to transcribe this multilingual speech [9]. This representation was developed
by exploring the phonetic feature representation for the phoneme in differ-
ent languages and mapping the nearest phonemes from different languages
together.

Corpus Duration (Hours) | Type of Data | Language
Wsjl(2 channels) 150
Wsjcam0 (2 channels) 30.1 Adult :
English
pistar o1 Children
tidigits* 2.2
Speechdat-fi (8-bit) 54.9 Adult
Speecon-fi (4 channels) 239 Finnish
Speeconkids-fi (4 channels) 37.5 Children
spraakbanken-se 23.3 Adult Swedish

Table 4.1: Training datasets for Phoneme Recognizer in the old setup

Speecon-fi forms the bulk of the adult Finnish speech used in training.
It contains around 60 hours of Finnish speech. Speechdat-fi contains 54
hours of spontaneous telephonic speech. Speeconkids-fi contains speech from
50 children between the age of 8 and 12. The total duration of speech in
Speeconkids is 37.5 hours.

Wall Street Journal speech datasets(wsjl, wsjcamo) are the English speech
datasets which comprise the most significant part of the training dataset.
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These contains 180 hours of reading and spontaneous speech from two sepa-
rate channels. Children’s speech is represented by the pfstar dataset, which
is a collection of southern UK English children’s speech, containing 5 hours
of audio recordings.

Swedish speech is underrepresented in the training with just 23 hours of
speech from the spraakbanken-se dataset. From each of these datasets, a well
defined validation data set and test data set are defined.

The ratio of English data to Finnish data is almost 1:2 in this training
setup. This imbalance is caused by using the 2 channels of wsjl, wsj0, and 4
channels of the Speecon dataset. Since the thesis aims to analyze the effects
of Tacotron generated data on the model, the above training dataset was
simplified. The following changes were made to the training dataset.

e Removing the Swedish dataset entirely from the training process.
e Using only a single channel data for wsj1,wsjcam0, Speecon, Speeconkids.
e Removing Speechdat-fi data from the training.

These simplifications resulted in the training dataset listed in table 4.2.

Corpus Duration (Hours) | Type of Data | Language
Wsjl (1 channel) 75
Wsjcam0 (1 channel) 15.05 Adult .
English
pfstar 5.1 Children
tidigits* 2.2
Speecon-fi (1 channel) 59.75 Adult o
: . Finnish
Speeconkids-fi (1 channel) 9.375 Children

Table 4.2: Simplified training dataset

By making the above simplification, a better balance between English
and Finnish speech datasets is achieved. Although the amount of children’s
speech is still less compared with adult speech, the ratio of adult speech
to children’s speech is similar for both languages. To evaluate the effects
of this data simplification, the CTC-GRU Model was trained on these two
data configurations, keeping the same model hyperparameters. The perfor-
mance of these models is compared by the evaluation of the Phoneme Error
Rate(PER) over the held-out test set.

4.2.2 Effects of training data simplification

Simplification helped with English test set recognition performance.
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The PER for English test sets dropped significantly by simplifying train-
ing data. The results are listed in table. 4.3.

Simplified
All data(PER) Data(PER)
wsjl 0.28 0.22
wsjcam() 0.35 0.29
pfstar 0.47 0.43

Table 4.3: Model performance on English test sets, the two models are trained
on all data and the simplified data configurations. The test sets are from
channel 0 of wsj datasets.

Simplification resulted in slightly worse Finnish recognition per-
formance.

The increase in the recognition accuracy for English datasets comes with
a slight reduction in recognition accuracy for Finnish datasets. The results
are tabulated in table 4.4. This decrease is not as significant as the increase
in accuracy for English datasets.

Simplified
All data(PER) Data(PER)
Speecon noisy(car) 0.19 0.23
Speecon noisy(public) 0.22 0.25
Speecon clean 0.20 0.22
Speeconkids 0.26 0.27

Table 4.4: Model performance on Finnish test sets, the two models are
trained on all data and simplified data configurations, The test data is from
channel 0 of Speecon.

It is to be noted that the above results analyze the performance of the
model on the test sets corresponding to the data which was present in both
the training configurations. It is interesting to see how the model performs
on the test sets corresponding to data which was removed from the simplified
training.

The GRU model struggles to generalize to datasets on which it
is not trained. The GRU model performance on test sets corresponding to
data not used in training in the simplified setup is listed in table 4.5.
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Data on which the GRU model was trained
Simplified

All data(PER) Data(PER)
Speecon noisy/(car) 0.23 0.37
Speecon noisy(public) 0.28 0.37
Speecon clean 0.22 0.31
Speeconkids 0.26 0.29
speechdat 0.33 0.48
spraakbanken 0.58 0.69
wsjcam( 0.36 0.38

Table 4.5: Model performance on test sets corresponding to data not used
for training in the simplified setup, channel 1

The model performance is negatively affected when a dataset is removed
from training. PER for speechdat increased from 0.33 to 0.48. The speech-
dat dataset contain spontaneous telephonic speech. Even though Speecon
does contain spontaneous speech, it is under-represented. The performance
suffering indicates that it is difficult for the model to generalize to a different
speaking style if it is not represented during training.

Model performance degrades significantly for the Speecon channel 1 test
sets. The position of the recording device changes the dynamics of the audio
enough to make it unrecognizable for a model trained on the same data but
from a different channel. This indicates that the model generalizes moder-
ately to the recording conditions.

4.2.3 Training data experiments with Tacotron gener-
ated data

6 hours of synthetic data corresponding to Finnish children’s speech was
added to the simplified training dataset. The audio mimics the voice of 50
children present in the Speeconkids dataset, but the audio corresponds to
phoneme sequences that are not naturally present in Finnish. The phoneme
sequences are generated from the English phonetic representation of words
present in the STAK game and by formulating other representations in Finnish
that are statistically closer to it. Previous chapters describe the generation
process of the data.

The GRU-CTC Model was trained with multiple configurations of the
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simplified data along with 6 hours of Tacotron generated data, and the per-
formance of the resulting models was compared. The different data configu-
rations are:

e Only English datasets. [wsjl, wsjcam0,pfstar,tidigits]
e Only Finnish datasets. [Speecon-fi, Speeconkids]

e English and Finnish datasets. [wsjl, wsjcam0,pfstar,tidigits, Speecon-
fi, Speeconkids]

e English and Finnish datasets + Tacotron generated data.

The configuration of the GRU-CTC model was kept the same while train-
ing, using all configurations of the data. The model performance was evalu-
ated by calculating the PER over the held-out test set for each of the datasets
on which the model was trained. The model converged when trained on each
of the above data configurations. PER for test datasets was calculated from
the resulting models. The following observations have been made based on
the PER results, and the comparisons are restricted to the test sets of the
corpus used in training.

4.2.4 Comparison between models trained on only na-
tive data and mixed data

The tables 4.6 and 4.7 highlight the effects of training the GRU model with
multilingual data compared with only English and only Finnish data.

Data on which the GRU model was trained
Only Finnish Simplified
Speecon clean 0.26 0.22
Speecon noisy car 0.27 0.23
Speecon noisy public 0.27 0.25
Speeconkids clean 0.25 0.27

Table 4.6: Comparison of PER of test sets when the GRU Model was trained
only on Finnish data, and the English and Finnish data

It could be assumed that the models that are trained on the native lan-
guages without data from the other would perform better than a mixed
dataset as the number of phonemes to predict would be limited when trained
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Data on which the GRU model was trained
Only English Simplified
wsjcam( 0.26 0.29
wsjl 0.16 0.22
pfstar 0.30 0.43

Table 4.7: Comparison of PER of test sets when the GRU Model was trained
only on English data, and the English and Finnish data

on languages separately. However, this is not the case. Using English and
Finnish datasets for training improved the Finnish recognition performance
and worsened the English recognition performance; the PER of Speecon adult
test sets decreased from 0.26 to 0.22 for clean data, 0.27 to 0.23 for noisy car
data, and 0.27 to 0.25 for noisy public data. Worse still, combining the data
negatively affects the phoneme recognition of the children’s speech. Combin-
ing the data resulted in a worsening of performance in both languages, with
Finnish Speeconkids test data seeing an increase in PER from 0.25 to 0.27
and, for pfstar test sets, a drastic increase of PER from 0.30 to 0.43. It is
not clear what causes this performance degradation.

4.2.5 Effects of adding Tactron-generated Data

Since Tacotron generated speech is trained on the Speecon database, it is
safe to assume that the distribution of speech in the generated data will have
some resemblance to that of the Speecon dataset. However, generated data
alters the phonetic distribution of the Finnish speech used in training, as the
phonetic distribution for these English words is absent in native Finnish.

The addition of Tacotron generated data has shown a significant perfor-
mance boost to the recognition performance of the Speeconkids test data.
The improvements can be seen in table 4.8. The PER for the Speeconkids
dataset dropped from 0.27 to 0.13. Similarly, performance gain was seen
for the adult Speecon test sets. The PER for the English children’s speech
in pfstar reduced from 0.43 to 0.38, while the PER for adult English test
sets worsened slightly, but insignificantly compared with the massive gains
in children’s recognition results.

There are a few different ways in which adding the synthetically gener-
ated data from Tacotron would have aided the training of the GRU model.
Each possibility is discussed in detail below.

The added Tacotron generated data helps to mitigate data im-
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‘ Data on which the GRU model was trained

simplified
Onl onl : : and

Fingish English simplified Tacotron

generated
Speecon clean 0.26 0.77 0.22 0.20
Speecon noisy(car) 0.27 0.78 0.23 0.20
Speecon noisy(public) | 0.27 0.75 0.25 0.21
Speeconkids clean 0.25 0.65 0.27 0.13
wsjcam( 0.79 0.26 0.29 0.30
wsjl 0.80 0.16 0.22 0.24
pfstar 0.80 0.30 0.43 0.38
siak 90+ 0.88 0.69 0.74 0.77
Tacotron generated 0.57 0.68 0.58 0.39

Table 4.8: PER Comparison of GRU Models when trained on Different data

configuarations.

balance.

The Finnish training data consists of 10 hours of children’s speech and
70 hours of adult speech. When 6 hours of synthetically generated children’s
speech is added to the training, it changes the proportion of child speech
in the mix. To check if this is helping the improvement of the recognition
results, an experiment was devised. In one configuration, the amount of
Speeconkids data is sampled twice compared to adult datasets during train-
ing of the GRU model with a simplified data configuration. This configura-
tion is compared with the training data configuration of simplified data and
Tacotron-generated data. The table below compares the PER of these two
models.

From table 4.9, it is clear that oversampling the Speeconkids speech does
not have the same effect as using Tacotron generated speech. Oversampling
also resulted in a PER reduction, but it was not as significant (0.27 to 0.23
for Speeconkids) as while using Tacotron generated data (0.27 to 0.13 for
Speeconkids). Oversampling Speeconkids speech resulted in the deteriora-
tion of English children’s phoneme recognition. These results are a clear
indication that even though the Tacotron generated synthetic data helps to
mitigate data imbalance, it also helps to improve the performance through
other means.
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Data on which the GRU model was trained
Simplified Simplified
and and
Simplified| Speeconkids Tacotron
sampled generated
twice speech
Speecon clean 0.22 0.23 0.20
Speecon noisy car 0.23 0.24 0.20
Speecon noisy public | 0.25 0.24 0.21
Speeconkids clean 0.27 0.23 0.13
wsjcam( 0.29 0.30 0.30
wsjl 0.22 0.24 0.24
pfstar 0.43 0.50 0.38
Tacotron generated 0.58 0.55 0.39
siak 90+ 0.74 0.75 0.77

Table 4.9: PER Comparison between oversampling and Tacotron synthtic
speech generation

The added Tacotron generated data acts as a regularizer

Even though the Tacotron generated data is trained on the Speecon
dataset and provides a close resemblance, it is not a perfect recreation of
the original dataset. When a test set created from synthetic data was tested
by the GRU model trained on only Finnish datasets, a PER of 0.57 was
observed, while the PER for Speeconkids was 0.25. There are three sources
of variability in the Tacotron generated data.

e Errors from the sequence to sequence generative model are added to the
data. It is not possible to learn a perfect one to one mapping between
phonemes and Mel-spectral filter banks.

e The Griffin-Lim frequency to time domain inversion adds artifacts and
errors to the generated audio.

e The phonetic distribution of the generated speech is different compared
with native Finnish.

The above factors differentiate the distribution of Tacotron generated
data from that of Speeconkids. This variability has a regularizing effect and
prevents the model from overfitting to training data, improving the general-
ization performance.



CHAPTER 4. SCORING MODEL 44

4.2.6 SIAK 90+ test data

Tacotron generated data improves the GRU model’s performance on English
and Finnish children’s speech, but the PER for the test sets of Finnish and
English speech datasets is not a direct indicator of how well the GRU model
will perform when evaluating STAK game words. Since there is no phonetic
transcript for SIAK game words, it becomes rather difficult to gauge and
choose a model from which the game words can be scored. Since the scoring
regressor will be built on top of the phoneme recognition results, error from
the regression model will be compounded on top of the GRU model error,
making it difficult to identify the factors that would improve the system per-
formance. To alleviate this problem, a STAK 90 test set was created. The
assumption here is that all the game words which have achieved a score of
above 90 can be assigned to the correct phonetic transcription of the game
word. There are 2697 such utterances in the SIAK database, which were
selected to form the SIAK 90 test set.

Data on which the GRU model was trained
simplified
Only only . . and
Finnish | English simplified Tacotron
generated
siak 90+ 0.88 0.69 0.74 0.77

Table 4.10: PER Comparison of GRU Models when trained on different data
configurations on the STAK 90 test set

All the trained models perform poorly in recognizing the SIAK 90 test
set; a dramatic increase in PER is seen for all the models. In table 4.10, it is
seen that for the STAK 90 test set, the best PER is 0.69, which comes from
the model which is trained only on English data. All the other models have
a slightly poorer performance, indicative of the fact that the SIAK speech
does not resemble any of the other training speech. So, the metrics to check
if progress has been made to improve the STAK results are lacking. Modifica-
tions in model architecture, or training data which improve the English and
Finnish test data results, does not correspond directly with the improvement
in the STAK recognition results.
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4.2.7 Regression results

Once the N-best estimation list for each STAK game word is predicted by the
Phoneme recognition model, it needs to be mapped to the human annotated
score. Data-driven phonetically weighted Levenstein distance (DDPWLD)
measure and Random forest regressor are used to map the N-best list esti-
mation to the scores.

STAK data is split into train (23488 samples), development (1305 sam-
ples), and test sets (4308 samples). For each sample 20 best estimations are
saved from the different phoneme recognition models and Levenstein distance
is calculated between the prediction and the target sequence. The weights
of the distance measure are optimized to reduce the error using the train-
ing data. A random forest regressor is built taking the parameters of the
Levenstein distance as inputs and the score as the output.

Pearson correlation coefficient on test set
Data driven

Models weighted Leven- randonr} forest
shtein distance regression

Simplified + Tacotron 0.379 047

generated speech

Simplified 0.382 0.45

Only English 0.379 0.49

Only Finnish 0.378 0.42

Table 4.11: Comparsion of correlation between human annotated score and
model generated score calculated from different models.

The correlation between the human annotated score and the regression
outputs for different input model predictions is tabulated in table 4.11. The
correlation is weak and is almost invarying for DDPWLD regression, but
the results from the random forest regression follow the SIAK 90 phoneme
recognition results closely. Asin SIAK 90 results, predictions from the model
trained only on English has better performance than other models. Using
Tacotron generated data in training improves the performance compared
to all the data, but the improvement is insignificant. This result reaffirms
the observation that Finnish accented English is not equivalent to SIAK
game data, and the generated speech reduces the data imbalance in Speecon
dataset and not STAK dataset.
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Discussion

At the beginning of the thesis, the goal was to establish definitive answers
for whether in-domain data for the STAK game be generated using TTS syn-
thesis, and whether synthesized data would improve the performance of an
acoustic model and scoring model used to score SIAK game words.

Through the engineering process, these questions were converted into
more specific sub-questions:
Is it possible to generate multi-speaker Finnish speech using a Tacotron text
to speech system by training it on the Speecon dataset?
Is it possible to generate speech from children’s voices, which are underrep-
resented in the Speecon dataset?
Can children’s voices be generated from the SIAK game?
Is it possible to generate Finnish accented English?

Through the subsequent experiments, it was established that a Tacotron
text-to-speech system can be used for multi-speaker speech synthesis by spec-
ifying the speaker’s identity along with the text-speech pair during the train-
ing. The speaker identity can be specified either using a one-hot encoded
vector or a speaker embedding vector created from a separate model.

The research determined a way to generate Finnish accented English by
intelligently mapping Finnish phonemes to English words using the phono-
logical feature representation. In this work, even though the degree of accent
cannot be controlled as has been achieved by some of the recent work from
Google [32], this method is a simple way to achieve accented English, which
does not require model architecture modifications. The degree of naturalness
of the accent was analyzed qualitatively by listening to the audio, and mean
opinion score tests were not been conducted to validate the claim.

The Tacotron model was trained on an imbalanced Speecon dataset,

46
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which contained only 10 hours of children’s speech for 100 hours of adult
speech. Using multi-speaker training, the speech was synthesized with voices
similar to both children and adults. This data imbalance did not cause any
error in speech synthesis.

The generated dataset was considered as a proxy to the training dataset
for STAK. From the phoneme recognition results, it is now clear that the
generated data can become a proxy to Speeconkids dataset and not to SIAK.

It was not possible to generate speech corresponding to SIAK, since SIAK
data could not be used to train the Tacotron model, as it was not transcribed.
Transfer learning was attempted with the help of speaker embeddings to gen-
erate speech as in STAK. Even though the approach was reported to work for
a similar Tacotron-2 text to speech models, it failed to succeed in the cor-
responding experiments with Tacotron-1. The simplifications made in the
Tacotron-2 model architecture appear to be vital for the transfer learning
approach to work.

After answering the first phases of questions, the resulting key ques-
tion was whether a speech generated from a text-to-speech system improves
phoneme recognition results and helps the SIAK scoring.

The Tacotron generated data has been shown to improve phoneme recog-
nition for the Speeconkids dataset, and the overall performance of the recog-
nitions system. It has been proven that by using text to speech synthesis,
the problem of data imbalance can be mitigated through intelligent trans-
fer learning, a conclusion which can be drawn from the PER results of the
Speeconkids and pfstar test datasets.

Although the method was proven to reduce data imbalance for in Speecon
dataset, the method failed to generalize for STAK dataset. As the Tacotron
generated data was conditioned on Speecon and not SIAK, the PER perfor-
mance gain seen for Speecon dataset was not observed for STAK. Contrarily
PER performace was affected negatively as seen from the results of STAK-90.
Consequently, the correlation between the human annotated score and model
generated score was affected negatively. These results strongly indicate the
distributional differences between SIAK and Speecon datasets.

Looking at the experiments on the GRU model, it can be seen that it
learns the spectral distribution of the individual datasets on which it is
trained, but it fails to interpolate and generalize between them. When differ-
ent datasets are mixed and the subsequent model is trained, the GRU model
learns the distribution of each one of the datasets but fails to generalize
beyond the data from which it is trained.
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5.1 Future Work

The possibility of using text-to-speech systems to improve speech recognition
presents several opportunities to use the same technique in other low-resource
settings. The rapid improvement in text-to-speech systems with controllable
pitch, accent, and noise levels in recent years has provided ample scope to
utilize them for low-resource speech recognition.

The biggest bottleneck in improving the SIAK scoring is the unavailability
of phonetic transcription of the speech. This prevents us from using the data
in training the recognition models as well as text-to-speech synthesis models.
Transcribing the game words will present different possibilities to improve the
scoring system. Even if a small portion of the STAK dataset is transcribed,
the techniques mentioned in this thesis can be used to utilize that data to
improve the recognition results and hence, the scoring system.
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