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ABSTRACT

Bayesian inference is a theoretically well-founded and conceptually simple
approach to data analysis. The computations in practical problems are
anything but simple though, and thus approximations are almost always a
necessity. The topic of this thesis is approximate Bayesian inference and
its applications in three intertwined problem domains.

Variational Bayesian learning is one type of approximate inference. Its
main advantage is its computational efficiency compared to the much ap-
plied sampling based methods. Its main disadvantage, on the other hand,
is the large amount of analytical work required to derive the necessary com-
ponents for the algorithm. One part of this thesis reports on an effort to
automate variational Bayesian learning of a certain class of models.

The second part of the thesis is concerned with heteroscedastic modelling
which is synonymous to variance modelling. Heteroscedastic models are
particularly suitable for the Bayesian treatment as many of the traditional
estimation methods do not produce satisfactory results for them. In the
thesis, variance models and algorithms for estimating them are studied in
two different contexts: in source separation and in regression.

Astronomical applications constitute the third part of the thesis. Two
problems are posed. One is concerned with the separation of stellar sub-
population spectra from observed galaxy spectra; the other is concerned
with estimating the time-delays in gravitational lensing. Solutions to both
of these problems are presented, which heavily rely on the machinery of
approximate inference.



ABSTRAKTI

Bayesildinen pééttely on teoreettisesti hyvin perusteltu ja késitteellisesti yk-
sinkertainen ldhestymistapa data-analyysiin. Kdytédnnon ongelmien tasmél-
linen laskennallinen késittely on kuitenkin usein haastavaa ja siksi approksi-
maatiot ovat ldhes aina tarpeen. Tamén vaitoskirjan aihe on approksimatii-
vinen bayesildinen péaattely ja sen sovellukset kolmessa toisiinsa liittyvéssa
ongelmakokonaisuudessa.

Variaatio-Bayes on yksi approksimatiivisen péittelyn muoto. Se on lasken-
nallisesti huomattavasti tehokkaampi menetelmé kuin paljon kéytetyt otan-
taan perustuvat menetelmét, mutta vaatii kayttajéaltdan enemmén analyyt-
tistd tyota tarvittavien péivityskaavojen johdossa. Téamén vaitoskirjan en-
simmaéisessd osassa késitellain variaatio-Bayes-menetelmén automatisoin-
tia tietylle malliluokalle.

Viitoskirjan toisessa osassa tutkitaan heteroskedastisia eli erivarianssisia
malleja. Téllaisten mallien késittely bayesildisessd viitekehyksesséd on eri-
tyisen perusteltua, koska monet perinteiset estimointitekniikat eivit tuota
niille tyydyttavia tuloksia. Vaitoskirjassa heteroskedastista mallinnusta tar-
kastellaan kahdesta ndkokulmasta: toisaalta ldhteen erottelun ja toisaalta
regression kannalta.

Astronomiset sovellukset muodostavat vaitoskirjan kolmannen osan. Toinen
kahdesta tarkasteltavasta ongelmasta késittelee erilaisten tédhtipopulaatioi-
den erottelua havaituista galaksien spektreisté; toinen ongelma puolestaan
koskee gravitaatiolinssien viive-estimointia. Ty0ssé esitetdén ratkaisut nédihin
ongelmiin nojautuen approksimatiivisen paédttelyn menetelmiin.
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Chapter 1

Introduction

1.1 Background

This thesis belongs to the field of machine learning, a broad subfield of
computer science, which is concerned with “the study of algorithms that
improve automatically through experience” (Mitchell, 1997). Although ma-
chine learning can be applied in diverse settings, ranging from robotics to
game playing, much of it deals with data analysis. That is the focus in this
thesis too.

Many fields of endeavour involve some form of data analysis. Perhaps the
main characteristic of the kind of data analysis practised in the context
of machine learning is that in that case the algorithms tend to be more
data driven and less model dependent. Of course the data do not speak for
themselves. There always has to be some set of ideas guiding the analysis,
but in machine learning these ideas are usually quite general.

There are several approaches to machine learning, one of which is Bayesian
probability theory. It has the appealing property that with certain assump-
tions it can be shown to be the optimal procedure for logical reasoning under
uncertainty. In Bayesian inference, probabilities measure degrees of subjec-
tive beliefs, and the theory formalises how these beliefs are to be revised
when faced with new information.

The theory of Bayesian inference is concise, and its implementation is
straightforward in principle. Unfortunately the exact treatment of any real-
istic and useful model would require the computation of integrals for which
no closed form solutions exist and which are too high dimensional to be
tackled with the tools of standard numerical integration. Approximations
are thus necessary in almost every real application of Bayesian inference.
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The subject of this thesis is approximate Bayesian inference and its appli-
cations in three intertwined problem domains.

Variational Bayesian learning is one method for approximate inference. Its
main advantage is its computational efficiency; it can be applied to large
problems for which sampling-based approaches would be hopelessly ineffi-
cient. The price to pay for the reduced computational load is added ana-
lytical complexity. Considerable amount of work is required to derive the
necessary components of the algorithm for any particular model, which can
be a hindrance in the exploration to find the most suitable model for one’s
problem. One part of this thesis reports on an effort to completely auto-
mate variational Bayesian learning of models belonging to a certain, rather
general class.

The second part of the thesis is concerned with heteroscedastic modelling.
Heteroscedasticity means, shortly put, nonstationarity of variance. This
phenomenon is commonplace in many applications, finance being perhaps
the most studied one, but its modelling is often neglected as it causes com-
putational difficulties. Or rather, many of the traditional estimation meth-
ods simply do not produce satisfactory results for heteroscedastic models—
a problem not present with Bayesian computations. In this thesis, het-
eroscedastic modelling is approached from two different angles. In the
source separation setting, it makes sense to look for co-occurring variance
fluctuations to aid the modelling of higher order dependencies between the
sources which would otherwise go unnoticed. In the regression setting, the
uncertainty in the target variable might sometimes be the only thing that
can be predicted, the conditional average being mostly meaningless due to
high variance of the target.

Astronomical applications constitute the third part of the thesis. The same
phenomenon is witnessed in astronomy as in modern society in general: vast
amounts of data is, or is becoming, available. In astronomy the process is
largely driven by virtual observatory, the Internet archiving of astronomical
data. Computational efficiency of the methods used for analysis is in this
light a necessity. On the other hand, the extreme opposite of the above
applies in certain areas of astronomy, where one can have only a handful of
datapoints available for the study of the object of interest. Each datapoint
thus becomes extremely valuable both in monetary as well as in information
terms, and so it is highly desirable to use methods that squeeze even the last
drop of knowledge from that little data one has. In this thesis, astronomical
applications with both abundant data and scarce data are encountered, and
solutions to them are presented using the tools of approximate Bayesian
inference.
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1.2 Contents of the publications and author’s con-
tributions

Publications I and II concern Bayes Blocks, the framework that au-
tomates the necessary mathematical derivations for variational Bayesian
learning of a flexible class of models. Publication I lays out the theory and
the design rationale behind the framework whereas Publication II intro-
duces the accompanying software package that implements it. Bayes Blocks
has been a group effort, initiated by Dr Harri Valpola. The present author’s
contribution consists of having derived and implemented extensions to en-
able the use of rectification nonlinearities, rectified Gaussian variables, and
mixtures-of-Gaussians in the models as well as having implemented some
software related features to the library. In Publication I, the main writing
responsibility was on Dr Tapani Raiko. The present author participated in
the writing and performed some of the experiments. The present author
bore the main responsibility of Publication II. The coauthors helped in
writing it.

Publications III and I'V both discuss heteroscedastic modelling, although
from different viewpoints. In Publication III, heteroscedastic modelling
is studied in the unsupervised learning context. The standard noisy ICA
model is extended to several directions by relaxing either the assumption of
uncorrelated noise in the observations or the independence of the sources.
The paper was written by Dr Harri Valpola. The present author imple-
mented the methods and conducted the experiments. Publication IV shifts
the focus to supervised learning. In the paper, nonlinear heteroscedastic
regression is studied and an approach based on variational EM is presented.

Publications V, VI, and VII are related to astronomical applications.
Publication V presents a model and a learning algorithm for nonnegative
factor analysis termed as rectified factor analysis (RFA). The present au-
thor derived and implemented the method, performed all the experiments
in that paper, and had the primary responsibility in writing it. Dr Ata
Kabéan helped in the writing. Publication VI is concerned with the ap-
plication of RFA to finding stellar subpopulations from a set of observed
galaxy spectra. Dr Louisa Nolan has the main writing credits. She also
performed the comparison experiments with the astrophysical stellar pop-
ulation model whereas the present author made all the experiments with
RFA and helped in writing the paper. Publication VII presents a method
for delay estimation in the case when the signals are irregularly sampled.
The problem is closely related to delay estimation in gravitational lensing
systems which serves as the main motivation for the work, although the
method is of general applicability. The present author derived and imple-
mented the method, performed all the experiments, and, for most parts,
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wrote the article. Dr Somak Raychaudhury gathered the astronomical data
from various sources, and helped in interpreting the results.



Chapter 2

Bayesian probability theory

Probability theory can be seen as an extension of logic applicable when
there is uncertainty in the premises. It formalises the process of updating
one’s beliefs when one observes new data. The Bayesian formulation of
probability theory is particularly appealing as it addresses all aspects of
statistical inference in a single concise theoretical framework. The basic
theory is, indeed, delineated without much effort and that is the subject
matter in this chapter. It is the practical implementation of Bayesian in-
ference that is hard, calling for elaborate approximation methods. These
are discussed in the next chapter.

2.1 Fundamentals of Bayesian probability

Bayesian probability theory can be derived from many starting points. One
of the more intuitive axiomatic systems was formulated by Cox (1946) (see
Jaynes (2003) for a detailed discussion). The essence of Cox’s axioms is
that inference must be rational and consistent. The rules of probability that
follow from these principles are the sum rule and the product rule, and from
those one can further derive the marginalisation principle and the Bayes’s
theorem—which is at the core of all Bayesian inference. Other axiomatic
systems leading to Bayesian inference include decision theory (Bernardo
and Smith, 2000) and the Dutch book arguments.

Before going into the fundamental rules of probability theory, the essen-
tial notation is introduced. All probabilities are conditional on some prior
knowledge. Given the prior information I, the probability of the propo-

A gambler who is not Bayesian is subject to a Dutch book, i.e. sure to lose
money (Lehman, 1955).
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sition A is denoted as p(A|l). The probability of the logical conjunction
of the two propositions A and B is denoted as p(A, B|I). Sometimes it
is convenient to drop out the prior information I to facilitate shorter no-
tation, but even then there is always the underlying assumption that the
probabilities are conditional on some prior knowledge. Inference can never
take place in vacuum.?

2.1.1 The sum rule and the product rule

It follows from Cox’s axioms that probabilities are real numbers between
zero and one. Zero represents impossibility and one certainty. Let A and
B be propositions, let I be the relevant prior information, and let —A
denote the logical negation of A. Now the sum and the product rule can
be represented concisely as

p(—A[I) =1 —p(A[I)
p(A, B|I) = p(A|B, I)p(B|I) .

The above two equations are all that there is to probability theory at its
most fundamental level.

2.1.2 The Bayes’s theorem and the marginalisation princi-
ple

The Bayes’s theorem follows directly from the product rule by writing the
probability of the product both possible ways: p(A, B|I) = p(A|B,I)p(B|I)
= p(BJ|A, I)p(A|I). By dividing with p(B|I) we get the Bayes’s theorem

p(B|A, Dp(A[I)
p(B|I)

The marginalisation principle now follows from the sum rule applied to
p(A|B, I) which implies

p(A|B, I) =

p(B|I) = p(B|A, I)p(A[I) + p(B|~A, I)p(—A|I)
= p(AvBu) +p(—\A,B‘I) .

Above, p(B|I) is called the marginal probability of B. Equipped with
the Bayes’s theorem and the marginalisation principle, we notice that the
necessary ingredients for computing the inverse probability p(A|B,I) are
the likelihood p(B|A, I) and the prior p(A|I) of A. Often the term posterior

For an elaborate discussion of prior assumptions (and lack thereof) in regression, see
Wolpert (1996).
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probability is used to describe the probability p(A|B, I) as it is the result of
combining the prior information I with the additional knowledge B about

A.

2.1.3 The continuous case

In the above rules, only propositions are considered, but the extension to
discrete variables is immediate. The generalisation to continuous variables
is also identical, with the exception that the probabilities are replaced by
probability densities and the sums by integrals. The symbol p is somewhat
overloaded here as it represents both probabilities and probability densities.
In practice, this cannot lead to confusion. For continuous (possibly vector
valued) a and b the Bayes’s theorem reads

plalb, T) = p(bla, Dp(all)  p(bla,I)p(all)

plI) [ p(bla,I)p(all)da’

Of course any combination of discrete and continuous variables can be con-
sidered as well. In that case, the expression consists of an appropriate
mixture of probabilities and probability densities, and summations and in-
tegrals. A rigorous derivation of the rules of Bayesian probability for the
continuous case can be found in Bernardo and Smith (2000).

2.2 Uses of Bayesian probability

The above rules are sufficient to answer any question we might ask in the
context of probabilistic modelling. But what are the questions most often
asked? Below some common scenarios are discussed which cover a large
portion of applications of Bayesian inference.

The following notation will be used: X denotes the data, or the observations
made on which the inferences are based, M denotes the model, or the overall
assumption about the given problem, and @ denotes the parameters of the
model.

2.2.1 Parameter inference

Assuming that the parameters 8, or a subset of them 6, are interesting as
such, then we simply want to update our beliefs regarding them based on
our model M and the observed data X. This is a matter of an application
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of Bayes’s theorem:

p(X|6, M)p(6|M)
p(X|M)

p(01X, M) = (2.1)
If we are only interested in the marginal distribution of 84, we can integrate
the other parameters out using the marginalisation principle.

The difficulties in making posterior inferences usually begin already at the
outset, in computing the posterior, as the normaliser p(X|M) cannot of-
ten be expressed in closed form. The integrals needed for computing the
marginal distributions are also commonly intractable.

2.2.2 Predictive inference

In some applications, especially in the field of machine learning, the parame-
ters of the model are not interesting as such, but only as a device for making
predictions. The multi-layer perceptron is a fine example, where indeed it
is difficult to assign meaning to the values of the weights in the network—
the model merely serves as a black box for predictions. To compute the
posterior predictive density, p(Xpew|X, M), one computes the posterior of
the parameters and then integrates over it:

p(XneW|XaM) = /P(XnewwaX’M)P(an M) de.

Again, the straightforward principle can be difficult to implement in prac-
tice due to the common complication of the integral being tricky to evaluate.

2.2.3 Model inference

In most cases, the problem at hand is not so well understood that there
would be no doubt about the correctness of the chosen model. There might
be various model candidates, My, ..., M,, from which the most appropriate
should be chosen. The posterior probabilities of the competing models can
again be computed using the Bayes’s theorem:

p(X| My, I)p(My|T)
> p(X| My, Dp(M;|I)

Above, I denotes the higher level assumption that we are confining our
inferences to the model family {M;}? ;. It is important to acknowledge
that the model probabilities are conditional on this information. Then it
becomes clear that the model posterior tells nothing about the goodness of
models outside the chosen family. Conditional on I, a model M} might have

p(Mi|X, 1) = (2.2)
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a probability near unity, but with other assumptions J, perhaps postulating
a larger model family, the probability of the very same model could be
negligible.

Equation (2.2) unveils the significance of the normaliser p(X|M). It is an
essential ingredient in computing the posterior probability distribution over
a set of models. If the prior distribution over the competing models is uni-
form, the relation between the normaliser and the posterior probability of
a given model becomes particularly simple—they are directly proportional
to each other in that case. Hence p(X|M) is sometimes referred to as the
model evidence.

In making predictions, one might consider averaging not only over the pa-
rameters of a particular model, but also over the model family. This is called
Bayesian model averaging (Hoeting et al., 1999) and is deemed the correct
way of computing predictive distributions. Often in practice, however, one
of the models so dominates the posterior distribution, that the averaged
predictive distribution is almost equivalent to that of the dominant model.

2.3 On constructing models

Computational complications aside, the above rules are all that is needed
to answer our inferential questions, assuming, of course, that we have an
appropriate model or model family chosen. Constructing a suitable model is
then a problem in its own right. Some of the usual techniques are discussed
in this section.

2.3.1 Conjugate priors

A prior distribution is said to be conjugate to a likelihood if the posterior
distribution has the same form as the prior (Gelman et al., 1995). To put
this more formally, a family of prior distributions P = {p(#)} is conjugate
to a family of sampling distributions F = {p(y|0)} if

p(0ly) € P for all p(y|0) € F and p(f) € P.

For example, consider the Gaussian distribution parametrised by its mean
w and precision (inverse variance) 7:

p(alu, ) = N (@l 771) .

Now the prior distribution conjugate to the likelihood of 7, assuming u
fixed, is the Gamma distribution as then the posterior of 7 will also be a
Gamma distribution.
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p(a,b) p(a,b|x)
2 — J
1 1
a o | 2o
-1} ] -1
-2 -2
2 1 o0 1 2 2 -1 o0 1 2
a a

Figure 2.1: The prior and the posterior in the example problem when z is
observed to be 0.5.

The ubiquitous use of conjugate priors stems from their convenience in
computations because only the parameters of the prior distribution need to
be updated in the prior-to-posterior analysis. The models where the prior
of the parameter vector as a whole would be conjugate to the likelihood are
unfortunately limited, but often it is sufficient that conjugacy applies only
conditionally in a multiparameter model. Take the following probabilistic
model as an example:

p(xla,b) = N (z|ab,0.01)
p(a) = N (al0,1)
p(b) =N (0|0,1) .

Above, z is assumed to be observed and it is modelled as the product of
two unobserved variables a and b. If we look at the parameter vector as a
whole, @ = (a,b), it is obvious that the prior, which is a bivariate Gaussian
with zero mean and identity covariance, is not conjugate to the likelihood
as the double-boomerang-shaped posterior (see Figure 2.1) is indeed not
a Gaussian. But the posterior for each parameter by itself, assuming the
other fixed, is Gaussian, and hence the priors can be said to be conditionally
conjugate to the likelihood.

Conditional conjugacy® plays an especially important role with some of
the approximate methods such as Gibbs’s sampling and variational Bayes
(discussed in the next chapter).

3The term conditional conjugacy does not seem to be widely adopted, but at least
Gelman (2006) uses it in the exact same meaning as here.
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2.3.2 Exponential families

For a probability distribution belonging to an exponential family, a conju-
gate prior always exists (Gelman et al., 1995). That is the foremost reason
why the concept of exponential families is of importance and is worth a
short review here. A conditional distribution is said to be in an exponen-
tial family, if it has the following form

p(x18) = exp(8Tu(x) + f(x) + (6)). (2.3)

Above, 0 is the natural parameter, u(x) the sufficient statistic, and g(@) the
normaliser. The choice of the functions u, f, and g define the family, and the
choice of the parameters 0 pick one particular distribution from that family.
A model where all conditional distributions belong to an exponential family,
and where the prior-likelihood relations are (conditionally) conjugate, is
called a conjugate-ezponential model (Ghahramani and Beal, 2001).

Most of the commonly used distributions belong to an exponential family.
For example, the Gaussian distribution

p(z|p, 0%) = N (z|p,0”) = = exp(—g2z(z — 1)?)

can be presented in the form of Equation (2.3), if the natural parameter is
set to @ = (u/0?,1/0?) and the sufficient statistic to u(z) = (z, —2%/2).

2.3.3 Latent variable models

Latent variables are formally defined as variables that are not directly ob-
served. Using this definition, all unobserved quantities in a model would
be entitled to be called latent. Often it is also assumed that the latent
variables somehow break the dependencies between the observed variables,
e.g. given the latent variables the observed variables would be independent.
This, however, is not always the case.

Introducing latent variables to an otherwise equivalent model often simpli-
fies the model and consequently makes the model estimation easier. Con-
sider, for example, the mixture-of-Gaussians model for an iid sample of one
dimensional observations X = [z1,...,zn]:

K

N
p(X|m, v, 7) =[] me N (wilmg, vr) -
i=1k=1

Above, the unobserved quantities m, v, and 7 would not usually be called
latent variables; they would rather be called parameters of the model as all
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the data samples are conditioned on them. An equivalent mixture model
can be formulated in terms of (true) latent variables ); that indicate from
which mixture component the corresponding data samples are generated.
This simplifies the conditional model to

N
p(Xm, v, \;) = [[N (zilma,,va,) -
=1

The latter model is easy to estimate using the EM-algorithm (see the next
chapter). It also has the additional benefit of providing the probabilities of
the allocations A; for each data sample.

2.3.4 Markov blanket

One useful concept, which is not so much related to construction of models
as it is to Bayesian modelling in general, is that of Markov blanket (Pearl,
1988). In a probabilistic model, the Markov blanket of a variable consists
of its parents, its children, and its children’s parents (so called coparents).
The terms parent, child, and coparent, in turn, have intuitive meaning when
the probabilistic model is viewed as a graph. In this formalism the variables
of a model are represented as nodes and the logical dependencies as edges.

Let us make this concrete by an example. Consider a probabilistic model
over variables A, B, ..., M where the joint probability distribution factors
as

p(A,B,...,M) = p(A|C)p(B|C)p(C|F,G)p(D|G, H)p(E|H)p(F|I)

< p(GIJ, K )p(Ep(1)p(T| Lyp(K | M)p(Lyp(h1) . Y

A graphical representation of this model is shown in Figure 2.2. The node
G’s parents are J and K, its children are C' and D, and its coparents are
F and H. The Markov blanket is then the set {J, K,C, D, F, H}.

Figure 2.2: The model in Eq. (2.4) rep-
resented as a graph. The dashed line

marks the set of nodes belonging to
the Markov blanket of G.
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In predicting a node’s state, only the states of the nodes in its Markov
blanket are needed, the state of the rest of the model being irrelevant. The
importance of this property is later seen in Chapter 4 where a variational
Bayesian message passing scheme is discussed.



Chapter 3

Approximate Bayesian
inference

As the integrals appearing in Bayesian computations are seldom tractable,
approximations are almost always needed. Approximate methods come in
many varieties, ranging from simple approaches of reducing the posterior
distribution to a point estimate, to complex techniques involving variational
calculus or Monte Carlo methods. In this chapter a review of approximate
Bayesian inference is given, the emphasis being on those methods that are
used in this thesis.

3.1 Deterministic methods

One way to categorise the different approximation schemes is to divide
them into deterministic and stochastic methods. As the name implies, a
deterministic method always gives the same solution if the initial conditions
are kept the same. In this section some of the deterministic methods are
reviewed.

3.1.1 Maximum likelihood and maximum a posteriori

The simplest technique to approximate a posterior distribution is to re-
duce it to a single representative point. The maximum a posteriori (MAP)
method does this by finding the parameter values that maximise the pos-
terior density (2.1):

QMAP = argmax p(0|X, M) = argmax p(X, 0| M) .
0 2]

14
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The problematic normaliser, p(X|M), need not be computed as it does
not affect the extrema of the probability density function. Also, if the joint
density is composed of a product of many simple terms, as is often the case,
taking its logarithm will yield an expression involving a sum of those simple
terms, making subsequent computations convenient. Once the expression
to be maximised is written down, any suitable optimiser can be used to
find the optimum.

Nonlinear programming is, of course, plagued with many nontrivial prob-
lems, such as nonglobal optima and slow convergence, that as practical
issues need to be dealt with when searching for maximum a posteriori esti-
mates. But those aside, there also exist fundamental problems that would
not vanish even if there were a perfectly reliable and efficient method for
solving the optimisation task. The problem is this: high probability density
is an unreliable indicator of where most of the probability mass lies, and
the regions of high density but low mass often represent overfitted models.
This is especially true in heteroscedastic modelling, as will be demonstrated
in some detail in Chapter 5.

Maximum likelihood (ML) estimation differs from maximum a posteriori
in that the prior information is ignored and the maximisation is done over
the mere likelihood:

Oy = argmax p(X|0, M) .
(7]

The same effect is achieved with MAP if one uses a prior which is essentially
flat in the region of high likelihood (a prior like this is called vague). When
the likelihood being under scrutiny has been obtained by marginalising
out some of the parameters of a larger model, then maximum likelihood
estimation on the marginal likelihood is referred to as type-II maximum
likelihood.

Neither MAP nor ML provide means for estimating the model order. By
making the model more expressive, one can always obtain a larger like-
lihood. In practice, the model order selection is often done using cross
validation, i.e., by leaving out part of the data while fitting the model and
then evaluating the model performance on the left-out data.

3.1.2 Laplace’s method

Laplace’s method (Tierney and Kadane, 1986) is more an add-on on top of
ML or MAP estimation than an estimation technique in its own right. Once
the maximum of the posterior (or likelihood) has been found, a second order
Taylor expansion is used to approximate the logarithm of the distribution
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at that point. This yields a Gaussian that is then used as an approximation
to the posterior.

While Laplace’s approximation is often easy to compute, its quality largely
depends on whether the posterior, or at least one of its significant modes, is
close to a Gaussian. And since the first step in the computation of Laplace’s
approximation is finding the MAP estimate, the problems of MAP are
inherited as such. When, however, MAP or ML is sufficient for a problem,
Laplace’s method provides a simple way to obtain credible intervals for
the parameters. The method can also be used to compute the evidence; it
can been obtained as the ratio between the unnormalised posterior and the
Gaussian approximation.

3.1.3 Variational Bayes

The central idea in variational Bayesian learning (Jordan et al., 1999), or
variational Bayes (VB) for short, is to fit a simpler, tractable distribution
to the posterior by variational methods. The details of the most common
variant of VB, sometimes referred to as ensemble learning (MacKay, 1995;
Lappalainen and Miskin, 2000), are described below.

Let the true posterior distribution of the parameters 6 be p(0|X, M). As
usual, X denotes the data and M the modelling assumptions. The VB
approximation is the distribution ¢(0) from a suitable family Q, that is
closest to p(8|X, M) in the sense of the Kullback-Leibler divergence

D) = [ 4(6) logm,%(%de. (3.1)

Computing the VB approximation is then a matter of solving the following
variational problem:

Minimise Dk1,(q,p) w.r.t. g
subject to g € Q.

The minimisation of Dk, is equivalent to the minimisation of the cost
functional
q(0)

Cve(g;p) :/q(G)logMdO (3.2)

in which the evaluation of the often intractable evidence term p(X|M) is
avoided. The equations (3.1) and (3.2) are connected by

Cve(q;p) = DkL(q,p) — log p(X|M) . (3.3)
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From the Gibbs’s inequality we know that Dkr, is always nonnegative and
so we arrive at the inequality

Cve(g,p) > —logp(X|M), (3.4)

which shows that the negative of the VB cost bounds the log-evidence of
the model from below, the margin separating them being exactly the KL-
divergence between the approximate posterior and the true posterior.

Choosing a suitable distribution family Q is at the core of VB. Indeed, if
Q is set to the class of all distributions, it is easy to see that the optimal
“approximation” is the original posterior distribution. But the reason to
search for an approximation was, to begin with, that the true posterior is
difficult to handle. Hence, © should be restricted to distributions that are
tractable. Usually one assumes that Q consists of factorial distributions of
the form:

N
1(0) = [ a(6))-
=1

Often the model being studied hints toward a sensible factoring. In varia-
tional Bayesian PCA (Bishop, 1999), for example, it is sufficient to split @
in two parts: one containing the factors and the other the mixing matrix.
In some cases the factoring needs to be taken to its extreme and assume a
fully factorial q.

The factored posterior also suggests a straightforward way of solving the
variational problem. We can update the factors ¢(6;) one at a time, op-
timising the relevant part of Cyp w.r.t. ¢(0;) while keeping all the other
factors fixed. This leads to the so called variational Bayesian EM algo-
rithm (VBEM, Algorithm 1). That name is a bit of a misnomer, however,
since there are really no separate, qualitatively different E- and M-steps
involved as opposed to the standard EM algorithm or to the variational
EM algorithm (discussed in the next section).

Algorithm 1 The variational Bayesian EM algorithm

Initialise ¢(6;), Vi to some appropriate distributions
while the change in Cyg(gq,p) > € do
for i =1to N do
q(0;) — argmingg,) Cve (4(0:) [11.; a(6k), p)
end for
end while

Why gauge the misfit between ¢ and p with (3.1) and not with some other
measure? The reason is, more than anything else, that the particular
measure produces tractable algorithms. The KL-divergence the other way
around, Dkr,(p, ) that is, would be a natural candidate, as it measures, with



18 3. Approximate Bayesian inference

certain assumptions, the expected loss of reporting the probability distribu-
tion ¢ instead of the true beliefs encoded in p (Bernardo and Smith, 2000).
The shortcoming of Dkr,(p, ¢) is that it involves integration over p rather
than ¢, which renders its use intractable. Some authors use the term exclu-
sive divergence for Dkr,(q, p) and the term inclusive divergence for Dky,(p, q)
(Winn and Bishop, 2005). The former can produce approximations that ex-
clude parts of the posterior. For example, in a model having symmetries,
represented by equivalent modes in the posterior, the exclusive divergence
is perfectly content in approximating only one of the modes. The inclusive
divergence, on the other hand, tries to capture all of the modes which can
result in an approximation covering large portions of the parameter space
where the exact posterior has negligible density.

Variational Bayes has its roots in statistical mechanics and especially in the
mean field theory (Parisi, 1998; MacKay, 2003) where variational methods
are used to approximate the free energy of a physical system. In the ma-
chine learning literature, one of VB’s earliest appearances has been in the
disguise of the minimum description length (MDL) principle (Hinton and
van Camp, 1993). There is, indeed, a close connection between VB and
MDL. For example, Honkela and Valpola (2004) explain several phenom-
ena in VB learning, such as model pruning and overfitting, by interpreting
the modelling problem in the framework of the information theoretic MDL
principle.

Compared to the method described in this section, there is a rather different
approach to variational Bayesian learning, used for example by Jaakkola
and Jordan (1997) and Girolami (2001). There a variational bound is also
optimised, but the bound is for the posterior distribution instead of the
marginal likelihood.

3.1.4 Variational EM algorithm

The variational EM algorithm (Neal and Hinton, 1999) is very similar to
VBEM except that the parameters @ are divided into two sets, @ and
&, which are treated asymmetrically. For 1, VEM proceeds like VBEM,
revising the approximation ¢(t)) at each iteration, but for £ only a point
estimate is sought by maximising

/ 4(4) log p(X, €, M) d. (3.5)

This is equivalent to optimising Cyp w.r.t. £. Hence the variational EM
algorithm can be described as an alternating optimisation of Cyp w.r.t. ¢(v)
and &, which are the E-step and M-step of the algorithm (Algorithm 2).
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Computing the E-step involves variational calculus whereas computing the
M-step involves ordinary optimisation, usually in a real vector space.

Algorithm 2 The variational EM algorithm
Initialise g(1;), Vi to some appropriate distributions
Initialise € to some appropriate values
while the change in Cyg(g,p(:|§)) > € do
fori=1to N do
q(v;) « argmingy, ) Cve (q(¥;) [T a(r), p)

end for

¢ — argming Cvg (g, p(-€))
end while

In contrast to VB, where a lower bound for the model evidence p(X|M) is
obtained, VEM yields a lower bound for the marginal likelihood p(X|&, M)
which depends on the values of the parameters £&. To do model compar-
ison then, one needs to account for the additional model complexity due
to the parameters & This can be done in one of the information criteria
frameworks.! They, however, have the downside of making quite specific
assumptions about the model. Even when these assumptions are not ful-
filled, as is often the case, one can still apply the criteria, but then the
procedure is no longer as sound as it would be if one were to compare the
model evidences.

The ordinary EM algorithm (Dempster et al., 1977) is of course a special
case of VEM with no constraints on ¢(v) (meaning that ¢(v) is equated
with p(4[X, &, M)).

3.1.5 Other deterministic methods

There are a host of other deterministic algorithms for approximate Bayesian
inference, the most notable, and the one that is often referred to as an
alternative to VB, being expectation propagation (Minka, 2001). In EP,
the factors in the probabilistic model are approximated, one at a time, and
then used to refine the approximation for the whole posterior distribution.
This involves local minimisation of Dk, (p,q), but is not to be confused
with global minimisation of it. When EP converges—it does not always,

!For example, the Bayesian information criterion (Schwarz, 1978) is computed as
BIC = —2log L + klogn

where L is the maximum of the likelihood, k£ is the number of parameters, and n is
the number of samples. The model with the lowest BIC is to be preferred to the other
candidates.
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although double-loop algorithms exist that do (see e.g. Heskes and Zoeter,
2002)—the stable point can be shown to correspond to a local minimum of
the Bethe free energy (Minka, 2001).

The notable difference to VB is that in EP the inclusive divergence as op-
posed to the exclusive divergence is used. It is part of the machine learning
folk lore that this leads to better modelling of the posterior. Some fac-
tual evidence is starting to accumulate as well. For example, Winther and
Petersen (2007) study Bayesian ICA and show that the expectation consis-
tent approximation (Opper and Winther, 2005), computed via expectation
propagation, is indeed better than VB in modelling the posterior and sub-
sequently leads to more accurate separation of the sources.

3.2 Stochastic methods

As a motivating example, let us consider computing the estimate of a quan-
tity f which depends on some parameters €. Our knowledge of 8 comes
from observed data X in the form of the posterior distribution p(8|X). The
Bayes estimate of f is then

/ £(O)p(0]X) d (3.6)
Assuming that we cannot analytically evaluate the integral, but can obtain

independent samples, {0;}¥_ |, from the posterior, we can approximate (3.6)
by Monte Carlo integration:

(F(0) = 5 D_1(6:). (3.7)
Another object of interest to us might be the predictive distribution

psen X) = [ Dl |O)p(61X) d6. (3.8)

Again, if we have a sample from the posterior, we can compute an approx-
imation

p(xnew’X Xnew|0 (3.9)

||Mz

A great portion of Bayesian computations is covered by Equations (3.6)
and (3.8). Being able to draw samples from the posterior would hence
largely solve the computational problems in Bayesian analysis. Unfortu-
nately, sampling the posterior is not trivial.
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The most widely used sampling schemes belong to the family of Markov
chain Monte Carlo (MCMC) methods. The common factor in those meth-
ods is that one constructs a Markov chain that, if and when it converges
to its equilibrium distribution, produces samples from the posterior. Given
the current state 6, the next state 8 in the chain is drawn from a jumping
distribution ¢(0*|0), which, depending on the method, is either specified by
the user or is implicitly defined by the studied model. The process of draw-
ing the next state must satisfy a condition called detailed balance. This
means that the transitions must be such that they preserve the equilibrium
distribution. Some of the most common MCMC methods are discussed in
what follows.

3.2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970),
a near synonym to MCMC, is a method of wide applicability, always im-
plementable when the unnormalised posterior distribution can be evaluated
pointwise. Complex likelihoods and priors pose no difficulties to Metropolis-
Hastings. The jumping distribution ¢(6*|@) in this method is specified by
the user and can be almost anything as long as it satisfies certain gen-
eral properties. At each step in the algorithm, a candidate sample 6* is
drawn from ¢ conditional on the sample 6 drawn at the previous step. The
condition of detailed balance is satisfied by accepting the candidate with
probability
_ p(X[0%)p(6") q(6167)

p(X|6)p(6) q(67(0)
In the case that the candidate is rejected, the sample is replicated (Algo-
rithm 3).

(3.10)

Algorithm 3 The Metropolis-Hastings algorithm

Set 8° to a random value
for i =1to M do
Draw 6* from ¢(0*|0"!)
Compute r as in (3.10)
Draw s from U (0, 1)
if s <r then

Set 6° = 0*
else
Set ¢ = @1
end if
end for

Although there are few theoretical limitations to the jumping distribution
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¢, in practice it needs to be cleverly constructed. If the candidates sug-
gested by a slovenly chosen jumping distribution always get rejected, one
obtains M replicates of the initial value. On the other hand, if the jumping
distribution is too cautiously set up, such that it perturbs the previous sam-
ple only ever so slightly, the candidates get often accepted, but the chain
explores little of the parameter space. In both cases, convergence to the
equilibrium distribution remains a goal far to be achieved.

3.2.2 Gibbs sampling

In Gibbs sampling (Gelfand and Smith, 1990) the model parameters 6 =
(01,...,0y) are updated cyclicly, in a fashion similar to VBEM. When
it is the turn of the particular subset of parameters 6, to be updated,
the conditional distribution p(6;]6\ ;, X) is computed and then used as the
jumping distribution (Algorithm 4). The advantage of Gibbs sampling is
that there are no parameters to be tuned. One need not spend time in
search of a jumping distribution that would make the sampler converge
within a reasonable time, as is the case with Metropolis-Hastings. The
disadvantage, however, is the requirement that one must be able to sample
from the conditional distributions. This is convenient only for certain model
families, rendering Gibbs sampling applicable to a limited class of problems.

Algorithm 4 The Gibbs sampler

Set ° to a random value

fori=1 to M do ' ‘ ‘
Draw 6] from p(6:|65",65",. .. ,'92{;1, X)
Draw 0% from p(02]0%,05",...,6%",X)

Draw 9?\/ from p(ON]9§,9§7 ey §V—1aX)
end for

3.2.3 Advanced sampling methods

More advanced sampling methods target various weaknesses in the above
standard sampling algorithms. To give a few examples: slice sampling (Neal,
2003) alleviates the problems of choosing a good jumping distribution in
Metropolis-Hastings; ordered overrelaxation (Neal, 1995) reduces the ran-
dom walk behaviour in Gibbs sampling; parallel tempering (see e.g. Gre-
gory, 2005) helps in both Metropolis-Hastings and Gibbs sampling when
the posterior distribution is multimodal.
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A particular situation when one is forced to resort to an advanced sam-
pling method is when the model evidence needs to be computed. Neither
Metropolis-Hastings nor Gibbs sampling lend themselves to this task. There
are, however, many other methods that do yield the model evidence either
as the primary or as the side product of their operation, including thermo-
dynamic integration (Gregory, 2005), annealed importance sampling (Neal,
2001), and nested sampling (Skilling, 2006).

Thermodynamic integration, a method adapted from statistical physics, is
one of the better known approaches for the computation of the evidence.
It is based on running parallel Markov chains in several “temperatures”
using any suitable sampling method. As the temperature varies from hot
to cold, the posterior accordingly transforms from the prior to the true
posterior. From these parallel runs, the evidence is obtained by integrating
over the temperature scale. The computational complexity of thermody-
namic integration is at least an order of magnitude higher than in the
standard sampling methods, because of the need for running several par-
allel chains. It can also be difficult to adjust the jumping distributions so
that the sampling is efficient at each temperature. Similar complications
are often present in the other sampling schemes for the computation of the
evidence.

3.2.4 Convergence issues

MCMC methods have one distinct drawback: it is difficult to know if and
when the Markov chain has converged to its equilibrium distribution. If it
has not, the samples do not come from the posterior distribution and the
subsequent analysis is thus rendered unreliable if not meaningless. Several
authors have proposed methods for evaluating the convergence. Perhaps
the most popular approach is the one by Brooks and Gelman (1998). They
suggest several different statistics which they collectively call potential scale
reduction factors (PSRF). All the variants of PSRF are based on running
parallel Markov chains starting from different initial conditions and then
comparing the within sequence statistics to the total sequence statistics.
Let us denote the n samples from m parallel chains as 0;; (j = 1,...,m,
t =1,...,n). Then the particular PSRF that is based on the s:th moment

is defined as B
Rs _ mqlﬂ 2%1 Z%let - ‘9;-|8 7
mn—1) Zj:l thl’eﬁ - 9]'-‘8
where ;. = L3 6 and 6. = L Py 0;.. The original PSRF, intro-
duced by Gelman and Rubin (1992), roughly corresponds to Ry. As the
usual summaries computed from the posterior are the mean and the vari-

(3.11)
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ance, it is reasonable to ensure that one obtains similar values for those
over a number of independent simulations.

3.3 A hierarchy of approximations

All of the methods reviewed in this chapter have their particular strengths
and weaknesses. One way to organise them is in terms of their accuracy
versus their computational complexity. Such an attempt has been made in
Figure 3.1.

A Exact Bayes w]
B a
9 =
£ Sampling (MCMC) 8
=
o0 VB, EP, et al. w
=] ]
£ g
g EM, VEM g
S g
- ML, MAP v <

Figure 3.1: A hierarchy of approximations

The exact Bayesian treatment is the most accurate by its very definition. It
is also the hardest to implement, requiring the evaluation of integrals over
high dimensional spaces. If these integrals were tractable, there would be
no need to discuss approximations.

In the hierarchy, sampling-based methods come next. Actually, they are
not always considered approximate methods at all, as there is the guarantee
that with persistent enough sampling, the samples will eventually come
from the true posterior. But in the real world we are confined to a finite
sample, often even to a rather small one, which makes it questionable to
consider sampling exact.

Although otherwise a preferable approach, sampling is computationally in-
tensive. The deterministic approximations, variational Bayes, expectation
propagation and the related methods, are usually several orders of magni-
tude faster and yet “accurate” enough. The price to pay for the speed-up is
added analytical complexity. Whereas MCMC methods can often be imple-
mented by simply writing down the probabilistic model, the deterministic
approximations require considerable pen-and-paper work in the derivation
of the update rules. If the studied problem allows it, one can take one step
further down in the hierarchy and neglect some of the posterior modelling
by replacing part of the distributional estimates with point estimates. This
can simplify the problem drastically and still avoid the many difficulties as-
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sociated with the bottom of the hierarchy populated by the point estimation
methods.

Above, the word accurate is inside quotes with good reasons. At first
thought it would seem that the closer the approximation is to the true
posterior the better it should be deemed. The matter, however, is not that
simple at all. What is useful and what is not largely depends on the kind of
analysis one wishes to conduct. Consider, for example, the model for noisy
independent component analysis (for the definition of the model, see e.g.
Section 5.2.1 in this thesis). It is well known and intuitively clear that any
solution can be turned into another equally good solution by permuting the
sources or changing their signs. Accordingly the posterior distribution has a
plethora of modes that essentially represent the same solution. Computing
a Bayes estimate of the sources by averaging over the posterior, then yields
nothing sensible. In this light, an approximation that captures only one
of the prominent modes, such as those one often finds with VB, might
sometimes be more desirable than even the exact posterior.



Chapter 4

Framework for variational
Bayesian learning

Variational Bayesian learning has proven to be a powerful approximate
method for Bayesian inference. One drawback is its analytical complexity,
meaning that substantial pen-and-paper work is required to derive the cost
function and the update rules. This chapter focuses on the Bayes Blocks
framework for variational Bayesian learning. The framework automates
the necessary mathematical derivations leaving to the user only the burden
of specifying his model. The model family is constrained, but not to the
conjugate-exponential family for which a general variational inference pro-
cedure has been shown to be tractable by other authors (Winn and Bishop,
2005).

4.1 Bayes Blocks

Finding a suitable model for a problem is most often an iterative process.
We start with some initial guess for a model and, based on experimenting,
adjust the model incrementally to better describe the data. Bayesian infer-
ence can be a good guide in this endeavour as it provides sound quantitative
advice on whether our model is getting better or worse in explaining the
data. But it can be a hindrance as well, since the approximation methods
(that are practically always needed) are laborious to derive and implement.

Bayes Blocks, the inference framework discussed in Publications I and II,
is intended to alleviate the problem mentioned above by automating vari-
ational Bayesian inference for a certain class of models. Prototyping of
various model candidates is thus made fast and effortless. The attempt of

26
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this chapter is not to give a detailed summary of the related publications
of the thesis, but rather to shed light on the operation of the framework
with a few illustrative examples.

4.1.1 The building blocks

Bayes Blocks provides a set of blocks which can be combined, according to
certain rules, to construct a wide variety of probabilistic models. The blocks
can be divided into two categories: variable nodes and computational nodes.
The variable nodes correspond to the observed and unobserved quantities in
the model and the computational nodes provide means of combining these
quantities in nontrivial ways. The nodes in both categories are listed in
Table 4.1 which also describes the allowed connectivity. The Type column
enumerates the node classes that can serve as the particular parent for the
node. The node classes carry no deeper meaning; they simply identify the
nodes that can appear at similar configurations in the model. Examples
of how to read the table: the mean parent of a Gaussian variable can be
anything with the exception of multinomial and Dirichlet variables whereas
the parent of a nonlinearity can only be a Gaussian variable.

Class Node Parent Type
Variable nodes
1 Gaussian Mean 1,2, 3
Variance 1,2
3 Rectified Gaussian Scale 1,2
3 Mixture of Gaussians Mean 1,2,3
Variance 1,2
Selector 4
4 Multinomial Probability 5
5 Dirichlet n/a
Computational nodes
2 Sum 1,2,3
3 Product 1,2,3
3 Nonlinearity 1

Table 4.1: The blocks and the allowed connectivity. The Type column
refers to the Class column, enumerating the Classes that can serve as the
particular parent for the node.

The rules of connectivity follow from what kind of expectations can be
computed in the forward direction in the network, and from what kind
of potentials can be propagated backwards to the parent nodes. This is
explained in detail in Publication I.
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The usual convention for Gaussian variables is to use an inverse parametri-
sation for the variance so that the conditional distribution is of the form
p(z|p,7) =N (x] 1y 7*1). This ubiquitous practice is followed because then
a Gamma prior for 7 is conditionally conjugate to the likelihood. In Bayes
Blocks this convention is abandoned and the variance is parametrised on
the log-scale leading to a conditional distribution of the form p(z|u,u) =
N (z|p,e ™). There are a number of consequences. On the negative side,
the requirements for conditional conjugacy are not satisfied and so the up-
date rules are more complicated. On the positive side, the log-parametrisation
opens many possibilities for modelling the variance that are not in one’s
reach if one is restricted to conditional conjugacy. The first part of Chap-
ter 5 discusses several models that exploit this property.

4.1.2 Example: nonstationary ICA

Converting the mathematical description of a model to its Bayes Blocks
implementation is a straightforward process. We will demonstrate this with
a block implementation of nonstationary ICA. The observations z;(t) are
the outcome of linearly mixing a number of independent sources s;(t). The
nonstationarity is modelled by putting an AR(1) process prior on the log-
variances of the sources. The probabilistic model is then

7j=1
si(t) ~ N <0,6_“j(t)>
uj(t) ~ N (uj(t - 1), e_wf)
Q5 ~ N(O, 1) .

The parameters v; and wj, controlling the variance of the observation noise
and the variance of the innovation process of u;(t), would in reality have
priors as well, but are here assumed constant to not complicate the example.

In the Bayes Blocks formalism a model is expressed in terms of the variable
and computational nodes. One possible representation of the above model
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is

The above representation mostly corresponds to the original model spec-
ification with the exception that the delay, summation, and product are
explicitly shown as entities in their own right. This more elaborate descrip-
tion, in turn, maps almost directly to the Python implementation shown in
Listing 1.

4.1.3 The message passing scheme

The inference algorithm in Bayes Blocks is based on message passing. Each
node sends and receives messages to and from its immediate neighbours,
the objective being to find an approximate distribution that minimises Cyp
for the particular model. Since the algorithm is equivalent to VBEM, con-
vergence to a stable point of Cyp is guaranteed.

The following example illustrates the computations taking place in Bayes
Blocks. We will go through the calculations for one variable in a simple
submodel of a larger hierarchical model. The submodel consists of five
unobserved variables with the dependency structure

p(z|s,v) =N (x\s,e_”)
p(s|m,w) :N(s|m, e_w) .

The posterior approximation in Bayes Blocks is fully factorial so the ap-
proximation for the variables in the submodel factors as

q(z, v, s,m,w) = q(x)q(v)q(s)g(m)gq(w).

The variable of interest here is s. We will find the optimal ¢(s) given the
other approximations.
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Listing 1 Bayes Blocks implementation of nonstationary ICA

net = PyNet(tdim)
f = PyNodeFactory(net)

c0 = f.GetConstant("const+0", 0.0)
Vv, W= ...

zu = [f.GetDelayV(Label("zu", j), <O,
f.GetProxy(Label("pu", j),
Label("u", j)))
for j in range(sdim)]
u = [f.GetGaussianV(Label("u", j),
zuljl, wl(jl)
for j in range(sdim)]
s = [f.GetGaussianV(Label("s", j), <0, uljl)
for j in range(sdim)]
a = [[f.GetGaussian(Label("a", i, j), cO0, c0)

for j in range(sdim)]
for i in range(xdim)]

prods = [[f.GetProdV(Label("prod", i, j),
alil [j1, s[3])
for j in range(sdim)]
for i in range(xdim)]

sums = []
for i in range(xdim):
sums . append (f . GetSumNV (Label ("sum", i)))
for j in range(sdim):
sums [1] . AddParent (prods[i] [j])

x = [f.GetGaussianV(Label("x", i),
sums [i], v[il)
for i in range(xdim)]

# Create the net
# Create a nodefactory

# Create some constants

# 27w (t) = u(t—1)

#u;(t) ~ N (27 uy(t), e77)

#s;(t) ~ N (O,efuf(t))

# a; NN(O,eio)

# prod,;(t) = aiy - 5;(t)

# sum; (t) = Zj prod,; (1)

# Jil(t) ~N (Sumi(t), e*vi)

The part of the cost function affected by ¢(s) is

Con — <10g q(s) >
p(fL‘|S, v)p(s|m, w) q(z,v,8,m,w)

=<logq(8)—<10gp(fvls,v)>q(x,v)—<10gp(8|m7w)>q(m,w)> - (41)

a(s)
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Figure 4.1: Updating ¢(s). The solid lines show the logical dependencies
and the dashed lines show the propagation of the expected values needed
to update ¢(s).

The expectation of log p(s|m,w) yields
(log p(s|m,w)) = <log/\/ (s|m, e_w)>
=log <5| (m), <ew>_1) + const. (4.2)

The latter equality follows by expanding the quadratic form in the normal
distribution and using the linearity of the expectation operation (remember
that m and w are independent under ¢). Similarly

(log p(als, v)) = log N ((z) |s, (")) + const. (4.3)

Substituting (4.2) and (4.3) back to (4.1) we get

. q(s) const-
Cvn <1 ()Y (s o)) >q<s> o

The two normal distributions combine to form a single (unnormalised) nor-
mal distribution N (s|3, §) with parameters

s=({e") + ()™ and
5((e") {x) + (e) (m)).

The variational problem is then solved by an invocation of Gibbs’s inequal-
ity from which it follows that the optimal approximation ¢(s) = N (s]|3, 3).

0l
I

Figure 4.1 shows the flow of information in the model. We note that the
update of ¢(s) can be done by propagating certain expected values from
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the nodes in s’s Markov blanket. Of course the node must also know the
types of the potentials these expected values are encoding. For example, a
Gaussian potential coming through a rectification nonlinearity is obviously
no longer Gaussian. But the node knows its neighbours and so can infer
the types of the potentials to update its posterior appropriately.

Only Gaussian variables were considered in the example, but the same prin-
ciples apply to the rest of the nodes in any allowed configuration. In the
inference algorithm, information from only the immediate neighbours of the
node are needed to update its state. From this it follows that the compu-
tational complexity of one update iteration is linear w.r.t. the number of
connections in the model. The price to pay for the efficiency is that a fully
factorial posterior approximation has to be used. This means that all pos-
terior dependencies are neglected, which can sometimes cause unfortunate
side effects in the model estimation (see e.g. Ilin and Valpola, 2005).

4.2 Other frameworks

Tools for automating Bayesian inference have been considered by many
other authors as well. One such popular framework is BUGS (Spiegelhal-
ter et al., 1995). The acronym stands for Bayesian inference Using Gibbs
Sampling and, as the name suggests, the framework is intended to be a
flexible tool for Bayesian analysis using Markov chain Monte Carlo meth-
ods. The use of MCMC makes BUGS a widely applicable piece of software
for Bayesian inference, but also limits the size of the models that can be
studied as MCMC methods involve intense computations.

More relevant to the discussion of Bayes Blocks is the framework by Winn
and Bishop (2005) called VIBES (Variational Inference for BayEsian net-
workS). Similarly to Bayes Blocks, its inference algorithm is based on varia-
tional Bayesian learning. The supported model family is different, though,
as their framework is confined to models in the conjugate-exponential fam-
ily. On the one hand, VIBES is a more general framework than Bayes
Blocks in that any distribution from the conjugate-exponential family can
relatively easily be incorporated to the system. On the other hand, con-
structing nonlinear and variance models in the way that it is possible in
Bayes Blocks cannot be done in VIBES as these kind of models do not meet
the criteria of conditional conjugacy.



Chapter 5

Heteroscedastic modelling

Heteroscedasticity means nonstationarity of variance. For computational
convenience, the opposite assumption, i.e. of homoscedasticity, is made in
most standard probabilistic models. In this chapter, heteroscedastic mod-
elling is discussed in two contexts. In the first part of the chapter, the
noisy-ICA model is extended to several directions to include the modelling
of the nonstationary variance. In the second part, heteroscedasticity in
nonlinear regression is discussed where it leads to predictive uncertainty,
i.e., to models that can predict not only the mean outcome of but also the
uncertainty in the phenomenon of interest.

5.1 The trouble with heteroscedastic modelling

Even though heteroscedasticity is commonplace in many applications, its
modelling is often neglected to avoid facing the associated computational
complications. This section gives a simple but representative example of
these troubles.

The problem we try to solve—first with ML and MAP, and later with
variational methods—is estimating the mean and variance of a normal dis-
tribution from one observation. The model is

platm,u) = N (zm, ™) 5.1
p(m) =N (m|0,7‘,;1) (5.2)
p(u) =N (u\O,Tu_l) ) (5.3)

Above, z is the observation and m and u are the parameters of the normal
distribution who have Gaussian priors. In what follows the constants are
set to 7, = 1 and 7, = 1/25. It is meaningful to study the above simple

33
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model, because such a construction will frequently appear in the realistic
models encountered later on in this chapter.

Before proceeding it is worth noting that estimating the variance from a
single observation is only possible if there is some information about the
mean. If we had an uninformative prior for m, that is p(m) o« 1, the
posterior of u would equal its prior. This is what common sense suggests.
In the absence of a reference point, nothing can be said about the variability
of a distribution by looking a single sample drawn from it.

It is then not surprising that attempts towards obtaining a maximum like-
lihood estimate, which implies that we ignore all the prior information, will
yield no estimate whatsoever for the problem. This becomes immediate
when the likelihood is written out

platin,) =~ exp { - Lot - my?)

o exp{—3(z — m)2e’ + Tu}.

When we set m := x this simplifies to exp(%u) which approaches infinity
as we let u — oo. Since the likelihood is not bounded from above, there
cannot be a ML estimate.

The situation is better with maximum a posteriori in that the MAP esti-
mate does at least exist. The joint unnormalised posterior of m and w is
readily obtained by an application of Bayes theorem

p(m, ulz) oc p(xm, u)p(m)p(u)

=N (zlm,e ") N (m|0, 7, ) N (u]0, 7, 1)

xexp{—1(z — m)2et + Fu— %Tme - %TUUQ} . (5.4)
Assuming that we have observed x = 1, the posterior has the shape shown in
Figure 5.1(a). We will find the MAP estimate by visual inspection. It looks
as though the optimal m equals one. By substituting m « 1 in Eq. (5.4),
we are left with the expression exp{%u - %Tuuz}, which is optimised with
u=1/27, =25/ 2.1 Intuitively this appears to be an extreme estimate given
that there was considerable uncertainty in m. That this estimate is poor
in representing the posterior probability mass is obvious in Figure 5.1(b)
where the marginal posterior distribution p(u|x) is shown.

So far we have not obtained a reasonable solution to our estimation prob-
lem, apart from the exact Bayesian treatment of course. Point estimates
are too simple an approximation to the problem—they go awry in that

!"Numerical analysis yields an optimum that equals this less rigorous estimate to several
decimal places.
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20 30 40

Figure 5.1: MAP in the variance problem. (a) The joint posterior proba-
bility distribution p(m,u|x). The magenta circle marks the MAP estimate.
(b) The marginal distribution p(u|x). The dashed lines show the 95% cred-
ible interval, and the magenta line shows the MAP estimate.

they attempt to find the region of high probability density when it is the
probability mass that matters.

The whole point of this section is of course to demonstrate that approxima-
tion techniques that seek to summarise the true distribution more whole-
heartedly than point estimates do are better suited for variance mod-
elling. So as the final attempt, we shall find a VB approximation for
our problem. We fix the approximation to be a product of two Gaussians
g(m,u) = N (m|pm,02,) N (u|t, 02). Finding the optimal approxima-
tion is then a matter of minimising Cyp w.r.t. the variational parameters
fms 02, pu, and o2. Skipping the details of the calculations, it suffices to
state that the global optimum is at p,, = 0.806, 02, = 0.194, p, = 0.468,
o2 =1.92.

Figure 5.2(a) shows the true and the approximate posterior. The approxi-
mate distribution lies far from the region of high probability density, which
indicates that the bulk of the probability mass is spread across the low
density region. In Figure 5.2(b) the approximation ¢(u) is contrasted to
the marginal distribution p(u|z). The exclusiveness property of the VB
approximation, discussed in Section 3.1.3, is here clearly visible. The 95%
credible interval of g(u) is less than half of that of p(u|z). Although the
variances of the VB approximation do not reflect the true variability of the
posterior, the approximation is nevertheless much more sensible than the
earlier estimates we obtained.
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Figure 5.2: VB in the variance problem. (a) The joint posterior probability
distribution p(m,u|x). The magenta ellipse marks the 1-std contour of
the VB approximation. (b) The marginal distribution p(u|z). The 95%
credible intervals are shown by the dashed lines. Blue stands for the true
distribution and magenta for the approximate distribution.

5.2 Hierarchical modelling of variance

Independent component analysis (Hyvérinen et al., 2001), by its defini-
tion, seeks to find components from data that are statistically independent.
But often in practice, the found components are only uncorrelated and
not independent. Take, as an example, the two components shown in Fig-
ure 5.3, which were found by FastICA (Hyvarinen, 1999) from a set of MEG
recordings.? Although the sources are uncorrelated, it is obvious that some
dependencies exist between them. In fact, the physical explanation of the
simultaneous burst of activity is that the monitored patient is biting his
teeth. The phenomenon depicted in Figure 5.3 is not rare. Nonstationarity
of variance is a common characteristic of many natural datasets such as
image sequences and recordings of audio (Parra et al., 2001).

The subject of this section are hierarchical models for variance which cap-
ture the kind of dependencies illustrated above. The model for noisy ICA
is extended in two ways. First, it is modified to find dependencies between
the variances of the sources by using a set of higher-level latent variables
termed variance sources. Second, the temporal correlations between the
variances are taken into account by incorporating dynamics to the model.
The models in this section can be implemented using Bayes Blocks so the
inference procedure is not discussed.

2See (Vigario et al., 1998) for the description of the data.
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Figure 5.3: Two sources estimated from a set of MEG measurements. The
scatter plot (on the left) does not reveal the dependency between the sources
although it is obvious in the time-series plot (on the right).

5.2.1 Noisy ICA

The basis for the variance models in the subsequent sections is the noisy
ICA model. The N dimensional noisy observations x; are modelled as a
linear combination of M independent sources s;:

x¢ ~ N (Asy, diaglexp(—v,)])

. (5.5)
st ~ N (0, diaglexp(—uy)])

The model is depicted in Figure 5.4(a). Conditional on u;, the sources
have a Gaussian prior, but as the log-variance is allowed to take different
values for different samples ¢, the marginal distribution becomes super-
Gaussian. Hence the model can perform ICA (given that the assumption
of supergaussianity of the sources holds). The variables u; are termed
variance nodes, and the subsequent models make abundant use of them.

There are known problems with estimating the noisy ICA model using VB.
Ilin and Valpola (2005) have shown that the choice of the posterior ap-
proximation affects the obtained solution. A fully factorial approximation,
such as that used in Bayes Blocks, favours a solution that is closer to PCA
than ICA. In the variance modelling context this is a smaller concern as the
objective is to find dependent sources and characterise the dependencies in
a meaningful manner.

5.2.2 Variance sources

The example in the beginning of this section suggests an extension to the
noisy ICA model. If there are dependencies between the variances of the
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Figure 5.4: (a) The noisy ICA model and (b) the hierarchical variance
model.

sources, it might be useful to model them. Several possibilities for capturing
the dependencies could be considered, but the approach in Publication III
is to use a similar model for the variances as is used for the observations.
Figure 5.4(b) illustrates the resulting model structure. The bottom-right
block is the noisy ICA model as it reads in (5.5) and the top-left block is a
slightly modified replicate:

u; ~ N (Bry, diaglexp(—vy,)])
ry ~ N (ry_y, diaglexp(—wy)]) . (5.6)

Having the dynamics in the variance sources (5.6) is of immense impor-
tance. There is a lot of uncertainty in the variance nodes u; which renders
expensive modelling of them impossible. If an iid model is used for r;
instead, the model needs significant evidence of dependency between the
variance nodes before it is willing to use a variance source to capture that
dependency. When, however, the dynamics are used, the cost of introduc-
ing a variance source to the model is considerably smaller which in turn
makes it easier for the model to find the dependencies among the variance
nodes.

In Publication III the modelling of the MEG data was studied in some
detail using the hierarchical variance model. The model found several slowly
changing variance sources of which the most prominent ones were related
to the biting artifact.

Variance modelling in the context of ICA has been considered by some
other authors as well. As a means to source separation, the nonstation-
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arity of variance has been studied for example in the works of Pham and
Cardoso (2001) and Hyvérinen and Hurri (2004). As a phenomenon in
its own right, heteroscedasticity has been of interest especially to people
doing research in computational neuroscience. To give some background:
ICA applied to patches of images or image sequences yields a bank of fil-
ters that resemble the simple cells in the visual cortex of mammals (van
Hateren and Ruderman, 1998). To achieve a model behaving like the com-
plex cells, researchers have attempted to model the energies of the simple
cells. Hyvarinen and Hoyer (2000) divide the cells into groups of equal sizes
and maximise the sparseness within each group to obtain independent sub-
spaces of simple cells. In (Hyvéarinen et al., 2001) they use the correlations
between the energies of the simple cells to find a topographic ordering for
them. An extension to the standard (noise-free) ICA model, bearing simi-
larity to the model presented in this section, has been suggested by Karklin
and Lewicki (2005). Their model follows the iid assumption throughout—
temporal correlations are not modelled at all. This might be beneficial in
some applications, but can make it difficult to find weak, slowly changing
variance sources, as discussed above.

5.2.3 Dynamic model for variance

The model in the previous section captured instantaneous variance depen-
dencies between the sources. The dynamics used there was such that each
variance source predicted only itself. It seems plausible in some applica-
tions, that the variance of one source could be indicative not only of its
own future variance but also of future variances of other sources. Consider,
for example, a not so hypothetical situation in the stock market. At the
onset of a crisis in a certain industry, the variance of the returns of stock
X starts to rise. Later the stocks Y and Z, belonging with X to the crisis
stricken industry, start to show similar behaviour as X. So the stock X
could have been used to predict the behaviour of the stocks Y and Z with
an appropriate model.

In this section the noisy ICA model is extended to take temporal variance
dependencies into account. Rather than directly modelling the variances
of the sources, we will model their innovation processes. This changes the
source prior to

st ~ N (si—1, diaglexp(—uy)]) . (5.7)

The sources are assumed to follow a first order AR process with identity
dynamics, and the variability of the innovations is controlled by the variance
nodes. They too follow a first order AR process, with unconstrained linear
dynamics

u; ~ N (Bu;_1, diaglexp(—vy)]) - (5.8)
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Figure 5.5: (a) An extension of noisy ICA where the temporal relations
between the variance nodes are modelled. (b) A model otherwise similar
to (a) except that the linear dynamics is moved from the variance nodes to
the sources.

The model is illustrated in Figure 5.5(a).

To show that there exist prominent variance dependencies in realistic data,
the model was used to analyse a video from an ice hockey game. To be able
to make a quantitative assessment of the model’s performance, it was com-
pared to another similar model where the dynamical relations were directly
sought in the sources rather than in the variance nodes (see Figure 5.5(b)).
The task the two models were asked to perform, was to predict the next
frame based on the previous frame. The training data consisted of 4000
frames of size 16x16. The performances of the models were measured as
the predictive perplexity (PP)

256

1
PP = exp [_256 Z log p(wi441|X1:4) | (5.9)
=1

computed over a test set that was composed of the 80 frames shown in
Figure 5.6(a). The PP values for these frames are plotted in Figure 5.6(b).
Although the variance model does not provide better predictions for the
means, it can quantify the uncertainty in its predictions which explains the
much better PP values it obtains.

The stock market example in the beginning of this section is indeed not far
fetched. Variance modelling in the time-series context is much studied in
applied econometrics. There and in related fields variance is called volatility
and it is intended to quantify the risk related to a financial instrument over a
period of time. It is well known that volatility has temporal correlations and
so there exist many methods based on that assumption. The most widely
used models are ARCH (autoregressive conditional heteroscedasticity, En-
gle (1982)) and its generalisation GARCH (Bollerslev, 1986). The appeal
of ARCH is its simplicity; the model estimation can be done with the ordi-
nary least squares method. Other models have been suggested that—unlike
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Figure 5.6: (a) The test frames in the hockey image sequence and (b)
the corresponding prediction accuracies for the two models measured as
predictive perplexities. The shorthands DynSrc and DynVar refer to the
models in Figure 5.5. DynVar corresponds to model (a) and DynSrc to
model (b).

GARCH, wherein the conditional variance is a function of past squared er-
rors and variances—postulate the volatility as a latent stochastic process.
These kind of models are referred to as stochastic volatility models, and
although they are more expressive compared to ARCH, their estimation is
also considerably more difficult. Kim et al. (1998) present several MCMC
based methods to this end which have a number of positive qualities. The
use of MCMC makes the methods flexible in that the model can easily be
extended to have more complicated dynamics. Also model selection can be
done in a principled manner by calculating Bayes factors. A more recent
method is the one by Zoeter et al. (2004). They present a fast, expecta-
tion propagation and Gaussian quadrature based approach to stochastic
volatility. The first pass of their algorithm resembles unscented Kalman fil-
tering (Julier and Uhlmann, 1997) but the initial posterior approximation
can be improved by iterating the algorithm.

5.3 Predictive uncertainty

In standard regression, we seek to predict the value of a response variable
based on a set of explanatory variables. Here, the term predictive uncer-
tainty is used to refer to a task similar to regression with the exception
that we predict not only the mean outcome of the response variable, but
also the uncertainty related to its value. For example, consider predict-
ing the concentration of an air pollutant in a city, based on meteorological
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conditions measured some time in advance. In this task it is the extreme
events, namely those occasions when the concentration of the air pollu-
tant rises over a certain threshold, that are interesting. If the conditional
distribution of the response variable is not tightly concentrated around its
mean value, the mean value by itself will be a poor indicator of the extreme
events occurring, and hence predictions based on those alone might lead to
policies with ill consequences.

Quantile regression (Koenker and Bassett, 1978; Yu et al., 2003) is the close
equivalent of predictive uncertainty in statistics. The idea is to estimate the
conditional quantiles of the response variable and thereby summarise the
whole conditional density. By doing so, one can get as detailed description
of the conditional density as one desires. The estimation of the quantiles,
however, is not without its problems and often the methods suffer from
the curse of dimensionality. In machine learning, quantile regression has
not been so well known,? and the methods for predictive uncertainty have
mostly relied on ideas already well established in the field such as Gaussian
processes (Goldberg et al., 1998; Snelson and Ghahramani, 2006; Kersting
et al., 2007) and neural networks (Weigend and Nix, 1994; Bishop, 1994;
Williams, 1996; Cawley et al., 2006).

In Publication IV, a method for predictive uncertainty is presented. The
method is based on conditioning the scale parameter of the noise process on
the explanatory variables and then using multilayer perceptron (MLP) net-
works to model both the location and the scale of the output distribution.
The model can be summarised as

ye ~ N (MLPy(xt), e*”t)
ug ~ N (MLP,(x),771) .

Above, y; is the response variable and x; is the vector of explanatory vari-
ables. When the latent variable u; is marginalised out of the model the
predictive distribution for y; becomes super-Gaussian. The extent to which
this happens depends on the uncertainty in u; as measured by the preci-
sion parameter 7 which is adapted in the learning process. This adaptive
nongaussianity of the predictive distribution is highly desirable as then the
uncertainty in the scale parameter can be accommodated by making the
predictive distribution more robust. The model is illustrated in Figure 5.7
for the case of four inputs, three hidden nodes in MLP,, and two hidden
nodes in MLP,,.

(5.10)

In the beginning of this chapter, it was demonstrated that the learning
of heteroscedastic models can be difficult for simple methods. It was also
shown that variational Bayes can largely avoid the associated problems. Un-
fortunately, VB for nonlinear models, such as that in Eq. (5.10), becomes

3The trend might be changing, though. See e.g. (Meinshausen, 2006).
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Figure 5.7: The model (5.10) schematically illustrated. In this example
instance, there are four explanatory variables, three hidden nodes in MLP,,
and two hidden nodes in MLP,,.

involved both in analytic as well as in computational terms.* Hence the
learning algorithm in Publication IV is based on the slightly weaker approx-
imation technique, the variational EM algorithm, and only the the latent
variables u; and all the parameters in the second layer of the model have
distributional estimates. The parameters in the first layer of the model,
that is, the first-layer weights of the MLPs, have point estimates only.

Denoting the first-layer parameters as & and the second-layer parameters
as 1, the outcome of the VEM algorithm is a distributional estimate ()
and a point estimate é . The predictive pdf, which is the object of interest
in this modelling task, is then formally obtained from the integral

p(elxe, &, X, Y) = / Dyl 3, xe, €)plueloce, o, €)q(ap) dap due

The distribution ¢(%) tends to be narrow and hence it can be approximated
by a delta distribution §(¢p — (¢»)) without compromising the predictive
density. Depending on the parameter 7, the distribution p(u;|x;, 1, é) can
have large variance in which case the predictive density would be poorly
approximated if the integration over u; were neglected. In Publication IV
this integral was approximated with a suitably constructed finite mixture
of Gaussians.

The importance of integrating over u;, even if only approximately, is demon-
strated in Figure 5.8. There, predictive densities for a one dimensional

4Tt is nevertheless not impossible to apply VB to such models. See e.g. the papers
by Hinton and van Camp (1993), Barber and Bishop (1998), and Honkela and Valpola
(2005) for examples where VB has been applied to nonlinear models by various means.
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Figure 5.8: The effect of marginalising over u; on the predictive pdf. The
dashed lines denote the 0.5, 0.75, 0.9, 0.95, 0.99, 0.999 and 0.9999 cred-
ible intervals. On the left, the pdf of u; has been collapsed to a delta
distribution. On the right, marginalisation over the pdf of w; has been
approximately performed.

problem are shown. The first pdf is computed by collapsing p(u;|x¢, P, é)
to a delta distribution; the second pdf is computed by the approximate
marginalisation discussed above. We can see that the first predictive pdf
does not model the tail of the data distribution well by noting that far too
many datapoints from the set of 10000 fall outside the 0.9999 credible in-
terval (the topmost dashed line). The second predictive pdf does not suffer
from this shortcoming.

The method summarised in this section was applied to all four datasets in
the “Predictive uncertainty in environmental modelling” competition held
at WCCT’06. The datasets varied in dimensionality from one input variable
to 120 variables. The detailed results with the proposed approach can be
found in Publication IV, and the summary of the competition, including
results with other methods, is given in (Cawley et al., 2006). The proposed
method performed well with all the datasets where heteroscedasticity was
an important component being the overall winner of the competition.



Chapter 6

Astronomical applications

Two applications of approximate Bayesian inference to astronomical data
analysis are discussed in this chapter. First, a problem of finding a set of
prototypical star population spectra underlying a set of observed galaxy
spectra is presented. Second, the estimation of time delays in gravitational
lenses is discussed. The proposed solutions to these two problems are gen-
eral machine learning algorithms—mno detailed astrophysical modelling is
involved. So although the methods are offered as solutions to the specific
problems in astronomy, they are of wider applicability.

6.1 Analysis of galaxy spectra

6.1.1 Background

Consider a set of galaxy spectra such as that shown in Figure 6.1. Each
spectrum is a collection of measured fluxes over a range of wavelengths.
The overall shape of the spectrum as well as the wiggles (absorption lines)
can be used to determine the age and the chemical properties of the galaxy.
It is a fairly recent observation that some of the galaxy spectra can be
composed of several stellar-subpopulation spectra (Nolan, 2002). In the
earlier work, the subpopulations have been found by fitting a superposition
of single stellar population models. The approach has relied on a brute-force
search over a properly discretised parameter space of the model to find the
decomposition. Needless to say, this has been computationally intensive.
The data explosion in astronomy due to large sky survey projects has made
it ever so important that analysis methods be applicable to large datasets.
This has been one chief motivation for developing the methods presented
in this section.
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3000 4000 5000 6000 7000
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Figure 6.1: The spectra of five galaxies. The dashed lines show the mea-
surement uncertainties in the data and the blank entries stand for missing
values.

We denote the observed spectra as X = (x1 ...x7) = (z), where i indexes
the galaxies and ¢ the wavelength bins, and we denote the unobserved stel-
lar subpopulation spectra as S = (s;...s7) = (s;¢), where j indexes the
subpopulation and ¢ the wavelength bins with one-to-one correspondence
to those of the observed spectra. The problem is to find S given X. The
astrophysics related to the problem enters the modelling in two simple state-
ments: (1) energies are positive and (2) they add up linearly. Two further
assumption are made: (3) the spectral prototypes are independent in their
distribution and (4) there is additive Gaussian noise in the observations.
These specifications translate into the following probabilistic model

x¢ ~ N (Asy, diag(r) 1)
se~ [ [ p(s50) 61

with the constraints p(sj; < 0) =0 and p(a;; < 0) = 0. The actual form of
the distributions p(sj;) is so far left unspecified. A priori, any form would
as long as the distribution has nonnegative support.

6.1.2 Rectified factor analysis

The generative model in (6.1) looks much like the one for noisy ICA dis-
cussed in Section 5.2.1. Indeed, the term nonnegative noisy ICA could be
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used for its estimation. For nonnegative ICA there exists several algorithms
whose derivations are based on other principles than Bayesian inverse mod-
elling; among them are the methods by Oja and Plumbley (2004) and Zheng
et al. (2006). The much used nonnegative matrix factorisation (Lee and Se-
ung, 1999) is not strictly ICA as there is no assumption of independence in
the method, but it is nevertheless often used in source separation settings.
The extension of nonnegative matrix factorisation by Hoyer (2004) adds
sparseness constraints to the method, which brings it closer to ICA.

The Bayesian framework has some clear benefits though. For one, it is
straightforward to handle missing values' and uncertainties in the measure-
ments—both being features that are present in our application. Model
comparison can also be done rigorously, which makes it possible to com-
pare different modelling assumptions and to infer the model order. In the
current application, this means that several hypotheses about the number
of underlying stellar subpopulations can be tested.

The target in the modelling is to obtain estimates of the sources s; and
mixing proportions A. How can this be accomplished? Even if the marginal
posterior distributions could be computed, they would be useless due to
symmetries in the model. Here, the variational Bayesian method is adopted
both for the sake of computational efficiency as well as for breaking the
symmetry in the model as VB approximates only one of the modes in the
posterior pdf.

One of the first works on applying VB to nonnegative ICA is by Miskin
(2000). As the prior distributions for the sources he uses rectified Gaussians:

1

mu(sjt)/\/(sjt|mj7vj) : (6.2)

p(sje) = N (sjelmj, vj) =

where Z(mj,v;) = % erfc(—m;/ v/2v;). This prior is convenient because
then the model is in the conditional conjugate family.? The computations,
however, are not tractable in the VB framework unless the location param-
eter m; is set to zero so that the awkward normaliser vanishes. This has the
unfortunate side effect that distributions biased toward zero are favoured.
Examples of this phenomenon are presented later on in this section both in
an artificial setting as well as in the galaxy spectra application.

Another way to formulate a nonnegatively supported prior is to specify it
hierarchically: let s;; be rectified version of a further latent variable rj; i.e.
sj = cut(rj) := max(r;;,0). Now it does not make a difference what the

! Jaynes (2003) on missing data: “This is a problem that does not exist for us; Bayesian
methods work by the same algorithm whatever data we have.”

2Multiplying the Gaussian likelihood with the rectified Gaussian prior yields a rectified
Gaussian posterior.
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Figure 6.2: Histograms of the sources in the control experiment.

distribution of 7j; is—the nonnegativity constraint is automatically satis-
fied. Computationally it does matter, of course, and the prior is set to an
ordinary Gaussian: p(rj;) = N (rj|m;,v;). It might appear that an essen-
tially same prior for s;; is obtained as in Eq. (6.2). This is not the case
though. If we marginalise rj; out, the distribution of s;; is a mixture of a
rectified Gaussian and a Dirac delta at zero. The most important benefit of
the chosen prior is the ability to have both of the hyperparameters m; and
v; in the model. The prior can also be modified for modelling correlations
between different s;;, which makes it possible to consider autoregressive or
other variants of the model.?

The variational inference procedure for the model sketched above is pre-
sented in detail in Publication V. Although the model is not in the condi-
tional conjugate family, a variational Bayesian EM algorithm with free-form
fully-factorial posterior approximation is tractable. The nonstandard part
of the inference is the update rule for the factors r;;. The free-form approx-
imate posterior can be shown to be a mixture of a positive and a negative
rectified Gaussian distribution:

R — ArR- -
q(rjt) = 71’;;./\/’ +(rjt]mjt,v;;) + 7w N (rjelmiy, v3) - (6.3)

The effect the prior distribution of the sources has on the separation perfor-
mance is demonstrated next. The model with zero-location rectified Gaus-
sian priors is called positive factor analysis (PFA) and the model with recti-
fication nonlinearities is called rectified factor analysis (RFA). The problems
that the priors in PFA cause are well illustrated by the following control
experiment. Three sources, whose histograms are shown in Figure 6.2, are
mixed to obtain ten observations. Both of the models, PFA and RFA, are
learnt, and the separation results are compared to the ground truth. In
Figure 6.3 the estimated sources are plotted against the true sources. The
performance is measured as the signal-to-noise ratio between the ground
truth and the estimate, and these measures are shown above each plot.

3Publication V discusses the autoregressive variant.
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Figure 6.3: The separation results in the control experiment using both
PFA and RFA. The estimated source is plotted against the ground truth,
and the corresponding signal-to-noise ratio is shown above each plot.

RFA can reconstruct the original sources with high accuracy whereas PFA
cannot. It is the third source that poses most difficulties to PFA; the SNR
is as low as 6.8 dB. This source is also the one that disagrees the most with
the prior used in PFA.

6.1.3 Results

In Publication VI, RFA and various other models were applied to the spec-
tral dataset and the results were compared to the physical-model based
approach. Here a few findings from that study are raised.

One of the questions that was initially asked was how many stellar sub-
populations could be used to explain the spectra. There was a strong prior
belief that no more than two subpopulations underlie the observations. The
Bayesian evidence framework agreed that two sources are indeed enough.
In Figure 6.4 the log-evidence? is plotted as the function of model order
ranging from one source to four sources. The curves are shown for PFA
and RFA.

The physical interpretability of the sources was another major concern in
the study. The decompositions to two sources with PFA and RFA are shown
in Figure 6.5. The first components of both models are almost identical.
By comparison to the physical model, it was found to represent a typical
old stellar subpopulation. The second component from RFA, on the other
hand, was found to resemble a young subpopulation. In this instance, the
two methods, PFA and RFA, did not agree with each other. With PFA,
the second component is distorted toward zero and contains some spurious
absorption lines. This is most likely due to the prior in PFA which pulls the
posterior toward zero. This mismatch between the likelihood and the prior
is clearly visible in the evidence plot: there is a considerable gap between

40r more appropriately, the lower bound for the log-evidence.
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Figure 6.4: The log-evidence as the function of the number of factors.
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Figure 6.5: The first and the second source estimated from the galaxy
spectra data using both PFA and RFA.

PFA and RFA in favour of the latter method.

Decompositions with model orders higher than two were studied too, but it
was indeed found that the subsequent components did not have any physical
interpretation—a finding that was coherent with the Bayesian evidence
analysis.

In Publication VI, PCA produced fairly similar results compared to those
of RFA. As discussed in the article, this is a matter of luck mainly, as PCA
is not a method for source separation. When, however, the eigenvalues of
the data covariance matrix differ substantially, PCA does distinguish be-
tween different rotations of the sources. This has clearly been the case with
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Figure 6.6: The effect of rescaling the spectra on PCA and RFA. Since PCA
is inherently not a source separation method, the scaling drastically changes
the proportions of the two components used to explain the spectrum. The
decomposition with RFA is identical with and without the scaling.

the particular dataset used in Publication VI. Although it will come as
no surprise to anybody working in the field of source separation, it is here
anyway demonstrated that a slight rescaling of some of the observations
drastically changes the decomposition in the case of PCA. It is also shown
that the decomposition found by RFA is not affected by the rescaling exer-
cise. Figure 6.6 presents a spectrum and its decomposition to two sources
as found by either PCA or RFA. With PCA there is a considerable change
to be noted in the decomposition when the data is rescaled whereas the
results with RFA stay almost identical.

After the initial study in Publication VI, Nolan et al. (2007) have applied
RFA to a much larger dataset, obtained from the archives of Sloan Digital
Sky survey, which consisted of over 13000 early-type galaxy spectra. The
findings with this much richer dataset were similar to those in Publica-
tion VI, the conclusion from the methodological point of view being that



52 6. Astronomical applications

RFA is indeed capable of finding the young stellar subpopulation when
present in a galaxy spectrum. The authors of that study see RFA as “a
powerful tool for studying in detail, both globally and individually, the

evolution of early-type galaxies” (Nolan et al., 2007).

6.2 Estimation of time delays in gravitational lens-
ing

6.2.1 Background

Gravitational lensing occurs when the light coming from a distant bright
source is bent by the gravitational potential of an intermediate galaxy such
that several images of the source are observed (see Figure 6.7 for illustra-
tion). Relativistic effects and the different lengths of the paths affect the
time it takes for the photons originating from the source to travel to the
observer. This is perceived as a delay in the intensity variations between
the images. The significance of estimating the delays in such systems stems
from the early observation that they can be used in determining important
cosmological quantities (Refsdal, 1964).

The delay estimation problem is difficult for various reasons. The main chal-
lenge is the uneven sampling rate, as the sampling times are determined
by factors one cannot control such as observing conditions and scheduling.
The signal-to-noise ratio in the observations is often poor too, although this
varies somewhat between datasets. Classical delay estimation methods usu-
ally rely on the cross-correlation function which is easy to evaluate between
regularly sampled signals.® The obvious way to attack the problem with un-
evenly sampled signals would then be to interpolate them appropriately to
obtain evenly sampled signals and then apply the cross correlation method.
With all the gaps and the noise in the data, the interpolation can, however,
introduce spurious features to the data which cause the cross-correlation
analysis to fail (Cuevas-Tello et al., 2006).

6.2.2 Bayesian time-delay estimation with irregularly sam-
pled signals

In Publication VII, a method for estimating the delay between irregularly
sampled signals is presented. Since interpolation on the data that is noisy
and contains gaps has its risks, that is avoided. Instead the two observed

°In the regular-sampling case, even the Bayesian formulation of the delay-estimation
problem has the cross-correlation function as a sufficient statistic (Scargle, 2001).
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Figure 6.7: Schematic illustration of gravitational lensing. (Image courtesy

of NASA.)

signals, x1(t) and x5(t), are postulated to have been emitted from the same
latent source signal s(t), the observation times being determined by the
actual sampling times and the delay. This is illustrated in Figure 6.8.

The subsequent instances of the source need of course to be related to each
other in some manner to make the estimation of the delay possible. There
are two requirements that seem sensible: (1) when separated by a small
time gap €, the source instances s(t) and s(t + €) should be close to each
other, and (2) when separated by a large gap F, the source instances s(t)
and s(t + F) should not be strongly dependent on each other. A prior that
satisfies the above informal requirements is the Wiener process:

S(tz'_H) — S(ti) ~ N (0, [(ti—H - ti) 0’]2) . (64)

This prior encodes the notion of “slow variability” into the model which
is an assumption that is implicitly present in many of the other methods
as well. Indeed, if the source would fluctuate a lot compared to the sam-
pling frequency, it would render the delay estimation problem practically
impossible.

The latent source can be marginalised out of the model analytically which
leads to specific type of Kalman-filter equations. In addition to the de-
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Figure 6.8: The delay 7 affects the observation times and hence the struc-
ture of the model.

lay, there are several parameters in the model controlling the scaling and
shifting of the source as well as the noise levels. These are all nuisance pa-
rameters and they are further marginalised out using a Metropolis-Hastings
sampler. The dimensionality of the parameter space, after having got rid of
the source, is counted in tens. For this low dimensionality sampling is com-
putationally efficient. In what follows, the above sketched Bayesian delay
estimation algorithm is called BEDBUSS (short for “Bayesian Estimation
of Delays Between Unevenly Sampled Signals”).

As the delays in real gravitational lensing systems are not known for cer-
tain, controlled comparisons to other methods must be made with artificial
data where the ground truth is known. In Publication VII, BEDBUSS is
compared against three popular methods. These are the discrete correla-
tion function (Edelson and Krolik, 1988; Lehar et al., 1992), interpolation
followed by cross-correlation analysis (e.g. Kundic et al., 1997), and the dis-
persion spectra (Pelt et al., 1994). Here, results with a recently developed
kernel-based method (Cuevas-Tello, 2007) are shown also.

Three groups of datasets were generated, the SNR of the observations being
different in each of them.® Examples of the datasets are shown in Figure 6.9.

5The SNRs were 20 dB, 14 dB, and 8 dB. This range was motivated by real datasets:
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Figure 6.9: One example dataset from each of the three groups. The SNR
of the group is shown above each plot.

In low noise, it is rather easy to visually identify the delay, which was 35
units in all of the cases. In high noise, the problem is already considerably
more difficult. The five methods, including the one proposed here, were
used to estimate the delay for each dataset, and the average absolute errors
were computed.” These are shown in Figure 6.10. All the methods perform
well in low noise but the accuracies of the first three methods start to
deteriorate in medium and high noise. Between those three methods, the
performance does not vary much. The Kernel method does slightly better
in low noise than any other method, but loses somewhat to BEDBUSS in
medium and high noise.

with the particular real datasets discussed in the next section, the estimated SNRs range
from 10 dB to 25 dB.

"The simulations with the kernel method were performed by its author for his the-
sis work and the results for this method are quoted as they are presented in the the-
sis (Cuevas-Tello, 2007).
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Figure 6.10: Average errors of the methods for the three groups of datasets.
The shorthand LNDCF stands for locally normalised discrete correlation
function and intpol. stands for interpolation followed by standard cross-
correlation analysis.

6.2.3 Results

We have applied BEDBUSS to several gravitational lensing systems and
have reported initial results from that study in an astronomy meeting (Harva
and Raychaudhury, 2005). Here the method is illustrated with two lensing
systems: B0218 and PG1115. Hubble telescope images of the lenses as well
as the measured time-series are shown in Figure 6.11. B0218 serves as an
example of a system where little controversy over the delay exists, whereas
PG1115 is an example of the opposite: the estimates of its delays vary
depending on who is doing the estimation.

With BEDBUSS we obtain the posterior distribution of the delay, or rather
a fair amount of samples from it. To compare with previous estimates of
the delays, we summarise the posterior by its mean and std. These values
along the previous estimates found in the literature are shown in Table 6.1.

In the case of B0218, we get a very similar estimate of the delay compared
to the previous attempt. With PG1115, however, the situation is somewhat
different. Although our estimates are not in strident disagreement with the
earlier measurements, they do not exactly equal them either. But as already
said, PG1115 is a lensing system over which there has been controversy
before, as can be noted in Table 6.1. The posterior distributions of the
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Figure 6.11: Top: the two images of B0218 and the corresponding intensity
measurements. Bottom: Same for PG1115 (it has four images of which

the two closest to each other are merged). The images were obtained from
CASTLES.

System Images Our Delay  Previous Reference
Measures
B02184-357 10.9 £ 0.7 10.5+0.4 Biggs et al. (1999)
PG11154+080 AC —11.7+1.7 —-13+1 Barkana (1997)
—9.4+3.4  Schechter (1997)
BC —2274+18 —-25+1 Barkana (1997)

—23.7+ 3.4 Schechter (1997)

Table 6.1: Our estimates of time delays compared to previous results.
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Figure 6.12: Left: the posterior over the delay in B0218. Right: same for
the delay AB in PG1115.

delays for these two systems, shown in Figure 6.12, clearly point to the
reason why it might be easy to get consistent results with the one system
and inconsistent with the other. Whereas the distribution of B0218 delay is
well concentrated around its mean value, the distribution of PG1115 delay
spans a wide range of values and is strongly multimodal. This suggests
that the data obtained from PG1115 so far is not sufficient for precise
determination of the delays.



Chapter 7

Discussion

In a recent meta study (Poirier, 2006), the impact of Bayesian inference was
investigated. Articles in economics and statistics journals were classified
to be either Bayesian or non-Bayesian by a simple criterion of whether
the word “Bayes” or “Bayesian” was contained in the text. The findings
do not come as a surprise: in statistics there has been a steady upwards
trend of Bayesianity since the 1970’s, with an especially sharp rise in the
mid 90’s, most likely caused by the MCMC revolution. In the other fields
investigated, the growth was not found to be that dramatic. Indeed, Poirier
concludes his article writing: “The pessimistic Bayesian might say things
have barely started in the other disciplines.”

Vast contributions to the development of Bayesian probability theory hav-
ing come from physicists, and astrophysicists in particular, one could easily
conjecture that it is the mode of statistics most applied in astrophysics.
That is not quite the case. Loredo (1990) mentions the irony of Laplace,
one of the notable figures in astronomy, having been strongly Bayesian
and yet the Bayesian approach being little used among astronomers. Since
Loredo’s paper, Bayesian methods have become more popular in the field,
but as noted by Scargle (2001), the pace in which this happens is “ag-
onizingly slow.” He believes that the reason for this modest rate is the
(perceived) complexity in implementing Bayesian procedures, and that the
remedy will be easy-to-use tools for Bayesian analysis becoming available.

Bayesian methods, and machine learning algorithms in general, are usually
tailored to solve one specific problem at a time. New problems then call for
tailoring of new algorithms. It is clear that similar modelling patterns recur
again and again in applications, and thus it would be highly useful if those
common denominators could somehow be captured and reused without al-
ways having to start the modelling exercise from scratch. Bayes Blocks, the

99
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variational Bayesian inference framework discussed in Chapter 4, is an ef-
fort to that direction. For a specific model family, it completely automates
the inference procedure. It does suffer, of course, from the same problem
that any framework does. When one’s model falls outside the framework’s
domain, one either needs to extend the framework to suit one’s wishes or
work without its assistance. It is hardly likely that any inference engine
could be a panacea to each and every conceivable problem.

Sometimes Bayesian methods are criticised for being overly complex, that
simpler methods could be used to solve the same problems as accurately
and more efficiently. And perhaps the criticism is on some occasions to
the point. The Bayesianisation of an algorithm is sensible only if there are
some benefits from doing so. The question is then, what are the benefits of
applying Bayesian methods? With the problems studied in this thesis, the
answer varies. In the case of the variance models discussed in Chapter 5,
the answer is that simpler methods produce, if not numerical explosions
as the precision parameters tend to infinity, then at least some less severe
form of overfitting. To put it shortly, simple methods just do not work
satisfactorily in those problems.

Consider as another example the delay estimation task of Section 6.2. Using
the same model, an estimate of the delay could be found by a gradient
search on the marginal likelihood, without the need to resort to Monte
Carlo integration. But what about quantifying the uncertainty, which there
seems to be plenty? Ad hoc devices for obtaining error bars can be found in
the literature. Compute the estimate by leaving one of the observations out
and repeat for each observation. The mean and standard deviation of this
procedure then serve as the estimate and error bars. But why leave just
one observation out at a time? Why not two, three, or four? By controlling
this number one can obtain as wide or as narrow error bars as one desires.
This is practical but not so rigorous.

Rigour is certainly one of the chief appeals of Bayesian inference. That
it is derived from first principles which are easy to grasp and to accept,
makes it a trustworthy method. Perhaps it will indeed be a matter of the
computational techniques to get advanced enough, for Bayesian inference
to become the standard tool for statistical data analysis.
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