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Abstract. A new reconstruction algorithm is presented for eit in dimension
two, based on the constructive uniqueness proof given by Astala and Päivärinta

in [Ann. of Math. 163 (2006)]. The method is non-iterative, provides a noise-

robust solution of the full nonlinear eit problem, and applies to more general

conductivities than previous approaches. In particular, the new algorithm

applies to piecewise smooth conductivities. Reconstructions from noisy and

non-noisy simulated data from conductivity distributions representing a cross-
sections of a chest and a layered medium such as stratified flow in a pipeline

are presented. The results suggest that the new method can recover useful

and reasonably accurate eit images from data corrupted by realistic amounts

of measurement noise. In particular, the dynamic range in medium-contrast

conductivities is reconstructed remarkably well.
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1. Introduction. The aim of electrical impedance tomography (eit) is to recon-
struct the conductivity distribution inside an unknown physical body from electric
boundary measurements. The reconstruction task is a nonlinear and ill-posed in-
verse problem. Applications of eit include medical imaging, nondestructive testing,
geophysical prospection and industrial process monitoring. See [11] for a general
introduction to eit.

We present a new computational eit algorithm in dimension two based on the
constructive uniqueness proof given by Astala and Päivärinta in [1, 2]. Our method
is non-iterative, provides a noise-robust solution of the full nonlinear eit problem,
and assumes no regularity in the conductivity distribution contrary to previous
direct eit algorithms in the literature. In particular, our method is applicable to the
class of piecewise smooth conductivities. This class is important since it describes
the conductivity distribution in the human body, as well as those arising in process
tomography, such as stratified media in a pipeline. The 2-D case considered here
is applicable to reconstruction of a cross-section of a pipeline or a human chest, for
example.

The mathematical model of eit is the inverse conductivity problem of Calderón
[10]. We restrict our discussion here to the following two-dimensional setting. Let
Ω ⊂ R

2 be the unit disc and let σ : Ω → (0,∞) be an essentially bounded measurable
function satisfying σ(x) ≥ c > 0 for almost every x ∈ Ω. Let u ∈ H1(Ω) be the
unique solution to

∇ · σ∇u = 0 in Ω,(1.1)

u
∣∣
∂Ω

= φ ∈ H1/2(∂Ω).(1.2)

The inverse conductivity problem is to recover σ from the voltage-to-current density
map

Λσ : φ �→ σ
∂u

∂ν

∣∣∣
∂Ω

,

also called the Dirichlet-to-Neumann (dn) map. Here ν is the unit outer normal to
the boundary.

Our reconstruction method is based on unique complex geometric optics (cgo)
solutions u1 and u2 of the conductivity equations

(1.3) ∇ · σ∇u1( · , k) = 0, ∇ · σ−1∇u2( · , k) = 0,

where k is a complex parameter and the solutions have asymptotic behaviour u1 ∼
eikz and u2 ∼ ieikz when |z| → ∞. To define these global solutions we have set
σ(z) ≡ 1 outside Ω. In particular, this makes the cgo solutions harmonic in R

2 \Ω.
The exponential behaviour of the cgo solutions is used for constructing a nonlinear
Fourier analysis for the inverse conductivity problem, and k can be thought of as a
frequency-domain variable.

The reconstruction procedure consists of these three steps:

(i) Recover traces of cgo solutions at the boundary ∂Ω from the dn

map by solving the boundary integral equation given in [2]. The
exponential ill-posedness of the eit problem shows up in this step. We present
a new regularized real-linear solution method for the integral equation. The
effect of measurement noise is abated by restricting the computation to the
disc |k| < R, where the truncation radius R > 0 depends on the measurement
noise level (smaller noise allows the use of larger R). In analogy to linear
Fourier transform terminology, we will call R the low-pass cutoff frequency.
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(ii) Compute approximate values of cgo solutions inside the unit disc
using the low-pass transport matrix. Being harmonic outside Ω, the
cgo solutions are determined in R

2 \ Ω by their traces at the boundary ∂Ω.
Furthermore, the values of the cgo solutions inside Ω are connected to their
values outside Ω through certain Beltrami equations that form a 2× 2 linear
system. The coefficient matrix for that system on the disk |k| < R is referred
to as the low-pass transport matrix.

(iii) Reconstruct the conductivity. The approximate conductivity is computed
from the recovered values of the cgo solutions inside Ω using differentiation
and simple algebra. Numerical implementation of the derivatives is stable due
to smoothing provided by the nonlinear low-pass filtering in Step (ii) above.

We remark that there is no smoothness or continuity assumption on the conductiv-
ity, and the method solves the full nonlinear eit problem in an explicitly regularized
fashion directly with no iterations. Further, reconstruction at a given point z ∈ Ω is
independent from the reconstruction at any other point, enabling region-of-interest
imaging and trivial parallelization of the algorithm.

Computationally the most demanding part of the reconstruction method is the
evaluation of the low-pass transport matrix in Step (ii). The Beltrami equation
solver introduced in [3] could be modified and used here but it is rather slow. The
computation time can be significantly reduced, and acceptable computation times
achieved, using the fast Beltrami equation solver introduced in [17]. We note that
numerical solution of Beltrami equations is discussed also in [16, 14], but with
asymptotic conditions not suitable for the present work.

For simplicity we restrict here to the special case of Ω being the unit disc, but
this is not a serious loss of generality. The method can be modified to apply to any
simply connected plane domain with Lipschitz boundary.

In dimension 2, several other algorithms using cgo solutions have preceded the
method presented here. The constructive proof for the unique identifiability of
isotropic conductivities from infinite-precision data for twice differentiable conduc-
tivities [30] led to the first numerical D-bar algorithm [32]. That D-bar algorithm
has been applied to simulated data in [23, 27, 28, 33, 34] and to laboratory and
in vivo human data in [18, 19, 29, 15], resulting in useful reconstructions of both
smooth and piecewise smooth conductivities. While the initial scattering transform
was regularized using a Born approximation, a more recent paper [24] contains a
full nonlinear regularization analysis, including estimates on speed of convergence
in Banach spaces, for twice differentiable conductivities. The uniqueness proof for
once-differentiable conductivities was provided in [9], and a reconstruction method
based on this work is given in [20, 21, 26]. Also, Calderón’s original linearized
method made use of cgo solutions and has been applied to experimental data in
dimension two in [6]. Stability estimates for the reconstruction approach used in
this work appeared in [5, 12]. For information about direct algorithms in dimension
3, the reader is referred to [7] and the references therein.

The methods described in the preceding paragraph are all direct methods and
permit region-of-interest imaging and parallelization. In addition to these advan-
tages common to the direct algorithms above, the algorithm presented here has the
potential for even greater accuracy with respect to magnitude and spatial resolution
due to the removal of smoothness assumptions inherent to algorithms based on [30]
and [9] or the linearization in [10]. This D-bar algorithm is structured differently
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from its predecessors, the main difference being in the use of the low-pass trans-
port matrix to determine the values of the cgo solutions inside Ω from their value
outside.

The paper is organized as follows. The cgo solutions are defined in Section 2.
The first step in the algorithm is to compute traces of these solutions on ∂Ω from
the Dirichlet-to-Neumann map. The simulation of this map for ideal and noisy
data is found in Section 3 and the computation of the traces of the cgo solutions is
explained in Section 4.1. The low-pass transport matrix allows us to compute the
cgo solutions inside the unit disk from their traces. This step is described in Section
4.2. The reconstruction formula for the conductivity σ is a simple formula given in
terms of the cgo solutions inside the unit disk and is also found in Section 4.2. The
computational method for solving the Beltrami equations used in the computation
of the transport matrix is detailed in Section 5. The results of the numerical tests
are found in Section 6. Finally, we conclude our results in Section 7.

2. Complex geometrical optics solutions. To construct the cgo solutions
(1.3), we first define a real-valued function μ : Ω → (−1, 1) by

(2.1) μ :=
1− σ

1 + σ
.

We then consider the complex geometrical optics (cgo) solutions fμ = fμ(z, k) of
the Beltrami equation

(2.2) ∂zfμ = μ∂zfμ,

where the solutions can be written in the form

(2.3) fμ(z, k) = eikzMμ(z, k),

and the functions Mμ have the special asymptotics

(2.4) Mμ(z, k) =

(
1 +O

(
1

z

))
as |z| → ∞.

Here k is a complex parameter. Existence, uniqueness and properties of the cgo

solutions are discussed in [1]. Note, however, the key relations for a complex function
f = u+ iv,

∂zfμ = μ∂zfμ ⇔ ∇ · σ∇u = 0 and ∇ · σ−1∇v = 0,

connecting the PDE’s (1.1) and (2.2).
Set

(2.5) h+ =
1

2
(fμ + f−μ), h− =

i

2
(fμ − f−μ).

Then the functions u1(z, k) and u2(z, k) in formula (1.3) are given by

(2.6) u1 = h+ − ih−, u2 = i(h+ + ih−).

An important special feature of the cgo solutions uj(z, k) is that in the frequency
domain they satisfy the equation

(2.7) ∂kuj(z, k) = −i τσ(k)uj(z, k), j = 1, 2,

where the coefficient τσ(k) does not depend on the space variable. For details see
[4, Corollary 18.4.4] or [1, Theorem 5.5].
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3. Simulation of boundary data. Denote by H̃s(∂Ω) the space of Hs(∂Ω) func-

tions having mean value zero. For arbitrary g ∈ H̃−1/2(∂Ω), let u ∈ H1(Ω) be the
solution of the Neumann problem

(3.1) ∇ · σ∇u = 0 in Ω, σ
∂u

∂ν
= g on ∂Ω.

The solution to (3.1) is unique only up to a constant, but the additional requirement∫
∂Ω

u ds = 0 fixes the solution uniquely. The Neumann-to-Dirichlet (nd) map

Rσ : H̃−1/2(∂Ω) → H̃1/2(∂Ω) is now defined by Rσg = u|∂Ω.
We note two key equalities connecting the dn map Λσ and the nd map Rσ.

Define an averaging operator

Lφ := |∂Ω|−1

∫
∂Ω

φ ds.

From the definitions of Λσ and Rσ we see that

ΛσRσ = I : H̃−1/2(∂Ω) → H̃−1/2(∂Ω),(3.2)

RσΛσ = I − L : H1/2(∂Ω) → H̃1/2(∂Ω).(3.3)

In the above we used the fact that for any f ∈ H1/2(∂Ω) we have

LΛσf = |∂Ω|−1

∫
∂Ω

σ
∂u

∂ν
ds = |∂Ω|−1

∫
Ω

∇ · σ∇u = 0.

Parameterizing the boundary of our domain by θ, the applied current density

g(θ) must have the property that
∫ 2π

0
g(θ)dθ = 0. For n = 1, . . . , 2N , define a set

of trigonometric basis functions:

(3.4) φn(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π−1/2 cos

(
(n+ 1)θ

2

)
, for odd n,

π−1/2 sin

(
nθ

2

)
, for even n.

Any function g ∈ L2(∂Ω) representing current density on the boundary can then
be approximated by

(3.5) g(θ) ≈
2N∑
n=1

〈g, φn〉φn(θ),

where the inner product is defined for real-valued functions f, g ∈ L2(∂Ω) by

(3.6) 〈f, g〉 :=
∫ 2π

0

f(θ)g(θ) dθ.

Given a linear operator A : L2(∂Ω) → L2(∂Ω), define its matrix approximation
A ∈ R

2N×2N by setting A := [Amn] with

(3.7) Amn := 〈Aφn, φm〉.
Here m ∈ {1, . . . , 2N} is the row index and n ∈ {1, . . . , 2N} is the column index.
Now define the 2N × 2N matrix approximation [Rmn] to the nd map by

(3.8) Rmn = 〈un|∂Ω, φm〉
where un|∂Ω is the solution to (3.1) with g = φn.

We simulate eit measurements by constructing the matrix [Rmn] numerically
by repeatedly solving (3.1) using the finite element method (fem), see [35]. We
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compute the inner products (3.8) using a quadrature rule and determine a matrix
approximation for the dn map using the identities (3.2) and (3.3). In practice
one typically measures a finite-precision discrete current-to-voltage map. That is,
known currents are applied on the electrodes, and the resulting voltage is measured
with finite precision (and noise). Currents are applied instead of voltages because
of advantages in the signal-to-noise ratio.

Note that here we are using a continuous electrode model since we are not mod-
eling electrode effects in our fem solution of the forward problem.

Define L̃σ as the following matrix of size 2N × 2N :

L̃σ := [Rmn]
−1;

We add simulated measurement noise by defining a 2N×2N matrix E with entries of
random numbers independently distributed according to a Gaussian normal density

N(0, 1). The matrix L̃σ is then perturbed so that L̃′
σ = L̃σ + cE where c > 0 is

a constant that is adjusted to obtain the desired relative noise level. Since the dn

map is self-adjoint, we then define the noisy map Lσ by

(3.9) Lσ =
1

2
(L̃′

σ + (L̃′
σ)

T ),

and the relative noise level by

(3.10)
‖L̃σ − Lσ‖2,2

‖L̃σ‖2,2
.

4. Computational reconstruction method.

4.1. Recovering traces of cgo solutions from the dn map. The crucial object
here is the μ-Hilbert transform Hμ : H1/2(∂Ω) → H1/2(∂Ω). By definition, v =
Hμ(u), if f = u+ iv satisfies (2.2) and

∫
∂Ω

v ds = 0. Then for real-valued functions

g ∈ H1/2(∂Ω) we have the formula

(4.1) ∂THμg = Λσg.

Here ∂T is the tangential derivative along the boundary; it can be approximated in
the basis (3.4) by the 2N × 2N matrix DT defined by

(4.2) DT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

0 2
−2 0

. . .

0 N
−N 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By equations (3.9) and (4.1) and (4.2) we can approximateHμ acting on real-valued,
zero-mean functions expanded in the basis (3.4) by

(4.3) H̃μ := D−1
T Lσ.

In general, the traces of the cgo solutions at ∂Ω do not have mean zero, and so
we append the basis function φ0 = (2π)−1/2 to (3.4). This leads to the following
(2N + 1)× (2N + 1) matrix approximation to the μ-Hilbert transform Hμ:

(4.4) Hμ :=

[
0 0

0 H̃μ

]
.
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Furthermore, we can approximate H−μ when we have Hμ available. We have the
identity

(4.5) Hμ ◦ (−H−μ)u = (−H−μ) ◦ Hμu = u− Lu,
so −H−μ is the inverse operator of Hμ in the subspace of zero-mean functions. Thus
we may define a (2N + 1)× (2N + 1) matrix approximation to H−μ:

(4.6) H−μ :=

[
0 0

0 −H̃−1
μ

]
.

Summarizing, once we have measured the dn matrix (3.9), we can approximate the
μ-Hilbert transforms H±μ by matrices H±μ acting on the basis (3.4) augmented by
a constant basis function.

However, so far we can only work with real-valued functions in H1/2(∂Ω), and
the CGO solutions are in general complex-valued. Furthermore, the operator Hμ is
not complex-linear but only real-linear: for a real-valued function g we have

(4.7) Hμ(ig) = iH−μ(g).

We represent complex-valued functions g ∈ H1/2(∂Ω) by expanding the real and
imaginary parts separately and organizing the coefficients as the following vertical
vector in R

4N+2 :

[〈Re g, φ0〉, 〈Re g, φ1〉, . . . , 〈Re g, φ2N 〉, 〈Im g, φ0〉, 〈Im g, φ1〉, . . . , 〈Im g, φ2N 〉]T .
Now the μ-Hilbert transforms H±μ can be approximated using the following (4N +
2)× (4N + 2) matrices:

(4.8) Hμ ≈
[
Hμ 0
0 H−μ

]
, H−μ ≈

[
H−μ 0
0 Hμ

]
,

where Hμ and H−μ are given by (4.4) and (4.6), respectively.
The infinite-precision boundary integral equation is defined as follows. In analogy

with the Riesz projections we define the real-linear operator Pμ : H1/2(∂D) →
H1/2(∂D) by the formula

(4.9) Pμ g =
1

2
(I + iHμ)g +

1

2
Lg,

where the function g may be complex-valued. Further, denote

(4.10) Pk
μ := e−ikzPμe

ikz,

containing complex-linear operators of point-wise multiplication by exponential
functions. Matrices for such a multiplication operator (for fixed k) can be con-
structed quite simply by applying it numerically to each basis function and com-
puting inner products between the result and each basis function.

It was shown in [2] that the following boundary integral equation holds:

(4.11) Mμ( · , k)|∂D + 1 = (Pk
μ + P0)Mμ( · , k)|∂D,

where the function Mμ is as in (2.3). We can thus solve (4.11) for the trace of
Mμ( · , k) on ∂Ω and use (2.3) to find the trace of fμ( · , k) as well.

Numerical solution of (4.11) is done by writing real and imaginary parts sepa-
rately, replacing all the operators by their (4N+2)×(4N+2) matrix approximations,
and solving the resulting finite linear system in a regularized manner.

Because of the conjugation with exponential functions in (4.10), the error in
Hμ gets multiplied with numbers exponentially large in k, and so we can only
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reliably numerically solve the boundary integral equation (4.11) for k ranging in
a disc D(0, R) where the radius R > 0 depends on the noise level. This is where
the exponential ill-posedness of the inverse conductivity problem shows up in our
reconstruction method. We regularize the reconstruction by truncation of coefficient
functions to the disc |k| < R; in other words replacing the function values by zero
outside that disc.

4.2. The low-pass transport matrix and conductivity reconstruction. Sup-
pose we know the trace of the cgo solution fμ( · , k) on ∂Ω. Then we can expand
it as a Fourier series at the boundary. Now equation (2.2) and the fact that μ is
supported in Ω implies that fμ( · , k) is analytic outside the unit disc. Therefore
the coefficients of the Fourier series can be used to expand fμ as a power series
outside Ω. In other words, the trace of fμ( · , k) on ∂Ω determines fμ outside Ω in
a straightforward way.

Choose then a point z0 ∈ R
2 \ Ω. As explained above, we know fμ(z0, k) and

f−μ(z0, k) for any |k| < R. Use (2.5) to construct the function

(4.12) ν(R)
z0 (k) :=

⎧⎪⎪⎨⎪⎪⎩
i
h−(z0, k)
h+(z0, k)

for |k| < R,

0 for |k| ≥ R.

We next solve the truncated Beltrami equations

∂kα
(R) = ν(R)

z0 (k) ∂kα(R),(4.13)

∂kβ
(R) = ν(R)

z0 (k) ∂kβ(R),(4.14)

with solutions represented in the form

α(R)(z, z0, k) = exp(ik(z − z0) + ε(k)),(4.15)

β(R)(z, z0, k) = i exp(ik(z − z0) + ε̃(k)),(4.16)

where ε(k)/k → 0 and ε̃(k)/k → 0 as k → ∞. Requiring

(4.17) α(R)(z, z0, 0) = 1 and β(R)(z, z0, 0) = i

fixes the solutions uniquely, see Section 5.1.
Fix any nonzero k0 ∈ C and choose any point z inside the unit disc. We can now

use the approximate transport matrix

(4.18) T (R) = T
(R)
z,z0,k0

:=

(
a
(R)
1 a

(R)
2

b
(R)
1 b

(R)
2

)
to compute

u
(R)
1 (z, k0) = a

(R)
1 u1(z0, k0) + a

(R)
2 u2(z0, k0),(4.19)

u
(R)
2 (z, k0) = b

(R)
1 u1(z0, k0) + b

(R)
2 u2(z0, k0),

where α(R) = a
(R)
1 + ia

(R)
2 and β(R) = b

(R)
1 + ib

(R)
2 . The truncation in (4.12) can

be interpreted as a nonlinear low-pass filter in the k-plane. This is where the term
low-pass transport matrix originates.

To see the role of equations (4.19) recall that since u1(z0, k0) and u2(z0, k0)
are R-linearly independent [4, Theorem 18.4.1], we can always write uj(z, k0) as a
linear combination of them. However, the key point here is that, e.g. if we write
u1(z, k0) = a1 u1(z0, k0)+a2 u2(z0, k0), then a straightforward calculation using the
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∂k-equations (2.7) implies that the function α = a1 + ia2 satisfies equation (4.13)
with the untruncated coefficient νz0(k). Furthermore (4.15) holds with α(z, z0, 0) =
1, see [1], and similar argument applies to β(z, z0, k).

Given the above we know the approximate solutions u
(R)
j (z, k0) for z ∈ D and

one fixed k0. We use formulas (2.5) and (2.6) to connect u
(R)
1 , u

(R)
2 with f

(R)
μ , f

(R)
−μ .

Define

(4.20) μ(R)(z) =
∂f

(R)
μ (z, k0)

∂f
(R)
μ (z, k0)

.

Finally we reconstruct the conductivity σ approximatively as

(4.21) σ(R) =
1− μ(R)

1 + μ(R)
.

5. Beltrami equation solver. We now show that the problems (4.13)-(4.16) have
unique solutions given the requirement that the transport matrix be the identity at

k = 0. With the truncation of νz0 to ν
(R)
z0 the sublinear terms ε(k) and ε̃(k) in (4.15)-

(4.16) become analytic outside the disk of radius R (apply here [4, Theorem 5.5.1]),
hence bounded and this in turn results in R-linear equations for which numerical
solvers were studied in [3, 17].

Below, we keep the variable z fixed.

5.1. Constructing the low-pass transport matrix. Assume 2 < p < 1 + 1/q,

where q is a constant such that |ν(R)
z0 (k)| ≤ q < 1 for all k ∈ C [1, Proposition

6.3]. To construct the truncated transport matrix (4.18), first find solutions η1,

η2 ∈ W 1,p
loc (R

2) to the equation

(5.1) ∂kη = ν(R)
z0 (k) ∂kη,

with asymptotics

(5.2) η1(k) = eik(z−z0)
(
1 +O(1/k)

)
and η2(k) = i eik(z−z0)

(
1 +O(1/k)

)
,

respectively, as |k| → ∞. Such solutions exist and are unique by [1, Theorem 4.2].
In fact, we are here constructing cgo solutions, but now in the frequency domain.

The solutions are complex valued, but pointwise R-linearly independent by [4,
Theorem 18.4.1]. Hence there are constants A,B ∈ R such that

Aη1(0) +B η2(0) = 1.

We now set

α(R)(z, z0, k) = Aη1(k) +B η2(k), k ∈ R
2.

Then α(R)(z, z0, k) satisfies (4.13) and the first condition in (4.17). Applying [1,
Corollary 3.4] to F (k) := e−ik(z−z0)α(R)(z, z0, k) gives

F (k) = exp (C0 + ε(k)) , C0 a constant and ε(k) → 0 as k → ∞.

Thus we have the required asymptotics (4.15), completing the construction of
α(R)(z, z0, k). Applying similarly [1, Corollary 3.4] to the difference of two solu-
tions to (4.13), (4.15) shows that if the solutions agree at one point, then they are
identical. Hence we have also the uniqueness of the function α(R)(z, z0, k). The
same argument with [1, Corollary 3.4] also shows that at every k, the function
values α(R)(z, z0, k), β

(R)(z, z0, k) are R-linearly independent. Thus the low-pass
transport matrices are invertible at every point.
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5.2. Solving R-linear Beltrami equations. To solve the equation (5.1) with
either of the asymptotics in (5.2) we argue as in [1]. Making the substitution
η(k) = eik(z−z0)

(
1 + ω(k)

)
we obtain the R-linear equation

(5.3) ∂kω + γ1∂kω + γ2ω + γ2 = 0

with the asymptotic condition limk→∞ ω(k) = 0, where

γ1(z, z0, k) = ± e−(z−z0)(k) ν
(R)
z0 (k),(5.4)

γ2(z, z0, k) = −i (z − z0) γ1(z, z0, k),(5.5)

with ez(k) = ei(kz+kz). We solve numerically this equation as described in [17].
Substitute u ∈ Lp(D(0, R)) such that u = −∂kω. Then ω = −Pu and ∂kω =

−Su, where P is the solid Cauchy transform and S is the Beurling transform defined
by

Pf(z) = − 1

π

∫
C

f(λ)

λ− z
dm(λ), Sg(z) = − 1

π

∫
C

g(λ)

(λ− z)2
dm(λ),

where the latter is a principal value integral, the points (λ1, λ2) ∈ R
2 and λ1+iλ2 ∈

C are identified, and dm denotes Lebesgue measure in R
2. This leads to the R-linear

integral equation

(5.6) u+ (γ1S + γ2P )u = γ2.

5.3. Discretization. We form a uniform grid in [−R,R]2 allowing the use of fast
Fourier transform (fft) for matrix-vector products. Choose a positive integer m,
let N = 2m, h = 2R/N and define

(5.7) Z
2
N =

{
(j1, j2) ∈ Z

2
∣∣−N/2 ≤ j1, j2 < N/2

}
.

The uniform grid consists of the points
{
jh
∣∣ j ∈ Z

2
N

}
.

The grid approximation of a function v : [−R,R]2 → C is defined by vh : Z2
N → C

with vh(j) := v(jh). The Cauchy transform Pv and the Beurling transform Sv are
discretized by

(Phvh)(j) =
1

πh

∑
l �=j
l∈Z

2
N

1

j − l
vh(l), (Shvh)(j) = − 1

π

∑
l �=j
l∈Z

2
N

1

(j − l)2
vh(l),

where (Pv)(jh) ≈ (Phvh)(j) and (Sv)(jh) ≈ (Shvh)(j) for j ∈ Z
2
N . The Toeplitz

structure of these discretizations allows fast computation of the products Phvh and
Shvh by executing the fft.

The functions γi (i = 1, 2) are discretized by

γi,h(j) = γi(z, z0, jh).

Finally, we obtain the discretized form of (5.6) as

(5.8) uh + (γ1,hSh + γ2,hPh)uh = γ2,h

and ωh = −Phuh is an approximate solution to (5.3). To solve this equation, we
execute the iterative generalized minimal residual (gmres) method [31] by using a
preconditioner we describe next.

We make a substitution to (5.8) having a two-fold advantage. Let Ah = γ1,hSh+
γ2,hPh and substitute uh = wh −Ahwh. We then get a C-linear equation

(5.9) (I −AhAh)wh = γ2,h,
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where Ahwh = Ahwh. This preconditioning resulted in the fastest convergence of
gmres for the equation (5.8) in comparison to the other options considered in [17].

The second advantage of this substitution comes from the requirement of having
to solve two Beltrami equations of type (5.3) for each z-point as described in Section
5.1. Let us denote the functions and operators corresponding to the first equation by
γ+
i,h (i = 1, 2) and A+

h , and those of the second equation by γ−
i,h and A−

h . We notice

that γ−
i = −γ+

i . Therefore A−
h = −A+

h as well, resulting in I−A+
hA

+
h = I−A−

hA
−
h .

Hence, to solve the two equations

(I −A+
hA

+
h )w

+
h = γ+

2,h,

(I −A−
hA

−
h )w

−
h = γ−

2,h

we merely solve the first one and then set w−
h = −w+

h .

6. Numerical results. Four example conductivities are studied: a simple heart-
and-lungs phantom σ1 related to monitoring intensive care patients, similar heart-
and-lungs phantoms σ2 and σ3 both featuring a low-conductivity spine, and σ2 an
additional tumor-like inhomogeneity inside one of the lungs. The fourth example is
a conductivity cross-section σ4 of a stratified medium that could arise, for example,
in an oil pipeline or other industrial process monitoring applications.

All these conductivities are discontinuous and therefore violate the assumptions
of previously published D-bar reconstruction methods.

6.1. Heart-and-lungs phantom. We define an idealized computational model
of a cross-section of a patient’s chest, see the leftmost image in Figure 2. The
conductivity values are

Background 1.0,
Lung (blue) 0.7,
Heart (red) 2.0.

We simulate boundary measurements using fem to solve equation (3.1). We
let n range from 1 to 32, so N = 16. This choice corresponds approximately
to an eit configuration with 32 equispaced electrodes located on the unit circle.
Our fem mesh comprises 263 169 nodes and 524 288 triangles. For a numerical
test comparing analytically and numerically computed nd maps for the constant
conductivity σ ≡ 1, our computed nd matrix elements have at least 5 correct digits.
We then add 0.01% noise using (3.9), which is the published noise level of the 32-
electrode ACT3 system of Rensselaer Polytechnic Institute [13]. We remark that
since EIT is exponentially ill-posed, this seemingly low noise level is significant.

We solve the matrix version of the boundary integral equation (4.11) for the
traces of cgo solutions with k ranging in a finite grid inside the disc |k| < R.
Regularization is implemented using the Moore-Penrose pseudoinverse. The cutoff
frequency R is taken as large as possible without too much numerical error, resulting
in R = 6 for the data with no added noise and R = 5.5 for the data with 0.01%
noise. More advanced or automatic choices of R are not discussed in this work.
Truncation is used in the algorithms based on [30] and [9] as well, and the reader is
referred to [24] for a study of truncation as a regularization method for the D-bar
algorithm based on [30].

We choose z0 = 1.4 and use (4.12) to evaluate the function ν
(R)
z0 (k) numerically

in the disc |k| < R. Plot of νz0 with R = 6 is shown in Figure 1. Further, we choose
the point k0 in Section 4.2 as the nearest k-grid point to 1.
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We construct a finite Cartesian grid of points in the unit disc, and for each of
those points z ∈ Ω the truncated Beltrami equation (4.13) for α(R) is solved using
the quasilinear asymptotic condition (4.15) depending on z. Substituting the result
into (4.20) and (4.21) yields an approximate reconstruction of the conductivity at
z. Numerical differentiation in (4.20) is not problematic as the low-pass filtering
results in smooth functions to be differentiated.

Figure 2 shows the two reconstructions together with relative errors given by

(6.1)
‖σ − σ(R)‖L2(Ω)

‖σ‖L2(Ω)
· 100%.

The relative errors of the reconstructions are 11.6% and 12.7%.
Further, we define the dynamic range of a reconstruction to be 100%multiplied by

the ratio of the difference of the maximum and minimum values in the reconstruction
to the difference of maximum and minimum values of the true conductivity. The
minimum conductivity in the noise-free reconstruction is 0.637 (compared to a true
value of 0.7), and the maximum conductivity is 1.997 (compared to a true value
of 2). This results in a dynamic range of 105%. The minimum conductivity in
the reconstruction from data with 0.01% noise is 0.637 and the maximum 1.870,
resulting in a dynamic range of 95%.

The reconstructions display a high degree of spatial accuracy and lack of artifacts.
Notably, the separation between the lungs is clearly visible and the organs are not
distorted toward the boundary of the domain.

We remark that different choices for z0 and k0 result in slightly differing numerical
values in the reconstruction, but we do not discuss such effects further here (with
the exception of using several z0 values in Subsection 6.3).

6.2. Heart-and-lungs phantom with tumor. We define another model σ2 of a
cross-section of a patient’s chest but now with a resistive spine and a conductive
“tumor” in the right lung. The conductivity σ3 is the same as σ2 but without the
tumor, see Figure 3. The conductivity values are

Background 1.0,
Lung (light blue) 0.7,
Spine (dark blue) 0.2,
Heart (red) 2.0,
Tumor (red) 2.0.

We compute reconstructions from data with no added noise using R = 5.5 and
otherwise the same parameters as in Subsection 6.1, see Figure 3. Relative errors
in the reconstructions of of σ2 and σ3 are 16.7% and 16.3% and the dynamic ranges
are 109% and 106%, respectively. The latter are computed using the differences
between the heart and spine since the maximum and minimum conductivity values
occur there.

While the heart, lungs, and spine are all clearly visible, the spine appears some-
what enlarged in the reconstructions, and the separation between the lungs and
spine is not as marked as the separation between other organs.

The conductivity of the tumor is 2, the same as that of the heart. However,
while the presence of the tumor is evident in the reconstructed image as a region
of brighter blue in the lung, its actual conductivity value is not well-reconstructed.
A difference image is also included in Figure 3 in which the reconstruction without
the tumor is subtracted from the reconstruction with the tumor. In the difference
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image, the tumor is strikingly visible, but we note that it is plotted on its own scale,
not relative to the plots above. The true contrast in the difference image is 1.3,
while the contrast achieved in the difference image is 0.2073.

6.3. Stratified medium. The conductivity σ4 consists of horizontal layers as
shown in the bottom left image in Figure 4. The conductivity values are

Top layer 1.2,
Middle layer 2.0,
Bottom layer 0.3.

Such a conductivity could be a rough model of a cross-section of an oil pipeline with
sand in the bottom, water in the middle, and oil on top.

Unlike the previous examples, the conductivity σ4 is not constant near the bound-
ary. This violates the assumptions of the proposed method, and we take this into
account as follows. The cross-section of the pipeline is modeled by the disc |x| ≤ 0.7,
and we define σ3(x) ≡ 1 for 0.7 < |x| ≤ 1. In principle one could measure eit data
at the boundary |x| = 0.7 of the pipeline and determine the dn map on |x| = 1 as
explained for infinite-precision data in [30, Section 6] and numerically implemented
for noisy data in [34]. However, we take the simpler approach of adding the layer
around the boundary 0.7 < |x| ≤ 1 in which σ3 = 1 and simulating the dn map on
|x| = 1.

We compute the function νz0 with R = 4 and z0 = 1.4, see Figure 1. The
truncation radius is determined visually by increasing it as far as possible before
apparent numerical instability. We observe a nonsymmetry in the reconstruction,
the highest quality being at the points closest to z0 = 1.4. To obtain a more sym-
metric reconstruction, we compute four reconstructions σE , σW , σN , σS computed
using z0 = 1.4,−1.4, 1.4i,−1.4i, respectively. Figure 4 shows the combined recon-
struction defined by

(6.2) σ = .25(1 + z1)σE + .25(1− z1)σW + .25(1 + z2)σN + .25(1− z2)σS .

The idea of the weighted sum (6.2) is to emphasize the highest-quality parts of each
of the four reconstructions.

The layers are very clearly represented with very few artifacts. One observable
artifact is the smoothing that occurs between the layers. However the gradient is
quite steep and so it is readily recognized as a layer. The relative error is 24.7%
and the dynamic range is 134% inside the disc |x| < 0.7.

7. Discussion and summary. In this work a new computational eit algorithm
in dimension two is presented, based on the constructive uniqueness proof given
by Astala and Päivärinta in [Ann. of Math. 163 (2006)]. The method consists
of three main steps. First, one must recover traces of cgo solutions from the dn

map by solving an ill-posed boundary integral equation introduced in [2]. Second,
one approximates the cgo solutions inside the unit disc using a low-pass transport
matrix. Finally, the approximate conductivity is computed from the cgo solutions
inside the unit disc using numerical differentiation and simple algebra.

A fast solver of the Beltrami equation, introduced in [17], was employed to fa-
cilitate the computation of the low-pass transport matrix. We stress that although
the Beltrami solver is based on the iterative gmres algorithm, the proposed eit

reconstruction method involves no iterations in the conductivity space.
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The method was tested on simulated conductivity distributions with applications
in medical imaging and process tomography. The results were very robust with re-
spect to noise in the data and gave a very good representation of the dynamic
range of the actual conductivity distribution. The reconstructions are mollified ap-
proximations to the discontinuous conductivities, but the gradients are quite steep.
Relative errors in the reconstructions are of the same size (or slightly smaller) than
similar errors for previous D-bar methods assuming smoothness in the conductivity.

The excellent dynamic range and good spatial resolution indicate that this method
holds promise for applications and use with experimental data.
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Matemàtica, Rio de Janeiro, (1980), 65–73.

[11] M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review,
41 (1999), 85–101.

[12] A. Clop, D. Faraco and A. Ruiz. Integral stability of calderón inverse conductivity problem

in the plane, Inverse Problems and Imaging, 4 (2010), 49–91.
[13] R. D. Cook, G. J. Saulnier and J. C. Goble “A Phase Sensitive Voltmeter for a High-Speed,

High-Precision Electrical Impedance Tomograph,” Proc. Annu. Int. Conf. IEEE Engineering

in Medicine and Biology Soc., (1991), 22–23.
[14] P. Daripa, A fast algorithm to solve the Beltrami equation with applications to quasiconformal

mappings, Journal of Computational Physics, 106 (1993), 355–365.

Inverse Problems and Imaging Volume 5, No. 3 (2011), 531–549



Direct eit for nonsmooth conductivities 545

[15] M. DeAngelo and J. L. Mueller, D-bar reconstructions of human chest and tank data using an
improved approximation to the scattering transform, Physiological Measurement, 31 (2010),

221–232.

[16] D. Gaydashev and D. Khmelev, On numerical algorithms for the solution of a Beltrami

equation, arXiv:math/0510516, 2005.
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Figure 1. Top row: The real (left) and imaginary (right) parts of
the function νz0(k) corresponding to the heart-and-lungs phantom
σ1 for |k| < 6. Numerical values of the real and imaginary parts
range between -0.08 and 0.08. Bottom row: The real (left) and
imaginary (right) parts of the function νz0(k) corresponding to the
stratified medium conductivity σ4 (including the added unit con-
ductivity annulus, see Subsection 6.3) for |k| < 4. Numerical values
of the real and imaginary parts range between -0.25 and 0.26. In
both cases z0 = 1.4. The colormaps in all four plots are the same,
allowing direct comparison of colors (function values).
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Figure 2. Heart-and-lungs conductivity phantom σ1 and two dif-
ferent reconstructions. The colors (conductivity values) in the three
images are directly comparable. The relative error percentages of
the two reconstructions are computed using formula (6.1). Left:
true conductivity σ1. Center: reconstruction from noise-free data
with z0 = 1.4 and cutoff frequency R = 6. The minimum conduc-
tivity in the reconstruction is 0.637 (true value 0.7); the maximum
conductivity is 1.997 (true value 2). Right: reconstruction from
data with added noise of relative size 10−4 in the sense of formula
(3.10). Here z0 = 1.4 and the cutoff frequency is R = 5.5. The min-
imum conductivity in the reconstruction is 0.637 and the maximum
1.870.

Inverse Problems and Imaging Volume 5, No. 3 (2011), 531–549
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Figure 3. True conductivities σ2 and σ3 (left) and reconstructions
from noise-free data (right). In each case, the cutoff frequency is
R = 5.5 and z0 = 1.4. The relative error percentages of the two
reconstructions are computed using formula (6.1). The bottom
row represents a difference image; that is, the reconstruction in
the second row is subtracted from the reconstruction in the top
row to form the image in the bottom row. In rows 1 and 2, the
colormaps in the left and right image are the same. The images
in the bottom row are each plotted on their own scale. The true
maximum conductivity in the first and second row is 2.0, and the
true minimum conductivity is 0.2. The max and min in row one are
2.3319 and 0.3781, respectively. The max and min in row two are
2.2732 and 0.3728, respectively. The true contrast in the difference
image is 1.3, while the contrast achieved in the difference image is
0.2073.
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Figure 4. Reconstruction of σ4 using cutoff frequency R = 6 and
four values of z0: real ±1.4 and purely imaginary ±1.4i. The four
reconstructions have been combined using formula (6.2). In the
upper plots the full domain and full reconstruction are displayed;
the relative error percentage is computed using formula (6.1). In
the lower plots, the outer annulus is removed so that the recon-
struction can be analyzed in the region of interest. The relative
error percentage 24.7% is computed using formula (6.1) with Ω re-
placed by the disc |x| < 0.7. In the region of interest, the minimum
conductivity in the reconstruction is 0.3048, while the true value is
0.3, and the maximum conductivity in the reconstruction is 2.5743,
while the true value is 2. The colormaps in all four images are the
same, so colors (conductivity values) are directly comparable.
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