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NUMERICAL SOLUTION OF THE R-LINEAR

BELTRAMI EQUATION

MARKO HUHTANEN AND ALLAN PERÄMÄKI

Abstract. The R-linear Beltrami equation appears in applications, such as
the inverse problem of recovering the electrical conductivity distribution in the
plane. In this paper, a new way to discretize the R-linear Beltrami equation
is considered. This gives rise to large and dense R-linear systems of equations
with structure. For their iterative solution, norm minimizing Krylov subspace
methods are devised. In the numerical experiments, these improvements com-
bined are shown to lead to speed-ups of almost two orders of magnitude in the
electrical conductivity problem.

1. Introduction

The R-linear Beltrami equation

(1.1) ∂ω + ν∂ω + αω + β = 0

in the plane is a first order partial differential equation that can be converted,
under certain assumptions, into an R-linear integral equation. Here the asymptotic
condition ω(z) = O(1/z) as z → ∞ for the solution is imposed. Moreover, let Ω ⊂ C

be a bounded domain with connected complement. (For simplicity, we may let Ω
be the open unit disc.) Then suppose ν, α, β ∈ L∞(C) with |ν(z)| ≤ κχΩ(z), where
κ < 1 is a constant, for almost every z ∈ C and supp(α) ⊂ Ω, supp(β) ⊂ Ω. These
assumptions are realistic in several applications; see [8, 6, 2] and the references
therein. For the Beltrami equation and its applications, see [1, 5]. Motivated by
the inverse problem of recovering the electrical conductivity distribution in the
plane considered in [2], in this paper a new way to discretize the R-linear Beltrami
equation is suggested.

Using the properties of the Cauchy and Beurling transforms, an R-linear integral
equation formulation of (1.1) is treated directly. This gives rise to an integral
operator which, from the numerical analysis point of view, is not as appealing as
that considered in [2]. The reason is that the latter splits nicely as “the identity +
compact”, the numerical treatment of which is classical. However, the respective
discretized problems can be shown to have the same solution, making the potential
numerical inconvenience illusory. This is of importance since the discretized version
considered in this paper turns out to be better suited for fast solving.

Received by the editor June 18, 2010 and, in revised form, December 15, 2010.
2010 Mathematics Subject Classification. Primary 65R20, 65F10, 45Q05.
Key words and phrases. Beltrami equation, conductivity problem, dbar-equation, iterative

methods.
The research of both authors was supported by the Academy of Finland.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

387



388 M. HUHTANEN AND A. PERÄMÄKI

In practice, the appearing R-linear systems of equations are too large and dense
to be solved with direct methods. However, their structure involves explicitly prod-
ucts of diagonal matrices and block Toeplitz matrices with Toeplitz blocks. Hence,
by invoking the FFT, matrix-vector products can be performed rapidly, making the
use of iterative methods attractive. A short but exhaustive treament of norm min-
imizing Krylov subspace methods for solving such linear systems is given. One of
the methods considered is new. When executed with the discretization proposed in
this paper, significant computational savings result. For example, in the electrical
conductivity problem treated in [2], speed-ups of almost two orders of magnitude
are obtained.

The paper is organized as follows. In Section 2 integral equation formulations
of the R-linear Beltrami equation (1.1) are considered. In Section 3 these inte-
gral equation formulations are discretized. The discretizations are shown to be
equivalent. In Section 4 iterative methods (and preconditioning) are considered for
solving the arising R-linear systems of equations. Numerical experiments are given
in Section 5.

2. The R-linear Beltrami equation

In analyzing the R-linear Beltrami equation, the Cauchy and Beurling transforms
are of central relevance. First, we give their required properties concisely. Then
integral equation formulations of the Beltrami equation (1.1) are considered.

2.1. Preliminaries. The Cauchy transform is a weakly singular integral operator
defined, initially for f ∈ C∞

0 (C), by

(2.1) Pf(z) = − 1

π

∫
C

f(ζ)

ζ − z
dm(ζ),

where m is the Lebesgue measure on the plane C. The Beurling transform is a
singular integral operator defined, again initially for f ∈ C∞

0 (C), by the principal
value integral

(2.2) Sf(z) = − 1

π
lim
ε→0

∫
|ζ−z|>ε

f(ζ)

(ζ − z)2
dm(ζ).

These operators satisfy Sf = ∂Pf and S∂f = ∂f for all f ∈ C∞
0 (C).

In the following, Lp(C) denotes the standard Lebesgue space on the plane C and
W 1,p(C) the Sobolev space. For a domain Ω ⊂ C, we define

Lp(Ω) =
{
f ∈ Lp(C)

∣∣ f ∣∣
C\Ω ≡ 0

}
.

The Cauchy and Beurling transforms can be extended beyond C∞
0 (C). We need

the following facts, in particular:

• P : Lp(Ω) → W 1,p(C) is bounded for 2 < p < ∞,
• P : Lp(Ω) → Lp(C) is compact for 2 < p < ∞,
• S : Lp(C) → Lp(C) is bounded for 1 < p < ∞.

Furthermore, we have, in the sense of weak derivatives, ∂Pf = Sf and ∂Pf = f
for all f ∈ Lp(C), 1 < p < ∞. For these and further properties of P and S, we
refer to [1, Chapter 4].
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2.2. Two integral equation formulations. We now describe two integral equa-
tion formulations of the Beltrami equation (1.1). The first of these was considered
in [2] and the second one is our suggested replacement.

In the following, τ (f) = f denotes the conjugation operator. Assume now that
2 < p < 1 + 1/κ and define an R-linear operator K : Lp(C) → Lp(C) by

Kg = P (I + ντS)−1(αg).

It is shown in [3, Proposition 4.1] that K is compact, I +K is invertible in Lp(C)
and maps Lp(C) into W 1,p(C). Let Ω ⊂ C be the open unit disk. The integral
equation

(2.3) ω + P (I + ντS)−1(αω) = −K(χΩ)

can be used to establish a unique solution ω ∈ W 1,p(C) to the equation (1.1), when
β = α [3, Section 4]. In [2], the equation (2.3) is used as a starting point for
numerical computations.

For another integral equation formulation, we need the following (nonstandard)
definition. For 1 < p < ∞, define

W 1,p(C,Ω) =
{
f ∈ W 1,p(C)

∣∣ f is analytic in C \ Ω} .
W 1,p(C,Ω) is a closed subset of W 1,p(C) with the following property.

Proposition 2.1. Assume that 2 < p < ∞. The Cauchy transform is a bounded
linear operator P : Lp(Ω) → W 1,p(C,Ω) with a bounded inverse P−1 = ∂.

Proof. For f ∈ Lp(Ω), it follows easily that Pf is analytic in C \ Ω. Also, as
mentioned above, ∂Pf = f . Next, let f ∈ W 1,p(C,Ω) and g = P∂f . Applying ∂ to
both sides, we get ∂g = ∂f . Denoting h = f − g we have ∂h = 0 so that h satisfies
the Cauchy-Riemann equations on the entire plane in the sense of weak derivatives.
Hence h is equal to an analytic function almost everywhere on C. Since h ∈ Lp(C),
h ≡ 0 by an Lp-version of Liouville’s theorem. Therefore, P : Lp(Ω) → W 1,p(C,Ω)

is a bijection and P = ∂
−1

. �

Now suppose again that 2 < p < 1+ 1/κ. As just mentioned, the equation (1.1)
has a unique solution ω ∈ W 1,p(C). Actually, ω ∈ W 1,p(C,Ω) by the fact that (1.1)
reduces to the Cauchy-Riemann equations outside Ω. Now introduce u ∈ Lp(Ω) by
u = −∂ω. Then ω = −Pu and ∂ω = −Su. Hence (1.1) transforms into

(2.4) u+ (νS + αP )u = β,

which has a unique solution u ∈ Lp(Ω) due to Proposition 2.1. This is an R-linear
singular integral equation. Here νSτ is a singular integral operator and αPτ is a
compact operator. See [7] for the theory of C-linear equations of this type.

The operator I+νSτ+αPτ is invertible in Lp(Ω). To see this, note that I+νSτ
is invertible in Lp(Ω) according to [3, Theorem 3.2] (multiply by τ both left and
right to use the theorem.) Hence the equation(

I + (I + νSτ )−1(αPτ )
)
u = (I + νSτ )−1(β)

is equivalent to (2.4). The operator on the left-hand side is invertible by the fact that
its null space is trivial and (I+νSτ )−1(αPτ ) is compact. Therefore, I+νSτ+αPτ
is invertible as well.

Regarding the regularity of the solution of the equation (2.4), it follows from
[1, Theorem 15.6.2] that for locally Hölder-continuous functions ν, α and β, the
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solution u of (2.4) is locally Hölder-continuous as well. In applications, the functions
ν, α and β may have discontinuities. Therefore we assume Ω to be decomposed
into a finite number of subdomains each with a piecewise smooth boundary curve.
If ν, α and β are locally Hölder-continuous in each subdomain, the solution u is
locally Hölder-continuous in each subdomain as well. The solution is, in general,
discontinuous on the boundaries of the subdomains.

3. Discretizing the R-linear Beltrami equation

Next, both the equations (2.3) and (2.4) are discretized by collocating at a
uniform grid of points. The purpose is to preserve the convolution structure of
S and P so that the FFT can be readily employed. The discretizations are then
shown to be equivalent. We take Ω ⊂ C as the open unit disk.

3.1. Discretization of (2.4). To discretize the equation (2.4), take the rectangle
R = [−1, 1)2 and choose a positive integer m. Let N = 2m and h = 2/N . Then
form a uniform grid of points jh in R, where j ∈ Z

2
N and

(3.1) Z
2
N =

{
(j1, j2) ∈ Z

2
∣∣−N

2
≤ j1, j2 <

N

2

}
.

Our discrete form of the equation (2.4) is

u(jh)− ν(jh)h2
∑
k∈Z

2
N

k �=j

u(kh)

π(jh− kh)2
+ α(jh)h2

∑
k∈Z

2
N

k �=j

u(kh)

π(jh− kh)
= β(jh) (j ∈ Z

2
N ),

where we identify jh = (j1h, j2h) and (j1 + ij2)h ∈ C. This can be written in

terms of matrices by packing the values u(jh) into a vector x ∈ CN2

by setting
x(j1+N/2)+N(j2+N/2)+1 = u(jh). As a result, we obtain an R-linear system which
can be given in a matrix form as

(3.2) x+ (D1T1 +D2T2)x = D3b.

The matrices and the vector b in these equations have the following structure:

• b is an all-ones vector,
• D1, D2 and D3 are diagonal matrices formed from the values ν(jh), α(jh)
and β(jh), respectively,

• T1 is a block-Toeplitz with Toeplitz blocks (BTTB) matrix formed from the
values −h2/(π(jh− kh)2) (j �= k). It is the discretization of the Beurling
transform S. T1 is complex symmetric.

• T2 is a BTTB matrix formed from the values h2/(π(jh − kh)) (j �= k).
It is the discretization of the Cauchy transform P . T2 is complex skew-
symmetric.

By using the FFT, matrix-vector products with T1 and T2 cost O(N2 log(N)) float-
ing point operations.

Finally, an approximate solution ωh ≈ ω to (1.1) in the rectangle R is obtained
by solving x from the equation (3.2) and then computing

(3.3) ωh = −T2x.

An approximation to ω outside R can be obtained by discretizing P in a larger
rectangle or by direct numerical integration of (2.1) at a single point z ∈ C.
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3.2. Discretization of (2.3). For comparison, we describe the discretization of
the equation (2.3) suggested in [2]. To our mind, the periodization proposed there
is unnecessary. This is shown below. We also make some remarks on the use of the
Neumann series in [2].

To describe the discretization of [2], first a periodic integral equation is derived
on the square Q = [−s, s)2, where s = 2 + 3ε and ε > 0. To this end, define
g̃(z) = η(z)/(πz) and γ̃(z) = −η(z)/(πz2) for z ∈ Q, where η is a smooth cut-off
function taking value 1 in the disk B(0, 2) and 0 outside the disk B(0, s). The
functions g̃ and γ̃ are then 2s-periodically extended over the entire plane C. The
respective periodic Cauchy and Beurling transforms are then defined by

P̃ f(z) =

∫
Q

g̃(z − ζ)f(ζ) dm(ζ),

S̃f(z) =

∫
Q

γ̃(z − ζ)f(ζ) dm(ζ).

The periodic integral equation is then

(3.4) (I + K̃)ω = −K̃(χΩ),

where

(3.5) K̃ω = P̃ (I + ντ∂P̃ )−1(αω).

The functions ν, α, ω and χΩ are now regarded as being 2s-periodic. It is then shown
that this periodic equation has a unique solution that agrees with the solution of
the original integral equation in the unit disk [2, Theorem 2]. Once this solution is
obtained, it is possible to extend it to have the full solution of the original equation
on the whole plane [2, Corollary 1]. To clarify the following description of the
discretization, we rewrite the equation (3.4) as the system

v + ντ∂P̃ v = αω,(3.6)

ω + P̃ v = −K̃(χΩ).(3.7)

To discretize the equation (3.4), choose a positive integer m and let M = 2m,
h = 2s/M . A uniform grid in Q is formed by the points jh, where j ∈ Z

2
M as in

(3.1). Consider the following system of equations,

v(jh) + ν(jh)τh2
∑

k∈Z
2
M

k �=j

γ̃(jh− kh)v(kh) = α(jh)ω(jh), (j ∈ Z
2
M )(3.8)

ω(jh) + h2
∑

k∈Z
2
M

k �=j

g̃(jh− kh)v(kh) = f(jh), (j ∈ Z
2
M )(3.9)

obtained from discretizing (3.6) and (3.7), where ω(jh) for all j ∈ Z2
M are to

be solved with given values f(jh). Here f(jh) = 0 when |jh| ≥ 1. In [2], the

equation (3.8) is solved only approximately. In fact, the operator (I + ντ∂P̃ )−1 is
approximated by truncating its Neumann series and then discretizing the resulting
sum in the grid in Q. (Solving the equation (3.8) would amount to summing their
full Neumann series to avoid the approximation error.) To express this in a matrix
form, we write the equations (3.8) and (3.9) as

x+ C2(I +D1τC1)
−1D2x = c,
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where D1 and D2 are diagonal matrices and C1 and C2 are block-circulant matri-
ces with circulant blocks (BCCB). The vector c is formed from the values f(jh).
Specifically, c = −C2(I +D1τC1)

−1D2b, where b is an all-ones vector.
In [2], for a given vector y, it is then the vector (I +D1τC1)

−1y that is approx-
imated by truncating the Neumann series.

Since ν(jh) = α(jh) = 0 for |jh| ≥ 1, the solution of (3.8) satisfies v(jh) = 0
for |jh| ≥ 1. Therefore, in (3.8) and (3.9) we may sum over k ∈ Z

2
M/2 instead of

k ∈ Z2
M . Moreover, we are only interested in the values ω(jh) for |jh| < 1, so that

the equations reduce to

v(jh) + ν(jh)τh2
∑

k∈Z
2
M/2

k �=j

γ̃(jh− kh)v(kh) = α(jh)ω(jh), (j ∈ Z
2
M/2),(3.10)

ω(jh) + h2
∑

k∈Z
2
M/2

k �=j

g̃(jh− kh)v(kh) = f(jh). (j ∈ Z
2
M/2).(3.11)

Further, note that when |jh|, |kh| < 1, then |jh − kh| < 2 so that γ(jh − kh) =
γ̃(jh−kh) and g(jh−kh) = g̃(jh−kh), where g(z) = 1/(πz) and γ(z) = −1/(πz2)
(defined for z ∈ C). Since we are only interested in the values of ω(jh) for |jh| < 1,
we can conclude that the smooth cut-off function η serves no purpose. Furthermore,
these are the equations that we would have gotten had we discretized directly
in the square [−1, 1)2 without first periodizing the equation (2.3). Thereby, the
periodization is unnecessary.

3.3. Equivalence of the discretizations of (2.4) and (2.3). Let us return to
solving (3.2). To compare it with the discretization of (2.3) just described, the
equations (3.10) and (3.11) may be written in a matrix form as

(3.12) x+ T2(I +D1τT1)
−1D2x = c,

where the matrices D1, D2, T1 and T2 are as in (3.2) and N = M/2. Here N is as
in §3.1 and M as in §3.2. The vector c is formed from the values f(jh), specifically,

c = −T2(I +D1τT1)
−1D2b.

We apply the (invertible) change of variables x̃ = x+ b, to obtain the equation

(3.13) x+ T2(I +D1τT1)
−1D2x = b,

where we have omitted the tilde above x.
The problem here is that the inverse of I + D1τT1 is not readily available. To

circumvent this obstacle, multiply both sides of (3.13) by D2 from the left and set
y = D2x to get

(3.14) y +D2T2(I +D1T1τ )
−1y = D2b.

Define z = (I +D1T1τ )
−1y, so that y = z +D1T1z. Then (3.14) converts into

(3.15) z + (D1T1 +D2T2)z = D2b.

This is the same equation as (3.2). (Here D3 = D2, because for (2.3) we took
β = α.)

The change of variables y = D2x may not be invertible. This, however, is not a
problem. To see this, suppose we solve (3.15) for z and then compute

x = b− T2z.
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This x solves (3.13) as the following computation shows. We have D2(b− T2z) =

D2(b− T2z) = z +D1T1z = z +D1T1z. Therefore,

b−T2z + T2(I +D1T1τ )
−1D2(b− T2z)

= b− T2z + T2(I +D1T1τ )
−1(z +D1T1z)

= b− T2z + T2z = b.

Hence the discretization (3.2) is equivalent to the one used in [2] without the ap-
proximation error resulting from the Neumann series truncation.

4. Iterative methods for R-linear systems of equations

To solve the R-linear system (3.2), denote the matrix multiplying the unknown
conjugated vector by A# = D1T1 + D2T2. For iterative methods, consider the
product

(4.1) (M +M#τ )(I +A#τ )

with M,M# ∈ Cn×n. This gives rise to the conditions

(4.2)

{
M +M#A# = I,
MA# +M# = 0,

for the inverse. Relaxing these conditions corresponds to different (preconditioned)
Krylov subspace methods for solving

(4.3) x+A#x = b

for b ∈ Cn. Of course, considering the real and imaginary parts of (4.3) separately
yields a standard (real) linear system of doubled size. However, this approach is
not advisable [4].

4.1. Conditions for the standard GMRES. If the second equation in (4.2)
holds exactly, i.e., M# = −MA#, then a C-linear system is obtained on which
standard iterative methods can be executed. The first equation then reads

(4.4) M(I −A#A#) = I,

so that any approximation to the inverse of I −A#A# is advisable in choosing M .
The following is readily shown.

Proposition 4.1. The operator I + A#τ is invertible if and only if the matrix
I −A#A# is invertible.

Simplest options for choosing M are diagonal matrices. In particular, with

(4.5) M = I and M# = −A#

we end up solving

(4.6) (I − A#A#)y = b

with x = (I−A#τ )y. This alternative has not been considered before. The standard
GMRES [9] can be executed here.

In assessing the speed of convergence of GMRES, observe that the spectrum of
A#A# is best understood in terms of the Youla decomposition of A# [11]. Whenever
AT

# = ±A# the convergence is easy to analyze since then A# = ±A∗
#. In the skew-

symmetric case I − A#A# = I +A#A
∗
#, i.e., we have a positive definite coefficient
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matrix whose eigenvalues are larger than one. Then it is advisable to apply the
conjugate gradient method for solving (4.6).

4.2. Conditions for the R-linear GMRES. In the R-linear system (4.3) the
identity multiplies the unknown vector. There are good reasons to preserve this
structure since then there exists an R-linear GMRES algorithm for solving the
problem [4]. For preservation, the first equation in (4.2) must hold exactly yielding

(4.7) M = I −M#A#.

Substituting this into the second equation gives

(4.8) M#(A#A# − I) = A#.

If the matrix A# is invertible, then this is equivalent to

(4.9) M#(A# −A−1
# ) = I

which may be more accessible. (Observe that if A# is Hermitian, then A#A# − I
is complex symmetric whereas A# − A−1

# remains Hermitian.) Though, assuming
invertibility of A# appears to be unrealistic in discretizing the R-linear Beltrami
equation.

In preconditioning large scale problems, the matrix equation (4.8) can be solved
only approximately. No preconditioning corresponds to the choices

(4.10) M = I and M# = 0;

see [8, 4] for convergence results in an electrical conductivity problem. Then (4.8)
is not very accurately solved. Thereby there should exist room for an improve-
ment by first constructing a reasonable approximate solution M#. Thereafter M
is determined by the formula (4.7), assuring that the R-linear structure of (4.3) is
conserved in the product (4.1).

To end this section, let us mention that with the electrical conductivity problem
in the plane, various ideas were tested in choosing a preconditionerM+M#τ . In this
case both of the simple choices (4.5) and (4.10) performed so well that no significant
improvement was produced with these trials; see the numerical experiments in the
next section. However, we do not have an understanding on which properties of the
operator the speed of convergence of these methods depend. Thereby, at present,
we cannot say which method should be preferred.

5. Numerical experiments with the electrical conductivity problem

We compared the performance of three, to our mind, most attractive Krylov
subspace methods to solve the system (3.2) which we denote by x+A#x = b. The
following were considered:

(i) Rewrite as a real system of doubled dimension (x = u+ iv),[
I +Re(A#) Im(A#)
Im(A#) I − Re(A#)

] [
u
v

]
=

[
Re(b)
Im(b)

]
and solve by executing the standard GMRES.

(ii) Substitute x = (I −A#τ )y and solve

(I − A#A#)y = b

by executing the standard GMRES.
(iii) Execute directly the R-linear GMRES given in [4].
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Figure 1. The conductivity in the unit disk.

We do not discuss the accuracy of the discretization given in §3.1, but refer to
[2] in this regard. However, as shown in §3.2, the discretized equation (3.2) yields
more accurate solutions than the method in [2].

We construct a piecewise continuous conductivity σ in the unit disk similar to
the one used in [2]. This is shown in Figure 1. The base conductivity is 1, the high
conductivity 3 and the low conductivity is 0.3. The values of σ outside the unit
disk are taken to be 1. To compute the scattering transform associated with this
σ, we need to solve equations of the form

∂ω + ν∂ω + αω + α = 0,

where ν(z, k) = −e−k(z)μ(z) , α(z, k) = −ikν(z, k) and μ(z) = (1 − σ)/(1 + σ) ,
ek(z) = exp

(
i(kz+ kz)

)
. Here k ∈ C is a parameter and derivatives are taken with

respect to z.
Referring to §3.1, we now choose m = 8 and thus use a uniform grid of size

256 × 256 on the rectangle [−1, 1)2. Note that the diagonal matrices D1 and D2

now satisfy D2 = −ikD1, so that A# = D1(T1 + ikT2) and therefore multiplication
by A# consists of a multiplication by a BTTB matrix followed by a diagonal matrix
multiplication.

MATLAB version 7.9.0.529 was used in the computations. For the alternative
(iii), the MATLAB code from [4] was used. For the alternatives (i) and (ii), this
code was modified in a straightforward manner to get the standard GMRES so
that the implementations of the R-linear GMRES and standard GMRES were very
similar. In addition, the alternatives (i) and (ii) were solved using the MATLAB

provided gmres function. In all cases, iteration was started with zero initial guess
and stopped once the relative residual satisfied ‖x + A#x− b‖/‖b‖ < 10−12. Note
that this criterion results in the same accuracy for all cases.

Computations were done on a desktop machine with Core 2 Duo 2.4 GHz and
3 GB RAM. Table 1 shows the performance of the three methods when k = 10.
Timing was done using MATLAB’s profiler with 10 successive executions with averages
(in seconds) recorded in the table. Total time is the time spent in the iterative
solver as a whole. Multiplication time records the time spent in its matrix-vector
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Table 1. Performance of the three methods on the 256 × 256
grid. Method (i): the real system of doubled dimension solved
by GMRES. Method (ii): the system (I − A#A#)y = b solved by
GMRES. Method (iii): the R-linear system x+A#x = b solved by
the R-linear GMRES.

Method Iterations Total time (s) Multiplication time (s)
(i) MATLAB 24 3.7 1.7
(ii) MATLAB 13 2.5 1.8
(i) 24 2.8 1.6
(ii) 13 2.0 1.6
(iii) 24 2.9 1.5

Table 2. Performance of the three methods on the 512 × 512
grid. Method (i): the real system of doubled dimension solved
by GMRES. Method (ii): the system (I − A#A#)y = b solved by
GMRES. Method (iii): the R-linear system x+A#x = b solved by
the R-linear GMRES.

Method Iterations Total time (s) Multiplication time (s)
(i) MATLAB 24 16.9 8.6
(ii) MATLAB 12 10.2 7.7
(i) 24 12.6 7.7
(ii) 12 7.8 6.5
(iii) 24 12.8 7.2

multiplications. The latter times are greater for MATLAB’s gmres since it performs
two unnecessary extra multiplications.

The computer was of similar processing capability as the laptop used in [2],
where computations took about one minute on a 256×256 grid and 7 minutes on a
512×512 grid. Since we do not periodize the equation, the corresponding grid sizes
in our case are 128 × 128 and 256 × 256. Since the solution time depends on the
given conductivity σ, we cannot directly compare these times to ours. The number
of iterations required increases with lowering the low-conductivity and raising the
high-conductivity. Since our σ is reasonably similar to those used in [2], we believe
our methods are faster due to the large solution time discrepancy and smaller
multiplication cost per iteration step. Table 2 gives further measurements on a
512× 512 grid (m = 9).

5.1. Remark on computing the scattering transform. In [2], the scattering
transform τ (notation not to be confused with the conjugation operator) is com-
puted from the formula

τ (k) =
1

2π

∫
C

∂z

(
ω(z, k)− ω−(z, k)

)
dz1dz2,
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where ω− is computed using −μ and ω using μ. Given that we actually solve u(z, k),

where u(z, k) = −∂zω(z, k), the scattering transform can be directly computed from

τ (k) =
1

2π

∫
Ω

(u− − u) dz1dz2,

where u− corresponds to −μ and u to μ. The integral can be approximated by,
e.g., the trapezoid rule in the rectangle [−1, 1]2.
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