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1. Introduction

1.1 Background

Animated characters have an important role in video games. The tradi-
tional approaches utilize motion capture data from real humans or man-
ually edited animations through keyframes and interpolation curves to
synthesize believable and plausible animations. This process is time-
consuming, expensive and hard to generalize to many characters. A long-
standing goal of animation research is to automate this process, and make
it more efficient. The challenging task is to develop methods that synthe-
size realistic motions for the characters, and make them act naturally, i.e.,
behave closely to what humans do in the same situation [86, 9, 41, 95].

A major stream of animation research focuses on data-driven kinematic
approaches that recombine motions from some database or build a machine
learning model that can be conditioned on user input [53, 52, 22]. How-
ever, these methods cannot ensure physical plausibility such as contact
non-penetration without post-processing. On the other hand, methods
have been developed to formulate the synthesis of character animation
as simulation of its biomechanics and optimization of character’s muscle
activations or other actuation parameters such as joint torques over time.
This ensures physical plausibility, and the methods have successfully been
utilized to synthesize movements such as bipedal locomotion [96], but
their extensions to some complex movement skills, e.g., humanoid climb-
ing movements, have remained challenging. This dissertation develops
methods to bridge this gap, focusing on novel methods for synthesizing
humanoid climbing movements.

Climbing is a type of exercise where the athlete needs to carefully select
their hand and feet placements on a steep or even vertical surface. In this
thesis, we focus on indoor climbing where the goal is to climb up a climbing
wall and reach a so-called top hold. Indoor bouldering is a form of indoor
climbing that takes place relatively close to the ground and features short
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Alvi6a/B (6B)

Figure 1.1. "Indoor" versus "Outdoor" climbing environment. Left: An Augmented Reality
system [60] highlights the climbing route on an indoor climbing wall. Right:
The rock climbing environment at Long Wall in Red River Gorge of Kentucky,
USA [120]. Photo by Jarek Tuszyriski, © CC-BY-3.0 & GDFL.

but challenging climbing routes (see Fig. 1.1). The sport is rapidly growing
and has been approved to the 2020 Tokyo Olympics together with speed
and sport climbing [90]. Also, an Augmented Reality (AR) system has been
recently developed to make bouldering more exciting and motivating [60].
These developments together with the possible applications of climbing
movement synthesis and control in search-and-rescue robotics [16] and
computer games [77] motivate the focus of this thesis.

Controlling physically simulated characters has a long history [36]. An
increasingly common approach is to tackle simulation control through
sampling-based black-box optimization [124]. The methods do not directly
use the gradients of the objective function, and only perform the optimiza-
tion by interacting with the environment through applying actions. This
makes it easier to generalize the methods to be used in many applications
such as games, animations and robotics [54]. Despite of the successes of
these methods in synthesizing humanoid movements, more efficient and
robust methods are needed to address more complicated problems with
long planning horizons. Traditionally, long planning horizons have been
tackled with tree- and graph-based motion planners [110, 125]; however,
these are challenging with complex characters with high-dimensional ac-
tion spaces. This dissertation proposes a hierarchical motion planning
approach that combines features of both approaches, progressing through
steps of:
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Figure 1.2. Climbing movements synthesized using the novel Computer-Aided Imagery

applications developed as part of this dissertation. The user plans for hand
and foot placements, and an optimization method synthesizes the movements.

Developing a framework for synthesizing physically-based, plausi-
ble, and dynamic climbing movements. The framework includes
both high-level graph-based long-horizon planning, and low-level
sampling-based short-horizon movement optimization.

Utilizing the framework to create an innovative human-computer
interface for improving mental imagery practice in sports with com-
puter aided imagery (see Fig. 1.2).

Enhancing the hierarchical motion planning with neural networks,
enabling planning more successful, agile, and less effortful move-
ments.

Formulating climbing movement synthesis as a Reinforcement Learn-
ing (RL) problem and training a policy useful for real-time climbing
simulation.

1.2 Motivation, Aim and Focus of the Thesis

The aim of this dissertation is to develop a technology for synthesizing
complex movements that need a long planning horizon. The developed
methods can be utilized to both plan for and synthesize believable and
plausible movements. The thesis focuses on humanoid characters which
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are challenging to control because of complex movement dynamics, unactu-
ated root, and a large number of degrees of freedom (DoF). Although the
developed methods can be generalized to other applications and characters,
this dissertation focuses on synthesizing humanoid climbing movements.
It builds on and extends three classes of methods: sampling-based opti-
mization, path planning, and reinforcement learning.

Sampling-based optimization: Sampling based optimization methods
such as covariance matrix adaptation evolution strategy (CMA-ES) [48]
have a long history in character motion synthesis [101, 46, 7]. The ba-
sic approach is to sample action sequences, simulate the corresponding
state sequences, and then compute the utility of the actions to gradu-
ally evolve the sampling distribution such that good actions become more
probable. The methods are well suited for short planning horizons and
high-dimensional problems but the optimization becomes prohibitively
slow at long horizons [47]. This dissertation contributes to optimization
methods by dividing the original task into sub-tasks with shorter plan-
ning horizons, and then using sampling-based optimization to solve the
sub-tasks. Furthermore, the performance of sampling based optimization
is enhanced to find more successful and less effortful solutions faster by
utilizing better initial guesses predicted by neural networks.

Path planning: Path planning approaches such as artificial potential
field, tree search and graph search belong to traditional approaches in
controlling the animated characters [23, 80]. In particular, graph search
methods have a long history in games and have many practical applications
in, e.g., games, robotics and traffic control systems. One of mostly utilized
and efficient methods is A* [50]. One major drawback of these methods is
that they get slower as the dimensionality of the problem increases. This
dissertation contributes to planning methods by introducing a hierarchical
motion planning method for synthesizing believable and plausible motions
in high dimensional problems. A graph search method is used to plan in
lower dimension and produce sub-tasks that can be solved by a low-level
optimization method. Additionally, the graph search method is informed by
the success rate and effort of the movements predicted by a neural network.
As a result, the graph search can plan for more successful and less effortful
sequence of movements that can be synthesized by the low-level controller.

Reinforcement learning (RL): RL has recently attracted the focus
of many researchers, and the utilization of deep neural networks ("deep
RL") makes the approach practical for many applications [6]. Similar to
sampling-based optimization, RL algorithms explore random actions and
learn to repeat actions with high utility. The difference is that only one
action is sampled at a time, conditioned on the observed character state.
Typically, a policy network takes the observation as input and outputs
sampling distribution parameters such as mean and covariance. RL can
require a long training process, but the resulting neural network policies
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are typically much more computationally efficient than sampling-based
optimization of movements on the fly. Proximal policy optimization (PPO)
[104] and soft actor critic (SAC) [44] are two practical RL approaches that
belong to on- and off-policy methods, respectively. Off-policy methods reuse
previously collected data that can improve sample efficiency over on-policy
methods [2]. On the other hand, on-policy algorithms are often more
stable and easier to use [51]. Despite advances of deep RL in synthesizing
humanoid movements, RL had not been utilized to synthesize physically
based humanoid climbing movements before this dissertation. One reason
may be that the random action exploration that RL methods utilize is
less likely to produce successful climbing movements than, e.g., bipedal
walking movements. Climbing movements need multilimb coordination
and precision, and failures can be more dramatic than in many other tasks.
This thesis proposes an RL approach for synthesizing humanoid climbing
movements and develops better exploration strategies that speed up the
training process.

1.3 Publications

This dissertation comprises the following four publications.

Publication I develops a hierarchical motion planner that is suitable
for humanoid movement synthesis with long planning horizons. The paper
was the first to solve the combined problem of planning humanoid climbing
strategy and dynamic, physically based multilimb climbing movements.
The method combines graph search with sampling based black-box opti-
mization. The graph search is responsible for dividing the original problem
into sub-problems that are solvable by the sampling based optimization.
Publication I utilizes two sampling-based optimization methods, CMA-ES
[48] and control particle belief propagation (C-PBP) [46], and compares
their performance against each other.

Publication II introduces a novel interface for controlling a simulated
climber and investigates how this could enable a novel form of mental
practice (imagery) for sports and exercise augmented with intelligent
simulation. Users play the role of graph search of Publication I. They can
guide their avatar by selecting target hold positions for the Al character’s
hands and feet, and target rotation for its torso. Once the target posture
is selected, C-PBP is utilized to synthesize the movements for the user.
The users can alter their choices and explore various movements on a
photogrammetry replica of a real climbing wall. After solving a climbing
problem in simulation, the users try the same route on the real wall. The
paper contributes an analysis of how this novel training process affects
climbing performance and experience.

Publication IIT improves on Publication I by introducing deep neural
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networks to both the high-level path planner and low-level controller in
order to synthesize more dynamic and successful movements. The neural
networks are trained to predict low-level movement optimization outcomes
such as success rate, movement effort, and action sequence. The neural
networks are used to inform the sampling distribution of the movement
optimization, and for weighting the graph edges in the high-level path
planner. As a result, the system produces higher quality movement in less
time and is able to expand the movement repertoire of Publication I with
dynamic leaps.

Publication IV proposes a reinforcement learning approach for synthe-
sizing climbing movements in real-time. The climbing problem is formu-
lated such that the RL approach replaces the low-level controller in the
hierarchical motion planning framework of this dissertation. It is observed
that basic RL training where the character always starts from a T-pose
in front of the wall has problems in exploring the state space. A novel
training episode initialization technique is then proposed to improve the
exploration. Furthermore, the paper tests the effect of decision frequency
on RL performance. Compared to other publications, Publication IV re-
duces the processing time that is needed to synthesize climbing movements.
However, the quality of the movements synthesized by RL is not yet equal
to Publication III.

1.4 Outline of the Thesis

The next two sections provide essential background for understanding
this dissertation and review some of the state of the art methods. First,
Section 2 reviews path planning methods which are used in Publication I,
Publication III for planning a sequence of movements. Section 2 also briefly
reviews tree search, graph search and neural network guided methods for
path planning. Section 3 reviews the sampling-based movement optimiza-
tion methods utilized in Publication I, Publication II, and Publication III.
In addition, it reviews supervised learning used in Publication III as well
as reinforcement learning approaches, providing a necessary foundation
for Publication IV.

Section 4 discusses the algorithms and applications that have been de-
veloped in this dissertation. It provides the details on implementations
and experiments done in each publication. Finally, Section 5 discusses
the contributions of the dissertation, and introduces further directions for
future works.
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2. High-Dimensional Path Planning

Path planning is a fundamental and demanding problem that has applica-
tions in robotics [112], computer games [23], urban traffic and so forth. Fig.
2.1 shows some of common applications in path planning. Path planning
methods solve the problem of getting the agent from a starting point in
the configuration space to a goal point specified by the user under cer-
tain constraints. Constraints, depending on the application at hand, may
consist of safe or collision free path, low energy consumption, low risk of
failing, and so on. The optimal path depends on user-defined constraints
and might be the path with shortest euclidean distance between two points
or the one with the lowest risk, energy or even the combined weighted sum
of multiple criteria. Many variants of path planning methods have been
developed to find optimal or near-optimal paths for various tasks.

A/ s

Figure 2.1. Three examples of common applications in path planning. @) graph based
search used in modern games, here illustrated on the map of League of
Legends [32]. b) tree search for e-puck robot [112] navigation. c¢) a robot arm.

Although path planning methods are capable of solving problems such
as the ones illustrated in Fig. 2.1, increasing the dimensionality of the
problem (the agent’s state space) makes path planning harder. In order
to mitigate the curse of the dimensionality, hierarchical motion planning
can be utilized [16, 19, 20]. This thesis uses a two-level hierarchy, where a
high-level path planner approaches the problem in abstract form. Rather
than solving the problem in the full state or configuration space, the high-
level planner uses a lower dimensional representation by neglecting parts
of the state space. The high-level planner produces a sequence of points
in the lower-dimensional space, assuming that a low-level controller or
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Task Initialize State
User High-Level Planner Environment

Control | Low-level Controller

Feedback Feedback Values

Sub-Task

Figure 2.2. The high-level path planner and low-level controller hierarchy used in this
dissertation. The flow of commands and feedback passing between user, high-
level path planner, environment, and low-level controller is demonstrated.

movement optimizer can produce transitions between the points. Figure
2.2 illustrates the model of high-level planner and low-level controller
interaction utilized in this thesis.

Methods for the low-level movement optimization are introduced in
Section 3, and more details of the control hierarchy used in this thesis
are provided in Section 4. The rest of this section reviews the relevant
background for the high-level path planning. First, we review how path
planning can be approached as tree or graph search since they are utilized
in Publication I and Publication III. Second, as Publication III informs the
path planning with neural networks, we briefly discuss the applications of
neural networks in path planning

2.1 Tree Search Methods

Rapidly exploring random trees (RRT) were introduced first by LaValle in
1998 [72] to overcome the deficiency of classical path planning methods
such as Artificial potential fields (APF) [63] in using knowledge from
environment, being limited to low-dimensional problem, and getting stuck
in local minima. APF uses attractive and repulsive fields to guide the agent
toward the goal point while pushing it away from obstacles in real-time,
but the method suffers from getting stuck in local-minima. On the other
hand, RRT and its extensions have probabilistic completeness, i.e., as the
number of samples goes to infinity the probability of finding the solution
approaches one. Furthermore, the tree structure makes it easy to find a
collision-free path toward a desired state by just following the path from the
points on tree branches to the tree root. Fig. 2.3 illustrates the evolution of
RRT methods, starting from the original paper [72], then illustrating the
optimality of paths found using RRT* [61], how Informed RRT* focuses
sampling of states [33], and finally, how RT-RRT* [87] combines features of
previous methods for real-time path-planning in a dynamic environment.

The original RRT [72] explores the environment by expanding a tree
in the collision free state space in an offline manner. As summarized in
Algorithm 1, the tree starts growing from initial state s;,;; by 1) Sampling a
point x; in the environment, 2) Finding the closest point (s¢josest) in the tree
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Algorithm 1 Original Rapidly Exploring Random Trees
11 F = {sjnit}
2: for iteration = 1,2, ..., %nax do
3: Xy = Unifrom(X)

4 Sclosest = FindClosest(xy, ")
5: Sn = Move(Sclosest, Xr)

6: I =9 Usp
7: end for

to x;, 3) Attempting to move from sgjyset toward x, under agent’s dynamic
constraints, and 4) Reaching s, which will be added to the tree for further
expansion. The tree expansion is demonstrated in Fig 2.3a. Although in
the original paper, the domain of x and s is the same, but in general, x
can also denote some abstracted goal reached by a movement controller or
optimizer, as in the control hierarchy utilized in this thesis.

The original RRT (Algorithm 1) is an offline method that utilizes an
uniform sampling (Line 3), and the tree root (Line 1) is fixed during the
tree expansion. There are many variants of RRT that improve performance
in many aspects such as finding optimal solutions, path planning in online
and real-time manner, and re-planning in dynamic environments.

Rewiring: RRT* [61] introduces a rewiring process to tree expansion,
demonstrated in Fig. 2.3b. Rewiring is the process of modifying the parent
of a node s; to a newly added node s, when by passing from sy, s; has lower
cost compared the old parent. This happens by simple modifications to
Algorithm 1 which are 1) Finding a set of neighbour nodes #year close to
sn, and 2) rewiring the nodes s; € #ear Wwhen the condition is met. This
alteration guarantees finding an optimal solution, but the method can be
computationally expensive.

Informed Sampling: Informed RRT* focuses the sampling of x; to
improve computational efficiency [33]. The sampling at Algorithm 1 Line
3 is performed as:

2.1

Ellipse(%) path from start to goal is found
X, =
" Uniform(Z) otherwise

The sampling is uniform as in basic RRT until a path from the start state to
the goal point is found. After that, x, is sampled inside an ellipse with the
starting and goal points as the focal points and radius equal to the length
of the current path. As the algorithm continues the length of the current
path decreases, resulting in more focused sampling. This is demonstrated
in Fig. 2.3c.

Online Planning: RT-RRT* [87], a variant of Informed RRT* and RRT*,
gradually changes the structure of the tree to allow the agent to have a
path to different points in the environment at all times (see Fig. 2.3d).
The ability of replanning and reacting to the changes in the environment
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(a) Original RRT [72]. The yellow lines (area) are blocked by the dynamic obsta-
cles.

(b) RRT* [61]. As the algorithm progresses, the tree is rewired to find more
optimal paths. The green lines show the rewired nodes.

(¢) Informed RRT* [33]. The method focuses the sampling of states inside an
ellipse defined by the start and goal points and the path found so far. The
green lines show the rewired nodes, and the ellipse is shown in blue.

(d) RT-RRT* [87] combines and extends the features of previous algorithms for
real-time operation in a dynamic environment. The method adds non-uniform
rewiring shown in purple. Whereas RRT* samples the tree nodes to rewire
uniformly, RT-RRT* also progresses systematically away from the tree root,
because the nodes around the moving agent are more important to rewire
first.

Figure 2.3. Evolution of RRT algorithms. The agent and dynamic obstacles are demon-
strated by green and blue spheres, respectively. The red lines demonstrate
the path toward the goal point. The tree root is located at the agent.

is gained by altering Algorithm 1 in three ways: 1) Rewiring the tree at
random points and by progressing systematically away from tree root (Fig.
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2.3d), 2) Applying informed sampling, and 3) Changing the tree root to be
located on the agent. These three components are the essence of RT-RRT*.
Additionally, informed sampling helps to focus the sampling of x, on a
smaller part of the tree in order to rewire and enhance the current path
faster. The informed sampling area gets smaller and more focused as the
agent gets closer to the goal point since the tree root is located on the
agent.

Sparse Planning: There exist methods that make RRT more sample
efficient, e.g., [34] improves the efficiency of Algorithm 1 by altering Line 5
and using artificial potential field (APF) to move the agent multiple steps
toward a random point instead of one step. Publication I and Publication
III follow a sparse planning approach, utilizing a combination of graph
search and movement optimization to guide tree expansion. Motivated by
this, the following section provides an overview of graph search methods. It
should be noted that the author also tried using the original RRT algorithm,
but it was clearly not efficient enough in the case of a humanoid climber
with a high-dimensional state space. A more efficient approach was needed
to inform the sampling and tree expansion than simply moving one step
toward a randomly explored state in Lines 3-5 of Algorithm 1.

2.2 Graph Search Methods

Graph search belongs to one of the early methods developed for path
planning. A common way of path planning in an environment is to 1)
construct a graph connecting all obstacle-free states together, and 2) find
the shortest path or k-shortest paths (see Section 2.2.2) by applying a
graph search method. In a graph, the environment is represented by
sets of nodes 7 and edges &. Each node can have one or more parents
and children which is determined by the adjacency or connectivity matrix.
The shortest path problem is formulated as finding a path (vo,v1,..., Vgoal)
subject to having:

minz w(v;,Vis1) (2.2)

i=0

where w(v;,v; 1) is the weight on the graph edge when transiting from v; to
Vi1, v; is adjacent to v;;1, and vgy, is the terminal or goal node. w(v;,vi1)
can be a user-defined value or it can be adjusted, e.g., by the possibilities
of the actions which can lead to higher success and lower processing time
in synthesizing movements [42].

2.2.1 Building the Graph

Classical methods such as grid graph [118, 111], Voronoi diagram [115,
10, 35] and visibility graph [56] exist that benefit from geometrical infor-
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(a) Graph construction using visibility (b) Graph constructed using Voronoi dia-

method. The start, goal, and the cor-
ners of the obstacles build the graph
nodes. The line between nodes that
are not passing through obstacles cre-
ate graph edges.

gram method. The lines are selected
to have maximum distance between
the obstacles. The lines and their in-
tersections create graph edges and
nodes, respectively.

S

(¢) Graph constructed by grid graph (d) Graph construction by probabilistic
method. Each tile is a node and has roadmap. The nodes are sampled uni-
an edge connection to its neighbour formly in the environment and obsta-
nodes. Smaller tiles are used for plan- cle free nodes and edges are chosen
ning around obstacles. to build the graph.

Figure 2.4. Comparison of different methods in building the graph structure. The green
and red spheres demonstrate starting and ending points, respectively.

mation of the environment and construct a roadmap in low-dimentional
spaces such as 2D space with polygonal obstacles. Fig. 2.4 demonstrates
differences between these methods. The grid graph discretizes the con-
tinuous environment into connected equally sized tiles. In grid graph,
tiles represent the graph nodes and they are connected to their neigh-
bours. Voronoi diagram outputs the safest regions between the obstacles
in the environment [35]. The safest location between two obstacles is the
line between them. The intersection of the lines builds graph nodes of
Voronoi diagram and the adjacent nodes are connected to each other by
the lines (see Fig. 2.4b). The visibility graph is built in the environment
by connecting straight lines between the corners of the obstacles. The
obstacle-free lines that are not passing through obstacles belong to graph
edges. The graph nodes are the corners of the obstacles, and adjacent
nodes are the connected ones (see Fig. 2.4a). There also exist methods
such as probabilistic roadmap (PRM) [62] and its variants that build the
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graph by sampling the points uniformly in the environment and connecting
them with obstacle-free lines (see Fig. 2.4d). However, when the number of
vertices and edges in the graph is limited, it is common to build the graph
by enumerating the sub-solutions.

Algorithm 2 Original A* Graph Search
1: 7/open = {Vinit}
2: g(vi)=o0o Vv; €V, g(Vinit) =0
3: h(v;)
4: w(v;,v;j)

5: while Vopen 7£ {} dO
6: Vhest = argmin f(v) s.t. f(v) = g(v)+h(v)

VE_Vopen
7: Remove Vhest from %pen

if Viest == Vgoal then
: Return the path (Vinit’vlw-’vgoal)
10: end if

11: for each v, in Neighbour(vpegt) do
12: &new(Ve) = 8(Vpest) + W(Vhest, Ve)
13: if g(v;) < gnew(v.) then

14: Continue

15: end if

16:

17: Vopen = Vopen U Ve

18: g(v¢) = gnew(ve)

19: Parent(V) = Vpest

20: end for
21: end while
22: Return no path is found

2.2.2 Graph Search Methods

There exist many traditional methods that can search for the shortest path
on a given graph based on the cost described in Eq. 2.2. Breadth-first
search (BFS), depth-first search (DFS) [26] and Dijkstra [24] belong to early
methods developed to search the graph. These methods do not use any
heuristics in exploring the graph and finding a solution. BF'S prioritizes
on searching the neighbours first while DFS explores the branches first
until reaches leaf nodes (nodes with no children) before backtracking.
Dijkstra finds shortest paths to all graph nodes using a priority queue
that enables the method to explore the nodes with lower cost first and
update their neighbours’ costs. Another approach to search the graph is
to utilize heuristics. The heuristics guide the exploration of the nodes to
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avoid traversing the whole graph and make the graph search faster. A*
[50] is a popular example of these methods that utilizes heuristics in the
graph search to solve a problem.

The following paragraphs reviews some of notable methods in graph
searching. Furthermore, this dissertation reviews k-shortest path planning
methods since the optimal strategy for solving a climbing route depends on
each climbers flexibility, reach, and so on. Thus, for coaching purposes, it
would be good that an Al climber can demonstrate multiple good solutions.
This can be implemented by finding k-shortest paths in the high-level path
planning graph.

Traditional Planning: Algorithm 2 describes A* approach that builds
a tree structure on the graph in an offline manner. The method starts
building the tree from v;,;;. At each iteration, the best node vy, is selected
from the open list %pen to be parent of its neighbour v, if the node has
lower cost by passing from vyes;. The neighbour node is added to the open
list only if its parent has been changed to propagate the alteration through
the whole graph. The process continues until it reaches the goal node or
the open list gets empty. The performance of the method depends highly on
the heuristics function A(v), which should be admissible, i.e. the function
values cannot overestimate the actual cost. Otherwise, the method might
return a sub-optimal solution. One common heuristic is Euclidian distance
to the goal.

Online Planning: There exists methods to increase the performance
of A* search method. D* lite [67] is the online version of A* method that
allows the method to react to changes in the environment. D* lite re-plans
a path starting from current location of the agent while considering the
changes in the environment when the current path to the goal node is not
valid anymore, e.g. an obstacle blocks the current path.

K-Shortest Paths: k-shortest path planning is the generalization of
the shortest path planning problem where the problem is to find multiple
shortest paths between two graph nodes. Its applications include, e.g.,
robot path planning, traffic control, time scheduling, and network connec-
tion routing. In most of these applications, the user needs to see various
solutions to a problem for the sake of comparison or having the next best
solution ready for fast querying.

A good review of state-of-the-art methods for finding &-shortest paths on
the graph can be found in [29, 28]. [127] finds the paths assuming the paths
are simple, i.e. no loop exists in the path. [28] removes this assumption
and returns the paths by proposing a heap structure for storing the graph
paths and limiting the graph degree. In this dissertation, A* prune [79]
is utilized which is a general algorithm for returning k-shortest paths
between two terminal graph nodes. The method, described in Algorithm 3,
applies small modifications to the original A* method to return multiple
paths. It uses the heuristics function calculated by Dijkstra algorithm, and
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Algorithm 3 A* Prune
1: Run Dijkstra to calculate d(v;,vgq)) for all v; €7

2: Popen = {p(Vinit, Vinit)}
3: g(p(Vinit, Vinit)) =0
4: h(p(Vinit, Vinit)) = d(Vinit, Vgoal)
5: Pfound = {}
6: while P, # {} and | Ppyyng 1<k do
7: P (Vinit, Vi) — the first path from Zypen
8: Remove p(Vipit, Vi) from Popen
9: if v, == vgoq then
10: Insert p(Vipit, Vu) IN Pround
11: Continue
12: end if
13: for each v, in Neighbour(vy) do
14: 8(p(Vinit, ve)) = 8(p(Vinit, Vu)) + w(vy, ve)
15: h(p(Vipit, V) = d(Ve, Vgoal)
16: f(p(Vinit, ve)) = 8(p(Vinit, Vi) + A(p(Vinit, Vi)
17: Insert p(Vipit, Ve) il Popen based on f in ascending order

18: end for
19: end while
20: Return Pround

keeps a list of all possible paths to explored graph nodes, sorted based on
heuristics costs.

2.3 Neural Networks in Path Planning

One of earliest methods that utilizes neural networks to plan paths for
intelligent agents is topologically-ordered map neurons [39, 12, 126]. The
method works by forming a lattice of neurons over obstacles or the whole
2D environment, and the activation of neurons plan a path for the agents
and guide them towards the target. Using a topologically-ordered map,
[74] plan paths in a 2D multi-agent environment, later extended to a
cooperative hunting task by [88].

There exist methods that form repulsive and attractive fields for guiding
agents using neural networks. [71] introduces a neural network that has
an obstacle description of a stationary 2D environment in its hidden layer
and outputs a repulsive penalty function to solve the local minima problem
of the artificial potential field method in navigating mobile robots. [25] uses
ant colony optimization to plan a global path with least repulsive penalty
function produced by a neural network that has obstacle information in its
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hidden layers.

As the dimensionality of the problem increases, neural networks are
typically utilized in some form of a control hierarchy because the above-
mentioned approaches become less feasible. [96, 30, 31] use hierarchical
reinforcement learning approaches where various low-level policy networks
learn primitive motor skills such as running, walking, and etc., and a high-
level policy network learns to control the low-level policies in order to
satisfy the target direction and gait type in the navigation tasks.
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3. Physically-Based Character Control

The automation of synthesizing animation is a long standing goal of com-
puter animation research. The necessary element of this task is the ability
to control the agent interacting with an environment. Many of traditional
methods make use of recorded motions from humans performing various
movements [38, 69, 124]. They utilize key-frames [68], interpolation [21],
and motion re-targeting [55] to control the animated character (see Fig.
3.1). In spite of the successes of these methods in synthesizing animation,
they are time consuming, expensive and cannot be generalized easily to
other characters.

\ e
\
Figure 3.1. An example of retargeting motion captured walking animation to two different
characters, the Mixamo animation system [58].

Another approach is to simulate character’s behavior and its interactions
with a physical environment. By applying torque and force control actions
to the physically simulated character, one can ensure physical plausibility
of the resulting movement, within the limits of the simulator. In order to
have simulated behaviours close to a human’s, many control approaches
formulate the animation problem as the optimization of muscle activations
or joint torques over time while simulating character’s biomechanics [37].
Although there exist methods that can synthesize physically plausible and
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believable animations for simple tasks such as bipedal locomotion, the
problem has remained unsolved for many complex behaviours. In this
dissertation, we study the synthesis of climbing movements where the
following factors increase the difficulty of the optimization problem:

* The problem has high-dimensionality in both action and state spaces.

¢ Synthesizing a wide variety of movements with a different dynamics,
ranging from controlled and precise reaching movements to high-
velocity leaps.

¢ Planning for long sequences of movements is needed to complete the
task.

A hierarchy of high-level planner and low-level movement optimizer can
be utilized to mitigate the problem. The high-level planner plans for
a sequence of sub-tasks in a lower dimension (see Chapter 2), and the
low-level movement optimizer tries to solve each sub-task.

This dissertation utilizes sampling based optimization and reinforcement
learning methods as the low-level movement optimizer to solve the planned
sub-tasks, and to control the character in a physical environment. The
investigated methods consider the movement optimization as a black-box
problem, and the goal is to minimize the cost or maximize the reward in
the optimization only by interacting with the environment. The cost or
reward function is a user-defined weighted combination of various terms
such as effort minimization and goal attainment.

The outline of this chapter is as follows. Section 3.1 summarizes con-
trol particle belief propagation (C-PBP) and covariance matrix adaptation
evolution strategy (CMA-ES) methods as they are utilized in Publication
I-Publication III for synthesizing climbing movements. Section 3.2 pro-
vides an introduction to common supervised learning methods because
Publication III utilizes an iterative approach to 1) train neural networks in
a supervised manner from outputs of the optimization method, and 2) en-
hance the sampling-based optimization method by providing better initial
sampling distribution based on the neural network predictions. Finally,
Section 3.3 provides a brief introduction on reinforcement learning because
Publication IV formulates the synthesizing of climbing movements as a
reinforcement learning problem, and utilizes proximal policy optimization
(PPO) [104] with generalized advantage estimation (GAE) [103] to train
a climber agent for performing various climbing movements on various
climbing problems.
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Figure 3.2. Two different trajectories of moving arm to a target (red point). The bottom
trajectory is avoiding the circular obstacle while the top trajectory has a free
path.

3.1 Trajectory Optimization for Character Control

In mathematical optimization, the solutions to a problem are described by
one or more variables; optimization methods search for the combination
of variable values that maximizes or minimizes an objective function that
defines the value or cost of a solution. In trajectory optimization for
character control, the agent starts at the initial state sy, and the goal is to
find a sequence of actions (ag, aj, ..., ar) that minimizes a user defined cost
function (see Fig. 3.2). The sequence of state-action pairs as (sg, a9, s1,a1,
..., ST,ar) create a trajectory for the agent, and the trajectory optimization
can be formulated as:

T
(ag,aj,...,ap) = argminz c(s;,ay)
ap,...,ar +=0
subject to:  s;41 = f(ss,a) 3.1)
gi(ss,a;)=0 iefl,..,m}

hj(ss,a;)=0 jefl,..,n}

where (ajj, af, ..., a}) denote the sequence of optimal actions resulting in
minimum cost, c(s;,a;) is a user defined cost function mapping state-action
pair to a cost value at each time step, and f(s;,a;) describes the movement
dynamics. 4 j(s;,a;) and g;(s;,a;) denote equality and inequality constraints
at each time step on agent’s states and actions.

The methods that exist for trajectory optimization can be categorized
into two groups: 1) Model based, and 2) Model free. Model based meth-
ods utilize the dynamics function f(s;,a;) to calculate optimal actions in
the trajectory. Common model based approaches include iterative linear
quadratic regulator (iLQR) [75] and differential dynamic programming
(DDP) [81] which have been demonstrated to scale from simple dynam-
ical systems such as an inverted pendulum to at least some humanoid
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Generation 1 Generation 2 Generation 3
Generation 4 Generation 5 Generation 6

Figure 3.3. Generations (iterations) of CMA-ES algorithm in a simple 2D problem (Public
Domain, [105]).

movements [116, 117]. However, contact discontinuities of complex move-
ments can cause multimodality [45] that iLQR and DDP cannot handle as
gradient-based local optimization methods. Hence, this thesis focuses on
model-free sampling-based optimization methods suitable for multimodal
optimization landscapes. Such model-free methods assume that f(s;,a;)
can only be evaluated pointwise by executing an action using simulator,
and a closed-form expression of the dynamics is not available. Further, it is
assumed that there are no equality or inequality constraints. This simpli-
fies the optimization; constraint handling in sampling-based optimization
and reinforcement learning is an active area of research [5, 70, 11]

3.1.1 Covariance Matrix Adaptation Evolution Strategy

One of the popular and highly utilized trajectory optimization methods is
covariance matrix adaptation evolution strategy (CMA-ES). The method
is an evolutionary technique that belongs to stochastic, derivative-free
methods, and it is suitable for numerical optimization of non-linear or non-
convex continuous optimization problems [48]. CMA-ES is based on storing
the information about current solution population to the mean vector and
the covariance matrix parameters. These parameters define a Gaussian
distribution that is used to sample candidate solutions. Algorithm 4 high-
lights main points of CMA-ES method, and Fig. 3.3 demonstrates the
iterations of the method on simple problem of two variables.

CMA-ES iteratively samples from a Gaussian "search distribution", and
refits the distribution to the best samples. CMA-ES utilizes the following
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Algorithm 4 High-level summary of CMA-ES
1: for iteration =1,2,... do
2: Draw samples x; ~ A4 (u,C) fori e 1,...,N
3: Evaluate samples using fitness function f(x;)
4: Sort the samples based on f(x;) and compute weights w; based on
the ranks such that best samples have highest weights.
5: Update u and C using the samples and weights.
6: end for

heuristics in each iteration:

¢ Sample pruning: Using the default CMA-ES parameters, the worst
50% of samples are pruned and their weights are set to 0. The mean
v is updated as a weighted average of the samples.

* Rank-u update: Rank-u update stores information about the popula-
tion of the current iteration, and CMA-ES first updates the covariance
and only then updates the mean [48]. This has the effect of elongat-
ing the exploration distribution along the best search directions, as
opposed to first updating the mean.

¢ Evolution path: The so-called evolution path heuristic maintains
an estimate of the average movement of the mean between iterations,
denoted p, and adds C; « pp” to the covariance. When CMA-ES pro-
gresses along a continuous slope of the fitness landscape, | p | is large,
and the covariance is elongated and exploration is increased along
the progress direction. Near convergence, when CMA-ES zigzags
around the optimum in a random walk, | p ||~ 0 and the evolution
path heuristic has no effect.

these heuristics are used to speed up the progress and avoid premature
convergence by elongating the distribution in the progress direction (see
Fig. 3.3). A complete introductory on the choice of weights and coefficients
in addition to mathematical formula for updating the evolution path and
rank-u covariance matrix can be found in [48].

3.1.2 Control particle belief propagation

Control particle belief propagation (C-PBP) [46] is a general-purpose model
predictive control (MPC) algorithm that utilizes a multi-modal, gradient-
free sampling method to effectively perform simultaneous path finding and
smoothing in high-dimensional spaces. The method is suitable for online
synthesis of interactive and physically plausible humanoid movements,
including balancing, recovery from both small and extreme disturbances,
reaching, and fully steerable locomotion in an environment with obstacles.
In online control, the method is run one iteration per frame, assuming that
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Figure 3.4. Steps of C-PBP algorithm in a simple planning problem demonstrated by
[46]. Rollout timestep is denoted by k2. A) simulating the rollouts forward,
terminating and forking trajectories at the timesteps marked with vertical
blue lines. B) determining the best sequence (black) and a smoothed and
improved candidate trajectory (blue). C) simulating forward in the next
iteration, informed by the results of the previous iteration.

the simulated system displays only small changes between frames. At each
frame, the method simulates multiple rollouts forward in time from the
current state, and the agent then takes the first action of the best rollout.
The main steps of the method are demonstrated in Fig. 3.4, and can be
summarized as follows:

¢ Exploration: Sample actions and explore states that result in lower
cost based on the provided priors in the form of Gaussian mixture
model (GMM). This forms a tree as demonstrated in Fig. 3.4A.

¢ Refinement: Smoothing the optimal path obtained in the previous
phase by recursive backwards local refinement. This is shown in Fig.
3.4B.

¢ Update: Update the GMM model such that states and actions with
lower cost values gets higher probability to be selected. The result is
shown in Fig. 3.4C.

The method has also been simplified and augmented with machine learning
to improve both optimization efficiency and movement quality [99, 100].
The main difference to CMA-ES is that whereas each sample in CMA-
ES trajectory optimization typically defines a full control sequence for a
short planning-horizon, C-PBP samples actions one timestep at a time,
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informed by various priors encoded in a Gaussian mixture model (GMM).
The method also saves simulation capacity by terminating bad trajectories
early and reassigning their simulation resources to fork the best trajec-
tories, as illustrated in Fig. 3.4, and to increase the exploration of good
states and actions.

3.2 Supervised Learning for Character Control

Supervised learning is the problem of training a model such that it maps
the inputs x to the outputs y where a set of N training examples in the
form of {(x1,y1),(X2,¥2),...,(Xn,¥N)} 18 given. Supervised learning can be
divided into two major categories, 1) classification, and 2) regression. In
classification, the trained model classifies the objects using their input fea-
ture (x) into a set of class labels (y). In regression, the problem transform
into predicting a continuous output value (y) given a new input x (see Fig
3.5). As we try to predict continuous valued simulation control signals
based on simulation state and goals, we deal with a regression problem,
for which a common objective is to reduce the sum of squared error which
is defined as follows:

1 M
Loss = M; ly; — fx)ll2 (3.2)

The loss function can be defined over training, validation, and test sets. M
demonstrates the number of samples in the set where the loss function is
being calculated, and f(x;) is the output prediction of the model.
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Figure 3.5. An example of linear regression. The data points are denoted by blue dots,
and the red line shows a simple linear f(x) that minimizes the loss of Eq. 3.2.

The regression task can be used to enhance sampling-based optimiza-
tion of movement by interleaving optimization and model training, using
previous optimization results as the training data [99, 100]. Given agent’s
state and goals feature vector as input to a trained model, the model can
predict joints’ torques or angular velocities that provide the sampling based
optimization with better initial guesses [99]. There are many different
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model types such as k-nearest neighbour (£-NN), linear regression, and
deep neural networks [13] that can be trained for the regression task.

k-NN is the simplest and the most naive way of training a model. In &-
NN, there is no training and the prediction for the new output value is done
by 1) finding & nearest neighbours of new input using a distance measure,
e.g. Euclidean distance, and 2) calculating the average or weighted average
output values of 2 nearest neighbours in the regression task [567]. The
weighted average output is calculated as follows:

k
y= Zini
i=1

exp[-D(x,x;)]
Sh exp[-D(x,x)1’

(3.3)

w; =

where D(x,x;) denotes the distance between the new input x and the ;*®
nearest neighbour in the training set. The hyper-parameter % can be
selected using cross-validation to evaluate generalization of the chosen
parameter over the training set.

With £-NN, the data is the model, whereas in most other methods, one
uses the data to build a compressed representation that has desirable
interpolation and extrapolation capabilities. For example, linear regression
trains a linear model by estimating the parameter W to find a linear
mapping between inputs and outputs y = Wx. Although linear regression
is simple and easy to use, the model is limited to simple data where such a
linear relation can be assumed.

In recent years, the popularity of deep artificial neural networks has
surged in various regression problems. Neural networks are powerful
function approximators that scale well to large-scale high-dimensional
data [73, 76, 40] and applying them to regression problems is easy using
modern tools like Pytorch [93] and Tensorflow [1]. By increasing the
size of the neural network, one can model increasingly more complex
input-output relations. The parameters of the neural network can be
trained numerically using stochastic gradient descent (SGD) [14, 15] or
its derivations like ADAM [65]. However, the neural network architecture
and activation functions have to be carefully selected in order to avoid over
and/or under-fitting problems.

3.3 Reinforcement Learning for Character Control

Reinforcement learning (RL) has many practical applications in robotics,
animation and games [6]. RL is a form of learning where the agent learns
by trial and error. In order for RL algorithms to be able to solve the
problems, they are mathematically formulated using Markov Decision
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Figure 3.6. A simple illustration of a reinforcement learning agent interaction with envi-
ronment for collecting experience points, adopted from [114].

Process (MDP) [113] such that the state transitions have Markov property,
i.e., the next state only depends on the current state and action and not on
previous states or actions. This thesis considers a finite-horizon discounted
MDP defined by the tuple (,Sﬁ,d,f,r,p(s()),y, T) where .# is a set of all
states, «f is a set of all actions, f is the state transition dynamics function
or distribution, r is the reward function, p(sg) is the distribution of the
initial state sg, y is the discount factor, and T is the maximum number
of timesteps the agent acts. Infinite horizon and non-discounted MDP
formulations can also be used, but the standard continuous control RL
benchmarks like OpenAI Gym MudoCo [17] use both finite horizon and
discounted rewards. Some RL methods like Policy Iteration do not utilize
the p(sp) and instead iterate over all possible states [113], but such iteration
is not typically possible with physically simulated agents and a typical
approach is that the agent implements a reset function that samples the
state from p(sg), after which states are explored through sampling actions
from o/ [17].

In the MDP formulation, the agent starts from an initial state sy ~ p(sp).
Then at each timestep, the agent observes a state vector s;, takes an
action a;, receives an instantaneous reward r; and the next state vector
St+1 ~ f(s¢+1lst,a) (see Fig. 3.6). The agent continues this until it reaches
a terminal state or a total of T actions. RL methods try to maximize the
expected discounted return [102, 103]:

T
J(mg) =E {Z y’frt<st,at)} : (3.4)
t=0
where 74 is a policy for sampling actions, a; ~ mg(a;|s;). The policy parame-
ters are denoted by 6. y €[0,1) controls how much to take future rewards
into account. With y =0, RL is greedy, optimizing only the instantaneous
reward of each action.

Algorithm 5 provides a high-level summary of episodic on-policy rein-
forcement learning utilized in this thesis. On-policy RL methods approach
the problem by iteratively collecting experience tuples (s,a,s’,r) in a buffer
through sampling actions from the policy, a; ~ mg(a;|s;), and updating the
policy based on the collected experience tuples to prefer actions that maxi-
mize Eq. 3.4. The process is almost the same as the trajectory optimization
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discussed in Section 3.1 — e.g., the Gaussian search distribution of CMA-
ES is akin to a policy — but 1) instead of having a fixed initial state, each
episode (trajectory) starts from a random state, and 2) the sampled ac-
tions are conditioned on state. Additionally, some trajectory optimization
methods like C-PBP [46] assume that the state transition dynamics are
deterministic, whereas RL dynamics are usually assumed stochastic.

Algorithm 5 High-level summary of episodic on-policy RL
1: for iteration =1,2,... do
while simulation budget is not exceeded do
Initialize the agent to a state sy ~ p(sg)

2

3

4: Run agent on policy ny for T timesteps or until a terminal state

5 end while

6 Update policy parameters 6 based on experience tuples [si,ai,ri,sg]
collected in this iteration

7: end for

The RL algorithms can be divided into model-based and model-free. In
model based algorithms, a model of both reward and forward dynamics is
either learned or given, and the agent tries to find the best policy based
on the approximated model as well as observations collected from the real
environment [94]. Model-free algorithms, on the other hand, try to find
the best policy only by interacting with the environment. Model-based
algorithms can achieve better results with less collected experience, but
so far, they have had problems with scaling to complex high-dimensional
problems such as synthesizing humanoid movements [43, 6]. Recently,
model-free RL algorithms have undergone rapid development [106, 104,
107, 102, 83] with major successes such as playing Atari games from pixel
inputs [84, 85] and controlling humanoid locomotion with rapid velocity
changes [104]. This dissertation focuses on model-free RL algorithms for
training the agent in the bouldering task.

In formulating a problem into RL format one should consider the follow-
ing factors:

* Markov Property: The selected agent’s observation/state vector
should have Markov property meaning the future state distribution
should be independent of the history of states and actions beyond the
current state and action.

¢ Fully vs Partially Observable Environment: An environment is
called fully observable if s; if what the agent can observe at time
t is sufficient for acting optimally. RL is usually easier with fully
observed state, although modern RL methods may also work for
partially observed MDP:s (PO-MDP:s), e.g., using a recurrent policy
network [122].
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¢ Exploration vs Exploitation: How to explore the environment is
a central issue in RL. In order to gather higher future reward, the
agent needs to explore and try new actions, and at the same time it
needs to utilize or exploit already explored good actions. Thus, there
is a trade-off between utilizing the current information and trying
new actions in the hope of getting higher expected return value. This
is known as the exploration-exploitation dilemma and it is a central
and well researched problem in RL [114]. Many RL algorithms
initially explore more randomly and the action distribution’s variance
is gradually reduced as the policy converges to the highest-value
actions. In humanoid movement control, the policy is often Gaussian
and conditioned on the state [104, 102, 44], which is reminiscent of
running CMA-ES optimization in parallel for multiple states. The
policy network receives state as input and outputs the mean and
variance.

¢ On-Policy vs Off-Policy: On-policy methods can only update the
policy based on the experience tuples generated by following the
policy being optimized, i.e., the collected experience must be dis-
carded after each update. Off-policy methods can utilize the data
from previous training iterations or offline data available in external
sources, e.g., from expert demonstrations, which can allow better
sample-efficiency [44].

* Reward Function: Designing an informative reward function r;
that can guide the policy learning is perhaps the most crucial task in
making RL work efficiently. For example designing a sparse reward,
e.g. giving reward for success {+1} or failure {—1} in a task, is easy,
but it slows the training process as most of the agent’s experience
does not provide any information to guide the learning.

3.3.1 Policy Gradient

The most popular RL algorithms today are based on policy gradient meth-
ods where the gradient of the expected return J(my), i.e. the gradient of
Eq. 3.4, is used to update the policy’s parameters. The following reviews
the derivation of the so-called REINFORCE policy gradient update, using
the notation of [4], originally developed by [123]. REINFORCE and its
variants are also introduced in detail in [113].

The policy parameters 6 can be updated using the gradient as:

0 — 0+ aVgd(mg) (3.5)
where « is the learning rate. Let us denote a trajectory as 7 =[sg,ay,...,sr]

and episode return as G(1) = ZtT:O y'ri(ss,a;). Now, J(7g) can be expressed
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as J(wg) = Er~y, [G(7)], and Vg (7g) is calculated as:

Vod(g) = VoEr -z, [G(T)]

Vg () = Vg /P(TIHH)G(T) (3.6)

T

VgJ(]‘[@) = /V(;P(T | H(;)G(T)
T

where P(7 | mg) is the probability of the trajectory r. To calculate VyP(7 | 71p),

the gradient log trick is used as follows:

VyP

VologP(t | mg) = m
P(1 | mg) 3.7

VoP(t | mg) = P(1 | mg)Vglog P(7 | 7p).
Thus, VgdJ(7g) gets the form of:

Vo (1g) = /P(T | m9)Vglog P(t | m9)G(1)
T (3.8)

Vod (19) = E;y,[Volog P(7 | m9)G(1)]
To calculate VylogP(1 | mg), we need to expand P(7 | mg) to its components
as:

T

P(x|mp) = p(so) [ [ F(st+11s0,a0mp(a;|'s,)
= (3.9)
T
logP(7 | m9) =log p(so) + Y _ {logf(ss+11s:,a:) +logma(ar | s1))
=0

where p(sg) is the probability of being at sg, and f(s;.1 | s¢,a;) is the transi-
tion probability. By taking the gradient of Eq. 3.9 with respect to 6 and
zeroing out independent components we have:

T

VologP(r | mg) = Y _Vglogmg(ay |sy). (3.10)
t=0

By substituting Eq. 3.10 in Eq. 3.8, we get:

T T
Vo (16) =Er-r, | > Vologmo(as 1) y'ru(sy,ap) (3.11)
t=0 t'=0

which is independent of the transition distribution f(s;1 | s,a;). Intuitively,
moving along Vglogng(a, | s;) makes action a; more probable in state s;.
The sum of trajectory rewards ZZ::O yt'rtr(st/,af) acts as a multiplier for
the gradient, making high-value actions more probable than others. In a
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causal system, however, the value of an action should not be influenced by
past rewards, and as proven in [3], Eq. 3.11 can be simplified as:

T T
VoI (19) = Er-r, {Z ¥'Vologmo(a, | s»Zy"‘frt'(stf,ay)} (3.12)

t=0 t'=t

In practice, policy gradient methods replace the expectation in Eq. 3.12
with an average over simulated trajectories or episodes as follows [113]:

N T T

1 () | ) g () G)

Vod (1) = NZI;}/ |:V310g7[9(atl |Stl );},t trt’(S; 7a; ) (3.13)
i=1 ¢= -

where the (i) superscripts denote simulated trajectory or episode indices.
The methods alternate between collecting experience and performing gra-
dient updates on 0 based on variations of Eq. 3.13. However, such Monte
Carlo gradient estimates can have high variance, which can slow down
the training process or make it unstable. Next section discusses how the
issue is handled in Proximal Policy Optimization [104], a modern policy
gradient method utilized in this thesis.

3.3.2 Proximal Policy Optimization

As collecting new data for each gradient step is very computationally ex-
pensive, RL methods employ various improvements. A popular first choice
for continuous control problems in on-policy RL algorithms is Proximal
Policy Optimization (PPO) [104] that has stable policy updates, is scalable
to high-dimensional problems, and requires only moderate parameter tun-
ing. Publication IV utilizes PPO which is based on an advantage-based
gradient estimate as:

T
Vo (16) =Err, | Y _ Vologmg(a, | s,)A™(s,a,) (3.14)

=0
where the advantage function A”(s;,a;) is an estimate of how much of an
improvement an action has over the current policy. Comparing Eq. 3.14
and Eq. 3.12, one sees that the advantage function replaces the sum of
rewards in Eq. 3.12. The motivation is to reduce gradient variance while
still being simple to estimate from the collected experience [103]. The
advantage is treated as not depending directly on 0, and it is expressed as
AT (sy,ay) =r(sg,a:) +yV7(sp41) — V7(sy), where V7(s) is the value or expected
on-policy return from state s, and s;,1 ~ f(s;+1lst,a;). In principle, one can
train a neural network with simulated episode returns to approximate
V7™(s), but the associated bias and variance easily result in unstable RL.
This is why PPO utilizes Generalized Advantage Estimation (GAE), a
simple but powerful way to estimate the advantages [103]. On the top of
reducing gradient variance, PPO benefits from taking multiple gradient
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steps on the data collected in each iteration, and limits the divergence
between the old and updated policies to mitigate the instability caused by
the update.

Although PPO is widely used, e.g., as the default optimizer of the Unity
ML Agents framework [59], later RL algorithms have provided further
improvements, e.g., by combining expectation-maximization (EM) -style
fitting of the policy to high-value actions with efficient usage of off-policy
data [2, 98].
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4. Developed Algorithms and
Applications

This chapter reviews the novel algorithms and applications developed in
this dissertation. First, Publication I focuses on solving the combined
problem of planning a climbing strategy and synthesizing the required
movements. The solution is able to synthesize more realistic and dynamic
climbing, in particular allowing the physically simulated agent to move two
limbs at a time, whereas previous work had simplified the problem by only
allowing one limb moves or not simulating the full movement dynamics.
Next, Publication II proposes a novel application for the technology of
Publication I in computer-aided mental practice of climbing, and evaluates
the approach through prototyping and a user study.

While the solution of Publication I was able to produce high-quality re-
sults, it was fairly computationally expensive, requiring 1 or 2 minutes of
CPU time to solve climbing problems of a modest size. This is why Publica-
tion III proposes improvements to Publication I using machine learning,
and Publication IV investigates an alternative problem formulation and
solution using deep reinforcement learning.

If this thesis had been started one or two years later, there could have
been more focus on RL methods. Work on Publication I begun in 2015,
when the best simulated humanoid control results were still obtained using
trajectory optimization approaches [117, 45, 46]. It was only in 2017 when
proximal policy optimization (PPO) demonstrated that deep reinforcement
learning is able to produce policies that can robustly handle, e.g., humanoid
locomotion combined with rapid direction changes and getting back up
after falling [104], which was previously demonstrated with the C-PBP
method utilized in this thesis for the low-level controller part [46].

4.1 Publication I: A Control Hierarchy for Discovering Climbing
Movements

In Publication I, a hierarchical motion planner is proposed to synthesize
climbing movements. In the hierarchy, graph based search is used as the
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Figure 4.1. Four different climbing moves on flat (left) and 45 degrees overhanging (right)
walls, as synthesized in Publication I

high-level path planner to plan a path or a sequence of climbing moves
by outputting goals for each individual climbing move — which holds to
reach with which limbs. Then, a sampling based optimization method is
utilized as a low-level controller to synthesize the climbing movements on
the planned path by optimizing the individual moves such that the goals
are reached by the limbs. The main idea behind using the hierarchical
motion planning is to split a long-horizon climbing problem into short-
horizon sub-problems. Finding multiple good short movement trajectories
is much easier than optimizing a single long one because optimization
complexity can grow exponentially with dimensionality, and movement
trajectory optimization also tends to get increasingly ill-conditioned with
longer horizons [47].

Fig. 4.1 illustrates a number of climbing movements that are synthesized
by the proposed hierarchical motion planner. The hold positions are in R3
and denoted by x;. The high-level path planner can also plan for free hands
or feet for the climber which is denoted by x_;. The assignment of the holds
to the climber’s limbs or a climbing stance is denoted by o = [xy1, X1, X|h, X¢h]
where x; € {x_1,x3} for i =[ll,r],]h,rh]. The agent starts in a T-Pose at state
so and og = [x_1,X-1,X_1,%x_1] in front of the wall, and the task is to get
either of its hands to the top or goal hold x, while passing through a
user-specified stance ogiart. All the goal stances containing x, as a hand
hold are denoted by o4 = {olx, € {x}p,x)}}. The paths that are returned by
the high-level planner have the form of p(c¢,0,) = (00, ...,Ostart, -, 0g)-

First, rapidly-exploring random trees (RRT) [72] was tried to grow a tree
of paths in the climber’s state space, however, it did not work as planning
in high-dimensional space using randomized actions can take a long time
and sometimes makes it impossible to find a feasible path [34]. The final
solution still builds a tree in the state space, but it is guided by graph
search in the stance space (see Fig. 4.2).

4.1.1 Building the Stance Graph
The high-level path planner’s stance graph contains all possible climbing

stances that a climber can reach. The graph can grow prohibitively large
even for short climbing routes. For a practical graph search implementa-
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Figure 4.2. An illustration of the hierarchical motion planner of Publication I. The xz-
plane denotes the stance dimensions, and vertical axis denotes the additional
dimensions of climber body state s. The approach grows a tree in the state
space (in this abstract figure the 3D space) guided by the lower-dimensional
stance graph (here the xz-plane). As illustrated in subfigure (d), a single
stance may map to multiple states, but tree edges uniquely map to stance
graph edges. All paths start from o (corresponding to a T-pose in front of the
wall) and pass through stance ogt,,¢ Where the limbs are on desired starting
holds of the climbing route. There are two goal stances in the graph denoted
by 041 and o42. The starting tree node for growing the tree for each planned
path is denoted by green color. The planned path of p(0g,0) is denoted by
green solid lines on the stance graph. Red dashed edges in the graph denote
increased edge cost after failure.

tion, there are two main questions to consider: 1) Can graph connectivity
be pruned? 2) given a pruned graph, can one prioritize which edges to
search using some heuristics like the Euclidian distance to goal used in
A*?

Publication I utilizes different sets of rules for exploring new stances
and pruning their connectivity. The rules can be divided into two sets as
follows:

¢ Climber is on the ground: Exploring the short transition se-
quences from oy (T-pose) to ostart. In these sequences, each edge
transition is possible when 1) the first stance is oy and next stance
has least one connected hand, 2) the first stance has one connected
hand and the next stance has at least one more connected hand or

51



Developed Algorithms and Applications

foot, and 3) the transition satisfies the shared pruning rules explained
below. In other words, the climber should get from T-pose to the wall
without using any other hold than those included in ogiaypt.

Climber is on the wall: Exploring transition sequences from ogtart
to o by gradually expanding stances in feasible regions around the
already added stances. In these sequences, an edge transition is
possible when 1) one hand and at least two limbs are connected to
holds in both stances, and 2) the shared pruning rules below are
satisfied.

The shared pruning rules that determine the feasibility of new stances and
moves are defined as follows:

1.

At most two limb-to-hold assignments are different in a transition
between two stances.

. Foot holds cannot be placed higher than 0.1cm of the highest hand

hold position in a stance. In other words, the climber should avoid
being upside down.

. If all hands and feet are connected in a stance, the number of unique

holds should be at least three. This ensure stable balance.

. Hand-to-hand, foot-to-foot, and hand-to-foot distances should not

exceed the climber’s body measurements.

using all above rules, Publication I explores new stances and prunes their
connectivity by building the graph starting from an initial stance and
recursively adding stances.

Publication I uses the following heuristics for evaluating the climber’s
movements (graph edges) and stances (graph nodes). The graph search
prioritizes paths with lower costs. The path cost is the sum of its edge and
node costs, which encode an approximation of how a real climber tends to
favor stable, comfortable and low-energy movements when possible.

At each stance, the node cost is defined as the sum of the following cost
components:

¢ Penalizing for having free hands or feet. This makes the climber

favor stable movements.

¢ Cost for matching, i.e., having two feet attached to the same hold.

Matching is usually cumbersome in real climbing, especially if the
holds are small.

* Cost of having hands or feet cross each other, or either of hands
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being lower than any of the feet. Such stances usually correspond to
cumbersome poses that limit further progress.
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Figure 4.3. Two paths (green and blue arrows) to the top hold in a bouldering problem of
Publication I. The dashed rectangles highlight the one-to-many mapping from
stances (assignments of holds to limbs) to climber states.

¢ Penalty for having a hand and foot too close to each other. This avoids
unstable balance.

For all connecting stances, the edge cost is the sum of the following:

* A movement cost based on the distances between initial and target
holds.

* A cost for moving more than one limb. This favors easy and low-
energy movements.

¢ A cost for having less than three unique holds connected to hands
and feet during the transition, if the distance between the holds is
less than a threshold, which makes movement unstable.

¢ A dynamic edge cost that is increased in case of failure in synthesizing
planned movement by the low-level controller.

Using the above heuristics in the graph search leads to movements that
are more likely to be synthesized successfully by the low-level controller.
However, the last item in the list above adds the capability of replanning
in case of failures, and avoiding risky moves.

4.1.2 Synthesizing Motions on Stance Graph

The following briefly describes the process of synthesizing climbing move-
ments on the stance graph.

Finding multiple paths: A part of the attraction of climbing is that it is
both a physical and a mental game. Well-designed climbing problems often
have multiple solutions and different body types and physical abilities
can also require multiple solutions. This is why A* prune was chosen as
the graph search algorithm, as it can return a number of shortest paths
(p(09,04)) on the graph that represent different climbing strategies (Fig.
4.3). This also compensates for the inaccuracy of the heuristics; finding
multiple sequence of climbing movements increases the probability that at
least some of them are practical ones.
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Handling failed moves: The cost components and pruning rules in
Section 4.1.1 only encode a priori assumptions of the problem. In practice,
some moves may fail either because the assumptions were incorrect or
the low-level control optimization failed. This uncertainty is handled by
adding a dynamic edge cost that is increased whenever a move fails. After
this, the graph search is run again using A* prune while keeping the list
of already successfully simulated paths untouched.

Synthesizing motion on the planned path: Once a path p(o¢,0,)
is planned, the low-level controller tries to simulate each edge o;-0;41
in the planned path that has not been simulated yet. Simulating the
movement corresponding to an edge results in a movement trajectory, and
the trajectories form a tree starting from the initial state of the climber
standing in front of the climbing wall. Thus, finding edges that have not
been simulated amounts to traversing down the tree following the planned
stance path. To simulate the edge of 0;-0;.1, the system performs the
following:

1. Detach the climber’s hands and feet that switch holds between the
initial and goal stance.

2. Use the low-level controller to simulate from starting climbing state
at o; to reach the target hold positions specified in ¢;1.

3. Attach the climber’s hands and feet to target holds if they are in
contact with the holds.

In the dynamics simulation, gripping a hold or placing a foot on it is
approximated as connecting the hold and limb with a ball-and-socket
joint. Thus, the attaching and detaching above amounts to creating and
destroying the joints. In case of failure, the cost of failed edge is updated,
and A* prune is run again as explained above.

4.1.3 Sampling-based Optimization

Two sampling-based black box optimization methods, CMA-ES and C-PBP
discussed in Section 3.1, are used as the low-level controller in Publication
I to synthesize climbing movements on the planned path p(g¢,0,). Both
methods try to optimize a weighted sum of the following cost components,
each corresponding to a movement goal or desired quality:

* Move the limbs towards the target holds: Squared distance from
targets.

¢ Keep the center of mass close to the wall: Squared distance from
wall.

¢ Keep the posture close to a default natural climbing pose (see Fig.
4.4): Sum of squered joint angle differences between current and
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default pose. Note that when the climber is on the ground, the
default pose is the T-pose (Fig. 4.4, left).

* Maintain a desired facing direction: Angular distance between cur-
rent and target chest direction. In Publication I, the target is to
always face the wall. The motivation is that this usually makes the
subsequent moves easier. For example, if the climber swings around
and ends up with its back to the wall, continuing from such a state
will be difficult.

* Minimize movement velocity: The sum of squared speeds of the
climber’s simulated body parts.

* Minimize the torque and force exerted from the joints: The sum of
squared applied joint motor torques and the forces exerted by hands
on the hand holds.

Figure 4.4. Two default postures used during optimization. Left: climber at T-Pose. Right:
climber at default climbing pose.

The optimization process comprises of 1) sampling control parameters, 2)
simulating the corresponding climber state trajectories, 3) evaluating the
cost function based on the controls and state, and 4) refining the control
sampling distribution based on the costs. Both optimization methods
optimize joint motor target velocities over a planning horizon. However,
they differ from each other in:

1. C-PBP simulates 1.5 seconds in the future, sampling new actions
every 4 timesteps, while CMA-ES samples full actions sequences
defined by two keyframes. The keyframes specify target angular
velocities for joint motors, and at each timestep, the angular velocities
are interpolated linearly between the keyframes. Keyframe durations
are sampled in the range [0.25,0.75].

2. C-PBP and CMA-ES use 64 and 256 samples per iteration, respec-
tively.
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3. C-PBP utilizes Gaussian mixture models while CMA-ES considers
only one Gaussian model for the sampling distribution.

Figure 4.5. Two examples of scalability test environments of Publication I. The environ-

ments are built using grids of holds with some random deviation added to the
hold positions.

4.1.4 Summary of Results

Publication I evaluates the performance of the graph search method and
the optimization methods used in high-level path planner and low-level
controller using various measurements. The results can be summarized as
follows:
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¢ Experienced climbers comment that CMA-ES produces more deter-

mined and skilled movement, while C-PBP looks more like a hobbyist.
This may be largely due to the sampling noise of C-PBP that makes
the movements look uncertain and shaky, whereas the interpolation
of the CMA-ES action parameterization results in smoother move-
ments.

C-PBP noise can be reduced with increased sampling budget.

Increasing the number of CMA-ES control points results in a higher
number of optimized parameters and more failures of the optimiza-
tion.

CMA-ES needs more iterations with a similar sampling budget due
to oscillation around the final cost minimum found.

CMA-ES with the system’s settings, i.e. linearly interpolating be-
tween two control points, is more reliable in terms of avoiding greedy
behaviors that lead to failures. To evaluate this, 20 simulations were
run by following the first route planned by A* prune in a fixed boul-
dering route for both optimization methods with 4 failure cases for



Developed Algorithms and Applications

Figure 4.6. Middle: Real climbers climbing two different routes shown with projected
graphics. Sides: Screenshot of Publication IT's CAI application, with a
photogrammetry-based 3D model of the climbing wall and a simulated climber
that the user can control.

CMA-ES and 11 failure cases for C-PBP. The greediness of C-PBP can
be adjusted with the resampling threshold parameter, but it appears
difficult to tune.

* The maximum torque allowed for the joint motors can be easily
adjusted to simulate stronger or weaker climbers. Weakening the
agent increases the average time needed to find a route, as many of
the tried paths fail; qualitatively, the successful climbs exhibit more
calm and conservative movements.

¢ To evaluate the scalability of the method, the number of holds was
increased in a grid of {rows x cols} with {rows =[2,8],cols = [1,4]}, and
the method was run to find 10 paths over 6 different simulations.
Examples of the test grids are shown in Fig. 4.5. The data indicates
that with such hold grids, both graph size and the planning and
simulation time grow roughly linearly as a function of wall height.

4.2 Publication Il: Computer Aided Imagery in Climbing

Publication IT introduces and evaluates a novel human-computer interface
that enables a new form of mental sport practice called computer aided
imagery (CAI). The interface utilizes a photogrammetry model of a real
climbing wall and a virtual climber with body proportions scaled to match
the user based on computer vision measurements (see Fig 4.6). The sys-
tem uses the algorithms of Publication I in synthesizing plausible and
believable physically-based simulations to allow the users better imagine
themselves on the climbing wall. The users can interact with the interface
and control their avatar or the simulated climber through mouse and key-
board to plan for a sequence of climbing movements leading the character
to the top hold. The climbing movements are defined by:
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1. Setting target holds for the climber’s hands and feet.

2. Specifying target direction for the climber’s chest, allowing the user
to specify moves where one needs to have one side against the wall.

Using these controls allows the user to discover various climbing move-
ments and solve the climbing route before trying to climb on the actual
climbing wall. The main purpose of the interface is to replace or augment
the traditional mental imagery phase of preparing for a climb and thinking
of possible movement strategies.

Mental imagery is a powerful cognitive, emotional, and motivational tool
that has a strong impact on human behavior [49, 64, 108]. However, it is a
difficult skill and people have different abilities to visualize movements
[18]. Motivated by this, Publication II provides the users with a novel
interface for investigating the climbing movements. This section briefly
describes the developed technology.

4.2.1 Environment Modeling

The model is built using Autodesk ReCap 360 [78], a photogrammetry
software that creates a 3D model of an object from its pictures taken from
different angles (see Fig. 4.7). To model a large object such as climbing
wall with the 2.44m width and 3.47m height, the author photographed 50
pictures dividing the wall into 3 segments: bottom, middle, and top sections.
For each section, the pictures are taken from multiple angles, rotating
around the vertical axis in a half circle. The 3D model has approximately
less than 1em inaccuracy in the hold shapes and location. The users can
freely rotate and zoom the virtual camera for better inspection of the holds.
The interface utilizes open dynamics engine (ODE) [109] to simulate
climber’s movements and interaction with holds. The sampling based opti-
mization methods of Publication I are utilized to control the character and
synthesize climbing movements without motion captured data or inverse
kinematics that could limit the realism and diversity of the movements.
The holds are modeled as simple ball-and-socket joints, similar to Publica-
tion I. However, the hold modeling is extended by manually annotating the
holds with ideal pulling/pushing directions corresponding to the directions
from which one can place one’s fingers in a cavity or behind a ledge. The
ideal direction is used in the movement optimization to synthesize climbing
movements that end in more realistic and practically feasible postures.

4.2.2 Adapting the Climber Model to the User

The simulated climber needs to be adjusted to participants’ body mea-
surements in order to enable users to copy the simulated movements (e.g.,
reach a specific hold from a specific pose). The interface utilizes Microsoft
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Figure 4.7. Two examples of climbing routes implemented in the simulation, using pho-
togrammetry models of real climbing walls. The red circles denote the starting
hand holds.

Kinect V2 sensor and SDK [82] to locate each participant’s body joints
while standing in T-pose. The located joint positions are used to adjust
simulated climber’s joint positions and bone lengths.

As a limitation, it should be noted that scaling the body model is not
enough for fully realistic climbing simulation. The system does not model
finger details, which means that in trying out some climbing stategy, the
users have to estimate whether they are able to grasp the holds or whether
their hands might slip. Measuring and modeling the user’s flexibility and
strength is also deferred to future work.

4.2.3 Character Control

In order to allow the users to interact with the interface in real-time and
with minimal latency, Publication II uses the online version of C-PBP
as opposed to the offline version which is used in Publication I, except
when both hands are detached from holds (e.g. when the climber is on
the ground). When the climber is on the ground, the movements to get
limbs to the holds on the climbing wall are more challenging to optimize,
and the increased robustness of offline optimization justifies the added
computation time.

Compared to Publication I, the user playes the role of the high-level
graph search, and specifies target holds by clicking and dragging limbs
to the holds in the climbing environment. Limbs can also be defined as
"free" in order to be used for balancing or frictional contacts with the wall.
Furthermore, the user can define a target angle for the simulated climber’s
torso. The optimization process can be initiated by the user by pressing
enter.
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The C-PBP movement optimization attempts to minimize a cost function
expressed as a weighted sum of the following costs:

¢ Obeying user input: Cost for hands and feet distances to the target
holds, and angular distance between the current and target chest
direction.

¢ Conserving energy: Penalty for center of mass distance to the wall.

¢ Natural movement: Cost for joint angular distance from a default
climbing posture (hanging with arms straight to minimize fatigue,
see Fig. 4.4).

¢ Preferring calm and controlled movement: Cost for speed of body
parts.

¢ Feasibility of postures: Penalty for angular distance between the
actual and ideal pulling or pushing direction.

Compared to Publication I, the cost function used here is the same except
for the last term that allows the simulated climber to adapt to different
hold rotations.

4.2.4 Summary of Results

The interface prototype was evaluated in a user study that compares two
different preparation methods for climbing, namely CAI and traditional
imaginary (TI). The user study was conducted on 20 participants (6 female,
14 male) with a wide range of climbing experience. All the participants
climbed four bouldering routes with TI and other four with CAI, using a
randomized block design. The overall objective of the study was to better
understand the added value of utilizing movement simulation and Al
technology in physical activity and sport. The results can be summarized
as follows:

* The experiment indicates that preparing with CAI forces a climber
to think in 3" person, and to plan and explore the whole route and
body movements in more detail, e.g. CAI made climbers to consider
their legs and torso in addition to their hands. However, using TI,
climbers prepare for the climb by just checking few first holds and
imagining how their hands interact with the holds.

¢ Using CAI for preparing to climb made participants consider a climb-
ing route as more complex and more difficult to comprehend and
climb. This can reduce participants’ pre-climb confidence and make
them more careful. However, after the climb, these feelings turned
into positive evaluations of elevated level of own skill, confidence and
decreased sense of route difficulty. In other words, CAI increased

60



43

Developed Algorithms and Applications

participants’ post-climb feeling of competence. The feeling that the
simulation was more complex than reality can be considered a limita-
tion of the system. However, it is perhaps better to be inaccurate in
this way than make the participants think that a route is easy and
then be disappointed or take unnecessary risks.

Although the majority of the climbers prefer to solve the climbing
puzzles by themselves, CAI technology may have benefits as a "route
guide" or a something that helps climbers communicate, demonstrate
and teach new and difficult routes to each other.

In the final interviews, climbers considered CAI to save some energy,
because one doesn’t have to try everything physically on the wall.

Although participants were allowed to visually inspect the real wall
while exploring it with CAI, almost all the climbers mentioned miss-
ing more precise hold and finger modeling. This is clearly a potential
topic for future work.

Although the CAI prototype provided the participants with their
body measurements, they asked for more realism such as exact holds,
hands/fingers, movement, body capabilities, and looks.

Publication lll: Enhancing Climbing Movements using Neural
Network Predictions

Publication III utilizes hierarchical motion planning similar to Publication
I (see Section 4.1). The high-level path planner uses A* prune to propose
sequences of hand and feet placements on the climbing wall, and the
low-level controller utilizes a CMA-ES method to synthesize climbing
movements on the planned movement sequences. Publication III extends
the approach by utilizing neural networks in both the graph search and
CMA-ES optimization, with multiple benefits:

1. Reducing the number of heuristics used in building the graph and

pruning the edges.

. Reducing the number of hand-tuned heuristics used in the graph

search. Edge costs are based on neural network predictions of stance-
to-stance movement success rate and effort. Using these allows the
graph search to produce more successful and less effortful sequences
of climbing movements, illustrated in 4.8).

. Better initial guesses for CMA-ES, which allow finding higher quality

movement trajectories in less time.
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Figure 4.8. Three paths to the top hold in a bouldering problem. Top: A solution involving
a dynamic leap (dashed circles) emerges when moving all 4 limbs at the same
time is allowed. Middle: A different strategy where movement is restricted to
only 2 limbs moving at a time, similar to Publication I. Bottom: The system
of Publication I produces more cumbersome movements, and in this problem
does not find a solution until after 10 minutes of failed attempts. The top and
middle solutions were found on the first try (less than 1 minute of CPU time)
using the improved system of Publication III.

The use of neural networks in both graph search and the sampling based
optimization allows the motion planner to plan for and synthesize highly
dynamic climbing movements such as jumping, as illustrated in Fig. 4.8.
Compared to Publication I, Publication III removes the constraint of only
switching at most two limbs to new holds in a single move.

4.3.1 System and Training Process

Building on Publication I, Publication III uses the same notation intro-
duced in Section 4.1. The hold positions are denoted by xj, and the assign-
ment of holds to climber’s hands and feet (i.e., stances) are denoted by o.
The climber’s state is denoted by s. The climber starts on the ground from
T-pose at 0y, and the goal is to reach the top hold at o,. The stance graph,
a graph containing all assignments of holds to the climber’s hands and feet,
is denoted by %, and the planned path is denoted by p(cg,04).

Neural Networks: The neural networks used in the stance graph and
the low-level controller are denoted by NN, and NN, respectively. NN,
outputs:

* s"(0;,0,): the predicted success rate of performing a transition from
an initial stance to a target stance by the low-level controller.

* ¢"(g;,04): the predicted effort used by the low-level controller in
performing the transition.
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The input feature vector of NN, is composed as:

0;—0i,
o:—04,
foloi,00) = |0¢ -0y, (4.1)

connected(o;),

connected(oy)

where o; and o; denote the initial and target stances, d; denotes the
average of hand and feet positions in ¢;, and connected(o;) specifies whether
climber’s hands and feet are connected to a climbing hold or not. NNg
outputs:

* pl'(s,0,): predicted joint motor actuation parameters that are used
as an initial guess for the optimization of the movement from s to o;.

* c2(s,0;): predicted of cost function value that the movement opti-
mization will yield.

Given initial climber’s state, and the target stance of o;, NNg’s input
feature vector is composed as:

r—1

qspinevspine:

spine(Xb, ~ Xspine); > Aspine(Xb, ~ Xspine)
qspine Xb1 Xsplne ERREE) qspine an xsplne >
spine(Vby ~ Vspine)s > Aspine(Vb, ~ Vspine)
qspine vbl Vsplne LEARE) qspine vbn Vsplne >

— -1

15(8,00) = | Qgpine (0t —Xspine), (4.2)
spine(T¢ ~Xspine)
spinel0¢ ~Xspine),

connected(og),

| connected(ay)

where o is the climber’s stance at the initial state of the optimization,
Qspine 1S the quaternion of the climber’s root at s, and x;, and v;, denote the
positions of the climber’s bones and velocities at s, respectively. b1,...,b,
denote all 15 bones in the feature vector including the climber’s arms, legs,
and torso.

Training Process: Fig. 4.9 demonstrates a randomized training envi-
ronment for the climber, and a dynamic jump performed by the climber.
The scenes are generated randomly by perturbing holds around a 4-by-4
grid followed by selecting 2 holds per row that are closest to a randomly
drawn line on the climbing wall. The training process repeats the following
steps until convergence:
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Figure 4.9. Square: A random learning scene. Circles: A jumping sequence to the target
hold where hands are separated from holds for a small amount of time.

1. Randomize the training holds.

2. Collect training data to a FIFO buffer by performing random climbing
movements.

3. Train the neural networks on all data in the FIFO.

Inspired by the informed online trajectory optimization of [99], NN and
NN, are trained in a supervised manner. At each training iteration, neural
networks are trained for 5 epochs with minibatch size of 500 using Adam
optimizer [65]. Both neural networks have 3 equally-sized hidden layers.
The number of neurons per layer is 100 for NN and 30 for NN,. Publi-
cation IIT uses bipolar [27] scaled exponential linear units [66] activation
functions for hidden layers and linear activation function for the output
layer. To avoid overfitting, the networks are re-trained from scratch if test
error starts increasing while training error keeps decreasing.

Data Collection: To collect the data points on a randomized scene, first
a stance graph (see Section 4.3.2) is built on the randomized holds. Next,
a path p(og,0,) is planned on the graph using A* Prune, and the data
points are collected by optimizing the movements corresponding to edges
on and around the planned path. Half of the time, a neighbor stance
around o; € p(0p,0g) is selected for simulation of the around planned path.
The initial population has 50% random trajectories in addition to the
trajectories sampled around the prediction of NNg. For each randomized
scene at most 100 climbing movements are explored. A* Prune plans for the
next path p(og,0), if the low-level controller either completes the planned
path or fails to follow it. In case of failure the edge cost is increased to
make A* prune avoid it when planning for the next path.

The optimization produces two types of training data: 1) whether the
optimization is successful or not (s?*) which is evaluated by the climber
being at o, and 2) for successful optimization, the training data comprises
the value of objective function (¢2"*), sum of squared joint actuation torques
(c™) and the best found control parameters (p?*). As the optimization
results have a high variance in the initial stages of training, the initial
results are forgotten by keeping training data in a FIFO memory.

Curriculum Learning: Publication III adopts a curriculum learning
[8] approach of progressing from simple to complex moves to minimize
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the overall optimization failure rate. Utilizing initial guess prediction
of NNs in optimizing multiple limb movements when NNj is trained on
simpler movements helps in increasing the success rate of performing
the movements. The system starts collecting the data and training by
simulating the simplest movements where one limb is switching holds,
then proceed to two and three multiple limb movements, and finally to four-
limb dynamic leaps. The training is finished with a mixture of all types
of moves with the random exploration rate decreased to 25%. The system
uses separate FIFO buffers for each training stage to ensure that the
training data contains similar amounts of data for each type of movement.
Each buffer holds 10K samples. The training minibatches are sampled
from all FIFO buffers.

4.3.2 Neural Networks in Graph Building

The building of the stance graph is more simple than in Publication I.
As the low-level controller is able to synthesize jumping movements, the
stance graph is almost fully connected. However, the system utilizes the
success rate prediction from NN, to prune the edges.

Exploration and Connectivity: To enumerate all possible stances in
a given scene with N holds, one needs to account for assignments of all
limbs to all holds, which translates to a computational complexity of O(N*).
In practice, one can reduce the computational complexity to O(NM?3) by
assigning a hold to a hand, and enumerating over feasible regions for the
other limbs. M is the number of holds that can possibly belong to a stance
once one limb has been assigned to a hold. Usually, M < N. The system
utilizes the following rules to prune infeasible stances:

* Hand-to-hand, foot-to-foot, and hand-to-foot distances do not exceed
body limits.

* At least one hand is on a hold, except for the initial stance oy where
the climber stands beside the wall.

* Foot holds are not higher than 0.5m above the highest hand hold. This
prevents weird upside down climbing while still allowing simulation
of climbing techniques such as heel hooks.

Compared to Publication I, the approach of Publication III produces more
valid stances, but the amount is manageable for small walls or sparsely
placed holds.

When a new stance is created, one needs to check the connectivity to
all existing stances in the graph which has a worst-case complexity of
O(N2M?5). However, the system uses the following rules to prune the graph
edge connectivity. The stance graph has an edge between two stances o;
and o; if and only if:
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¢ The distance between the average hold locations of 0; and o is less
than dmean = 2rpoqy. Publication I uses rpyqy = 2m.

¢ The distance between the holds assigned to a limb in o; and o is less
than djjmp, = 2rbody-

¢ If g; is the initial stance, o; will have both hands on the predefined
starting holds of the route.

¢ The predicted success probability of movement is greater than 50%,
ie., si*(0;,05) > 0.5 (naturally, the system omits this during training).

Evaluating Graph Edges: The outputs of NN,, i.e. effort prediction
cp™o;,0;) and success rate prediction s?*(c;,0;), are incorporated in the
graph edge costs to guide the path planning. Given a pair of connected
stance nodes of o; and o, the edge cost is calculated as:

c(oi,0;)=cy™0;,05)
+ Crisk (es:n(gi’gj) - 1)
(4.3)

+cayn(0i,0;)
+ CtreeNree(07)

where cpisk and cgree are tuning parameters that penalize the path planner
in selecting paths with low success rate and more free limbs, respectively.
Nrpree(0;) denotes the number of free limbs at o, and cqyn(0;,0;) is the
dynamic cost that is increased when the low-level controller fails to perform
transition from o; to o;. The total path cost of p(gg,0,) is the sum its edge
costs, and a path with low cost is likely to yield low effort and high success
rate when optimized by the low-level controller.

4.3.3 Neural Networks in the Low-level Controller

Covariance matrix adaptation evolution strategy (CMA-ES), a black-box
sampling-based derivative-free optimization method (see Section 3.1.1), is
used as the low-level controller to synthesize climbing movements. Given
an initial climbing state and target stance, CMA-ES tries to find the
best trajectory or a sequence of climbing states and actions. Compared
to Publication I, the optimization can synthesize more expressive and
dynamic climbing movements because:

¢ The predictions of NNy help in initializing the optimization.

¢ The time of letting go of the initial holds is optimized, as opposed to
the climber letting go of them at the beginning of each move. This is
crucial to enable dynamic leaps where the climber has to first swing
and gain momentum without letting go of the initial holds.
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¢ Instead of optimizing just two segments of linearly interpolated joint
angular velocities, Publication III optimizes a Catmull-Rom spline of
body poses defined by joint angles.

Objective Function: The objective function is composed as the sum of
a control cost and a state cost. The control cost — an estimate of movement
effort — is computed as weighted sum of the following terms over the
trajectory:

* Squared torques applied on the joints.

¢ Squared forces applied on the hands by the simulated hand-hold
joints, i.e., an estimate of finger strain.

NN, learns to predict the control cost as ¢". The state cost is composed
of weighted sum of the following costs at the final state of trajectory
simulation:

* Squared distance from hands and feet to their target holds.

¢ Squared distance of the center of mass from wall.

¢ A cost for not facing the wall.

* A penalty for deviating from the default posture shown in Fig. 4.4.

¢ A penalty for fast body movements.

NNjg learns to predict the sum of the control and state costs as ¢2”.

Control Parameterization: Each trajectory is defined as a nonuniform
Catmull-Rom spline with 4 control points. Each control point defines a
pose as a vector of 22 joint angles for the simulation model’s actuated joints
and a time offset to the previous control point within range [0.1,0.5]. The
system also has 4 additional control variables defining the times at which
the hands and feet let go of their initial holds, which was observed to be
important for controlled leaping. Thus, the total dimensionality of the
optimization problem is 4 x (22 + 1) + 4 = 96. The total trajectory simulation
time is the sum of first 3 control points’ time offsets, and the time to let
go of the hands and feet are sampled between 0% and 80% of the total
trajectory time.

Optimization Process: At each iteration, CMA-ES samples a set of
simulation control parameter vectors, and the objective function value
for each vector is computed by simulating the corresponding trajectory.
The CMA-ES initial sampling distribution is constructed differently from
Publication I as follows:

* Half of the population is from an diagonal Gaussian distribution with
the control point pose angle means corresponding to the default pose
(see Fig. 4.4) and the standard deviation of 60 degrees. The times are
sampled uniformly within the range [0.1,0.5].
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* One sample is dedicated to the control parameters predicted by NNs.

¢ The rest of the samples are generated by mutating the predicted pose
angles with Gaussian noise with the standard deviation of 10 degrees.
The times are sampled around the outputs of the neural network
with the standard deviation of 0.1 seconds.

The simulations use Open Dynamics Engine (ODE) [109] with a time step
of 1/30 seconds. The system terminates the optimization process if one of
the following conditions are met: 1) if a maximum number of 120 iterations
is reached, 2) if the best found objective function value is more than ¢2",
i.e. the cost predicted by NNg, and it stays fixed for 30 iterations, and 3) if
the best found objective function value is less than ¢2" and it stays fixed
for 15 iterations.

4.3.4 Summary of Results

Various tests were designed and implemented to evaluate the performance
of the method. The results can be summarized as:

¢ Compared to Publication I, the movements are qualitatively more
effective and diverse while the motion planner is more simple to
finetune as there is no need for more than just a few hand-crafted
graph pruning rules and edge cost heuristics.

¢ The method can plan for dynamic leaps when needed, and prefers
less effortful and more successful movements, while Publication I
needs complex heuristics in the graph search, and is limited to at
most two limbs switching holds during a move.

¢ The neural network -enhanced graph search plans for sequences of
movements that the low-level controller can handle more successfully
and with less effort.

¢ The sampling based optimization is more capable of synthesizing
complex climbing movements such as dynamic leaps when it is aug-
mented with NNy predictions.

¢ A comparison to human climber demonstrates qualitatively similar
climbing movements. However, the simulated climber is substantially
faster than an amateur human climber. The system also lacks details
of the types of holds on the wall, assuming that all holds are easy
to grasp from any direction. This makes the simulated climber take
shortcuts not available for the real climber.

Similar to the comments of the participants of Publication II, the last
finding above highlights the need to model both the climber body and
finger details. However, this makes the planning problem considerably
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harder, as the simulation needs a much smaller timestep and possibly
double precision arithmetic to precisely process the large mass differences
of fingers and the rest of the body as well as the collisions and friction
between the climbing holds and small but fast-moving fingers.

4.4 Publication IV: Reinforcement Learning Framework for
Climbing Movements

Publication IV proposes a reinforcement learning (RL) approach for syn-
thesizing climbing movements in physically based simulation. The policy
trained by RL replaces the sampling based optimization used in the earlier
publications. Although modern policy gradient methods such as proximal
policy optimization (PPO) [104] can handle high-dimensional continuous
states and actions, climbing turns out to be a particularly difficult problem
where a naive application of RL fails easily. Publication IV proposes and
compares exploration strategies that improve RL efficiency.

4.4.1 Reinforcement Learning Formulation

In reinforcement learning, the agent learns through interacting with the
environment. At each timestep ¢, the agent observes the current state vec-
tor s;, samples an action a; ~ mg(a; | s¢). mg is the policy parameterized by 6,
mapping the observed state to a distribution over actions. After executing
the action a;, the agent receives a scalar reward r;, and observes the new
state vector s;.1. The agent tries to maximize the expected cumulative
future-discounted reward, i.e., E [Zt:() ytrt] , where y €[0,1) is the discount
factor, and ¢ denotes episode timestep.

Agent’s Observation: In Publication IV, the observation vector s; is
defined as follows:

5= (8,06,00,100,102), 10 #04)) (4.4)

where o, and o4 are the agent’s current and desired stances or the assign-
ment of agent’s hands and feet to hold positions. o4 is set by the user or a
high-level path planner while o, is determined by the current state of the
climber. I(c.) and I(oy) indicate whether the hands and feet are attached
to the holds in the current and desired stance, respectively. I(o. # o4)
expresses which elements in the current and desired stances differ from
each other. s¢ is the climber’s body state at time ¢, defined as:

Sgl = {<Xb7Vb,qb’wby7b,lwall(b)a Iground(b)> vbe *%} (4.5)

where x;, qp, vy, and w, are position, quaternion, linear and angular
velocities of the bones. 7, determines the strength of the joint attached to
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bone b. Iyan(b) and Igrung(b) indicate whether the bone is in contact with
the climbing wall and/or the ground, respectively.

Agent’s Action: The sampled action vector a, at timestep ¢ has 44 values
in the range [-1,1]. The first 30 elements of a; denote the target angles
for the climber’s joints, and the last 14 elements are mapped to the range
[0,Tmax] to be used as the joints’ strength, i.e. the maximum torque that
the joint motors of the physics simulator are allowed to use to reach the
target angles. Joint limits and tax = 250Nm are set such that the climber
has human-like limitations.

Agent’s Reward: Designing an informative reward function is a chal-
lenging task. The reward function of Publication IV is composed as the
sum of two components:

* r¢: similar to the highly successful Deepmimic system [95], this is a
distance-based reward to guide the policy towards getting the hands
and feet closer to the target stance at each timestep.

* r;: to encourage smooth movements, the system incorporates a re-
ward term based on the strengths of the joints.

More specifically, 7 and r} are computed as follows:

kgexp(—cq | Oc,i—0d,i ()]
rltf =1(dy) Z - Iground(s)
i={LrLIhrhy | T10ci =04g)
(4.6)
rp=kJd@dexp |[—c; Y (alil+D?],
1€{31,...,44}

where &, k;, c;, and c; are tuning parameters. %, is larger than k; to
prioritize getting hands and feet to target holds over relaxing the joints.
I(d;) = 1 if climber’s hands and feet are getting closer to the targets, other-
wise I(d;) =0. As opposed to sparse reward, e.g. r; = {—1,1} that specifies
success or failure, the designed reward function guide the policy at ev-
ery step toward getting closer to the target positions while reducing the
strength used by the climber.

Training Episodes and Termination Condition: Publication IV uses
PPO [104], which assumes that experience is collected during training as
episodes that start from some initial climbing state and run up to a time
limit Tepisode OF @ terminal climbing state. In Publication IV, a climbing
state is considered terminal if the climber reaches the target stance o4 or
any part of the climber’s body except its feet touches the ground.

4.4.2 Exploration Strategies

A big part of the difficulty of humanoid climbing as an RL problem is ex-
ploration. Recall from Section 3.3.1 that policy gradient updates increase
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the probability of actions that happened to result in high rewards. To
make this efficient, the explored actions need to include some good actions.
Furthermore, to be able to improve the action distribution for all relevant
states (e.g., various poses on the climbing wall, various target hold config-
urations for different limbs), the agent needs to experience those states.
However, if one initializes the agent to stand in front of a climbing wall
and explores with random movements, the agent mostly just falls on the
ground. Even with millions of simulations, it is very unlikely that the
agent manages to get on the wall let alone explore feasible climbing moves.

DeepMimic [95] solves the problem through Reference State Initializa-
tion (RSI), i.e., initializing episodes from random motion capture data
frames, which ensures that the agent explores relevant states. However,
collecting collecting motion capture data is expensive and may not be pos-
sible for all apolications, which calls for better exploration methods that
do not depend on data. Motivated by this, Publication IV developed an
exploring strategy for target stances (movement goals), and investigated
and compared multiple approaches to exploring agent states and actions.

Exploration of Target Stance: To sample a random target stance, the
system first randomly perturbs all holds on the wall around the initial grid
locations within r = 33cm demonstrated in Fig. 4.10-(a). Then, it randomly
selects 1 or 2 limbs to move toward new targets and sample target holds
for them among the neighboring holds, as illustrated in Fig. 4.10-(b). The
neighboring holds include the following:

* x 1,1.e., the target can be just freeing the limb.

* The holds inside of the shaded area for the limb as shown in Fig. 4.10-
(c). The shaded area is within r},q4y = 130cm around the climber’s hip
position.

¢ The holds connected by dashed lines to the hold closest to the moving
limb.

The target holds for the moving limbs are sampled uniformly from the
neighboring holds, using rejection sampling to prune invalid targets that
do not satisfy the following:

* Connectivity Limit: At least one hand should be connected in both
current and target stances, except for when the climber is at T-pose
oo and only the target stance needs to have at least one connected
hand.

¢ Distance Limit: The distances between hand-to-hand, foot-to-foot,
and hand-to-foot should not exceed the climber’s body reach in any
stance.

¢ Limb Movement Limit: the current and target stances should have
at most two different elements.
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Figure 4.10. (a) Initial hold positions with their randomization radius r. The climber is
at T-pose in front of wall. (b) The neighboring hold set of the left hand is
the union of the holds that are inside the shaded area and the ones that
are connected by dashed lines to the hold closest to the left hand, shown
by red dot. (c) The four shaded areas show the valid regions of the holds
to be reached by the climber’s hands and feet with respect to climber’s hip
position.

Exploration of Climber’s State: Publication IV compares and studies
the effect of two strategies for episode state initialization. This is inspired
by Peng et al. [95] who recently demonstrated that initializing episodes
from randomly selected motion capture frames can dramatically improve
learning. Without this, the episodes fail to initially explore much of the
relevant states. The investigated strategies are as follows:

¢ BaseLine: Initializes the climber to the T-pose in front of a random-
ized wall, as illustrated in Fig 4.10, and climbing continues one target
stance after another. Reset happens after failure movement or a time
limit. This is similar to common continuous control benchmarks like
OpenAl Gym MudoCo [17], where the initial state distribution has
zero or only moderate variance.

¢ Self-Supervised Episode State Initialization (SS-ESI): Gradually ex-
pands the set of possible initial climbing states in . by adding the
end result of each climbing move to .%# if at least one hand is con-
nected to a hold. The episode initial states are sampled uniformly
from #. The . is cleared after each PPO iteration.

With SS-ESI, the episode trajectories fork previous trajectories, forming
an exploration tree. In order to ensure diverse exploration for the approach:

* The initial episode climbing state is randomly relocated on the climb-
ing wall, as illustrated in Fig. 4.11. This relocation is done only
if all hands and feet are connected to avoid breaking the dynamics
simulation.

* The sample distribution of target stances is balanced such that a
similar amounts of feet and hand moves are sampled.

72



Developed Algorithms and Applications

> . N N
\;\ s ¢ & @
.
RN . . &
.
N
\‘& L
.
¢ & % e N
. \

Figure 4.11. Randomly relocating the climber on the climbing wall to allow more diverse
movement. The positions of the holds not used by the climber are also
randomly perturbed.

In both the baseline and SS-ESI approaches, each episode is terminated
after a single climbing move. This makes value estimation much less
noisy compared to when the training episodes have multiple movements,
as value does not depend on target stances sampled after the current
move. In the baseline version, the first episode starts from T-pose, and
if the movement reaches the target stance, the next episode continues
from the same state. Otherwise, or if episode time limit was reached, the
next episode again starts from T-pose. A more naive baseline was already
tested, where all episodes started from T-pose and each episode attempted
multiple moves until failure or time limit, but this resulted in basically no
progress.

Exploration of Action Setting: Publication IV compares both single-
step and multi-step actions. Multi-step actions simulate every action
that comes from the policy for L steps instead of only one step. Although
increasing L produces smoother movements, using multi-step actions yields
less experience tuples for the same amount of timesteps simulated, and
in the extreme cases it reduces the expressive range of the movements
and makes the learning task harder. However, in moderate cases using
multi-step actions yields better training results (see Fig. 4.12). Publication
IV uses L =4.

4.4.3 Summary of Results

The RL climber’s performance was measured by the success rate and the
cumulative reward. A brief summary of the results are as follows:

¢ SS-ESI explores both hand and foot moves much more evenly during
all training iterations. In contrast, the baseline approach is biased
towards learning hand moves, as shown in Fig 4.13.

* Asillustrated in Fig. 4.12a, the baseline learns much slower initially,
although the difference in becomes smaller as training progresses.

¢ The baseline approach has lower success rate than SS-ESI in per-

73



Developed Algorithms and Applications

1.50 | mmmm 4-Step Action, Exploration with SS-ESI
W 1-Step Action, Exploration with SS-ESI
W 1-Step Action, Baseline
125
1.00
£
2 075
]
<
o
3
& o050
5
&
0.25
0.00
-0.25
0.0 0.2 0.4 0.6 0.8 1.0 12 14
Experience 1le8

(a) Mean and standard deviation of episode return.
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(b) Mean and standard deviation of episode success rate.

Figure 4.12. The learning curves of the tested exploration strategies. The means and
standard deviations are from 5 independent training runs.
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Figure 4.13. The effect of self-supervised episode state initialization (SS-ESI) approach
on the diversity of successful transitions during training. The green and
blue dots show successful transitions of hands and feet, respectively, in the
climber’s local coordinates.
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forming climbing movements. This difference does not vanish as
training progresses, as shown in Fig 4.12b.

Multi-step actions lead to more rapid learning, and higher episode
returns than 1-step action. Also, the multi-step actions produce
smoother, visually more pleasing movements. A visual inspection of
the movements reveals that multi-step actions lead to wider move-
ment arcs and thus wider exploration of climber states, which may
explain the better performance.

Increasing the number of simulation steps per action makes collecting
experience more costly. If the step count is increased too much, it
also limits the complexity and temporal resolution of movements.
However, the evaluation data indicates that a moderate increase of
steps per action can be beneficial, compared to the baseline of taking
a new action at every simulation step.
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5. Discussion and Conclusions

This dissertation focuses on developing algorithms and applications that
are suitable for planning and synthesizing movements in complex envi-
ronments such as simulated wall climbing. This section highlights central
findings, and discusses future directions for the research.

5.1 Summary of the Algorithms and Applications

The hierarchical motion planning developed in Publication I introduces
an algorithm capable of synthesizing dynamic climbing movements (see
Section 4.1). Although the high-level path planner and the low-level con-
troller was already used by [16] to synthesize static climbing movements
for a low degree of freedom (DoF) crawler, the combination of graph search
method with sampling based optimization methods makes it possible to
synthesize dynamic climbing movements for high dimensional characters.

Publication II developed a novel interface that allows the user to discover
climbing movements and helps users imagine themselves solving real
climbing problems. Although the users highlighted many positive aspects
of the technology, they also reported the simulated movements were not
realistic and not close enough to their movements. This realism gap
manifested in two main ways:

1. The low-level controller was able to perform climbing movements
that are hard or impossible for the users, e.g., hanging from tiny
holds with no support for the feet.

2. The low-level controller was unable to perform some movements that
are easy for the users. An example of this was dynamic leaps.

The first issue comes from simplification of the hold models as ball-and-
socket joints, and not modeling climbers’ finger detail. The second issue
was largely due to the inefficiency of the sampling based movement opti-
mization. The finger modeling remains as future work, but Publication III
and Publication IV already developed the movement optimization further.
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Publication III dived into the problem of synthesizing more successful and
agile movements, utilizing supervised learning and curriculum learning to
enhance the movement planning and optimization. Using the predictions of
neural networks, with the iterative training process introduced in Section
4.3.1, allows the hierarchical motion planner to synthesize less effortful
and more successful movements. The neural networks provide the planner
with:

1. Better initial guesses for the sampling-based movement optimization.
2. Better evaluation and pruning of the graph edges.

Although the method synthesizes more efficient and diverse climbing
movement including dynamic leaps, the method remains offline, i.e. the
neural networks only inform the movement optimization instead of directly
predicting useful control sequences. This motivated the RL approach of
Publication IV, the final publication included in this disseratation.

Publication IV addressed the problem of synthesizing climbing move-
ments in real-time, utilizing a reinforcement learning approach that results
in a neural network policy that is able to control the simulated climber,
in contrast to having to optimize each move. The publication highlights
the importance of improving the exploration of relevant states and ac-
tions, and proposes and evaluates different strategies for this purpose (see
Section 4.4.2). The proposed strategies improve the results over a naive
baseline similar to standard continuous control benchmarks like OpenAlI
Gym MudoCo [17].

5.2 Suggestions for Future Work

One of the major issues in synthesizing realistic and believable climbing
movements is hold modeling. In this thesis, a simple ball-and-socket joint
model is used such that a joint is created between an end effector and a
target joint if it is closer than some threshold distance. However, this hold
modeling overpowers the simulated agent compared to a human climber
who may slip, get tired from hanging onto the holds or simply cannot grasp
some holds. Thus, one research direction is toward better contact and hold
modeling for climbing movements. One might be interested in utilizing a
more advanced physics simulator such as Mojuco [119] for better contact
and force modeling, and simulate hands with fingers [89] to synthesize
grasping different holds with different shapes.

In spite of the successes of the low-level controller in the sampling based
optimization methods of Publication I to Publication III, there is a need in
having a method capable of synthesizing high-quality movements in real-
time performance. Publication III provides an approach for synthesizing
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high-quality movements, however it cannot perform the process in real-
time. Publication IV successfuly formulates a reinforcement learning
approach for the problem of synthesizing climbing movements, but the
quality of the results is not yet on par with Publication III. One research
direction is to enhance the quality of the movements synthesized by RL
towards the ones synthesized in Publication III. One key question is how
to combine the efficiency of RL with the smooth movements resulting
from spline-based movement optimization. It is possible to use RL with
each action defining a spline, but at least based on the author’s initial
experiments, training becomes very computationally expensive because
evaluating each action requires simulating long movement trajectories.

An alternative approach could be to utilize imitation learning with mo-
tion capture data, but high quality and diverse enough datasets are not
yet available. However, this could be mitigated with proper data augmen-
tation, e.g., following the recent impressive results of [92]. Such data could
possibly be collected on a large scale using low-cost computer vision similar
to [97], either in climbing centers or based on Internet video.

Another exciting research avenue is utilizing reinforcement learning and
imitation learning on the high-level path planner to model the climbing
strategies planned by human climbers. Furthermore, the model should
take into account differences in climber skill levels and route difficulty.
Same as above, large scale vision-based data collection might be helpful.

5.3 Conclusions

The capability of computers in learning and solving complicated tasks is
growing rapidly. Recent major milestones include mastering two-player
fully observable games such as Go [106] but also multiplayer and only par-
tially observable games such as Dota2 [91] and StarCraft [121]. Although
performance of algorithms is not yet human-level in synthesizing physi-
cal and believable motions in computer animation, games, and robotics,
technology is advancing fast. This dissertation contributes to this research
stream, focusing on indoor climbing as the test problem, and develops an
approach for planning and synthesizing of such complex movements.

This dissertation introduces a combination of high-level path planner
and low-level controller to synthesize plausible and believable motions
for a complex 3D humanoid character with a high number of degrees
of freedom and a long planning horizon. A particular strength is that
the algorithms developed in this dissertation do not need any reference
animations or motion capture data; instead, all movements emerge from
optimization of relatively simple objective functions. The technology was
also demonstrated and evaluated in a user study where climbers used it
for mental preparation of real climbing.
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Errata

Publication |

In Section 5.3, "For each move, we optimize
joint motor target velocities over a planning
horizon of 1.5 seconds (C-PBP offline) or 0.5-
2.0 seconds (CMA-ES)." should be "For each
move, we optimize joint motor target velocities
over a planning horizon of 1.5 seconds (C-PBP
offline) or 0.5-1.5 seconds (CMA-ES)."

Publication IV

The caption of Fig. 2-(b), should be "The neigh-
boring hold set of the left hand is the union of
the holds that are inside the shaded area and
the ones that are connected by dashed lines
to the hold closest to the left hand, shown by
red dot.", and in Section IV-B, "The holds con-
nected by dashed-lines to the hold attached to
the moving limb." should be "The holds con-
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