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1. Introduction

1.1 Motivation

The main goal of computer vision is to extract useful information from
images. This has proved a surprisingly challenging task and it has occupied
thousands of intelligent and creative minds all over the world. There has
been remarkable recent progress in our understanding of computer vision,
and the last decade has seen the first large scale deployments of consumer
computer vision technology. Nowadays, computer vision systems are used
in various applications in different fields, such as robot navigation, video
game industry, human-computer interaction and medical imaging.

Computer vision is a very broad and multidisciplinary science and this
thesis covers only a small part of it. It aims to contribute to the knowl-
edge and to provide practical methods for closely related computer vision
problems, such as image matching, estimation of absolute and relative
camera pose, and scene understanding. Some of the topics presented in
this thesis are illustrated in Figure 1.1. The proposed methods introduced
in the thesis utilize only images taken by RGB cameras. High-quality cam-
eras are affordable and probably most pervasive sensors available to us.
For example, autonomous driving industry has been using very accurate,
powerful and expensive hardware, such as LiDAR, for decades but it is
still very far from full autonomy. According to recent news1, the focus
is shifting towards camera sensors providing the information about vast
variety of situations that might be encountered in the wild. Thus, imple-
menting algorithms which can process the data coming from the cameras
in an efficient and reliable way is vital. This aim is very challenging, since
there are quite many situations where the methods based on traditional
techniques fail (see Figure 1.1).

In this thesis, the introduced algorithms rely on deep learning [34, 43]
which has emerged as a powerful paradigm for understanding high di-

1https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/

11



Introduction

(b) dense pixel correspondence 
estimation

(d) depth estimation(c) relative camera pose estimation

(a) descriptor matching

Figure 1.1. Some topics we cover in this thesis: 1) local descriptor matching; 2) dense
pixel correspondence estimation; 3) relative camera pose estimation; 4) depth
estimation (scene understanding). The results illustrated for descriptor match-
ing and dense pixel correspondence estimation tasks have been obtained by
using ORB descriptor [89] and DeepMatching [83]. As can be clearly seen, the
accuracy is not perfect for this particular case, since local descriptors (pixel
locations) with similar color should be matched in two images. We address
these challenges in Chapter 2.

mensional data, such as visual imagery. Deep learning approaches have
revolutionized many computer vision applications, such as pattern recogni-
tion, image retrieval [6, 95, 121], semantic segmentation [75, 76], object
recognition, and image-based localization [53, 54, 114] achieving remark-
able results. In addition to deep learning approaches, this thesis also
demonstrates how geometric aspects can be successfully utilized in unsu-
pervised learning providing additional form of supervision.

1.2 Contributions

All publications, software and project codes developed during this PhD are
available in open access. The main contributions of the thesis are listed
below:

• Two methods for image matching are introduced. The proposed end-
to-end learned CNN-based image descriptors utilize a Siamese network
structure trained in a supervised manner.

• A coarse-to-fine method for dense pixel correspondence estimation is
presented (Publication III). Specifically, given a pair of images, the pro-
posed approach, named DGC-Net, predicts dense and subpixel accurate
estimates and can handle strong geometric transformations between two
views. Along with image matching, DGC-Net is also applicable for image
alignment, relative camera pose estimation, and for correspondence ver-
ification in image retrieval [60]. These topics are covered in the thesis.

12
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The source code, pre-trained models and evaluation protocol of DGC-Net
are available at https://github.com/AaltoVision/DGC-Net

• A CNN-based method for relative camera pose estimation is proposed
(Publication IV). It leverages the idea of Siamese network structure,
which has been described earlier, and can directly estimate relative
camera pose from a pair of input images utilizing transfer learning
from a large scale classification dataset. The source code, pre-trained
models and evaluation protocol of the proposed approach are available at
https://github.com/AaltoVision/relativeCameraPose

• Two methods related to image-based localization are presented. First,
we propose a novel architecture (Publication V) consisting of a chain
of convolution and upconvolution layers followed by a regression part
which directly predicts absolute camera pose for a given image. The
second camera relocalization approach (Publication VI) is based on the
idea of relative camera pose estimation and image retrieval. Its source
code, pre-trained models and evaluation protocol are available at https:

//github.com/AaltoVision/camera-relocalisation

• A CNN-based framework for scene understanding is introduced. The
proposed approach, named TC-Net (Publication VII), can jointly learn
depth maps and relative camera pose by exploiting temporal consistency
between image frames throughout longer unlabeled video sequences. The
source code, pre-trained models and evaluation protocol of TC-Net are
available at https://github.com/imelekhov/selfs_depth

1.3 Outline of the thesis

This thesis consists of an overview and an appendix, which includes the
original articles. The rest of the overview has the following structure.
Chapter 2 provides a review of previous work on image matching and
image descriptors and introduces end-to-end deep learning methods related
to those tasks. Chapter 3 concentrates on image-based localization and
relative camera pose estimation methods. Chapter 4 studies different CNN-
based methods for the problem of scene understanding and introduces a
self-supervised approach which can efficiently learn depth maps and ego-
motion from monocular video sequences. A summary of the publications is
provided in Chapter 5, and some concluding remarks and possible avenues
for future research are presented in Chapter 6.

13





2. Image Matching

This chapter focuses on the three closely related computer vision problems,
namely, matching of images and local image patches and pixel correspon-
dence estimation. Section 2.1 provides a brief review of the prior art.
Section 2.2 introduces formulations for end-to-end deep learning architec-
tures for image patch matching presented in Publication I and Publication
II. Finally, Section 2.3 summarizes the innovations of Publication III re-
garding the problem of dense pixel correspondence estimation. The main
themes of the chapter are summarized in Section 2.4.

2.1 Related work

Finding correspondences between local image patches extracted from dif-
ferent views is a key component of many computer vision applications. For
example, structure-from-motion (SfM), multi-view reconstruction, image
retrieval, simultaneous localization and mapping (SLAM), object recogni-
tion and tracking require accurate computation of local image similarity.
Due to importance of these problems various descriptors have been pro-
posed for patch matching with the aim to represent distinctive image
patches to be invariant under challenging viewing conditions. The local im-
age descriptors can be broadly categorized into categories: hand-crafted
descriptors which are designed using some prior knowledge and do not
involve optimization procedure; and end-to-end learned descriptors which
explicitly learn patch similarity from the data without manually designed
features.

Hand-crafted descriptors The problem of deciding whether two image
patches are similar or not is quite challenging especially in real world
exhibiting various challenges, such as occlusions, illumination changes,
changes in viewpoint, etc. The pivotal moment in patch matching was
the introduction of SIFT [67] consisting of histograms of the aggregated
image gradients characterizing the appearance of keypoints. However, it
may not take into account all of the aforementioned factors in an optimal
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manner [50]. To address this limitation, real-valued [7, 12, 26, 70, 109]
and binary [4, 5, 15, 62, 89] patch descriptors have been proposed.

Learned descriptors Descriptor learning can be formulated as finding a
discriminative representation of a given image in a new subspace. Ke
et al. [51] and Bursuc et al. [14] propose to utilize principal component
analysis (PCA) to obtain the embeddings of SIFT and rootSIFT [7] features,
respectively, while Lepetit et al. [61] embed the image patches by applying
random forest. Simonyan et al. [103] demonstrate that descriptor learning
can be formulated as a convex optimization problem achieving remarkable
results in the local image patches benchmark. Rather than using Euclidean
space, Calonder et al. [15] propose to utilize Hamming subspace which
leads to a more computationally efficient method.

The pioneer works which utilized CNN-based representations for finding
matching image patches were [47] and [78]. More recently, [39, 102, 123]
propose CNN descriptors trained with two-branch architecture which
significantly exceed the accuracy of manually engineered descriptors. How-
ever, in contrast to SIFT, in [39, 123] the feature representations of in-
put patches are compared by a set of fully connected layers (match net-
work) that learns a complex comparison metric. Nevertheless, Zagoruyko
et al. [123] and Simo-Serra et al. [102] also conducted experiments in which
the match network was replaced with Euclidean distance metric between
the outputs of two branches and, hence, they can be directly compared to
SIFT. In contrast to [102, 123], later work by Balntas et al. [112] applied
a triplet distance objective loss function with random sampling of patch
triplets. However, randomly sampled negative patch pairs can be easily
separated from the positive ones [102], thus, it leads to inefficient training
due to vanishing gradients. To address this problem, Mishchuk et al. [71]
propose a novel loss for metric learning and carefully sample positive and
negative patch pairs in the input mini-batch based on a distance matrix.
Tian et al. [108] extended [112] and utilized second order similarity to
learn local descriptors. Very recently, several deep learning methods have
been proposed [28, 99, 121] to jointly learn the descriptor and detector and
they demonstrate promising results in image matching and localization.

In the following sections, an overview of our methods for image matching
proposed in Publication I, Publication II, and Publication III is provided.
First, end-to-end CNN-based methods for image matching based on learned
descriptors are presented. Then, the chapter introduces a deep learning
architecture for task of dense pixel correspondence estimation.

2.2 Matching based on learned descriptors
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Figure 2.1. Schematic illustration of the learned descriptor based on a Siamese network
structure. A pair of images (I1, I2) is propagated through the network consist-
ing of two identical branches and sharing the same set of weights. Feature
representations of patches ( f (I1), f (I2)) are extracted from the last layer of
each branch separately and Euclidean distance is computed between them.
Our objective is to learn a descriptor that minimizes the distance between
similar pairs of images and maximizes it for dissimilar pairs. It is important
to note that at test time (i.e. after learning) the feature descriptor f can be
computed independently for each individual patch since both branches are
identical. See Section 2.1 for more details.

Image patch matching Similarly to [102, 123], in Publication I, we develop
a supervised fully-convolutional CNN-based learned descriptor maps the
raw input patch to a low dimensional feature vector so that the distance
between representations is small for similar image patches and large
otherwise. The model consists of two identical convolutional branches that
share the same set of weights and parameters. Patches P1 and P2 are fed
into branches and propagated through the model separately. The proposed
method has been optimized by minimizing margin-based contrastive loss
function [38, 102, 123] defined as follows (see Figure 2.1):

L (P1,P2, l)= 1
2

lD2 + 1
2

(1− l)
{

max
(
0,m−D2)}, (2.1)

where l is a binary label which selects whether the input pair consisting
of patch P1 and P2 is a positive (l = 1) or negative (l = 0), m > 0 is the
margin for negative pairs and D = ‖ f (P1)− f (P2)‖ is the Euclidean distance
between feature vectors f (P1) and f (P2) of input images P1 and P2. Since
the distance metric is L2 norm, the proposed approach can be considered
as a direct replacement of SIFT descriptor.

In order to train and evaluate the proposed approach, the Photo Tourism
patches dataset introduced by [119] has been used. The dataset consists
of 1.5M grayscale patches with ground-truth positive and negative patch
pairs extracted from images of the Statue of Liberty, Notredame and
Yosemite by using Difference of Gaussian (DoG) interest point detector
and matched by utilizing 3-D multi-view reconstruction. Pairs of patches
corresponding to the same 3-D point are defined to be matching if they also
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originate from DoG interest points detected with sufficiently similar scale
and orientation [119]. Pairs of patches sampled from different 3-D points
are non-matching. Since many raw patches of the Photo Tourism dataset
exhibit significantly different contrast, we apply histogram equalization
to enhance the intensity and demonstrate (Publication I) that it helps to
improve performance metric. In addition, based on the visualization of
the false negative pairs of the dataset, we investigate whether the pro-
posed descriptor could be made more robust to spatial misalignment by
utilizing spatial transformer networks introduced by Jaderberg et al. [46].
Specifically, the spatial transformer is a differentiable module perform-
ing explicit spatial transformations of input feature maps. The spatial
transformer explicitly estimates geometric transformations of the input
image pair parameterized as affine transformation matrix. Since it has
been placed at the beginning of the proposed descriptor architecture, it
can directly transform the preprocessed input image patches. Since we
aim to compensate errors caused by rotation, translation, and scaling, the
number of parameters estimated by the spatial transformer equals four.
As it is shown in Publication I, utilizing the spatial transformer module
leads to better results compared to the original descriptor. We refer the
interested reader to Publication I for more details about the descriptor
architecture and evaluation procedure.

Whole-image matching In Publication II, the ideas proposed in Publica-
tion I have been extended to finding matching and non-matching pairs of
images across large database of landmarks. Specifically, a Siamese neural
architecture is used to explicitly learn the whole-image similarity measure.
A structure-from-motion dataset proposed by Cao et al. [16] is utilized
for the experiments. The dataset represents five crowd-sourced image
collections, each corresponding to a popular landmark (London Eye, Tate
Modern, San Marco, Times Square, and Trafalgar). We evaluated different
types of weight initialization of the network branches and demonstrated
that the proposed approach has promising results of generalization on
unseen landmark datasets. Similarly to [9], the results could be improved
further by fine-tuning the network on the data having similar distribution
as the evaluation dataset.

Such learned image representations proposed in Publication II are well
suited for the image retrieval task. Instance-level image retrieval is a
computer vision problem that aims to retrieve all images that contain
the same object instance as query from a potentially large database of
images. There have been quite many works investigating the possibility
of using CNN-based features for image retrieval. These include methods
utilizing off-the-shelf CNN features [9, 82], finetuning CNN features from
models trained for classification task on an external set of Landmark
images [9, 35]; explicitly learn a ranking loss [6, 35] rather than the
classification objective function [9].
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Figure 2.2. Overview of the proposed iterative architecture DGC-Net for dense pixel corre-
spondence estimation consisting of four major components: 1) the feature
pyramid creator. 2) the correlation layer estimates the pairwise similar-
ity score of the source and target feature descriptors. 3) the fully convolutional
correspondence map decoders predict the dense correspondence map be-
tween input image pair at each level of the feature pyramid. 4) the warping
layer warps features of the source image using the upsampled transforming
grid from a correspondence map decoder.

2.3 Dense pixel correspondence estimation

Finding similar and dissimilar image pairs can be accomplished based on
the number of pixel-level correspondences between two views. In addition
to the application of image matching, finding correspondences between
images is a fundamental problem in many computer vision tasks, such as
image retrieval, visual localization, image alignment, and relative camera
pose estimation (Chapter 3). In general, one way to establish a pixel-
wise correspondence field between images is based on applying feature
descriptors to an image pair and utilizing nearest neighbour criterion
to match keypoints globally. However, these approaches do not produce
dense correspondences explicitly and apply interpolation or local affine
transformations [66] to turn a sparse set into a pixel-wise correspondences.

The problem of dense pixel correspondence estimation is closely related
to optical flow estimation task where CNN-based approaches have re-
cently achieved remarkable results [27, 44, 48, 80, 106]. While optical
flow methods produce very accurate results for the small pixel transla-
tion and limited appearance variation scenarios, they hardly deal with
the strong geometric transformations that we consider in Publication III.
Rocco et al. [84, 85] proposed a CNN-based approach for determining cor-
respondences between two images and applying it to instance-level and
category-level tasks. In contrast to optical flow methods, [84] comprises a
matching layer calculating global correlation between target and reference
feature maps without any spatial constraint. The method predicts either
affine or thin plate splines (TPS) based geometric transformations. In later
work [86], Rocco et al.propose locally and globally constrained matching
network on top of the global correlation layer which leads to improvement
in instance and semantic matching. In contrast to [84, 85], Publication
III proposes a more general approach handling more diverse transforma-
tions, learning dense pixel correspondences between a pair of images and
operating in an end-to-end fashion.
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Figure 2.3. Qualitative image alignment results produced by different algorithms on the
HPatches [11] dataset. The reference image is warped (aligned) using pixel cor-
respondence estimates predicted by DGC-Net. The proposed model produces
more accurate correspondence map leading to better image alignment.

The architecture of the proposed method, named DGC-Net, is schemati-
cally illustrated in Figure 2.2. A pair of input images is fed into a module
(the feature pyramid creator) consisting of two pre-trained CNN branches
which construct a feature pyramid. The correlation layer takes feature
maps of the source and target images from the top (coarse) level of the
pyramid and computes the pairwise similarity between them. Then, the
correspondence map decoder (CD) takes the output of the correlation layer
and directly predicts pixel correspondences for this particular layer of the
pyramid. The estimates are then refined in an iterative manner by using a
chain of correspondence map decoders. Such a coarse-to-fine architecture
is influenced by optical flow methods [80, 106] where a hierarchical feature
representation is utilized to refine the estimates of pixel displacements
between two views. In contrast to [106], where the correlation volume is
computed for the raw features in a restricted area around the center pixel,
we compute global correlation and apply L2-normalization before and after
the correlation layer to strongly down-weight ambiguous matches (see
Figure 2.2).

DGC-Net is trained in a weakly-supervised manner using synthetic ge-
ometric transformations obtained by applying random homography [24]
to the Pascal VOC 2011 [30] and Tokyo Time Machine [6] datasets. We
have evaluated DGC-Net on the HPatches [11] dataset consisting of 59
outdoor image sequences and exhibiting varying photometric and geomet-
ric changes. Some examples of HPatches are illustrated in Figure 2.3.
The proposed method achieves significantly better image matching perfor-
mance compared to optical flow [44, 106] and dense pixel correspondence
estimation [84] approaches. The corresponding values of Percentage of
Correct Keypoints (PCK) metric are provided in Publication III. In addition
to image matching, we demonstrate the use of DGC-Net to complicated
computer vision tasks such as image alignment and relative camera pose
estimation (Chapter 3). Figure 2.3 shows qualitative results for image
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alignment produced by DGC-Net and strong baseline methods. The pro-
posed method can handle drastic changes between two views where other
baseline methods fail.

Our recent work [60] has extended DGC-Net to the problem of image re-
trieval and demonstrated that the combination of global image descriptors,
such as NetVLAD [6] and geometrically verified pixel correspondences
obtained by DGC-Net lead to state-of-the-art results on several challenging
datasets, i.e. Tokyo 24/7 [110], InLoc [107] and Aachen Day-Night [93].

2.4 Discussion

This chapter focused on two closely related tasks, namely image matching
and dense pixel correspondence estimation. The main conclusions within
the chapter are briefly summarized below.

Image matching. End-to-end learned CNN-based image descriptors suit-
able for image matching have been introduced. The proposed descriptors
encompass two identical fully-convolutional branches and learn a sim-
ilarity measure by using a contrastive loss function (cf. Equation 2.1).
The chapter showed that the proposed patch matching descriptor achieves
better matching performance on the Photo Tourism dataset compared to
the strong baseline methods.

Dense pixel correspondence estimation. A coarse-to-fine CNN model for
dense pixel correspondence estimation has been proposed. The method,
named DGC-Net, is leveraging the advantages of optical flow methods
and extends them to the case of large geometric transformations between
two input images providing dense and subpixel accurate estimates. It has
been trained on synthetic transformations and demonstrates very good
generalization performance to unseen, realistic, data. In addition to image
matching application, we demonstrate that the estimates produced by
DGC-Net can be used for the problem of camera relocalization (Chapter 3)
achieving better results compared to SIFT descriptor.
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3. Camera Relocalization

This chapter addresses two closely related problems; estimating the abso-
lute and relative camera pose (position and orientation) in three dimen-
sional space. The ability to estimate the absolute (relative) camera pose
from the visual scene representation is essential for many computer vision
applications such as structure-from-motion, visual scene understanding,
SLAM, navigation of autonomous vehicles, and augmented reality. The
terms image-based localization, camera relocalization, and absolute cam-
era pose estimation are used interchangeably through this chapter.

Many conventional camera relocalization methods proposed in the lit-
erature [94, 96, 97, 98] are based on hand-crafted local image features,
such as ORB [89], SIFT [67], and SURF [12]. Specifically, these methods
require a 3-D point cloud model where each 3-D point is associated with
its 2D projection in the image. The list of tentative 2D-3D matches is then
geometrically verified by RANSAC [31]. The verified correspondences are
utilized in PnP algorithm to recover the absolute pose. However, the local
image features obtained by hand-crafted feature detectors and descriptors
perform poorly under varying environmental and weather conditions (see
Figure 3.1).

This chapter studies proposed CNN-based approaches for estimating the
absolute and relative camera pose. Section 3.1 focuses on a framework for
relative camera pose estimation between two views which is inspired by
the advances of deep learning methods for image-based localization [52,
54, 114]. Our system takes RGB images from both cameras and directly
regresses the relative camera pose (relative rotation and translation). The
method is simple in the fact that it consists of two identical convolutional
neural networks with shared weights trained in an end-to-end manner.
The proposed approach is scalable and can predict the relative camera pose
more robustly, compared with traditional methods based on hand-crafted
descriptors [12, 67, 89] across different challenging conditions (large view-
point changes, textureless surfaces, repetitive structures).

Utilizing CNNs in the image-based localization problem has been pio-
neered by Kendall et al. [54]. Their method, named PoseNet, casts camera
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Figure 3.1. Scenarios where traditional approaches (SIFT) are not able to establish reli-
able 2D pixel correspondences. Left: very large viewpoint changes, thus most
of inliers (correspondences) are not correct; center: the correct inliers concen-
trate on a small region; right: there is insufficient number of correspondences
due to textureless scene (object with reflecting surface).

relocalization as a regression problem, where 6-DoF camera pose is directly
predicted from a monocular image by leveraging transfer learning from
very large scale classification datasets. Although PoseNet overcomes many
limitations of the feature-based methods, its localization performance lacks
behind traditional approaches in typical cases where local features perform
well. Section 3.2 demonstrates how the advances of semantic segmenta-
tion methods can be utilized in the camera relocalization problem. The
proposed novel architecture consisting of a symmetric "encoder-decoder"
network structure allows to better collect information available in the
input image and to add more context to the regression process which helps
to improve localization performance.

Finally, Section 3.4 studies how to utilize relative camera pose estimates
(Section 3.1) to recover the absolute pose. The main limitation of CNN-
based methods directly regressing the absolute camera pose [52, 54, 114]
is the fact that they have to be trained and evaluated scene-wise when
the scenes are registered to different coordinate frames. This causes
complications, especially if we need to localize the camera across several
scenes simultaneously. The proposed approach can alleviate such issues
and predict the camera pose for any scenes without re-training.

3.1 Relative camera pose estimation

This section describes the proposed CNN-based approach for relative cam-
era pose estimation presented in Publication IV. Note, the terms relative
camera pose and ego-motion are used interchangeably. Classical local-
ization techniques that rely on different local image features [12, 15,
67, 89] have recently been accompanied by deep CNN based methods.
Konda et al. [58] adopt a classification approach to the problem of rela-
tive camera pose estimation, where a shallow CNN architecture along
with the softmax function are utilized to predict the relative transfor-
mation between two consecutive video frames using a pre-defined set of
discretized velocities and orientation. Similarly, DeepVO proposed by Mo-
hanty et al. [72] comprises two AlexNet-like CNN branches acting as inputs
to a stack of fully connected layers coupled with a regression layer. Um-
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menhofer et al. [111] proposed a CNN architecture for depth and relative
camera motion estimation. They utilized multiple tasks in the learning
phase to provide additional supervision in order to get more accurate depth
maps and camera motion estimates.

In Publication IV, we address the problem of relative camera pose estima-
tion with deep learning. Compared with [58, 72], the proposed approach is
applicable for general unrestricted camera motion and for wide baseline
view pairs. We introduce a pipeline for training a Siamese-based CNN
to regress a 7-dimensional relative camera pose vector Δp containing the
relative orientation vector Δq (4-dimensional quaternion), and the relative
position, i.e. translation vector Δt (3-dimensional), so that Δp = [Δq,Δt].
Specifically, the proposed network takes a pair of RGB images optimizing
the following objective function1:

L =
∥∥Δt−Δt̂

∥∥+β

∥∥∥∥Δq− Δq̂
‖Δq̂‖

∥∥∥∥ , (3.1)

where Δq̂ and Δt̂ are the ground-truth relative orientation and translation,
respectively. In practice, the magnitude of Δq̂ and Δt̂ varies a lot making
the optimization process intractable. Therefore, a constant weighting
term β is used to keep the estimated values to be nearly equal leading
to an improved ego-motion estimate. Furthermore, the proposed model
is complemented by a spatial pyramid pooling layer [42] achieving two
objectives. First, that layer allows to robustly handle input images with
different spatial resolution. Second, applying spatial pyramid pooling is
the key to even more accurate relative pose estimations as it opens the
door for larger images to be used during training which, as empirically
demonstrated, improve the results without changing the network structure.
The proposed approach is trained in a supervised manner. Structure-from-
motion datasets [118] are utilized to automatically generate ground truth
data. Unlike [111], the proposed approach does not require any additional
supervisory signals such as depth maps for training which is beneficial in
practice.

Later work has extended the proposed approach to jointly learn seman-
tics and geometry (odometry and global pose) of the scene [3, 73, 113], a
probabilistic sequence-to-sequence visual odometry framework [116], and
topometric localization [77].

3.2 Image-based localization

Visual localization approaches can be broadly divided into two categories:
appearance-based place recognition and image-based pose estimation meth-

1Note that the following loss function is valid for learning the absolute pose. In
this case, we simply drop Δ from the equation.
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ods.

Appearance-based approaches model localization as an image retrieval
problem, where the unknown location of the query is estimated using the
locations of the most visually similar database images [6, 18, 91, 110, 117].
This can be modelled by employing image retrieval techniques such as
Bag-of-Words [104], or more compact representations such as VLAD or
Fisher vectors [8, 49]. In order to handle large changes in appearance due
to illumination (day/night) or change of seasons, Torii et al. [110] develop a
view synthesis method that can create virtual views from novel viewpoints
by using associated approximate depth maps to warp the original images.
These synthetic images are then added to the database resulting in a
higher localization performance. Deep learning methods have also shown
to be very efficient to directly learn image descriptors suitable for image
retrieval. Most of the deep learning methods focus on designing image
representations by leveraging models pre-trained on large image classifi-
cation datasets such as ImageNet [23]. A significant improvement could
be achieved by finetuning pre-trained models for retrieval on localization
datasets [6, 9] and using a ranking loss [6, 35].

Visual localization problem can be solved by casting it as a classification
task. Specifically, the scene is divided into a number of individual places
(landmarks) which are then used to train either a CNN-based or SVM
classifier employing the bag-of-visual-words representation to identify
which place is illustrated in a given image.

Image-based pose estimation methods are structure-based localization
methods estimate the 6-DoF pose by using a 3-D scene model obtained
from structure-from-motion. Specifically, they create a set of 2D-3D cor-
respondences between 3-D points and local features extracted from a
query image. Finally, the pose of the query image is established by ap-
plying RANSAC [31] loop in combination with a Perspective-n-Point algo-
rithm [56]. The main limitation of this approach is the descriptor matching
stage that turns out to be computationally demanding if the 3-D scene
models are large such as those for large-scale urban environments. To
address this issue, some methods [19, 65, 92] utilize prioritized search
techniques which terminate the correspondence search procedure as soon
as a certain amount of inliers has been achieved, while other approaches re-
strict matching only to the 3-D points visible in the top-retrieved database
images [16, 45, 95].

Recently, it has been shown that machine learning based approaches have
great potential to approach image-based localization problem. Kendall
et al. [52, 53, 54] propose PoseNet – a CNN architecture which can directly
regress the camera pose from an input RGB image. Later works have
improved localization performance achieved by PoseNet. Walch et al. [114]
applied LSTM units to enhance the context of features extracted from the
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Figure 3.2. Overview of our proposed Hourglass-Pose architecture for image-based local-
ization. Compared to PoseNet [54], we propose to use an additional decoder
to recover fine-grained visual information from the input image to improve
absolute camera pose estimates. Such a symmetric "encoder-decoder" network
structure is also known as an hourglass architecture [76].

input image leading to significant improvement in localization. In turn,
Clark et al. [20] utilized LSTMs to predict camera translation from short
video sequences as input. The architecture encompasses a bidirectional
recurrent neural network (RNN), which captures geometric dependencies
between adjacent frames of the input sequence yielding refined accuracy
of the global camera pose. Nevertheless, traditional absolute camera pose
regression methods are less accurate than structure-based localization
approaches due to lack of generalization from the training data [96]. How-
ever, recent work by Shi et al. [100] has demonstrated that combining
structure-based method and image-based method with semantic informa-
tion is beneficial and can outperform pure structure-based localization
approaches such as Active Search [94]. Sarlin et al. [90] propose a hier-
archical localization approach that simultaneously utilizes local image
features using the SuperPoint [25] architecture and the global descriptor
computed by a NetVLAD [6] layer for accurate 6-DoF localization.

Rather than directly regressing camera pose, Shotton et al. [101] apply
a regression forest (SCoRF) to establish a set of 2D-3D correspondences
inferred from an input RGB-D image and use RANSAC to estimate the
pose of the image. Brachmann et al. [13] have extended the original SCoRF
architecture to RGB-only images and proposed a new differentiable replace-
ment of RANSAC leading to an end-to-end trainable CNN architecture
and better localization performance. Li et al. [63, 64] have leveraged vi-
sual geometry cues and proposed angle-based reprojection loss function
achieving improvement in localization compared to [13].
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3.3 An encoder-decoder network for camera relocalization

In Publication V, similarly to [20, 52, 53, 114], we cast image-based lo-
calization as a regression problem and propose a CNN architecture for
estimating camera pose from a single RGB-image. Seeking a potential
way to improve localization performance, we adopt the ideas discovered
in efforts solving the problems of image restoration [69], human pose es-
timation [75] and semantic segmentation [79, 87]. The proposed method,
Hourglass-Pose (see Figure 3.2), which consists of a chain of convolution
and upconvolution layers helps to add more context to the regression part
process to better collect the overall information, from coarse structures
to fine-grained object details, available in the input image. Specifically,
the architecture has a bottom part (the encoder) that is used to encode
the overall context and a latter part (the decoder) that recovers the fine-
grained visual information by gradually increasing the size of the output
feature map of the encoder towards the original resolution of the input
image. The network is trained in an end-to-end manner by optimizing
regression loss (see Equation 3.1) using Adam [55] solver. The proposed
method has been evaluated on Microsoft 7-Scenes Dataset [101] containing
RGB-D images covering different indoor locations, namely: Chess, Fire,
Heads, Office, Pumpkin, Red Kitchen, and Stairs. The dataset was col-
lected with a Kinect device and has been widely used for image-based
localization [13, 20, 52, 53, 114] exhibiting significant variation in camera
pose, motion blur and perceptual aliasing making the localization process
based on SIFT-like features very challenging.

Table 3.1 shows the localization performance of Hourglass-Pose along
with other CNN-based methods. The proposed approach outperforms
PoseNet [54] on translation accuracy by a factor of 1.5 in all test scenes and
substantially improves orientation accuracy. However, the main weakness
of Hourglass-Pose is that, despite its good performance and robustness, it
is a memory demanding architecture due to the regression part.

3.4 Recovering camera pose by image retrieval and ego-motion

Although learning-based approaches overcome many disadvantages of
point-based methods, they still have certain limitations. For example, di-
rectly regressing the absolute camera pose constrains the current machine
learning models to be trained and evaluated scene-wise when the scenes
are registered to different coordinate frames. The reason for this is that
the trained model learns a mapping from pixels to pose which is dependent
on the coordinate frame of the training data belonging to a particular scene.
To address this problem, Publication VI proposed a localization framework
consisting of two modules: a Siamese CNN network for relative pose com-
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Table 3.1. Camera localization performance of the proposed method and existing RGB-
only CNN-based approaches for the 7-Scenes dataset [101]. We follow original
notation presented in [54] and provide median translation and orientation
errors. In terms of localization error, our approach proposed in Publication VI
is superior to other methods utilizing similar loss (3.1) such as PoseNet [54],
LSTM-Pose [114], VidLoc [20] and Hourglass-Pose (Publication V) for the all
scenes.

Scene
Spatial PoseNet LSTM-Pose VidLoc Hourglass-Pose PoseNet2 Publication VI Publication VI

Extent [54] [114] [20] Publication V [53] (baseline) (proposed)

Chess 3×2×1m 0.32m, 8.12◦ 0.24m, 5.77◦ 0.18m, N/A 0.15m, 6.53◦ 0.13m, 4.48◦ 0.12m, 6.69◦ 0.13m, 6.46◦

Fire 2.5×1×1m 0.47m, 14.4◦ 0.34m, 11.9◦ 0.26m, N/A 0.27m, 10.84◦ 0.27m, 11.3◦ 0.31m, 13.36◦ 0.26m, 12.72◦

Heads 2×0.5×1m 0.29m, 12.0◦ 0.21m, 13.7◦ 0.14m, N/A 0.19m, 11.63◦ 0.17m, 13.0◦ 0.16m, 13.78◦ 0.14m, 12.34◦

Office 2.5×2×1.5m 0.48m, 7.68◦ 0.30m, 8.08◦ 0.26m, N/A 0.21m, 8.48◦ 0.19m, 5.55◦ 0.21m, 8.78◦ 0.21m, 7.35◦

Pumpkin 2.5×2×1m 0.47m, 8.42◦ 0.33m, 7.00◦ 0.36m, N/A 0.25m, 7.01◦ 0.26m, 4.75◦ 0.25m, 7.89◦ 0.24m, 6.35◦

Red Kitchen 4×3×1.5m 0.59m, 8.64◦ 0.37m, 8.83◦ 0.31m, N/A 0.27m, 10.15◦ 0.23m, 5.35◦ 0.22m, 9.35◦ 0.24m, 8.03◦

Stairs 2.5×2×1.5m 0.47m, 13.8◦ 0.40m, 13.7◦ 0.26m, N/A 0.29m, 12.46◦ 0.35m, 12.4◦ 0.37m, 14.45◦ 0.27m, 11.82◦

Average 0.44m, 10.4◦ 0.31m, 9.85◦ 0.25m, N/A 0.23m, 9.53◦ 0.23m, 8.12◦ 0.23m, 10.61◦ 0.21m, 9.30◦

putation (Publication IV) and the localization pipeline. The input to the
system is an RGB query image to be localized, and a database of images
with their respective poses. At the first stage, we construct a set of training
image pairs and use it to train a Siamese CNN to predict relative camera
pose of each pair. It should be noted that the training image pairs can be
independent of the scenes present in the localization database. Then, each
trained branch of the network is considered a feature extractor and the
extracted feature vectors can be utilized to identify the database images
that are nearest neighbours (NN) to the query image in the feature space.
Finally, relative pose estimates between the query and its neighbours are
computed and then complemented with ground truth absolute location of
the corresponding database images in a fusion algorithm producing the full
6-DoF camera pose. Specifically, from the shortlisted top ranked database
images d, we select a pair ps = {dk,dm}, where ps ⊂ d and s = 1,2, . . . ,

(N
2

)
.

The translation direction predictions to the query q from the images ps are
triangulated to obtain the location/translation parameter of query camera,
ts. This gives us

(N
2

)
hypotheses for the query location which are then

refined based on the angular distance between the query and the camera
centers of the database images pr, pr = d \ps. Estimating rotation for the
query camera can be estimated in a more straightforward way by using
the following equation:

ΔR j = RT
j R j

q (3.2)

where R j is the ground-truth orientation of the jth camera in d, ΔR j is the
relative orientation between the query and database image j predicted
by the trained network at the first stage of the proposed pipeline; R j

q is
the jth hypothesis of the query camera orientation. For N nearest neigh-
bours it leads to N hypotheses for query orientation. Instead of naïvely
averaging the estimations, a consensus based filtering is used similarly to
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the process of estimating query translation. A robust rotation averaging
algorithm [41] is then applied to obtain the final query orientation. Ac-
cording to the results presented in Table 3.1, the proposed approach can
achieve competitive results compared with other CNN-based methods in
camera relocalization. Although the improvement is not huge, it is worth
to highlight that all the methods presented in Table 3.1 are trained in
a scene-specific manner whereas the proposed approach is designed to
overcome this fundamental limitation.

3.5 Discussion

This chapter focused on two closely related tasks; estimating absolute
and relative camera pose. The main conclusions within the chapter are
summarized below.

Relative camera pose. An end-to-end CNN-based architecture for ego-
motion estimation has been introduced. It predicts relative camera pose
from an input pair of images and based on a Siamese network structure
covered in Chapter 2. The proposed method is reliable providing ego-
motion estimates under challenging conditions where traditional methods
based on hand-crafted image descriptors (Chapter 2) fail.

Camera relocalization. Two modifications to PoseNet [54]—a neural ar-
chitecture for camera relocalization—have been proposed leading to signif-
icant improvement in localization. First, the original structure of PoseNet
is modified by adding a CNN decoder to better collect the overall infor-
mation, from coarse structures to fine-grained object details, available in
the input image. Although the resulted structure, HourglassPose, out-
performs PoseNet on indoor localization benchmarks, it has a very large
memory footprint preventing using this model on mobile devices. Second, a
novel image-based localization approach leveraging the advances of image
retrieval (Chapter 2) and relative camera pose estimation is presented.
The proposed approach generalizes well to previously unseen scenes and
compares favourably to other CNN-based methods.
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Chapter 3 of this overview has focused on applying deep learning to the
camera relocalization problem and estimating camera ego-motion. This
part explores the link between the knowledge we gained from the previ-
ous chapter and the scene understanding problem. Scene understanding
requires knowledge of geometry and semantics and can be divided into
many sub-tasks. This chapter focuses on geometric scene understand-
ing, i.e. estimating the 3-D structure of a scene. The interest of this
section is in the ideas how CNN-based methods can be employed to predict
camera ego-motion and depth maps from monocular video sequences in a
self-supervised setting.

4.1 Motivation

Understanding 3-D scene geometry from video is a long-standing and
fundamental computer vision problem. The human visual system has
a remarkable ability to make understanding of our 3-D world from its
2-D projection. Even in complex environments with multiple moving
objects, people are able to maintain a feasible interpretation of the objects’
geometry and depth ordering. The field of computer vision has long studied
how to achieve similar capabilities by computationally reconstructing a
scene’s geometry from 2-D image data, but robust reconstruction remains
difficult in many cases.

Scene understanding is a fundamental problem of computer vision which
can be broadly classified into two categories; semantic and geometric scene
understanding. Semantic scene understanding requires knowledge of
semantic segmentation, instance segmentation and object detection/recog-
nition [10, 57, 75]. This chapter studies geometric scene understanding
which is the process of inferring the 3-D configuration of a scene with-
out semantic labels. Specifically, it focuses on the problem of optical flow
estimation, depth prediction, and ego-motion estimation. Each of these
problems is highly ambiguous, thus learning a mapping from pixels to
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Figure 4.1. Schematic illustration of the method proposed in Publication VII to jointly
learn scene depth and camera ego-motion from monocular video sequences.
The network consists of two sub-nets (depth net and pose net, specifically) and
can be trained end-to-end. We propose an additional term to the reprojection
objective function efficiently utilizes temporal consistency between frames of
the video sequence leading to more accurate depth and ego-motion estimates.
See more details in Section 4.3.

depth, flow, and ego-motion becomes a challenging task without ground
truth data. In Publication VII, we propose a novel CNN-based frame-
work which can leverage temporally consistent geometric priors between
frames of monocular video sequences and efficiently approach the problem
of geometric scene understanding in a self-supervised manner.

4.2 Visual scene understanding approaches

Joint estimation of scene structure and camera motion can be performed
by traditional structure-from-motion methods [74, 105]. Specifically, the
pipeline of modern approaches consists of two stages, i.e. feature extraction
and matching part which is followed by geometric verification procedure.
In order to refine 3-D geometry scene estimates, bundle adjustment is
iteratively applied during the reconstruction process. However, despite the
success in robust feature descriptors [12, 89], traditional methods are still
prone to outliers in some challenging cases such as texture-less objects and
scenes with repetitive structures (Chapter 3).

In order to address these limitations, a wide range of deep learning
based approaches has been recently proposed. These methods can be di-
vided into two categories: supervised and self-supervised (unsupervised)
approaches. Supervised deep learning methods have shown themselves
capable to estimate depth maps from a single view by utilizing RGB-D
datasets [111]. Although these methods have demonstrated very promis-
ing results, they require ground truth depth during training. However,
collecting diverse and large datasets with accurate depth information
is itself a very challenging task. Furthermore, constructing a dataset
with optical flow ground truth labels is even more formidable compared
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to the RGB-D datasets. To alleviate these issues, existing optical flow
estimation approaches [27, 44, 80, 106] utilize synthetic datasets, such
as Flying Chairs [27] at training stage. While using synthetic training
data is a promising idea, it is not trivial to generate sufficient amount
of data exhibiting varied real-world appearance and motion. To address
the requirement of expensive ground-truth data, several unsupervised
approaches have been proposed by utilizing image reconstruction as a
supervisory signal. Specifically, a set of images (either a monocular video
sequence or a set of stereo image pairs) is provided to the model which
minimizes the reprojection error between the target and the source view
warped by the 2D optical flow. In the case of stereo pairs, by predicting the
pixel disparities between the pair, a CNN model can be trained to perform
monocular depth estimation at test time. Godard et al. [32] demonstrated
that using geometric cues (left-right depth consistency) leads to superior
performance in depth estimation compared to supervised methods.

Rather than using a stereo image pairs as model input, monocular video
sequence looks an attractive alternative. However, in addition to estimat-
ing depth, the model needs to predict ego-motion (Chapter 3) between
two frames during training which can be accomplished by an independent
sub-network. The ego-motion estimates are then used to compute the
optical flow representing the pixel displacement (movement) between the
two input frames. It is important to note that movement of static parts
(image background) in video sequences is induced by the camera motion
and scene depth. Thus, the rigid optical flow between two nearby input
frames Is and It can be computed by using the depth of the reference view
and relative camera pose between It and Is as follows:

Frig
t,s = KTt,sD (xt)K−1xt − xt, (4.1)

where K is the camera intrinsics matrix; D is the depth map for target
frame; Tt,s the relative camera pose transformation matrix between the
target view and the source frames. The relative rigid flow Frig

t,s is then used
to reconstruct the target frame from source image, i.e. Ĩ t = Frig

t,s (Is). The
inconsistency between the reconstructed Ĩ t and original It views is used
to optimize the model. In addition to the background, there are usually
dynamic objects in the input video which should be taken into account too.

Joint estimation of scene depth (disparity) and relative camera pose
from monocular video has been a long-standing problem. While initial
methods have relied on ground truth information, such as ego-motion [21,
72, 111] and semantic masks [17], recent approaches have demonstrated
a possibility to learn depth and ego-motion in a self-supervised manner.
Zhou et al. [17] proposed a model consisting of two CNNs to predict relative
camera pose and the depth in a coupled way. In order to cope with dynamic
objects in video, [125] additionally predicts explainability masks to remove
moving objects from the scene. In contrast to [125], [81, 122, 126] propose
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to explicitly learn the residual optical flow to deal with the non-rigid
motion and apply forward-backward consistency to depth and optical flow
estimates. Later work by Godard et al. [33] has extended [125] to propose
a novel multi-scale sampling method and several modifications regarding
reprojection loss allowing to minimize the gap between self-supervised and
fully supervised methods. Wang et al. [115] propose a method that uses
Recurrent Neural Networks (RNNs) and and can be optimized by utilizing
multi-view image reprojection and forward-backward flow consistency
losses for the task of scene understanding. Mahjourian et al.[68] present
an unsupervised CNN-based approach for learning depth and ego-motion
from monocular video by introducing a differentiable version of iterative
closest point (ICP) method. Recent work by Guizilini et al. [37] proposed
a novel loss function utilizing instantaneous velocity measurement to
learn scale-aware depth. In addition to scene geometry, Gordon et al. [36]
proposed a self-supervised approach to estimate camera intrinsics from
monocular videos.

In Publication VII, we demonstrate how utilising the geometric consis-
tency across a series of image frames can help to achieve an improvement
upon existing self-supervised methods. The following sections provide
more details about the proposed method.

Datasets In order to evaluate the proposed approach, two scene under-
standing datasets have been used. These datasets are summarized in this
paragraph.

The KITTI driving dataset (KITTI raw) proposed by [1, 2] consists of a
several outdoor scenes captured by driving vehicles with mounted cameras
and depth sensors in different traffic conditions. The dataset has been
widely used by other self-supervised approaches presented in this chapter.
The depth ground truth data for this dataset is sampled at irregularly
spaced points captured by LIDAR. Eigen et al. [29] provided the train
and test splits avoiding duplicates and scenes where the car is stationary.
In Publication VII, we use video clips from the train split to jointly learn the
depth and camera ego-motion. In addition to the KITTI raw dataset, recent
approaches [120, 122, 126] utilize the SYNTHIA [88] and CityScapes [22]
datasets to pre-train the final model and improve the generalization.

For the task of ego-motion estimation the KITTI odometry dataset [1] is
utilized. It contains 11 driving sequences with ground truth camera poses.
Although most approaches [122, 125, 126] have utilized sequences 00-08
for fine-tuning the models, in Publication VII we use the dataset only for
evaluation purposes. Traditionally, the absolute trajectory error (ATE) is
used as a metric to compare estimated trajectories with ground-truth.
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(b) on the idea of temporally consistent
ego-motion estimates

(a) Absolute trajectory error of the proposed
method 

Figure 4.2. The proposed model improves when trained with longer video sequences, un-
like baseline approaches; a) the plot shows absolute trajectory error (ATE)
compared with training sequence length, computed for sequence 09 of the
KITTI Odometry dataset [1]. The proposed temporal consistent term (TC) al-
lows to achieve better localization results; b) schematic illustration of the idea
of temporal consistency for the case of a 4-frame video sequence. Specifically,
the relative camera pose transformation matrix between edge frames T1,4 is
consistent and considered to be a composite transformation of inner frames.
See Publication VII for more detailed discussion.

4.3 On temporally consistent geometric prior

Utilizing reprojection error between pairs of images, a large family of
monocular unsupervised scene-understanding methods (Section 4.2) has
achieved promising results. In Publication VII, we have extended this idea
and demonstrated how to leverage longer video sequences of images as a
richer form of self-supervision. Rather than propose some modifications
to the traditional network architecture [125], we rely on utilizing visual
geometry cues. Specifically, given a sequence of consecutive frames, we
constrain the network output to be geometrically consistent between each
individual frame pair and the video sequence. Hence, we propose an ad-
ditional term which is added to the reprojection loss function inferred by
the rigid optical flow (Equation 4.1) and which enforces longer timescale
ego-motion estimates to be consistent with the estimates between succes-
sive frames. As a result, this temporal consistency constraint leads to
better localization performance efficiently handling large video sequences
(cf. Figure 4.2).

The additional term is defined as follows. Complex multi stage rigid-body
transformation can be represented as a composition of its independent
stages. For example, if we have a 4-frame input video sequence (see
Figure 4.2), relative camera pose transformation matrix between edge
frames (1st and 4th) should be consistent with the transformation matrices
of inner frames. Thus, temporal consistency term is defined as follows:

L
ego
tc =

T−2∑
i=0

T∑
j=2

∥∥∥∥∥ f p
(
Ti, j

)− f p

( j−1∏
k=i

Tk,k+1

)∥∥∥∥∥ . (4.2)
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Table 4.1. Single-view depth estimation results on test split of KITTI raw dataset [1].
The methods trained on KITTI raw dataset [1] are denoted by K. Models with
additional training data from CityScapes [22] are denoted by CS+K. (D) denotes
depth supervision, (B) denotes stereo input pairs, (M) denotes monocular video
clips. The best performance for supervised methods is highlighted as italic and
the most accurate results among self-supervised approaches are indicated as
bold.

Error metric ↓ Accuracy metric ↑
Method Dataset Abs Rel Sq Rel RMSE log RMSE δ< 1.25 δ< 1.252 δ< 1.253

Eigen et al.. [29] K (D) 0.203 1.548 6.307 0.246 0.702 0.890 0.958

Kuznietsov et al. [59] K (B) / K (D) 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Zhan et al. [124] K (B) 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Godard et al. [32] K (B) 0.133 1.140 5.527 0.229 0.830 0.936 0.970

Godard et al.. [32] CS+K (B) 0.121 1.032 5.200 0.215 0.854 0.944 0.973

Zhou et al. [125] no explainability mask K (M) 0.221 2.226 7.527 0.294 0.676 0.885 0.954

Zhou et al. [125] K (M) 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [125] updated K (M) 0.183 1.590 6.709 0.270 0.734 0.902 0.959

Proposed (Publication VII) K (M) 0.188 1.529 6.431 0.265 0.726 0.905 0.962

Here, Ti, j is the relative camera pose transformation matrix obtained from
6DoF ego-motion vector pi, j. However, rather than minimize L1 distance
between transformation matrices, we first decompose each matrix into
orientation and translation component by applying f p function and opti-
mize them independently. We use Euler angles to parameterize orientation
since it can achieve better performance.

The results obtained by our best model have been presented in Table 4.1.
Since depth and ego-motion are tightly coupled (see Equation 4.1) for rigid
scenes, more accurate relative pose estimates lead to better performance in
depth estimation. In addition to ego-motion, temporal consistency could be
applied to optical flow and depth estimates for monocular sequences which
will be an interesting starting point for future research. This example is a
manifestation to the principles discussed throughout the whole disserta-
tion; leveraging the multi-view geometry [40] advances can benefit a lot in
various computer vision applications such as image matching (Chapter 2),
image-based localization (Chapter 3), and scene-understanding.

4.4 Discussion

This chapter addressed two tasks, i.e. estimating depth maps and cam-
era ego-motion (Chapter 3) from monocular video sequences. We briefly
summarize the main conclusions within the chapter.

First, an end-to-end deep learning framework to jointly estimate depth
maps and relative camera pose is introduced. The proposed method is
trained in a self-supervised manner naturally utilizing geometric relation-
ship between depth and camera motion of the scene. Second, the chapter
showed that existing CNN-based approaches minimizing reprojection error
between two frames can not fully utilize large video sequences. In fact, the
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absolute trajectory error is not improved if the length of the input video
sequence increases. To address this problem, we proposed an additional
term to the reprojection objective function which can exploit temporal
consistency between frames throughout longer unlabeled video sequences
has been proposed. This term provides a richer form of self-supervision
leading to better performance compared to strong baseline methods.
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5. Summary of the Original Articles

The thesis is based on seven articles which are briefly summarized and
discussed in this chapter. The articles are reprinted and included in the
appendix of the thesis.

Publication I and Publication II discuss the image patch and image
matching problems, respectively. For image patch matching, we propose
a learned image descriptor based on a Siamese network structure (cf.
Section 2.1) which can be trained end-to-end so that the distance between
feature representations is small for similar patches and large otherwise.
The proposed descriptor significantly outperforms traditional methods. The
paper also gives suggestions about using spatial transformer networks as a
part of the descriptor aiming at better robustness to spatial misalignment.
The ideas proposed in Publication I have been extended in Publication
II to the problem of image matching and image retrieval, i.e. finding
matching and non-matching pairs of images. The proposed learned image
descriptor leverages the idea of transfer learning and demonstrates good
generalization performance to unseen data.

Publication III studies the problem of dense pixel correspondence esti-
mation by proposing a novel semi-supervised framework. The problem
of predicting pixel correspondences is closely related to optical flow esti-
mation. While optical flow methods produce very accurate results for the
limited appearance variation scenarios, they typically do not deal with
the strong geometric transformations caused by large viewpoint differ-
ences. The paper has addressed this issue and introduced an approach
representing a hierarchical architecture which can iteratively refine pixel
correspondence estimations between two views. Despite the fact that the
proposed method has been trained on synthetic transformations, it can
generalize well to real data exhibiting various illumination changes. In
addition to image matching, we apply the method to the problem of relative
camera pose estimation (Publication IV) and demonstrate that the model
achieves favourable performance compared to traditional methods. The
approach can be potentially useful also for other computer vision problems,
such as image retrieval [60].
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Publication IV extended PoseNet [54] and proposed a CNN-based method
for relative camera pose estimation. We leveraged the knowledge about
image matching gained from Publication I and Publication II and intro-
duced a neural network architecture consisting of two CNN branches with
shared weights taking a pair of RGB images as input and producing the
relative camera rotation and translation as output. The proposed approach
is robust to large viewpoint changes where traditional hand-crafted de-
scriptors are not able to determine sufficient amount of correspondences to
estimate relative pose accurately.

Publication V addresses the problem of image-based localization and
introduces an end-to-end approach to predict absolute camera pose from a
single RGB image. The proposed CNN architecture consists of a symmetric
encoder-decoder pair followed by a regression part which directly estimates
the pose. Such a hourglass structure helps to preserve the fine-grained
information of the input image providing more context to the regression
part of the architecture which leads to better localization performance com-
pared to strong baseline methods [53, 54, 114]. However, this improvement
has been achieved with a high memory footprint of the model making the
proposed method intractable on mobile devices.

Similarly to Publication V, Publication VI studies the problem of camera
relocalization. The paper proposes a novel deep architecture that leverages
advances of image retrieval (Publication II) and relative camera pose
estimation (Publication IV) to efficiently predict absolute camera pose.
Specifically, the proposed approach localizes a given query image by using
a CNN for first retrieving similar database images and then predicting the
relative pose between the query and the database images with known poses.
The absolute pose of the query is obtained by a new fusion algorithm based
on triangulation from two relative translation estimates and geometric
verification. An important take-home message of the paper is that existing
deep learning methods for camera relocalization have to be trained and
evaluated scene-wise when the scenes are registered to different coordinate
systems. This causes complications, especially if one is interested in
localization across several scenes simultaneously. The paper demonstrates
that connections between Publication IV and image retrieval ideas benefit
a lot leading to a scalable image-based localization approach. As another
contribution, the paper introduces a challenging indoor localization dataset
covering five different scenes registered to a common coordinate frame.

Finally, Publication VII explores the task of geometric scene understand-
ing requiring the knowledge of camera ego-motion and scene depth maps.
The paper introduces a CNN-based approach to jointly learn scene depth
and ego-motion from monocular image sequences in a self-supervised man-
ner. The proposed method leverages visual geometry and exploits temporal
consistency between image frames throughout longer unlabeled video se-
quences. The main contribution of the paper is an additional term to the
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reprojection objective loss function which constrains the network output to
be geometrically consistent between each individual frame pair and the
longer sequence which leads to better performance in the monocular depth
estimation problem.
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6. Conclusion

This thesis has addressed a number of closely related computer vision
problems—image matching, pixel correspondence estimation, absolute and
relative camera pose estimation, and geometric scene understanding—by
providing a set of end-to-end CNN-based methods optimizing the model
with respect to the end goal. The connection between these topics is
provided in the thesis. For example, dense pixel correspondences obtained
by the method proposed in Publication III can be utilized in image matching
and in the absolute and relative camera pose estimation pipelines. Further,
the results of the thesis demonstrate, that achieving more accurate ego-
motion estimates automatically improves depth estimates, since depth and
ego-motion are tightly coupled. A particular emphasis has been placed on
semi-supervised and self-supervised learning methods which leverage the
advances of 3-D visual geometry in order to avoid the necessity of large
annotated ground truth datasets which are very tedious and expensive to
collect. For computer vision tasks considered in the thesis, we demonstrate
that the proposed methods exhibit interesting properties and have achieved
favourable results compared to traditional keypoint-based approaches in
terms of both accuracy, and computational efficiency.

The themes presented in the thesis suggest some avenues for future re-
search. Firstly, there are still many open questions related to applicability
of CNN-based approaches in image-based localization (Publication VI).
Although they provide promising results and learnable representations,
the localization performance obtained by pure deep learning approaches is
still behind the results produced by traditional methods, thus, additional
steps, such as geometric verification could be required to improve the ac-
curacy. It would be interesting to work on an end-to-end differentiable
CNN-based approach which could outperform keypoint-based methods in
localization benchmarks. Secondly, dense pixel correspondence estima-
tion methods (Publication III) could be extended to the wide baseline case
with background clutter. This potential research direction could bring
benefits for 3-D reconstruction and camera relocalization. Lastly, in the
context of geometric scene understanding from monocular videos, it would
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be useful if the proposed idea about temporal consistency of ego-motion
could be extended to other modalities, such as depth and optical flow es-
timates to provide additional supervision and better performance. Such
advances could have a great impact on the application of autonomous
driving enabling an opportunity to rely more on camera sensors rather
than expensive hardware, such as LiDAR.
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Smagt, D. Cremers, and T. Brox. FlowNet: Learning Optical Flow with
Convolutional Networks. In IEEE Internation Conference on Computer
Vision (ICCV), 2015.

46



Bibliography

[28] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler.
D2-Net: A Trainable CNN for Joint Detection and Description of Local
Features. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[29] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In IEEE
Internation Conference on Computer Vision (ICCV), 2015.

[30] M. Everingham, L. Gool, C.K. Williams, J. Winn, and A. Zisserman. The
Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision (IJCV), 88(2):303–338, 2010.

[31] M.A. Fischler and R.C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Communications of the ACM, 24(6):381–395, 1981.

[32] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[33] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into
Self-Supervised Monocular Depth Prediction. arXiv:1806.01260v3, 2019.

[34] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[35] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. End-to-end
learning of deep visual representations for image retrieval. International
Journal of Computer Vision, 124(2):237–254, 2017.

[36] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova. Depth from Videos
in the Wild: Unsupervised Monocular Depth Learning from Unknown
Cameras. CoRR, abs/1904.04998, 2019.

[37] V. Guizilini, R. Ambrus, S. Pillai, and A. Gaidon. PackNet-SfM: 3D Packing
for Self-Supervised Monocular Depth Estimation. CoRR, abs/1905.02693,
2019.

[38] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning
an Invariant Mapping. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2006.

[39] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A.C. Berg. MatchNet: Uni-
fying Feature and Metric Learning for Patch-Based Matching. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[40] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
2 edition, 2003.

[41] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1 rotation averag-
ing using the Weiszfeld algorithm. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Spatial Pyramid Pooling in Deep Con-
volutional Networks for Visual Recognition. In IEEE European Conference
on Computer Vision (ECCV), 2014.

[43] G.E. Hinton, S. Osindero, and Y.-W. Teh. A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7):1527–1554, 2006.

[44] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet
2.0: Evolution of optical flow estimation with deep networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

47



Bibliography

[45] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From structure-from-motion
point clouds to fast location recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[46] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial
transformer networks. In Advances in Neural Information Processing
Systems 28, pages 2017–2025. 2015.

[47] M. Jahrer, M. Grabner, and H. Bischof. Learned local descriptors for
recognition and matching. In Computer Vision Winter Workshop (CVWW),
2008.

[48] J. Janai, G. Fatma, R. Anurag, M. J. Black, and A. Geiger. Unsupervised
Learning of Multi-Frame Optical Flow with Occlusions. In IEEE European
Conference on Computer Vision (ECCV), 2018.

[49] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Ag-
gregating Local Image Descriptors into Compact Codes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 34(9):1704–1716,
2012.

[50] J. Johansson, M. Solli, and A. Maki. An evaluation of local feature detectors
and descriptors for infrared images. In IEEE European Conference on
Computer Vision (ECCV Workshop), 2016.

[51] Y. Ke and R. Sukthankar. PCA-SIFT: A More Distinctive Representation
for Local Image Descriptors. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

[52] A. Kendall and R. Cipolla. Modelling uncertainty in deep learning for
camera relocalization. In IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[53] A. Kendall and R. Cipolla. Geometric loss functions for camera pose re-
gression with deep learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[54] A. Kendall, M. Grimes, and R. Cipolla. Convolutional networks for real-time
6-DOF camera relocalization. In IEEE Internation Conference on Computer
Vision (ICCV), 2015.

[55] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2014.

[56] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of
the perspective-three-point problem for a direct computation of absolute
camera position and orientation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[57] I. Kokkinos. UberNet: Training a ’Universal’ Convolutional Neural Network
for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited
Memory. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[58] K. Konda and R. Memisevic. Learning visual odometry with a convolutional
network. In VISIGRAPP, 2015.

[59] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-Supervised Deep Learning
for Monocular Depth Map Prediction. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[60] Z. Laskar, I. Melekhov, H.R. Tavakoli, J. Ylioinas, and J. Kannala. Geomet-
ric Image Correspondence Verification by Dense Pixel Matching. CoRR,
abs/1904.06882, 2019.

48



Bibliography

[61] V. Lepetit and P. Fua. Keypoint Recognition Using Randomized Trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
28:1465–79, 10 2006.

[62] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary Robust invari-
ant scalable keypoints. In IEEE Internation Conference on Computer Vision
(ICCV), 2011.

[63] X. Li, J. Ylioinas, and J. Kannala. Full-Frame Scene Coordinate Regression
for Image-Based Localization. In Proceedings of Robotics: Science and
Systems, 2018.

[64] X. Li, J. Ylioinas, J. Verbeek, and J. Kannala. Scene Coordinate Regression
with Angle-Based Reprojection Loss for Camera Relocalization. In IEEE
European Conference on Computer Vision Workshop (ECCVW), 2018.

[65] Y. Li, N. Snavely, and D. Huttenlocher. Location Recognition using Priori-
tized Feature Matching. In IEEE European Conference on Computer Vision
(ECCV), 2010.

[66] W.-Y. Lin, M.-M. Cheng, J. Lu, H. Yang, M. N. Do, and P. Torr. Bilateral
Functions for Global Motion Modeling. In IEEE European Conference on
Computer Vision (ECCV), 2014.

[67] D.G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision (IJCV), 60:91–110, 2004.

[68] R. Mahjourian, M. Wicke, and A. Angelova. Unsupervised Learning of
Depth and Ego-Motion from Monocular Video Using 3D Geometric Con-
straints. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[69] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using
very deep convolutional encoder-decoder networks with symmetric skip
connections. In Advances in Neural Information Processing Systems 29,
pages 2802–2810. 2016.

[70] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 27(10):1615–1630, 2005.

[71] A. Mishchuk, D. Mishkin, F. Radenović, and J. Matas. Working hard to
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