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Preface

The work presented in this thesis was carried out in the Quantum Trans-
port group, Department of Applied Physics, Aalto University during the
years 2016-2019.

I joined the Quantum Transport group at the beginning of 2016. Besides
the group leader Prof. Christian Flindt, it consisted of postdoctoral re-
searchers only. Thank you, Christian, for introducing me to the waiting
time theory and full counting statistics. Thank you, for providing full
research freedom to me. Thank you, Shuo, for always being a friendly and
supportive postdoc.

The first person to offer me help with documents and the Finnish lan-
guage was Joel Rontynen. At that time, Joel was a PhD student in Teemu
Ojanen’s group. I would like to express my gratitude to them. Thank you,
Joel, for your support and help, for going through the tough times together,
and for the postcards! Thank you, Teemu, for consulting me on topological
pumping and making me feel confident about the knowledge I have. Also, I
would like to thank two former PhD students of Teemu, Kim Poyhonen and
Alex Weststrom for helping me to apply for doctoral studies and providing
all the necessary information.

At some point during the first year, two more PhD students joined the
group. Thank you, Aydin, for going through the struggles of doctoral
studies together and for the fun times at the conferences! Thank you, Paul,
for bearing with my sometimes-too-much talking and for your contribution
to my knowledge of German language, "Ich habe eine adiabatische matrix
zu konstruieren!".

After one and a half years, I had my midterm and Jukka Pekola was my
opponent. Thank you, Jukka, for a kind and constructive feedback on my
midterm report and presentation!

By the end of the second year, one more postdoc joined the group. Thank
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you, Pablo, for always being nice and patient with me, and thank you for
proofreading my thesis! Soon after Pablo joined, first Finnish members
joined the group - Janne, Tuomas, and Tony. All three were bachelor
students at that time and I learned a lot about Aalto University from an
undergraduate perspective. Thank you, guys! Many special thanks go to
Tony for being a reliable great friend and introducing me to the great coffee
world!

Each year Christian invited Misha Moskalets from Kharkiv Polytechnic
Institute, Ukraine, to come for three months as a visitor to our group.
Thank you, Misha, for introducing Floquet matrices to me, sharing your
knowledge, and your support! And Thank you, Christian, for inviting
Misha!

We also had Fredrik Brange as a visitor for a couple of months and now
he has joined the group as a postdoc. I have enjoyed your company in the
office quite a lot, Fredrik! Thank you!

Besides theoretical research, I had a pleasure to collaborate with a
talented experimentalist from Mikko Méttonen’s group Méaté Jenei. Thank
you, Maté, for teaching me all the subtleties of experimental physics!
Thank you, Mikko, for your constructive criticism!

While I didn’t experience the lack of ideas, I certainly suffered from
the absence of a frequent, meaningful and deep human interaction in the
academic environment. It is impossible to measure the level of support
and encouragement coming from Prof. Slava Kashcheyevs, my former
supervisor. Thank you, Slava, for the infinite flow of positive energy.
From Slava I learned that physics is a social science. My doctoral studies
only confirmed this statement, as my ideas and scientific productivity
grew exponentially in the presence of sincere, open and emotionally deep
communication.

Towards the end of my Ph.D., in summer 2019, more collaborations with
experimental physics groups occurred. I would like to thank Prof. Rolf
Haug for inviting me to a workshop in Hannover and sharing the exper-
imental results of his group with me! Special thanks to Johannes Bayer
and Adrian Schmidt, students of Prof. Haug, for the fruitful discussions we
had during the workshop. I would also like to thank Timo Wagner, whom
I met during the DPG meeting in Berlin in 2017. Thank you, Timo, for
enlightening discussions on waiting-time distributions!

At the same workshop in Hannover, as a coincidence (or not?) I met Slava

once again. Our discussions resulted in a collaboration with Prof. Giuseppe
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Tettamanzi from the university of Adelaide. Thank you, Giuseppe, for
sharing the two-atom pumping results with me and explaining all the
details of the experiment! I was extremely happy to hear from Giuseppe
about the adiabatic pumping measurements, while Slava and I recognized
the Berry curvature imprints in these measurements.

Last but not least, a gigantic acknowledgement goes to my family and
friends. Thanks to my dad, Vladimir, a mechanical engineer, who taught
me how a car engine works when I was five. It definitely was a great
beginning of my physics studies. I will always be in debt to my mom,
Olga, for the enormous amount of love and support. Thank you, mom,
for being the greatest example of a truly amazing woman! Thanks to my
grandmother, Liubov, a hydro-technical engineer, who helped me solving
the hydrodynamics problems and gave me all the care and love she could.
Special thanks to our family friend Eugene, his visits were always as great
as a celebration of the new year and a birthday combined!

Thanks to my university friends with whom we studied together - Lasma,
Krista and Reinis, for regularly sharing all the after-graduation experi-
ences with me and their support. Thank you, Agnese, for being a great
friend and regularly sending me the quantum coherent postcards! Thanks
to my true engineer friend Ksenija, who is a master of really applied tech-
nologies and a doctor of really good friendships! Thank you, Vita, for your
cute and supportive postcards, and educating me in ornithology! I am
blessed to have such a sensitive and understanding friend like you, Vita.
Big thanks to the amazing physicists Lara Ulcakar and Jemma Needham
for their positive attitude, support and heart-warming postcards! Spe-
cial thanks to exceptionally talented AScI interns, Alexandra Mestre and

Aaron Altman! It was a pleasure to supervise you.

Helsinki, December 3, 2019,

Elina Potanina
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1. Introduction

On May 20, 2019, we have finally moved from the artificial definition of
the ampere involving the force between two infinitely long wires with a
negligible circular cross-section to an elegant quantum ampere. The new
ampere is defined using the elementary charge e and the caesium frequency
standard Avc,. One of the officially approved experimental realizations
of the new ampere is single-electron pumping through a tunable-barrier
quantum dot [1, 2] via periodic driving with frequency f such that the

current is given by the number of transferred electrons n per cycle:
I =nef.

Recent developments in quantum technology and nano-device fabrication
have already enabled single-electron pumping with close-to-metrological
accuracy [3, 4, 5]. Dynamic single-electron sources are also of practical im-
portance as periodic emission of single electrons is crucial for synchronized
many particle operations in quantum information processors [6]. Dynamic
single-electron transistors are building blocks for logic operations [7] and
sensitive read-out devices [8] for a solid-state quantum computer.

This thesis focuses on the optimization of periodically driven devices
in the low- and high-frequency regimes. For example, how should we
operate a nano-device in order to get a perfectly quantized current in
the output? What is the optimal operation cycle for a quantum pump to
achieve maximal efficiency? There is no universal solution of such inverse
time-dependent problems. In order to answer these questions, we develop
the optimization schemes tailored for the experimentally available and
relevant devices such as single-electron turnstiles and tunable-barrier
quantum pumps.

Publication I demonstrates that the distribution of waiting times between
subsequent tunneling events in a single-electron turnstile reveals the reg-

ularity of electron emission events. Publication II is a blend of experiment

11



Introduction

and theory, where we directly extract the time scales of electronic transi-
tions in a charge trap via distributions of waiting times. Publication III
contains an optimization scheme for single- and two-parameter quantum
pumps. Finally, in Publication IV, we derive and illustrate a power-flux
trade-off relation for coherent single-electron pumps using the geometric
optimization argument.

The structure of this overview is the following. Chapter 2 briefly discusses
the concept of single-electron pumping and statistics of charge transfer
in the Coulomb blockade regime. Chapter 3 contains an introduction
to coherent transport, Floquet scattering theory, and non-equilibrium
thermodynamics of mesoscopic conductors. Finally, Chapter 4 gives a

summary of our key findings.

12



2. Single-electron pumping

In this chapter, we introduce the concept of single-electron pumping in
the presence of Coulomb blockade and the counting statistics of tunneling
events. Later, we discuss distributions of waiting times between single-
electron emission events. The end of this chapter focuses on two different
pump operation regimes usually referred to as adiabatic and non-adiabatic

pumping.

2.1 Coulomb blockade and rate equations

Single-electron pumps based on a metallic island with tunable-barriers are
subjects to the Coulomb blockade. A metallic island is a nano-scale object
with size less than L = 100 nm in all three dimensions. From the size of the
island, we can immediately estimate the order of Coulomb interactions as
e?/L ~ 1073eV. It sets the largest energy scale - the charging energy Fc,
which tells us how much energy is needed to charge an island by adding
or removing one electron. The charge of the island, Q = en generates an

electric field and accumulates electrostatic energy given by:

Figure 2.1. A metallic island formed by electrostatically induced potential barriers. The
energetic cost of adding one electron to the island is equal to the electrostatic
energy change AFE, while the mean level spacing between electron states can
be ignored (0E < AF) in the regime of Coulomb blockade.

13



Single-electron pumping

where C is the capacitance of the metallic island. The amount of energy
needed to add one electron to the island is given by the change in electro-

static energy:
AE = Ec(n+1)2 — Ecn® = Ec(2n + 1).

Electrostatic energy is a purely classical concept. There is also a quantum
energy scale related to the discrete electron states - the mean level spacing
0F. Given that every atom has at least one valence electron, there is
around N, = 10 electrons in the island of a volume L?. The mean level-
spacing 0 F is inversely proportional to N, and therefore becomes irrelevant
(0F < AF) as depicted in Fig. 2.1.

Single-electron pumping is a dynamic process composed of tunneling
events. Tunneling is a quantum process, but presence of the Coulomb
blockade leads to vanishing coherence between the charge states. An
equilibrium charge state of the metallic island is certain at any time.
Therefore, the charge dynamics of the island can be described by a rate
equation:

&1P() = LIPW),

where the vector |P(t)) = [po(t), p1(t), p2(t), .. .]T contains the probabilities
for the island to be occupied by 0,1,2, ... electrons. The rate matrix L(t)
describes the transitions between different charge states of the island. The
"braket" notation here is used for convenience, but we note that the left
and right vectors |P(t)), (P(t)| are not related by Hermitian conjugation,
since the rate matrix is not Hermitian.

Let us look at the case when the island is either empty or occupied by

one electron. The rate matrix then takes the simple form

L = [ TR TR IO+ Tx(
TE() +TH®)  —T7()-TR() )

~—

Figure 2.2. A metallic island occupied by one electron. Arrows indicate all the allowed
transitions.

14



Single-electron pumping

where T'Z(t) is the rate at which tunneling occurs between the island and
the leads, changing the occupation by +1 electron with charge e, Fig. 2.2.

Sequential single-electron tunneling rates are given by the Fermi golden
rule assuming weak tunnel coupling:

Galt)  £AE()

Fal) = = o EBAEM] 1"

where the barrier conductances G, (t) are functions of the gate voltages
and 8 = 1/kgT is the inverse temperature. For example, in the silicon
pumps, conductance depends exponentially on the gate voltages G, (t) as
Gqo(t) = Gq exp[Va(t)/Vs], where V; is known as the sub-threshold slope [9].
The change of the electrostatic energy due to the addition of an electron
reads AE(t) = —E [N, + 2{CLVL(t) + CrVRr(t)}/e], where Cf, and Cp are
the gate-island capacitances, E. = ¢?/2(C + Cr+Cs+ Cp) is the charging
energy with source-dot and dot-drain capacitances Cs and Cp, and N, is
the offset, see Fig. 2.3.

Higher-order processes like co-tunneling are possible but happen to be
suppressed for two reasons. The co-tunneling rate T'., can be estimated
from the rate product and the conductance ratio [10] T, ~ FZF}}G /Go,
where G is the conductance quantum. Generally, during the pumping
cycle, the product of the source-to-island and island-to-drain tunneling
rates is kept small to avoid leakage of charge in the wrong direction.
In the first half of the cycle, source-to-island rate dominates I'} (t) >
I';(t) and for the second half of the cycle the inequality is reversed. The
barrier conductances are kept below the value of the conductance quantum
Gr.r(t) < Gg, in order to ensure the regime of Coulomb blockade. At all

times ¢, co-tunneling can be safely ignored as G/G¢ < 1 and FZFI_% — 0.

VL Vr
C;, Cg

island

G Cs GrCp

Figure 2.3. A metallic island separated from the source and drain by electrostatically
induced barriers with conductances G, r, and source-dot/dot-drain capaci-
tances Cs;p. The tunnel barriers are formed by applying voltages V., r on
corresponding gates, where C',r are the gate-island capacitances.

15



Single-electron pumping

2.2 Full counting statistics

The statistics of tunneling events is encoded in the probability P(n,t) of n
electrons being transferred to the collector during the time-span [0, ¢]. This

probability evolves according to the rate equation
d
P, 1)) = Lo(®)[P(n,)) + 34 ()| P(n = 1,2)) + I-($)|P(n + 1,2)),

where rate matrix is partitioned as L(t) = Lo(t) + J(t) + J_(t) with jump
operator Ji(t) describing charge transfers or "jumps" to and from the
collector. Rate equations become decoupled by introducing the counting
field y via the definition |P(x,t)) = Y, |P(n,t))e™X. We then arrive at the
modified master equation

d

2P0 1) = L )P (x 1)) 2.1
The solution of the modified master equation is a moment generating
function M(x,t) =3, P(n,t)e™ = (1|P(x,t)), which provides us with the
moments of n:

(n"™)(t) = IZM(x: 1) |y=0-

Generally, we are interested not only in the mean number of pumped
particles but in the noise as well. The noise is given by a second cumulant
(n?)—(n)? = (n?)). Cumulants follow similarly from a cumulant generating

function S(x,t) = In M(x, t):

(™) () = ORS (X )l x=o-

Let us now focus on the solution of the modified rate equation (2.1). For-
mally, the solution |P(x,t)) = U(x,t)|P(x,0)) is given by the time-ordered
exponential U(y,t) = T{elo @L()}. In practice, even the simplest ex-
amples can be rarely solved analytically. Ideally, a single-electron pump
should deliver one electron per cycle, such that electron emission events
would be separated by one period on the timeline which brings us to the
concept of waiting times, see Fig. 2.4. It turns out that in order to find the
distribution of waiting times between emission events, we only need to

know the probability of having no such events.

2.2.1 Electronic waiting times

Assume there was an emission event at time .. The next such event will
occur after the waiting time 7. We pick a random time ¢, to sample the

timeline (Fig. 2.5) between t. and ty + 7, and find the probability of the

16



Single-electron pumping

T T3

|

t T T

Figure 2.4. (a) Waiting times between detected events. (b) Distribution of waiting times
peaked around the period of the drive when emission events occur regularly.

next event not occurring. Integrating the waiting-time distribution (WTD)
W(t —t.) over the given time span yields the probability of having emission

events, so the chance of having no events is:
_ to+T1
H%+ﬂ@%ﬂ—/‘ AW(t — 1), 2.2)
te

We integrate the "no-event" probability (2.2) over all the possible emission
times prior the ¢y with a probability w(t.) of emission event happening
exactly at time t,:

_ to to+7

(7, t0) = a/oo dtew(te) (1 - /t dtW(t — te)) , (2.3)
where « is a normalization factor and the probability w(t.) is normalized
over the period fOT dt/Tw(t.) = 1. To establish the connection with the
waiting-time distribution, we use the normalization condition fot dTW(r) +
[°drW(r) = 1 and rewrite Eq. (2.3) as

(7, to) = a/to dtew(t,) (1 - /OMHC d(t — t)W(t — tg)>

—00

:a/mﬁwmglm d(t = t)W(E—t.).

—o0 0t+7—te

to to+ T

—

0t T oT 3T t

Figure 2.5. The time line depicting the period of the drive 7, the emission event time ¢,
the waiting time 7 and a randomly picked initial time ¢o.
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Taking a double derivative with respect to the waiting time 7 reveals the

connection:

to
872—1_[(7', to) = —ad; / dtew(t )Wty + T — to)

to

= —ad: {w(to) /t0 dteW(to + 7 — te) */

—00 —0Q

dt-W(tg + 7 — te)atew(te)]

to

— ad; {/Td(to+77te)l/v(to+rfte)7/

[ee] —00

dtW(ty + 7 — te)6tew(te)}

_— (w(to)wuw) + 8,0, 11(r, to)) .

The integral over the period allows us to extract the distribution of waiting

times:

S T dto [o- 5 142
W(r) = a 7 {aTH(n to) — 8,0, I1(r, to)] = o 19211(r),
0
where II(7) is usually referred to as the idle-time probability - the chance

of having no events during time 7. The factor ! is the mean waiting time

(1) which we determine from the normalization condition:
o0 .
ofl/ dro*ll(t) =1 — a=—I(r=0).
0

The solution of the modified equation contains all the components of the
probability vector |P(x,t))) = Y, |P(n,t))e™™X, but in fact we only need to
know P(n = 0,t), the probability of having no electrons transferred during
time 7. To find the idle-time probability, we have to solve the modified rate

equation (2.1) in the limit y — ioo:

II(7) = (11P(0,7)) (1P (x;7))-

= lim
X—i00
In practice, it is always easier to find the idle-time probability than to

solve the full problem for all values of x. In Publication I, we show that

WTDs contain a clear imprint of emitted electron regularity. For example,

for a single-electron turnstile shown in Fig. 2.6, under harmonic driving

I'z(t) =T(sin(27ft) + 1)/2 and T'g(t) = I'(cos(2n ft) + 1)/2, distributions of

waiting times at low frequencies ¢ = I'/f > 1 reveal the tunneling event

"leakage", Fig. 2.7. When operating in the low frequency regime, WTD

develops peaks around values smaller than one period. Since the turnstile

is biased and the tunneling rates are finite during the driving cycle, more

than one in-and-out tunneling event occurs, causing a leakage. Instead of

18
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Cr,Gr

Figure 2.6. Dynamic single-electron turnstile. (a) The turnstile consists of a metallic
island coupled to source and drain electrodes via two tunnel junctions with
capacitances C1,r and tunnel conductances G'1/r. A constant voltage V'
ensures that the transport is uni-directional at low temperatures, eV > kgT.
A time-dependent gate voltage V;(¢) is used to modify the transport through
the island. (b) Tunneling through the tunnel junctions occurs with the time-
dependent rates I'. (¢t) and I'r (¢) controlled by the gate voltage V,(¢).

loading and unloading one electron, there is a stationary flow of electrons
through the system and regularity of emitted electrons is absent. The
WTD with finite peaks around integer multiples of period corresponds to
the cycle missing events and tells us that some of the emission events are
separated by 2 periods, 3 periods, etc, so regularity is lost. Cycle-missing
events occur in the high-frequency regime ¢ < 1, when the system doesn’t
"have enough time" to respond to the driving.

The situation changes when the turnstile is driven according to the step-
like protocol T (t) =TO (t — [t + T/2])and Tr(t) =T[1 —O (¢t — [t + T /2])].
The step-like driving assumes infinitely high barriers preventing the leak-
age of the unnecessary tunnelling events during the cycle. In the adiabatic
regime, we observe from Fig. 2.8 a WTD sharply peaked around the pe-
riod. More examples of WTDs and their detailed analysis can be found in
Publication I.

For stationary transport systems, the WTD is a useful tool to directly

e =100 e=10 e=1 =02
0.15 0.3 0.3
— exact
— - adiab. approx
l].g 0.60 1 2 30 2 4 6 8 10 120 10 20 30 40 50 60 70
/T /T T/T /T

Figure 2.7. Distribution of electron waiting times for a single-electron turnstile driven
by a harmonic gate voltage. We show results for the adiabatic regime, where
€ > 1 to the non-adiabatic regime, ¢ < 1. In the adiabatic regime, the WTD
can be approximated by an average over WTDs corresponding to stationary
processes with fixed rates.
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w(r)/T

1. 1.50 1 2 30 2 4 6 8 10 120 10 20 30 40 50 60 70
/T /T /T 7/T

Figure 2.8. Distribution of electron waiting times for a single-electron turnstile driven by
a square-wave gate voltage.

extract the time scales of electron transitions from the measured signal of
the charge detector. In a recent experiment [ | ], waiting-time distributions
were used to estimate the tunneling rates and optimize single-electron
spin-readout fidelity. In Publication II, we analyze charge fluctuations in a
parasitic state strongly coupled to a superconducting Josephson-junction-
based charge detector. Parasitic states including charge traps are present
in almost all solid-state devices and there have been several proposals on
how to avoid them [12, 13, 14, 15, 16, 17]. However, when time scales of
charge fluctuations in a trap are significantly different than those of the
operation of the measured device, their hindering effect can be mitigated.
The charge dynamics of the parasitic state resembles that of electron
transport in a quantum dot with two charge states. By constructing
the distribution of waiting times from the measured detector signal and
comparing it with a waiting time theory, we extract the electron in- and

out-tunneling rates for the two-level fluctuator.

2.2.2 Statistics and Floquet eigenvalues

Besides the regularity of emitted electrons, another important aspect of
single-electron pumps is the accuracy. The accuracy tells us how far the
mean value of the pumped particle number is from the perfectly quantized
integer value. We proceed with a discussion on the relation between
Floquet eigenvalues and statistics of quantum pumps. Floquet eigenvalues
turn out to be the key aspect in the analytic evaluation of the cumulants.

Dynamics and counting statistics of the quantum pump for all time-scales

are encoded in the modified rate equation:

41P0 1) = L0 HIPG D).

The structure of the rate equation is, in fact, very similar to the time-
dependent Schrodinger equation. With the main difference being that

L(x,t) is a non-Hermitian operator, we can still use the idea of a Rayleigh-
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Schrodinger perturbation scheme.

Before discussing perturbation schemes for adiabatic and non-adiabatic
pumping regimes, we will take advantage of L(x,¢) = L(x,¢ + 7) being
time-periodic and apply Floquet theorem. Solution of the rate equation in

the Floquet form reads:
(LPO ) =D O pi(x. 1), (2.4)
where |p;(x,t)) = |pi(x,t + T)) solves the Floquet eigenvalue problem:

2000 = 5] (e 0) = M0l ) 25)

From Eq. (2.4), we see that the solution at long times ¢ is dominated by the
eigenvalue with the largest real part. The cumulant generating function
after many periods t — N7, N >> 1, becomes fully determined by the
Floquet eigenvalue ¢(x) = max [Xi(x)] with the largest real-part:

SOGNT) w1 =Y ONTApi (0, NT)) w1 ~ NTé(x).-
i
Now it is clear that the statistics of quantum pumps is encoded in the
Floquet eigenvalue ¢(). We proceed with a discussion on two-parameter
pumping and evaluate the cumulant generating function using the adia-

batic expansion.

2.3 Adiabatic pumping and classical Berry phase

Two-parameter pumps are usually referred to as adiabatic pumps since
they function accurately only in the low-frequency regime. Two-parameter
pumps have three main stages of the cycle: loading the electron on the
island by lowering the first barrier, capturing the electron on the island,
and unloading or emitting the electron from the island by lowering the sec-
ond barrier. To visualize a pumping cycle with two parameters, we assume
electrostatically induced barriers and the role of the control parameters
is played by the time-dependent gate voltages, Fig. 2.9 (a). Intuitively,
we can guess that the three main stages of the two-parameter pumping
cycle are realized successfully when we allow the system to reach the equi-
librium charge state at each stage. An equilibration at the stages of the
dynamic process automatically implies the adiabaticity and hints towards
the adiabatic description of the two-parameter pumps. From the numeric

simulation as shown in Fig. 2.9 (b), we observe frequency-independent
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Figure 2.9. Two-parameter single-electron pumping. (a) Adiabatic pumping is achieved
by slowly modulating both gate voltages periodically in time as illustrated by
the red elliptic contour. (b) Pumped charge for the two-parameter pump. The
driving protocol is shown together with the Berry curvature 7! in the inset,
where the stable charge configuration of the island is also indicated (0 or 1
electrons). The solid lines are numerical results, while the dashed lines are
results of the adiabatic and high-frequency approximations. The red line is
obtained with driving parameters that maximize the breakdown frequency.

behavior of pumped charge in the low-frequency range. As we will see,
pumping in the adiabatic regime is described by a geometric object, a
classic analogue of the Berry curvature. Adiabatic theory allows for a
geometric optimization of the driven devices and therefore is a crucial
concept not only for two-parameter single-electron pumps, but any low
dimensional nano-device driven by more than one independent parameter.

In the adiabatic expansion, we effectively treat the time-derivative —%
in Eq. (2.5) as the perturbation. In practice, it is the time-derivative of
the instantaneous eigenstate that has to be small in the adiabatic process.
We expand the eigenvalue and eigenvector as ¢(x) = > ro, #*)(x) and
(1) = 302, 1™ (x,t)) and collect terms of the same order. In the
lowest order of the adiabatic expansion, when driving is infinitely slow, we

find our system following the instantaneous state [p(¥) (y,t)):

L(x. 1) (x, 1)) = AXO(x, ) [V (x, 1)),

where A()(y,t) is the instantaneous eigenvalue of L(, t) with the largest
real-part and |p(¥)(y,t)) is the corresponding eigenvector. Now we can
express the exact Floquet eigenvalue from Eq. (2.5) as a sum of the instan-

taneous value and higher order corrections:

600 =090 - [ L0001 001,
0

where ¢(©) (y) = fUT #)\(0) (x,t) is the average of the instantaneous eigen-

value. To the first order, we find the classical analogue of the Berry phase:
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- T 7t 7t . 2.

With help of Stoke’s theorem, we rewrite the classical Berry phase in order

to demonstrate it’s geometric nature:

o000 =21 [ / VLAV F(x, V),

where the sign is given by the orientation of the contour enclosing the
surface S in the parameter space, and the object under the integral is a

classical analogue of the Berry curvature:

]:(X:V) = [_aVL7aVR] : <p(0)(X,V)‘Vle(O)(X,V».

For a device controlled by a single parameter, the classical Berry cur-
vature and therefore also the Berry phase vanishes. We proceed to the

second order:
@ () = o) d ©)
P () = /0 Lol SR SO0) @D

having used [p™M(x,t)) = R(x,t) % [p”)(x.t)) as in standard perturbation
theory, where R (x,t) is the pseudo-inverse of L(x,t) — A()(x, ) [21]. Equa-
tion (2.7) is important as it allows us to evaluate the charge transfer statis-
tics for single-parameter pumps to first non-trivial order in the driving
frequency. The first two cumulants of the adiabatic cumulant generating
function (2.6) and one order beyond (2.7) are evaluated and compared
to exact numerical solutions in the Publication III. We move on to dis-
cuss single-parameter pumping and the high-frequency expansion of the

cumulant generating function.

2.4 Non-adiabatic pumping

The cycle of a one-parameter pump is quite different from a two-parameter
one. In the first stage of the cycle, we load an electron to the island when
the left barrier is lowered. In the second stage, we quickly raise the barrier
such that electron won’t tunnel back and continue to raise the barrier until
the electron is emitted out of the island. During the entire cycle the second
barrier remains constant with non-zero amplitude, see Fig. 2.10 (a). The
main difference here is that the pumping process has to be non-adiabatic
in order to deliver a finite current [22]. When operated adiabatically,

one-parameter pumps produce large noise, due to electrons tunneling in
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Figure 2.10. (a) Non-adiabatic charge pumping is achieved by modulating a single gate
voltage periodically in time as illustrated by the red line. The insets show
the gate-defined confining potential. (b) Average pumped charge per period
as a function of the driving frequency. The solid lines are numerical results,
while the dashed lines are results of the adiabatic and high-frequency expan-
sions. The red line is obtained with driving parameters that maximize the
breakdown frequency.

and out of the island, but zero current on average. As we approach the
high-frequency regime, we hit a critical frequency value, at which the
pumped current decreases and deviates strongly from the quantized value
as shown in Fig. 2.10 (b). The ultimate goal is to pump as accurately and as
fast as possible. We would like to shift the breakdown frequency towards
the higher frequencies and realize accurate single-electron pumping at
GHz frequencies. In order to access the high-frequency range, we use
the Magnus-Floquet expansion [, 24]. Here, instead of expanding the

periodic state, we focus on the time-evolution operator in the Floquet form:
Uy, t) = T{elo W0 = 4y, £)eF OO, (2.8)

where we identify the Floquet eigenvalue ¢(x) as the eigenvalue of F(x)
with the largest real-part. By inserting the time-evolution in the Floquet
form back into the rate equation (2.1), we obtain the evolution equation for
u(x, t):

%U(x, t) = L(x, t)u(x,t) — u(x, t)F(x). (2.9)

According to the Magnus’ proposal [75] regarding the linear evolution
equations, we express the solution as the exponential of some function
A(x,t) as

u(x,t) = A0t (2.10)

Following the Floquet theorem, the exponential ansatz Eq. (2.10) also has
to be time periodic such that u(x,t) = u(x,t +7) and A(x,t) = A(x, ¢+ T).

From Eq. (2.9), follows the time evolution equation

%GA(x,t) — L, )00t — AXDE(y),
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which implies an iterative solution for A(x,¢):

d

LA =Y Prady ) (0ot + (CDER))

Here, By stands for the Bernoulli numbers, and adl§( is a linear operator

which acts according to
adYY =Y, adxY =[X,Y], adiy =[X,ad%'Y].

As a final step, we consider the expansions:

F(x) =Y F¥x), A1) =Y A¥(x1), (2.11)
k=0 k=0

and arrive at the Magnus-Floquet expansion:
U(x, ) = exp {Z AW (y, t)} exp {t > F® (x)} :
k=0 k=0
In this expansion, the terms F(*)(y) can be determined independently at
t = T, when the time-evolution operator shrinks to U(y,7) = ¢F)7, The

first term is simply the period average of the rate matrix:

5000 = [ Lrgn,
o T
Up until now, there are no signs of time-ordering, but as we move to the
second term: T g
F0 = [ 5 [ FEen. L)
we notice a commutator of the rate matrices at different times, which is an
imprint of the time-ordering operation (2.8). The Floquet eigenvalues in
the Magnus-Floquet expansion ¢(x) = > 1~ ©®)(x) are eigenvalues of the
corresponding terms in the expansion of the Floquet operator (2.11). The

first term is the eigenvalue of the period averaged rate matrix:
O 0P (x)) =FO () PO (x)), (2.12)

where [P()(y)) are the corresponding eigenvectors. The first term of the
high-frequency expansion (2.12) represents the response of the system
when the driving frequency exceeds all other inverse time scales of the
system by more than one order. Under such conditions, the behavior of the
system resembles a stationary process represented by the average rates.

The higher order correction to the Floquet eigenvalue reads
e (x) = PO ) [FD () PO (x)). (2.13)

We use both cumulant generating functions (2.12) and (2.13) to evaluate
the first two cumulants and estimate the breakdown frequency of the

one-parameter pump in Publication III.
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3. Coherent single-electron transport

This chapter is a brief overview of coherent transport and thermodynamics
in periodically driven conductors. We begin with an introduction to the
Floquet scattering matrix formalism and proceed with the formulation of
non-equilibrium thermodynamics of coherent driven systems. At the end

of this chapter, we focus on the adiabatic-linear response regime.

3.1 Floquet scattering theory

When the size of a conductor becomes comparable to the mean free path
of the charge or heat carriers, it is referred to as coherent conductor
[26]. Carrier dynamics in coherent conductors is described by quantum
mechanics. When a particle from a classical thermal reservoir is injected
in the coherent conductor, it behaves as a non-interacting excitation on top
of the Fermi sea. This phenomenon can be accurately described by elastic
scattering theory.

Time-dependent driving, for example, an oscillating confining potential
allows us to manipulate and transfer single particles between the con-
ductors. In this case, an incoming particle can absorb or emit discrete
quanta of energy due to interactions with a dynamic scatterer. Inelastic
processes are captured by a Floquet scattering theory [27, 28]. Elements of
the Floquet scattering matrix ng E depend on two energies: the energy of
an incoming electron, F, and the energy of an outgoing electron after the
interaction, E, = FE + nhw. Floquet scattering amplitudes follow general
rules, dictated by unitarity and time-reversal symmetry. First, the sum

rules

2. ISk

which follow from the unitarity of the Floquet scattering matrix [27],

23N s P =1 3.1)

n %

ensure the conservation of probabilities in single-particle scattering events.
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The double sum runs over all terminals and all integers n, for which E,, > 0.

Second, the time-reversal symmetry of Schrodinger’s equation implies:

St e =TBTASEg, .

where operators Tp and T indicate the reversal of external magnetic
fields and driving protocols, respectively.

The Floquet scattering matrix is essentially a collection of transmission
and reflection amplitudes, which describe particle and energy transport
from the lead /5 to the lead «. In practice, we have to solve the time-
dependent Schrodinger equation describing the evolution of an incoming

plane wave \\I/f;(t)) with fixed energy F :

o B | P 5
zh@t|\IJE(t)> = {2m + V(z,t) |\I’E(L‘)>7 (3.2)

with respect to the scattering boundary conditions

2o WA (1)) = 8,48 (E)ekEma—iB/h OOdE/Sa/B £(' ) (B Vaa—iB't/h,
E B E'E
A :

3.3)
Here, m denotes the mass of the particle, p the momentum operator, x
the position operator and V (¢) a periodically time-dependent scattering
potential, whose range is limited to the central conductor. Inside the
leads, the Hamiltonian reduces to Hy = p?/2m. In Eq. (3.3), we have used
the abbreviation k(E) = \/2mE/h? for the wave number and introduced
the normalization factor [29] £(E) = /m/27k(E)h2. When the external
driving V (t) = V (¢t + T) is periodic, the Floquet theorem implies that the

solutions of the Schriodinger equation (3.2) are of the following form
(W2 (1) = e~ /Mol (1)), (3.4)

where Floquet scattering states |<I>? t+7T)) = |<I>f (t)) are periodic in time.
The energy ¢ associated with Floquet states is defined only up to an integer
number of energy quanta and is therefore referred to as quasienergy
¢’ = ¢ + nhw. For the solution in the Floquet form (3.4) to be compatible
with (3.3) we identify E with quasienergy:

E' — E = nhw, w=2n/T,

where n € Z is an arbitrary integer. On the formal level, the Floquet
theorem serves as a proof of the statement that the plane wave traversing

the conductor can exchange only discrete energy quanta of size fiw with
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the external controller. The boundary conditions for the Floquet scattering

states read

(el D(1)) = dag€(E)eHFee 4 37 ST pe (B )M Enzaminet - (3.5)
nez
Here, we formally define the Floquet scattering amplitudes ng  and
replace £’ with E,, where E,, = F + nfw. We proceed with formulating
the mean particle and energy currents flowing from the reservoirs into the
system.
First, the operators of local particle and energy density at the position

Zo in the lead o are given by

where Hy = p?/2m denotes the Hamiltonian of a free particle. The corre-
sponding local current operators are then determined by the continuity

equations

O (D) np(a)|tb(t)) = = 0o (Y(B)]Jp(xa) (1)), (3.6)
() |np(xa)[P(t) = =0, V(1) JE(2a)[¢(2))-

Here, |1(t)) denotes an arbitrary solution of the Schriodinger equation (3.2).

From (3.6), we obtain

Ip(wa) = 5 lp. 0o = )l
Tp(ea) = 5 [Ho,[p, 600 = 2]

where square brackets indicate the usual commutator. Consequently, the
cycle mean values of the single-particle currents with respect to the Floquet

scattering states (3.5) become

LT 3 1 af 2
<Jp($a)>=?/0 di(@p(t)| T (za) | ®p(1)) = 5 Spa — »_ISE pI* ), 3D

neZ
1 (7 8 8 2
Urlea)) = 7 [ a@3Op)I050) = (%E > EnISE. )
Assuming non-interacting particles the thermodynamic currents can be
obtained by averaging (3.7) with the Fermi distribution fg =1/1+exp[(E—
1)/ Ts] of the reservoir § with Boltzmann’s constant being set to 1 through-

out. After summing over the contributions from all individual reservoirs,
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Figure 3.1. Dynamical multi-terminal conductor. A central scattering region subject
to the periodic driving fields X is connected to m reservoirs with chemical
potentials p1, ..., um and temperatures 71, ..., T,,. Each reservoir injects a
constant mean current of particles (x = p) and heat (z = ¢) into the conductor.
Additionally, the external driving provides a continuous inflow of energy
proportional to the photon flux J“.

we obtain the microscopic expressions for the net particle and energy

current flowing through the terminal «a:

Jh = %/0 dE ZB (00 — Znysgfﬂf)fg and (3.8)

1 o0
Jf = E/o dEZB (E(Sﬁa - ZnEn|S%fE|2)fJg

3.2 Thermodynamics of coherent driven conductors

Particle and energy currents follow the conservation laws:
p w E _
ZaJa =0 and hwJ +ZaJa =0,

where hiwJ“ is the work done by external driving sources:

" L B |28
hote = =3 JE = E/o dBY o> nhelSE gl S (39)

Here, J“ corresponds to the average current of energy quanta or photon
flux injected into the conductor, see Fig. 3.1. Its physical interpretation as
a photon flux relies on the fact that particles during the interaction with
driving fields can exchange only discrete units of energy.

Before we continue, we make sure that the fluxes (3.8) and (3.9) follow

the first and the second law of thermodynamics:
Do JEH o+ pedb=0 and o=-3 Ji/T,>0, (3.10)

where > J& = 3 JE — poJ8 is the total heat flux, hwJ* is the work
done by external sources, ), Lo Jh is the average electrical power ab-

sorbed by the system, and o denotes the total rate of entropy production
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accompanying the transport process. In fact, the unitarity of the Floquet
scattering matrix (3.1) ensures that mean fluxes obey the fundamental
laws of thermodynamics.

It is convenient to introduce affinities with some reference chemical

potential  and temperature T

F¥ = hw/T, FP=(pa—p)/T, F1=1/T —1/T,,

and rewrite the laws (3.10) in terms of thermodynamic fluxes and forces.

The first law becomes

S JL+TIFC+ Y TJLFL =0

and the second law takes a bilinear form:

o= JUFY Y JLER+ JAFL > 0.

On the level of mean fluxes, the structure of the first and the second law re-
sembles the irreversible thermodynamics of non-equilibrium steady states
[30]. The thermodynamic properties of the systems out of equilibrium,
either in a steady-state or in a periodic state, appear to be similar. But as
we will see, only the latter one has a geometric interpretation in terms of
the Berry curvature.

We proceed with a discussion on the adiabatic-linear regime, when volt-
age bias and temperature difference between reservoirs, as well as the
energy quanta associated with the driving frequency hw, are assumed to

be the smallest energy scales in the system.

3.3 Adiabatic-linear response and Berry phase

Full Floquet scattering amplitudes are quite complicated objects and are
rarely accessible as an exact solution. Here, we make use of the adiabatic
approximation to show how it significantly simplifies the problem and yet
remains accurate when describing two-parameter quantum pumps.

First, as a standard starting point of linear response, we assume that
the voltage bias and the temperature gradient are small compared to the
reference values:

Ff < u/T, FI1<1/T.
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This assumption allows us to expand the Fermi-Dirac distribution:
S~ fp — Opfe (TF;; +(E+ ,u)TFg) with /5 = fplps—opi—o- (3.11)

The second key assumption does not limit the driving amplitude like in
the linear response but requires adiabaticity instead. While allowing for
arbitrary large driving amplitudes, we compare the driving frequency w to
the inverse traverse time g /h, also known as dwell time or Wigner time
delay [31]:

w <K dp/h. (3.12)

Over the energy scale ¢, instantaneous scattering amplitudes S“ \ change
significantly [27]. For example, in the transmission resonance regime
[32], 6g is given by the half-width of the resonance. Under the adiabatic
condition (3.12), Floquet scattering amplitudes are given by the Fourier
coefficients of the instantaneous scattering amplitudes and higher order

corrections:

Sel g~ % /0 ! dtsg{;ei"ww(nma]gsg{i + th%fft) et with T =27 /w,
(3.13)
where Sgg\ are frozen scattering amplitudes - instantaneous solutions of
the Schrodinger’s equation, and anomalous scattering amplitudes A%ﬁ
ensure the unitarity of the Floquet scattering matrix after approximation.
As a result of the approximations (3.11) and (3.13), the thermodynamic
fluxes (3.8) and (3.9) become linear functions of the corresponding affinities
given by
J¥ = LWFY 4 Z Z Li%FY and
JY =LY FY + Za Zw LYFY with z,y =p,q.
The kinetic coefficients appearing in these relations are

. dt .
Loy = */ dE ( aEfE)égiE/ T< o — |SEA] ) (3.14)

szff/ dE (-0 fr)¢EE” Z [0 T EA -OS aﬁ*}

wr T T W [e3 ok

Ly :E/ dE (=0 fE)§EE Z Im[ | T@&g;\ ng},
ff/ dE (—0pfp)(&”) Z / T|at$g?Ay2/2 with

=1, ¢ =F-p & =1lw, z,y=npq

This result shows that, under adiabatic-linear response conditions, the

thermodynamic fluxes depend only on the frozen scattering amplitudes
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Sgﬁ »» Which are significantly easier accessible than the full Floquet scatter-
ing amplitudes entering the non-linear expressions (3.8) and (3.9). Another
interesting aspect of this result is the geometric interpretation of the coeffi-
cients representing the pumping effect L and L%*. In fact, the adiabatic
transmission coefficients, which enter the expressions (3.14) for LZ¥ and
L“*, have the same structure as Berry’s geometric phase [33]. They can,

therefore, be rewritten as

T dt
e,

T at 1
Im { ‘is;;{; : atsg?;} = —Im { - S sg_?;} == f dx- A,
Jo J0 Y

T

where A}, =Im [SE?AVASE%\"]

plays the role of a generalized vector potential known as the Berry con-
nection, and ~ is the closed path in the space of control parameters that
is encircled by the driving protocols. Via Stokes’ theorem, this expression

can be converted into a surface integral

Im { Tt o atsaf’*} . / s - B’
y T OEAYCEN T Js, EAX

The integral extends over an arbitrary surface ¥, that is bounded by the

curve v and B‘”EB \ denotes the Berry curvature. For a three-dimensional

parameter space, this quantity is given by

B _ B
B%)\ =V, x .A%’X

For the mean current in a two-parameter pump with two leads in the low

temperature regime, we recover Brouwer’s formula [34]:

JP = w/Ar? / / dA1d)s ZH B (A1, M),
where the Berry curvature explicitly reads as
; B (A1, A2) = Im [0y, SHR0x SHA + 00 S50, SHA] -

Visualizing the Berry curvature in Fig. 3.2 in the control parameter space
for a given system allows for an optimal driving protocol choice in order to
maximize the pumped current and achieve quantization. The concept of
the adiabatic approximation is crucial for nano-devices operated with more
than one independent parameter, as it allows for geometric optimization
via Berry curvature in the control parameter space.

This result shows that the adiabatic pumping effect in coherent conduc-

tors and in the Coulomb blockade regime is captured by the Berry phase.
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Figure 3.2. The Berry curvature for a tunable-barrier two-parameter single-electron
pump. The grey lines indicate the two symmetries of this function. The circles
correspond to the path encircled by the driving protocols. Specific scattering
amplitudes and details of the system can be found in the Publication IV.

Current quantization in coherent conductors occurs in the transmission
resonance regime [2”]. The appearance of the transmission resonances is
due to the interference of the incoming and outgoing plane waves where co-
herence is crucial. Single-electron pumping in the presence of the Coulomb
blockade is incoherent and is dominated by classical physics, namely elec-
trostatics. On the other hand, if we look at the broader picture behind
pumping, we have two tunneling barriers with conductances G1(¢) and
G2(t). The adiabatic pumping cycle is realized by tuning the conductances
via gate voltages V1 (t) and V,(¢) in a periodic manner to realize the loading
and unloading stages of the cycle. If the details of a pumping device are
not known, namely we are given a black box, there is certainly a unifying
general idea behind adiabatic pumping in either coherent or incoherent
systems. In Publication IV, we look at the adiabatic pumping from a ther-
modynamic point of view and raise the question of the thermodynamic cost.
It turns out that during the optimal pumping cycle, one photon per cycle
"is spent” to transfer one electron between two leads at zero temperature.
The realistic, experimentally available tunable-barrier pumps are found
to be thermodynamically more costly. The comparison between optimal
quantum pumps [ ] and tunable-barrier pumps is done using a power-flux
trade-off relation:
h(JP)? < hwJ®,

which provides a lower bound on the mean work input swJ“ that is re-
quired to sustain a given pump current J”. Derivation of the bound can be
found in the Publication IV.
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4. Summary of the findings

In this thesis we have presented various techniques of quantum pump
optimization. In Publication I, we optimize the regularity of single-electron
emission events in a single-electron turnstile via distribution of electronic
waiting times. In Publication II, by constructing the distribution of wait-
ing times, we extract the in-and-out tunneling rates for a parasitic state
strongly coupled to a superconducting charge detector. The hindering
effect of charge traps can be mitigated when the time scales of charge
fluctuations in a trap appear to be significantly different than those of
the operation of the measured device. We combine full counting statistics
with adiabatic and high-frequency expansions to optimize the breakdown
frequency of two- and one-parameter pumps in Publication III. Maximizing
the breakdown frequency is crucial in order to achieve the main metro-
logical goal: the accurate and fast single-electron pumping. In the case of
two-parameter pumps, we make use of Berry’s adiabatic argument and
maximize the mean current based on the symmetries of the Berry curva-
ture. The same process of geometric optimization can be applied in the
case of coherent quantum pumps, as we have shown in Publication IV. The
adiabatic theory allows for pumping optimization in terms of the (input)
work-(output) current relation. In Publication IV, we optimize quantum
pumps with respect to thermodynamic quantities such as input work and
entropy created during the pumping cycle. A term optimal pump, in this

case, stands for a thermodynamically less costly pump.
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