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Abstract

Electronic health records contain a wealth of information of interest to both the
patient and the service provider but are historically not designed for easy compu-
tational analysis. In this study, we introduce the concept of treatment pathways as
treatment sessions related to one single initial diagnosis. We explore three mixed-data
clustering methods on the mental health patients from the Finnish occupational
health population from one health service provider, and identify these treatment
paths from electronic health record data. Based on these clusters we create two
predictive models to predict treatment pathway length and duration of any possible
sick leave of a patient.

We demonstrate how these clustering and predictive models work on health
record data and validate the results statistically and with expert evaluation. We
show that different clustering methods produce very different outcomes in terms of
the size and number of different diagnoses contained in a treatment pathway. The
expert-evaluated error rates for these models range from 0.66% to 39.83% for the
number of appointments that are incorrectly clustered. The predictive models are
shown to be an adequate tool to predict the lengths of the treatment pathway and
sick leave. Additionally, these methods perform well at identifying unusually large
values for these measures, making them useful in identifying patients at high risk
early on in the treatment pathway.

Overall, the study demonstrates the feasibility of the selected methods on large-
scale electronic health record data, provides results for clustering and assessing the
quality of these clusters and serves as a base for predictive models based on these
clusters. The results overall are promising and function as an initial study into
further structuring and predicting medical data on a large scale.

Keywords Electronic Health Record, mental health, machine learning, clustering,
regression, treatment pathway
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Tiivistelma

Potilastietojarjestelmat sisaltavit paljon erilaista tietoa, jonka hytdyntaminen on
seké potilaan etta terveyspalveluiden tuottajan etu. Naita jarjestelmia on kuitenkin
harvoin tuotettu data-analyysin mahdollistamiseksi. Tassa tutkimuksessa esittelem-
me hoitopolun kasitteen, joka sisaltaé kaikki hoitotoimenpiteet yhteen ensidiagnoosiin
liittyen. Tutkimme kolmea erilaista klusterointimenetelmaa Suomen tyoterveyshuol-
lon piirissé oleville mielenterveyspotilaille yhden palveluntuottajan piirissi seké mene-
telmien soveltuvuutta potilastietojarjestelmien aineistoille. Naiden pohjalta luomme
kahdella menetelmélld ennustemallit, joissa mallinnetaan hoitoketjun pituutta seka
mahdollista potilaan sairaspoissaolojakson pituutta.

Osoitamme, miten naméa klusterointi- ja ennustemenetelmat toimivat potilastie-
toaineistolla ja arvioimme tulokset tilastollisesti seka asiantuntija-arvioin. Tutki-
muksessa ndytamme, etta erilaiset klusterointimenetelmét tuottavat hyvin erilaisia
tuloksia seké klustereiden koon etta niiden sisaltdmien diagnoosien toimesta. Virhe-
luvut naille ovat asiantintija-arvion mukaan pienimmillaan 0.66% ja suurimmillaan
39.83%, kun arvioitiin virheellisesti klusteroitujen kiyntien osuutta koko aineistos-
ta. Ennustemallit todettiin toimivaksi tyokaluksi ennustettaessa hoitopolkujen ja
potilaan sairaspoissaolojakson pituutta. Erityisen hyvin ndméa mallit tunnistavat poik-
keuksellisen pitkié jaksoja tasta aineistosta, jolloin ne soveltultuvat hyvin erityisen
suuressa riskissa olevien potilaiden seulontaan hoitoketjun aikaisessa vaiheessa.

Kokonaisuudessaan tutkimus esittelee valittujen menetelmien soveltuvuutta suu-
ren mittaluokan potilastietojiarjestelméaineistolle, tuloksia tiedon klusteroinnille ja
menetelmét niiden arviointiin seké tutkii ennustemallien kaytettdvyytta hoitoketju-
jen ominaisuuksien arvioinnissa. Nama tulokset ovat kaikkiaan lupaavia ja toimivat
pohjana jatkotutkimuksille tutkittaessa terveystiedon strukturointia seké ennustetta-
vuutta laajemmassa mittakaavassa.

Avainsanat potilastietojéirjestelméa, mielenterveys, klusterointi, koneoppiminen,
klusterointi, regressio, hoitopolku
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Healthcare

ALS

ATC

BDI

EHR

ICD-9 / ICD-10
ICPC-2

Amyotrophic Lateral Sclerosis, motor neurone disease
Anatomical Therapeutic Chemical Classification System
Beck Depression Inventory questionnaire

Electronic Health Record

International Classification of Diagnoses, 9th / 10th version
International Classification of Primary Care, 2nd version

Machine learning

CART
ILP
MAD
MAE
NLP
RF
SMC
SVM
SVR

(Classification and Regression Tree
Inductive Logic Programming
Median Absolute Deviation

Mean Absolute Error

Natural Language Processing
Random Forest

Simple Matching Coeflicient
Support Vector Machine
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1 Introduction

Electronic health records contain a wealth of data that could be used for insight into
patient relationships for healthcare providers. Most electronic health records are,
however, designed to be used mainly in patient care and for storing relevant data and
metadata for each patient. The data are often multi-relational and lack a suitable
structure for analysis around any one issue. As such, the records can be ill-suited
for traditional data analysis. An interesting application for healthcare providers is
the analysis of the relevant personal treatment sessions related to a single initial
diagnosis. Producing such results needs a model that can both identify treatment
sessions as associated with a single diagnosis and then use these identified clusters to
predict variables of interest. In this study, we explore different options for producing
such a model.

Another feature of electronic health data is the mixed nature of the data. In
other words, the data are often represented both numerically and categorically, both
carrying relevant information for each problem in question. In the case of Finnish
electronic health records, the data can also be quite large in size. Both of these
features make the data unique to work with and need special attention for machine
learning applications.

Machine learning is a subfield of artificial intelligence used to predict specific
patterns and features in the data. Machine learning algorithms can be broadly fit
into three categories: supervised learning for data that has prior outcome variables
in the training data, unsupervised learning for data that has no prior labels in
the training data and active learning in which a human will aid the model in
predicting the labels. These can be further broken down to more specific fields, for
example, semi-supervised learning for combining data with some but not all outcome
variables present or reinforcement learning in which the model is given feedback on
its performance in prior classifications. In this study, we will be using unsupervised
and supervised machine learning methods to cluster and predict variables related to
different treatment pathways. [1]

The goal of this Thesis was to study the feasibility of various clustering and
predictive methods for analyzing mental health treatment pathways when applied
to a large-scale electronic health record database. Based on these, we proposed a
framework for clustering various health records to clusters called treatment pathways
for mental well-being. We showed that multiple clustering methods provided a viable
tool for analyzing electronic health records, but the performance and quality of such
clustering methods left further room for improvement. We also used these clusters in
predictive analysis on the data to predict sick leave and treatment path length and
outliers. The results were promising, with good results especially in outlier detection,
but at the same time, the desired outcome variables related to the clusters were
very unequally distributed. Thus most of the predictions were similar due to a small
number of large outliers. Still, given the large scale of the data and limited previous
studies on the subject, this study serves as a successful initial survey into the topic
of large-scale EHR data analysis.



2 Background

Mental health-related problems were the second most significant reason for occupa-
tional absence in Finland in 2017 [2]. Around 5% of the general adult population has
clinical depression, with the prevalence rising to about 10% when only considering
people in primary care in Finland (perusterveydenhuolto) [3]. The patients often
require highly differentiated forms of care, as the individual responses to different
medication and psychotherapy vary greatly. The national recommendations for good
care (Kaypéa hoito -suositukset) recommend a mix of medication and psychotherapy
for most cases of depression and mental issues [3]. However, these guidelines are not
always followed through, and the electronic health records (EHR) collected from such
treatment are often poorly suited for analyzing and monitoring the effectiveness of
care. Moreover analyzing health records is, in general, a challenging area for conven-
tional machine learning methods as the databases are often large, multidimensional,
relational, and contain multiple types of data.

Medical records in an electronic database are often not grouped on a per-diagnosis
-basis but are instead arranged in a multidimensional relative model with limited
links between them. These data may not have any markers denoting which of the
diagnoses one particular session is related to, and one session may be used to check
up on multiple diagnoses. To effectively monitor treatment related to each specific
diagnosis, we must be able to first categorize different treatment sessions as related
to a particular initial diagnosis. We define this grouping as the “treatment pathway”
of the patient for each specific diagnosis. Figure 1 shows which data are considered
when deciding if the items fall under the same treatment pathway. Generally, all
data related to the treatment of a single condition are seen as belonging to this
pathway, including the number and occupation of treatment personnel seen, length
of treatment in days, and locations of individual treatment sessions with possible
self-help and virtual sessions.

Patient medical
history

Treatment pathway -

r| Initial appointment |

Medication

Additional Laboratory tests

Related " | appointments |- | & questionnaires

diagnoses

Figure 1: The data that are seen as belonging to the same treatment pathway.

Additionally, any prescribed medication, laboratory tests and questionnaires
such as the Beck Depression Inventory (BDI) response patterns can be stored. The
treatment path can also contain additional diagnoses along with the initial diagnosis
if these are related to the initial disease. Such diagnoses can either be somatic



diseases, meaning a physical symptom arising from a mental health condition, or
related mental health issues that are treated as one. The initial diagnosis may also be
clarified to better suit the underlying disease by assigning a more specific diagnosis
to replace a more general one.

Any items with a close relation to each other concerning the described metrics are
labelled as belonging to the same treatment pathway. Medically speaking, given an
initial diagnosis for any mental health-related problem, we aim to find and predict the
response and future visits to medical personnel, future diagnoses, possible medication,
and linked treatment. As a matter of example, we may imagine a patient having
multiple diagnoses for different conditions with dozens of visits to a clinic between
them. Given a sufficiently experienced doctor, the task of grouping these into
meaningful categories in which each visit is linked to an initial diagnosis is a relatively
easy task. However, given the enormous scale of the typical EHR system, this is
not feasible beyond a small number of patients. Machine learning methods give us a
cost-efficient alternative to analyzing, clustering and predicting treatment pathways.

Given a sufficiently efficient and accurate computational method for identifying
patient treatment pathways in EHR data, medical personnel could better measure
and predict the effectiveness of care for each patient. This also enables us to better
analyse large groups of patients retrospectively to study the quality of care and
adherence to general guidelines for patients on a more general level. The method
can also be used to study other metrics from the data such as medicine performance,
abnormal behaviour of medical personnel, or possible undiagnosed conditions.

Predicting future treatment pathways for patients currently receiving care also
enables effective planning of personnel workload and improves patient care. Kela,
the national social benefits provider in Finland, paid out sick leave benefits for
mental health issues for a total of 195 million euros in 2017, a quarter of all the sick
leave benefits paid [2]. According to an interview with the chief psychologist and
psychotherapist at a large Finnish healthcare provider, PhD Tuija Turunen, in many
cases, the initial visit of the patient for mental health issues is for reasons unrelated
to those issues. Instead, the medical condition is noticed during other operations.
Mental health problems can also manifest themselves as different conditions, such as
pain or headache. Improving early detection for these types of cases improves care
by eliminating unnecessary visits and steering the patient to the correct specialist
sooner. Early detection also reduces the psychological distress of the patient, reduces
the need for long sick leaves and is also preventative on a larger scale. An effective
treatment on adults also supports the mental well-being of children and relatives as
well. [2][3][4]

2.1 Electronic health records in Finland

The International Organisation for Standards defines electronic health records in its
standard ISO/TR 20514:2005 as a “repository of information regarding the health
status of a subject of care, in computer processable form” [5]. Hayrinen, Saranto
& Nykénen [6] have conducted a systematic approach to analysing EHR structure,
definition, data types and access as well as related research. They concluded that



EHRSs comprised a broad range of different information systems in primary, secondary
and tertiary care and typically covered all medical reports related to one person for
any one medical service provider as well as billing information and metadata. These
may include personal data such as an address, gender, height, age, and treatment
information such as past and ongoing medication, diagnoses, and possible specialized
data such as laboratory results. The data are collected over long periods and are
inherently sparse with emphasis on documenting existing medical conditions. As
such, the data can be biased as these are sampled from predominantly non-healthy
individuals. Data sets also usually cover only one medical service provider. In this
case, an individual’s treatment path may appear broken, if they have changed the
medical service provider. EHRs can also contain different agreements between the
patient and the health care provider based on their compliance with their data being
used in studies as well as personal care. This Thesis only considers patients who
have given their consent to use their medical data in academic studies.

The Finnish healthcare system is divided between public and private service
providers. Still, even within the same sector, the transfer of patient records between
any two units not in the same organization is limited. A national initiative to unify
and collect medical records in Finland has been put forward by the government
(Potilastiedon arkisto, Kanta-palvelu) to remedy this in which all national healthcare
providers are directed to submit patient data to a national database [7]. The service
combines electronic recipes and electronic health record data nationally, and users
have the option to choose to share this data across all health service providers
in Finland. However, the more common instances where patient data is traded
are company acquisitions or mergers. Historical data acquired this way may differ
significantly from the practices of the acquiring organization. The same data, such
as blood pressure measurements, may be written in multiple ways even in the same
database due to multiple data migrations from multiple sources throughout the
database and different practices of the original organizations. This issue brings
forth the need to unify and mine the data to structuralise it further, for example
by implementing natural language processing (NLP) to various data fields to unify
large data sources across time [8].

2.2 Mental health treatment procedures in occupational health-
care

The national outline for treatment procedures of mental health issues is outlined
by the national recommendations for good care (Kaypa hoito). In acute care for
depression, the guidelines recommend both medicinal care and effective psychotherapy.
These are equally effective in treating mild or moderate depression, but concurrent
use is the most effective form of treatment. With more severe cases of depression,
medicinal care is always needed. Persons with three or more diagnosed cases of
depression are more susceptible to relapse, in which case long-term medicinal care
is in order. In occupational healthcare, the central role is in preventive care and
rehabilitation, in which the aim is to have the person returning to work as a form of
treatment. [3]



The treatment of depression is divided into three clinical phases. The most
effective care characterizes the first acute care phase, either medical, therapeutical
or both and aims to remove symptoms of depression on the patient. The duration of
this care is individual, but in 40-50% of cases, the symptoms are mitigated in 6 to
8 weeks. The next phase, follow-up care, continues for half a year after the acute
care phase. During this phase, drug dosage is not reduced, and regular checkups
and psychotherapy are continued. The purpose of this phase is to mitigate the
possibility of a relapse. If the patient does not show any symptoms after half a year,
the treatment can be discontinued. The third possible phase, maintenance treatment,
is reserved to people with the reoccurring disease, usually with three or more cases
of depression over their lifetime. The aim is to reduce the possibility of any future
relapse. The treatment is done using the same dosage and treatment as with acute
and follow-up care and can last for years. Beginning or ending this care is always
done with the consultation of a doctor. [3]

The usual, most extensive treatment path usually begins with an unrelated routine
health check in professional healthcare. Mental health issues are screened with annual
or per-demand questionnaires along with other diseases or via discussion with the
occupational nurse. The decrease in mental health is picked up by an occupational
nurse or a doctor who forwards the patient to a psychologist. If the diagnosis is
confirmed after 3 to 5 meetings, the patients are referred to the national support
program for mental health via Kela that partakes in the cost of the treatment. The
care continues for 1 to 3 years with guidelines for 80 meetings in the first and second
year and 40 in the last alongside with medication. [4]

According to Turunen, the steps above are the most typical, but also an intensive
way to treat mental health problems. However, early detection and timely access to
treatment are the most critical parts of the treatment plan. Even a short intensive-care
psychotherapy treatment in early phases of the diseases is proven to be rehabilitating
and improve the condition of the patient early on. Thus, early detection of the disease
and the guidance of patients to the right professionals are important in the treatment.
The main goal with occupational healthcare with mild to moderate depression is
enabling the person to return to work as soon as possible, as stable lifecycle and
work-life are rehabilitating to the patient. [4]

Another interview with the medical director of occupational health of southern
Finland at the same Finnish healthcare provider, Dr Anita Riipinen, sets the usual
number of treatment sessions around 10-20 for the total length of the care. She stated
that common problems with the treatment plans are misdiagnoses or understatement
of the symptoms, in which mental health symptoms are diagnosed for example
as general fatigue, sleep deprivation, or other general issues in fear of the stigma
associated with a depression diagnosis. Mental health diagnoses can also be unwanted
by the patients in mild cases, as any mental health diagnosis in patient history can
affect external factors such as insurance cost and availability later in life. Thus some
cases can purposefully be left undiagnosed, further complicating care. [9]



2.3 Previous studies on the subject

Machine learning applications have often been tested on medical data with small
data sets. Few tests have been done concerning identifying or working with treatment
pathways, however. Many tests have differing goals, and these are seldom shared
between the studies.

Brett, Beaulieu-Jones et al. [10] and Miotto et al. [11] simultaneously utilized
deep learning with electronic health records in stratifying personal phenotypes. They
applied denoising autoencoders models to medical history data and genotypes to
arrive at possible phenotypes for each patient. The tool used by Brett & Beaulieu-
Jones was also used to predict the prevalence of ALS (amyotrophic lateral sclerosis,
motor neurone disease) in the population. Both found that a denoising autoencoder
applied to a sparse EHR data set yielded good approximations of the phenotype and
was considered a cost-effective tool in analysing large masses of patients.

Prediction of the probability of a person having a particular disease from EHR
data is a popular problem in data science. Banfield and Raftery [12] demonstrated
the use of model-based clustering by analysing the effect of glucose treatment on
diabetics. Some public data sets have been used by multiple studies. Hunt &
Jorgensen [13] and van de Velden et al. [14] used a publicly available data set of 303
American heart disease patients to predict disease prevalence from EHR records with
different clustering methods. Both studies explored the feasibility of distance-based
clustering methods on mixed biological data. Zhao & Weng [15] used an unsupervised
Bayesian network on an EHR enriched with outside PubMed data to approximate
the prevalence of pancreatic cancer on a data set of patients, where the weighted joint
model outperformed a purely Bayesian classifier as well as two other conventional
classifiers, k-nearest neighbours and support vector machine.

Michiels et al. [16] used EHR data to predict flu outbreaks before the epidemic
breakout, with their autoregressive Poisson likelihood model being able to approximate
flu outbreak a week in advance and with reasonable probability in predicting the
duration of the outbreak. Peissig et al. [17] used relational machine learning methods
with inductive logic programming (ILP) to analyze if patients had any undiagnosed
conditions present in their data. They concluded that relational learning is a viable
approach to EHR-based phenotyping of diseases.

Multiple studies have been conducted concerning applying natural language
processing approaches to EHR data. These studies mainly try to curate and process
open data fields for the use of external systems or try to assess the severity of
diagnosis based on open text fields written by doctors. Wang et al. [8] developed a
novel approach to NLP to detect relevant free text fields linked to a diagnosis and
gained a 64% precision with 87% recall in identifying relevant articles. Xia et al.
[18] successfully applied similar methods to a larger sample with better accuracy
and identified disease severity based on free text fields. Goeg et al. [19] developed a
clustering method which they successfully used in estimating the similarity between
different treatment frameworks and clinical models between service providers, enabling
better co-operation between different EHRs.

The common element between these tests is that EHR data is a popular tool in



studies for demonstrating the feasibility of methods in small scale medical environment.
However, the applications are often data-specific and related to a single problem.
Analysis of treatment paths has been limited, even more so in the context of large-scale
EHR systems with thousands of patients with millions of visits between them.



2.4 Clustering

Clustering methods usually work by dividing a given space into partitions based on
some predefined metric. These partitions can be either hard (mutually exclusive)
or soft (partially overlapping). Different partition methods perform differently on
different data sets, and it is usually up to interpretation as to which algorithm
performs the best. In the case of EHR, a large portion of the data is coded into
categorical data as opposed to purely continuous values. For example, data such as
diagnoses, medication, and laboratory type have distinct values with no specific order.
Such a data set where the data contains both continuous and categorical entries
is called mized data and needs a specific approach for analysis. Most clustering
algorithms can work on only continuous or categorical data, but some methods
are suited for use for mixed data. In this study, we will be focusing on three such

methods: similarity-based metrics, dimension reduction, and model-based clustering.
[14]

2.4.1 Similarity-based metrics

Similarity-based metrics are a logical counterpart to traditional distance metrics in
clustering. In these methods, we aim to create a matrix of similarity or dissimilarity
between individual entries on a data set which can then be used to cluster the data
set much in the same way as with a distance matrix. A widely used method was
first proposed by Gower in 1971 [20]. Given two vectors = and y of k variables each,
the Gower’s similarity coefficient is given by the weighted average of the distances of
each pair of variables. This can be formulated as

k
i=1 SiW;

(1)

where the subscript i denotes each pair of variables for (x;,y;), w; > 0 denotes the
weight of the variable i in the sum, s; is the similarity between (x;,y;) and §; is a
measure of comparability between the i-th variables on the vectors. The weight
w; can be an arbitrary value of weighting, with higher priority given to characters
that are known to contain more information on the similarity of the vectors (x,y).
The value of 9; denotes if the values can be compared, and gets a value of 0 when
variables (z;,y;) have no comparable similarity metric and one otherwise. Thus the
sum Zle 0;w; is the weighted number of comparable dimensions on the two vectors,
giving a scalar value with which to average the similarities. When §; = 0 we set
s; = 0 as well. If Zle 0;w; = 0 the value of similarity is not defined, but Gower’s
solution sets the similarity as 0 for conventionality. [20]

The similarity s; is calculated differently for different groups of variables. For
continuous variables it is given by range-normalised Manhattan distance, s; =
1 — |z; — y;|/R; where R; is the range of variable i. For binary and categorical data,
the distance is the simple matching coefficient for two cells, (z;,y;). Thus s; = 1
when the dimensions are matching and 0 when the value differs for the dimensions.
The similarity measures are then combined using the Equation 1, which results in a

Z, =



Gower similarity coefficient G'S. As most distance algorithms expect the lower value
to mean higher similarity, however, we can deduct this value from 1 to arrive at the
Gower dissimilarity coefficient, GD = 1 — GS. This dissimilarity value can then be
used as a substitute for distance metric in conventional distance-based clustering
algorithms such as k-means, partitioning around medoids (PAM) or hierarchical
clustering. [20]

For clustering applications, similarity-based metrics are easily understandable.
Moreover, the implementation is usually quite straightforward. This makes similarity-
based metrics a good benchmark for comparing with other analyses on the data.

2.4.2 Dimension reduction

Dimension reduction methods aim to present the data in a subdimensional space
such that the number of random variables is reduced. The resulting subspace aims
to capture the maximal amount of information related to the variance in the features
present while making the data set easier to work with. The two most widely used
methods are Principal Component Analysis (PCA) for numerical data and Multiple
Correspondence Analysis (MCA) for categorical data. The two share a link in that
MCA can be represented as PCA of a matrix of dummy variables, where each set
of column-variable pairs is coded into a contingency table, and PCA is performed
on the resulting table. A method for dimension reduction for mixed data is then to
concatenate the continuous variables with the dummy variables and perform PCA
on the resulting matrix. This can be shown to be equal to PCA on purely numerical
values and MCA on purely categorical values [21]. The idea has been independently
proposed by multiple authors as a dimension reduction method for mixed data, most
notably Hill & Smith [14], de Leeuw & van Rijckevorsel [22], Kiers [23] and Pages
[24], while the process itself is usually referred to as either PCAMIX (Kiers) or Factor
Analysis of Mixed Data (FAMD, Pages) on technical terms. In this study, we will
refer to the method as FAMD. [14]

FAMD is analogous to PCA on a weighted matrix XDlz/ 2, where X is the initial
data matrix. Dy is a matrix with diagonal elements of s7,--- | s%iT% 1, -+ , Tk,
where s; is the standard deviation of the i-th continuous variable, 7; being the
number of objects in the associated category of the i-th dummy variable, K is the
number of continuous variables and () is the number of categorical variables on the
data. In other words, the data are ordered so that numerical variables are followed
by categorical variables, and from this matrix, the diagonal matrix of squares of
standard deviations and number of objects in each category is calculated. Then,
PCA is performed on the weighted matrix XDIE/ ?. PCA converts a set of correlated
values to a matrix of linearly uncorrelated values, which are conventionally called
principal components. The resulting primary components are orthogonal and ordered
so that the first dimension f; holds the maximum number of information on the
variance of the data, the second dimension f; the second most information and so on.
Therefore we can reduce the complexity of the data by choosing only to use n first
dimensions that capture the largest amount of information on the variance of the
data and discard the rest, effectively reducing dimensionality on the original data
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set. [14]
Assume a data set consisting of K quantitative variables, k =1,--- | K and @)
qualitative variables, ¢ = 1,--- , Q. The first primary component of the PCA method

is denoted as f;. This primary component is maximised with respect to

ZT2<UI€>]£1)+ ZUQ(vmfl)? (2)

keK qeQ
where 7 is the simple correlation coefficient or fraction of matching values between the
variable v, and the primary component f;, where v, k € K is the k-th continuous
variable of the set of all continuous variables, 1 is the correlation ratio between
the variable v, and the principal component f; and where v,,q¢ € @ is the ¢-th
categorical variable of a set of all of the categorical variables [24]. The first part
of the sum maximizes the correlation between continuous variables and the second
part between categorical variables. The contribution of each variable is the same.
The second primary component fs is orthogonal to the first, and again maximises
information related to the Equation 2, and so on continuing for all of the other primary
components. Thus the FAMD maximises information related to the correlation of
both the continuous and categorical variables. [14][24]

The resulting matrix has the attractive property of containing only numerical
coordinates for each data point in the data set. Thus we can apply any continuous
distance-based clustering method such as k-means to the data set. Moreover, we
can analyze and visualize the most weighted variables on the data with conventional
PCA analysis tools to check the behaviour of the data. The approach has some
shortcomings, however. Vichi et al. (2001) brought up the so-called masking problem
for cases where distance-based clustering is applied after dimension reduction [21].
Dimension reduction aims to maximize the variance in the original set of variables
while the following clustering step aims to minimize within-group variance and
maximize the between-group variance. Without carefully considering the underlying
variables it is possible to end up with a situation where we are removing the underlying
cluster structure with the dimension reduction before applying the clustering itself.
Such a case could occur, for example, if a set of strongly correlated variables are not
connected to the cluster structure but are well expressed in the smaller dimensional
projection. [14]

2.4.3 Model-based clustering

Model-based clustering is based on the assumption that sample observations arise
from a distribution that consists of a mixture of multiple individual components
[12][25]. The first models making use of finite mixture models for classification
contain the works of Everitt [26], Banfield & Raftery [12] and Hunt & Jorgenssen [27].
Model-based clustering takes a probabilistic approach to clustering and, rather than
assigning each observation a hard class label, the method assigns a list of probabilities
for each observation of that observation belonging to each of k latent categories on
the data. Rather than fitting centroids such as k-means or hierarchical distance-based
structure on the data, the models fit a group of multivariate distributions on the
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data. Assume that we have n observations x = x1, z9, ...z, of which we construct a
joint distribution that is a mixture of G components, each of which is a multivariate
distribution with density function fy(z;|ux, Xx), k =1, -+ , G. The weighted mixture
model is then

n G
flm, w2 =T D mefel@il i, i) (3)
i=1k=1
where 7, are the weight coefficients for the components such that ¥ 7, = 1 and
is any probability distribution characterized by mean pu; and covariance matrix >
[26]. For fi, normal, gamma and Poisson distributions are widely used. Maximum
likelihood estimation for the parameters is difficult, but the usual solution is to
apply the expectation maximization algorithm developed by Dempster, Laird and
Rubin [28] onto the data. The EM algorithm expects that there is some missing
data, namely the class labels that can be estimated to form the complete data set.
The EM algorithm provides an iterative approach for estimating the missing data
and tuning the model with repeating estimation (E) and maximization (M) steps
until convergence is reached. The mathematical formulation of the EM algorithm
is outside the scope of this Thesis, but detailed accounts of EM algorithm with
model-based clustering can be found in Dempster et al. [28], Banfield et al. [12] and
Melnykov et al. [25].
After s iterations for an unobserved class label v = E(&y|z;), where & = 1 if
x; belongs to a given cluster and zero otherwise, we arrive at estimated values for
the mean and covariance matrix for each x; as

S 1 i S
W==3, (4)
iz
n (s)
s i=1 Vik Li
l(c) = nl (s) 7 d (5)
i=1 Vik
n &, () (9
E](:) _ ZZ:l ik (xl - M (3)(561 M ) ) (6)
i=1Yik

The components of %gs) are ellipsoids centered at p = puq, pa, ...ug [26]. However,
the ellipsoids can have varying forms characterized by the heterogeneous covariance
matrix >;. We can decompose the covariance matrix as > = )\kaAkD,:f where Dy, is
the matrix of eigenvectors of ¥, Ay is a diagonal matrix with elements proportional
to the eigenvalues of ¥ on the diagonal and Ay is a scalar [12]. Thus the geometric
attributes of the component are encapsulated with these parameters. Dj controls
the orientation of the principal components, A, defines the shape of the density
contours, and the volume of the cluster is given by A,. With some applications these
are often represented with three letters in order, denoting the volume, the shape and
the orientation of the ellipsoid. These letters usually are denoted to have values of
“E” for “equal”, “V” for “variable” and “I” for “coordinate axis” that define the order
of freedom of the three parameters [29].
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Imagine the records in an EHR database as p-variate occurrences centred on
each person and diagnosis of a mixed data type. The cluster can be seen as a
distribution of visits centred around a mean with a common covariance matrix. Thus
a model-based approach can help us partition the data probabilistically. More often
than not, we can have multiple diseases being treated simultaneously or old diseases
affecting new diagnoses and treatments. Thus a shift from a hard partition into a
probabilistic one can bring a more realistic picture of the clustering of the treatment
paths. This is dependent, of course, on if these probabilistic distributions capture
an apparent effect on the data and those individual treatments are independently
distributed around a mean, which is not necessarily given.

2.5 Prediction

Predicting outcome variables from the data can be done via machine learning models
trained on a labelled data set. For our case, the methods are supervised learning
methods. Classification models aim to classify a point in the data to a prior set
of distinct classes while regression models try to predict a numerical value to the
output variable. The training data for supervised learning problems contains both
the input variables as well as the outcome variable or variables. This data is usually
represented as a matrix of individual training vectors divided into different features.
Supervised learning aims to fit a model or a function to the data so that it can be
used to correctly predict the output variable of an entirely new set of input data. [1]
Given the varied nature of medical data, it would be beneficial to be able to
use any selected methods on both classification and regression tasks on the data
set. We may be inclined to, for example, find out both the number and type of
any upcoming medications for a patient as both numerical and categorical variables.
Some models are able to address both classification and regression problems, either
with an extension of the algorithm or by some small variation in the model. However,
these can seldom be used simultaneously, and different outcome variables need a new
model to be trained on the data, so in theory, there is little benefit to using the same
model for classification and regression both. In practice, however, initializing and
maintaining multiple libraries and methods can be unwanted. For this reason, in the
scope of this study, we are focusing on exploring methods that can be used for both
classification and regression tasks. Moreover, any selected models need to be able to
work on mixed data types and have adequate performance for the tasks at hand.

2.5.1 Random Forests

Random Forests are an extension of decision trees into the domain of machine learning.
Conventional decision trees are used to create a tree-like structure in which decision
nodes or branches are used to divide points on the feature space into final classes
called leaf nodes. Decision trees have many attractive features for machine learning.
They are efficient to compute, intuitive to understand and can be grown arbitrarily
large until each point in the training data is correctly classified, resulting in a perfect
fit for the training data. This, however, introduces a significant bias into the data,
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and the trees are prone to suffer from overfitting. This means that the trees perform
very well in the context of the training data but given new data that is even slightly
out of the scope of the training data, the model underperforms heavily. This is a real
problem in machine learning as generally we want good performance on out-of-sample
data points that are typical of real-world data applications. This feature of the model
is often called robustness.|[30]

Early solutions to the problem were pre-pruning or post-pruning the trees, in which
the growth of the tree was stopped or cut at some point to allow for a more general
representation of the data. This had some downsides, namely that the pruning point
was hard to determine and any gain in generality came at the expense of accuracy
of the model. In 1995 Ho [30] introduced the idea that using multiple decision
trees increases both the generality to the model while simultaneously increasing the
accuracy of the model. The idea was later built upon by Amit and Geman [31], and
Breiman [32], who formulated the model that is most commonly used today. The
idea that additional trees increase generality while improving accuracy was formally
proven by Breiman by studying the error function of the random forests as more
trees are added, but the same phenomena had been noticed and used before in the
context of multiple classifiers for a data set [30][32].

The idea of random forests algorithm is to create or grow multiple decision trees
with the same data set and combine these individual trees to create the final model.
This combining is often done on voting on the final values or choosing the mode of
the trees as the final tree. The requirement for such models is that the trees are
uncorrelated. The usual approach is to use a method called bootstrap aggregating
or bagging to the data in which multiple samples with replacement are drawn from
the data set to train the model, thus increasing invariability to the input data.
However, for most of the data, some features are more critical in identifying the final
class than others. Over multiple rounds of voting, this would make such features
over-represented in the data, thus making the individual trees correlated. This is
mitigated by employing an additional step to the bagging phase called feature bagging
in which the data is sampled not only concerning the data set but also the individual
features. Such a method was first suggested by Ho and later generalized by Breiman,
and most contemporary methods for random forests are built on the principle of
feature bagging. [32][30]

Random forests can be used for both classification and regression tasks. The
tree can get both categorical and numerical values in the leaf nodes, and we can
use either as the outcome variable for the algorithm. The classification labels are
given by a tree whose leaf nodes are categorical, or if many leaf nodes share the same
path, that which is the most common among the values. For a regression tree, the
outcome value of a given problem is the numerical value of the leaf node or, in case
of multiple numerical values sharing the same decision tree, the average of the leaves
for that case. With both methods the random forest algorithm then grows multiple
trees randomly and combines these individual numerical or categorical values, either
by voting or averaging across the values, to arrive at a classification or regression
estimate for any one given task. [33]

Another feature of random forests built on Breiman’s theory, which utilise the
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traditional CART (Classification and Regression Tree) algorithm is that the decision
space can be thought of like an n-dimensional space that is split by hyperplanes
into partitions, representing the splitting rules on the features. For any feature
f consisting of d dimensions the tree can, therefore, have 2¢ different splits done
on it, each corresponding to a combination of categorical values. As the value is
exponential, some tree-building algorithms limit the number of dimensions for a
categorical feature to some reasonably computable number. This is, for example,
the case with the randomForest package on R that is a port of the original Fortran
implementation of Breiman’s algorithm. Some of the features in the data set of this
study are very high-dimensional, for example, when considering the place of the
appointment out of a network of over 200 possible hospitals. A common workaround
is to convert such d-dimensional variables into d substitute or dummy variables that
have a value of 1 if the categorical value of the vector is corresponding to the feature
dimension and 0 otherwise. This, however, means that any d-dimensional variable
is represented as d individual features on which the feature space is sampled, thus
increasing the weight of the variable. We can, for example, imagine a data set of 2
numerical variables and one 98-dimensional categorical variable. If the categorical
variable is coded into dummy variables and the features are sampled from these 100
new features the numerical variables are going to account for only 2% of the final
results as opposed to the original 66.6%. This can be accounted for by lowering the
weight or probability of sampling of such features by é to not make these values
over-represented. [32]

2.5.2 Support Vector Machine

Support-vector machines (SVM) or support-vector networks are a popular tool for
supervised classification and regression problems. As the name suggests, the method
involves using vectors of the data points on the training set to partition and classify
the data set. The idea was first introduced by Vapnik in 1963 [34] and later generalized
in 1995 by Vapnik & Cortes [35] for use in machine learning.

The main idea behind SVM’s is to fit hyperplanes onto the k-dimensional data
set in such a way that the hyperplanes split different partitions with the widest
possible margin. Figure 2 shows a simple example with two groups in a 2-dimensional
space. Formally the support-vector machine is defined by taking a data set of n
points represented as p-dimensional real vectors (77 ...7,) each with a group label
yi,© € (1...n). For simplicity, we set this label to be either -1 or 1 for each vector.
The objective is to separate the points with a hyperplane. The plane can be written
as the set of points w -7 — b = 0, where W is a normal vector to the hyperplane
and HTbH is the offset of the plane from origo along the vector w. To separate the
two classes we introduce two constraints for both of the classes which ensure that
each point lies on the correct side of the hyperplane. For labels y; = 1 we must have
w-T—0b>1and for y; = —1 we have W -T — b < —1. Vapnik uses an expression

yi(w-T; — b) > 1 (7)

where y; is the class label of the vector, namely 1 or -1. As the width of the margin is
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ﬁ and as we try to find the largest possible margin the problem becomes minimizing
||w|| subject to the constraint y;(w - T; — b) > 1. An important feature to note is
that the hyperplane is completely characterized by the points bordering the margin
T;. Vapnik calls these points the support vectors of the hyperplane, thus giving a
name to the algorithm. [35]

Figure 2: A simplified example of a 2-dimensional plane with a separable hyperplane
partitioning the space. The plane is chosen so that the margin enveloping the
hyperplane is as large as possible. The hyperplane is defined by support vectors,
here marked with grey squares. Image from Vapnik & Cortes (1995) [35]

Following the formulation by Vapnik, the minimization problem can be solved
by a Lagrange multiplier making it a quadratic programming problem, which when
solved yields a simplified form 7; = X' ;a;y,7;, where a > 0 and o > 0 only when
the vectors T; lie on the margin boundary. The constant b can then be calculated as
b= 1w -T; —y; for all 7; that lie on the boundary, fully characterizing the equation.
However, this is only feasible for clean cuts on the data. Vapnik and Cortes suggested
a way to account for a so-called soft margin that allows for a number of points on the
wrong side of the margin by characterizing the hypervector as max(0, 1 —y;(w-z; — b))
and minimizing

g mar(0, 1~ yi( 7 — )] + Al 0

in which the parameter A\ measures the bias of the algorithm to maximise the margin
size while sacrificing possible points appearing on the wrong side of the margin, with
larger values meaning larger margin but possible misplaced vectors on the margin.
The solved function behaves the same, but « is limited by an upper bound of ﬁ
[35]

The described algorithm works for any linear combination of support vectors,
but fails for any nonlinear solutions. To get around this Vapnik suggested a kernel
transformation of the vector space into higher-dimensional space ¢(7;) that satisfies
k(z;,7;) = ¢(T7) - ¢(T7). The problem is then calculated as usual, but using the
transformed space ¢(T;) instead of Z;. As an example switching into polynomial
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kernel k(z;,7;) = (T; - 7;)¢ can solve a polynomial problem where a linear solution is
not possible. [35]

The method was also later generalized for regression problems making it a powerful
and well-established tool for our analysis with the EHR data set. Such a machine was
formulated by Drucker et al. [36], and is subsequently called support vector regression
(SVR). The regression uses the same general methods applied by the SVM method
but uses a different starting point for the algorithm. We want to find the function
f(z) that fits our input data with some pre-defined error value e. We can define such
a function in the vector space as f(x) =W - T + b, where T is the input vector, W is
a normal vector to the hyperplane and b is a bias term of the data. Then finding
the general margin on the data for points that deviate at most ¢ can be thought of
an SVM optimization problem by, again, minimising 3||w?|| under the constraint
ly — f(z)| < e. We can now apply the SVM algorithm to the same problem, reaching
a general solution for f(z) as a result. For nonlinear functions, we can again employ
a kernel trick on the feature space. Training the model then corresponds to solving
f(z) via the SVM method, which can then be used to calculate new values for any
new set of points. [36]

2.6 Validation of clusters

While validation of prediction output is a straightforward statistical exercise, com-
paring different clustering outputs is often a subjective task. To introduce a measure
of comparability to this, we need a standardized test setting for comparing different
clusters resulting from different methods. A simple measure is the similarity of the
final clusters. If we have access to a baseline or want to compare different results
against each other, we can use a standardised metric to compare the values. In
this study, we can use such measures to compare different partitions obtained using
different methods with each other. This information, alongside the expert review,
can help differentiate between methods and approach a possible best solution for the
application.

2.6.1 Adjusted Rand Index

An interesting problem related to clustering is measuring the correspondence of
different partitions. Suitability of partitions is a largely subjective task, but comparing
partitions can bring insight into how similar or dissimilar clusterings are compared
to a baseline or each other. Multiple methods exist for comparing partitions, but a
widespread one is some variation of pair counting based measure, possibly the most
used being the one often credited to William Rand based on his work of evaluating
criteria for clustering methods [37][38]. The method often called the Rand index or
RI was later improved upon by Hubert [39] into the version commonly used now.
Suppose that we have an n object set S = O; ...O, that is partitioned in two ways,
one into R groups U = u; ...ug and the other into C' groups V = v; ... v¢ so that
U and V are subsets of S, and {R,C} < n. Now let us define the following rules for
any pairs of objects [39]:
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Number of pairs of objects that are placed in the same class in U
and the same class in V

Number of pairs of objects that are placed in different classes in U
and in different classes in V'

Number of pairs of objects that are placed in different classes in U
and the same class in V

D Number of pairs of objects that are placed in the same class in U

and different classes in V'
The Rand index is then

Q w »

 A+B _ A+B o)
A+B+C+D (n)

2

as the total number of pairs of objects is (Z) In other words, the index denotes the
number of pairs that are in the same cluster or both in different clusters in the data
set, divided by the total number of pairs in the data. This value is bound between
[0, 1]. The agreements can also be expressed in a contingency table in which each
cell denotes the number of objects that are shared between partitions u; and v;. An

example of this can be seen in Figure 3.

Partition V
Class vy vV .. Vo Sums
i e M2 o Mic my.
U iy fAn nac na.
Partition U
Ug gy MRz . MRc fr-
Sums | n, Ry .. N¢ | n.=n

Figure 3: Notation for comparing two partitions. Each cell n;; denotes the number
of objects that are common to classes u; and vj. Image from Hubert (1985) [39]

However, the original Rand indez is troublesome as a raw measure. Given any
two partitions where the number of partitions is large when compared to the number
of data entries, there is a large probability that some matching pairs are found at
random [38]. Thus the lower bound for the index is not truly 0, but some statistical
value given the partition. Hubert approached the problem by assuming a generalized
model for randomness in which the partitions U and V' are picked at random subject
to both having the original number of classes and object. This gives the expected
value of object pairs of type A as E(E”(<”2”))) = ZK(”;))&((";))/(E) The
formula is equal to the number of pairs that can be formed from the data ZZ((”2>)
multiplied by the number of object pairs that can be constructed from columns

%;(("y)) divided by the total number of pairs (}). Combining this with the Rand
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index Hubert defined the adjusted Rand index, ARI as _Index - Expected Index or
) Maximum Index - Expected Index

Em‘(("éj)) - Ei((nﬁ‘))EJ((néj))/<g)
S5 + = (o)) = S ()= () (3)
where n;;,n j and n; are values from the contingency table. The ARI is bound

between [-1,1] with values near -1 denoting unexpectedly dissimilar partitions, values
around 0 near the expected value and values near 1 denote very similar results. [39]

(10)
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3 Research material and methods

The data set was processed on a 16-core Windows machine, using the R statistical
language for analysis. The basic analysis pipeline for the study is shown in Figure 4.
The data were first preprocessed, followed by clustering with three methods. The
results were validated and used to create a new data set in which each treatment
path was labelled with a cluster number. This was followed by a new preprocessing
step during which the data was prepared to be used for the prediction of various
outcome variables related to the treatment paths. After this, these models were
analysed, and the results validated.

Clustering

Prediction
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Figure 4: A graph showing the basic analysis pipeline for the process of clustering
the EHR data set and predicting outcome variables based on the labels produced
by the clustering method.

3.1 Data preprocessing

The database consisted of information on over 1.2 million patients who have used the
medical services for a large Finnish healthcare provider since the beginning of the
year 2012. The data set had been de-identified for the use of analytics and did not
contain names or SSIDs from which an individual could be identified. Otherwise, the
data set contained mostly complete medical records of the patients, including such
data as appointment history, laboratory and imaging results, diagnoses, age, sex, and
past as well as current medications. Occupational information such as the general
area of industry and sick leave data was present for some of the population. The
data set also contained data on the performing doctors and nurses, such as fields of
expertise and location of the appointment. Not all features were used in the analysis
but rather were selected on a per-application basis.

The data set for the study was limited to the individuals having used mental health
services at some point in their life over the age of 18 and within the occupational
healthcare services. The patients were identified by having a diagnosed ICD code of
specific mental disorders in their patient history. The codes can be seen in Table 1.
The codes were selected in such a way that they represented a majority of mental
health cases for the service provider. The data set consisted of 62.9% female and 37.1%
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male patients. The patients had, on average, 61.2 individual visits to professionals
during their whole lifespan for any disease. For simplicity, medication for the patient
was considered as the number of antidepressants the person had been prescribed
during an appointment. This included psychoanaleptics with an ATC code NO6 and
its subtypes NO6A, NO6B and NO6C that are used in the treatment of depression
and mental disorders.

ICD-10  Explanation

F10-F19 Mental and behavioral disorders due to psychoactive substance use
F32 Major depressive disorder, single episode

F33 Major depressive disorder, recurrent

F34.1 Dysthymic disorder

F41.9 Anxiety disorder, unspecified

F43 Reaction to severe stress, and adjustment disorders

Table 1: The ICD-10 codes that a person must have to be included in the study.
All codes include all subtypes of the hierarchical ICD-10 tree. For example, the code
F32 includes the subtypes F32.0, F32.1, F32.2, F32.3, F32.4, F32.5, F32.8, F32.81,
F32.89 and F32.9 as well. F10-F19 includes all of the codes and subcodes between
the two values. Specific references can be found in the ICD-10 specifications [40].

For the model, we selected the 11 most important features to be used for clustering
the data. These features were selected in co-operation with medical professionals
in the house. The dimensions consisted of data on four major fields: personal data,
such as randomly generated person identifier, age and gender; occupational data
such as field of the profession; appointment-linked data such as the general field of
the appointment, location of the appointment and unit of care; and medical data
associated with the visit. The chosen data dimensions are showcased in Table 2 along
with data classes. As with any data set of similar use case, the data was not purely
numerical but a mix of numerical and categorical data. This put any applications
for the data in the field of mized data analytics.
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Dimension Data class  Explanation

Person identifier Categorical Numerical identifier

Industry of the patient Categorical Industry category, eg.
“Heavy industry”

Gender Categorical Sex of the patient

General type of the visit Categorical Occupational healthcare,

private appointment
or public service

Unit of care Categorical Unit code of the unit of care

Primary diagnosis Categorical ICD-10 code

Secondary diagnosis Categorical ICD-10 code

Product code Categorical Product code for the treatment

Age of the patient Numeric Numerical value

Visit timestamp Numeric Days since the beginning of the
data set on 1.1.2012

Number of prescribed medication Numeric A numerical value if the

patient was prescribed medication
during the appointment

Table 2: Classes of the data dimensions used in clustering of the data. The data
values were abridged and masked such that for example “Heavy industry” would
be marked with a letter “C” and a certain unit of care would be marked with an
abbreviated label, for example, “1HEL” for the primary hospital in Helsinki.

To deal with the sparsity of the data, the missing values in the data were re-coded
as categorical variables of the class “missing” or in case of numerical values as a
number 0. In other words, the absence of data was considered meaningful in the
scope of this study. Consider for example a case that a missing value for a second
diagnosis rarely means that the status of the second diagnosis is unknown but instead
that the person was not diagnosed with anything other than the primary diagnosis.
The logic is embedded in the use of EHR systems where only the relevant fields of the
visit are usually filled during each visit. While some missing data points undoubtedly
were genuinely missing, the overwhelming majority of data was considered to mean
the absence of that particular issue associated with the disease and not an absence
of the data.

3.2 Clustering

The clustering was done with three distinct methods to analyse the performance and
viability of the methods for clustering of the data: Gower’s dissimilarity matrix and
subsequent hierarchical clustering, dimension reduction and the subsequent k-means
clustering, and the model-based clustering methods. The Gower dissimilarity matrix
was calculated using the daisy [41] package. The dissimilarity matrix was suitable



22

for use with hierarchical models, so the hclust [42] method from the R base package
was used. For FAMD the dimension reduction was calculated with the FactoMineR
[43] package which resulted in a numerical transformed matrix of coordinates. We
used a simple k-means [42] clustering from R base to cluster these. The package
MixAll [44] was used for the model based method. The parameters used are displayed
in Table 3. For any value not mentioned, the default value was used.

Library Version Method Parameters
R base 3.4.3 hclust method: “complete”
R base 3.4.3 kmeans centers = 14 058
cluster 2.0.6 daisy metric = “gower”
type: list(logratio = 3)
stand = TRUE
FactoMineR 1.39 FAMD npc = 3
MixAll 1.2.0 clusterMixedData models = c(“categorical _pk_ pjk”,

“gaussian_ pk_ sjk”)
nbCluster = 14 058
strategy = clusterFastStrategy()

Table 3: R packages and the parameters used for the runs. Default parameters
were used if not specified. [41][42][43][44]

The data set was sampled to contain fewer than 46 340 visits. This was due to
limitations in the selected libraries, namely in the daisy package used to calculate
the Gower dissimilarity matrix. The method stores the length of the dissimilarity
matrix as an unsigned 32-byte integer. This means that for any n x n matrix the
maximum number of individual appointments is then v/231 &~ 46 340.95 with any
matrix size larger than this resulting in an integer overflow. To keep the results
comparable and due to long processing times, the sampled data set was the same for
all of the methods. The samples were chosen according to the following algorithm:

1. Create an empty data set of length 0 as the sampled data set
2. Create a list of all the appointments grouped by patients

3. Shuffle the list of patients

4. Calculate the length of the sampled data set.

(a) If the length is less than 46 340 continue the algorithm
(b) If the length is more than 46 340 terminate the algorithm

5. Add the next patient from the list of the patients with all of the related visits
to the sampled data set
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6. Return to step 4.

Usually defining the number of clusters is a central problem in data science.
In this case, however, deducting the number of classes was quite straightforward.
To find k treatment paths among the patients, we should arrive at the number of
unique diagnoses across all the patients. Thus the number of clusters was set to
be the set of all unique combinations of persons and diagnoses present in the data,
([L?lﬂiiro?f df:;fsstes}s]) Thus k or centres was set as 14 058. The running time for the
scripts was quite long, with Gower and FAMD processing the data for around half
an hour with a 16-core computer and the mode-based method processing the same
data set in around three hours.

The methods were chosen so that the whole data set was processed at a time,
rather than one person at a time or a similar split. This was done for several reasons.
First, it was assumed that the individual differences in the data were the largest
separating factor so that most methods would naturally split the data at different
patients. Second, the performance of the clustering algorithm was considered. A
single clustering pass that finds & - n partitions in the data is more effective than k
individual passes each finding n passes, as even with the most optimized algorithm
there is always some computational overhead involved in setting up a new model
and initializing the clustering for a new patient. For a large data set of millions of
patients where performance is important, this issue could be magnified. Lastly, if
calculated for different persons, the clustering algorithm works on slightly different
criteria for each individual. When hierarchical clustering is run separately on two
patients, the resulting splits can be quite different, whereas when clustering one large
matrix of multiple people, the splitting rules will be similar for each patient. This
increases the comparability of the results of each patient.

However, this choice in running a single pass on a large data set of multiple
people also introduced some complications. Some of these assumptions turned out to
be false, and for example, the natural separation between persons was not as strong
as believed. As per the definition of a treatment path, a cluster that spans multiple
persons was impossible. To mitigate the issue, any such partitions were cut into
separate clusters according to the different person identifiers, and a new boolean
column was set to the result set to differentiate between these values. A value of 1
meant that the values had been cut and a value of 0 meant that the values were the
original clusters. While this increased the number of clusters and conversely meant
that the resulting clusters would be smaller, the process upheld the definition of
the treatment path and enabled the use of the clustering for predictive measures. A
possible future improvement would be to re-run the clustering on the results and
combining possibly split values back together. All clusters that had no mental health
diagnoses after the clustering were removed. Strictly this was done by removing any
cluster that had no diagnoses under the ICD-10 code F00-99. This ensured that we
were only looking at mental health related treatment paths.

To improve readability, a final step was added where the data were un-abridged
where such abbreviations had been done to the values. The short category labels
were replaced with the full names, and some readability changes were made, such
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as changing the NA letter to a simple dash, ’-’. This was done to make estimating
the accuracy of the results by professionals more accessible and intuitive. Some
additional columns such as explanatory text fields were also added to the data that
had not been used in the clustering step but were available for the appointments to
improve the readability of the data by humans further.

3.3 Validation of clustering results

The validation of the clustering results was done in two steps. First, we calculated the
adjusted Rand indez (ARI) for each pair of methods and assessed the similarity of the
methods. This was done to get a general idea of the similarity of the methods. The R
package mclust[45] was used for this step. This gives us a measure of similarity, but
the quality of clustering is largely a subjective measure as well. Mathematical and
statistical tools offer us little insight into whether the results obtained are sensible in
the medical sense. For example, a computer might cluster two visits closely together
by resemblance. Further analysis is then needed to asses whether the visits truly
are related or simply impossible from a medical point of view. A person might,
for example, have back pain and diagnosis on mild depression done on the same
day in the same hospital, and for that reason, the visits have high similarity. A
medical expert is needed to asses if such back pain can be the source or result of the
depression or if the two are unrelated.

Two experts were used for validation, the first being the medical director of
occupational health and the second the leading psychologist and psychotherapist for
the healthcare provider. The experts were asked to assess the number of incorrectly
clustered appointments from the data, which gives us the number of false positives
in the data as a measure of the quality of the data. The amount of data chosen for
validation was chosen such that the combined number of appointments and clusters
was around 750. This could mean, for example, 650 appointments across 100 clusters
or 500 appointments across 250 clusters. This was chosen to limit the workload on
the experts for the data but is large enough to be a good representation for the
whole data. It is important also to note that in reality, the clusters are not mutually
exclusive even though the clustering results are represented as such. Many diseases
can be treated with one visit, and one underlying visit can be either a source or an
explaining factor to multiple other diseases. The model-based clustering method is
capable of producing probabilistic clustering estimates, but this was not used for this
estimate. Thus a person might cluster one appointment as belonging to multiple
groups, but with our model, it was only set in one.

Some additional general notes related to the different clustering results were
collected from the experts. These included a general review on the quality of data
and their feasibility in the further analysis as well as any possible other notes, such
as those on missing or incorrect data. These were included in the results as well.
Finally, a brief visual analysis of the clusters was done on the results as well, as the
FAMD method provided a numerical space on which to plot the data according to
different clusters. This enabled us to compare the methods visually.
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3.4 Prediction

For generating successful insight into future and ongoing treatment paths, we need to
be able to predict both numerical and categorical outcome variables from the initial
visit of any one treatment path. Such outcome variables are for example the length
of sick leave and the total number of visits during the treatment pathways as well as
categorical variables such as possible future diagnoses or the most visited healthcare
unit for the upcoming treatment pathway. The methods chosen need to be able to
predict any such outcome variables from the input data.

Two models were chosen for the prediction on the data; Random Forest (RF)
prediction and Support Vector Machine (SVM). Two R libraries were chosen for the
task, namely the randomForestSCR package for RF analysis and the e1071 package
for the SVM analysis. The parameters for both libraries are shown in Table 4. Both
of the methods are supervised machine learning methods, and thus need labelled
training data for fitting the models. Because of this, we used the class labels obtained
from the clustering step to create a data set for training and validation for the
prediction tools.

Library Version Method Parameters

randomForestSRC  2.5.1 risre ntree = 1000

el071 1.6-8 svin kernel = “linear”
C=0.5

Table 4: R packages and the parameters used for the prediction methods. Default
parameters were used if not specified. [46][47]

For this study we inspected five outcome variables, namely the length of possible
sick leave in days and the number of appointments for any treatment pathway as
numerical values and if the person will require sick leave at all during the treatment
pathway, if the sick leave will be 10 days or longer and if the treatment path will be 10
appointments long or longer as categorical variables. The data set was grouped and
divided by a cluster label, and the outcome variables were calculated for each cluster
and added as individual variables onto the data set. The data set was also enriched
with some past data, namely by adding columns for the number of past visits related
to mental health issues, past frequency of visits and the cumulative number of sick
leave days so far. We also discarded all visits save for one corresponding to the first
visit for each treatment pathway. This was done by ordering clusters by date and
saving only the first appointment. Thus we were left with a data set of n rows, where
each row corresponds to an initial visit related to a mental health related treatment
pathway and n is the number of identified clusters. The models were then trained
on this data set.
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3.5 Validation of prediction results

Training a machine learning algorithm is typically done by dividing the data into
two parts called training and testing data sets. Training data is complete with the
outcome variables and is used to train or fit the model to predict the outcome values.
The remaining test data set is one where we know the labels beforehand, but use the
trained methods to predict values for the data. The difference between the predicted
values and the real values can then be used to estimate the performance of the model.
To eliminate any bias resulting from chance in choosing the test sample, we can split
the data set into k equal parts and run the test k times, each time using k — 1 parts
as the training data and the last one as testing data set. The final error values were
averaged from these results. In our case, we used 10-fold training and validation of
the data. For multiple outcome variables, multiple models had to be trained. This
was done by replacing the outcome variable with any one value we want to predict
and keeping the rest of the data set as is.

For the prediction results the validation was done by estimating the Mean
Absolute Error or MAE and Median Absolute Deviation of MAD values on regression
data and precision, recall, accuracy and balanced accuracy values for classification
data. Mathematically these can be expressed as MAE = W and MAD =
median;(|y; — x;|), where x and y are vectors an ¢ € {1,--- ,n}. For precision, recall,
accuracy and balanced accuracy values we calculate true positive (Zp), false positive
(fp), true negative (tn), and false negative (fn) rates on the data. We then get

s tp tp tp+in
precision as ;=5 recall as oL Accuracy as oo and balanced accuracy as
tp + tn
tptfn

tinottle - Balanced accuracy is a more robust measure of accuracy when the data
set is not balanced so that each value is as likely, thus giving as an unbiased measure
of accuracy on the whole data set. Additionally we can compare the results to a
trivial classifier, that outputs all variables to a single class. Comparing the accuracy
of such a classifier with the methods used can highlight the bias in the original data
as well as be used to asses the overall usability of the models.
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4 Results

The overall results for the data were promising. All of the chosen clustering methods
were able to generate meaningful output, and prediction accuracy was adequate.
Given the challenging nature of the data, this was a positive result. However, there
were also issues with the methods which will be outlined along with the results.

4.1 Clustering treatment paths

The clustering results were quite different for the three methods. The adjusted
Rand index or the ARI index for the methods can be seen in Table 5. The values
are very low for any two methods. FAMD is very dissimilar with both the Gower
and model-based method, with a similarity of 7% and 15%. Values of 0% denote a
random spread of classes, so the clusters are very different. Gower and model-based
methods produced somewhat more similar results, but the dissimilarity between the
methods was still quite high. This is interesting, as the ARI can also be expressed as
the probability of two models sharing the same clustering. In essence, FAMD shares
only 7% and 15% of the clusterings with either of the other methods, while Gower
and model-based methods themselves also only share around 43% of the labels. Thus,
we are left with three methods where most of the pairs of objects do not share the
same clusters.

‘ Model-based FAMD

Gower | 0.431 0.152
FAMD | 0.070

Table 5: The pairwise adjusted Rand index values of the different clustering
methods. The value is analogous to the probability of pairs of methods sharing the
same partitioning. The low values indicate that the partitions are rather dissimilar.

Because the topic of the study was limited to mental health issues, and because
after the clusters were obtained, any clusters not containing mental-health related
diagnoses were discarded and not used in the results. This meant that the three
clustering methods resulted in different results and data sets, both in size and content.
All in all, FAMD method found 4 551 visits across 3216 clusters with mental health-
related issues, Gower 10273 visits across 2221 clusters and the model-based method
18226 visits across 1883 treatment pathways. FAMD had on average clusters of 1.42
visits per cluster, Gower 4.63, and model-based method 9.68 visits per cluster. FAMD
had, on average, 1.65 different diagnoses per cluster, Gower 4.24 diagnoses, and
model-based method had, on average, 6.81 different diagnoses per cluster. Of these,
mental health-related diagnoses for each clustering method were 1.48 for FAMD, 2.14
for Gower and 2.53 for the model-based method. The values are displayed in Table
6. The original number of appointments in the data was n = 46317, and the total
number of unique diagnoses was 3 662.
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‘FAMD Gower model

Unique persons 771 771 771
Appointments 4551 10273 18226
Clusters 3216 2221 1883
Avg. size of clusters 1.42 4.63 9.68
Unique diagnoses 504 1163 1580
Diagnoses per cluster 1.65 4.24 6.81
Of which mental health related | 1.48 2.14 2.53

Table 6: Values of various indicators on the partitions of the three methods.

Based on these numbers, we are able to generalise the features of each of the
methods. On average, the FAMD method created more but relatively small groups
of one or two appointments, both diagnosed with mental health-related issues. The
Gower and model-based methods were more prone to adding more appointments
to the clusters with the model-based method creating fewer, larger clusters. The
number of mental health related diagnoses is quite similar, however, so the difference
in size is mainly due to the addition of additional visits related to other diagnoses to
the treatment paths. This can mean, for example, that model-based method had
more related diseases or check-ups clustered into the treatment paths than the other
two methods. We can inspect these values also visually. Figure 5 shows the frequency
plot of cluster sizes for all three methods. FAMD results in most clusters with a small
size. The model-based method resulted in much larger treatment pathway clusters,
having a large tail of a small number of very long treatment pathways. Gower’s
method is between the two with some very large clusters as well, but more small
clusters than the model-based method.

Interestingly FAMD has no clusters at all of size 16 or larger with clearly the most
mass concentrating at ten appointments or less. Most of the clusters for model-based
and Gower methods lie below the size of 25 visits. However, we can see that both the
model-based and Gower methods result in a small number of very large clusters which
can be seen as outliers in the data. These outliers may also affect the prediction
accuracy for models of such clusters.

After removing non-mental health related treatment pathways, only 4399 ap-
pointments out of the original 46 317 were present in all three partitions. 41918
appointments were missing from at least one of the final results of one of the meth-
ods, meaning that they had been pruned for at least one method for belonging in
a treatment pathway with no mental health related diagnoses. Model-based and
Gower methods shared 8296 appointments, FAMD and Gower 4418 and FAMD and
model-based method 4468 appointments between them. These are displayed in Table
7. For FAMD this means that roughly 3.3% of the appointments are not shared
by either of the other two methods and for the model-based method, 45.8% of the
appointments are unique to that method alone. The results are not as surprising
as they seem. As the FAMD method had very few appointments with any other
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Figure 5: The size of the individual clusters for the three clustering methods.
Individual dots represent the frequency of specific cluster sizes with the trend lines
denoting the differences on the data. The y-axis is displayed on a logarithmic scale.

diagnosis than those related to mental health issues, most of the appointment data
not related to mental health were easily excluded from the results. Almost all ap-
pointments in the clusters produced by the FAMD method were included in either
of the two other methods. The number of unique appointments increasing with
larger cluster size is also natural, with the model-based method naturally having
a large number of unique appointments due to the method producing overall the
largest clusters with the highest number of appointments. Still, the results can be
seen as a measure of dissimilarity between the methods. For example, 19.2% of the
appointments found in the clusters produced by the Gower’s method were not found
with the model-based method, while the model-based method included nearly 10 000
appointments that are not included in either of the two other methods. Thus the
resulting clusters are not only different permutations of the same data but contain
vastly different appointments as well. In the context of treatment pathways, this is
analogous to different methods producing different relationships between diseases
and appointments, where some data are seen as belonging to a certain treatment
pathway in one method but are not in another method.
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‘ Model.based FAMD

Gower | 8296 4418
FAMD | 4468 NA
Table 7: Number of appointments that are shared between the final partitioning

of the clustering methods after the non-mental health related clusters are removed
from the data set.

As we chose to cluster all of the patients on one pass, in some cases, multiple
patients were clustered into the same treatment pathway. These were manually
separated from each other as a postprocessing step. The overlap between patients
introduced by the methods was more noticeable than estimated, however. These
accounted for 12.3% of the appointments with Gower hierarchical clustering, 84.7%
with FAMD and 91.6% for model-based clustering. Gower dissimilarity matrix thus
seems to follow the split along the different persons better than FAMD and model-
based methods, while FAMD and model-based methods provide clusters that are
less dependent on the values of one dimension. This is also intuitively plausible,
as both FAMD and model-based methods transform the space when clustering the
methods. FAMD creates a transformed space in which to cluster the appointments
while the model-based method fits multinomial distributions onto the data. Both of
these have a more abstract level of distance between different elements of any one
dimension than the Gower method, that constructs the dissimilarity matrix from the
similarity of the dimensions. Thus the clusters on this plane are more prone to follow
the separation of variables on, for example, the dimension denoting personal id’s.

As an additional visualisation step, we can use the reduced dimension space
produced by the FAMD method to plot each of these clustering approaches on a
plane. Such visualisation can be seen in Figure 6. We can see how FAMD creates more
mixed results, whereas Gower and model-based methods have a more uniform overall
image, denoting the larger clusters. This is further apparent when we compare the
zoomed-in pictures, where Gower and model-based clustering methods share similar
cluster size and position, but FAMD is more prone to slice larger clusters into smaller
ones. An interesting note is that the clustering method of Gower’s dissimilarity
matrix and model-based method are unrelated to the dimension reduction of the
FAMD method, but both can be easily represented in the reduced space to with
visible clusters. This suggests that the observed dissimilarity between FAMD and the
other two methods has more to do with the cluster size and less with the underlying
method being based on entirely different phenomena. In other words, all three
methods measure roughly the same similarity but with different parameters and
subsequent outcomes.



FAMD & k-means clustering FAMD & k-means clustering

5.0 20

N
o

s S16 .
g E R b :'
Q [ .
1 £ o,
© 0.0 © N R
° o
c c
8 812 . ® .
o} o] % N .
D, %2} .. R i . .
. . N
08 . T
-5.0
-0.1 0.0 0.1 -0.13 2 -0.11 -0.10
First dimension First dimension
(a) (b)
Gower & hierarchical clustering Gower & hierarchical clustering
50 et 5. . 20
c 25 -
o 216 N .
2 2 ) . )
Q [} .
£ € e,
T 0.0 © N
© °
c 5 " .
§ 812 . * g . .
UJ_2'5 (2] LI o . . .
. . ~ - :
08 — T
-5.0
-0.1 0.0 0.1 -0.13 -0.12 -0.11 -0.10
First dimension First dimension
() (d)
Model-based clustering Model-based clustering
5.0 . . 20
c 25 c ’ :
o 216 - .t
2 2 o
5 [} .
5 £ .
500 5 :
° ° .
s 5 3 . .
3 312 . o . .
P25 * . ) :
08 ,. . | . .. o
-5.0
-0.1 0.0 0.1 -0.13 -0.12 -0.1 -0.10
First dimension First dimension
() (f)

Figure 6: A visualization of the different clustering methods. The graphs are
represented in the FAMD reduced space with each color representing a different
cluster. The Figures are as follows: (a) describes the FAMD method around the
origo; (b) describes the FAMD method zoomed in onto a smaller section of the
space; (c) describes the Gower method zoomed out; (d) describes the Gower method
zoomed in to details at the same coordinates; (e) describes the model-based method
zoomed out and (f) describes the model-based method zoomed in to details. The
Figures (b), (d), and (f) show show the many small clusters of the FAMD method
and the fewer, larger clusters of the Gower and the model-based methods clearly.
The color space is quite crowded as the number of clusters is quite high. Here the
clusters are not limited to only those containing mental health visits but contain
all appointments across the data.
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Overall then we can deduce that the results of the clusters were rather different.
On average, the FAMD method created a large number of small groups, while model-
based and Gower methods produced larger groups with a few very large treatment
pathways as outliers. The pathways shared very few clustering values and even
differed much in the appointments that were included in the treatment pathways.
Thus we can conclude that the methods differ not only in the clustering results but
in content as well, and as such give very different representations of the data.

4.1.1 Validation

The human grading of the data was done by two medical experts, first of which
was a chief psychologist and psychotherapist, and the second one a regional medical
director of occupational health. The validation results were subjective and so differed
quite radically, with near tenfold difference in magnitude of observed error between
the two experts. The results can be seen in Table 8. Expert 1 validated the model
to be much more accurate than an expert 2. This was later confirmed to be mainly
due to different interpretations of the data and treatment pathways. Expert 1 put
more emphasis on if the appointments could be connected at all, whereas expert
two was stricter on a mental health treatment consisting only of diagnoses related
to mental health. This means that the error rate for expert 2 consists mainly of
appointments for reasons other than mental health while for expert 1 the treatment
paths can have additional, related appointments included. The experts assessed the
number of appointments across all of the clusters that were incorrectly clustered
in the treatment pathway. These contained any such entries that were not related
to the overall treatment pathway or were related to the treatment of some other
disease. These values were calculated both across all appointments and again across
all clusters. The error ratio of the former was calculated as the number of incorrect
appointments in the complete data, which gave a more general measure of error over
the whole data set, while for clusters the error rate signified the number of clusters
that had any incorrect values in the clusters. This signified a measure of reliability
on any single clustering result being correct.
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‘ FAMD ‘ Gower ‘ Model-based ‘
‘ Expert 1 Expert 2 ‘ Expert 1 Expert 2 ‘ Expert 1 Expert 2 ‘
Appointments 456 649 693
Incorrect 3 22 16 170 120 276
Error ratio 0.66 % 4.82 % 2.47 % 26.19 % 1732 % 39.83 %
Clusters 294 104 73
Incorrect 1 14 7 37 15 28
Error ratio 0.34 % 4.76 % 6.73 % 35.58 % 120.55 % 38.36 %

Table 8: Expert validation on the clustering results. Ezpert 1 is a psychologist
and psychotherapist while Expert 2 is an occupational doctor. “Appointments”
denote the total number of appointments in the data, and “incorrect” denotes the
number of appointments that are assessed as not belonging to the cluster and are
thus errors in the clustering results. “Error ratio” is the ratio of such errors of all of
the appointments, giving us a measure of an error on the data. The same measures
are calculated for clusters as well in the lower part of the table so that for clusters,
the incorrect value is calculated as the number of clusters that have any incorrect
values in them. This gives a measure on the reliability of any single clustering
result, while the appointment-wise results give a more general error measure over
the whole data set.

Some general trends can be seen from the data. FAMD has the lowest error on
both per-appointment and per-cluster rates. Model-based methods have the largest
error with Gower sitting between the two. The Gower method was assessed to be much
more inaccurate by expert 2 than expert 1, who gave the method relatively low error
values. For the model-based method, both experts assessed the method to have high
error, with expert 1 judging 17.3% of all of the appointments as incorrectly clustered,
and expert 2 judging 39.8% of the appointments as such. For the Gower method,
both experts assumed the ratio of incorrect clusters as being higher than that of the
error ratio calculated across all of the appointments. This suggests that the Gower
method tends to have the incorrectly clustered appointments spread out between
many clusters rather than a few clusters containing many incorrect appointments.
In other words, on average, the number of clusters that have incorrectly clustered
appointments is larger than the ratio of incorrect appointments inside them. For
FAMD and model-based methods, these values were quite similar, and no such trend
can be seen.

As seen previously from Table 5, the clusters resulting from the three clustering
methods were quite different. Surprisingly, the error rates between the methods
were quite similar. The similar error scores, especially for Gower and model-based
method, seem to suggest ambiguity in the interpretation of the results. In other words,
deciding if one particular appointment is part of a treatment path or not is somewhat
subjective and, especially, ruling out any single disease as not affecting a given
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mental health problem is difficult. For example, if one method has clustered sleeping
problems with a case of depression while another method has instead clustered stress
symptoms to the treatment pathway, both can be explanatory factors for the disease.
This was mirrored in the written answers as well, with many cases being noted as
difficult to rule in or out to the treatment pathway with the given information. Such
cases, however, were not counted towards the error values in the validation.

Additionally, a single appointment can be related to multiple diseases. Because
the clusters created by the Gower and FAMD method are hard and exclusive, and
by extension, because we chose hard clusters for the model-based method as well for
comparability, some information is always lost in the treatment pathways. While
we can imagine there being an optimal way of clustering all related appointments,
diagnoses, laboratory results and medications, using hard clusters, we are always
left with different interpretations of the same treatment pathway. In this sense,
treatment pathways are not exclusive, and multiple plausible treatment pathways
can be created from the same data set. While this seems counter-intuitive to the
notion of defining a problem, in fact, this makes the results more usable in a medical
sense. Different treatment pathways constructed from the same data using different
methods can highlight different sides of the disease and bring into light different
aspects for quality control and tracking of the treatment. This was highlighted in
the written results, with notes commenting on some types of treatment pathways
being more visible in some clustering method.

Some other general notes by the experts about the data were also made. These
were related to individual treatment paths, often describing somatic symptom disor-
ders related to each diagnosis or other issues during the treatment. These included,
for example, notes on the musculoskeletal system or possible drug or alcohol abuse.
Abnormal reactions to medication or heavy medication usage were also noted. Addi-
tionally, some notes commented on possible missing data. The notes also contained
some related thoughts on the results, such as how the results could be used to validate
the quality of individual treatment paths or their use for further studies into somatic
symptom disorders. Any such notes were later discussed internally.

Overall the error rates were quite varying, with FAMD and Gower performing
very well according to expert 1 and the model-based method performing the worst
according to both of the experts. Surprisingly, however, as a subjective opinion,
expert 1 valued the model-based method as the best of the three as the information
brought by combining similar but not strictly mental health-related appointments
often brought new insight into individual treatment paths. This was because such a
model was more informative on the mental condition and identified other possibly
related factors in comparison to the clusters restricting treatment pathways to mental
health related visits alone. This is in line with the general idea that mental health
problems can be intertwined with other medical issues and getting insight into such
these can help understand the treatment path as a whole [4]. Thus the interpretation
of the error values is not straightforward and is dependent on the context of the goal.
For any task requiring small error rates, the FAMD method produces the best results,
while for a more context-aware analysis, we might rather use model-based or even
Gower method for clustering the data. The larger model-based and Gower method
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-based clusters naturally contain more data than FAMD, thus also increasing the
risk of any errors in the data. Simultaneously these additional pieces of data can be
of interest if they are correctly clustered into plausible treatment pathways.

4.2 Predicting future treatment from initial diagnosis

As per the expert opinion that the model-based method provided the clinically most
interesting results, it was chosen as the benchmark for creating the prediction models.
The labels acquired from the model-based method were used to create a modified
data set based on the first visit of the treatment pathway. As was seen from Figure
5, the size of individual clusters was focused on the smaller side with some more
extensive treatment paths. The percentile graph of the sick leave and the number
of appointments can be seen in Figure 7. As can be seen, over 75% of all patients
were prescribed no sick leave with only the top few percents being prescribed very
long sick leaves. The largest values, however, are in the hundreds. The number of
appointments is similarly distributed with more than 60% of treatment paths having
ten appointments or less. The largest ten per cent of values for both categories,
however, are very high with the top one per cent having treatment path lengths of
over 100 appointments and sick leave of several hundred days. Thus the data is quite
biased, which brings some concern as to the comparability of the data.

Legend

Sick leave

Value

—* Appointments
100

Percentile

Figure 7: The n-th percentiles of sick leave length and number of appointments
related to each treatment path. The x-axis represents the percentile rank and the
y-axis the value of the variable. In the case of sick leave data, this is the length of
possible sick leave, and for appointments, it is the number of total appointments
throughout the treatment pathway.
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We calculated the mean absolute error and median absolute deviation values of
the regression results on the length of the sick leave and the number of upcoming
appointments throughout the treatment pathway with the RF and SVM methods,
which are depicted in the Table 9. We can see how RF outperforms SVM for both of
the cases, though for the prediction of the number of appointments this difference
is quite small. The average length of sick leave was 4.24 days and the number of
appointments 9.68, while the median value for the length of the sick leave was 0 days
and the median treatment path length was 3 appointments. The MAE values are also
quite high related to the data averages. The median error values are, however, quite
modest, with the deviation in error rate for the length of the sick leave almost zero
with the RF method. For the number of appointments, the median of error values is
half of that of the mean, suggesting a highly skewed error distribution for both of
the cases. The high MAE values are partly explained by the wide distributions in
both the length of sick leave and the number of appointments. Very large outliers
create a bias on the data, overshadowing the otherwise quite modest error rates for
both the length of the sick leave and the number of appointments. It is important to
note, however, that most of the patients are prescribed no sick leave at all. Thus
simply guessing a sick leave length of 0 days would give us a median error of 0. The
median error rate for the number of appointments is high as well, with error rates
larger than the median value of the number of appointments. This suggests that
overall, the models do not perform exceptionally well in regression tasks, mainly due
to the large outliers in the data.

| RF | SVM
| MAE MAD | MAE MAD
371 0.05 [428 1.11

Length of sick leave

Number of appointments | 8.15  4.03 | 8.28  4.00

Table 9: Mean Absolute Error (MAE) and Median Absolute Deviation (MAD)
error values of the prediction of sick leave length and the number of appointments
in the treatment path.

Another interesting and often more important task for medical use is detecting
outliers. As such, it may be essential to know if the person will be on sick leave
for a long time or if the treatment pathway itself will be longer than usual. Table
10 depicts the precision, recall, accuracy, and balanced accuracy values of methods
when used to predict outliers or presence of values in the data. The values were
calculated as a classification task on the data set. A new feature was created for
each treatment pathway depicting if that pathway was over the threshold in length,
and the model was set to predict the value of this feature. Alongside the classifiers,
a trivial classifier was created that simply voted for the median value for each of
the classification tasks, which was a truth value of “False” for all three cases. This
is analogous to the program predicting no outliers for any data point. The simple
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accuracy is shown for this model as well. To be viable, a method should beat this
benchmark considerably in accuracy. For the first case of detecting if the person will
be on sick leave at all some progress is seen, with the RF model achieving a 90%
accuracy and balanced accuracy and the SVM model a slight improvement over the
trivial classifier at 83% accuracy and 82% balanced accuracy. For detecting large
outliers of over ten sick leave days, both RF and SVM beat the dummy model slightly
in accuracy performance but fare considerably better when we study the balanced
accuracy. As the dummy model votes negative for all cases, the true positive rate is
0. Thus the balanced accuracy of the dummy model is half of the accuracy score or
45.5% for long sick leaves. The case is similar for detecting outliers for the number
of appointments, with RF and SVM gaining similar accuracy scores but much better

balanced accuracy scores than the dummy model with a balanced accuracy score of
38.5%.

‘ RF ‘ SVM ‘Dummy
|P. R. A BA|P. R A BA |A
Length of
sick leave 0.71 0.89 090 0.90 |0.32 0.81 0.83 0.82 |0.79
> 0 days
Length of
sick leave 0.70 0.65 0.94 0.81 | 0.68 0.58 0.93 0.78 |0.91
> 10 days
Number of
appointments | 0.79 0.45 0.77 0.69 | 0.57 0.47 0.79 0.68 | 0.77
> 10

Table 10: Classification accuracy on sick leave length and the number of appoint-
ments for both the RF and SVM classifiers. Precision (P.) and recall (R.) values are
stated for each as well as the accuracy (A.) and balanced accuracy (B.A.) values,
which weights the accuracy of the model for very imbalanced data sets. For reference
the accuracy rates for a dummy classifier are presented, that assumes each value to
be negative.

For the applications of the models, the positive and negative accuracies are
equally important. Thus the balanced accuracy rate gives a good estimation of
the performance of the models. We can achieve high accuracy in only estimating
negative values, but this type of model is useless if we are interested in the positive
values as well. The predictive ability of the models used perform quite well from this
perspective.

The precision and recall scores provide us with further insight into the data. The
precision values for the RF models are around 70% to 80% for all of the cases. Thus
the ratio of true positives out of all of the predicted positive values is quite high.
SVM is much more varied with precision for whether the sick leave is longer than 0
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being as low as 32%. Length of sick leave of over 10 days and treatment pathways
of over 10 appointments have better values but still fall behind RF. Thus a large
portion of the predicted positive values is, in fact, false positives. For the recall
values, the values are more similar across the methods. RF and SVM both have
a recall value around 85% for detecting non-zero sick leave lengths, meaning that
they capture a substantial part of all of the positive values in the data. Examining
the outliers of sick leave length, the recall values are between 58% and 65% and
for outliers of the number of appointments just below 50% for both models. This
general trend can also be seen from the balanced accuracy values with the non-zero
sick leave length resulting in the highest recall values and lower values for long sick
leave and a large number of appointments.

Thus it can be seen that the quality of models is nuanced. The models perform
about the same as a trivial classifier for raw accuracy but are more capable when
considering that the models have to be able to classify both positive and negative
values. Still, the precision and recall values leave room for improvement, especially for
the SVM model, with RF having large problems with recall values for detecting the
large outliers as well. Still, both models have balanced accuracy values of over 50%
and can be seen as useful in predicting the desired outcome variables. Overall, the
SVM performed somewhat worse on the classification tasks than the RF. However,
it is important to note that across all the tests, the SVM method was considerably
faster, with the RF method finishing each model in around a minute while the SVM
model was trained in a few seconds.

Random Forest has the added benefit of providing us with a straightforward
measure of variable importance. The Breiman-Cutler permutation importance
calculation is performed by taking the out-of-bag error values of random trees,
removing individual features one at a time from the feature space and re-calculating
the error rate [32][46]. The feature importance is calculated as the difference between
the two values. The model is implemented in the library randomForestSRC. The
importance of values can be seen in Figure 8, where the values are calculated from
the model used to predict if the person will be on sick leave during the treatment
path. The values represent the importance of each variable on the length of the sick
leave.

The initial sick leave prescribed during the first session of the treatment path
seems to be the main explanatory factor for the values. For a rather biased data
set this is unsurprising. The results also suggest that sick leave is prescribed rather
early in the treatment path. The other values, however, are unexpected. High
values for the doctor specialisation features are most likely explained because not all
doctors prescribe sick leave regularly, but rather sick leave is usually prescribed by
an occupational doctor. Interestingly enough, the primary and secondary diagnoses
have a negative effect on the outcome of the length of the sick leave. Thus there is no
variance in need for sick leave between patients with the same diagnoses. The other
variables carry little to no weight as well, with the only non-negative values being
the number of prior appointments and the average time between past visits. Thus
information on the past number of appointments and the frequency of these improve
model performance. Variables such as gender, age or even the prior tendency for sick
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Figure 8: Importance of the various dimensions used for the predictive models. The
values represent the importance of each variable on the length of sick leave prescribed.
The model employs a Breiman-Cutler permutation importance calculation to asses
the importance of the variables. [32][46]

leave seem not to affect the outcome very much. Conversely, it can be interpreted
that doctors put little weight on patient history when prescribing sick leave. This is
interesting as the data is readily available to the doctor via the EHR system during
each appointment.

Overall the RF method performed somewhat better in most of the tasks compared
to SVM, but the SVM method was much faster. The overall error rates are quite
small for classification tasks but perform worse on regression tasks. The initial sick
leave period seems to be an essential factor in deciding the future treatment path of
the person with surprisingly little effect on personal medical history or demographic
background.

4.3 Errors and confidence

Data quality was surprisingly hard to assess for EHR data throughout the study.
This was mainly due to a large number of missing data for each appointment. The
doctor usually writes down as much information as is required by the guidelines
of each service provider, but rarely more. In other words, any fields that are not
enforced are not usually filled. This may occur for example in the case of follow-up
checks for the patient after the initial appointment, where the information from the
initial visit is not repeated for each different entry. Some cases were also identified
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where all appointment data is missing. This can happen for some treatment paths
where the treatment sessions are not enforced to be recorded at all or very lightly. In
such cases accurately clustering these appointments is hard, and the task of assessing
if these treatment paths are correct more complicated. While the results were deemed
meaningful, at least a part of the error values are probably due to the inaccurate
base data for the analysis.

During the validation of the clustering results, we only assessed the false positives
of the data. This was done to keep the amount of work for medical professionals
feasible. However, this left out important data on the quality of the results, most
importantly if some values were missing from the treatment paths. A more work-
intensive method would be to construct pre-made clusters with medical experts as a
baseline for validation. For the scope of this project, this was deemed too heavy, as
building a clustering by hand with any significant number of appointments is rather
tedious. However, given this golden baseline, we could then compare the results with
any similarity measure, for example, ARI, and deduce the best clustering as that
being the closest one to the baseline. Such a baseline could also be used as model
data for any predictive models in the future.

Additionally, the clusters used were hard clusters in the sense that one appointment
could only be included in one treatment pathway. In reality, this is not the case, and
multiple diseases can be treated with a single appointment. Out of the clustering
methods tested the model-based method is capable of soft clustering, which instead
of class labels assigns probabilities of each appointment belonging in each treatment
pathway. Such soft clusters could be used to construct more truthful representations
of treatment pathways. Such a study was ruled out from the scope of this Thesis
but might prove an interesting starting point for future studies.

The amount of data used for the analysis was sampled down due to the limitations
of both the used hardware and software. This brings an inherent error in the analysis.
The total number of individual appointments for our data set is 5240100 out of
which our sample was 46 340, giving us a confidence level of 99% with a margin of
error of 0.6% on the data. The sample was therefore quite sufficient, but for many
applications, more extensive coverage is attractive. Further issues to mitigate this
effect with the chosen methods could be running the analysis multiple times over
different subsets of the data or improving computational capacity.

The choice of a single clustering pass over a data set of multiple people turned
out to be a significant problem. As discussed above, the choice to cluster a data set
comprising of multiple patients was done to improve performance and comparability,
and because the risk of treatment pathways mixing was estimated to be small. This
turned out to be a false assumption, with a major part of the FAMD and the model-
based method producing clusters spanning multiple patients. This introduced some
error into the clustering results, as any splitting of clusters increased the number
of clusters and made the resulting clusters smaller as a result. All results from the
clustering step underestimate the size of the clusters and overestimate the number of
the clusters slightly. The same error is then carried over to the prediction results, as
the data sets for prediction models were constructed from the class labels obtained
from the clustering step. For future studies, this issue can be mitigated at least in
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two ways. The first is a model where each patient is treated individually and the
clusters formed from all of the data related to that individual and the repeated for
each customer. Another choice would be to add another clustering step after the
splitting of clusters that aims to combine any split clusters for a patient back together.
In both cases, care would have to be taken so that the issue is correctly addressed.
For person-wise clustering, the problem is with heavier performance and ensuring
comparability between treatment pathways between patients. For the additional
clustering step, the issue is ensuring that the resulting clusters are meaningful and
the clustering step increases information of the clusters rather than pairs clearly
incorrect clusters together. However, if done correctly, either could increase the
quality of the results.

The predictive models have room for optimization as well. The models, as such,
had quite a small amount of training data. With a larger pool of classification results,
the error rates for the prediction models could be brought down as the training data
size for the models grows. Another approach would be tuning the parameters of the
models more, or in the case of the random forest, model, increasing the number of
trees further. Both of the steps could be used in unison for more accurate results.
The data model of the prediction task was quite simple, as well. With a deeper
understanding of the patient history and the relevance of the data to future diagnoses,
the model could be improved further. This is the most logical first step for any
possible future work on the subject.

A large portion of difficulty in working with the data was with the mixed data type.
An interesting approach would be to convert the data set wholly to either numerical
of categorical data. As the data is already mainly categorical, some performance
improvements could maybe be achieved if we converted the numerical values into
categorical, which would enable us to work on a broader selection of tools for the
data. However, as of now, both numerical and categorical data carry value for the
resulting clusters and predictions and keeping both is justified in the scope of this
work.
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5 Conclusions

We applied three distinct clustering methods to a large EHR data set to identify
treatment pathways in mental health efficiently. The methods, FAMD with k-
means clustering, Gower with hierarchical clustering, and model-based approach, all
resulted in meaningful results with distinct features concerning the cluster size, the
number of clusters and the inclusion of additional appointments without a mental
health diagnosis. The FAMD method produced the most but smallest clusters while
Gower and model-based methods created fewer but larger treatment pathways with
additional diagnoses between the mental health diagnoses. Expert validation of the
clustering results assigned the FAMD method as the most accurate representation
of the treatment pathways. However, it was noted that the external data provided
by, for example, the model-based method was beneficial in studying the treatment
pathway as a whole. Thus the different methods are not mutually exclusive but
might fill different roles. While the FAMD method gives the most accurate results
and might be useful for strict clustering of mental health appointments alone, the
broader clustering techniques could be used for a more general overview on the
quality of treatment and its effects. However, overall, the clusters produced by the
three methods were very different. According to the ARI measure, the clusters are
fundamentally different. Also, when comparing the features and contents of each
clustering result, we can see that these vary across the results as well. Overall then
we arrive at three very different ways to construct treatment pathways from the data
set, with the FAMD method being the most accurate but the model-based method
being the most interesting for treatment path analysis according to the experts.
The predictive power of the models used was mediocre for the data with quite
large error rates in regression tasks. Classification tasks, however, yielded quite
good balanced accuracy values on predicting outliers and non-zero values on sick
leave length and treatment pathway length. The tests suggest that employing simple
machine learning methods to electronic health data can yield better-than-random
prediction values on various outcome variables related to our chosen treatment
pathways. Especially the good results in outlier detection can be useful for future
applications of these methods. Such outlier information can be useful, for example,
for finding patients needing specialized care along with their treatment, or steering
patients with long treatment paths more quickly to the correct experts. In general,
the random forest algorithm performed better than the SVM did, but the performance
of both was good enough to warrant possible future research into applications on
treatment pathway prediction. The performance of SVM, however, was much better
with running times of seconds instead of minutes in training the models. Moreover,
the clustering results from the treatment pathway analysis can be used for more
kinds of analyses than those outlined in this study. For example, the number and
type of probable upcoming medication along the treatment path can be calculated
and predicted used the same methods outlined in this Thesis, thus broadening the
possibilities of data analysis on the previously unstructured electronic health data.
The feature analysis revealed that there is surprisingly little effect on patient
background on prescription of sick leave. The initial sick leave and doctor occupation
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hold the most weight, but diagnosis or personal features such as age, gender and
treatment history hold little to no prediction capability. The results also show that
the number of prior sick leave days is a poor indicator for predicting length of the
sick leave period. Instead, the number of prior appointments and the frequency of
these improve model performance. Possible strategic or operative decisions made
purely on historical or demographic data alone are, therefore, likely to be unrelated
to the sick leave rates of the treatment paths identified in the study. However, the
relatively high mean error rates on the regression predictor create some uncertainty
in these results.

Overall, we tested the feasibility of the available R libraries on large-scale medical
data of mental health patients. The results were promising with some concern for
performance issues related to the mixed data nature of electronic health data and
the large scale of the related data sets. However, medium-scale studies clearly are
feasible, with much room for optimisation on the performance of the models. The
results of this study can also be generalised for larger data sets, such as complete
EHR systems. The results in clustering and prediction showed that meaningful
relationships and models can be constructed from electronic health record data to
be used for the analysis of treatment pathways.
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