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Pairing is the process of establishing an association between two personal
devices. Although such a process is intuitively very simple, achieving a
straightforward and secure association is challenging due to several possible
attacks and usability-related issues. Indeed, malicious attackers might want
to spoof the communication between devices in order to gather sensitive
information or harm them. Moreover, offering users simple and usable schemes
which attain a high level of security remains a major issue. In addition, due
to the great diversity of pairing scenarios and equipment, achieving a single,
usable, secure association for all possible devices and use cases is simply not
possible.

In this thesis, we study the feasibility of a novel pairing scheme based
on multi-modal gestures, namely, gestures involving drawing supported by
accelerometer data. In particular, a user can pair a smart-watch on his wrist
and a mobile device (e.g., a smart-phone) by simply drawing with a finger on
the screen at the device.

To this purpose, we developed mobile applications for smart-watch and
smart-phone to sample and process sensed data in support of a secure
commitment-based protocol. Furthermore, we performed experiments to
verify whether encoded matching-movements have a clear similarity compared
to non-matching movements.

The results proved that it is feasible to implement such a scheme which also
offers users a natural way to perform secure pairing. This innovative scheme
may be adopted by a large number of mobile devices (e.g., smart-watches,
smart-phones, tablets, etc.) in different scenarios.
Keywords: Mobile devices, Security, Pairing, Signal, Processing, Multi-

modal Gestures
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1 Introduction
Mobile devices have become the most widely used technology in our daily life,
to the point of being considered an extension of the human body. These are
not only represented by smart-phones and tablets, but also by wearable devices,
such as smart-watches.

Among wearable devices, these in particular are seeing a tangible growth
reaching 120.2 million units by 2022 [1]. The enormous success of smart-watches
is due to the high number of applications developed during the last years. In fact,
they are not only used for a faster glance to notifications, but also for performing
secure payments [2, 3, 4], tracking body health and activities [5, 6, 7, 8], and
controlling devices remotely [9, 10, 11]. Moreover, the scientific research is
continuously studying possible new applications involving smartwatch sensors,
for instance, smartwatch-based finger-writing [12] and smartwatch-based diet
monitoring [13].

To make the user’s information ubiquitous and synchronized among mobile
devices, producers and service providers are constantly improving and enriching
devices inter-communication within the boundaries of their ecosystems. On the
other hand, they must ensure that user’s information does not leak to unwanted
third parties. To this purpose, establishing a secure communication between
devices is fundamental for protecting data from intruders. Therefore, secure
pairing – the process of establishing a secure association between two personal
devices – plays a crucial role.

1.1 Research topic
Ordinary users are often annoyed when setting up pairings, as the process may
be cumbersome or complicated [14]. For instance, asking users to type on one
device a short pin-code shown by the other device involved in the pairing is
considered time-consuming and error-prone. Thus, achieving an association
that ensures both security and usability [15] is challenging.

In the last decade, several studies focused on finding such association, also
driven by the growing number of sensors with which mobile devices are equipped,
like fingerprint readers, capacitors, accelerometers, gyroscopes, microphones,
and so forth. Some of these studies considered the possibility to perform
pairing based on listening to the same ambient audio [16, 17, 18, 19, 20, 21] or
radio signals [22, 23], requiring limited user intervention. Others introduced
novel pairing protocols based on shaking devices together [24, 25, 26, 27] or
performing simultaneous drawings on their screens [28]. However, due to the
great diversity of pairing scenarios and equipment, achieving a single, usable,
secure association for all possible devices and use cases is simply not possible.
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1.2 Research goals and methodology
Given the above-mentioned challenges, we aim to study the feasibility of a
novel pairing scheme based on multi-modal gestures, namely gestures involving
drawing supported by accelerometer data. In particular, a user can pair a
smart-watch on his wrist and a mobile device (e.g., a smart-phone) by simply
drawing with a finger on the screen of the mobile device.

This research is challenging since it is hard to verify that finger and wrist
movements translate into comparable signals from the smart-watch and the
smart-phone. In fact, it is necessary to find an effective approach to compare
accelerometer data (i.e., raw acceleration) against drawing data (i.e., coordinates
on the screen).

To this end, the major goals of this thesis are the following:

• Accurately sample wrist and finger movements.

• Design a pre-processing pipeline to filter, transform and encode collected
data.

• Evaluate whether our approach is effective to distinguish matching pairings
from non-matching ones.

In this study, we adopt a qualitative research methodology and use an
empirical method [29], investigating previous research on secure pairings and
exploring strategies for implementing the above-mentioned novel scheme. More-
over, we operate with an inductive approach. In fact, after implementing the
needed applications and supporting tools, we perform ad hoc experiments to
infer the effectiveness of our approach from a statistical analysis of obtained
results. If the statistical inference is successful, the feasibility and security of
the new protocol are proved.

1.3 Contributions
The contributions of this work are the following:

• Developing mobile applications to sample wrist and finger movements at
smart-watch and smart-phone.

• Designing a processing pipeline to filter and transform collected data.

• Introducing a novel method for encoding the processed data.

• Performing ad hoc experiments to simulate pairings in a simplified test-
bed.

• Analyzing results to prove the effectiveness of our approach and demon-
strating the feasibility and security of the novel pairing scheme based on
multi-modal gestures.
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1.4 Structure of the thesis
The rest of the thesis is organized as follows. Chapter 2 surveys existing
strategies to perform secure key establishment between two devices as well as
secure protocols that use fuzzy data as secrets for pairing. Chapter 3 describes
context and strategies for sampling and pre-processing data to perform pairing
through multi-modal gestures. Chapter 4 presents an experimental evaluation
of the proposed scheme. Finally, Chapter 5 concludes the thesis by summarizing
the related achievements and outlining directions for future works.
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2 Secure device paring
In the last decade, secure pairing gained increasing attention due to the excep-
tional growth in both mobile devices and short-range wireless communication
technologies, such as Bluetooth, WiFi and ZigBee.

Pairing is the process of establishing an association between two personal
devices. Although such a process is intuitively very simple, achieving a straight-
forward and secure association is challenging due to several possible attacks
[30] and usability-related issues [14]. Indeed, each device may be equipped
with different hardware capabilities, or may perform secure association in
completely different scenarios with application-specific security requirements.
Thus, a single, general-purpose association model (i.e., the procedure within
the association which requires direct involvement of the user) which attains
a high level of security, usability and user experience [15] for all possible use
cases is simply not possible.

Nowadays, most solutions for secure device pairing rely on user-conditioning
for triggering the association mode. In other words, the involved devices do
not accept any association request without any user-specific action (e.g., the
association mode is prompted only pressing a specific button).

Moreover, to accomplish a secure association the two devices must perform
mutual identification and authentication without having any pre-shared infor-
mation so as to exclude passive malicious eavesdroppers and active MITM
(Man-In-The-Middle) attackers [31]. The final goal is to establish and share a
secret key with the intended party so as to encrypt their intercommunication
and, if needed, perform access control.

2.1 Key establishment methods
Ensuring high security standards while establishing a shared secret is funda-
mental to adopt secure protocols in real scenarios. On the other hand, the
complexity and diversity of these scenarios has led researchers to find different
strategies to perform secure key establishments.

In this section we detail these strategies, starting from the conceptually
easiest one, namely having a dedicate unspoofable channel to transmit the key,
to the more complex which make use of symmetric or asymmetric cryptography
for agreeing on a shared secret.

As shown in Figure 1, key establishment can be performed with different
strategies [30]: either by transferring the key over an OOB (Out-Of-Band) chan-
nel (i.e., an unspoofable and secure channel physically under the direct control
of the user, usually bidirectional) or by using more complex key agreement
protocols.

In the former case (P1), one device selects a key that is transferred directly
to the second device (e.g., using a USB stick or a direct physical connection).
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Figure 1: Classification of key establishment protocols [30].

The security of this procedure relies completely upon the security of the OOB
channel for the key transfer.

The latter case includes several scenarios that involve either symmetric or
asymmetric cryptography. These cases are detailed next.

2.1.1 Key agreements with symmetric cryptography

Key agreement using symmetric cryptography is adopted by HomePlugAV [32],
a standard for in-home power-line communications that supports broadband
multimedia applications. HomePlugAV provides both unauthenticated and
authenticated symmetric key agreement modes.

The unauthenticated key agreement (P9), so-called simple connect mode,
requires the user to trigger the association mode firstly on one of the two
devices, so-called device, which is responsible to generate a NMK (Network
Membership Key). Subsequently, the user conditions the second device. Before
exchanging information, they agree on tone maps, namely a mechanism to
compensate interference in the power-line channel, hence helping to detect
possible MITM attackers as well. The two parties exchange nonces and generate
a TEK (Temporary Encryption Key) by hashing them together. Eventually,
the controller device encrypts the NMK by using the TEK and sends the secret
material to the second device.

On the other hand, the authenticated key agreement, so-called secure mode
(P10), requires the user to firstly type into the controller the pre-labeled passkey
that comes with the device to pair. In this scenario, sufficiently long passkeys
(e.g., at least 12 alphanumeric characters) are necessary to exclude possible
exhaustive searches of the pre-labeled secret. Afterward, the controller identifies
the new device, generates and encrypts an NMK that is eventually sent to the
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other party.
Both HomePlugAV Secure mode and Simple connect mode narrow down

possible passive attacks thanks to the inherent difficulty to filter the signal
noise in locations outside the building.

2.1.2 Key agreements with asymmetric cryptography

Key agreements using asymmetric cryptography are based on a DH (Diffie-
Hellman) key-exchange [33]. Since this key-exchange is known to be vulnerable
to MITM attacks [34], these agreements must perform actions to detect and
exclude possible active attackers, by correctly identifying and authenticating
the intended party.

Then again, in some scenarios, the DH key-exchange is performed without
authenticating the two parties at a later time (P2). Indeed, one of the devices
participating in the pairing process (e.g., headphones using Bluetooth Secure
Simple Pairing model [35]) may be equipped neither with display nor with a
keypad.

Conversely, DH keys can be authenticated by using a short integrity check-
sum of the messages exchanged during the initial phase. On both devices, if
the checksums result identical the authentication succeeds. In this respect,
Figure 2 shows the verification phase between two parties which already per-
formed the DH exchange. Functions h and f are both collision-resistant and
one-way cryptographic hash functions (e.g., SHA-256 [36]). The function f
is also mapped to a short human-readable string (e.g., 6 digits). The degree
symbol (°) indicates that the received information may differ from the original
due to a possible active attacker tampering the communication. In addition,
this scheme makes use of commitments, that is, a hash of secret material
which is disclosed to the counterpart at a later stage. The plain-text message
that discloses the secret material previously sent in the commitment is called
commitment opening. After opening the commitment, if Device B fails the
verification of the commitment the protocol aborts.
The checksum comparison (i.e., Va = Vb°, Va°= Vb in Figure 2) may be
performed directly by the user (P4) (e.g., in the Bluetooth Secure Simple
Pairing model [35] the user ensures that both devices display the identical
6-digit numeric value) or by using a physical OOB channel (P5) (e.g., through
a USB stick or a direct physical connection). On the other hand, an active
attacker may alter the communication and deny the pairing success. However,
in order to deceive both devices, the attacker has to learn about devices’
public keys in advance (i.e., PKa and PKb), and choose Ra and Rb so that
f(PKa, PKb°, Ra,Rb°) = f(PKa°, PKb,Ra°, Rb). Since the attacker is not
able to affect the result of the hash function, the chance of a successful attack
is 2–n, where n is the length of the evenly distributed output of f.

In addition to these methods, the two devices may use an OOB channel (P3)
to verify the commitments to the public keys exchanged during the DH phase.
In other words, the two devices authenticate the other party by solely sending
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Device A

Generates a long random value Ra

Computes commitments Ca = h (Ra)

Sends Ca to Device B

Generates a long random value Rb

Sends Rb to Device A

Receives Ca° from Device A

Receives Rb° from Device B

Commitment opening:
Sends Ra to Device B Receives Ra° from Device A

Verifies if Ca° = h (Ra°)

If verification holds,
Computes Vb = f (PKa°, PKb, Ra°, Rb)Computes Va = f (PKa, PKb°, Ra, Rb°)

Sends Va to Device B

Receives Va° from Device A

Sends Vb to Device A

Receives Vb° from Device B

Verifies if Va° = VbVerifies if Va = Vb°

If verification holds, 
Vb authenticates Va

If verification holds, 
Va authenticates Vb

Device B

Figure 2: Verification of public keys by short integrity checksum.

the commitments (i.e., public keys or their hashes) over the OOB channel.
In this scenario, the security critically depends upon the OOB channel being
unspoofable, and upon strong cryptographic hash functions.

Instead of using commitments to public keys over an OOB channel, the two
devices can authenticate each other by including a pre-shared short secret S
in their commitments. The secret may be input on both devices by the user.
Alternatively, one device may show the secret and ask the user to enter it on
the second device (P6).

In addition to these, the protocol may use an OOB channel for transferring
the secret S between the two devices (P7). In this respect, Suomalainen at
al. describe a variant [30] of the MANA-III protocol [37] that uses a k-round
authentication protocol of public keys. Assuming that the two devices already
obtained the one-time secret, they split S into k pieces. As shown in Figure 3,
given i=1...k, both devices demonstrate the knowledge of the ith part of S by
including Si into their commitments during each round.

In addition to the secret portion, for each round commitments like Cia =
h(1, PKa, PKb°, Si, Ria) are composed by an identifier (e.g., digit 1 for device
A and 2 for Device B), devices’ public keys, and a long random number. The
identifier is needed for excluding mirroring attacks.

To obtain Si, a MITM can fool Device A by using garbage data instead of
Cib from Device B, and retaining Ria in the next message by Device A. The
attacker can brute-force Si by knowing the identifier of Device B, PKa, PKb, and
Rib. However, after successfully computing Si, she would still need the other k-1
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Device A

Generates a long random value Ria

          Computes commitment 
Cia = h (1, PKa, PKb°, Si, Ria)

Sends Cia to Device B

Generates a long random value Rib

Sends Cib to Device A

Receives Cia° from Device AReceives Cib° from Device B

Commitment opening:
Sends Ria to Device B

Receives Ria° from Device A

Verifies if Cia° = h (1, PKa°, PKb, Si, Ria°)

Commitment opening:
Sends Rib to Device A

Receives Vb° from Device B

Device B

Computes commitment 
Cib= h (2, PKa°, PKb, Si, Rib)

Verifies if Cib° = h (2, PKa, PKb°, Si, Rib°)

                   If verification holds,
Device B authentication successful

If verification holds,
Device A authentication successful

Figure 3: Verification of public keys by pre-shared short secret at the ith round.

portions for compromising the protocol. As a result, given X={probability to
discover the whole S}, and Y={probability to discover the single Si portion},
the resulting conditional probability for a successful attack is:

P (X | Y ) = P (X ∩ Y )
P (Y ) =

1
2n

1
2n

k

= 1
2n−n

k

Moreover, even when computing the secret correctly, the attacker would be
able to compromise the protocol only once as long as S is a one-time passkey.
However, as pointed out by Sethi at al. [28], the round-based MANA-III
protocol is limited due to the difficulty to ensure that both devices divide
the secret S in identical portions, and the entropy does not downgrade in
any of these. Moreover, the protocol must demonstrate that any portion Si
has no dependency on other portions Sj, with j>i, that might reveal secret
information. Furthermore, solutions involving commitments strictly rely on the
timing of the messages. Indeed, before the opening phase, both devices need to
ensure their commitment reaches to other party. Otherwise, an active attacker
would need just a few seconds to exhaustively search for the Si portion, thereby
compromising the whole protocol.

As a solution, the check on correct timing can be delegated to the user.
On the other hand, there is no intuitive user interface that denies the user to
use shortcuts for transmitting plain-text random numbers before the actual
delivery of the commitments. For this reason, Sethi at al. [28] introduce a
one-round time-based commitment scheme that uses a pre-shared secret and
timers for the authenticating the devices after the DH exchange, enforcing the
correct timing of the messages. Accordingly, as shown in Figure 4, the two
devices perform a mutual synchronization and set a t0 reference time, based on
a specific event triggered by the user. Depending on the user precision in the
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synchronization, t0 might differ in the two devices (for simplicity, tA,0 and tB,0
are simultaneous in Figure 4). Moreover, the devices agree on timers ∆1 (i.e.
maximum time interval to receive the commitment) and ∆2 (i.e. maximum time
interval to receive the commitment opening). The timers are experimentally
set to let the exchanged material arrive, including possible network delays in
modern networks and subtle imprecision in the synchronization. Subsequently,
the devices generate their commitments by hashing their identifier, the secret
S, a fresh long random number, and the key generated during the DH phase.
If the devices do not receive any commitment within a t0 + ∆1 time frame,
they abort the pairing process. Otherwise, using the key generated during the
DH phase, they open their commitments by encrypting and transmitting their
identifier, the random number, and the secret S. The encryption is needed
to limit statistical attacks. In case the devices do not receive any encrypted
material within time t0 + ∆1 + ∆2, they abort the pairing process. Otherwise,
they perform a verification of the received commitments and, if positive, they
authenticate the other party.

Device A

Generates a long random value Ra

          Computes commitment 
             Ca = h (1, S, Ra, K)

Sends Ca to Device B

Generates a long random value Rb

Sends Cb to Device A

Receives Ca° from Device AReceives Cb° from Device B

Commitment opening:
Sends Ra to Device B

Receives Ra° from Device A

Verifies if Ca° = h (1, S, Ra°, K)

Commitment opening:
Sends Rb to Device A

Receives Rb° from Device B

Device B

Computes commitment 
Cb= h (2, S, Rb, K)

Verifies if Cb° = h (2, S, Rb°, K)

                   If verification holds,
Device B authentication successful

If verification holds,
Device A authentication successful

Set timer tA,0, and time frames Δ1, Δ2 Set timer tB,0, and time frames Δ1, Δ2tA,0

tA,0+Δ1 

tB,0

tB,0+Δ1 

tA,0+Δ1 
+Δ2 

tB,0+Δ1 
+Δ2 

Figure 4: Time-based commitment protocols.

As explained in Section 2.2, the literature has proposed a considerable
amount of key agreement protocols based on authenticated asymmetric cryp-
tography using a pre-shared secret. To simplify the association model, hence
reducing the direct involvement of the user in the pairing process, many of
these protocols use fuzzy secrets for deriving the pre-shared short secrets. In
other words, the two devices derive exactly the same secret S for authenticating
each other by using material they both know only approximately (e.g., audio
or radio signals in the surrounding environment).
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In addition to the previous methods, it is possible to authenticate the two
devices by using a hybrid authentication in case the used OOB channel is
one-way only (P3). As shown in Figure 5, in this scenario Device A sends a
commitment of his public key and a long random value along with a shared
secret S. After ensuring the material has been delivered, Device A opens its
commitment by transmitting PKa and Ra on the in-band channel. Once Device
B obtains this information, it performs the verification using the previously
received material. If verification is successful, Device B sends back on the
in-band channel a message authentication code (i.e MAC = c(message,key)) of
devices’ public keys and random numbers by using the secret S. Therefore, the
protocol is considered secure as long as the OOB channel is unspoofable, and c
and f are strong cryptographic functions.

Device A

Generates a long random value Ra

Computes commitments Ca = h (PKa, Ra)

Sends Ca and secret S to Device B Receives Ca and S from Device A

           Commitment opening:
Sends PKa and Ra to Device B Receives PKa° and Ra° from Device A

Verifies if Ca = h (PKa°, Ra°)

If verification holds:
Generates a long random value Rb
Computes Cb = c (PKa°, PKb, Ra°, Rb, S)

Sends Cb, PKb, Rb to Device A
Receives Cb°, PKb°, Rb° from Device B

Verifies if Cb° = c (PKa, PKb°, Ra, Rb°, S)

If verification holds, 
Va authenticates Vb

Device B

One-way OOB

Figure 5: Hybrid authentication.

2.2 Pairing using fuzzy data
During the last years, thanks to the enormous interest towards mobile devices
by commercial actors, research has been motivated to discover novel, simple,
user-friendly ways to perform secure pairing between devices.

As mentioned later in this section, a large class of these protocols utilizes
fuzzy data as secrets for pairing. Fuzzy data is information that devices involved
in the pairing process know only approximately, and refer to data gathered
by devices’ sensors listening to the same noisy environment. The aim is to
independently derive the same exact cryptographic material out of the fuzzy
data.

Nowadays mobile devices (e.g., smart-phones, smart-watches, etc.) are
equipped with a growing number of highly accurate sensors, hence offering
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researchers the chance to invent new protocols using fuzzy data. Among these,
we present the most interesting ones which gather fuzzy data from devices’
microphones (Section 2.2.1), radio interfaces (Section 2.2.2), accelerometers
(Section 2.2.3), and touch-screens (Section 2.2.4).

Figure 6: Fuzzy data used for session key authentication [24].

As shown in Figure 6, fuzzy data can be used for authenticating the session
key derived from the previous DH agreement (P6 and P7 in Figure 1). For
example, the MANA-III protocol variant described in Figure 3 may use fuzzy
data gathered by sensors as a pre-shared secret S. After the commitment
opening, both devices independently compare the received portion of secret S
with their own version.

For these reasons, the main challenge of this scenario is to establish a
suitable metric to correctly compare the own version with the received one,
and an appropriate threshold that ideally zeros the false-positives and minimize
the number of false-negatives.

Figure 7: Fuzzy data used for shared session key construction [24].

On the contrary, as depicted in Figure 7, the so-called fuzzy cryptography
avoids the key agreement phase, using fuzzy data for direct extraction of
the session key (P9 in Figure 1). In other words, both devices use multiple
steps so as to interactively build their secret material. In particular, they
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firstly exchange fuzzy data feature vectors (i.e., vectors that contain important
information about the related raw data), usually along with correction codes.
Then, the CKP (Candidate Key Protocol) continuously seeks for matching
feature candidates at a sufficient rate. If successful, the CKP eventually builds
the same strong session key on both devices.

In any case, using fuzzy data for generating secrets is challenging. In fact,
the security of this model strictly depends upon the robustness of generated
key in terms of its entropy. On the other hand, calculating the entropy of the
generated secrets is often complicated or even impossible. Moreover, different
device may have sensors with very diverse characteristics and accuracy making
complicated to utilize this model.

2.2.1 Fuzzy data on audio signals

As investigated by different studies [16, 17, 18], a successful way to extract fuzzy
data and generate secret material is to utilize audio signals as OOB channel.
Since audio channels are inherently range-restricted, they naturally reduce the
attack surface of malicious intruders.

Sigg et al. [19, 20] introduced a secure pairing protocol that uses fuzzy cryp-
tography based on spontaneous audio-sensoring through devices’ microphones.

Device A

Device B
Ambient audio source

Figure 8: Spontaneous audio-sensoring protocols.

Firstly, the devices perform a proximity scan via Bluetooth so as to detect
possible target devices for pairing. Then, the two devices involved in the pairing
listen to the surrounding ambient audio signal. In order to adjust possible
recording delays and to effectively perform synchronization, the devices use a
short preset audio pattern for detecting the actual beginning of the original
signal, discarding possible noise. Eventually, they compute an audio fingerprint,
that is, a digital summary of the original signal able which identifies it with high
probability. Possible errors in fingerprints are corrected by using correction
codes. Once corrected, the fingerprints are used as a seed to generate the final
key for encrypting the subsequent devices’ communication. The security of the
protocols relies on the fact that the closer the devices are the more similar the
fingerprints result, and that the entropy in the ambient audio scenarios is high.

Similarly, Goodrich et al. [21] developed Loud and Clear, a human-assisted
pairing system that uses an audio channel for authenticating previously ex-
changed public keys, for instance, over Bluetooth or 802.11 WLANs [38]. In
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this scenario, one device must be provided with an audio interface (e.g., a
speaker). The rationale is to ease the alphanumeric hash verification of the
public keys which, in most of the cases, results annoying and cumbersome for
the users. In other words, the hash is translated into words that complete
pre-built, syntactically-correct, English-like templates. For achieving this, the
entire hash of the public key is split into 10-bit portions, each of them converted
into an integer which generates a human-readable word (e.g., SHA-1 hash [36]
with entropy of 80 bits is divided into 8 portions, resulting in 8 different words).

As an example, let us consider a unidirectional authentication between two
smart-phones. The first device (i.e., personal device) transmits its public key
to the other party over a Bluetooth channel and displays the sentence to match.
After receiving the public key, the second device (i.e., target device) performs
the hash of it and generates the sentence. Then, the second device reads aloud
the sentence through its speaker. If verification holds, the personal device
authenticates the target.

To ensure strong security, this scheme must ensure that slightly different
10-bit sequences (e.g., difference of only 1 bit) produce as much phonetically-
distant as possible words. Moreover, the entropy strictly depends upon the
length of the output of the hash function, which impacts on the number of
words to be generated.

2.2.2 Fuzzy data on radio signals

A different approach was proposed by Amigo [22], a protocol that relies on
WiFi signals only. Amigo uses fuzzy data out of WiFi signals for extracting
secret material in order to authenticate a previously exchanged DH key, as
shown in Figure 6.

In contrast, ProxiMate by Mathur et al. [23] extracts the cryptographic
key from different kinds of ambient RF (Radio Frequency) signals (e.g., WiFi
Access Point, cellular base radio station, TV signal, or FM radio station).
Moreover, ProxiMate follows the fuzzy cryptography paradigm (Figure 7),
hence it extracts the session key directly from radio signals.

Device A

Device B
Wireless RF source

Figure 9: Proximity pairing protocols based on radio signals.

The reliability of this scheme is based on the high correlation of signals in
near proximity. Moreover, although wireless signals are affected by reflections
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and scatterings in the time domain, their temporal variation does not affect
the correlation at times t+ δ, as long as δ is small. Furthermore, the authors
demonstrate this schema is even resistant to attacks where attackers have
control of the wireless source.

More specifically, the two devices periodically sample and demodulate the
ambient radio signal. Then, the first device encodes the measurements at
pre-defined time intervals so as to ensure bit independence in the encoding.
Subsequently, the first device sends a snippet of the generated code along with
a correction code to the other party. The second device uses the snippet for
time synchronization. After performing the synchronization, the second device
encodes its measurements, similarly to the first device. The correction code
is used to derive the identical key seed. Eventually, both devices generate the
same exact key for encrypting the subsequent communication by using the seed.

2.2.3 Fuzzy data on movement signals

In the last decade, a large family of studies regarding device movement sensoring
[24, 39, 40, 25, 41, 42, 26, 27] has been conducted in order to infer practical
applications using acceleration data.

Among these, many studies focused on exchanging secret material by shaking
devices together. This approach has multiple advantages. Firstly, shaking
devices together requires minimal user involvement with no need for previous
training and specific user interface. In addition, compared to wireless or audio
channels, shaking devices together naturally creates a range-restricted channel
that enforces user control over devices. Furthermore, acceleration movements are
difficult to tamper [24]. Moreover, acceleration sensors are nowadays integrated
into the vast majority of mobile devices. As a result, this approach can be
implemented in most devices, hence improving security as well as usability.

Figure 10: Shaking devices together [24].

Mayrhofer and Gellersen [24] introduced a novel secure pairing schema
based on shaking devices together in which the generated secret material can
be used in two different flavors, ShaVe (Shaking for Verification) and ShaCK
(Shaking to Construct a Key). The former uses the secret material for verifying
a previously exchanged session key, as shown in Figure 6. The latter follows
the fuzzy cryptography paradigm, according to Figure 7.
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Both cases are challenging due to the likely lack of temporal alignment of
acceleration time series. Moreover, in most cases, acceleration time series result
similar but not identical at the two devices, due to the different accuracy of
sensors and due to plausible slightly different shaking movement. For these
reasons, as shown in Figure 11, in both scenarios devices need temporal and
spatial alignment after acceleration data sampling.

Figure 11: Acquisition and pre-processing of acceleration data on both devices
[24].

In other words, data are independently gathered by the two devices at a preset
sampling rate (e.g., f=100-600 Hz), considering all the three axes. To detect
the actual beginning of user shaking and to start the authentication process,
both ShaVe and ShaCK take into account the variance of the acceleration.
Basically, whenever devices observe that the variance exceeds a pre-established
threshold in a specific time frame, an authentication active segment is in place.
On the other hand, the end of an active segment is detected differently in
ShaVe and ShaCK. The former always considers time frames of fixed length
(e.g., 3 seconds). The latter seeks for the drop of user motion under a certain
level. Furthermore, since sensors’ calibration may vary in each and every device,
spatial alignment is needed for the following correct comparison of segments.
To do so, samples are firstly normalized. Then, the acceleration along the three
axes is combined into a single dimension by computing the magnitude of the
vectors.

After pre-processing of acceleration data, ShaVe implements the authenti-
cation protocol based on the MANA-III variant depicted in Figure 3. During
the DH phase the two devices, say Device A and Device B, generate two
secure keys KAuth and KSess. Given the knowledge on one of these keys, it
is computationally unfeasible to infer the other. Then, both devices group
their acceleration active segments so as to obtain vectors a and b, where
len(a) = n and len(b) = m. Both devices prepend one additional block con-
taining a local identifier, IdA and IdB (e.g., their Bluetooth MAC address), for
excluding mirroring attacks. By using KAuth and a random IV (Initialization
Vector) in CBC (Cipher Block Chaining) mode, they compute the cryptograms
c = Enc(KAuth, IV, IdA|a) and d = Enc(KAuth, IV, IdB|b) respectively, where
len(c) = n+ 1 and len(d) = m+ 1. After computing the encrypted material,
they split c and d in two halves (i.e., A1 and A2, B1 and B2) which are trans-
mitted in two rounds in order to avoid attackers to gain knowledge about any
part of the plain-text. After receiving the cryptograms from their counterpart,
both devices resemble the halves and verify whether the active segments match.
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In any case, they communicate success or failure to the other device.
In contrast, devices in ShaCK mode do not perform the DH agreement

(Figure 7). As a result, the encryption key Kab needs to be extracted through
the CKP directly. For this reason, devices hash their acceleration feature
vectors h. Device A sends to Device B its h + s, where s is a random salt
value. Once received, Device B checks existing matching vectors against its
own partner-specific list of feature vectors. If multiple matching feature vectors
are found, once sufficient entropy has been gathered, Device B concatenates
all the matching vectors along with a publicly-known constant C and hashes
them to build a candidate key Kab, and transmits it to Device A. Then, if no
messages have been lost, Device A should be able to generate the construct
the same Kab and verify the correctness of the material obtained by Device B.
In any case, Device A acknowledges success or failure to Device B.

Both ShaVe and ShaCK bring their own advantages and disadvantages.
Indeed, even though ShaVe provides stronger security as it is based on an
extensively studied cryptographic design, ShaCK is computationally lightweight
and more interactive. Moreover, since ShaCK provides a less restrictive design,
it is suitable in cases when shorter shaking is needed.

In subsequent research, Findling et al. [41] extended the study of Mayrhofer
and Gellersen [24] using conjoint device shaking for transferring the authen-
tication state among devices over a pre-established secure channel. In other
words, given an existing secure channel over which the two devices already
encrypt their communication, the token-device (e.g., a smart-watch that is most
probably unlocked for long periods of time) transfers its authentication state to
the other device (e.g., a smart-phone) so as to automatically unlock it. Basically,
the two devices independently and continuously measure and derotate their 3D
accelerations. If the variance of the acceleration magnitude exceeds a preset
threshold within a sliding time window (e.g., 2 seconds), the devices detect
an active segment and trigger the verification phase. Both measurements are
then aggregated on one device, usually the locked device. The receiving device
applies a bandpass filtering and a frequency collapsing function. Subsequently,
it computes a scalar metric value out the two active segments. Eventually,
according to pre-established individual frequency weights, the target device
decides whether to accept or reject the unlocking.

2.2.4 Fuzzy data on screen coordinates

As already introduced in Section 2.1, in their research Sethi et al. [28] proposed
a novel pairing protocol based on fuzzy data gathered from devices equipped
with touch-screens or touch-pads (e.g., smart-phones, printers, etc.). Basically,
as shown in Figure 12, the user draws simultaneously on both touch-sensitive
surfaces by using two fingers of the same hand. If the two drawings are
considered similar, the protocol allows the pairing.

Drawings are mainly characterized by x and y spatial coordinates, and do not
have a natural time axis. Moreover, APIs (Application Programming Interface)
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Figure 12: Synchronized drawings on two distinct devices [28].

for obtaining spatial coordinates as a function of time do not sample at a
consistent frequency. Thus, the protocol would need mechanisms to approximate
existing interpolation errors and to ensure continuous synchronization between
devices, becoming cumbersome to implement. Furthermore, there are no reliable
ways to calculate drawing entropy in the existing literature.

For these reasons, the authors of [28] discarded the fuzzy cryptography
approach (Figure 7) and decided to use the secret material extracted from
drawings for authenticating a previously agreed session key. They proposed a
one-round time-based commitment scheme with approximate synchronization
which does not require to split the secret, hence reducing the amount of
exchanged messages and the complexity of protocol implementation.

The scheme depicted in Figure 13 is an extension of the protocol shown in
Figure 4 and consists of four different phases.

The two devices firstly agree on a session key KSess through a DH exchange.
As soon as the user finishes to draw and lifts his fingers from the touch-
sensitive surfaces, both parties extract the secret material from the recorded
drawings, as described later in this section, and take a reference time (i.e.,
tA,0 for Device A, tB,0 for Device B). The reference times might differ on
the two devices depending on the user precision in lifting fingers from the
surfaces. Moreover, the two devices agree on two timers, ∆1 (i.e., the maximum
time interval for delivering the commitment) and ∆2 (i.e., the maximum time
interval for correcting possible differences between tA,0 and tB,0). Since the
security of commitment-based protocols significantly depends on the order of
the messages, timers are a fundamental characteristic of this protocol. That is,
the commitment opening must be performed after receiving the counterpart’s
commitment.

For simplicity, we now consider Device A only (Device B works similarly).
Device A picks a long fresh random number rA (e.g., 128 bits long). It computes
its commitment by hashing a local identifier IdA so as to exclude mirroring
attacks (e.g., its own Bluetooth Media Access Control address), the extracted
secret material vA, the previously generated random number rA, and the session
key KSess. As soon as the commitment is computed, Device A transmits it to
Device B. In the meanwhile, Device A waits for the counterpart’s commitment.
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Figure 13: One-round time-based commitment protocol with implicit synchro-
nization [28].

If Device A does not receive any data from Device B within tA,0 + ∆1 time
interval, it aborts the process.

After receiving the hash from Device B, Device A opens its commitment by
encrypting IdA, vA and rA with KSess, and transmitting the secret material.
Although not effective against active attackers, in this phase the encryption is
needed for excluding passive statistical attacks. Concurrently, Device A waits
for the commitment opening from Device B. If no data are received within
tA,0 + ∆1 + ∆2 time, the pairing process is aborted. Otherwise, once it receives
the material, Device A verifies that IdA 6= IdB for excluding mirroring attacks
yet another time. Moreover, having all the information for computing the
counterpart’s commitment, it verifies that the calculated commitment matches
the one received in the previous phase. If verification is successful, Device A
also proves that the similarity between the secret material extracted from both
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drawings is less or equal a pre-established threshold (i.e., D(vA, vb) ≤ d).

(a) (b)

Figure 14: Location metric: (a) centered and scaled drawings; (b) x and y
coordinates as function of time [28].

As a consequence, a proper distance metric D and threshold d must be
introduced in order to discard non-matching movements (i.e., not similar enough
to perform secure pairing) and accept the matching ones. For this reason, the
study inspected possible ways to compare the two drawings.

The authors firstly studied a location metric (Figure 14), inspecting x and
y coordinates as a function of time. Figure 14a shows two matching drawings
after performing centering and scaling. Coordinates x and y in Figure 14b are
interpolated at a frequency of 1 KHz. The distance between drawings in the
location metric is calculated as the Euclidean distance of the difference between
vectors of x coordinates (i.e., ~xA − ~xB) and y coordinates (i.e., ~yA − ~yB), as
follows:

D(drawingA, drawingB) = 1
n

(
n∑

n=1
((xA,i − xB,i)2 + (yA,i − yB,i)2)) 1

2

The resulting distribution of pairs (Figure 16a) of matching drawings (green)
against non-matching drawings (red) demonstrates that location metric is
suitable for clearly distinguishing successful pairings from failing ones. The
sharp division between the two sets eases the detection of the threshold d,
which is experimentally chosen in the separation space between the two curves.

On the other hand, the location metric is computationally expensive due
to the cost of searching for the best time offset to align the two drawings.
Thus, instead of focusing on spatial coordinates, the authors of [28] studied a
movement metric by inspecting velocity and direction of drawings as a function
of time. Then again, as shown in (Figure 16b), this metric does not offer a
clear distinction between matching drawings (green) against non-matching ones
(red). The cause is mainly ascribable to the touch-screen APIs which do not
offer sufficiently frequent readings for a precise calculation of velocities and
accelerations.
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(a) (b)

Figure 15: Trajectory-based metrics: (a) LURD metric; (b) Angle string metric
[28].

Therefore, Sethi et al. [28] focused on metrics which are not based on rigor-
ous time synchronization and are not heavily affected by drawings’ inaccuracy.
Based on previous studies [43], they introduced a LURD (Left Up Right Down)
metric. The rationale is to encode polygons, that is, to find a string repre-
sentation of the drawings. The aim is to compare the similarity rate of the
two resulting strings by using a proper edit distance. In other words, the edit
distance is the minimum cost for transforming one string into the other in order
to make them exactly the same. As shown in Figure 15a, the authors ideally
divide the touch-sensitive surface by sketching a grid. Whenever the trajectory
of the finger crosses the grid, the intersection points are isolated and the re-
sulting string is built by translating the finger movement using a 4-character
alphabet (i.e., L=left-ward, U=up-ward, R=right-ward, D=down-ward).

Even though the distribution depicted in Figure 16c demonstrates that
LURD metric (Figure 15a) is suitable for encoding trajectories, the authors
refined it by increasing the number of directions in the intersection points in
order to obtain more accurate encoded strings. Therefore, as shown in figure
Figure 15b, in the Angle string metric for each drawing intersection point
the surrounding area is divided into 16 even portions (i.e., each portion is
360/16=22.5 degrees). Consequently, portions are encoded using an alphabet
composed by decimal numbers from 1 to 16. However, after conducting several
experiments, the authors verified that the ideal number of portions for the Angle
string metric (Figure 15b) is 32. Then, trajectories are encoded by detecting
on which portion they lay between two consecutive points.

The distribution plot (Figure 16d) highlights the effectiveness of the Angle
string metric in terms of a negligible number of false-positives and sharp
separation between the two sets for a straightforward detection of threshold d.
Moreover, the Angle string metric increases the implementation efficiency as it
does not rely on rigorous time synchronization.
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(a) (b)

(c) (d)

Figure 16: Distribution of matching drawings (green) and non-matching draw-
ings (red) using different metrics: (a) Location metric (Euclidean distance); (b)
Movement metric; (c) LURD distance; (d) ANGLE string distance [28].
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3 Secure multi-modal gestures
Secure pairing protocols introduced by Sethi et al. [28] using simultaneous
drawings (Section 2.2.4), and Mayrhofer and Gellersen [24] based on shaking
devices together (Section 2.2.3) are especially interesting for their usability and
solution design.

Our goal is to integrate these two protocols and to find a hybrid solution
that involves accelerometer data along with screen coordinates. In particular,
this thesis aims to verify the feasibility of a new usable scheme based on fuzzy
data (Section 2.2) to securely pair a smartwatch and a mobile device, say a
mobile phone, through multi-modal gestures.

As shown in Figure 17, multi-modal gestures indicate those gestures involv-
ing drawing supported by accelerometer data. In other words, the user can
pair a smart-watch on his wrist and a smart-phone by simply drawing with a
finger on the screen of the mobile device.

Figure 17: Pairing through multi-modal gestures.

This new scheme can be generally applied to perform pairing between one
device provided with an accelerometer and another equipped by a touch-sensitive
surface (e.g., a smart-phone and a tablet, a smart-watch and a tablet, etc.).

However, in the above-mentioned protocols [28, 24] the approach for com-
paring signals is simple since they seek for similarities between sensors of equal
nature (i.e., two accelerometers or two touch-screens). In our case, verifying that
finger and wrist movements translate into comparable signals from smart-watch
and smart-phone is challenging due to the different nature of sensor data. That
is, we need to find an effective approach to compare accelerometer data (i.e.,
raw acceleration) against drawing data (i.e., coordinates on the screen).

For clarity, the drawing depicted in Figure 18 will be considered in the fol-
lowing sections. The drawing represents a suitable example for easier detection
of possible similarities between smart-phone and smart-watch signals since it
implies clear acceleration peaks around vertices.
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Figure 18: Drawing example on smart-phone screen. The green segment
represents the initial part of the finger movement on the screen, whereas blue
and red segments illustrate the middle and final part of the drawing respectively.

3.1 Background
To effectively study a novel secure pairing protocol, we firstly need to consider
possible attack vectors which may compromise it.

This study assumes that the two devices have access to one in-band channel
(e.g., a wireless link) and one OOB channel (i.e., the imaginary link built by
the movement of the smart-watch and the screen drawing).

The former is deemed to be insecure as vulnerable to MITM active attacks
and to passive eavesdrops of the communication. The latter is supposes to be
secure and unspoofable since location-limited and under the physical direct
control of the user, but error-prone due to inherent external noise and possible
different sensor calibration on the devices.

In this context, the final goal of the attacker is to successfully access the
confidential information between the two devices.

For these reasons, the combination between wrist movement and finger
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drawing over the OOB channel represents the first building block for agreeing
on a secret.

Synchronization Preliminary
standardization

Sampling

Pre-processing pipeline

Encoding
Transformation 

and filtering

Figure 19: Pipeline of steps for processing signals extracted from smart-watch
and smart-phone. The pipeline outputs encoded signals.

As shown in Figure 19, to extract a secret from the two devices we utilize a
pipeline of steps for processing and eventually encoding signals to make them
mutually comparable.

In other words, once signals are sampled (Section 3.2) they need to be
synchronized (Section 3.3) to eliminate possible clock skews. In addition,
in the preliminary standardization (Section 3.4), the aim is to remove the
gravity contribution from the smart-watch sample. Then, data are conveniently
transformed and filtered to make them comparable (Section 3.5). Namely, we
filter smart-watch samples to obtain velocity and screen coordinates from the
acceleration. In addition, we filter smart-phone samples to compute velocity and
acceleration from screen coordinates. After transformation, data are encoded
(Section 3.6) to produce their bit-string representation.

The pre-processing pipeline in Figure 19 is necessary for subsequent steps
described in Chapter 4, where we study a comparison metric function to compute
a similarity ratio and a threshold for distinguishing non-matching movements
(i.e., not similar enough to perform secure pairing) from the matching ones. Once
similarity ratio and threshold are found, we are able to apply this information
to the key agreement described in Figure 13. In other words, the encoded
signals from the pre-processing pipeline represent the noisy inputs vA and vB on
the two devices, whereas the comparison metric and threshold serve as function
D and parameter d respectively.

3.2 Sampling
We sample raw acceleration along x, y and z axes in the time domain from smart-
watch at a frequency of 100 Hz approximately, whereas we sample drawing x
and y screen coordinates in the time domain from smart-phone at a frequency
of 50 Hz roughly.

These frequencies represent the maximum sampling rate that our devices
support. Equipment, APIs and implementation details are given in Section
4.1.2 and Section 4.1.3 for smart-watch and smart-phone respectively.
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However, as detailed later in Section 3.5.1, we are interested to study
frequencies in the range of 0-20 Hz, which better describe movements of human
limbs. Therefore, according to the Nyquist–Shannon sampling theorem [44, 45],
in order not to lose any piece of information from the continuous-time movement
signals, we need to sample data at least at the double of the maximum frequency
we are interested to (i.e., 40 Hz). As a result, both devices sample at an adequate
frequency for our goal.

3.3 Data synchronization
Data synchronization represents the first important step for subsequent detection
of possible signal similarities.

To this purpose, it is necessary to find a proper event that uniquely deter-
mines the onset of the pairing process at the smart-watch. In fact, although the
drawing has clear onset and termination events (i.e., whenever the finger touches
the screen and lifts), the accelerometer is continuously sampling. Consequently,
data synchronization is only performed at the smart-watch.

Once such an event is clearly detected, the benefit is twofold. First, it
becomes straightforward to discard insignificant information from meaningful
acceleration data from smart-watch samples (i.e., data recorded by the ac-
celerometer before the actual tap on the screen and after the finger lifting from
the screen). Second, clear detection of the onset event allows eliminating clock
discrepancies. As detailed in Section 4.1, we use an Android smart-phone and
a WearOS smart-watch for our study. These systems use the NTP protocol
[46] for synchronizing their clocks. Although NTP offers a potential accuracy
to the tens of microseconds while synchronizing with the NTP servers, in the
vast majority of the cases the clocks of the two devices present a significant
time skew.

Based on the findings of Mayrhofer and Gellersen [24] described in Section
2.2.3, we use the magnitude of the raw acceleration on the smartwatch for
detecting the onset of the pairing. The idea is based on the fact that the initial
tap on the screen usually corresponds to a wide movement of the wrist, hence
generating a peak of magnitude on the accelerometer.

For simplicity purpose, we conduct our study by firstly holding the wrist
in a quiet position above the other device, and then performing a strong tap
on the screen, provoking a clear high peak of magnitude before continuing to
draw.

We compute the magnitude as the 2-norm (Euclidean norm) of x, y and z
raw acceleration components, as follows:

m =
√
a2

x + a2
y + a2

z

Therefore, we make use of the Smoothed z-score algorithm [47] to perform
a peak detection, that is to verify the presence of a significant increase of
magnitude. The algorithm computes a moving mean considering a certain lag
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(i.e., number of consecutive data-points). In our experiments, we consider a
lag of 4 data-points. In addition, whenever a new data-point is examined, the
algorithm calculates the standard deviation and the z-score [48], that is the
distance from the mean in terms of number of standard deviations. In case the
z-score exceeds a chosen threshold (in our experiments threshold is set to 9),
the algorithm returns a peak. Moreover, the influence of the new data-point
on the previous ones is set to 0.

As shown in Figure 20, the Smoothed z-score algorithm signals in presence
of high peaks of magnitude, discarding weaker magnitude values and noise.
Thus, it is experimentally possible to verify that the actual first tap on the
screen corresponds to the maximum value of magnitude within the first three
positive peaks (i.e., within the first three series of value 1 returned by the
Smoothed z-score algorithm).

Figure 20: Tap detection on smart-watch data.

3.4 Preliminary standardization
As shown in Figure 17, in order to minimize the impact of roll, pitch and
yaw [49] on acceleration data, we perform the drawing by keeping the smart-
watch as parallel as possible to the ground and the finger perpendicular to the
smart-phone.

In this scenario, we expect the gravity to impact almost exclusively on the
z axis of the smart-watch. Obviously, the contribution of the gravity on the
smart-phone is null since we sample x and y screen coordinates only. Thus,
removing the contribution of gravity from smart-watch samples and computing
the linear acceleration results straightforward. Moreover, although the raw
acceleration on all three axes is needed for the magnitude calculation in the Data
synchronization process (Section 3.3), after computing the linear acceleration
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we can ignore the smart-watch z axis and study possible similarities between
smart-watch’s and smart-phone’s x and y axes only.

After detecting the actual first tap on smart-watch samples as described in
Section 3.3, we obtain the linear acceleration by firstly calculating the mean of
the raw acceleration on x and y axes considering the meaningful information
only (i.e., the data recorded by the accelerometer before the actual tap on
the screen and after the finger lifting from the screen). Eventually, we simply
subtract the mean from x and y raw accelerations.

3.5 Transformation and filtering
Transformation and filtering represents the core step of the pre-processing
pipeline shown in Figure 19. In other words, the goal is to transform data
on both devices to reach a common state for an easier comparison of signals.
Moreover, data on both devices need to be filtered for eliminating noise and
user movement imprecision.

Section 3.5.1 describes the transformation step at the smart-watch, namely
the process of integration and filtering of data. Similarly, Section 3.5.2 details
the transformation step at the smart-phone, that is the process of differentiation
and filtering of data.

3.5.1 Smart-watch integration and filtering

After computing linear accelerations along x and y axes on the smart-watch,
we aim to calculate velocities and screen coordinates along these two axes.

x, y
linear accelerations

Filtering
Integration

Filtering

x, y
filtered

linear accelerations

x, y
velocities

x, y
screen coordinates

x, y
filtered
velocites

Integration

Figure 21: Integration and filtering steps to calculate velocities and screen
coordinates from raw accelerations.

To do so, as depicted by Figure 21, we firstly need to remove useless
frequencies out of the signals and retain meaningful information about the
wrist movement. As a matter of fact, accelerometers are highly sensible and
able to sample at frequencies higher than 100 Hz. In the vast majority of the
cases, their signals are affected by noise and prone to collect imperceptible or
unintended user’s wrist movements.
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Several studies on human body motion have been conducted to identify
the frequency range that conveniently describes deliberate limb movements.
Winter [50] asserts that meaningful frequencies for describing human motion
are approximately in the range of 0-10 Hz. On the other hand, Bouten et
al. [51] affirm that, for assessing daily human activities, it is sufficient that
body-fixed accelerometers record in the range of 0-20 Hz. In their study about
pairing devices by shaking them together [24] (see Section 2.2.3), Mayrhofer
and Gellersen obtained better results taking into consideration frequencies up
to 40 Hz. Then again, although the ShakeUnlock protocol [41] is based on the
findings of Mayrhofer and Gellersen, its authors found better results in the
range of 0-16 Hz. Based on these findings, for conducting our experiments we
decide to use a cut-off frequency of 20Hz.

As shown in Figure 22, we convert the accelerations along x and y axes
from the time domain to their representation in the frequency domain by using
the FFT (Fast Fourier Transform) algorithm. Then, we attenuate frequencies
that exceed the cut-off frequency through an LPF (Low-Pass Filter), obtaining
a filtered signal in the frequency domain. By using the IFFT (Inverse Fast
Fourier Transform) algorithm, the filtered signal is converted back to the time
domain.

signal in time domain

         filtered
signal in time domain

F
ilt

er
in

g

Low Pass Filter

          Inverse
Fast Fourier transform

Fast Fourier transform

Figure 22: Filtering steps for attenuating high frequencies in input signals.

Consequently, we determine velocities by integrating the accelerations using
the composite trapezoidal rule. Let the acceleration be defined in the interval
[ta, tb], that it respectively the first and the last timestamp of the recorded sample.
Let xk be a partition of [ta, tb] where ta = x0 < x1 < ... < xn−1 < xn = tb and
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∆xk the duration of the kth time interval, namely ∆xk = xk − xk−1. Then, for
each of the axes:

vx,k =
∫ tb

ta

f(x)dx ≈
N∑

n=1

f(xk−1) + f(xk)
2 ∆xk

Once the velocities along the x and y axes are obtained, we can filter
and integrate them the same exact way as before to compute x and y spatial
coordinates of the wrist movement.

3.5.2 Smart-phone differentiation and filtering

At the smart-phone, the goal is to calculate x and y velocities and accelerations
by utilizing the drawing screen coordinates.

x, y
linear accelerations

Filtering
Differentiation

Filtering

x, y
filtered

linear accelerations

x, y
velocities

x, y
screen coordinates

x, y
filtered
velocites

Differentiation

Figure 23: Differentiation and filtering steps to calculate velocities and acceler-
ations from screen coordinates.

To do so, as depicted in Figure 23, we firstly obtain the velocity on the
x and y axes by computing the derivative of the screen coordinates. Let the
screen coordinates be defined in the time interval [ta, tb], that it respectively
the first and the last timestamp of the recorded sample. Let tk be a partition
of [ta, tb] where ta = t0 < t1 < ... < tn−1 < tn = tb and ∆tk the duration of the
kth time interval, namely ∆tk = tk − tk−1. In addition, let ∆xk be the spatial
interval between two consecutive data-points, namely ∆xk = f(tk)− f(tk−1).
Then, for each consecutive couple of data-points in the sample, both for x and
y axes:

vx,k = ∆xk

∆tk
Once velocities are computed, we filter the signals for two main reasons. In

the first place, by filtering we ensure that signals do not contain any possible
noise that may come from the sampling process. Moreover, by using this
method we align both pre-processing phases, on smart-watch and smart-phone.
For these reasons, the filtering is performed similarly to the method used for
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smart-watch signals, as shown in Figure 22. In other words, the signals are
converted to their representation in the frequency domain by using the FFT
algorithm. Then, an LPF attenuates the undesired high frequencies. Eventually,
through the IFFT algorithm, the filtered signals are converted back to their
representation in the time domain.

At this stage, the accelerations along x and y are computed differentiating
the velocities calculated during the previous step. Let ∆vk be the difference
of velocities of two consecutive data-points, namely ∆vk = f ′(tk) − f ′(tk−1).
Then, for each consecutive couple of data-points, both for x and y axes:

av,k = ∆vk

∆tk
Then, the accelerations are filtered as mentioned above for the previous step.

As a result, we eventually have the whole comparable information needed for
detecting possible similarities between smart-phone and smart-watch signals.

3.6 Encoding
Once data on both devices are in a suitable state for comparison, the next
step is to encode signals from smart-watch and smart-phone to let devices
independently and asynchronously perform the similarity check.

The goal is to connect our study with the findings of the Commitment-based
device-pairing protocol with synchronized drawings [28], as explained in Section
2.2.4. In other words, we aim to find a signal encoding method complaint with
the key agreement depicted in Figure 13. Moreover, the encoding method has
to be independent of the amplitude of the signals, namely not prone to modify
its output in the presence of high or low sensor sensitivity.

To this purpose, we introduce a novel and simple method for encoding signals.
Individually on both devices, velocity (or acceleration) x and y components are
rendered on the same plot to obtain their drawing-like representation. Figure
24 shows an example obtained by interpolating velocity components on a single
device starting from the onset data-point (i.e., green node) to the last data-point
in time (i.e., red node). As a matter of fact, our approach differs from the study
by Sethi et al. [28] depicted in Figure 15a and Figure 15b, since the authors
encode drawings by taking into considerations screen coordinates in time only.

Subsequently, we assign a 2-bit code to each quadrant of the Cartesian
coordinate system, as depicted in Figure 25, by using the Grey-code [52] bit-
sequence ordering principle, where one sequence differs from the closer ones by
flipping one single bit only. We choose this method since it is straightforward
and reasonably simple to implement. Moreover, it does not present strict rules
for its applications and suits perfectly our goals.

Afterward, we overlap the Cartesian coordinate system on the first data-
point of the drawing-like graph, as shown in Figure 26. In addition, we draw
a vector that joins the first data-point with the third one, namely a vector
with jump = 2. We decide to use the jump vector since it provides a good
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Velocity along x axis

Velocity along y axis

Figure 24: Example of velocity components plotted together obtaining a drawing-
like graph.

00

11

01

10

Figure 25: 2-bit Grey-code ordering for signal encoding.

approximation of the drawing-like graph, and it reduces the impact of possible
outliers on the resulting code.

Therefore, according to the quadrant over which the jump vector lays on,
the corresponding two bits are extracted. In the example depicted by Figure
26, the first two extracted bits are “10” since the jump vector lays on the
fourth quadrant. The same procedure is repeated by overlapping the Cartesian
coordinate system on the second data-point (see Figure 27) with a jump vector
connecting the second and the fourth data-point. In this case, the extracted
two bits are “00”, as the vector lays on the first quadrant.

Consequently, by repeating this procedure data-point by data-point until the
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jump vector connects the third-last data-point to the last one and combining all
the 2-bit extracted codes in sequence, we eventually obtain the overall encoded
signal. The overall code extracted from the drawing in Figure 24 is “10 00 00
01 10 10 01 11”.

1st

10

3rd

jump

Figure 26: Extraction of the first two bits with jump = 2 from 1st to 3rd

data-point.

This encoding method is also convenient since there is no loss of information
from the original signal. In addition, the resulting code includes a 50% of signal
overlap as approximately every data-point is overcome by the jump vector once.

Furthermore, this method makes possible to extend code generation using
different mapping between the coordinate system and bit sequences. For
instance, as shown in Figure 28, it is possible to expand the resulting code by
dividing the Cartesian coordinate system into eight portions and assigning a
3-bit code to each of them. In fact, by following the same procedure described
above and assigning 3 bits per step the resulting code is “100 000 001 010 101
100 010 111”. The first two steps of the procedure are depicted by Figure 29
and Figure 30.

Finally, by using this method it is possible to also increase or decrease the
value of the jump vector, resulting in a different signal overlap (e.g., with a
jump = 3 the resulting code includes a 66% of signal overlap as approximately
every data-point is overcome by the jump vector twice).
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Figure 27: Extraction of the second two bits with jump = 2 from 2nd to 4th

data-point.
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Figure 28: 3-bit Grey-code ordering for signal encoding.
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1st

3rd

jump

100

Figure 29: Extraction of the first three bits with jump = 2 from 1st to 3rd

data-point.

2nd

4th

jump000

Figure 30: Extraction of the second three bits with jump = 2 from 2nd to 4th

data-point.
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4 Evaluation
In the following, we describe implementation details about our approach to
sample, pre-process and encode data explained in Chapter 3. Moreover, we
evaluate its effectiveness to distinguish matching movements from non-matching
ones by analyzing obtained results.

In particular, Section 4.1 depicts the experimental setup and methodology.
Section 4.2 illustrates the empirical characterization of signals after the pre-
processing pipeline described in Section 3.5. Section 4.3 introduces a function
metric for a precise comparison between signals. Moreover, Section 4.4 studies
the existence of a suitable comparison threshold that allows to detect matching
movements and discard non-matching ones. Eventually, Section 4.5 evaluates
the obtained results.

4.1 Experimental setup
4.1.1 Equipment

We employ one LG Nexus 5X smart-phone for tracking finger drawings and one
Huawei Watch 2 2358 smart-watch for tracking wrist movements. Table 1 and
Table 2 summarize the relevant characteristics of the two devices for our study.
Both devices run the latest versions of Wear OS and Android respectively1. We
decided to use these devices since they are easily available on the market and
they support the latest APIs. In addition, we do not have any constraints in
using specific devices. In fact, we basically need one device equipped with an
accelerometer and the second one equipped with a touch-sensitive surface.

As already discussed in Section 3.4 and shown in Figure 17, to minimize
the impact of roll, pitch and yaw [49] on acceleration data, we perform our
experiments keeping the smart-watch as parallel as possible to the ground and
perpendicular to the smart-phone while drawing. However, as better discussed
later in Section 5, for future follow-ups and a proper user study the accurate
removal of roll, pitch and yaw must be considered as a core objective. Moreover,
similar to Figure 14a we decide to draw jerkily on the screen to facilitate the
visual detection of similarities among signals.

4.1.2 Wear OS smart-watch application

The aim of the Wear OS application is to sample raw acceleration in the time
domain along x, y and z axes from smart-watch.

In Wear OS it is possible to use any standard Android API. Thus, we
implement the application [55] and gather acceleration data along with times-
tamps by using the SensorManager API [56] and listening to the sensor
Sensor.TYPE_ACCELEROMETER [57].

1At the time of this study, the two devices were running Wear OS App version 2.15 and
Android 8.1.0 (Oreo) respectively.
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Huawei Watch 2 2358

Processing
CPU

Qualcomm® Snapdragon
Wear™ 2100 processor, 1.2
GHz quad-core 32-bit

Memory 4 GB, 768 MB RAM

Display
Resolution 390x390 pixels

Size 1.2 inches

Pixels per inch (PPI) 326

Connectivity
Wi-Fi 802.11 b/g/n 2.4 GHz

Bluetooth 4.1

Sensors
Accelerometer + Gyroscope 6-axis

Compass 3-axis

Table 1: Huawei Watch 2 2358 - Device specifications [53].

LG Nexus 5X

Processing
CPU

Qualcomm® Snapdragon™ 808
processor, 1.8 GHz hexa-core
64-bit

Memory 32 GB, 2 GB MB RAM

Display
Resolution 1920x1080 pixels

Size 5.2 inches

Pixels per inch (PPI) 423

Connectivity
Wi-Fi 802.11 a/b/g/n/ac dual-band

(2.4 GHz, 5.0 GHz)

Bluetooth 4.2

Table 2: LG Nexus 5X - Device specifications [54].

Conversely, we could also listen to the synthetic sensor
Sensor.TYPE_LINEAR_ACCELERATION [57] to directly dispense with the gravity
contribution. On the other hand, the official documentation lacks details about
its actual implementation. For this reason, we decide not to use this sensor and
instead to delegate the gravity removal to the data pre-processing (see Section
3.4).

Collected data are written to the smart-watch’s internal storage then ex-
ported for subsequent manipulation and analysis of data.
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4.1.3 Android smart-phone application

We develop the Android smart-phone application [58] to gather x and y positions
on the screen in the time domain by using the MotionEvent API [59].

Furthermore, since the VelocityTracker API [60] helps for tracking the
velocity of touch events and its documentation is exhaustive, we utilize this API
for obtaining the velocity of finger strokes on the screen instead of assigning the
calculation to the differentiation and filtering phase described in Section 3.5.2.

Similarly to the Wear OS application (Section 4.1.2), we decide to write
the gathered data (i.e., timestamps, x and y screen coordinates, x and y
velocities) to the smart-phone’s internal storage then exported for subsequent
pre-processing.

4.1.4 Data processing

We develop a script [61] which implements the pre-processing pipeline depicted
in Figure 19, offers an empirical characterization of data (Section 4.2), and
collects experimental results (Section 4.5).

The script is developed using Python 3 language. We choose Python since
it provides libraries for simple manipulation, analysis and plotting of data. In
addition to these, it offers several powerful and well-documented libraries for
mathematics and science.

To easily manipulate raw data collected by the Android and Wear OS
applications (gathered into .csv files) we use the Pandas library version 0.22.0
[62], which offers its own data structures, namely Series (1-dimensional) and
DataFrame (2-dimensional).

Furthermore, for mathematical and scientific computations we adopt NumPy
version 1.14.0 [63] and SciPy version 1.0.0 [64] libraries. We also use an external
Python implementation of the Smoothed z-score algorithm [47] (see Section
3.3) to extract acceleration magnitude peaks.

In addition, we use the Matplotlib library version 2.1.2 [65] for plotting
data and easing the analysis of experimental results (Section 4.5).

4.2 Empirical characterization
Once the experimental setup is ready and the pre-processing pipeline is imple-
mented, we compare filtered linear accelerations and filtered velocities before
the encoding step to visualize possible similarities among signals, as depicted
by Figure 31.

Then again, we discard the comparison among screen coordinates since we
expect a high variance among the two devices. Indeed, the integration steps
in the smart-watch pre-processing include additive constants to velocities and,
mainly, to screen coordinates which compromise their eventual comparison.

Hence, to visualize possible signal similarities from the example in Figure
18, we plot x velocities, y velocities, x accelerations and y accelerations of the
two devices in single plots, as shown by Figures 32a, 32b, 33a and 33b. In
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Figure 31: Relation of signals after the pre-processing phases.

these plots we also include non-meaningful information that has been recorded
by the accelerometer before the actual tap on the screen to demonstrate the
effectiveness of the the data synchronization step (see Section 3.3).

6500 7000 7500 8000 8500 9000 9500
Timestamp +1.54004735e12

250

200

150

100

50

0

50

100

Am
pl

itu
de

Smart-phone x-velocity
Smart-watch x-velocity

(a)

6500 7000 7500 8000 8500 9000 9500
Timestamp +1.54004735e12

150

100

50

0

50

100

150

200

Am
pl

itu
de

Smart-phone y-velocity
Smart-watch y-velocity

(b)

Figure 32: Filtered velocities along the x axis (a) and the y axis (b) from the
two devices.

However, Figure 32a shows some discrepancies in terms of amplitude of
signals in the time interval 8000-8500 ms, probably due to the high accelerometer
sensitivity. Moreover, Figure 32b depicts some signal deviation. The reason is
most likely due to the subtle contribution of wrist pitch and yaw [49] at the
smart-watch. Furthermore, in Figure 32b some peaks present clear differences
(e.g., in the time interval 7500-7800 ms and 8300-8400 ms) due to the fact
that finger friction on the screen (i.e., scatters while drawing) may not that
accurately reflect on the wrist.

Then again, the highly similar trend of signals in these plots demonstrates
the actual presence of similarities we are aiming to find. In other words, the
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Figure 33: Filtered linear accelerations along the x axis (a) and the y axis (b)
from the two devices.

pre-processing phases at both devices are effective and successful. On the
other hand, based on the plots in Figure 32 and 33 only, without considering
the output of the encoding step described in Section 3.6, we cannot predict
whether velocities or accelerations provide better result to spot a clear similarity
threshold.

4.3 Comparison metric
After performing the encoding of signals (illustrated in Section 3.6), a function
metric for a formal comparison between resulting codes needs to be found. That
is, we need a method for computing the similarity ratio between smart-watch
and smart-phone encoded signals that complies with the key agreement in
Figure 13.

To this purpose, we decide to firstly use the bit-wise XNOR gate [66]
between the two encoded signals (Table 3 shows the XNOR Truth Table).

XNOR - Truth Table

bitAbitAbitA bitBbitBbitB bitA ⊕ bitBbitA ⊕ bitBbitA ⊕ bitB

0 0 1

0 1 0

1 0 0

1 1 1

Table 3: Truth table of the digital logic XNOR gate [66].
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Then, let the length of the XNOR resulting array R be N. The metric function
is defined as follows:

Sr =

N−1∑
n=0

(Ri = 1)

N

Figure 34 describes a simplified comparison example between the encoded
signals SA and SB. The resulting similarity ratio of 70% is calculated dividing
the number of bits equal to 1 in the array R (i.e., 7 bits) by the length of R
(i.e., 10 bits).

Moreover, we use a sliding window that describes the maximum bit shift
between signals to obtain a more accurate comparison. In practice, the sliding
window helps tolerate possible subtle inaccuracies still present after performing
the data synchronization phase (see Section 3.3). In other words, we re-calculate
the similarity ratio by shifting the signal SA bit-by-bit left-ward and right-ward
from the basic position depicted in Figure 34 within a maximum sliding window
shift. Figures 35b, 35a, 35c and 35d show the additional calculations of the
similarity ratio.

SA

SB

R

XNOR

=

1 0 1 1 0 1 1 0 00

0 0 1 1 1 1 1 0 10

0 1 1 1 0 1 1 1 01

Figure 34: Similarity ratio of 70% between signals SA and SB.

Consequently, the final similarity ratio is picked as the maximum among
the all computed ratios, namely 70% in the example.

4.4 Similarity threshold
Once a method for encoding signals (Section 3.6) and a comparison metric
(Section 4.3) are found, the final step is to introduce a suitable similarity
threshold which permits to detect matching signals from the ones that do not
belong to the same pairing process.

Our final goal is to comply with the key agreement shown in Figure 13. In
particular, since the two devices accept the pairing if and only if D(vA, vB) ≤ d,
where vA and vB are the encoded signals and D is the comparison metric,
threshold d is the only missing parameter that the key agreement requires.

In other words, we need to study at which similarity ratio we have to set
a threshold for minimizing the number of false-positives (i.e., signals that are
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Figure 35: Similarity ratio between signals SA and SB with different shift: (a)
37.5% with a 2 bit shift right-ward; (b) 44.4% with a 1 bit shift right-ward; (c)
66.6% with a 1 bit shift left-ward; (d) 37.5% with a 2 bit shift left-ward.

accepted as matching but not belonging to the same paring process) and false-
negatives (i.e., signals that are rejected as non-matching but instead belonging
to the same paring process).

Consequently, finding a proper threshold (if any exists) is fundamental for
understanding whether pairing a smart-watch and a mobile device through
multi-modal gestures can be considered secure. To this purpose, Section 4.5
describes the test-bed and shows experimental results.

4.5 Experimental results
To find a similarity threshold that clearly separates matching movements from
non-matching ones in terms of similarity ratio, we perform 10 different pairings
and collect samples at the two devices.

We start all pairings by performing a strong tap on the smart-phone screen
to ease data synchronization, as detailed in Section 3.3. In addition, we draw
for 4 seconds approximately to collect adequate meaningful information from
the two devices. Moreover, we use trajectories that contain vertices, avoiding
spiral-like drawings, to provoke definite peaks of acceleration and velocity,
similar to the example in Figure 18.

Consequently, we obtain 10 samples at smart-watch and 10 at smart-phone.
After pre-processing and encoding sampled data, as depicted by Figure 19, for
each smart-watch sample we calculate the similarity ratio in comparison with
each smart-phone sample, resulting in 102 hypothetical pairings.
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Figure 36: Distribution plot (a) and box plot (b) of 2-bit encoded velocity with
jump vector = 2 and a sliding window set to 5% of the number of data-points
in the samples. The two boxes in (b) are well divided and their medians are
adequately distant.

Among these, the 10% are matching movements, namely when calculating
the similarity ratio between samples belonging to the above-mentioned real
pairings we performed. The other 90% are non-matching, that is when calculat-
ing the similarity ratio between samples whose related drawing on the screen
should not correspond with the wrist movements.

Furthermore, for each couple of samples, we compare velocities and acceler-
ations using both 2-bit and 3-bit encoding with jump vector = 2, as explained
in Section 3.6. In addition, we use a sliding window equal to 5% of the number
of data-points in the samples.

Figures 37 and 36 show distribution and box plots about similarity ratio
between 2-bit encoded accelerations and velocities, respectively. Similarly,
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Figure 37: Distribution plot (a) and box plot (b) of 2-bit encoded acceleration
with jump vector = 2 and a sliding window set to 5% of the number of data-
points in the samples. One outlier belonging to non-matching movements in
(b) overlaps the similarity ratio of matching movements.
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Figure 38: Distribution plot (a) and box plot (b) of 3-bit encoded acceleration
with jump vector = 2 and a sliding window set to 5% of the number of data-
points in the samples. The two boxes in (b) are well divided, although their
difference in median is lower than in Figure 36b.

Figures 38 and 39 show distribution and box plots about similarity ratio
between 3-bit encoded accelerations and velocities, respectively.

Ideally, we are seeking for a vertical line that distinctly separates the
distribution of non-matching similarity ratios from the matching ones, as shown
in Figures 16a, 16c and 16d.

Distribution plots in Figures 37a, 36a, 38a and 39a are fit using a KDE
(Kernel Density Estimate) [67] as non-parametric estimation of the probability
density function of the collected samples. Hence, although all distribution plots
show an overlap of the curves, box plots help to verify that in the vast majority
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Figure 39: Distribution plot (a) and box plot (b) of 3-bit encoded velocity with
jump vector = 2 and a sliding window set to 5% of the number of data-points
in the samples. The two boxes in (b) are well divided. Moreover, one outlier
belonging to non-matching movements does not overlap with the similarity
ratio of matching movements.
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of the cases our non-matching samples have a distinct lower similarity ratio
than the matching ones.

Then again, Figure 37b highlights the presence of one outlier that overlaps
the similarity ratio of approximately 50% of matching samples. In other words,
the non-matching outlier has a higher similarity ratio than the first quartile of
matching movements, close to their median.

On the contrary, box plots in Figure 36b, 38b and 39b show a clear distinction
between non-matching and matching distribution of similarity ratios.

In particular, Figure 36b shows a tangible difference between the two
medians while considering the 2-bit encoded velocity. Furthermore, the 50%
of the matching movements has a similarity ratio higher than 0.73. Moreover,
the 3-bit encoded velocity (Figure 39b) presents only one outlier in the non-
matching movement distribution which is adequately distant from the minimum
value of the distribution of the matching movements.

Possible reasons, implications and potential improvements of these results
are discussed in Section 5.
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5 Conclusion
In this thesis, we scrutinized existing key establishment methods for secure
device pairing. Then, we inspected secure paring protocols using fuzzy data,
namely protocols using information that devices involved in the pairing process
know only approximately.

Based on these, we studied the feasibility of a novel usable scheme that
uses fuzzy data to securely pair a smart-watch and a mobile device, say a
smart-phone, through gestures involving drawing on the screen supported by
accelerometer data.

To this purpose, we developed mobile applications for smart-watch and
smart-phone to sample signals. Moreover, we pre-processed data through a
pipeline of steps, which aimed to synchronize data, remove the impact of the
gravity and transform data to better compare them. In addition, after encoding
data, we computed their similarity ratio.

We performed experiments aimed to find a similarity threshold that clearly
separates the distribution of matching movements from non-matching ones in
terms of similarity ratio. In other words, to goal was to verify whether encoded
matching-movements have a clear, distinct, higher similarity ratio compared to
non-matching movements.

Ensuring the presence of such separation is fundamental for verifying the
effectiveness of our encoding method and metric function to compare signals.
More importantly, a clear separation of distributions represents the evidence
that pairing a smartwatch and a mobile device through multi-modal gestures is
feasible. In this chapter, we discuss findings and potential improvements to
our results.

The experiments were conducted by performing pairings for approximately 4
seconds each, in a simplified test-bed to gather adequate meaningful information
and to avoid the impact of external factors. In fact, to minimize the impact
of roll, pitch and yaw on acceleration data, we performed the drawings by
keeping the smart-watch as parallel as possible to the ground and the finger
perpendicular to the smart-phone. Furthermore, we used trajectories containing
vertices, avoiding spiral-like drawings, to provoke definite peaks of acceleration
and velocity, and to ease the subsequent analysis.

We analyzed the distribution of 100 different pairings, whose 10% were
supposed to result as matching (i.e., pairings where finger drawing matched
with wrist movements during the experiments). Signals were firstly sampled at
a frequency of approximately 55 Hz at smart-phone and 110 Hz at smart-watch,
namely the maximum possible sample frequency at the two devices in order to
reproduce the original signals with no loss of information in the range of 0-20 Hz.
Indeed, this range better describes movements of human limbs. Consequently,
sampled signals were filtered applying a low-pass filter with a cut-off frequency
of 20 Hz. Then, signals were encoded by using 2-bit and 3-bit Grey-code-like
expansions with jump vector set to 2. This strategy was based on the fact that
we sought to have minimal overlap of information while encoding signals (i.e.,
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50% overlap with jump = 2). In addition, we aimed to study the impact on
similarity ratio and threshold using a 2-bit and 3-bit code expansion.

According to our initial goals, in most of the cases our results showed that
using our strategy, encoded matching signals have a clear, distinct, higher
similarity ratio compared to non-matching ones, regardless of encoding with
2-bit or 3-bit code expansion, or considering their accelerations or velocities.

Moreover, the 2-bit encoding entails that matching movements result in a
higher similarity ratio compared to 3-bit expansion. This trend is the evidence
that 2-bit expansion better encodes original signals, minimizing possible dis-
crepancies. On the other hand, the 3-bit encoding results in a higher difference
in similarity ratio between matching and non-matching movements. Hence,
although the 2-bit encoding better reproduces original signals, the 3-bit en-
coding better separates similarity ratios among matching and non-matching
movements.

Then again, the distribution of 2-bit encoded accelerations presented one
outlier whose similarity ratio overlapped the distribution of the encoded match-
ing movements. Although the outlier impairs our goal to zero the number of
false-positives (i.e., signals that are accepted as matching but not belonging to
the same paring process) and false-negatives (i.e., signals that are rejected as
non-matching but instead belonging to the same paring process), additional
experiments taking into consideration a much larger number of pairings (e.g., at
least one thousand different pairings) should be conducted to verify the presence
of other outliers. However, the presence of only one outlier may be due to the
fact that, while pre-processing and encoding signals, one sample coincided with
another, resulting in a matching pairing. Hence, with the gathered results we
cannot exclude the 2-bit encoded acceleration as a reliable method for accepting
or rejecting pairings.

In any case, according to our initial goals, clear separation of distributions
demonstrates that pairing devices through multi-modal gestures is feasible. As
a consequence, it demonstrates the effectiveness of our pre-processing pipeline,
encoding method and comparison metric function. Moreover, our study can
benefit from future follow-ups. In the rest of this section we provide ideas for
possible improvements.

As mentioned above, our study obtained satisfactory results in a simplified
test-bed. In fact, we avoided spiral-like drawings to ease the detection of
peaks in signals. However, future studies should consider the impact of this
kind of trajectories on the similarity ratio. In case separation of distributions
downgrades, we suggest implementing a function in the smart-phone mobile
app that randomly generates patterns. These patterns should guide users to
draw by connecting specific points on the smart-phone screen, similar to Fruit
ninja [68] gaming app. The function should also avoid excessively fast changes
of direction, as they would uselessly complicate the pre-processing steps.

Furthermore, to ensure sufficient entropy of signals, the system should use a
timer that forces users to draw for a few seconds at least. Indeed, by using short
signals the protocol would become insecure and prone to MITM attacks. In
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this respect, follow-ups should simulate different kinds of attacks (e.g., MITM
and shoulder-surfing attacks) and study their impact on the protocol.

Moreover, a comprehensive user-study would help to examine which gestures
users actually prefer to use for performing pairings. It would also help to explore
additional strategies to remove the impact of rotation, pitch and yaw on both
devices, depending on the way users grab the smart-phone and draw with
fingers. To this purpose, de-rotation using quaternions [69] may be helpful in
this context.

In our study, the data synchronization step at the smart-watch reads the
smart-phone sample to inspect the time duration of the drawing for eliminating
clock skews and discarding information gathered by the accelerometer before
the actual tap on the screen and after the finger lifting from the screen. In a
real scenario, smart-watch should stop recording data as soon as the variance
of the acceleration magnitude drops under a preset threshold for a specific
time interval. Thus, when implementing the protocol in a real scenario, this
improvement needs to be accomplished.

In addition, follow-ups should perform a fine-grained gravity removal in the
preliminary standardization step. In our study, we compute the mean of the
raw acceleration considering all data-points. Instead, the system would benefit
using a moving mean over a small number of consecutive data-points only.

Future studies should also inspect the benefits of using additional filters
(e.g., Savitzky-Golay filter [70]) in the transformation step, possibly leading to
a higher similarity ratio for matching movements.

Eventually, follow-ups should inspect whether it is feasible to use multi-
modal gestures for direct extraction of the session key instead of authenticating
a previously exchanged secret through a Diffie-Hellman agreement.
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