Added value of extended
dynamic simulation in
process design and
operational planning

Jouni Savolainen

A’ Aalto University DOCTORAL
DISSERTATIONS



Aalto University publication series
DOCTORAL DISSERTATIONS 88/2019

Added value of extended dynamic
simulation in process design and
operational planning

Jouni Savolainen

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Electrical Engineering, at a public
examination held at the lecture hall TU1 of the school on 7th June
2019 at 12:00.

Aalto University
School of Electrical Engineering
Department of Automation and Systems Technology



Supervising professors
Professor Arto Visala
Aalto University

Finland

Thesis advisors

Chairman of the Board, Dr. Tommi Karhela
Semantum Ltd.

Finland

Preliminary examiners
Professor Peter Palensky
TU Delft

The Netherlands

Professor Kauko Leiviska
University of Oulu
Finland

Opponents

Professor Erik Dahlquist
Malardalen University
Sweden

Aalto University publication series
DOCTORAL DISSERTATIONS 88/2019

© 2019 Jouni Savolainen

ISBN 978-952-60-8546-3 (printed)

ISBN 978-952-60-8547-0 (pdf)

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-8547-0

Images: Pixabay

Unigrafia Oy
Helsinki 2019 e

Finland §W

4
Printed matter
4041-0619



A' Aalto University Abstract

u Aalto University, P.O. Box 11000, FI-00076 Aalto

Author
Jouni Savolainen

Name of the doctoral dissertation
Added value of extended dynamic simulation in process design and operational planning

Publisher School of Electrical Engineering

Unit Department of Automation and Systems Technology
Series Aalto University publication series DOCTORAL DISSERTATIONS 88/2019
Field of research Automation, Systems and Control Engineering

Manuscript submitted 19 December 2018 Date of the defence 7 June 2019
Permission for public defence granted (date) 23 April 2019 Language English
[ Monograph X Article dissertation [ Essay dissertation
Abstract

Design of process industry plants and their automation is a challenging task, especially when cost-
effectiveness pressures are ever increasing. This leads to challenges for engineers responsible for
this work. This thesis investigates how those challenges could be alleviated by extended use of
dynamic process simulation. The current trend of digital twins both calls for and enables this work.
As this work relies on simulation models and is computational in nature, digital twins are an
enabler. On the other hand, the digital twins call for approaches to extract added value from data,
in the case of this thesis, simulation-generated data.

The present work consists of four case studies from the process industry. Dynamic process
simulation is combined with a novel model comparison method, with global sensitivity analysis
and with multiple objective optimization. By conducting a massive number of well-planned
simulations and analysing the resulting data, it is shown that the challenges could be alleviated.
The cases pertain to certain phases of a process industry plant's life cycle, namely early design and
operation. Two cases, Paper production and Tower control, target the early design phases, while
the Filtration and Bottleneck cases concentrate on the operation phase.

The Paper production case shows the utility of the proposed model comparison method. This
led to the conclusion that it helps in gaining confidence in optimization results from simplified
models, focusing the designer's attention as well as providing insight into the operation of the plant.
The Tower control case, combining dynamic process simulation and global sensitivity analysis,
highlights process areas where the control designer's attention should be focused. Similarly, the
Bottleneck case shows where retrofit actions on an operational plant should be focused. Finally,
the Filtration case shows the feasibility of combining dynamic simulation with interactive multiple-
objective optimization in providing insight into the process operation. A synthesis of these
contributing results then supports the main hypothesis of this thesis: Extended added value or
utility can be extracted from simulation models when they are combined with other mathematical
methods.
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Prosessiteollisuuden laitosten seka niiden automaation suunnittelu on haastava tehtava, etenkin
kiristyvien kustannustehokkuusvaatimusten johdosta. Tdima johtaa haasteisiin
suunnitteluinsindoreille. Téssd tyossa tutkittiin, miten néita haasteita voitaisiin lieventda
laajennetulla dynaamisella prosessisimuloinnilla. Timén hetken ns. digitaalinen kaksonen-kehitys
sekd kutsuu ettd tekee mahdolliseksi timén tyon. Koska tdimé tyo nojaa simulaatiomalleihin ja on
luonteeltaan laskennallinen, on digitaalinen kaksonen nahtavissa tyon mahdollistajana. Toisaalta,
digitaalinen kaksonen-ajatus tarvitsee tapoja puristaa datasta, tdssi tapauksessa simulaatiodatasta,
arvokasta tietoa.

Tyo koostuu neljasté prosessiteollisuuden tapaustutkimuksesta. Dynaaminen prosessisimulointi
on liitetty uuden mallien vertailumenetelmén, globaalin herkkyysanalyysin ja
monitavoiteoptimoinnin kanssa. Ty0ssi osoitetaan, ettd suorittamalla suuri maara suunniteltuja
simulointeja seka analysoimalla saatu data, edelld mainittuja haasteita voidaan lieventaa.
Tapaukset liittyvit tiettyihin prosessilaitoksen elinkaaren vaiheisiin, nimittdin esisuunnitteluun
ja kayttoon. Kaksi tapausta, paperin valmistus ja tornien sdato, kohdistuvat esisuunnitteluun, kun
taas suodatus- ja pullonkaulatapaukset keskittyvét laitoksen kiyttovaiheeseen.

Paperin valmistus-tapaus osoittaa mallien vertailumenetelméan hyodyn. Paatelména on, etta tilla
voidaan saavuttaa luottamusta yksinkertaisilla malleilla saatuihin prosessioptimointituloksiin,
fokusoida suunnittelijan huomio seki tuottaa kiyttovaiheeseen tietoa. Tornien saato-tapaus, joka
liitti dynaamisen simuloinnin globaaliin herkkyysanalyysiin, nostaa esiin sdatésuunnittelun
kannalta kriittisid prosessialueita. Samoin, pullonkaulatapaus nostaa esiin prosessialueita, joihin
jalkiasennus-tyossa tulisi fokusoitua. Lopuksi, suodatustapaus osoittaa dynaamisen simuloinnin
ja monitavoiteoptimoinnin hy6dyllisyyden ymmaérryksen saavuttamisessa prosessin
kayttovaiheessa. Ndiden osatulosten synteesini saavutetaan tyon péaétulos: laajennetulla
dynaamisella simuloinnilla on saatavissa lisdarvoa.
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1. Introduction

1.1 Background and motivation

The process industry in Europe represents over 450 000 individual enterprises
with nearly seven million employees and a turnover of more than 1600 B€ (Tello
and Weerdmeester, 2013). Still, it has been seen that the process industry has a
clear need for improved efficiency and competitiveness, especially in Europe
(Tello and Weerdmeester, 2013). This need affects all levels of a process
industry company and its subcontractors, for example process and automation
designers whose responsibilities often lie in the early phases of the plant’s life
cycle, including the physical processes which typically are designed to be quite
long-lived: their lifecycle can cover decades. The life cycle of a process industry
plant is linked to other life cycles relevant to an enterprise, relationships of
which are shown in Figure 1.

Plant revamp project —

Plant ¢ )

New plant project —

Product . .

Enterprise . .

Time
Figure 1 Other life cycles and their relation to the process industry plant life cycle, adapted from
(Schneider and Marquardt, 2002).

The longest of these is the enterprise life cycle which can have several products.
A product life cycle actually begins before the life cycle of the plant that produces
it. Before the plant’s life cycle there is the “new plant project” where the plant is
designed and built. Moreover, inside a plant’s life cycle there may occur one or
more plant revamps or retrofits. Finally, here it should be noted that a plant’s
life cycle can include several products. This can lead to several revamp projects.

Design of a new plant actually begins quite early with the determination of
needs and setting of design specifications/objectives. This pre-investment
decision phase consists mostly of market and business oriented activities in
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which it is determined whether there are sufficient grounds to invest in a new
facility. A capital investment project is a complex endeavour involving several
stakeholders. One way of illustrating this is with a triangle with the three major
parties depicted, see Figure 2.

Owner / operator

System
provider(s)

Figure 2 Main parties of a capital investment project.

EPC

On top is the plant owner/operator, which is the party investing in the new
plant. Other corners of the triangle are the system provider(s) and engineering,
procurement and construction (EPC) parties and their respective
subcontractors. The system provider includes the process equipment provider,
automation and instrumentation system providers, etc. The EPCs are, for
example, responsible for plant layouts, cost calculations, purchasing, logistics,
installation, coordination and commissioning.

If a decision to invest is made, the actual plant lifecycle, encompassing the
three top levels of Figure 1, begins with conceptual design as depicted in
Figure 3.

Conceptual Detailed
. ﬁ .
design design

Figure 3 Phases of a process industry plant life cycle, adapted from the ISO-15926-1 standard
(IS0, 2004).

—>{ Commissioning > Operation —> Decommissioning

The term life cycle here refers to the plant, even though the word “process” is
sometimes used. This is also the situation on the original ISO-15926-1 standard.
To clarify, a distinction should be made between process design and plant
design. The prior deals with initial selection of the process to be used:
flowsheets, equipment selection, specification, and chemical engineering design
of equipment. The latter includes also detailed mechanical design of equipment,
the structural, civil, and electrical design, as well as the specification and design
of the supporting services, e.g. maintenance, firefighting, offices (Towler and
Sinnott, 2013).

In the conceptual design phase, possible solutions to the needs and
specifications are generated, evaluated and selected (Towler and Sinnott, 2013).
This is typically done by an engineering or consultancy company and can even
be done with rules of thumb and the experience of designers. A few process
options are generated and then evaluated before passing to the next stage, and
it is noteworthy that up to 98% of conceptual designs will not be built (Moran,

2
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2015). The following detailed design phase, done usually by a contracting
company, involves mainly detailed selection and dimensioning of equipment,
instrumentation, etc. This stage is also called “design for construction” because
a conceptually designed plant is not what is actually built. The contractors in
many cases need to refine the conceptual design or even redesign parts the plant
because they are the ones who give guarantees to the client (Moran, 2015). In
this phase, alterations to the flowsheet, i.e. selection and topology of processing
units, of the process are seldom made (Towler and Sinnott, 2013), if possible. In
some texts, there is a step between the conceptual and detailed design phases
called “front-end engineering design” which refines the conceptual design,
analyses different process conditions, replaces bespoke unit operations with
commercial standard units (wherever possible), and calculates costs based on
quotes from suppliers. Also, between detailed process design and
commissioning lies the construction of the plant. It has been noted, that in real-
life, even having passed all previous stages, the plans may lack some details
needed for construction or even contain errors. This requires redesign efforts
and is referred to as site redesign (Moran, 2015).

The ultimate goal of a plant is to produce products profitably, which means
that the business unit is heavily involved in the life cycle, mainly in setting the
objectives and making decisions. Research parties typically produce new
information that the process engineering’s designers can utilize in their work.
This work produces documents such as diagrams, which are used by the
construction company to build the plant. This construction lies between the
design and commissioning phases. In the commissioning phase the constructed
plant is taken into use, which involves activities such as checking of the system
configuration and instrumentation; cleaning and calibration of lines, vessels
and instrumentation; dry, water and chemical tests and finally the handover to
the plant owner (Killcross, 2012).

Plant operation begins after the handover, which takes place at the end of the
commissioning phase. The transition to operation also marks a change in the
stakeholder structure presented in Figure 2. Naturally, in this phase, the role
of the operator party becomes important, but the EPC and system providers do
not entirely fade away. They strive typically to have contracts relating to
maintenance and other plant operation services. In addition to normal, steady
operation, this phase also involves dealing with transients, either planned or
unplanned. Operation or controlling of the plant, or an enterprise to be more
general, is done on many levels. For example, the IEC 62264-1 international
standard, which is an extension of the ANSI/ISA 95 standard, defines a
functional hierarchy of control. On the top level (4) resides enterprise resource
planning (ERP). The purpose of this is to handle production scheduling across
several plants, operational management, etc. Thus, level 4 deals with not only
one plant but also enterprise-wide business logistics. Below the ERP, on level 3,
is the manufacturing execution system (MES) level, which is responsible, for
example, for detailed production scheduling and maintenance. Level 2 is the
process control system (PCS) used to keep the process stable and under control.
Below this are levels 1 (sensors and actuators) and o, the physical process
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equipment, e.g. pumps and valves (Panetto, 2007). This control hierarchy is
illustrated in Figure 4.

Level 4 — Business logistics

Level 3 — Manufacturing operations

Level 2 — Control systems

Level 1 — Sensors and actuators

Level 0 — The process

Figure 4 Control hierarchy.

Finally, during operation the plant will undergo maintenance and
improvements or retrofits/revamps. Following the active operation phase of a
process industry plant, decommissioning takes place and it is closed for an
extended period of time, either due to a traumatic event or as planned.

In addition to the economic motivation described at the beginning of this
chapter, another current trend motivated this work, namely digitalization. At
the time of writing this thesis, digitalization is a much-hyped term and there
seems to be multiple interpretations of it. One aspect is concerned with so-called
digital twins. Simply put, a digital twin is a digital representation of a physical
asset: a process, product or service. In the scope of this thesis, a simulation
model could be seen as digital twin, or part of such, of a process industry plant.
This model is constructed during the design phases and continues to evolve
during the operation by gathering data from the actual process and adapting.

One way a digital twin is seen to bring value is via analytics of the gathered
data. This ties it to the present thesis since the data can be used to help in
construction of simulation models. The difference between this thesis and much
of the digital twin hype is the modelling approach used. In this thesis, the
simulation models are not purely based on data, but rather on first principles of
physics because such models provide better extrapolation possibilities. This
property of a first principles model is used extensively here to generate
simulated data, which is then analysed with the extensions. This generation of
simulated data ties the thesis to another aspect of digitalization: massive
computation. Simulation in dedicated high-performance computational
clusters has been an active field for a long time, but in recent years, flexible
computational power has become easily accessible from cloud-based
computing.

These two digitalization aspects seem to be trends that pave the way to more
comprehensive up-take of also the approaches presented in this thesis. And vice
versa, the approaches presented here enable better utilization of such resources.
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1.2 Method

1.2.1 Case-based approach

This thesis consists of four computational case studies detailed in Publications
I — IV, illustrating the potential of coupling dynamic process simulation with
other mathematical methods. This number of cases is in line with suggestions
by Voss et al.,, who state that a single case is problematic due to limited
generalizability, while too many cases may reduce the depth of study (Voss et
al., 2002). Although it is not possible to give a generally acceptable optimal
number of cases, for example, Eisenhardt points out that four to ten cases seems
to work well (Eisenhardt, 1989). Furthermore, the cases used in this thesis
represent typical situations in the design and operation domain of process
industry: The first two cases deal with early phases of process and automation
design, the third with process operation and the fourth with
analysis/improvement of an existing process. All such activities are typical in
the process and design industry. Thus, we argue that the cases provide wide
enough coverage of the plant life cycle and are indeed relevant to the process
industry domain.

1.2.2 Design science research

Design science research (DSR) develops knowledge and solution(s) to practical
problems by building and evaluating design artefacts. In contrast to natural
sciences where the goal is understanding of reality, the objective in design
science is creating things that serve a purpose. In natural sciences, the results
are evaluated on the basis of explanatory power and truth, whereas in design
science evaluation is more concerned with utility (March and Smith, 1995).
Thus, DSR is quite engineering-like (Hevner et al., 2004) and has been chosen
as the methodological framework in this thesis.

DSR provides a framework consisting of three major parts, the environment,
research and the knowledge base (Hevner et al., 2004). The environment
defines the problem to be solved (or “business need”) and contains people,
organizations and technology, for example, the process design and plant
operation engineers in their respective organizations. The problems that this
environment defines are referred to in this thesis as challenges and are
elaborated in chapter 3. In other words, the environment provides the next part,
research, with relevance. The research part is further divided into the build and
evaluate phases. In the build phase, concrete artefacts (e.g. software) are
implemented and their utility to address the problem at hand is then evaluated.
Typically, this design cycle is iterative. In this thesis, the artefacts are the pieces
of software implemented in the cases and their utilization process in order to
solve the identified challenges. Their evaluation was done by expert judgement
of each case’s results (i.e. descriptive evaluation). Finally, the third part of the
framework is the knowledge base providing foundations and methodologies.
Foundations are the prior body of knowledge, e.g. theories, models and
instantiations that are used in the build-evaluate phase and methodologies are
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guidelines for evaluation. The knowledge basis is said to provide rigor to the
research part. In the scope of this thesis, the foundation consists of physics,
mathematics, simulation models and computer simulators, especially when
applied to chemical processes; a field also known as process systems
engineering (PSE). This thesis provides additions to the knowledge base via the
results obtained on the potential of extending dynamic process simulation.

March and Smith (1995) have focused on DSR of information systems and
delved deeper into the artefacts’ classification. They distinguish constructs,
models, methods and instantiations, which in the scope of this thesis are
summarised in Table 1. As this thesis deals with computer simulations, it seems
natural to base the work in DSR for information systems.

Table 1 Artefacts of DSR in information systems.

Artefacts of DSR in information
systems

In this thesis

Mathematics, physics, chemistry,

Constructs, i.e. language to describe
control

problem and solution

Models, i.e. representation of real Mathematical model
world situation

Extended dynamic  computer
Methods, i.e. processes how to solve the simulation, expert judgement of
problem results’ utility

The pieces of software produced.
This means the combination of
simulation tools, other
mathematical software and the
pieces of code connecting them.

Instantiations, i.e. implementations
demonstrating feasibility

Finally, Hevner et al. (2004) note that DSR must be distinguished from
ordinary, routine design. The key is that DSR addresses unsolved problems in a
unique / innovative way. We argue in chapter 3 that the challenges identified
remain largely unsolved. Further, the proposed approach to solving them can
be argued to be innovative since such extensions of dynamic process simulation
were not found in the relevant literature.

1.3 Contribution of the thesis

In DSR the contribution arises from utility (Hevner et al., 2004). In accordance
with this, the main contribution of this thesis is in demonstrating how extending
dynamic process simulation with other mathematical methods can bring
extended added value or utility to a process or automation designer.
More specifically, the contributions from the four Publications come from:
e demonstration of how coupling dynamic process simulation with
certain other mathematical methods can provide added value in the
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form of insight to the process designer and plant operating personnel
and thus alleviate some practical challenges

e development of a novel comparison method for hybrid stochastic-
deterministic models in order to gain confidence that process
optimization results obtained in early design phases with simplistic
models are relevant also to real-life. The added value comes from the
ability to trust and thus use optimization results.

e demonstration of how global sensitivity analysis can be used as
bottleneck identification method. This adds value via being able to
remove the bottleneck.

This thesis consists of an introduction and four publications. These
publications and the author’s contribution in them were summarised above in
chapter Author’s Contribution. There is a considerable body of work on this area
in the literature, which is reviewed in chapter 2 and we do not claim that the
approaches presented here are a once-and-for-all solution. Rather, this thesis
proposes some additional tools to the designer’s toolbox and aims to show their
potential.

1.4 Scope of the thesis

This thesis deals with computational tools for process design and operation over
its life cycle. The term process refers here to a chemical plant or more generally
a process consisting of continuous fluid flows, and unit operations such as
mixings, separations and reactions. Thus, processes such as manufacturing of
discrete units, e.g. cars, are not studied here. Of the life cycle, the conceptual
and early parts of detailed process design as well as plant operation phases are
covered in this thesis (see Figure 5) while commissioning and
decommissioning phases of the plant are not considered. The figure also
positions the Publications in relation to the life cycle.

Conceptual design ~ Detailed design ~ Commissioning Operation Decommissioning

Figure 5 Relation of Publications to process industry plant life cycle.

It should be noted that nowadays it seems that the line between research and
development (R&D) and design seems to be getting blurred. It is not always
clear that the path from an idea through lab scale to industrial use follows a
linear path of gradual upscaling. In this kind of development, the methods
presented in this thesis may bring benefits, although the Publications do not
explicitly address such pre-design phases.



Introduction

1.5 Structure of the thesis

The structure of this thesis is as follows. Chapter 1 is an introductory section
describing the practical starting points of the work as well as the methodological
underpinnings. Chapter 2 reviews the related scientific literature, while chapter
3 leads the reader to the research questions via challenges faced by a process or
automation designer. Chapter 4 then presents the main results of the thesis and
how they stem from the case studies constituting the empirical work. Finally, in
chapter 5 a discussion is provided and chapter 6 concludes the thesis.



2. Related research

2.1 Design phase

2.1.1 Traditional design approach

Design problems have been studied in the chemical engineering field for a long
time (Nishida et al., 1976; Westerberg, 2004). Westerberg (2004) defined
designing a process as an evolutionary approach where previous solutions are
improved upon relying on guesswork, computations and experiments. The
traditional chemical engineering approach, since the early 1900s revolved
around the concept of unit operations and connecting them into processes
(Sargent, 1991). Part of this discipline has in the decades since the 1960s
diverged to Process Systems Engineering (PSE) (Grossmann and Westerberg,
2000; Westerberg, 2004). PSE has been defined as being “concerned with the
improvement of decision-making process for the creation and operation of the
chemical supply chain”. This goal of improvement has been addressed with
development of systematic methods and tools, which tie PSE to the fields of
mathematics, operations research and computer science (Grossmann and
Westerberg, 2000). Furthermore, PSE strives to rethink the design process
itself by, for example, bringing operational aspects into the design decision-
making or by utilizing design models in the operation of the plant (Westerberg
2004).

Prior to any process design activity as such is initiated, investigation and
economic analyses relating to such investments are made in a company (Biegler
et al., 1997). After a decision to invest in a process industry plant, the actual
design starts. Traditionally, the design of process industry plants has been a
sequential procedure (Yuan et al., 2012). For example, Vega et al. (2014)
illustrate this as a four-step procedure depicted in Figure 6.



Related research

Process structure selection

Determination of design parameters based on cost

Dynamic performance analysis and control system design

Validation of plant performance and overall costs

Figure 6 Traditional sequential design process (Vega et al., 2014).

This approach contains several subfields. Those closely touching this thesis are
summarized in the following subchapters.

Flowsheet synthesis

The first step is also referred to as process flowsheet synthesis (Biegler et al.,
1997), the goal of which is to discover the best combination of unit operations
and their connections to accomplish a given production task (Siirola et al., 1971;
Westerberg, 2004). This typically results in a process design in the form of
process flow diagrams (PFD). A problem specification is made after which
process concept(s) are generated. For example, a choice is made whether a well-
proven, conventional process structure is used or whether an entirely new one
is developed. After this, alternative designs are investigated, e.g. by searching
for existing similar processes. The alternative designs are next analysed in order
to see how they perform in the fulfilling of the goals set forth earlier. This
analysis and evaluation typically involves balance and economic calculations
and thus overlaps with the second step, where in addition to determination of
design parameters, also the operating conditions of the process are determined.
Sometimes controllability issues are already taken to be included in process
synthesis (Biegler et al., 1997), but in Figure 6 this has been divided as the third
step where dynamics of the process are taken into account. It involves synthesis
of control strategies to minimize product variability and to keep other key
variables within acceptable ranges (Ricardez-Sandoval et al., 2009).

Flexibility analysis and control system design

Flexibility of a design refers to the plant being capable of operation in other
steady states than the one used in its design (Biegler et al., 1997). The design
variables include the fixed process structure and equipment dimensions,
whereas control variables are those that are continually changing, e.g. flows.
Constraints of feasible operation can be physical constraints or (product
specifications) and examples of uncertain parameters are the raw material inlet
concentrations. Thus, a more rigorous statement of flexibility is: given a design
d, can the control variables z be adjusted in such a way that the constraints
representing feasible operation are satisfied when faced with a change in
uncertain process parameters (Halemane and Grossmann, 1983; Biegler et al.,
1997)? On the other hand, flexibility analysis may strive to answer, not only
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whether the design is flexible or not, but how much flexibility the design actually
has (Swaney and Grossmann, 1985).

Moving from one steady state to another involves a transient, which is
typically handled by an automatic control system. In a historical perspective
Bennet (1996) traces development in automatic control back over two millennia,
with early developments in controlling temperatures, pressures, liquid levels
and rotation speeds (e.g. the Watt steam engine governor). Coming to modern
times, in the so-called Pre-Classical Period (1900—-1935) application of single-
loop feedback control expanded while theoretical understanding and design
methods lagged behind, although the first steps in understanding negative
feedback were taken. The Classical Period (roughly 1935-1950) saw the advent
of gain and phase margins, Nyquist stability criterion, Nichols chart, the Ziegler-
Nichols tuning rules for PI and PID-controllers, block diagrams with use of
Laplace transformations, root locus and control performance criteria.
Coinciding with this period was the Second World War, which drove
technological developments like radar. The era from 1955 onwards is called
Modern Control in Bennet’s classification. Major drivers during this period were
the space race and the emergence of computers. Developments included the
state-space approach, Bellman concept of optimality and dynamic optimization,
Pontryagin maximum principle, optimal control, Kalman filter, systems
engineering, and model predictive control. In general, control systems have
been utilized in nearly all engineering areas but in this thesis, we shall focus on
process control. The control systems in process control strive to keep essential
quality variables at specified values, to minimize energy and raw material use
while also providing the capability to make fast production or grade changes.
The key concept here is the control loop in which a variable of the process is
measured (“controlled variable, CV”) and based on this feedback another
variable (“manipulated variable, MV”) is continually adjusted. A small process
may have 20-100 of such loops, whereas large plants have thousands. This
single loop control is still applied widely, especially on the lowest level of
control, i.e. in the stabilizing controls of variables such as pressure and flows.
Single loop control has as one major drawback: its poor ability account for
interactions of many variables which has led to the development of
multivariable control, see e.g., (Skogestad and Postlethwaite, 2005).

2.1.2 Integrated process and control design

Integration of process and control design strives to integrate systematic analysis
of process dynamics into the design procedure (Vega et al., 2014) and has been
along-discussed subject going back to the 1940s (Ziegler, J., Nichols, 1943; Vega
et al., 2014). The main driver in integration of process and control design is that
the traditional sequential approach may lead several design iterations or poor
plant operability, i.e. an optimally designed process may not function properly
when faced with disturbances and uncertainties of the design model (Yuan et
al., 2012).

In order to systematize integrated process and control design, frameworks
have been studied and classified into two categories (Ricardez-Sandoval et al.,
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2009; Yuan et al., 2012). Firstly, there are the indicator-based frameworks that
typically are used for screening of design alternatives. They utilize some sort of
controllability index to characterize closed-loop performance of the system. The
optimization approach in these frameworks has typically been cost
minimization and they have been based on steady-state models (Ricardez-
Sandoval et al., 2009). Examples of the used controllability indices are the
relative gain array, condition number, disturbance condition number and
integral error. Typically such problems result in mixed-integer non-linear
programming (MINLP) optimizations (Hamid et al., 2010).

Secondly, there are the dynamic optimization-based frameworks for
integrating process and control system design. The optimization in these relies
on techniques of mixed-integer dynamic optimization (MIDO) and dynamic,
non-linear models (Hamid et al., 2010). The effect of external disturbances and
model uncertainties seems to have been a major concern in this field as several
approaches have been suggested. Ricardez-Sandoval and co-authors (2009) list
approaches such as dynamic worst-case-based design (Perkins and Walsh,
1996), matrix norms (Mohideen et al., 1997), parametric programming (Sakizlis
et al., 2004), and the concept of back-off (Bahri et al., 1997). All dynamic
optimization-based approaches suffer from high computational load. To
alleviate this, the so-called robust approach has been researched over the last
ten years. In these, the non-linear dynamic problem is replaced, at least partly,
with an approximate linear problem which includes model uncertainty, see for
example Chawankul et al. (2005).

Even though a considerable amount of research has been devoted to
integrated process and control design there is still a lack of a generally accepted
methodology (Pistikopoulos and Diangelakis, 2015). The PAROC framework
they suggest, relying on tools such as gPROMS and Matlab, strives towards this
goal. The workflow in this framework consists of construction of a high fidelity,
dynamic simulation model, and its reduction to an approximate model, which
is used in multi-parametric programming and validation of the optimization
results with the original high-fidelity model. This approach closely resembles
that which Ritala and co-authors (2013) reported as well. Hamid and co-authors
(Hamid et al., 2010) have proposed the so-called reverse approach. In this
approach, the vast design space is sequentially reduced to a small one from
which the final solution is searched. The bounding of the search space is first
done using thermodynamic and process insights. This is followed with further
bounding based on process and controller design constraints. Once the final
solution has been found, it is verified using rigorous simulation.

2.1.3 Other considerations

In the preceding chapters, we discussed general design of the process and its
controls system, as they are the central areas to which the present work pertains.
These fields have numerous sub-fields and considerations that we only briefly
mention here, for the sake of completeness.

Heat exchanger network synthesis (HENS) was first proposed in the
1940’s (Broeck, 1944) and it has been described as the “most commonly studied
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problem in process synthesis” (Furman and Sahinidis, 2002). The goal of heat
exchanger network synthesis is to design a system that can optimally reuse
released heat at appropriate places where it is needed making it an optimization
problem, typically a mixed integer non-linear programming (MINLP) one.
While the early works concentrated on synthesizing an entirely new network,
retrofitting was taken into account by Linnhoff and Vredeveld (1984). Further
reviews of this field can be found in Gundersen and Naess (1988), Furman and
Sahinidis (2002) and Klemes and Kravanja (2013).

Process safety focuses on prevention and mitigation of process accidents
(fires, explosions and toxic releases), whereas the related field of occupational
safety deals more with workplace hazards like trips, slips and falls. Methods and
models utilized have been categorized as qualitative, semi-quantitative,
quantitative and hybrid (Khan et al., 2015). Perhaps the most widely known
qualitative hazard identification methods is HAZOP (Hazard and Operability
Analysis) which was first applied in the 1960 and published in 1974 (Lawley,
1974). Since its publication it has been extended in numerous ways to include
batch and electronic processes as well as human, management and
organizational factors and also other methods like Failure Mode and Effects
Analysis (FMEA) (see Khan et al., 2015). Another popular qualitative method is
the standard risk matrix method (Garvey and Lansdowne, 1998) where the
identified risks are placed in a two-dimensional array with impact and
probability as the axes. In some applications, the risk matrix can be considered
as a (semi-) quantitative method if numerical probabilities or impacts are used.
Finally, the Swiss Cheese Model, originally proposed by Reason (1990), has
gained both popularity and criticism since its publication and has also evolved
since. A review of the evolution of and critique of the SCM model has been
presented, e.g. in Reason et al. (2006).

Biegler and co-authors (1997) summarise the economic considerations of
process design dealing with costs and revenues of the process. Costs are divided
into fixed and variable costs, where the former include investments and
overheads related to them, which are incurred at early stages of the process
building project. Of main interest in process design are the capital investments,
which can further be divided into fixed (buildings, equipment, land) and
working capital (funds needed to operate the process until payments from the
customers arrive). Variable costs, on the other hand, are incurred during the
operation of the process continually, including raw material costs, credit, direct
expenses (e.g. labour, utilities, maintenance, and supplies) and indirect
expenses (e.g. depreciation, taxes, insurance). The profitability of a process can
be estimated in several ways. Simple measures such as return on investment
(ROI) and payback time can be used to give rough estimates, but their
usefulness in comparison of alternative projects has been long acknowledged.
The main drawback is that they do not account for time passing, i.e. schedule of
payments and income, interest and inflation. To account for time passing,
methods like net present value (NPV) of profit or costs, annualized payments,
breakeven time and rate of return are used.
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Typically, environmental aspects have been considered when evaluating
alternative process candidate designs (Towler and Sinnott, 2013) in order to
satisfy regulations regarding emissions and other damaging agents into the air,
waterways and solid landfills (Biegler et al., 1997). Environmental and
sustainability issues started to come gradually into the fore during the second
half of the 20t century (Jacquemin et al., 2012). According to Young et al. (1997)
the development began with a “reactive period” before the 1970s where
environmental awareness was limited, few regulations existed and in general
waste was not seen as an issue. The 1970s and 80s have been described as the
“compliant period” where limited environmental awareness arose along with
legislative controls on emissions and waste. In the following decade, all sectors
and organizational levels became aware of environmental issues and the
legislative situation became more stringent, while advances in process design
methods, e.g. utilization of multiple objective optimization promoted
sustainable process design (Bakshi, 2014). Also, environmental standards,
audits and approaches such as life cycle assessment (LCA) came about. This
decade has been dubbed as the “proactive period” while the 2000s is called the
“progressive period” (Jacquemin et al, 2012), characterized with the
generalization of LCA and its standardization into ISO 14040-14044,
environmental process design tools (Carvalho et al., 2013), overarching
environmental concepts (e.g. Design for Environment, Eco-efficient
manufacturing, Industrial ecology) and evermore environmental policies
(Jacquemin et al., 2012). In fact, design of environmentally benign processes
was seen as one of the major challenges for process systems engineering of this
period (Grossmann, 2004). All in all, the focus has shifted from early emission
reduction activities of single plants to process (and product) life cycle thinking
(Bakshi, 2014).

2.2 Process operation phase

2.2.1 Steady and dynamic operation

After the handover or commissioning the plant, operation begins (see Figure
3). Traditionally, steady operation of a chemical plant was seen to be the best
way to go and this was reflected in its design, but it has been noted that in real-
life plants do not operate in a steady state (Moran, 2015). Moreover, there has
been a shift to operating plants, not in an isolated, steady manner, but as an
integral part of the company and its dynamic environment, e.g. intermittent
renewable power (Savolainen et al., 2016; Weiss et al., 2016). This means that
plants cannot anymore be operated in a single operational point, but must also
be able achieve good performance in exceptional operational points (Klatt and
Marquardt, 2009). This needs to be reflected in the design phase of the plant as
was mentioned when discussing flexibility and control system design.
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2.2.2 Retrofits

In retrofits, part of the process is redesigned and built. One definition of a
retrofit is of making minor changes to the process flowsheet and/or equipment
sizes in order to significantly reduce operating costs, increase capacity, process
new feed stocks and/or incorporate new technology (Fisher et al., 1987). The
need for retrofits typically comes from the product market, for example in a case
of limited demand, the retrofit goal could be to produce at the lowest cost
(Simon et al., 2008). Other motivations for retrofits are typically higher product
quality, improved safety, better energy efficiency, sustainability or waste
reduction (Ben-guang et al., 2000; Simon et al., 2008; Lutze et al., 2010;
Carvalho et al., 2013). The importance of retrofits is highlighted by Gundersen
(1990) who has estimated that approximately 70% of process industry projects
have been retrofits. Also, it has been noted that retrofit designs can be
considered even more complicated than designs of new plants (Westerberg,
2004), since when evaluating retrofit alternatives, designing a new plant is
always an option and it is desirable to re-use existing equipment as much as
possible (Grossmann et al., 1987), which makes the design problem slightly
different from a green field design. In designing new processes, equipment are
dimensioned as a function of design variables like flow rates, whereas in
retrofitting many equipment dimensions are, to a large extent, fixed already
(Fisher et al., 1987). To address retrofitting, systematic procedures have been
suggested in the literature.

Fisher and co-authors (1987) approached the issue with a “top-down, least
commitment” strategy in which the idea is to terminate the retrofit study as
early as possible, if there is not sufficient economic justification. This thinking
is reflected also in the notion that retrofitting is a high-risk, high potential gain
activity (Ben-guang et al., 2000). In Fisher’s approach, the analysis begins from
the raw material and energy costs of the current flowsheet in order to determine
the cost and material loss reduction possibilities related to them; e.g. if raw
material savings are small compared to energy savings, then an energy focus is
rational. In the second step, the option of building an entirely new process is
quickly analysed, to provide a benchmark for retrofit options and process
alternatives to consider. The alternatives are roughly screened to estimate order
of magnitude of savings. Finally, the procedure involves equipment re-sizing in
the existing or new process flowsheet as well as refining the calculations. Fisher
et al. finally note that retrofitting can have an adverse effect on process
controllability, e.g. by removing a manipulated variable, and on the process’s
ability to handle disturbances. Thus, retrofitting also can benefit from
integrated process and control design.

Simon and co-authors propose an indicator- and heuristics-based approach
for batch processes. By indicators they mean numerical variables characterising
the entire plant, a sub-process or a unit operation. Examples of these are
equipment occupancy time, storage volume utilization, minimum driving force
(e.g. temperature difference) or time rate of change of concentration. By
heuristics they mean empirical process knowledge, which is used to link the
indicators to retrofit actions. For example, “increase the driving force”. Finally,
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they note the usefulness of models in estimation of retrofit potentials in the
process (Simon et al., 2008). This work is a continuation and adaptation of work
by Uerdingen et al. (2003) where the focus was on continuous process retrofits.
It relies on steady-state mass and energy balances as well as economic data such
as raw material, utilities, waste and product prices. This approach is based on
indicators, which in the original paper related to maximizing economic
efficiency. Examples of such indicators are the material-value added (MVA),
energy and waste cost (EWC), reaction equality (RQ), accumulation factor (AF)
and total-value added (TVA). Identification of retrofit options is done by
categorizing the component path flows and then applying generic retrofit
actions. Such generic retrofit actions are reported in the paper but need to be
adapted to each case. After identification of options, they are (qualitatively)
evaluated, with a process designer’s knowhow and finally cost impacts are
calculated. The authors note that the presented framework is for screening of
alternatives and due to simplifications made should be used as an order-of-
magnitude estimate. A continuation of this work to extend the methodology to
include safety and sustainability issues is presented in (Carvalho et al., 2008).
The safety aspect is taken into account via the inherent safety index (ISI) of
Heikkild (1999), whereas sustainability issues come in through the works of
Azapagic et al. (2002) and Cabezas et al. (1999). In Carvalho’s study, sensitivity
analysis of the indicators is used to set targets for retrofit design. In addition,
sensitivity analysis is applied to identify which design variables (sizes, etc.) or
operational variables (heat duties, etc.) have the largest effect on the targets.
With this information, design alternatives are generated and finally evaluated
with simulations. The authors talk about sensitivity analysis but it seems that
what they mean by sensitivity analysis is not the same as in chapter 2.3.2 of this
thesis. Rather, it seems that their sensitivity analysis consists of going through
the calculated indicator values and selecting those that show the highest
potential for improvements. These are then used to indicate the location of
critical points of the process with respect to design or operational deficiencies.
Productivity increase retrofit is closely related to the concept of a bottleneck.
In fact, it has been noted that retrofitting, aims solely to remove bottlenecks
(Ben-guang et al.,, 2000). For batch plants Koulouris et al. (2000) have
presented a simulation-based method for identifying bottlenecks. They defined
a throughput bottleneck to be an equipment or resource that limits the amount
of production and a scheduling bottleneck to be a unit or resource that limits
the number of batches that can be produced per time period. In batch processes,
the situation is complicated as attempts to increase production may result in
scheduling conflicts for some units and such scheduling problems have been
typically formulated as optimization problems. They emphasise the point that
significant simplifications were necessary and that their simulation-based
approach avoids this. Earlier, also Voudouris (1996) studied scheduling of a fine
chemical plant using linear, discrete models. He raised three ways of utilizing
such models in debottlenecking analysis: 1) simulating an existing production
schedule and analysing its effects; 2) performing statistical analysis of
manufacturing resource availability. Here the schedule is not fixed but rather
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generated statistically and Monte Carlo analysis is performed; 3) decision
support tool. Of these, number 2) slightly resembles the work by Savolainen and
Lappalainen (2015) in the choice methodological approach (Monte Carlo-type
computations). The main difference is that in (Voudouris, 1996) the statistical
approach was applied to a production schedule of batch units, whereas in
(Savolainen and Lappalainen, 2015) the starting point was the equipment
dimensions of a continuous plant. Furthermore, Voudouris did not pursue this
approach further nor were there numerical results presented. Harsh, Saderne
and Biegler approached the debottlenecking problem wusing MINLP
optimization. They identify a bottleneck using violation of equipment
performance inequality constraints as an indicator (Harsh et al., 1989).

Relating closely to the work presented in this thesis, Lucay et al. (2012)
conducted sensitivity analysis of a mineral separation circuit. Their analysis
used explicit expressions for output partial derivatives with respect to process
parameters. This approach assumes that the analyst has access to the model
equations, which may not be the case when using commercial simulators. In
addition, the author relied heavily on graphical representations of the
sensitivities and utilized the one-at-a-time approach. The sensitivity analyses
works presented in this thesis do not make such assumptions. Continuing that
work, Sepilveda and co-authors (2014) have presented a study in which global
sensitivity analysis was used to analyse mineral concentration circuits. In other
words, the one-at-a-time limitation of Lucay et al. (2012) was overcome. The
study, albeit of a more limited scope (smaller number of parameters and
outputs; analysis only on Sobol’ total sensitivity index), corroborates the main
results of this thesis. In their work, they conclude that global sensitivity analysis
can be of use in planning of retrofitting of mineral processing plants.
Unfortunately, these papers do not present any argumentation on
generalizability to other types of processes.

2.2.3 Other considerations

Similarly, to the design phase, in the operation phase process and automation
engineers face other considerations than the ones mentioned above. Since they
are not within the scope of this work, they are shortly mentioned here.

One major consideration during operation is maintenance of equipment or
the entire plant (ISO, 2004), which aims at keeping the equipment, and more
generally the whole plant, in operating condition. Maintenance has been divided
into two categories: preventive maintenance and corrective maintenance, where
the former aims to prevent equipment failures, whereas the latter deals with
repairing failed equipment. This field has been and is an active research area
but as this thesis is not concerned with maintenance, further discussion is
omitted.

After operation of a plant has ceased, it will be run to a shutdown condition
for a transition period. During this period, plans for the ultimate
decommissioning can be made and needed data gathered. The
decommissioning includes steps such as dismantling of process equipment and
building, reusing the site, handling of chemicals left behind at the site in soil or
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groundwater (Hurme and Rahman, 2005). Decommissioning can actually be
divided into several categories. A short shut down is referred to as idling, where
systems are kept running in order to facilitate quick start-up. Mothballing refers
to a long-term closure of a plant where systems are shut down for an undefined
period. Starting up from a mothballed state may be non-trivial. Finally,
scrapping refers to the complete dismantling of the plant (Briggs et al., 1997).
As decommissioning is not in the focus of this thesis, we do not delve further
into the literature on it.

2.3 Relevant mathematical methods

2.3.1 Modelling and simulation

Computer simulations

Computer simulation has its origins in the Manhattan Project in World War 11
and has developed in conjunction with the development of computers
(Winsberg, 2015). While Winsberg (2015) notes that actually there is no single
definition of computer simulation, a narrow definition by Humphreys is: “any
computer-implemented method for exploring the properties of mathematical
models where analytic methods are not available” (Humphreys, 1991). This
definition is narrow in the sense that computer simulation is not only used when
there are analytically unsolvable equations present (Winsberg, 2015).
Furthermore, this definition relies on what is currently possible to solve
analytically and fails to account for possible future advances in analytical
techniques. More broadly speaking, Winsberg defines computer simulation as
the process of studying systems, with steps of choosing a model, implementing
it on a computer, calculating the outputs of the algorithm and visualizing the
results (Winsberg, 2015). On a high level, the purposes of simulation can be
divided into three categories (Winsberg, 2015). Firstly, computer simulation
can be used as a heuristic tool in communication with other people and also with
oneself. In science, such use can be applied to help arrive at new scientific
hypotheses for further investigation (Parker, 2008a). On a more applied side, a
clear application of this category is for operator-training simulators. Secondly,
there is the prediction category. Prediction of the value of a certain variable at a
given future time instant is referred to as point prediction, while in so-called
range prediction no single point-type value is given. This kind of prediction may
take a probabilistic form, e.g. the temperature will increase by 2—5 degrees in
one hour with a probability of 0.66. Thirdly, qualitative predictions are possible.
With these no point or ranges for variables are produced, but question such as
“Is the system stable?” can be answered. The third category for use of computer
simulations is in understanding of data. In other words, if one has experimental
data, simulation can be used to understand how that data may have come about.
Questions such as “How did things actually occur?” or “How could things have
gone” fall under this category. Parker (2008a) also notes that computer
simulation can be used as an evidential resource, i.e. to provide evidence for
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hypotheses about real-world target systems. In this aspect, computer simulation
can be seen as another way of experimental science.

Modelling and simulations are the basic tools of design but also other process
industry plant life cycle phases can benefit. Simulation models can act as a
shared repository of and knowledge from R&D, design and operation. In fact,
simulation can be placed as a unifying method between research and
development, design and operation according to Figure 7 (Dimian et al., 2014).

Research and
Development

Operation

Figure 7 Simulation at core of R&D, design and operation (Dimian et al., 2014).

In R&D, simulation models can be validated with experimental data and then
be used to substitute further, possibly expensive experiments. Such models are
usable in the design of processes and their automation; especially since
currently, processes have to operate at high material and energy efficiency,
flexibly, safely and cleanly. During operation model-based process control is
common, but also areas such as maintenance and supply chain management
can be benefit (Dimian et al., 2014).

Model characteristics

The term model can refer to a great many things. In a very general sense, a
model is any assumed relationship between variables of a system under study.
This relationship can be phrased in many ways, not all mathematical (e.g.
mental models, graphical models, i.e. plots, tables,...) (Ljung, 1987). In this
thesis, we shall concentrate on mathematical models, i.e. descriptions of
variables’ relationships in terms of mathematical expressions. Such expressions
or sets of equations are solved analytically or, as is the more usual case, using a
computer to simulate them. Since the set of such models is very large, models
have been classified according to several criteria. For example, Hangos and
Cameron (2001) present a classification in five ways:

1. Mechanistic vs. empirical
A mechanistic model, or first principles/white box model, takes such
basic physical laws as conservation and transport of mass, energy
and/or momentum as the starting point and builds the equations from
there. In contrast, an empirical model, or a black box model, relies on
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measured data from experiments and attempts to find a mathematical
relation that describes the data best. Typically, the models used in
process engineering are a combination of the two. Such models are
sometimes referred to as grey box models (Hangos and Cameron,
2001).

Deterministic vs. stochastic

A deterministic model does not have randomness in it, i.e. the model
output is fully determined by the values of its parameters and initial
conditions. In contrast, a stochastic model or part of it contains an
element of randomness and even the same parameter and initial
conditions will produce different outputs. In deterministic models, the
output is a number (scalar or vector) whereas in stochastic models the
output is represented by a distribution. A model can have also hybrid
characteristics, for example, it may contain both stochastic and
deterministic parts.

Lumped vs. distributed parameter

Lumped parameter models refer to a class of model in which the
spatial position is neglected, while distributed parameter models have
this included. An example of a distributed parameter model is a partial
differential equation.

Linear vs. nonlinear

Linearity of a model is that the superposition principle applies, i.e. that
the response of the model caused by two or more inputs is equal to the
sum of individual responses to the inputs. If this principle does not
apply, the model is non-linear.

Continuous vs. discrete

In continuous models, the mathematical equations are continuous.
Discrete models do not possess this continuity and are many times
written as difference equations.

Another way of classifying models is the distinction between steady state and
dynamic models. Dynamic models are used to describe the delayed or inertial
characteristic of the system. This means that when the value of a model input is
changed, the output does not immediately change to its new value. Rather, the
output may at first not react at all (pure delay) or it may begin to move gradually
towards its final value (inertia). Steady-state models do not possess this
character. These characteristics are summarised in the following Table 2
(Hangos and Cameron, 2001).
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Table 2 Forms of model equations (Hangos and Cameron, 2001).

Type of model Examples of equation types
Steady-state Dynamic
Ordinary differential
o . . ti ODE) / Partial
Deterministic Nonlinear, algebraic egua lon.s ( )/ a. 1a
differential equations
(PDE)
. Algebraic/difference Stochastic ODEs /
Stochastic . . .
equations difference equations
Lumped parameter Algebraic equations ODEs
Distributed parameter  Elliptic PDEs Parabolic PDEs
Linear Llnea.r algebraic Linear ODEs
equations
Nonli Igebrai
Nonlinear onlnear  algebraic Nonlinear ODEs
eqns.
Continuous Algebraic equations ODEs
Discrete Difference equations Difference equations

In chemical/process engineering, the utilized models can be seen to have two
major components: the part characterising the equipment and the part
characterising the flowing material, i.e. material properties (Westerberg, 2004).
The level of detail in equipment characterization can vary considerably. In
steady state, mass and energy balance calculations a separation unit may be
described only with constant separation coefficients. In a more detailed
description, a characteristic dimension of a device may be included, e.g. the area
of a heat exchanger. In an even more detailed model the entire 3D geometry of
the device, e.g. a furnace, is used. The more detail used in a description, the
more input information needs to be gathered and fed into the model. Also, the
computational load will increase as a function of the detail level.
Characterization of the flowing fluid or estimation of physical properties is a
considerable task, since the sheer number of different pure fluids is enormous
and when pure fluids are mixed, the physical properties are not always simple
averages of the pure fluid properties, which makes the situation even more
challenging.

Simulators

Computer simulation is conducted by specialized computer programs, referred
to as simulators. In process systems engineering or chemical engineering they
are called process simulators. There are numerous tools available, both open-
source and commercial, running on different operating systems and
concentrating on different applications, e.g. power plants, distillation,
thermodynamic analyses, operator training, reactions, generic flowsheeting.
For example, Wikipedia lists 58 chemical process simulators (Wikipedia, n.d.).
The list seems to exclude many modelling-oriented programming languages
such as Modelica® (Modelica, n.d.) and Matlab® (“MATLAB, The Language of
Technical Computing,” n.d.) and commercial software like Balas (VIT, n.d.),
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JADE (GSES, n.d.) and Flowmaster V7 (Mentor, n.d.). Simulators can be
classified in many ways, but one of the most common is to distinguish between
equation-oriented and agent-based simulators (Winsberg, 2015), with the prior
more common in physical sciences, including engineering. In such simulators,
the underlying theory is formulated in the form of equations, which the
simulator numerically solves. Agent-based simulators are more common in
social sciences and the system under study is represented by discrete, individual
entities (agents) with their own behavioural rules (Winsberg, 2015). It should
be noted that the term “equation-based” or “equation-oriented” has also
another meaning. In this case, it refers to process flowsheet simulators and the
way the calculation is conducted. In such “equation-based” flowsheet
simulations, all the equations describing individual unit operations and their
connections are collected and solved simultaneously. This is to be contrasted
with the so-called “sequential-modular” simulators where the simulator moves
from one unit operation to another and solves the equations describing one unit
operation at a time (Biegler et al., 1997).

2.3.2 Global Sensitivity Analysis

One of the mathematical methods used in this thesis is global sensitivity analysis
(GSA). In sensitivity analysis the goal is to quantify how a model’s inputs or
parameters affect its outputs or “the study of how uncertainty in the output of a
model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input” (Saltelli et al., 2008). The “traditional” way of
doing this has been to calculate the partial derivative of an output, Y;, with
respect to different inputs, Xj, either analytically or by finite differences around
a given nominal point, Xj,, as shown in Figure 8.

OutputY; [VSY J

Xip Xi1

Parameter X;
Figure 8 Local sensitivity of Y; with respect to X at Xjo.

The drawback of this approach is that it is local, i.e. it gives information only on
how Y; depends on X; around X;,. This information may be inaccurate or even
misleading at another point, say X;, in Figure 8 when the relationship is not
linear. Global sensitivity analysis strives to overcome this locality problem.
Below we give short descriptions of three global sensitivity analysis methods,
although others do exist.

In conjunction with global sensitivity analysis the question of what exactly the
analysis is used for is raised. Typically, two settings have been presented:

22



Related research

parameter screening and parameter ranking (Saltelli et al., 2008). In parameter
screening setting, a large set of parameters are analysed with the intention to
identify those parameters that do not have a major effect on the output of
interest. In other words, these parameters are screened out. The rest, which
hopefully form a small subset of the original parameter set, are the important
ones. This is where the screening setting ends, i.e. it does not tell which is the
most important parameter, which is the second most important, etc. Such
results can be obtained with the parameter ranking setting. Needless to say,
parameter ranking is more computationally expensive than parameter
screening.

Morris method

One method of global sensitivity analysis is the Morris or elementary effects
method (Morris, 1991) which is a screening method. In this method, for each
input X; the so-called elementary effect EE; is calculated as:

5 Y (X poos X X+ Ay X)) = Y (X, X))
! A

®

This resembles the definition of a partial derivative, but the difference is that
X; now takes multiple values from {o, 1/(p-1), 2/(p-1), ..., 1} where it has been
assumed that 0 < X; < 1. The variable p is the number of levels at which X; is
sampled and 4 is a fixed multiple of 1/(p-1). The Morris method samples the
parameters X; and computes the elementary effects (EE;s) which form a
distribution F;, i.e. EE; ~ F;. To assess parameter X;’s effect on Yj, the sample
mean (1) and standard deviation () of F; are computed and plotted as shown
in Figure 9. The plot can be interpreted so that parameters with negligible
effect are close to the origin. Those with a significant, but linear, effect are on
the right and close to the horizontal axis (o << z). Finally, those with a large
non-linear effect or interactions with other parameters are towards the top right
of the plot with & and x4 having the same order of magnitude (Iooss and
Lemaitre, 2014).
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Figure 9 Example of a (o) plot of the elementary effects method.
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The original method of Morris has been extended since its publication. The first
extension is that instead of calculating the mean of the EE;s, a modified measure
¥ is calculated as the sample average of |EE;| and no ois calculated. A second
extension is a new parameter sampling strategy alleviating the original method’s
coverage of the input space, which was non-optimal. Finally, progress has been
made with working with groups of parameters, i.e. to produce a sensitivity
measure relative to a group of parameters. Such developments are summarised
in (Campolongo et al., 2007).

Variance decomposition

Another approach to global sensitivity analysis is the variance-based method.
Historically the first studies on variance-based methods were published as the
Fourier Amplitude Sensitivity Test, FAST (Cukier, 1973; Cukier et al., 1978).
Nowadays the Sobol’ method (Sobol’, 1993; Saltelli et al., 2008) seems to have
gained popularity.

A variance-based method, as the name suggest, uses the variance of the model
output, V(Y)), as the starting point for developing sensitivity measures. This
variance arises from the parameters, which are varied in the analysis. The
output’s variance is decomposed into first- and higher-order effect of the inputs
and from those the so-called first-order and total sensitivity indices are
calculated. The first step is to ask how V(Y}) would be affected if parameter X;
were to be fixed to a value x; while allowing the other parameters, denoted by
X.;, to vary according to their distributions. The variance of Y; under this
condition is denoted by Vx-«(Y; | X;). If the output variance was clearly reduced
by fixing X; then it can be deemed as an important parameter with respect to Y;.
At this stage, the method is still a local one since X; has been fixed to only one
value. The next step is to take the expected value of the conditional variance as
x; changes: Exi[ Vx-i(Y; | Xi) ]. Now, the unconditional variance is decomposed
as

V) =E Ve (V12X )4V |Ec (v 1X) (=)
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The first-order sensitivity index of output Y; with respect to parameter Xj, S;;,
is defined as

VB 1 x)]
i,j V(Y] ) (3)

and the total index, S7ij, as

L VE x|
Sp, = _W @)

The first-order index measures a parameters linear effect on the output, while
the total index is used to measure the effect of any degree, including interactions
with other parameters. A more thorough treatment of the Sobol’ and elementary
effects method can be found for example in (Saltelli et al., 2008) and a recent
review of variance-based methods from (Iooss and Lemaitre, 2014).

To numerically calculate the first-order and total Sobol” indices Monte Carlo
(Saltelli, 2002) simulations are conducted. Traditional random Monte Carlo
simulations require a considerable number of simulations and thus quasi-
random samples, such as Halton and Sobol’ LP- sequences, are commonly used
(Saltelli et al., 2008). In addition, the derivative-based approach, which is
presented next, has been developed to alleviate computational load.

Derivative-based approach

The above discussion approached global sensitivity indices from the variance-
decomposition point-of-view. The subject has also been approached from
derivative-based global sensitivity measures (DGSM) point-of-view, see e.g.
(Kucherenko et al., 2009; Sobol and Kucherenko, 2009; Kucherenko and Iooss,
2015), which can be seen as a generalization of the Morris method. This
approach starts from the partial derivative 9Y;/0X; and uses functionals of it as
sensitivity indices. For example, the modified Morris measure 4* is an
approximation of the functional

X (5)

N oY.
|52

and the total index Sry; is related to the functional
S I o, 2 dx 6
Ti,j =~ P Xi (6)

On the upside the approach is that it is computationally more efficient than
the variance-based approach or Morris method (Kucherenko et al., 2009). On
the downside it assumes Y; as a differentiable function of the X/s and as is
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demonstrated in (Sobol and Kucherenko, 2009), this can lead to false
conclusions on parameter ranking of highly non-linear functions.

2.3.3 Multiple objective optimization

Traditionally, optimization in process engineering has been conducted as single
objective optimization, while in the real world one quickly encounters several
conflicting objectives. With conflicting objectives one means that not all
objectives reach their optima at the same point (Hakanen, 2006). Thus, in
multiple objective optimization, the concept of a solution has to be extended to
the so-called Pareto optimal solution. A solution is Pareto optimal if no criterion
can be improved without impairing some other criterion at the same time. For
a given multiple optimization problem there may be several such solutions and
they are in fact mathematically equivalent. Thus, to pick the final solution, a DM
who can express preference information not encoded in the problem
formulation, is needed (Hakanen, 2006). Optimization in chemical engineering
is not always a straightforward task because the design spaces and even
objective functions are not always clear to the designer (Westerberg, 2004).
Nonetheless, optimization techniques have been used in process design at least
from the late-1950’s in the oil-refining industry starting with linear
programming (Westerberg, 2004). Other techniques such as sequential
quadratic programming, mixed integer optimization and multiple objective
optimization have also been utilized. For further details, the reader is referred
to (Biegler and Grossmann, 2004) for a review of methods and their application
domains in process systems engineering. Also, future visions by the same
authors are presented in (Grossmann and Biegler, 2004).

It has been noted that in process engineering one can find two kinds of
optimization problems (Biegler et al., 1997; Hakanen, 2006). The first,
parameter optimization, is used when the structure of the process is fixed and
the operational parameters are used as decision variables in the optimization.
The second, process synthesis, strives to find the process structure by using
optimization. Typically, parameter optimization problems lead to continuous
optimization problems, while in synthesis one quickly ends up with mixed-
integer problems. For example, Psaltis and co-authors (2016) present a study
where a distillation and heat exchanger network synthesis problem is
formulated as a mixed integer non-linear programming (MINLP) problem.
Their approach to solving it is by generating computationally efficient surrogate
models by using more rigorous and computationally intensive models, an
approach applied also by Savolainen et al. (2015). In relation to this thesis, it is
noteworthy that Psaltis et al. also use sensitivity analysis in selecting input
variables for their surrogate models; they used the one-at-a-time approach.

2.3.4 Hypothesis testing

Hypothesis testing, in the statistical sense, was employed in the model
comparison method developed in Publication I, in order to determine if two
models differ. The comparison is conducted by using several so-called
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comparison variables, which are chosen by the analyst. Originally, they are time
series, but are then averaged over time. As the models in question contain a
stochastic element, several simulation replications are performed necessitating
the use of statistical methods. One needs to compare distributions, rather than
just scalar values. This is done using the two-sample Kolmogorov-Smirnov test,
which compares two cumulative probability distributions. The test statistic used
is the largest vertical distance between these distributions, as shown in Figure
10 below. In the figure two cumulative probability distributions, A and B, are

shown along with the test statistic D.
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Figure 10 Example of two-sided Kolmogorov-Smirnov test.

In the model comparison method several comparisons on the same data are
performed which is why the Bonferroni correction is included (Milton and
Arnold, 1995). In this, the significance level for one comparison variable, ¢;, is
the experiment-wise significance level, «, divided by the number of
comparisons, Nyar.
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3. Research questions

Westerberg (2004), citing the work of Bucciarelli (1996), argues that designing
a plant is in itself a social process which includes meetings, discussions, etc.,
reflecting social values and knowledge. The design work’s social aspect is
typically handled with defining workflows, which prescribe, e.g., documents to
be produced. This approach assumes that design work can be formulated as a
sequence of clear steps, an assumption that Bucciarelli and others have shown
not to be true. Rather, solving design problems involves moving back and forth
from one part to another in order to gain an understanding of the problem
(Westerberg, 2004). It could be then argued that gaining a better insight into
the problem at hand can provide added value to the designer. As briefly referred
to above, the tightening environment sets challenges for the designers and
operating personnel of processes. In the following, we present a non-exhaustive
list of such challenges as a motivation for the research questions. While this
thesis does not directly address them, there are numerous other challenges
faced by the designers and plant staff. Such challenges include management of
abnormal situations, predictions, scheduling of maintenance activities as well
as fault detection and diagnostics.

3.1 Finding the right focus

A process industry plant’s objective is to deliver products satisfying quality
requirements while achieving economic benefits at a minimal cost. On the
design side, the early phases of a plant design project may not incur major
expenses but can contribute significantly to cost-reduction opportunities and
can have a significant impact on life cycle costs (Marquardt and Nagl, 2004). In
fact, Dimian et al. (2014) suggest that design phases take approximately 15% of
the total design and construction project (until end of commissioning) cost
while representing nearly 45% of cost-reduction possibilities. Furthermore,
they note that erroneous decisions made in the early phases can incur high costs
later during plant operation, due to reduced production and a need for
corrective actions. In addition, during operation the product demand, quality
and raw material feed, are bound to change, which leads to challenges to the
operation of the plant as it must be both flexible and controllable (Vega et al.,
2014). Flexibility here refers to the plant’s capability to operate in different
(desirable) steady-states (Grossmann and Morari, 1983), whereas
controllability is concerned with dynamic operation (Vega et al., 2014), e.g.
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change situations from one operation point to another (Biegler et al., 1997). This
demand for flexibility and controllability also poses challenges to the process
designers whose process and control design should meet these targets (Vega et
al., 2014). The challenges are exacerbated by the requirements that the design
itself be performed cost-efficiently. For example, a study by Hussain and
Wearne identified time as the second greatest problem in project management
in the process industry (Hussain and Wearne, 2005). This then leads to a need
to focus the designer’s attention on the most critical parts of the
process already in the early phases of the life cycle.

3.2 Limited knowledge

As Grossman and Morari (1983) state, practical engineering problems are more
loosely defined than scientific ones since the prior contain uncertainties in, e.g.
computational models, market forecasts, raw material and prices. Moreover,
sometimes the designer is even faced with a situation where the (true) goals and
the space of possible designs are not well specified (Westerberg, 2004). Also, it
may occur that different parts of the process are developed or designed by
different companies. For example, one company may have developed and
patented a process concept, which is then licensed and adapted to a certain plant
by a separate design company. While in an ideal world this would not be a
problem, sometimes the information provided to the designers in early phases
of design may be incomplete, either due to trade secrets or even due to limited
knowledge of the provider. Furthermore, design consultants possess expertise
in design work but may lack operational knowledge, while client companies
possess operational data and expertise but usually no real design experience
(Moran, 2015).

Moreover, it seems that the division between conceptual and detailed design
is getting blurred and the traditional waterfall project model is being replaced
with fast-track/unstaged design or collaborative contracting (e.g. the alliance
model) (Suprapto, 2016). Reasons for this reorganization of work can be
numerous, but it seems that the major driver has been the recognized budget
and/or timetable overruns of large capital projects (see (Suprapto, 2016) and
references therein). Such ways of organising the design work lead to a need for
quick and accurate information exchange between parties, e.g. the design
consultant(s) and the customer. This has proven to be a challenge, as
exemplified by founding of the DEXPI group (www.dexpi.org). It can be argued
that this leads to the fact that design decisions need to be made with
limited knowledge or under uncertainty (Schneider and Marquardt,
2002) which is also tied to the previous challenge in that reducing the
uncertainties requires time and money and should be worth the effort.

3.3 Multiple conflicting operational objectives

Traditionally, process design has been separated into two distinct parts: process
and automation/control design (Vega et al., 2014). Nowadays, the operational
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aspects of automation design are being taken into consideration in earlier
phases of design, typically involving multiple, conflicting goals or objectives
(Ropponen, 2013) originating from the economic and dynamic performance
objectives set forth by the customer. When striving to use mathematical
optimization as a tool in solving such problems, a single objective function or a
weighted sum has been typically the minimized criterion (Ropponen, 2013).
This formulation has drawbacks that may result in loss of information about the
relevant characteristics of the problem, interdependencies between factors and
uncertainties (Hakanen et al., 2013), thus hindering learning and gaining
insights. This leads to the need to account for multiple objectives, a
situation also present in the designer’s work.

3.4 Main hypothesis and research questions

Based on the discussion above, the main hypothesis of this thesis is that
extending dynamic simulation with other mathematical methods can bring
extended added value to a process or control designer. This added value comes
from alleviating the challenges identified above. Here, the term extended added
value refers to the fact that simulation alone typically brings added value, when
used properly. Now, extending dynamic simulation with the other mathematical
methods also extends this added value. The main hypothesis and results
contributing to it from four case studies are summarized in Figure 11. A
detailed description of the cases and their contributing results is given in
chapter 4. The cases are numbered in the same order as the publications of this
thesis. The figure also summarizes the extensions to dynamic simulation, which
were used in the studies. Finally, in the figure, the industrial domains of the
cases are presented. The three dots on the right-hand side of Figure 11 indicate
that this list is by no means exhaustive and can be seen as a topic for future
work.

Main Extending dynamic simulation with other mathematical
Hypothesis methods bring added value to designer
Gain more trust on Brings insight to process
optimization results obtained and control
Contributing from simplified models interdependencies.
Results Focuses attention to critical Focuses attention to critical
process areas process areas
Extension / Model Global sensitivity Multiple objective
method comparison analysis optimization
Supporting #1: Paper #2: Tower control | #3: Filtration |
Case(s) production #4: Bottleneck
Industrial | 5 i | —
domain apermaking | Filtration |

Figure 11 Thesis main hypothesis, contributing results, extensions, cases and industrial
domains.
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Finally, we formulate the research questions of this thesis as: How can coupling
of process simulation and other mathematical methods (introduced in chapter
2.3) be
1. used to focus the designer’s attention on the most critical parts of the
process, even with limited knowledge?
2. used to provide insight into an operational plant’s personnel?

To address question 1, a model comparison method was developed and its
potential in early phase process optimization was shown. Also, combining global
sensitivity analysis with process simulation was investigated and shown to be
useful in attention focusing on preliminary process and automation design.

To address question 2, the potential of combining dynamic process simulation
and interactive multiple objective optimization in design of operational
practices was studied. In addition, a combination of global sensitivity analysis
with dynamic process simulation as a method of identifying bottlenecks of a
process was studied.
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4. Results and empirical work

This thesis utilized three extensions to support the main hypothesis. The four
cases used had certain common characteristics. Firstly, they all utilized dynamic
simulation models. Building of the models followed a quite traditional iterative,
step-wise approach, for example summarised in (Hangos and Cameron, 2001).
The studies used as modelling environments Matlab (“MATLAB, The Language
of Technical Computing,” n.d.), Apros (“Apros,” 2010) and Simlab (“SimLab -
Sensitivity Analysis,” 2010). Secondly, in all cases the models were simulated in
a Monte Carlo-like fashion (Law, 2007). In essence, a model was run several
times with different inputs or parameter values generating a large set of data.
This data was analysed to draw the conclusions. Thirdly, all cases are tied with
some stage of a process industry plant’s life cycle as summarised in chapter 1.1.

In the next chapter, the supporting case studies and their contributing results
are described in more detail.

4.1 Paper production case

The Paper production case study addressed concurrent process dimensioning
and control design of a paper mill. The problem was approached with a two-
level optimization, where on the lower level the operation of the mill was
optimized for a given process dimensioning. This dimensioning was derived
from the upper level of the optimization. The optimization problem formulation
and results can be found, e.g. in (Ropponen, 2013) and the references therein.
The initial motivation to apply a sophisticated mathematical approach to this
rather traditional process (shown schematically in Figure 12), is the inherent
difficulty of controlling (and designing controls for) certain aspects of it.
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Figure 12 Schematic of the paper mill process utilized in the Paper production case.

When the process runs normally, the paper machine (PM) is fed a mixture of
solid raw materials suspended in water. Part of the raw materials, such as
thermomechanical pulp (TMP) and chemical pulp (CP), come fresh from their
respective production units, but there also exists a recycling stream of so-called
broke. Broke is produced in abnormal situations, called web breaks, at the PM
in which all the produced paper is rejected and stored in the broke tower. In
order not to waste this material, broke needs to dosed to the feed mixture, which
has proven to be challenging. Namely, if too much broke is dosed, the quality
(e.g. strength properties) of the mixture reaching the PM is compromised as the
paper fibres have undergone operations that weaken their properties. This in
turn increases the possibility of a new break and could lead to a vicious cycle.
On the other hand, dosing very little broke could lead to overflowing and/or
aging problems in the broke tower. Filler, which is typically a mineral substance
and cheaper that TMP or CP, is fed to the mixture and it is desirable that as
much as possible is retained at the PM and ends up in the paper. In the
optimization model the retention was assumed to be constant, but as it is neither
ideal or constant in real-life, some filler is recycled via the water system
(simplified in Figure 12 to consist only of a white water tower, a disc filter (DF)
and a clean water tower). This brings another challenge to the process operation
since filler tends to decrease paper strength, increasing the probability of
breaks. Also, the customer buying the paper cannot tolerate too much filler in
the paper, which means that the filler content, measured at the quality control
(QQC), needs to be controlled. On the fibrous raw material (TMP and CP) side,
the qualities, e.g. with respect to strength, do not remain constant in real-life
since in the preceding processes may experience upsets.

Thus, there exists a potential application of optimization to determine both
the dimensioning and operation of the process. This needs to be done with
limited knowledge (chapter 3.2) and in the face of multiple conflicting
operational objectives (chapter 3.3). It is fairly evident that such two-level
optimization involves a considerable amount of simulations necessitating use of
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a very fast model. This in turn has the effect that the model needs a considerably
simplified description of the real-life process. In addition, this very simple
model is necessitated by the fact that if such optimization is conducted in early
phases of design, not much information might be available, which is one of the
challenges identified in chapter 3. A natural question then is whether the results
obtained with this optimization model (OM) are trustworthy and this aspect is
the empirical work considered here. The work consisted of developing and
applying a novel method to compare the optimization model with a set of
increasingly realistic models, called verification models (VM). The idea is that if
the optimization model and verification models are equivalent and the
verification models are adequate descriptions of real-life, then the results
obtained with the optimization results can be trusted.

The case utilized a Matlab-based dynamic model of a paper mill as the
optimization model and eight different verifications models which were
implemented with the Apros® Paper simulator. Each verification model
contained some modification to the detail level of the optimization model. These
modifications were chosen to reflect the non-idealities outlined above. The
modifications are summarised in Table 3.

Table 3 Modification in the verification models of the Paper production case.

Verification Modification
model
1 None
2 Variable filler retention at PM
3 Bad-quality TMP from the TMP mill
New tank (white water) between PM and white water
4 tower and disc filter.
Variable filler retention at PM and bad quality TMP
5 from the TMP mill together
Variable filler retention at PM and new tank together
Bad-quality TMP from the TMP mill and new tank
7 together
8 All modifications together

The “Variable filler retention at PM” modification was implemented with the
following equation

T stier,p = 05+w )

where the value 0.5 was the original filler retention.

The modification comes through the noise term w which is a random variable
distributed normally with zero mean and variance of 2.0. To avoid too large
changes in the simulation, ruer,py was further filtered with a time constant of 15
min. This value was then fed to the PM model of Figure 12.
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The second modification, “Bad-quality TMP from the TMP mill” affected the
flow from the TMP mill. For each 10-minute step of simulation, the model
determined whether the TMP flow was of “bad quality” or not. This
determination was implemented with a two-state model shown in Figure 13,
where the arrows indicate transitions from one state to another and the
associated numbers the probability of that transition.

0.5

0.25
Figure 13 Two-state model for producing bad TMP.

The bad TMP then flowed through and mixed with other materials in the
process, finally reaching the PM. There it affected adversely the paper’s strength
and in doing so increased the probability of a web break.

Finally, the “New tank” modification involved adding a new, ideally mixed
tank between the PM and white water tower and disc filter. This tank, shown in
Figure 14, is typical in real-life processes. The tank acts in this modification as
a primary source of water for the needs of the process, while the white water

tower is a reserve which can absorb excess water (overflow) or provide makeup
if needed.

Fresh
o water
( oF )
CLEAN overflow | WHITE
: WATER
WATER
WHITE TOWER
WATER
TANK
{ . ~'makeup
IT%
From mixing
chest — PM L —— ToQC
To Broke tower AD‘—‘
t L} 1 From dry broke
storage

Figure 14 Addition of a white water tank.

The models in the Paper production case were hybrid models combining both
deterministic and stochastic parts, which necessitated the development of a
novel comparison method to distinguish differences arising from stochastic
fluctuations from real differences. This hybrid nature of the models arose from
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the fact that in the preliminary process design phase solid information on the
process may still be scarce and some parts of the process need to be modelled
stochastically. In this case, the stochastic parts were the breaking of the paper
web at the paper machine and the production of dry broke. Thus, the model
comparison method needed to distinguish between two potential sources of
model difference: stochastic fluctuations and fundamental model differences.
To quantify the former a VM was compared with itself, with the only difference
being the random numbers fed into it. This information was then utilized when
comparing the OM vs. a VM. Comparison of the models was done with 16
variables relating to the product, behaviour of the control law (see the Tower
control case for details) and overall operation of the plant. These are listed in
Table 4.

Table 4 Comparison variables of the Paper production case.

Nr. Description Location in Figure 12

Filler content squared deviation .

1 ) 1 “Filler-%” at QC
from its target

) Gross production squared “Gross prod.” between PM and
deviation from its target QC
Strength squared deviation from

3 5 d “Strength” at PM

the target value

4  Cumulative number of breaks

Net production rate (PM gross
production - dry broke)

PM
Net Prod. after QC

Between broke tower and mixing
chest
Between TMP and CP towers

6  Broke dosage

TMP/CP ratio at the mixing chest ..
7 /CP rati ing and mixing chest
8 TMP flow to its tower Before TMP tower
9  CP flow from to its tower Before CP tower
10 Disc filter input flow From white water tower to DF
. From dry broke tower to broke
11 The pulping rate of dry broke Y
tower
15 The intake of fresh water to the From fresh water to clean water
clean water tower tower
Pulp consistency (dry matter %)
1 . Before TMP t
3 into the TMP tower elore ower
14 Pulp consistency into the CP tower Before CP tower
15 Disc filter filtrate recirculation flow From DF to white water tower
Fraction of time that at least one
16 All the towers

tower under- or overflows

To assess long-term average behaviour the resulting time series were averaged
over the simulation time. In addition to this, also variability of the process
behaviour was studied by using the coefficient of variation. The comparison was
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repeated for each of the modifications in the verification models. For each
verification model, 500 simulations were executed resulting in 4000
simulations. The simulations were executed on a dedicated calculation server.

Contributing results

In the Paper production case, the specific goal was to develop a model
comparison method to increase confidence that process design and operational
optimization results obtained using rather simple models can be trusted. The
developed method was designed to be used with hybrid deterministic-stochastic
models. The case showed that the average behaviour of the models was mostly
the same while differences were seen on the variational side. This is summarized
in Table 5.

Table 5 Comparison results of the Paper production case.

Modification Average Variations
None same same
Variable filler retention at PM same different
Bad-quality TMP from the TMP mill same same

New tank (white water) between PM and white

water tower and disc filter. same different
Variable filler retention at PM and bad quality TMP .
. same different

from the TMP mill together
Variable filler retention at PM and new tank .

same different
together
Bad-quality TMP from the TMP mill and new tank )

same different
together
All modifications together different different

Naturally, there were no differences when there were no modifications added to
the verification model. As Table 5 shows, on the average column none of the
modifications alone made the optimization and models differ. In addition,
combining any two modifications was not enough to drive the models apart but
when all of the modifications were present, there was a significant difference.
On the variational side, the situation was quite different as differences were seen
quite often. The above results are believable since two of the three modifications
were variational in nature, namely variable filler retention and bad-quality
TMP. As process control typically is used to handle transient situations, i.e.
variations, of the process, one can deduce that applying such model comparison
would benefit optimization-based control design.

Thus, by utilizing the method the designer can i) gain understanding of how
far the simple optimization model can be trusted and ii) focus possible future
analyses on the most critical parts of the process. Thus, this approach
contributes towards the main hypothesis of this thesis, as indicated in Figure
11.
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4.2 Tower control case

In the Tower control case, the same stochastic-deterministic hybrid Matlab
simulation model as in the Paper production case was utilized, but the focus
now was on its tower level control law and its effect on the early phase,
concurrent process and control design. Traditionally, the tower level control has
been left to the plant operators, as fully automatizing it has proven to be
difficult, which was already highlighted in the previous case’s discussion of
broke dosage, which involves multiple conflicting operational objectives
(chapters.3). Additionally, the large towers bring dominating dynamics to the
system and can incur high investment costs. Thus, control of the tower levels
should be considered early on when designing the process and finding the right
focus (chapter 3.1), even with limited knowledge (see chapter 3.2), becomes
important. In this case, the control law was formulated to mimic the actions of
an operator of a paper mill in the form of lookup tables. The control law had
seven manipulated variables and referring to Figure 12 the control law
contained the input-output matchings shown in Table 6.

Table 6 Control loops of the Tower control case.

Control
loop T Measured variable(s) Manipulated variable
1 Broke tower level, break state Broke dosage
2 White water tower level Disc filter input flow
Broke and dry broke tower
Dry broke pulpi t
3 levels, break state ty broke pupiig rate
TMP/CP ratio at mixing th
4 Broke tower level, break state /CP ratio at mixing the
chest
Intake of fresh water to the
5 Clean water tower level
clean water tower
TMP tower level TMP flow to its tower
7 CP tower level CP flow to its tower

Each manipulated variable, u;, was calculated with

u)=acu!"+(1-a)u,(t—Ar) (8)

In equation (8), « is a filtering constant, while c’s are coefficients obtained
from look-up tables of the control law. In these tables the measured variables
were divided into ranges, which were used to determine the value for the
coefficient ¢ for each manipulated variable u; at any given tower level and break
state. This could be exemplified for control loop 1 verbally as:

“if break is ON and broke tower level is between 75% and 100%, then
coefficient ¢ for broke dosage is 2”.

In total, 36 parameters (p;’s) were used to define the ranges while the number
of c-coefficients was 45. Thus, the structure, which is described in more detail
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in Publication II, was characterized by 81 parameters whose effects were
initially analysed using the elementary effects method and finally with variance
decomposition-based Sobol’ sensitivity indices (Saltelli et al., 2008).

In the sensitivity analysis, operational and product quality points of view were
taken into account when defining its four outputs (denoted by Y; below). The
operational aspects were characterised by the time until one of the towers
experienced an undesirable under- or overflow situation, while the end product
was characterised with deviations from desired strength, filler content and
production rate, which are shown in italics in Figure 16 below.

The hybrid nature of the model resulted in a large number of simulations. The
initial analysis consisted of 1760 simulations and the actual Sobol’ analysis of
2816 parameter samples, each sample being simulated with 100 replications to
account for the stochastic parts of the model. The parameter sample generation
and calculation of the sensitivity indices were conducted with Simlab software.
The simulations were executed using parallelization on an eight-core calculation
server.

Contributing results
In the Tower control case the goal was to demonstrate how combining dynamic
simulation with global sensitivity analysis could be used to gain insight into
preliminary phase process and especially control design. This was achieved with
a case analysis of the control law of six connected storage tower levels of a paper
mill. The analysis procedure was able to identify process areas whose control
was important from operational and end product points of view. This
identification is deduced from the sensitivity indices received by the different
parameters: if one or more parameter located in a certain process area received
a high index value, then this process area was deemed important. In the
following Figure 15 we show the results. Each of the four columns corresponds
to one output variable:

Y;: Time until first tower over- or underflow

Y. Time-average squared strength deviation

Y;: Time-average squared filler content deviation

Y,: Time-average squared gross production deviation

On the top row are shown the first-order indices (Equation (3)) and on the
bottom the total indices of Equation (4). As can be seen, parameter c,, is by far
the most important in six of the eight figures. For Y. the situation is less clear,
with several parameters with relatively similar index values.
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Figure 15 Sensitivity indices of the Tower control case (figure from Publication II).

As ¢y relates to level control of the white water tower, a direct result is that this
process area should receive the focus of the designer. Since this level is
controlled by the flow to the disc filter and another parameter relating to it (ps)
is present, control of the disc filter seems to be of importance. Control of the
broke and TMP towers were raised as the most important parts relating to the
strength properties via parameters Vs (clear water tower initial volume,
providing dilution for TMP), V; (TMP tower initial volume), V; (broke tower
initial volume) as well as p;. and c3, (related to inflow to TMP tower). These
results, shown in red ovals in Figure 16, give the designer indications of where
to focus additional design efforts. Thus, the Tower control case contributes to
the main hypothesis of this thesis, as indicated in Figure 11.
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Figure 16 Process flow sheet of the two first cases. Red ovals indicate areas to focus on in the
Tower control case.

4.3 Filtration case

The Filtration case dealt with operations planning of a two-stage filtration
process shown in Figure 17.

P2

Retentate
‘ Fa

Pl

reed Q | | Filter 1
I &

| by-pass

-

P3
: i // Permeate

o

% Filter 2
by-pass

Figure 17 Flowsheet of the Filtration case process.

The process is used to filter impurities from the feed flow by two filters
connected in series. The flows in the system are driven by four pumps, whose
energy consumption should be kept to a minimum. Both filters produce two
output streams, the permeate and the retentate. Of these, the retentate is the
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one into which the impurities should be concentrated while permeate is desired
to be clean. As can be seen from Figure 17, both filters contain a local retentate
recycle as well as an outer recycle to the feed of the process. The target here was
to determine when each of the filters needs to be shut down for cleaning since
the feed impurities tend to foul the filters. The fouling has the effect that it
increases the flow resistance over the filter’'s membrane, between the feed and
permeate streams. This in turn has the effect of either decreasing the permeate
flux (flow per unit area of membrane) or increasing the required pumping
power. In this case, fouling was modelled with a semi-empirical model, which
increased the form loss coefficient, &, of the permeate flow line as a function of
the accumulated amount of impurity on the membrane:

&) =afc . (Odt (©)

where cr.q is the impurity concentration of the inlet flow to the filter and the
coefficient a is a tuning coefficient.

When a filter is washed, its associated loss coefficient is reset to zero and
during this time, the filter cannot process any feed, which results in a lower
amount of permeate. Furthermore, when filter 1 is being washed, the feed
coming to it is directly by-passed to filter 2. In such times filter 2 receives dirtier-
than-normal feed which results in dirtier permeate, an unwanted situation. This
process is similar to the one studied in (Noronha et al., 2003), where the effect
of varying filter-wise permeate recovery (flow rate of permeate divided by feed
flow rate) was analysed with stationary models. They analysed energy
consumption, permeate quality and permeate flow rate, but the analysis did not
formulate the case as a mathematical optimization problem, nor did they utilize
actual MOO solvers. Nonetheless, the authors note that even such a small
process exhibits multiple optimization criteria and such interactions that
simulation can make substantial contributions. In the case presented here, we
continue their work by connecting the Apros® simulator with an interactive
multiple objective optimization solver IND-NIMBUS (Miettinen, 2006) and
formulating the case into an interactive MOO problem. Here the task was to
derive an optimal washing schedule for the two filters as well as optimal rotation
speeds for the four pumps over an eight-hour operating window using the
following three objectives:

1. Maximize the permeate amount
2. Minimize the impurity amount in the permeate
3. Minimize the energy consumption of the pumps

This situation naturally lends itself to coupling of multiple objective
optimization and dynamic process simulation to aid the process operations
planning engineer who is faced with the challenge of multiple conflicting
operational objectives (chapter 3.3). Furthermore, the case contained major
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modelling uncertainties in the form loss function presented above as well as in
the cleaning efficiencies (or “impurity rejections”) of the filter, which were taken
to be constant. Thus, the case also dealt with the challenge of limited knowledge
(chapter 3.2).

The Apros-IND-NIMBUS combination, running on 3.4GHz Intel® Core™ i7-
2600 computer, produced a set of candidate solutions, which were presented
over e-mail to the decision-maker. He then analysed them and communicated
his preferences for the direction in which the next optimization iteration should
proceed.

Contributing results

In the Filtration case it was shown that a combination of interactive multiple
objective optimization and dynamic simulation was able to provide insights in
two aspects. Firstly, exploring trade-offs of conflicting operational requirements
with the combination deepened the DM’s understanding of the problem at hand,
as indicated in Figure 11. In the beginning of the interactive optimization the
DM did not have clear preferences regarding which of the three objectives were
the most important to him. While performing the optimization, the DM’s
preferences became clearer and in looking back at the process it seems that the
DM was mostly interested in improving two of the objectives (energy
consumption and permeate cleanliness) while being willing to relax the
remaining one (production amount of the permeate). This exploration of trade-
offs is seen in Figure 18, which shows how the interactive optimization
proceeded.
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Figure 18 Solution procedure of the Filtration case (figure from Publication III).

In Figure 18 the z’s refer to Pareto optimal objective function values presented
to the DM and P’s are the DM’s preference information which were passed to
IND-NIMBUS. For example, P! is read so that objective function 1 could be
impaired until 2000 while striving to improve objective 2 towards 2.3 and
objective 3 towards 9500. The way the DM altered the preferences of
improvement and impairment of objectives showed the learning process of the
DM while working towards the final solution z;/™. This is summarized in
Table 7.

Table 7 Evolution of DM's preference in the Filtration case.

Iteration Objective 1 Objective 2 Objective 3
p: allow to impair improve improve

P2 improve improve allow to impair
Ps allow to impair allow to impair improve

Secondly, it was shown that coupling of dynamic simulation with multiple
objective optimization could be used in detecting modelling errors and thus in
focusing the modeller’s attention to critical parts of the process. This was
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exemplified by the frequent washing of the filters in z,, which indicated that
the fouling model was in need of improvement. This in turn is an indication to
the process and automation designers of a critical part of the process, i.e. how
to handle or prevent filter fouling. Finally, some implementation-oriented
issues on connecting a dynamic process simulator and an interactive MOO
solver were detected. For example, the amount of pre- and post-processing code
needed to make such an approach feasible is quite large. In pre-processing of
the scheduling optimization, encoding of decision variables was seen to be a not
straightforward task. On the post-processing side, processing of the simulation
raw data into a form usable for the decision maker was seen to be in need of
supporting tools such as advanced scripting languages.

4.4 Bottleneck case

Finally, the Bottleneck case relates to the operation phase and retrofit planning
of a process industry plant. The challenge, which this case addressed, was
finding the right focus (chapter 3.1), or in other words identifying which part of
a process is its bottleneck from the production amount point of view. The
simulator utilized here was Apros, which was coupled with global sensitivity
analysis. To investigate how this coupling can be used as bottleneck
identification, three different process models were used. The two first models,
the so-called Simple Models in Publication IV, were test models to ascertain that
a combination of dynamic simulation and global sensitivity analysis could be
utilized as a method to detect process bottleneck. The models were formulated
in such a way that the bottleneck could be determined solely with engineering
expertise. These two models are shown schematically in Figure 19.

1 25 26 27 50
SourceOD D—D—D D@ Sink

20 sink
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Source O 3 . *b
N D
. ) )
O

Figure 19 The Simple Models of the Bottleneck case.

On the top is shown a simple pipeline which is discretized lengthwise into 50
segments. Segment number 26 is much smaller than the others and is evidently
the bottleneck with respect to mass flow through the pipe. On the bottom is a
slightly more complex pipeline with 10 equal segments. In this flow setup, it is
clear that the bottleneck is the middle part with segments 5 and 6. These Simple
Models were subjected to a Sobol’ global sensitivity analysis with the segment
dimensions as the inputs and the flowrates through the systems as outputs. In
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the analysis of the first model 52224 simulations were conducted and with the
second model 45056. All the simulations were executed on a dedicated
computational server with eight parallel Apros simulators.

Finally, in the Bottleneck case a third, more realistic model of a paper mill’s
short circulation was utilized. This is shown in Figure 20. In the process, a feed
stream is pumped from the machine chest (a tank with constant liquid level)
through consecutive cleaning equipment to the paper machine’s headbox. The
cleaning consists of two screens, called the pressure and machine screens as well
as a deculator tank. This tank is kept in low pressure which causes any air in the
feed stream to boil and thus be removed. At the headbox, the one-dimensional
pipe flow is spread on to the paper machine’s former section. Here water is
removed either with gravitation or with under-pressure suction and recirculated
into the wire pit. This wire pit water is used to dilute the feed stream also. After
the former section, the moist paper is subjected to mechanical pressing to
remove even more water from it. Once mechanical separation cannot remove
any more water, the paper is brought into contact with steam-heated metal
cylinders of the drying section to reach the final moisture content. Typically, the
flow into the head box contains 99.5% of water while the paper produced to the
reel contains approximately 7%. This means that a considerable amount of
water is being circulated in this area and investments in de-bottlenecking
should be carefully planned. Thus, it can be argued that correct identification of
the production bottleneck is of significance.

This model was also subjected to a global sensitivity analysis with the
production amount, in tons per hour, at the reel as the interesting output. The
analysis was on 25 input parameters describing the dimensioning of the short
circulation equipment and summarised in Table 8.

Table 8 Input parameters of the paper mill short circulation model of the Bottleneck case.

Nominal

i  Process part Parameter Min Max
value
P
1 ressure screen Nominal head, m 20 15 25
feed pump
Nominal
Pressure screen .
2 volumetric flow, 1.5 1.125 1.875
feed pump
m3/s
Headbox feed .
3 cadbox fee Nominal head, m 30 22.5 37.5
pump
Nominal
Headbox feed ' .
4 volumetric flow, 1.5 1.125 1.875
pump
m3/s
5  Furnish feed line Diameter, mm 250 187.5 312.5
Pressure screen .
6 ) Diameter, mm 1000 750 1250
feed line
Pressure screen .
7 Diameter, mm 1000 750 1250

accept line
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Machine screen

8 . Diameter, mm 1000 750 1250
feed line
9 Headbox feedline  Diameter, mm 1200 900 1500
Wire water .
10 Diameter, mm 1000 750 1250
channel
Deculator overflow .
1, Diameter, mm 500 375 625
line
Wire pit dilution .
12 ., Diameter, mm 500 375 625
line
13 Paper machine Width, mm 8000 6000 10000
14 Paper machine Speed, m/s 16 12 20
Chemical pul
15 Former eml.Cfi puip 0.85 0.6375 1.0
retention
Th hanical
16 Former ermome'c anical 85 06375 1.0
pulp retention
17 Former Filler retention 0.5 0.375 0.625
Dewatering
18 Former . 0.02 0.015 0.025
coefficient
19 Wet press Nip 1 load, kN/m 30 22.5 37.5
20 Wet press Nip 2load, kN/m 30 22.5 37.5
21  Wet press Nip 3load, kN/m 30 22.5 37.5
Pressure screen .
22 . . Diameter, mm 100 75 125
reject line
Machine screen .
23 . . Diameter, mm 100 75 125
reject line
24 MC outlet pump Nominal head, m 30 22.5 37.5
Nominal
25 MC outlet pump volumetric flow, 0.3 0.225 0.375
m3/s

A sample of 53248 input realizations was simulated with the model on eight
parallel instances of Apros simulator. With all three models, the input samples
were generated and the outputs analysed with Simlab software.

Contributing results

The result of this case was that a combination of dynamic process simulation
with global sensitivity analysis could be used as a method of detecting
bottlenecks of a process. The case utilized three models, which showed that
process parts/equipment forming the process bottleneck could be identified
with an appropriately formulated sensitivity analysis study. In the paper mill
short circulation model, the analysis raised three parameters above the rest: X,
X.,4 and X.s. Their locations in the process flow sheet are highlighted in Figure
20.
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Figure 20 Paper making process with bottlenecks highlighted in red.

Two of these parameters were related to one piece of equipment, the machine
chest outlet pump, giving a strong indication that this was where the bottleneck
was located. Since this pump feeds raw material to the system, it is easy to agree
that it is a bottleneck. This is also the situation with the third parameter, filler
retention on the paper machine former section. Filler is one of the major raw
material components of the end product and a parameter describing how well it
is retained in the paper coming up in the analysis is clearly understandable. The
effect of these parameters was finally validated with separate simulations. The
end result was that this type of study would typically fit well when planning
retrofits for a process industry plant under operation. A contribution to the
main result of the thesis comes clearly from drawing the engineer’s attention to
critical parts of the process.

4.5 Summary of results

As stated in chapter 3, the research questions were: “How can coupling of
process simulation and other mathematical methods be
1. used as a tool to focus the designer’s attention to the most critical parts
of the process even with limited knowledge?
2. used to provide insight into an operational plant’s personnel?”
To answer these questions four specific goals were set. Their relation to the
research questions as well as results are summarised in Table 9.
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Table 9 Summary of case results and how they contribute to the research questions.

Research Specific
question goal

Result

1and 2

1and 2

To develop and investigate
the functionality of a
model comparison method
as well as determine its
potential in early-phase
process and operational
optimization.

To combine global
sensitivity analysis with
process simulation and
investigate its usefulness
in preliminary process and
automation design.

To provide information on
the potential of combining
dynamic process
simulation and interactive
multiple objective
optimization in design of
operational practices.

To investigate the
combination of global
sensitivity analysis with
dynamic process
simulation as a method of
identifying process
bottlenecks.

The method was developed and
utilized in analysis of a paper
production process optimization
problem (the Paper production
case). The method was able to
provide guidance for the analyst in
the applicability of the process
optimization results. As the
optimization dealt with design and
operation of a paper production
process, the result pertains to both
research questions.
In the Tower control case,
combination of process simulation
with global sensitivity analysis was
able to highlight areas of the
process to which the analyst
should concentrate his/her efforts.
Thus, the results answers research
question 1.

The combination was realised and
tested in the Filtration case. The
results showed feasibility of the
combination and provided
insights to the decision maker on
the process’ operational
characteristics, thus pertaining to
question 2.

Applicability of global sensitivity
analysis  as a  bottleneck
identification method was shown
in the Bottleneck case. As the task
of debottlenecking is a design task,
the result answers question 1, but
also since this task is performed on
a running plant, it also can be seen
to contribute to question 2.

Combining the contributing results from the cases now gives support to the
main hypothesis of this work: extending dynamic simulation with other
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mathematical methods can bring extended added value to a process or control
designer.
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5. Discussion

5.1 Practical implications

This thesis aimed to bring added value by alleviating certain challenges of a
process/automation designer or an engineer dealing with a running process.
The results presented above in chapter 4 show that combining dynamic
simulation with other mathematical methods can be used in finding the right
focus, alleviating limited knowledge and help dealing with multiple conflicting
objectives. In doing so, the approach entails certain practical implications.

The first implication is related to the tools used since, obviously, the approach
requires the user to master the tools, at least to some extent. The user may not
have to be able to understand all the detailed mathematics of the tools but what
is important is to understand the limitations of the tools. For example, the
simulation models always are simplifications of the real world, the global
sensitivity analysis depends heavily on the choice of its input parameters and
their distributions and optimization results reflect the formulation of the
problem. In addition, such tools typically also have their own, specific quirks
and oddities, which may require quite a bit of detailed knowledge to overcome
when implementing such combinations as presented here. Making existing tools
more amenable to such co-use seems to be an active research topic, which is
promising. Software tools integration approaches such as FMI
(https://www.fmi-standard.org/) and Simantics (https://www.simantics.org/)
in the field of co-simulation, the work on simulation-based optimization (Yang
et al., 2014) and model-independent global sensitivity (Saltelli et al., 2008) are
examples. Related to the tools, is also the execution of the massive number of
simulations needed. This requires computing power and suitable ICT solutions
to be cost-effective. Execution on dedicated high-performance computational
clusters is one possibility. Second, perhaps an even more enticing option is the
utilization of cloud computing which provides flexibility on the needed
computing power. Furthermore, such technologies as Docker (Docker, 2018)
pave way to its use in the presented approach.

The second implication relates to the scope of the analysis. Defining a large
scope for the analysis may be able to include, in theory, all relevant aspects but
becomes easily practically impossible to handle as it leads to computationally
heavy situations. While computing power is nowadays readily and cheaply
available, this issues should not be forgotten. For example, when conducting
sensitivity analyses the computing power requirement may grow exponentially
as a function of the number of parameters. On the other hand, a too-narrow
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scope leads to results that are not useful or could have been obtained otherwise.
After the computations, all the results need interpretation and should be looked
into with a critical eye and evaluated for practical significance.

Thirdly, application of the approach may even require a larger revamp of the
design work practices. It may be that new roles, specializing in utilization of
such tools, will emerge in the design companies. It has even been suggested that
new organizations may emerge due to the new approaches and tools. For
example, in (Ritala, 2013) a new element called “optimization and modelling
organization” has been introduced to existing engineering organizations. Rise
of such new roles and organizations will probably be a gradual, even slow,
change since, as Moran has noted, the academic and practical chemical
engineering/plant design have drifted quite far apart and the current,
sophisticated methods developed in academia are not much used in practice
(Moran, 2015). Thus, it seems that there remains a considerable amount of
practically oriented work to be done here.

As briefly mentioned in chapter 1.3 the line between R&D and design is
sometimes quite blurred. This is the case of course in situations where a new
type of equipment or process concept is built the first time. It seems that the
approach presented here could be especially suitable in such cases rather than
in cases where the design work is mainly minor adjustments to tried-and-true
process concepts. Now, coming back to Figure 5, it could be argued that the
detail design phase may not benefit as much from the presented approach. This
is because this phase typically tends to involve routine design tasks since the
broad process concept is already fixed. This does not mean that the detailed
design phase could not benefit from other advanced methods though. For
example, optimization can be used to design the detailed routing of pipelines
within the constrained physical area of the site or dynamic simulation is used to
test the automation solution prior to commissioning.

In summary, to be useful this approach seems to require development of
certain expertise in the tools and in defining the scope. How this expertise is
obtained is not analysed in this thesis in detail but it seems that it is no different
from other types of expert knowledge/ability. Thus, it seems conceivable that
approaches to expertise development could be applicable and indeed needed
here.

5.2 Validity of the research

Validity of research typically refers to two things: internal and external validity.
The internal validity of research measures whether the used data, methods and
results justify the claims. External validity on the other hand deals with the
extent to which results can be generalized.

5.2.1 Internal validity

Validity of the research process
The object of this research is designing processes, their automation and
operations, which is a practical thing and as such the motivation for the research
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has been derived from the practice. This practical starting point has affected the
choice of how the research work was organised. As presented in chapter 1.2, the
research of this thesis follows the DSR approach. It was chosen as the
methodology since while it strives to uncover scientific knowledge, it also is
closely tied to solving practical problems and providing utility via research.
More specifically, the present work is based on the application of DSR on
information technology systems (March and Smith, 1995). This is well suited for
this thesis because of its quite practical aims and the computational approach
used. Thus, the choice of research methodology favours the internal validity of
the research.

Validity of the results

The main claim of this thesis is that coupling dynamic simulation with chosen
mathematical methods can act as a tool to focus process designer’s attention
and to provide insight into operational personnel of the plant and thus bring
added value (or in other words utility). To investigate this claim, data was
gathered from four case-based, computational studies. Justification of the case-
based approach was given in chapter 1.2 on methodology. The tools and
computer simulation models used will be analysed in the next chapter. From the
case results, support for the main hypothesis, as summarised in chapter 3.4, was
derived and argumentation for generalizability of the results will be given in a
later chapter. Putting these together finally gives support to the validity of the
results.

5.2.2 External validity

Validity of the chosen computational tools and models

Parker has argued that validity of computer simulations’ results deals mainly
with external validity — their being indicative of what is true of the target system
(Parker, 2008b). The obvious and best way of ensuring validity of the computer
simulations’ results is to compare them with measurements from a
corresponding real-life process. Since a direct comparison of simulation results
and measurement data is not always possible, Parker further analysed how the
strategies employed by experimentalists to build confidence in their results
could be employed in the domain of computer simulation. Here a distinction
was made between model evaluation and code evaluation. The former,
sometimes called model validation, is concerned with how well the model
describes the phenomenon under study. The latter, sometimes called model
verification, deals with quality of code implementation to solve the model
equations, regardless of whether they actually describe the phenomenon. In
order not to use the term validity in different meanings here, we shall utilize the
term model evaluation henceforth.

Approach to tool evaluation
Next, each tool and simulation model is evaluated in more detail. This is done
following the approach of Parker (2008b) who points out that a so-called
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Sherlock Holmes strategy may be employed. Basically, it says: “Show that
plausible sources of significant error can be ruled out”. It has the following
conditions of successful application:

1. Make a thorough and good-faith attempt to identify all plausible
sources of error and alternative explanations of the results.

2. Do not make the situation such that there is little clue how to answer the
questions raised previously.

3. Make a thorough and good-faith attempt to uncover any indications that
the simulation did go wrong in the ways identified above.

To argue the validity of the tools we next employ the Sherlock Holmes strategy
in code evaluation, i.e., tools used here and in model evaluation, i.e., the
simulation models used here.

Code evaluation

In code evaluation, the most obvious source of errors is programming mistakes
and it pertains to all of the used tools. This can cause instability of the programs,
spurious and/or non-physical simulation outputs, or otherwise clearly wrong
results. Regarding Apros, the utilized unit operations models and solvers are
well tested, some having over 30 years of development and successful
utilization. This is done with a set of 24 validation simulations that are run
before every new software version release. In addition, several other less-formal
test are conducted. Similarly, the other tools (Matlab, Simlab and IND-
NIMBUS) are results of a long period of development and have been quite
extensively utilized. Thus, we may argue that programming mistakes are
probably not problematic here. A more detailed source of code error is possible
numerical instability of the simulators’ time integrations scheme. This would
lead to non-physical (unstable) or oscillatory behaviour of model states and
outputs, error messages and even halting of simulations. In Apros, a variable-
step time integration scheme was applied to alleviate this error source, although
it did not eliminate the problem entirely. In fact, some simulations did halt. This
small set was removed from the data set. Similar problems may occur due to
erroneous spatial discretization of the model. In this case, no such problems
were encountered once the models had been iteratively built and tested. A final
common possible source of error for all of the tools is a hardware malfunction.
One detectable indication of this is the complete crashing of the simulator tool.
In fact, in simulations of Publication I, this error source occurred in the form of
a forced operating system update, which terminated all simulations. After this,
the simulations were restarted with saving of intermediate results enabled so
that the effect of possible future occurrences of this error source were removed.
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Model evaluation
Next, we turn to evaluating the simulation models utilized in the case studies.
This is done in Table 10 for all of the models presented in chapter 4.
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Discussion

Although it would be beneficial to give quantitative numerical evidence to
support the model evaluation, it has been noted that also qualitative analysis is
helpful (Parker, 2008a). Overall, the above analyses give support to the validity
of the selected tools and models.

Generalizability
External validity of research is defined as the extent to which the results of a
study can be generalized to other situations and to other people. We argue that
the main result obtained from the case studies can be, in fact extended beyond
the cases. Furthermore, we try to characterize such new cases.
The argumentation is that
1. The models and tools were appropriate for the task at hand (see previous
chapter) and the tools are in fact applicable elsewhere also.
2. The cases represent realistic and not uncommon process industry
situations.
3. The analyses were able to bring forth insights, which bring added value
to a designer.

Thus, it stands to reason that applying such approach to other cases
originating from the process industry while utilizing models with similar
foundations, can provide extended added value. While this is not a fully
inductive generalization of the results, it is in line with abductive reasoning (see
for example Paavola, 2006). Abductive reasoning, originally proposed by Peirce
in the early 1900s, is the third mode of scientific reasoning, in addition to
induction and deduction. Abductive reasoning seeks for the simplest, most
likely explanation (out of many possible ones) that accounts for the facts. It
suggests that something may be true, but does not guarantee the conclusion, i.e.
it closely resembles Occam’s Razor where the simplest explanation is likely to
be the correct one.

The abductive research process has been visualized by Kovacs and Spens as an
iterative loop, whereas inductive and deductive approaches are more linear. By
this is meant that deduction starts from the theory and moves then towards
empirical, while induction moves in the other direction. Abduction also has
empirical observations as its starting point, but not solely them because it
utilizes prior theoretical knowledge as a source inspiration and ideas. It
incorporates the idea of a “guiding principle”, which may be only an intuitive
thought or even a well-formulated hypothesis. It is used to focus the empirical
work on areas which are believed to bring new insights and ideas for theory
development (Anttila, 2000). The following figure, which is adapted from
(Kovécs and Spens, 2005), depicts this.
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Figure 21 Abductive research process (Kovacs and Spens, 2005)

To apply abductive reasoning here, we start with the prior that dynamic process
simulation and methods such as optimization have been utilized in the process
design field for a long time, as summarised in chapter 2. The real-life
observation of step 1 was, that while dynamic process simulation is widely used,
it “could be still put into better use”. By this we mean that it was observed that
many times extensive process models are constructed, simulated only a few
times and then forgotten. Firstly, this seemed to be, on one hand, in conflict or
at least not in line, with the lofty goals presented in the literature (see chapter
2). Secondly, this seemed like a terrible waste, in the sense that such models
have required considerable expert effort. Furthermore, during several years
such challenges as referred to in chapter 3 were starting to be seen. This led to
the idea, that combining dynamic process simulation with other mathematical
methods could be useful, especially over the life cycle of a process industry plant.
This idea was iteratively tested and refined (step 2) in the case studies presented
in chapter 3. Typically, case studies have been presented as linear processes
following the standard research process of a number of planned subsequent
phases. Dubois and Gadde point out that such approach is ill-suited for case
research (Dubois and Gadde, 2002), since the researcher typically goes “back
and forth” between different research activities and between empirical and
theoretical work. In other words, practical cases bring new viewpoints, which
then serve to re-orient the research and bring up new research questions. This
was the situation also in this study. Inside each case study, a “lower-level”
iterative approach was taken in definition of the simulation problem, the
utilized methods and conduction of the computations. Step 3 of Figure 21 is
this thesis, where we propose that combining process simulation with other
mathematical methods can be used to gain insights that help in overcoming
practical challenges. Finally, the thesis work also started step 4 in the form of
application of the combinations in cases not included in this thesis.

5.3 Limitations and future work

The presented work, like nearly all research, has its limitations and raises
further issues to be tackled.
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This thesis is case-based research and thus entails the limitations of all case
research. The main question naturally is the generalizability of the results. In
the previous chapter, I have attempted to alleviate concerns of this nature.
Naturally, the final judgement on generalizability would come from further use
of the approach, especially when used in real design work rather than academic
research. To identify new cases in which the presented approach could be
applied, we characterize the currently presented ones. Firstly, all the cases
pertained to the process industry and more specifically continuous processes (as
opposed to batch processes). This probably is not a rigid requirement and
application to e.g. discrete manufacturing processes seems feasible: only the
simulation models need to be changed. Thus, a natural avenue of future work
would be to apply the approach to other domains as well. Secondly, in the cases
there was present a lack of full input data, i.e. the models contained
uncertainties. The status of this characterization is somewhat difficult. On one
hand, if the problem at hand contains severe uncertainties, construction of the
models may be impossible which prohibits entirely the application of the
approach. On the other hand, if no uncertainties are present one may question
whether such analyses are needed at all. Thus, it seems that in a process industry
plant’s life cycle, especially early phases are appropriate for the presented
approaches. A third way to characterize potential cases of application is
complexity. The studied cases were quite complex in the sense that they
contained numerous parameters, inputs, state variables with several
interactions, non-linearities and dynamics. This characterization seems quite
rigid because if the processes were very simple, then many of the insights could
most likely be obtained without resorting to computational methods. In relation
to the second characterization, it should be noted that even with no
uncertainties present, the complexity of the process alone can warrant the use
of the approach. Thus, while being an interesting ingredient, uncertainties are
not a requirement. With the above characterizations, we hope to help in guiding
the future work.

The next avenue of future work is the up-take of the approaches presented
above. At the very core, the presented approach relies on coupling
computational tools, which presents a practical task of tools development.
Firstly, the ease of use for the analyst is a requirement to reduce the time to
perform the analyses. All of the cases presented in this thesis were implemented
as a mixture of commercial tools and self-made pieces of code. A more
systematic and user-friendly implementation would be beneficial in reducing
manual work. In a similar vein, the computational speed is an issue that should
be addressed. Naturally, new and more powerful hardware as well as readily
available cloud computing resources alleviate this issue, but developments on
the method or software side are probably also needed. Regarding the simulation
tools, also comprehensiveness of the model libraries may require future work.
It is desirable that the modelling tools chosen should already at the beginning
of the analysis contain all or most of the needed unit operation models as
otherwise time-consuming model development may prevent application of the
presented approaches. Still, as no simulator is an all-encompassing package, it
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is also desirable for them to be adaptable, i.e. to provide the analyst a possibility
to “tweak” them, both in fine-tuning of the models as well as in connecting the
simulator to other tools. Furthermore, the time consumed in constructing the
needed simulation models for each new case should be minimized. As it seems
that the presented methods are most applicable in cases where an entirely new
process is being designed, the rather straightforward idea of a large library of
(sub-)process models from previous projects might not be feasible. Still, even
the very early stages of the design nowadays produce plans, designs, etc., in a
digital format which could be used, to some extent, in automatic generation of
the simulation models. This would naturally entail appropriate transformations
from the design software (e.g. COMOS and SmartPlant) to the simulation tool.
Furthermore, advances in the field of automated process design (e.g. generative
design) may prove useful.

The uptake of such approach, as well as other similar PSE methods, may lead
to major changes in the way that design work is done, as was referred to in
chapter 5.1. This change is especially interesting since the presented approach,
while heavily computational in nature, does not exclude the role of the analyst’s
expertise. In fact, it seems that the need for domain-specific expertise can
become even more pronounced. This is because formulation of the problem at
hand, as well as interpretation of the results, needs a person with adequate
expertise. Thus, a future avenue for research would be to conduct studies on
how practical design engineers would apply the presented approaches, thus
putting more emphasis on the observation step of the action research cycle.

In this thesis, a selected set of mathematical methods were coupled with
dynamic process simulation. This leads to two issues. First, the methods
presented here are by no means complete, but rather an active research field.
Thus, new developments in areas like global sensitivity analysis should be
looked into. In addition, the natural question is whether other mathematical
method integrations would be beneficial and how? For example, currently it
seems that there is substantial hype around machine learning and big data
methods. These both seem very interesting and their coupling could be a way
forward.
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6. Conclusion

This thesis presented research into extending the use of dynamic process
simulation in order to gain added value, or in the terminology of DSR, utility to
a process or control designer. The starting points for the work were certain
challenges faced by a design engineer. First of the challenges was related to
finding the right focus with limited resources. Secondly, doing design with
limited knowledge. Finally, when planning the operation of the process, the
designer faces often-conflicting objectives that need to be balanced and he/she
needs to gain further insights into the process and its operation. The overriding
theme was that the computational approach of combining dynamic simulation
in the abovementioned other methods, help to alleviate these challenges.

In a bigger picture, the current trend of digitalization of the entire society,
including the process industry, is progressing fast. This both enables and calls
for this work. Clearly, the enabling aspect comes from the fact that this work
relies on simulation models and is computational in nature. A key development
here is abundant computing power. Traditionally, the power would be obtained
from a dedicated high-performance computing cluster, but the trends are
turning towards cloud computing. Azure, AWS and Google Cloud Platform are
well-known examples. On the simulation side, the emerging trend is digital
twins, digital representation of physical assets, which can incorporate
simulation models. Conversely, these developments call for these kinds of
approaches. In the current hype around digitalization, it seems that data is seen
as a value of its own, but one could argue that only once something clever is
done with, do we see added value. This thesis strives to help. It deals with one
slice of this issue, by showing how simulator-generated data can bring utility.

The work was in four case studies. In them, dynamic process simulations were
combined with a novel model comparison method, with global sensitivity
analysis and with multiple objective optimization. The work involved
construction of simulator models using various available tools, for example
Apros® and Matlab™. An extensive search for mathematical methods was
conducted. As mentioned previously, the ones presented here are only examples
of such and it seems that much more could be done here in the future. A massive
number of simulations were performed. The data generated in this way was then
analysed, using process engineering know-how, conclusions were drawn and
argumentation given to support the main result.

The cases were constructed in such a way that they pertain to a certain phase
of a process industry plant’s life cycle. This was done to highlight the approach’s
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wider applicability and generalizability. Two cases were targeted to the early
phases of the lifecycle. The first of them, Paper production, looked into gaining
insight and confidence in the results of an optimal process design by utilizing
more detailed dynamic models and the developed model comparison method.
Details are in Publication I. The second case, Tower controls, then combined
dynamic simulation with global sensitivity analysis, in order to focus the
attention of a control designer to critical parts of the process and its control
structure. The control structure was characterized with tens of parameters,
which were the subject of the sensitivity analysis. A small subset arose as critical.
Analysing the set of critical parameters focused attention towards certain
process areas. The two latter cases were related to the operation phase of the
plant. The Filtration case combined a dynamic process simulator and a multiple
objective optimizer. This was done in order to derive an optimal running
schedule. The process contained two filters, prone to fouling and a pumping
system driving the filters. Interactive optimization was applied. The manner in
which the optimization was conducted helped in gaining insight into the
process’ operation. Finally, the Bottleneck case combined dynamic process
simulation again with global sensitivity analysis. This time bottlenecks were
searched for. This separates the case from the Tower controls case as the control
structure was not analysed. All the cases were computational studies, typically
involving thousands of simulations and conducted with dedicated
computational servers. Quite much work was involved in the technical setup of
the simulations.

The main result, or claim, of this work was that added value or utility, beyond
the traditional simulation results, could be extracted from simulation models
when they are combined with other mathematical methods. This was supported
by the case studies. The Paper production case showed that the proposed model
comparison method works. This leads to the conclusion that it can be of help in
gaining confidence in optimization results from simplified models, focusing the
designer’s attention as well as providing insights into the operation of the plant.
In the Tower control case, the combination was able to highlight process areas
where the control designer’s attention should be focused. This was similar to the
Bottleneck case. The Filtration case showed the feasibility of the combination as
well as the ability of providing insight into the process operation. Combining
these contributing results then gives support to the main result of this thesis.

The design of processes and their automation faces ever-growing demand for
cost-effectiveness leading to challenges to the engineer over many phases of a
process industry plant’s life cycle. This thesis showed that extending dynamic
simulation, as presented, seems promising in alleviating these challenges and
thus adding value to the process or automation designers’ work. The work
presented is a starting point for new avenues of investigation and hopefully
practical implementations.
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The process industry in Europe covers
thousands of individual enterprises with
millions of employees. This industry has a
need for improved efficiency and
competitiveness, which affects not only the
company but also its subcontractors, for
example process and automation designers.
Their whose responsibilities often lie in the
early phases of the plant's life cycle, leading to
challenges such as limited available
information and multiple objetives to fill.
This work investigates how those challenges
could be alleviated by extended use of
dynamic process simulation via four case
studies. Dynamic process simulation is
extended by combining it with a novel model
comparison method for optimization, with
global sensitivity analysis and with multiple
objective optimization.

Synthesizing the case studies' results, the
thesis arrives to its main conclusion: Added
value for the designer can be extracted from
simulation models when they are combined
with other mathematical methods.
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