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1. Introduction

1.1 Background and motivation

The process industry in Europe represents over 450 000 individual enterprises 
with nearly seven million employees and a turnover of more than 1600 B€ (Tello 
and Weerdmeester, 2013). Still, it has been seen that the process industry has a 
clear need for improved efficiency and competitiveness, especially in Europe 
(Tello and Weerdmeester, 2013). This need affects all levels of a process 
industry company and its subcontractors, for example process and automation 
designers whose responsibilities often lie in the early phases of the plant’s life 
cycle, including the physical processes which typically are designed to be quite 
long-lived: their lifecycle can cover decades. The life cycle of a process industry 
plant is linked to other life cycles relevant to an enterprise, relationships of 
which are shown in Figure 1. 

 

 
Figure 1 Other life cycles and their relation to the process industry plant life cycle, adapted from 
(Schneider and Marquardt, 2002).

The longest of these is the enterprise life cycle which can have several products. 
A product life cycle actually begins before the life cycle of the plant that produces 
it. Before the plant’s life cycle there is the “new plant project” where the plant is 
designed and built. Moreover, inside a plant’s life cycle there may occur one or 
more plant revamps or retrofits. Finally, here it should be noted that a plant’s 
life cycle can include several products. This can lead to several revamp projects. 
 

Design of a new plant actually begins quite early with the determination of 
needs and setting of design specifications/objectives. This pre-investment 
decision phase consists mostly of market and business oriented activities in 
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which it is determined whether there are sufficient grounds to invest in a new 
facility. A capital investment project is a complex endeavour involving several 
stakeholders. One way of illustrating this is with a triangle with the three major 
parties depicted, see Figure 2. 

 
Figure 2 Main parties of a capital investment project.

On top is the plant owner/operator, which is the party investing in the new 
plant. Other corners of the triangle are the system provider(s) and engineering, 
procurement and construction (EPC) parties and their respective 
subcontractors. The system provider includes the process equipment provider, 
automation and instrumentation system providers, etc. The EPCs are, for 
example, responsible for plant layouts, cost calculations, purchasing, logistics, 
installation, coordination and commissioning. 

If a decision to invest is made, the actual plant lifecycle, encompassing the 
three top levels of Figure 1, begins with conceptual design as depicted in 
Figure 3. 
 

 
Figure 3 Phases of a process industry plant life cycle, adapted from the ISO-15926-1 standard 
(ISO, 2004).

The term life cycle here refers to the plant, even though the word “process” is 
sometimes used. This is also the situation on the original ISO-15926-1 standard. 
To clarify, a distinction should be made between process design and plant 
design. The prior deals with initial selection of the process to be used: 
flowsheets, equipment selection, specification, and chemical engineering design 
of equipment. The latter includes also detailed mechanical design of equipment, 
the structural, civil, and electrical design, as well as the specification and design 
of the supporting services, e.g. maintenance, firefighting, offices (Towler and 
Sinnott, 2013).  

In the conceptual design phase, possible solutions to the needs and 
specifications are generated, evaluated and selected (Towler and Sinnott, 2013). 
This is typically done by an engineering or consultancy company and can even 
be done with rules of thumb and the experience of designers. A few process 
options are generated and then evaluated before passing to the next stage, and 
it is noteworthy that up to 98% of conceptual designs will not be built (Moran, 
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2015). The following detailed design phase, done usually by a contracting 
company, involves mainly detailed selection and dimensioning of equipment, 
instrumentation, etc. This stage is also called “design for construction” because 
a conceptually designed plant is not what is actually built. The contractors in 
many cases need to refine the conceptual design or even redesign parts the plant 
because they are the ones who give guarantees to the client (Moran, 2015). In 
this phase, alterations to the flowsheet, i.e. selection and topology of processing 
units, of the process are seldom made (Towler and Sinnott, 2013), if possible. In 
some texts, there is a step between the conceptual and detailed design phases 
called “front-end engineering design” which refines the conceptual design, 
analyses different process conditions, replaces bespoke unit operations with 
commercial standard units (wherever possible), and calculates costs based on 
quotes from suppliers. Also, between detailed process design and 
commissioning lies the construction of the plant. It has been noted, that in real-
life, even having passed all previous stages, the plans may lack some details 
needed for construction or even contain errors. This requires redesign efforts 
and is referred to as site redesign (Moran, 2015). 

The ultimate goal of a plant is to produce products profitably, which means 
that the business unit is heavily involved in the life cycle, mainly in setting the 
objectives and making decisions. Research parties typically produce new 
information that the process engineering’s designers can utilize in their work. 
This work produces documents such as diagrams, which are used by the 
construction company to build the plant. This construction lies between the 
design and commissioning phases. In the commissioning phase the constructed 
plant is taken into use, which involves activities such as checking of the system 
configuration and instrumentation; cleaning and calibration of lines, vessels 
and instrumentation; dry, water and chemical tests and finally the handover to 
the plant owner (Killcross, 2012).  

Plant operation begins after the handover, which takes place at the end of the 
commissioning phase. The transition to operation also marks a change in the 
stakeholder structure presented in Figure 2. Naturally, in this phase, the role 
of the operator party becomes important, but the EPC and system providers do 
not entirely fade away. They strive typically to have contracts relating to 
maintenance and other plant operation services. In addition to normal, steady 
operation, this phase also involves dealing with transients, either planned or 
unplanned. Operation or controlling of the plant, or an enterprise to be more 
general, is done on many levels. For example, the IEC 62264-1 international 
standard, which is an extension of the ANSI/ISA 95 standard, defines a 
functional hierarchy of control. On the top level (4) resides enterprise resource 
planning (ERP). The purpose of this is to handle production scheduling across 
several plants, operational management, etc. Thus, level 4 deals with not only 
one plant but also enterprise-wide business logistics. Below the ERP, on level 3, 
is the manufacturing execution system (MES) level, which is responsible, for 
example, for detailed production scheduling and maintenance. Level 2 is the 
process control system (PCS) used to keep the process stable and under control. 
Below this are levels 1 (sensors and actuators) and 0, the physical process 
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equipment, e.g. pumps and valves (Panetto, 2007). This control hierarchy is 
illustrated in Figure 4. 

 
Figure 4 Control hierarchy.

Finally, during operation the plant will undergo maintenance and 
improvements or retrofits/revamps. Following the active operation phase of a 
process industry plant, decommissioning takes place and it is closed for an 
extended period of time, either due to a traumatic event or as planned. 

In addition to the economic motivation described at the beginning of this 
chapter, another current trend motivated this work, namely digitalization. At 
the time of writing this thesis, digitalization is a much-hyped term and there 
seems to be multiple interpretations of it. One aspect is concerned with so-called 
digital twins. Simply put, a digital twin is a digital representation of a physical 
asset: a process, product or service. In the scope of this thesis, a simulation 
model could be seen as digital twin, or part of such, of a process industry plant. 
This model is constructed during the design phases and continues to evolve 
during the operation by gathering data from the actual process and adapting.  

One way a digital twin is seen to bring value is via analytics of the gathered 
data. This ties it to the present thesis since the data can be used to help in 
construction of simulation models. The difference between this thesis and much 
of the digital twin hype is the modelling approach used. In this thesis, the 
simulation models are not purely based on data, but rather on first principles of 
physics because such models provide better extrapolation possibilities. This 
property of a first principles model is used extensively here to generate 
simulated data, which is then analysed with the extensions. This generation of 
simulated data ties the thesis to another aspect of digitalization: massive 
computation. Simulation in dedicated high-performance computational 
clusters has been an active field for a long time, but in recent years, flexible 
computational power has become easily accessible from cloud-based 
computing.  

These two digitalization aspects seem to be trends that pave the way to more 
comprehensive up-take of also the approaches presented in this thesis. And vice 
versa, the approaches presented here enable better utilization of such resources. 
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1.2 Method

1.2.1 Case-based approach 

This thesis consists of four computational case studies detailed in Publications 
I – IV, illustrating the potential of coupling dynamic process simulation with 
other mathematical methods. This number of cases is in line with suggestions 
by Voss et al., who  state that a single case is problematic due to limited 
generalizability, while too many cases may reduce the depth of study (Voss et 
al., 2002). Although it is not possible to give a generally acceptable optimal 
number of cases, for example, Eisenhardt points out that four to ten cases seems 
to work well (Eisenhardt, 1989). Furthermore, the cases used in this thesis 
represent typical situations in the design and operation domain of process 
industry: The first two cases deal with early phases of process and automation 
design, the third with process operation and the fourth with 
analysis/improvement of an existing process. All such activities are typical in 
the process and design industry. Thus, we argue that the cases provide wide 
enough coverage of the plant life cycle and are indeed relevant to the process 
industry domain. 

1.2.2 Design science research 

Design science research (DSR) develops knowledge and solution(s) to practical 
problems by building and evaluating design artefacts. In contrast to natural 
sciences where the goal is understanding of reality, the objective in design 
science is creating things that serve a purpose. In natural sciences, the results 
are evaluated on the basis of explanatory power and truth, whereas in design 
science evaluation is more concerned with utility (March and Smith, 1995). 
Thus, DSR is quite engineering-like (Hevner et al., 2004) and has been chosen 
as the methodological framework in this thesis. 

DSR provides a framework consisting of three major parts, the environment, 
research and the knowledge base (Hevner et al., 2004). The environment 
defines the problem to be solved (or “business need”) and contains people, 
organizations and technology, for example, the process design and plant 
operation engineers in their respective organizations. The problems that this 
environment defines are referred to in this thesis as challenges and are 
elaborated in chapter 3. In other words, the environment provides the next part, 
research, with relevance. The research part is further divided into the build and 
evaluate phases. In the build phase, concrete artefacts (e.g. software) are 
implemented and their utility to address the problem at hand is then evaluated. 
Typically, this design cycle is iterative. In this thesis, the artefacts are the pieces 
of software implemented in the cases and their utilization process in order to 
solve the identified challenges. Their evaluation was done by expert judgement 
of each case’s results (i.e. descriptive evaluation). Finally, the third part of the 
framework is the knowledge base providing foundations and methodologies. 
Foundations are the prior body of knowledge, e.g. theories, models and 
instantiations that are used in the build-evaluate phase and methodologies are 
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guidelines for evaluation. The knowledge basis is said to provide rigor to the 
research part.  In the scope of this thesis, the foundation consists of physics, 
mathematics, simulation models and computer simulators, especially when 
applied to chemical processes; a field also known as process systems 
engineering (PSE). This thesis provides additions to the knowledge base via the 
results obtained on the potential of extending dynamic process simulation.  

March and Smith (1995) have focused on DSR of information systems and 
delved deeper into the artefacts’ classification. They distinguish constructs, 
models, methods and instantiations, which in the scope of this thesis are 
summarised in Table 1. As this thesis deals with computer simulations, it seems 
natural to base the work in DSR for information systems. 

 
Table 1 Artefacts of DSR in information systems.

Artefacts of DSR in information 
systems 

In this thesis 

Constructs, i.e. language to describe 
problem and solution 

Mathematics, physics, chemistry, 
control 
 

Models, i.e. representation of real 
world situation 

Mathematical model 
 

Methods, i.e. processes how to solve the 
problem 

Extended dynamic computer 
simulation, expert judgement of 
results’ utility 
 

Instantiations, i.e. implementations 
demonstrating feasibility 

The pieces of software produced. 
This means the combination of 
simulation tools, other 
mathematical software and the 
pieces of code connecting them. 

 
Finally, Hevner et al. (2004) note that DSR must be distinguished from 
ordinary, routine design. The key is that DSR addresses unsolved problems in a 
unique / innovative way. We argue in chapter 3 that the challenges identified 
remain largely unsolved. Further, the proposed approach to solving them can 
be argued to be innovative since such extensions of dynamic process simulation 
were not found in the relevant literature. 

1.3 Contribution of the thesis

In DSR the contribution arises from utility (Hevner et al., 2004). In accordance 
with this, the main contribution of this thesis is in demonstrating how extending 
dynamic process simulation with other mathematical methods can bring 
extended added value or utility to a process or automation designer. 

More specifically, the contributions from the four Publications come from: 
demonstration of how coupling dynamic process simulation with 
certain other mathematical methods can provide added value in the 
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form of insight to the process designer and plant operating personnel 
and thus alleviate some practical challenges 

 development of a novel comparison method for hybrid stochastic-
deterministic models in order to gain confidence that process 
optimization results obtained in early design phases with simplistic 
models are relevant also to real-life. The added value comes from the 
ability to trust and thus use optimization results. 

 demonstration of how global sensitivity analysis can be used as 
bottleneck identification method. This adds value via being able to 
remove the bottleneck. 

This thesis consists of an introduction and four publications. These 
publications and the author’s contribution in them were summarised above in 
chapter Author’s Contribution. There is a considerable body of work on this area 
in the literature, which is reviewed in chapter 2 and we do not claim that the 
approaches presented here are a once-and-for-all solution. Rather, this thesis 
proposes some additional tools to the designer’s toolbox and aims to show their 
potential. 

1.4 Scope of the thesis 

This thesis deals with computational tools for process design and operation over 
its life cycle. The term process refers here to a chemical plant or more generally 
a process consisting of continuous fluid flows, and unit operations such as 
mixings, separations and reactions. Thus, processes such as manufacturing of 
discrete units, e.g. cars, are not studied here. Of the life cycle, the conceptual 
and early parts of detailed process design as well as plant operation phases are 
covered in this thesis (see Figure 5) while commissioning and 
decommissioning phases of the plant are not considered. The figure also 
positions the Publications in relation to the life cycle. 
 

 
Figure 5 Relation of Publications to process industry plant life cycle. 

It should be noted that nowadays it seems that the line between research and 
development (R&D) and design seems to be getting blurred. It is not always 
clear that the path from an idea through lab scale to industrial use follows a 
linear path of gradual upscaling. In this kind of development, the methods 
presented in this thesis may bring benefits, although the Publications do not 
explicitly address such pre-design phases.  
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1.5 Structure of the thesis

The structure of this thesis is as follows. Chapter 1 is an introductory section 
describing the practical starting points of the work as well as the methodological 
underpinnings. Chapter 2 reviews the related scientific literature, while chapter 
3 leads the reader to the research questions via challenges faced by a process or 
automation designer. Chapter 4 then presents the main results of the thesis and 
how they stem from the case studies constituting the empirical work. Finally, in 
chapter 5 a discussion is provided and chapter 6 concludes the thesis. 
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2. Related research

2.1 Design phase

2.1.1 Traditional design approach 

Design problems have been studied in the chemical engineering field for a long 
time (Nishida et al., 1976; Westerberg, 2004). Westerberg (2004) defined 
designing a process as an evolutionary approach where previous solutions are 
improved upon relying on guesswork, computations and experiments. The 
traditional chemical engineering approach, since the early 1900s revolved 
around the concept of unit operations and connecting them into processes 
(Sargent, 1991). Part of this discipline has in the decades since the 1960s 
diverged to Process Systems Engineering (PSE) (Grossmann and Westerberg, 
2000; Westerberg, 2004). PSE has been defined as being “concerned with the 
improvement of decision-making process for the creation and operation of the 
chemical supply chain”. This goal of improvement has been addressed with 
development of systematic methods and tools, which tie PSE to the fields of 
mathematics, operations research and computer science (Grossmann and 
Westerberg, 2000). Furthermore, PSE strives to rethink the design process 
itself by, for example, bringing operational aspects into the design decision-
making or by utilizing design models in the operation of the plant (Westerberg 
2004). 

Prior to any process design activity as such is initiated, investigation and 
economic analyses relating to such investments are made in a company (Biegler 
et al., 1997). After a decision to invest in a process industry plant, the actual 
design starts. Traditionally, the design of process industry plants has been a 
sequential procedure (Yuan et al., 2012). For example, Vega et al. (2014) 
illustrate this as a four-step procedure depicted in Figure 6. 
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Figure 6 Traditional sequential design process (Vega et al., 2014).

This approach contains several subfields. Those closely touching this thesis are 
summarized in the following subchapters. 

Flowsheet synthesis 
The first step is also referred to as process flowsheet synthesis (Biegler et al., 
1997), the goal of which is to discover the best combination of unit operations 
and their connections to accomplish a given production task (Siirola et al., 1971; 
Westerberg, 2004). This typically results in a process design in the form of 
process flow diagrams (PFD). A problem specification is made after which 
process concept(s) are generated. For example, a choice is made whether a well-
proven, conventional process structure is used or whether an entirely new one 
is developed. After this, alternative designs are investigated, e.g. by searching 
for existing similar processes. The alternative designs are next analysed in order 
to see how they perform in the fulfilling of the goals set forth earlier. This 
analysis and evaluation typically involves balance and economic calculations 
and thus overlaps with the second step, where in addition to determination of 
design parameters, also the operating conditions of the process are determined. 
Sometimes controllability issues are already taken to be included in process 
synthesis (Biegler et al., 1997), but in Figure 6 this has been divided as the third 
step where dynamics of the process are taken into account. It involves synthesis 
of control strategies to minimize product variability and to keep other key 
variables within acceptable ranges (Ricardez-Sandoval et al., 2009). 

Flexibility analysis and control system design 
Flexibility of a design refers to the plant being capable of operation in other 
steady states than the one used in its design (Biegler et al., 1997). The design 
variables include the fixed process structure and equipment dimensions, 
whereas control variables are those that are continually changing, e.g. flows. 
Constraints of feasible operation can be physical constraints or (product 
specifications) and examples of uncertain parameters are the raw material inlet 
concentrations. Thus, a more rigorous statement of flexibility is: given a design 
d, can the control variables z be adjusted in such a way that the constraints 
representing feasible operation are satisfied when faced with a change in 
uncertain process parameters (Halemane and Grossmann, 1983; Biegler et al., 
1997)? On the other hand, flexibility analysis may strive to answer, not only 
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whether the design is flexible or not, but how much flexibility the design actually 
has (Swaney and Grossmann, 1985).  

Moving from one steady state to another involves a transient, which is 
typically handled by an automatic control system. In a historical perspective 
Bennet (1996) traces development in automatic control back over two millennia, 
with early developments in controlling temperatures, pressures, liquid levels 
and rotation speeds (e.g. the Watt steam engine governor). Coming to modern 
times, in the so-called Pre-Classical Period (1900–1935) application of single-
loop feedback control expanded while theoretical understanding and design 
methods lagged behind, although the first steps in understanding negative 
feedback were taken. The Classical Period (roughly 1935–1950) saw the advent 
of gain and phase margins, Nyquist stability criterion, Nichols chart, the Ziegler-
Nichols tuning rules for PI and PID-controllers, block diagrams with use of 
Laplace transformations, root locus and control performance criteria. 
Coinciding with this period was the Second World War, which drove 
technological developments like radar. The era from 1955 onwards is called 
Modern Control in Bennet’s classification. Major drivers during this period were 
the space race and the emergence of computers. Developments included the 
state-space approach, Bellman concept of optimality and dynamic optimization, 
Pontryagin maximum principle, optimal control, Kalman filter, systems 
engineering, and model predictive control. In general, control systems have 
been utilized in nearly all engineering areas but in this thesis, we shall focus on 
process control. The control systems in process control strive to keep essential 
quality variables at specified values, to minimize energy and raw material use 
while also providing the capability to make fast production or grade changes. 
The key concept here is the control loop in which a variable of the process is 
measured (“controlled variable, CV”) and based on this feedback another 
variable (“manipulated variable, MV”) is continually adjusted. A small process 
may have 20–100 of such loops, whereas large plants have thousands. This 
single loop control is still applied widely, especially on the lowest level of 
control, i.e. in the stabilizing controls of variables such as pressure and flows. 
Single loop control has as one major drawback: its poor ability account for 
interactions of many variables which has led to the development of 
multivariable control, see e.g., (Skogestad and Postlethwaite, 2005). 

2.1.2 Integrated process and control design 

Integration of process and control design strives to integrate systematic analysis 
of process dynamics into the design procedure (Vega et al., 2014) and has been 
a long-discussed subject going back to the 1940s (Ziegler, J., Nichols, 1943; Vega 
et al., 2014). The main driver in integration of process and control design is that 
the traditional sequential approach may lead several design iterations or poor 
plant operability, i.e. an optimally designed process may not function properly 
when faced with disturbances and uncertainties of the design model (Yuan et 
al., 2012).  

In order to systematize integrated process and control design, frameworks 
have been studied and classified into two categories (Ricardez-Sandoval et al., 
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2009; Yuan et al., 2012). Firstly, there are the indicator-based frameworks that 
typically are used for screening of design alternatives. They utilize some sort of 
controllability index to characterize closed-loop performance of the system. The 
optimization approach in these frameworks has typically been cost 
minimization and they have been based on steady-state models (Ricardez-
Sandoval et al., 2009). Examples of the used controllability indices are the 
relative gain array, condition number, disturbance condition number and 
integral error. Typically such problems result in mixed-integer non-linear 
programming (MINLP) optimizations (Hamid et al., 2010).  

Secondly, there are the dynamic optimization-based frameworks for 
integrating process and control system design. The optimization in these relies 
on techniques of mixed-integer dynamic optimization (MIDO) and dynamic, 
non-linear models (Hamid et al., 2010). The effect of external disturbances and 
model uncertainties seems to have been a major concern in this field as several 
approaches have been suggested. Ricardez-Sandoval and co-authors (2009) list 
approaches such as dynamic worst-case-based design (Perkins and Walsh, 
1996), matrix norms (Mohideen et al., 1997), parametric programming (Sakizlis 
et al., 2004), and the concept of back-off  (Bahri et al., 1997). All dynamic 
optimization-based approaches suffer from high computational load. To 
alleviate this, the so-called robust approach has been researched over the last 
ten years. In these, the non-linear dynamic problem is replaced, at least partly, 
with an approximate linear problem which includes model uncertainty, see for 
example Chawankul et al. (2005).  

Even though a considerable amount of research has been devoted to 
integrated process and control design  there is still a lack of a generally accepted 
methodology (Pistikopoulos and Diangelakis, 2015). The PAROC framework 
they suggest, relying on tools such as gPROMS and Matlab, strives towards this 
goal. The workflow in this framework consists of construction of a high fidelity, 
dynamic simulation model, and its reduction to an approximate model, which 
is used in multi-parametric programming and validation of the optimization 
results with the original high-fidelity model. This approach closely resembles 
that which Ritala and co-authors (2013) reported as well. Hamid and co-authors 
(Hamid et al., 2010) have proposed the so-called reverse approach. In this 
approach, the vast design space is sequentially reduced to a small one from 
which the final solution is searched. The bounding of the search space is first 
done using thermodynamic and process insights. This is followed with further 
bounding based on process and controller design constraints. Once the final 
solution has been found, it is verified using rigorous simulation. 

2.1.3 Other considerations 

In the preceding chapters, we discussed general design of the process and its 
controls system, as they are the central areas to which the present work pertains. 
These fields have numerous sub-fields and considerations that we only briefly 
mention here, for the sake of completeness.  

Heat exchanger network synthesis (HENS) was first proposed in the 
1940’s (Broeck, 1944) and it has been described as the “most commonly studied 
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problem in process synthesis” (Furman and Sahinidis, 2002). The goal of heat 
exchanger network synthesis is to design a system that can optimally reuse 
released heat at appropriate places where it is needed making it an optimization 
problem, typically a mixed integer non-linear programming (MINLP) one. 
While the early works concentrated on synthesizing an entirely new network, 
retrofitting was taken into account by Linnhoff and Vredeveld (1984). Further 
reviews of this field can be found in Gundersen and Naess (1988), Furman and 
Sahinidis (2002) and Klemeš and Kravanja (2013). 

Process safety focuses on prevention and mitigation of process accidents 
(fires, explosions and toxic releases), whereas the related field of occupational 
safety deals more with workplace hazards like trips, slips and falls. Methods and 
models utilized have been categorized as qualitative, semi-quantitative, 
quantitative and hybrid (Khan et al., 2015). Perhaps the most widely known 
qualitative hazard identification methods is HAZOP (Hazard and Operability 
Analysis) which was first applied in the 1960 and published in 1974 (Lawley, 
1974). Since its publication it has been extended in numerous ways to include 
batch and electronic processes as well as human, management and 
organizational factors and also other methods like Failure Mode and Effects 
Analysis (FMEA) (see Khan et al., 2015). Another popular qualitative method is 
the standard risk matrix method (Garvey and Lansdowne, 1998) where the 
identified risks are placed in a two-dimensional array with impact and 
probability as the axes. In some applications, the risk matrix can be considered 
as a (semi-) quantitative method if numerical probabilities or impacts are used. 
Finally, the Swiss Cheese Model, originally proposed by Reason (1990), has 
gained both popularity and criticism since its publication and has also evolved 
since. A review of the evolution of and critique of the SCM model has been 
presented, e.g. in Reason et al. (2006). 

Biegler and co-authors (1997) summarise the economic considerations of 
process design dealing with costs and revenues of the process. Costs are divided 
into fixed and variable costs, where the former include investments and 
overheads related to them, which are incurred at early stages of the process 
building project. Of main interest in process design are the capital investments, 
which can further be divided into fixed (buildings, equipment, land) and 
working capital (funds needed to operate the process until payments from the 
customers arrive). Variable costs, on the other hand, are incurred during the 
operation of the process continually, including raw material costs, credit, direct 
expenses (e.g. labour, utilities, maintenance, and supplies) and indirect 
expenses (e.g. depreciation, taxes, insurance). The profitability of a process can 
be estimated in several ways. Simple measures such as return on investment 
(ROI) and payback time can be used to give rough estimates, but their 
usefulness in comparison of alternative projects has been long acknowledged. 
The main drawback is that they do not account for time passing, i.e. schedule of 
payments and income, interest and inflation. To account for time passing, 
methods like net present value (NPV) of profit or costs, annualized payments, 
breakeven time and rate of return are used. 
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Typically, environmental aspects have been considered when evaluating 
alternative process candidate designs (Towler and Sinnott, 2013) in order to 
satisfy regulations regarding emissions and other damaging agents into the air, 
waterways and solid landfills (Biegler et al., 1997). Environmental and 
sustainability issues started to come gradually into the fore during the second 
half of the 20th century (Jacquemin et al., 2012). According to Young et al. (1997) 
the development began with a “reactive period” before the 1970s where 
environmental awareness was limited, few regulations existed and in general 
waste was not seen as an issue. The 1970s and 80s have been described as the 
“compliant period” where limited environmental awareness arose along with 
legislative controls on emissions and waste. In the following decade, all sectors 
and organizational levels became aware of environmental issues and the 
legislative situation became more stringent, while advances in process design 
methods, e.g. utilization of multiple objective optimization promoted 
sustainable process design (Bakshi, 2014). Also, environmental standards, 
audits and approaches such as life cycle assessment (LCA) came about. This 
decade has been dubbed as the “proactive period” while the 2000s is called the 
“progressive period” (Jacquemin et al., 2012), characterized with the 
generalization of LCA and its standardization into ISO 14040-14044, 
environmental process design tools  (Carvalho et al., 2013), overarching 
environmental concepts (e.g. Design for Environment, Eco-efficient 
manufacturing, Industrial ecology) and evermore environmental policies 
(Jacquemin et al., 2012). In fact, design of environmentally benign processes 
was seen as one of the major challenges for process systems engineering of this 
period (Grossmann, 2004). All in all, the focus has shifted from early emission 
reduction activities of single plants to process (and product) life cycle thinking 
(Bakshi, 2014).  

2.2 Process operation phase

2.2.1 Steady and dynamic operation 

After the handover or commissioning the plant, operation begins (see Figure 
3). Traditionally, steady operation of a chemical plant was seen to be the best 
way to go and this was reflected in its design, but it has been noted that in real-
life plants do not operate in a steady state (Moran, 2015). Moreover, there has 
been a shift to operating plants, not in an isolated, steady manner, but as an 
integral part of the company and its dynamic environment, e.g. intermittent 
renewable power (Savolainen et al., 2016; Weiss et al., 2016). This means that 
plants cannot anymore be operated in a single operational point, but must also 
be able achieve good performance in exceptional operational points (Klatt and 
Marquardt, 2009). This needs to be reflected in the design phase of the plant as 
was mentioned when discussing flexibility and control system design. 
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2.2.2 Retrofits 

In retrofits, part of the process is redesigned and built. One definition of a 
retrofit is of making minor changes to the process flowsheet and/or equipment 
sizes in order to significantly reduce operating costs, increase capacity, process 
new feed stocks and/or incorporate new technology (Fisher et al., 1987). The 
need for retrofits typically comes from the product market, for example in a case 
of limited demand, the retrofit goal could be to produce at the lowest cost 
(Simon et al., 2008). Other motivations for retrofits are typically higher product 
quality, improved safety, better energy efficiency, sustainability or waste 
reduction (Ben-guang et al., 2000; Simon et al., 2008; Lutze et al., 2010; 
Carvalho et al., 2013). The importance of retrofits is highlighted by Gundersen 
(1990) who has estimated that approximately 70% of process industry projects 
have been retrofits. Also, it has been noted that retrofit designs can be 
considered even more complicated than designs of new plants (Westerberg, 
2004), since when evaluating retrofit alternatives, designing a new plant is 
always an option and it is desirable to re-use existing equipment as much as 
possible (Grossmann et al., 1987), which makes the design problem slightly 
different from a green field design. In designing new processes, equipment are 
dimensioned as a function of design variables like flow rates, whereas in 
retrofitting many equipment dimensions are, to a large extent, fixed already 
(Fisher et al., 1987). To address retrofitting, systematic procedures have been 
suggested in the literature.  

Fisher and co-authors (1987) approached the issue with a “top-down, least 
commitment” strategy in which the idea is to terminate the retrofit study as 
early as possible, if there is not sufficient economic justification. This thinking 
is reflected also in the notion that retrofitting is a high-risk, high potential gain 
activity (Ben-guang et al., 2000). In Fisher’s approach, the analysis begins from 
the raw material and energy costs of the current flowsheet in order to determine 
the cost and material loss reduction possibilities related to them; e.g. if raw 
material savings are small compared to energy savings, then an energy focus is 
rational. In the second step, the option of building an entirely new process is 
quickly analysed, to provide a benchmark for retrofit options and process 
alternatives to consider. The alternatives are roughly screened to estimate order 
of magnitude of savings. Finally, the procedure involves equipment re-sizing in 
the existing or new process flowsheet as well as refining the calculations. Fisher 
et al. finally note that retrofitting can have an adverse effect on process 
controllability, e.g. by removing a manipulated variable, and on the process’s 
ability to handle disturbances. Thus, retrofitting also can benefit from 
integrated process and control design. 

Simon and co-authors propose an indicator- and heuristics-based approach 
for batch processes. By indicators they mean numerical variables characterising 
the entire plant, a sub-process or a unit operation. Examples of these are 
equipment occupancy time, storage volume utilization, minimum driving force 
(e.g. temperature difference) or time rate of change of concentration. By 
heuristics they mean empirical process knowledge, which is used to link the 
indicators to retrofit actions. For example, “increase the driving force”. Finally, 
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they note the usefulness of models in estimation of retrofit potentials in the 
process (Simon et al., 2008). This work is a continuation and adaptation of work 
by Uerdingen et al. (2003) where the focus was on continuous process retrofits. 
It relies on steady-state mass and energy balances as well as economic data such 
as raw material, utilities, waste and product prices. This approach is based on 
indicators, which in the original paper related to maximizing economic 
efficiency. Examples of such indicators are the material-value added (MVA), 
energy and waste cost (EWC), reaction equality (RQ), accumulation factor (AF) 
and total-value added (TVA). Identification of retrofit options is done by 
categorizing the component path flows and then applying generic retrofit 
actions. Such generic retrofit actions are reported in the paper but need to be 
adapted to each case. After identification of options, they are (qualitatively) 
evaluated, with a process designer’s knowhow and finally cost impacts are 
calculated. The authors note that the presented framework is for screening of 
alternatives and due to simplifications made should be used as an order-of-
magnitude estimate. A continuation of this work to extend the methodology to 
include safety and sustainability issues is presented in (Carvalho et al., 2008). 
The safety aspect is taken into account via the inherent safety index (ISI) of 
Heikkilä (1999), whereas sustainability issues come in through the works of 
Azapagic et al. (2002) and Cabezas et al. (1999). In Carvalho’s study, sensitivity 
analysis of the indicators is used to set targets for retrofit design. In addition, 
sensitivity analysis is applied to identify which design variables (sizes, etc.) or 
operational variables (heat duties, etc.) have the largest effect on the targets. 
With this information, design alternatives are generated and finally evaluated 
with simulations. The authors talk about sensitivity analysis but it seems that 
what they mean by sensitivity analysis is not the same as in chapter 2.3.2 of this 
thesis. Rather, it seems that their sensitivity analysis consists of going through 
the calculated indicator values and selecting those that show the highest 
potential for improvements. These are then used to indicate the location of 
critical points of the process with respect to design or operational deficiencies. 

Productivity increase retrofit is closely related to the concept of a bottleneck. 
In fact, it has been noted that retrofitting, aims solely to remove bottlenecks 
(Ben-guang et al., 2000). For batch plants Koulouris et al. (2000) have 
presented a simulation-based method for identifying bottlenecks. They defined 
a throughput bottleneck to be an equipment or resource that limits the amount 
of production and a scheduling bottleneck to be a unit or resource that limits 
the number of batches that can be produced per time period. In batch processes, 
the situation is complicated as attempts to increase production may result in 
scheduling conflicts for some units and such scheduling problems have been 
typically formulated as optimization problems. They emphasise the point that 
significant simplifications were necessary and that their simulation-based 
approach avoids this. Earlier, also Voudouris (1996) studied scheduling of a fine 
chemical plant using linear, discrete models. He raised three ways of utilizing 
such models in debottlenecking analysis: 1) simulating an existing production 
schedule and analysing its effects; 2) performing statistical analysis of 
manufacturing resource availability. Here the schedule is not fixed but rather 
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generated statistically and Monte Carlo analysis is performed; 3) decision 
support tool. Of these, number 2) slightly resembles the work by Savolainen and 
Lappalainen (2015) in the choice methodological approach (Monte Carlo-type 
computations). The main difference is that in (Voudouris, 1996) the statistical 
approach was applied to a production schedule of batch units, whereas in 
(Savolainen and Lappalainen, 2015) the starting point was the equipment 
dimensions of a continuous plant. Furthermore, Voudouris did not pursue this 
approach further nor were there numerical results presented. Harsh, Saderne 
and Biegler approached the debottlenecking problem using MINLP 
optimization. They identify a bottleneck using violation of equipment 
performance inequality constraints as an indicator (Harsh et al., 1989). 

Relating closely to the work presented in this thesis, Lucay et al. (2012) 
conducted sensitivity analysis of a mineral separation circuit. Their analysis 
used explicit expressions for output partial derivatives with respect to process 
parameters. This approach assumes that the analyst has access to the model 
equations, which may not be the case when using commercial simulators. In 
addition, the author relied heavily on graphical representations of the 
sensitivities and utilized the one-at-a-time approach. The sensitivity analyses 
works presented in this thesis do not make such assumptions. Continuing that 
work, Sepúlveda and co-authors (2014) have presented a study in which global 
sensitivity analysis was used to analyse mineral concentration circuits. In other 
words, the one-at-a-time limitation of Lucay et al. (2012) was overcome. The 
study, albeit of a more limited scope (smaller number of parameters and 
outputs; analysis only on Sobol’ total sensitivity index), corroborates the main 
results of this thesis. In their work, they conclude that global sensitivity analysis 
can be of use in planning of retrofitting of mineral processing plants. 
Unfortunately, these papers do not present any argumentation on 
generalizability to other types of processes. 

2.2.3 Other considerations 

Similarly, to the design phase, in the operation phase process and automation 
engineers face other considerations than the ones mentioned above. Since they 
are not within the scope of this work, they are shortly mentioned here.  

One major consideration during operation is maintenance of equipment or 
the entire plant (ISO, 2004), which aims at keeping the equipment, and more 
generally the whole plant, in operating condition. Maintenance has been divided 
into two categories: preventive maintenance and corrective maintenance, where 
the former aims to prevent equipment failures, whereas the latter deals with 
repairing failed equipment. This field has been and is an active research area 
but as this thesis is not concerned with maintenance, further discussion is 
omitted. 

After operation of a plant has ceased, it will be run to a shutdown condition 
for a transition period. During this period, plans for the ultimate 
decommissioning can be made and needed data gathered. The 
decommissioning includes steps such as dismantling of process equipment and 
building, reusing the site, handling of chemicals left behind at the site in soil or 
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groundwater (Hurme and Rahman, 2005). Decommissioning can actually be 
divided into several categories. A short shut down is referred to as idling, where 
systems are kept running in order to facilitate quick start-up. Mothballing refers 
to a long-term closure of a plant where systems are shut down for an undefined 
period. Starting up from a mothballed state may be non-trivial. Finally, 
scrapping refers to the complete dismantling of the plant (Briggs et al., 1997). 
As decommissioning is not in the focus of this thesis, we do not delve further 
into the literature on it.  

2.3 Relevant mathematical methods

2.3.1 Modelling and simulation 

Computer simulations 
Computer simulation has its origins in the Manhattan Project in World War II 
and has developed in conjunction with the development of computers 
(Winsberg, 2015). While Winsberg (2015) notes that actually there is no single 
definition of computer simulation, a narrow definition by Humphreys is: “any 
computer-implemented method for exploring the properties of mathematical 
models where analytic methods are not available” (Humphreys, 1991). This 
definition is narrow in the sense that computer simulation is not only used when 
there are analytically unsolvable equations present (Winsberg, 2015). 
Furthermore, this definition relies on what is currently possible to solve 
analytically and fails to account for possible future advances in analytical 
techniques. More broadly speaking, Winsberg defines computer simulation as 
the process of studying systems, with steps of choosing a model, implementing 
it on a computer, calculating the outputs of the algorithm and visualizing the 
results (Winsberg, 2015). On a high level, the purposes of simulation can be 
divided into three categories (Winsberg, 2015). Firstly, computer simulation 
can be used as a heuristic tool in communication with other people and also with 
oneself. In science, such use can be applied to help arrive at new scientific 
hypotheses for further investigation (Parker, 2008a). On a more applied side, a 
clear application of this category is for operator-training simulators. Secondly, 
there is the prediction category. Prediction of the value of a certain variable at a 
given future time instant is referred to as point prediction, while in so-called 
range prediction no single point-type value is given. This kind of prediction may 
take a probabilistic form, e.g. the temperature will increase by 2–5 degrees in 
one hour with a probability of 0.66. Thirdly, qualitative predictions are possible. 
With these no point or ranges for variables are produced, but question such as 
“Is the system stable?” can be answered. The third category for use of computer 
simulations is in understanding of data. In other words, if one has experimental 
data, simulation can be used to understand how that data may have come about. 
Questions such as “How did things actually occur?” or “How could things have 
gone” fall under this category. Parker (2008a) also notes that computer 
simulation can be used as an evidential resource, i.e. to provide evidence for 
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hypotheses about real-world target systems. In this aspect, computer simulation 
can be seen as another way of experimental science. 

Modelling and simulations are the basic tools of design but also other process 
industry plant life cycle phases can benefit. Simulation models can act as a 
shared repository of and knowledge from R&D, design and operation. In fact, 
simulation can be placed as a unifying method between research and 
development, design and operation according to Figure 7 (Dimian et al., 2014). 

 

 
Figure 7 Simulation at core of R&D, design and operation (Dimian et al., 2014).

In R&D, simulation models can be validated with experimental data and then 
be used to substitute further, possibly expensive experiments. Such models are 
usable in the design of processes and their automation; especially since 
currently, processes have to operate at high material and energy efficiency, 
flexibly, safely and cleanly. During operation model-based process control is 
common, but also areas such as maintenance and supply chain management 
can be benefit (Dimian et al., 2014).  

Model characteristics 
The term model can refer to a great many things. In a very general sense, a 
model is any assumed relationship between variables of a system under study. 
This relationship can be phrased in many ways, not all mathematical (e.g. 
mental models, graphical models, i.e. plots, tables,…) (Ljung, 1987). In this 
thesis, we shall concentrate on mathematical models, i.e. descriptions of 
variables’ relationships in terms of mathematical expressions. Such expressions 
or sets of equations are solved analytically or, as is the more usual case, using a 
computer to simulate them. Since the set of such models is very large, models 
have been classified according to several criteria. For example, Hangos and 
Cameron (2001) present a classification in five ways: 
 

1. Mechanistic vs. empirical  
A mechanistic model, or first principles/white box model, takes such 
basic physical laws as conservation and transport of mass, energy 
and/or momentum as the starting point and builds the equations from 
there. In contrast, an empirical model, or a black box model, relies on 
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measured data from experiments and attempts to find a mathematical 
relation that describes the data best. Typically, the models used in 
process engineering are a combination of the two. Such models are 
sometimes referred to as grey box models (Hangos and Cameron, 
2001).   

 
2. Deterministic vs. stochastic 

A deterministic model does not have randomness in it, i.e. the model 
output is fully determined by the values of its parameters and initial 
conditions. In contrast, a stochastic model or part of it contains an 
element of randomness and even the same parameter and initial 
conditions will produce different outputs. In deterministic models, the 
output is a number (scalar or vector) whereas in stochastic models the 
output is represented by a distribution. A model can have also hybrid 
characteristics, for example, it may contain both stochastic and 
deterministic parts. 

 
3. Lumped vs. distributed parameter 

Lumped parameter models refer to a class of model in which the 
spatial position is neglected, while distributed parameter models have 
this included. An example of a distributed parameter model is a partial 
differential equation. 

 
4. Linear vs. nonlinear 

Linearity of a model is that the superposition principle applies, i.e. that 
the response of the model caused by two or more inputs is equal to the 
sum of individual responses to the inputs. If this principle does not 
apply, the model is non-linear. 

 
5. Continuous vs. discrete 

In continuous models, the mathematical equations are continuous. 
Discrete models do not possess this continuity and are many times 
written as difference equations. 
 

Another way of classifying models is the distinction between steady state and 
dynamic models. Dynamic models are used to describe the delayed or inertial 
characteristic of the system. This means that when the value of a model input is 
changed, the output does not immediately change to its new value. Rather, the 
output may at first not react at all (pure delay) or it may begin to move gradually 
towards its final value (inertia). Steady-state models do not possess this 
character. These characteristics are summarised in the following Table 2 
(Hangos and Cameron, 2001). 
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Table 2 Forms of model equations (Hangos and Cameron, 2001).

Type of model Examples of equation types 
 Steady-state Dynamic 

Deterministic Nonlinear, algebraic 

Ordinary differential 
equations (ODE) / Partial 
differential equations 
(PDE) 

Stochastic 
Algebraic/difference 
equations 

Stochastic ODEs / 
difference equations 

Lumped parameter Algebraic equations ODEs 
Distributed parameter Elliptic PDEs Parabolic PDEs 

Linear 
Linear algebraic 
equations 

Linear ODEs 

Nonlinear 
Nonlinear algebraic 
eqns. 

Nonlinear ODEs 

Continuous Algebraic equations ODEs 
Discrete Difference equations Difference equations 
 

In chemical/process engineering, the utilized models can be seen to have two 
major components: the part characterising the equipment and the part 
characterising the flowing material, i.e. material properties (Westerberg, 2004). 
The level of detail in equipment characterization can vary considerably. In 
steady state, mass and energy balance calculations a separation unit may be 
described only with constant separation coefficients. In a more detailed 
description, a characteristic dimension of a device may be included, e.g. the area 
of a heat exchanger. In an even more detailed model the entire 3D geometry of 
the device, e.g. a furnace, is used. The more detail used in a description, the 
more input information needs to be gathered and fed into the model. Also, the 
computational load will increase as a function of the detail level. 
Characterization of the flowing fluid or estimation of physical properties is a 
considerable task, since the sheer number of different pure fluids is enormous 
and when pure fluids are mixed, the physical properties are not always simple 
averages of the pure fluid properties, which makes the situation even more 
challenging. 

Simulators 
Computer simulation is conducted by specialized computer programs, referred 
to as simulators. In process systems engineering or chemical engineering they 
are called process simulators. There are numerous tools available, both open-
source and commercial, running on different operating systems and 
concentrating on different applications, e.g. power plants, distillation, 
thermodynamic analyses, operator training, reactions, generic flowsheeting. 
For example, Wikipedia lists 58 chemical process simulators (Wikipedia, n.d.). 
The list seems to exclude many modelling-oriented programming languages 
such as Modelica® (Modelica, n.d.) and Matlab® (“MATLAB, The Language of 
Technical Computing,” n.d.) and commercial software like Balas (VTT, n.d.), 
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JADE (GSES, n.d.) and Flowmaster V7 (Mentor, n.d.). Simulators can be 
classified in many ways, but one of the most common is to distinguish between 
equation-oriented and agent-based simulators (Winsberg, 2015), with the prior 
more common in physical sciences, including engineering. In such simulators, 
the underlying theory is formulated in the form of equations, which the 
simulator numerically solves. Agent-based simulators are more common in 
social sciences and the system under study is represented by discrete, individual 
entities (agents) with their own behavioural rules (Winsberg, 2015). It should 
be noted that the term “equation-based” or “equation-oriented” has also 
another meaning. In this case, it refers to process flowsheet simulators and the 
way the calculation is conducted. In such “equation-based” flowsheet 
simulations, all the equations describing individual unit operations and their 
connections are collected and solved simultaneously. This is to be contrasted 
with the so-called “sequential-modular” simulators where the simulator moves 
from one unit operation to another and solves the equations describing one unit 
operation at a time (Biegler et al., 1997). 

2.3.2 Global Sensitivity Analysis 

One of the mathematical methods used in this thesis is global sensitivity analysis 
(GSA). In sensitivity analysis the goal is to quantify how a model’s inputs or 
parameters affect its outputs or “the study of how uncertainty in the output of a 
model (numerical or otherwise) can be apportioned to different sources of 
uncertainty in the model input” (Saltelli et al., 2008). The “traditional” way of 
doing this has been to calculate the partial derivative of an output, Yj, with 
respect to different inputs, Xi, either analytically or by finite differences around 
a given nominal point, Xi,0, as shown in Figure 8. 
 

 
Figure 8 Local sensitivity of Yj with respect to Xi at Xi,0.

The drawback of this approach is that it is local, i.e. it gives information only on 
how Yj depends on Xi around Xi,0. This information may be inaccurate or even 
misleading at another point, say Xi,1 in Figure 8 when the relationship is not 
linear. Global sensitivity analysis strives to overcome this locality problem. 
Below we give short descriptions of three global sensitivity analysis methods, 
although others do exist. 

In conjunction with global sensitivity analysis the question of what exactly the 
analysis is used for is raised. Typically, two settings have been presented: 
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parameter screening and parameter ranking (Saltelli et al., 2008). In parameter 
screening setting, a large set of parameters are analysed with the intention to 
identify those parameters that do not have a major effect on the output of 
interest. In other words, these parameters are screened out. The rest, which 
hopefully form a small subset of the original parameter set, are the important 
ones. This is where the screening setting ends, i.e. it does not tell which is the 
most important parameter, which is the second most important, etc. Such 
results can be obtained with the parameter ranking setting. Needless to say, 
parameter ranking is more computationally expensive than parameter 
screening.  

Morris method 
One method of global sensitivity analysis is the Morris or elementary effects 
method (Morris, 1991) which is a screening method. In this method, for each 
input Xi the so-called elementary effect EEi is calculated as: 
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This resembles the definition of a partial derivative, but the difference is that 

Xi now takes multiple values from {0, 1/(p-1), 2/(p-1), …, 1} where it has been 
assumed that 0 ≤ Xi ≤ 1. The variable p is the number of levels at which Xi is 
sampled and  is a fixed multiple of 1/(p-1). The Morris method samples the 
parameters Xi and computes the elementary effects (EEis) which form a 
distribution Fi, i.e. EEi ~ Fi. To assess parameter Xi’s effect on Yj, the sample 
mean ( i) and standard deviation ( i) of Fi are computed and plotted as shown 
in Figure 9. The plot can be interpreted so that parameters with negligible 
effect are close to the origin. Those with a significant, but linear, effect are on 
the right and close to the horizontal axis ( i << i). Finally, those with a large 
non-linear effect or interactions with other parameters are towards the top right 
of the plot with i and i having the same order of magnitude (Iooss and 
Lemaître, 2014). 

 



Related research

24 
 

 
Figure 9 Example of a ( , ) plot of the elementary effects method.

The original method of Morris has been extended since its publication. The first 
extension is that instead of calculating the mean of the EEis, a modified measure 

* is calculated as the sample average of |EEi| and no  is calculated. A second 
extension is a new parameter sampling strategy alleviating the original method’s 
coverage of the input space, which was non-optimal. Finally, progress has been 
made with working with groups of parameters, i.e. to produce a sensitivity 
measure relative to a group of parameters. Such developments are summarised 
in (Campolongo et al., 2007). 

Variance decomposition 
Another approach to global sensitivity analysis is the variance-based method. 
Historically the first studies on variance-based methods were published as the 
Fourier Amplitude Sensitivity Test, FAST (Cukier, 1973; Cukier et al., 1978). 
Nowadays the Sobol’ method (Sobol’, 1993; Saltelli et al., 2008) seems to have 
gained popularity.   

A variance-based method, as the name suggest, uses the variance of the model 
output, V(Yj), as the starting point for developing sensitivity measures. This 
variance arises from the parameters, which are varied in the analysis. The 
output’s variance is decomposed into first- and higher-order effect of the inputs 
and from those the so-called first-order and total sensitivity indices are 
calculated. The first step is to ask how V(Yj) would be affected if parameter Xi 
were to be fixed to a value xi while allowing the other parameters, denoted by 
X~i, to vary according to their distributions. The variance of Yj under this 
condition is denoted by VX~i(Yj | Xi). If the output variance was clearly reduced 
by fixing Xi then it can be deemed as an important parameter with respect to Yj. 
At this stage, the method is still a local one since Xi has been fixed to only one 
value. The next step is to take the expected value of the conditional variance as 
xi changes: EXi[ VX~i(Yj | Xi) ]. Now, the unconditional variance is decomposed 
as 
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The first-order sensitivity index of output Yj with respect to parameter Xi, Si,j, 

is defined as 
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and the total index, STi,j, as 
 

)(
|

1 ~
,

~

j

ijX
jTi YV

XYEV
S i

 
(4) 

 
The first-order index measures a parameters linear effect on the output, while 

the total index is used to measure the effect of any degree, including interactions 
with other parameters. A more thorough treatment of the Sobol’ and elementary 
effects method can be found for example in (Saltelli et al., 2008) and a recent 
review of variance-based methods from (Iooss and Lemaître, 2014). 

To numerically calculate the first-order and total Sobol’ indices Monte Carlo 
(Saltelli, 2002) simulations are conducted. Traditional random Monte Carlo 
simulations require a considerable number of simulations and thus quasi-
random samples, such as Halton and Sobol’ LP  sequences, are commonly used 
(Saltelli et al., 2008). In addition, the derivative-based approach, which is 
presented next, has been developed to alleviate computational load.  

Derivative-based approach 
The above discussion approached global sensitivity indices from the variance-
decomposition point-of-view. The subject has also been approached from 
derivative-based global sensitivity measures (DGSM) point-of-view, see e.g. 
(Kucherenko et al., 2009; Sobol and Kucherenko, 2009; Kucherenko and Iooss, 
2015), which can be seen as a generalization of the Morris method. This 
approach starts from the partial derivative ∂Yj/∂Xi and uses functionals of it as 
sensitivity indices. For example, the modified Morris measure * is an 
approximation of the functional  
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and the total index STi,j is related to the functional 
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On the upside the approach is that it is computationally more efficient than 

the variance-based approach or Morris method (Kucherenko et al., 2009). On 
the downside it assumes Yj as a differentiable function of the Xi’s and as is 
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demonstrated in (Sobol and Kucherenko, 2009), this can lead to false 
conclusions on parameter ranking of highly non-linear functions. 

2.3.3 Multiple objective optimization 

Traditionally, optimization in process engineering has been conducted as single 
objective optimization, while in the real world one quickly encounters several 
conflicting objectives. With conflicting objectives one means that not all 
objectives reach their optima at the same point (Hakanen, 2006). Thus, in 
multiple objective optimization, the concept of a solution has to be extended to 
the so-called Pareto optimal solution. A solution is Pareto optimal if no criterion 
can be improved without impairing some other criterion at the same time. For 
a given multiple optimization problem there may be several such solutions and 
they are in fact mathematically equivalent. Thus, to pick the final solution, a DM 
who can express preference information not encoded in the problem 
formulation, is needed (Hakanen, 2006). Optimization in chemical engineering 
is not always a straightforward task because the design spaces and even 
objective functions are not always clear to the designer (Westerberg, 2004). 
Nonetheless, optimization techniques have been used in process design at least 
from the late-1950’s in the oil-refining industry starting with linear 
programming (Westerberg, 2004). Other techniques such as sequential 
quadratic programming, mixed integer optimization and multiple objective 
optimization have also been utilized. For further details, the reader is referred 
to (Biegler and Grossmann, 2004) for a review of methods and their application 
domains in process systems engineering. Also, future visions by the same 
authors are presented in (Grossmann and Biegler, 2004).  

It has been noted that in process engineering one can find two kinds of 
optimization problems (Biegler et al., 1997; Hakanen, 2006). The first, 
parameter optimization, is used when the structure of the process is fixed and 
the operational parameters are used as decision variables in the optimization. 
The second, process synthesis, strives to find the process structure by using 
optimization. Typically, parameter optimization problems lead to continuous 
optimization problems, while in synthesis one quickly ends up with mixed-
integer problems. For example, Psaltis and co-authors (2016) present a study 
where a distillation and heat exchanger network synthesis problem is 
formulated as a mixed integer non-linear programming (MINLP) problem. 
Their approach to solving it is by generating computationally efficient surrogate 
models by using more rigorous and computationally intensive models, an 
approach applied also by Savolainen et al. (2015). In relation to this thesis, it is 
noteworthy that Psaltis et al. also use sensitivity analysis in selecting input 
variables for their surrogate models; they used the one-at-a-time approach. 

2.3.4 Hypothesis testing 

Hypothesis testing, in the statistical sense, was employed in the model 
comparison method developed in Publication I, in order to determine if two 
models differ. The comparison is conducted by using several so-called 



Related research 

27 
 

comparison variables, which are chosen by the analyst. Originally, they are time 
series, but are then averaged over time. As the models in question contain a 
stochastic element, several simulation replications are performed necessitating 
the use of statistical methods. One needs to compare distributions, rather than 
just scalar values. This is done using the two-sample Kolmogorov-Smirnov test, 
which compares two cumulative probability distributions. The test statistic used 
is the largest vertical distance between these distributions, as shown in Figure 
10 below. In the figure two cumulative probability distributions, A and B, are 
shown along with the test statistic D. 

 
Figure 10 Example of two-sided Kolmogorov-Smirnov test. 

In the model comparison method several comparisons on the same data are 
performed which is why the Bonferroni correction is included (Milton and 
Arnold, 1995). In this, the significance level for one comparison variable, i, is 
the experiment-wise significance level, , divided by the number of 
comparisons, Nvar. 





29 
 

3. Research questions

Westerberg (2004), citing the work of Bucciarelli (1996), argues that designing 
a plant is in itself a social process which includes meetings, discussions, etc., 
reflecting social values and knowledge. The design work’s social aspect is 
typically handled with defining workflows, which prescribe, e.g., documents to 
be produced. This approach assumes that design work can be formulated as a 
sequence of clear steps, an assumption that Bucciarelli and others have shown 
not to be true. Rather, solving design problems involves moving back and forth 
from one part to another in order to gain an understanding of the problem 
(Westerberg, 2004). It could be then argued that gaining a better insight into 
the problem at hand can provide added value to the designer. As briefly referred 
to above, the tightening environment sets challenges for the designers and 
operating personnel of processes. In the following, we present a non-exhaustive 
list of such challenges as a motivation for the research questions. While this 
thesis does not directly address them, there are numerous other challenges 
faced by the designers and plant staff. Such challenges include management of 
abnormal situations, predictions, scheduling of maintenance activities as well 
as fault detection and diagnostics. 

3.1 Finding the right focus

A process industry plant’s objective is to deliver products satisfying quality 
requirements while achieving economic benefits at a minimal cost. On the 
design side, the early phases of a plant design project may not incur major 
expenses but can contribute significantly to cost-reduction opportunities and 
can have a significant impact on life cycle costs (Marquardt and Nagl, 2004). In 
fact, Dimian et al. (2014) suggest that design phases take approximately 15% of 
the total design and construction project (until end of commissioning) cost 
while representing nearly 45% of cost-reduction possibilities. Furthermore, 
they note that erroneous decisions made in the early phases can incur high costs 
later during plant operation, due to reduced production and a need for 
corrective actions. In addition, during operation the product demand, quality 
and raw material feed, are bound to change, which leads to challenges to the 
operation of the plant as it must be both flexible and controllable (Vega et al., 
2014). Flexibility here refers to the plant’s capability to operate in different 
(desirable) steady-states (Grossmann and Morari, 1983), whereas 
controllability is concerned with dynamic operation (Vega et al., 2014), e.g. 
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change situations from one operation point to another (Biegler et al., 1997). This 
demand for flexibility and controllability also poses challenges to the process 
designers whose process and control design should meet these targets (Vega et 
al., 2014). The challenges are exacerbated by the requirements that the design 
itself be performed cost-efficiently. For example, a study by Hussain and 
Wearne identified time as the second greatest problem in project management 
in the process industry (Hussain and Wearne, 2005). This then leads to a need 
to focus the designer’s attention on the most critical parts of the 
process already in the early phases of the life cycle. 

3.2 Limited knowledge

As Grossman and Morari (1983) state, practical engineering problems are more 
loosely defined than scientific ones since the prior contain uncertainties in, e.g. 
computational models, market forecasts, raw material and prices. Moreover, 
sometimes the designer is even faced with a situation where the (true) goals and 
the space of possible designs are not well specified (Westerberg, 2004). Also, it 
may occur that different parts of the process are developed or designed by 
different companies. For example, one company may have developed and 
patented a process concept, which is then licensed and adapted to a certain plant 
by a separate design company. While in an ideal world this would not be a 
problem, sometimes the information provided to the designers in early phases 
of design may be incomplete, either due to trade secrets or even due to limited 
knowledge of the provider. Furthermore, design consultants possess expertise 
in design work but may lack operational knowledge, while client companies 
possess operational data and expertise but usually no real design experience 
(Moran, 2015). 

Moreover, it seems that the division between conceptual and detailed design 
is getting blurred and the traditional waterfall project model is being replaced 
with fast-track/unstaged design or collaborative contracting (e.g. the alliance 
model) (Suprapto, 2016). Reasons for this reorganization of work can be 
numerous, but it seems that the major driver has been the recognized budget 
and/or timetable overruns of large capital projects (see (Suprapto, 2016) and 
references therein). Such ways of organising the design work lead to a need for 
quick and accurate information exchange between parties, e.g. the design 
consultant(s) and the customer. This has proven to be a challenge, as 
exemplified by founding of the DEXPI group (www.dexpi.org). It can be argued 
that  this leads to the fact that design decisions need to be made with 
limited knowledge or under uncertainty (Schneider and Marquardt, 
2002) which is also tied to the previous challenge in that reducing the 
uncertainties requires time and money and should be worth the effort. 

3.3 Multiple conflicting operational objectives

Traditionally, process design has been separated into two distinct parts: process 
and automation/control design (Vega et al., 2014). Nowadays, the operational 
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aspects of automation design are being taken into consideration in earlier 
phases of design, typically involving multiple, conflicting goals or objectives 
(Ropponen, 2013) originating from the economic and dynamic performance 
objectives set forth by the customer. When striving to use mathematical 
optimization as a tool in solving such problems, a single objective function or a 
weighted sum has been typically the minimized criterion (Ropponen, 2013). 
This formulation has drawbacks that may result in loss of information about the 
relevant characteristics of the problem, interdependencies between factors and 
uncertainties (Hakanen et al., 2013), thus hindering learning and gaining 
insights. This leads to the need to account for multiple objectives, a 
situation also present in the designer’s work. 

 

3.4 Main hypothesis and research questions 

Based on the discussion above, the main hypothesis of this thesis is that 
extending dynamic simulation with other mathematical methods can bring 
extended added value to a process or control designer. This added value comes 
from alleviating the challenges identified above. Here, the term extended added 
value refers to the fact that simulation alone typically brings added value, when 
used properly. Now, extending dynamic simulation with the other mathematical 
methods also extends this added value. The main hypothesis and results 
contributing to it from four case studies are summarized in Figure 11. A 
detailed description of the cases and their contributing results is given in 
chapter 4. The cases are numbered in the same order as the publications of this 
thesis. The figure also summarizes the extensions to dynamic simulation, which 
were used in the studies. Finally, in the figure, the industrial domains of the 
cases are presented. The three dots on the right-hand side of Figure 11 indicate 
that this list is by no means exhaustive and can be seen as a topic for future 
work. 

 

 
Figure 11 Thesis main hypothesis, contributing results, extensions, cases and industrial 
domains.
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Finally, we formulate the research questions of this thesis as: How can coupling 
of process simulation and other mathematical methods (introduced in chapter 
2.3) be  

1. used to focus the designer’s attention on the most critical parts of the 
process, even with limited knowledge? 

2. used to provide insight into an operational plant’s personnel? 
To address question 1, a model comparison method was developed and its 

potential in early phase process optimization was shown. Also, combining global 
sensitivity analysis with process simulation was investigated and shown to be 
useful in attention focusing on preliminary process and automation design.  

To address question 2, the potential of combining dynamic process simulation 
and interactive multiple objective optimization in design of operational 
practices was studied. In addition, a combination of global sensitivity analysis 
with dynamic process simulation as a method of identifying bottlenecks of a 
process was studied. 

 



33 
 

4. Results and empirical work

This thesis utilized three extensions to support the main hypothesis. The four 
cases used had certain common characteristics. Firstly, they all utilized dynamic 
simulation models. Building of the models followed a quite traditional iterative, 
step-wise approach, for example summarised in (Hangos and Cameron, 2001). 
The studies used as modelling environments Matlab (“MATLAB, The Language 
of Technical Computing,” n.d.), Apros (“Apros,” 2010) and Simlab (“SimLab - 
Sensitivity Analysis,” 2010). Secondly, in all cases the models were simulated in 
a Monte Carlo-like fashion (Law, 2007). In essence, a model was run several 
times with different inputs or parameter values generating a large set of data. 
This data was analysed to draw the conclusions. Thirdly, all cases are tied with 
some stage of a process industry plant’s life cycle as summarised in chapter 1.1.  

In the next chapter, the supporting case studies and their contributing results 
are described in more detail. 

4.1 Paper production case

The Paper production case study addressed concurrent process dimensioning 
and control design of a paper mill. The problem was approached with a two-
level optimization, where on the lower level the operation of the mill was 
optimized for a given process dimensioning. This dimensioning was derived 
from the upper level of the optimization. The optimization problem formulation 
and results can be found, e.g. in (Ropponen, 2013) and the references therein. 
The initial motivation to apply a sophisticated mathematical approach to this 
rather traditional process (shown schematically in Figure 12), is the inherent 
difficulty of controlling (and designing controls for) certain aspects of it.  
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Figure 12 Schematic of the paper mill process utilized in the Paper production case.

When the process runs normally, the paper machine (PM) is fed a mixture of 
solid raw materials suspended in water. Part of the raw materials, such as 
thermomechanical pulp (TMP) and chemical pulp (CP), come fresh from their 
respective production units, but there also exists a recycling stream of so-called 
broke. Broke is produced in abnormal situations, called web breaks, at the PM 
in which all the produced paper is rejected and stored in the broke tower. In 
order not to waste this material, broke needs to dosed to the feed mixture, which 
has proven to be challenging. Namely, if too much broke is dosed, the quality 
(e.g. strength properties) of the mixture reaching the PM is compromised as the 
paper fibres have undergone operations that weaken their properties. This in 
turn increases the possibility of a new break and could lead to a vicious cycle. 
On the other hand, dosing very little broke could lead to overflowing and/or 
aging problems in the broke tower. Filler, which is typically a mineral substance 
and cheaper that TMP or CP, is fed to the mixture and it is desirable that as 
much as possible is retained at the PM and ends up in the paper. In the 
optimization model the retention was assumed to be constant, but as it is neither 
ideal or constant in real-life, some filler is recycled via the water system 
(simplified in Figure 12 to consist only of a white water tower, a disc filter (DF) 
and a clean water tower). This brings another challenge to the process operation 
since filler tends to decrease paper strength, increasing the probability of 
breaks. Also, the customer buying the paper cannot tolerate too much filler in 
the paper, which means that the filler content, measured at the quality control 
(QC), needs to be controlled. On the fibrous raw material (TMP and CP) side, 
the qualities, e.g. with respect to strength, do not remain constant in real-life 
since in the preceding processes may experience upsets.  

Thus, there exists a potential application of optimization to determine both 
the dimensioning and operation of the process. This needs to be done with 
limited knowledge (chapter 3.2) and in the face of multiple conflicting 
operational objectives (chapter 3.3). It is fairly evident that such two-level 
optimization involves a considerable amount of simulations necessitating use of 
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a very fast model. This in turn has the effect that the model needs a considerably 
simplified description of the real-life process. In addition, this very simple 
model is necessitated by the fact that if such optimization is conducted in early 
phases of design, not much information might be available, which is one of the 
challenges identified in chapter 3. A natural question then is whether the results 
obtained with this optimization model (OM) are trustworthy and this aspect is 
the empirical work considered here. The work consisted of developing and 
applying a novel method to compare the optimization model with a set of 
increasingly realistic models, called verification models (VM). The idea is that if 
the optimization model and verification models are equivalent and the 
verification models are adequate descriptions of real-life, then the results 
obtained with the optimization results can be trusted.  

The case utilized a Matlab-based dynamic model of a paper mill as the 
optimization model and eight different verifications models which were 
implemented with the Apros® Paper simulator. Each verification model 
contained some modification to the detail level of the optimization model. These 
modifications were chosen to reflect the non-idealities outlined above. The 
modifications are summarised in Table 3. 

 
Table 3 Modification in the verification models of the Paper production case.

Verification 
model 

Modification 

1 None 
2 Variable filler retention at PM 
3 Bad-quality TMP from the TMP mill 

4 
New tank (white water) between PM and white water  

    tower and disc filter. 

5 
Variable filler retention at PM and bad quality TMP  

    from the TMP mill together 
6 Variable filler retention at PM and new tank together 

7 
Bad-quality TMP from the TMP mill and new tank  

    together 
8 All modifications together 

 
The “Variable filler retention at PM” modification was implemented with the 
following equation 
 

wr PMfiller 5.0,  (7) 

 
where the value 0.5 was the original filler retention.  
 
The modification comes through the noise term w which is a random variable 

distributed normally with zero mean and variance of 2.0. To avoid too large 
changes in the simulation, rfiller,PM was further filtered with a time constant of 15 
min. This value was then fed to the PM model of Figure 12. 
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The second modification, “Bad-quality TMP from the TMP mill” affected the 
flow from the TMP mill. For each 10-minute step of simulation, the model 
determined whether the TMP flow was of “bad quality” or not. This 
determination was implemented with a two-state model shown in Figure 13, 
where the arrows indicate transitions from one state to another and the 
associated numbers the probability of that transition. 

 
Figure 13 Two-state model for producing bad TMP.

The bad TMP then flowed through and mixed with other materials in the 
process, finally reaching the PM. There it affected adversely the paper’s strength 
and in doing so increased the probability of a web break. 

Finally, the “New tank” modification involved adding a new, ideally mixed 
tank between the PM and white water tower and disc filter. This tank, shown in 
Figure 14, is typical in real-life processes. The tank acts in this modification as 
a primary source of water for the needs of the process, while the white water 
tower is a reserve which can absorb excess water (overflow) or provide makeup 
if needed. 

 

 
Figure 14 Addition of a white water tank.

The models in the Paper production case were hybrid models combining both 
deterministic and stochastic parts, which necessitated the development of a 
novel comparison method to distinguish differences arising from stochastic 
fluctuations from real differences. This hybrid nature of the models arose from 
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the fact that in the preliminary process design phase solid information on the 
process may still be scarce and some parts of the process need to be modelled 
stochastically. In this case, the stochastic parts were the breaking of the paper 
web at the paper machine and the production of dry broke. Thus, the model 
comparison method needed to distinguish between two potential sources of 
model difference: stochastic fluctuations and fundamental model differences. 
To quantify the former a VM was compared with itself, with the only difference 
being the random numbers fed into it. This information was then utilized when 
comparing the OM vs. a VM. Comparison of the models was done with 16 
variables relating to the product, behaviour of the control law (see the Tower 
control case for details) and overall operation of the plant. These are listed in 
Table 4. 
 

Table 4 Comparison variables of the Paper production case.

Nr. Description Location in Figure 12 

1 
Filler content squared deviation 
from its target 

“Filler-%” at QC  

2 
Gross production squared 
deviation from its target 

“Gross prod.” between PM and 
QC 

3 
Strength squared deviation from 
the target value 

“Strength” at PM 

4 Cumulative number of breaks  PM 

5 
Net production rate (PM gross 
production - dry broke) 

Net Prod. after QC 

6 Broke dosage  
Between broke tower and mixing 
chest 

7 TMP/CP ratio at the mixing chest  
Between TMP and CP towers 
and mixing chest 

8 TMP flow to its tower Before TMP tower 
9 CP flow from to its tower Before CP tower 
10 Disc filter input flow  From white water tower to DF 

11 The pulping rate of dry broke  
From dry broke tower to broke 
tower 

12 
The intake of fresh water to the 
clean water tower  

From fresh water to clean water 
tower 

13 
Pulp consistency (dry matter %) 
into the TMP tower  

Before TMP tower 

14 Pulp consistency into the CP tower  Before CP tower 
15 Disc filter filtrate recirculation flow  From DF to white water tower 

16 
Fraction of time that at least one 
tower under- or overflows  

All the towers 

 
To assess long-term average behaviour the resulting time series were averaged 
over the simulation time. In addition to this, also variability of the process 
behaviour was studied by using the coefficient of variation. The comparison was 
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repeated for each of the modifications in the verification models. For each 
verification model, 500 simulations were executed resulting in 4000 
simulations. The simulations were executed on a dedicated calculation server. 

Contributing results 
In the Paper production case, the specific goal was to develop a model 
comparison method to increase confidence that process design and operational 
optimization results obtained using rather simple models can be trusted. The 
developed method was designed to be used with hybrid deterministic-stochastic 
models. The case showed that the average behaviour of the models was mostly 
the same while differences were seen on the variational side. This is summarized 
in Table 5. 
 

Table 5 Comparison results of the Paper production case. 

Modification Average  Variations 
None same same 
Variable filler retention at PM same different 
Bad-quality TMP from the TMP mill same same 
New tank (white water) between PM and white 
water tower and disc filter. 

same different 

Variable filler retention at PM and bad quality TMP 
from the TMP mill together 

same different 

Variable filler retention at PM and new tank 
together 

same different 

Bad-quality TMP from the TMP mill and new tank 
together 

same different 

All modifications together different different 
 

Naturally, there were no differences when there were no modifications added to 
the verification model. As Table 5 shows, on the average column none of the 
modifications alone made the optimization and models differ. In addition, 
combining any two modifications was not enough to drive the models apart but 
when all of the modifications were present, there was a significant difference. 
On the variational side, the situation was quite different as differences were seen 
quite often. The above results are believable since two of the three modifications 
were variational in nature, namely variable filler retention and bad-quality 
TMP. As process control typically is used to handle transient situations, i.e. 
variations, of the process, one can deduce that applying such model comparison 
would benefit optimization-based control design.  

Thus, by utilizing the method the designer can i) gain understanding of how 
far the simple optimization model can be trusted and ii) focus possible future 
analyses on the most critical parts of the process. Thus, this approach 
contributes towards the main hypothesis of this thesis, as indicated in Figure 
11. 
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4.2 Tower control case

In the Tower control case, the same stochastic-deterministic hybrid Matlab 
simulation model as in the Paper production case was utilized, but the focus 
now was on its tower level control law and its effect on the early phase, 
concurrent process and control design. Traditionally, the tower level control has 
been left to the plant operators, as fully automatizing it has proven to be 
difficult, which was already highlighted in the previous case’s discussion of 
broke dosage, which involves multiple conflicting operational objectives 
(chapter3.3). Additionally, the large towers bring dominating dynamics to the 
system and can incur high investment costs. Thus, control of the tower levels 
should be considered early on when designing the process and finding the right 
focus (chapter 3.1), even with limited knowledge (see chapter 3.2), becomes 
important. In this case, the control law was formulated to mimic the actions of 
an operator of a paper mill in the form of lookup tables. The control law had 
seven manipulated variables and referring to Figure 12 the control law 
contained the input-output matchings shown in Table 6.  
 

Table 6 Control loops of the Tower control case.

Control 
loop 

Measured variable(s) Manipulated variable 

1 Broke tower level, break state Broke dosage 
2 White water tower level Disc filter input flow 

3 
Broke and dry broke tower 
levels, break state 

Dry broke pulping rate 

4 Broke tower level, break state 
TMP/CP ratio at mixing the 
chest 

5 Clean water tower level 
Intake of fresh water to the 
clean water tower 

6 TMP tower level TMP flow to its tower 
7 CP tower level CP flow to its tower 
 

Each manipulated variable, ui, was calculated with 
 

)( )1( )( ttucutu i
nom
ii  (8) 

 
In equation (8),  is a filtering constant, while c’s are coefficients obtained 

from look-up tables of the control law. In these tables the measured variables 
were divided into ranges, which were used to determine the value for the 
coefficient c for each manipulated variable ui at any given tower level and break 
state. This could be exemplified for control loop 1 verbally as: 

“if break is ON and broke tower level is between 75% and 100%, then 
coefficient c for broke dosage is 2”.  

In total, 36 parameters (pi’s) were used to define the ranges while the number 
of c-coefficients was 45. Thus, the structure, which is described in more detail 
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in Publication II, was characterized by 81 parameters whose effects were 
initially analysed using the elementary effects method  and finally with  variance 
decomposition-based Sobol’ sensitivity indices (Saltelli et al., 2008). 

In the sensitivity analysis, operational and product quality points of view were 
taken into account when defining its four outputs (denoted by Yj below). The 
operational aspects were characterised by the time until one of the towers 
experienced an undesirable under- or overflow situation, while the end product 
was characterised with deviations from desired strength, filler content and 
production rate, which are shown in italics in Figure 16 below.  

The hybrid nature of the model resulted in a large number of simulations. The 
initial analysis consisted of 1760 simulations and the actual Sobol’ analysis of 
2816 parameter samples, each sample being simulated with 100 replications to 
account for the stochastic parts of the model. The parameter sample generation 
and calculation of the sensitivity indices were conducted with Simlab software. 
The simulations were executed using parallelization on an eight-core calculation 
server. 

Contributing results 
In the Tower control case the goal was to demonstrate how combining dynamic 
simulation with global sensitivity analysis could be used to gain insight into 
preliminary phase process and especially control design. This was achieved with 
a case analysis of the control law of six connected storage tower levels of a paper 
mill. The analysis procedure was able to identify process areas whose control 
was important from operational and end product points of view. This 
identification is deduced from the sensitivity indices received by the different 
parameters: if one or more parameter located in a certain process area received 
a high index value, then this process area was deemed important. In the 
following Figure 15 we show the results. Each of the four columns corresponds 
to one output variable:  

Y1: Time until first tower over- or underflow 
Y2 Time-average squared strength deviation 
Y3: Time-average squared filler content deviation 
Y4: Time-average squared gross production deviation 
 
On the top row are shown the first-order indices (Equation (3)) and on the 

bottom the total indices of Equation (4). As can be seen, parameter c10 is by far 
the most important in six of the eight figures. For Y2 the situation is less clear, 
with several parameters with relatively similar index values.  
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Figure 15 Sensitivity indices of the Tower control case (figure from Publication II).

As c10 relates to level control of the white water tower, a direct result is that this 
process area should receive the focus of the designer. Since this level is 
controlled by the flow to the disc filter and another parameter relating to it (p8) 
is present, control of the disc filter seems to be of importance. Control of the 
broke and TMP towers were raised as the most important parts relating to the 
strength properties via parameters V6 (clear water tower initial volume, 
providing dilution for TMP), V1 (TMP tower initial volume), V3 (broke tower 
initial volume) as well as p32 and c39 (related to inflow to TMP tower). These 
results, shown in red ovals in Figure 16, give the designer indications of where 
to focus additional design efforts. Thus, the Tower control case contributes to 
the main hypothesis of this thesis, as indicated in Figure 11. 
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Figure 16 Process flow sheet of the two first cases. Red ovals indicate areas to focus on in the 
Tower control case. 

4.3 Filtration case 

The Filtration case dealt with operations planning of a two-stage filtration 
process shown in Figure 17. 

 
Figure 17 Flowsheet of the Filtration case process. 

The process is used to filter impurities from the feed flow by two filters 
connected in series. The flows in the system are driven by four pumps, whose 
energy consumption should be kept to a minimum. Both filters produce two 
output streams, the permeate and the retentate. Of these, the retentate is the 
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one into which the impurities should be concentrated while permeate is desired 
to be clean. As can be seen from Figure 17, both filters contain a local retentate 
recycle as well as an outer recycle to the feed of the process. The target here was 
to determine when each of the filters needs to be shut down for cleaning since 
the feed impurities tend to foul the filters. The fouling has the effect that it 
increases the flow resistance over the filter’s membrane, between the feed and 
permeate streams. This in turn has the effect of either decreasing the permeate 
flux (flow per unit area of membrane) or increasing the required pumping 
power. In this case, fouling was modelled with a semi-empirical model, which 
increased the form loss coefficient, , of the permeate flow line as a function of 
the accumulated amount of impurity on the membrane: 
 

t

feed dttcat
0

)()(
 

(9) 

 
where cfeed is the impurity concentration of the inlet flow to the filter and the 

coefficient a is a tuning coefficient.  
 
When a filter is washed, its associated loss coefficient is reset to zero and 

during this time, the filter cannot process any feed, which results in a lower 
amount of permeate. Furthermore, when filter 1 is being washed, the feed 
coming to it is directly by-passed to filter 2. In such times filter 2 receives dirtier-
than-normal feed which results in dirtier permeate, an unwanted situation. This 
process is similar to the one studied in  (Noronha et al., 2003), where the effect 
of varying filter-wise permeate recovery (flow rate of permeate divided by feed 
flow rate) was analysed with stationary models. They analysed energy 
consumption, permeate quality and permeate flow rate, but the analysis did not 
formulate the case as a mathematical optimization problem, nor did they utilize 
actual MOO solvers. Nonetheless, the authors note that even such a small 
process exhibits multiple optimization criteria and such interactions that 
simulation can make substantial contributions. In the case presented here, we 
continue their work by connecting the Apros® simulator with an interactive 
multiple objective optimization solver IND-NIMBUS (Miettinen, 2006) and 
formulating the case into an interactive MOO problem. Here the task was to 
derive an optimal washing schedule for the two filters as well as optimal rotation 
speeds for the four pumps over an eight-hour operating window using the 
following three objectives: 

1. Maximize the permeate amount 
2. Minimize the impurity amount in the permeate 
3. Minimize the energy consumption of the pumps 

 
This situation naturally lends itself to coupling of multiple objective 
optimization and dynamic process simulation to aid the process operations 
planning engineer who is faced with the challenge of multiple conflicting 
operational objectives (chapter 3.3). Furthermore, the case contained major 
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modelling uncertainties in the form loss function presented above as well as in 
the cleaning efficiencies (or “impurity rejections”) of the filter, which were taken 
to be constant. Thus, the case also dealt with the challenge of limited knowledge 
(chapter 3.2). 

The Apros-IND-NIMBUS combination, running on 3.4GHz Intel® CoreTM i7-
2600 computer, produced a set of candidate solutions, which were presented 
over e-mail to the decision-maker. He then analysed them and communicated 
his preferences for the direction in which the next optimization iteration should 
proceed. 

Contributing results 
In the Filtration case it was shown that a combination of interactive multiple 
objective optimization and dynamic simulation was able to provide insights in 
two aspects. Firstly, exploring trade-offs of conflicting operational requirements 
with the combination deepened the DM’s understanding of the problem at hand, 
as indicated in Figure 11. In the beginning of the interactive optimization the 
DM did not have clear preferences regarding which of the three objectives were 
the most important to him. While performing the optimization, the DM’s 
preferences became clearer and in looking back at the process it seems that the 
DM was mostly interested in improving two of the objectives (energy 
consumption and permeate cleanliness) while being willing to relax the 
remaining one (production amount of the permeate). This exploration of trade-
offs is seen in Figure 18, which shows how the interactive optimization 
proceeded. 
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Figure 18 Solution procedure of the Filtration case (figure from Publication III).

In Figure 18 the z’s refer to Pareto optimal objective function values presented 
to the DM and P’s are the DM’s preference information which were passed to 
IND-NIMBUS. For example, P1 is read so that objective function 1 could be 
impaired until 2000 while striving to improve objective 2 towards 2.3 and 
objective 3 towards 9500. The way the DM altered the preferences of 
improvement and impairment of objectives showed the learning process of the 
DM while working towards the final solution z10final. This is summarized in 
Table 7. 
 

Table 7 Evolution of DM's preference in the Filtration case.

Iteration Objective 1 Objective 2 Objective 3 
P1 allow to impair improve improve 
P2 improve improve allow to impair 
P3 allow to impair allow to impair improve 
 

Secondly, it was shown that coupling of dynamic simulation with multiple 
objective optimization could be used in detecting modelling errors and thus in 
focusing the modeller’s attention to critical parts of the process. This was 
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exemplified by the frequent washing of the filters in z10final which indicated that 
the fouling model was in need of improvement. This in turn is an indication to 
the process and automation designers of a critical part of the process, i.e. how 
to handle or prevent filter fouling. Finally, some implementation-oriented 
issues on connecting a dynamic process simulator and an interactive MOO 
solver were detected. For example, the amount of pre- and post-processing code 
needed to make such an approach feasible is quite large. In pre-processing of 
the scheduling optimization, encoding of decision variables was seen to be a not 
straightforward task. On the post-processing side, processing of the simulation 
raw data into a form usable for the decision maker was seen to be in need of 
supporting tools such as advanced scripting languages.  

4.4 Bottleneck case 

Finally, the Bottleneck case relates to the operation phase and retrofit planning 
of a process industry plant. The challenge, which this case addressed, was 
finding the right focus (chapter 3.1), or in other words identifying which part of 
a process is its bottleneck from the production amount point of view. The 
simulator utilized here was Apros, which was coupled with global sensitivity 
analysis. To investigate how this coupling can be used as bottleneck 
identification, three different process models were used. The two first models, 
the so-called Simple Models in Publication IV, were test models to ascertain that 
a combination of dynamic simulation and global sensitivity analysis could be 
utilized as a method to detect process bottleneck. The models were formulated 
in such a way that the bottleneck could be determined solely with engineering 
expertise. These two models are shown schematically in Figure 19. 

 
Figure 19 The Simple Models of the Bottleneck case. 

On the top is shown a simple pipeline which is discretized lengthwise into 50 
segments. Segment number 26 is much smaller than the others and is evidently 
the bottleneck with respect to mass flow through the pipe. On the bottom is a 
slightly more complex pipeline with 10 equal segments. In this flow setup, it is 
clear that the bottleneck is the middle part with segments 5 and 6. These Simple 
Models were subjected to a Sobol’ global sensitivity analysis with the segment 
dimensions as the inputs and the flowrates through the systems as outputs. In 
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the analysis of the first model 52224 simulations were conducted and with the 
second model 45056. All the simulations were executed on a dedicated 
computational server with eight parallel Apros simulators.  

Finally, in the Bottleneck case a third, more realistic model of a paper mill’s 
short circulation was utilized. This is shown in Figure 20. In the process, a feed 
stream is pumped from the machine chest (a tank with constant liquid level) 
through consecutive cleaning equipment to the paper machine’s headbox. The 
cleaning consists of two screens, called the pressure and machine screens as well 
as a deculator tank. This tank is kept in low pressure which causes any air in the 
feed stream to boil and thus be removed. At the headbox, the one-dimensional 
pipe flow is spread on to the paper machine’s former section. Here water is 
removed either with gravitation or with under-pressure suction and recirculated 
into the wire pit. This wire pit water is used to dilute the feed stream also. After 
the former section, the moist paper is subjected to mechanical pressing to 
remove even more water from it. Once mechanical separation cannot remove 
any more water, the paper is brought into contact with steam-heated metal 
cylinders of the drying section to reach the final moisture content. Typically, the 
flow into the head box contains 99.5% of water while the paper produced to the 
reel contains approximately 7%. This means that a considerable amount of 
water is being circulated in this area and investments in de-bottlenecking 
should be carefully planned. Thus, it can be argued that correct identification of 
the production bottleneck is of significance. 

This model was also subjected to a global sensitivity analysis with the 
production amount, in tons per hour, at the reel as the interesting output. The 
analysis was on 25 input parameters describing the dimensioning of the short 
circulation equipment and summarised in Table 8. 

 
Table 8 Input parameters of the paper mill short circulation model of the Bottleneck case.

i Process part Parameter 
Nominal 
value 

Min Max 

1 
Pressure screen 
feed pump 

Nominal head, m 20 15 25 

2 
Pressure screen 
feed pump 

Nominal 
volumetric flow, 
m3/s 

1.5 1.125 1.875 

3 
Headbox feed 
pump 

Nominal head, m 30 22.5 37.5 

4 
Headbox feed 
pump 

Nominal 
volumetric flow, 
m3/s 

1.5 1.125 1.875 

5 Furnish feed line Diameter, mm 250 187.5 312.5 

6 
Pressure screen 
feed line 

Diameter, mm 1000 750 1250 

7 
Pressure screen 
accept line 

Diameter, mm 1000 750 1250 
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8 
Machine screen 
feed line 

Diameter, mm 1000 750 1250 

9 Headbox feed line Diameter, mm 1200 900 1500 

10 
Wire water 
channel 

Diameter, mm 1000 750 1250 

11 
Deculator overflow 
line 

Diameter, mm 500 375 625 

12 
Wire pit dilution 
line 

Diameter, mm 500 375 625 

13 Paper machine Width, mm 8000 6000 10000 
14 Paper machine Speed, m/s 16 12 20 

15 Former 
Chemical pulp 
retention 

0.85 0.6375 1.0 

16 Former 
Thermomechanical 
pulp retention 

0.85 0.6375 1.0 

17 Former Filler retention 0.5 0.375 0.625 

18 Former 
Dewatering 
coefficient 

0.02 0.015 0.025 

19 Wet press Nip 1 load, kN/m 30 22.5 37.5 
20 Wet press Nip 2 load, kN/m 30 22.5 37.5 
21 Wet press Nip 3 load, kN/m 30 22.5 37.5 

22 
Pressure screen 
reject line 

Diameter, mm 100 75 125 

23 
Machine screen 
reject line 

Diameter, mm 100 75 125 

24 MC outlet pump Nominal head, m 30 22.5 37.5 

25 MC outlet pump 
Nominal 
volumetric flow, 
m3/s 

0.3 0.225 0.375 

 
A sample of 53248 input realizations was simulated with the model on eight 
parallel instances of Apros simulator. With all three models, the input samples 
were generated and the outputs analysed with Simlab software. 

Contributing results 
The result of this case was that a combination of dynamic process simulation 
with global sensitivity analysis could be used as a method of detecting 
bottlenecks of a process. The case utilized three models, which showed that 
process parts/equipment forming the process bottleneck could be identified 
with an appropriately formulated sensitivity analysis study. In the paper mill 
short circulation model, the analysis raised three parameters above the rest: X17, 
X24 and X25. Their locations in the process flow sheet are highlighted in Figure 
20.  
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Figure 20 Paper making process with bottlenecks highlighted in red. 

Two of these parameters were related to one piece of equipment, the machine 
chest outlet pump, giving a strong indication that this was where the bottleneck 
was located. Since this pump feeds raw material to the system, it is easy to agree 
that it is a bottleneck. This is also the situation with the third parameter, filler 
retention on the paper machine former section. Filler is one of the major raw 
material components of the end product and a parameter describing how well it 
is retained in the paper coming up in the analysis is clearly understandable. The 
effect of these parameters was finally validated with separate simulations. The 
end result was that this type of study would typically fit well when planning 
retrofits for a process industry plant under operation. A contribution to the 
main result of the thesis comes clearly from drawing the engineer’s attention to 
critical parts of the process. 

4.5 Summary of results 

As stated in chapter 3, the research questions were: “How can coupling of 
process simulation and other mathematical methods be  

1. used as a tool to focus the designer’s attention to the most critical parts 
of the process even with limited knowledge?  

2. used to provide insight into an operational plant’s personnel?” 
To answer these questions four specific goals were set. Their relation to the 
research questions as well as results are summarised in Table 9. 
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Table 9 Summary of case results and how they contribute to the research questions.

Research 
question 

Specific  
goal 

Result 

1 and 2 

To develop and investigate 
the functionality of a 
model comparison method 
as well as determine its 
potential in early-phase 
process and operational 
optimization. 

The method was developed and 
utilized in analysis of a paper 
production process optimization 
problem (the Paper production 
case). The method was able to 
provide guidance for the analyst in 
the applicability of the process 
optimization results. As the 
optimization dealt with design and 
operation of a paper production 
process, the result pertains to both 
research questions. 
 

1 

To combine global 
sensitivity analysis with 
process simulation and 
investigate its usefulness 
in preliminary process and 
automation design. 

In the Tower control case, 
combination of process simulation 
with global sensitivity analysis was 
able to highlight areas of the 
process to which the analyst 
should concentrate his/her efforts. 
Thus, the results answers research 
question 1. 
 

2 

To provide information on 
the potential of combining 
dynamic process 
simulation and interactive 
multiple objective 
optimization in design of 
operational practices. 

The combination was realised and 
tested in the Filtration case. The 
results showed feasibility of the 
combination and provided 
insights to the decision maker on 
the process’ operational 
characteristics, thus pertaining to 
question 2. 
 

1 and 2 

To investigate the 
combination of global 
sensitivity analysis with 
dynamic process 
simulation as a method of 
identifying process 
bottlenecks. 

Applicability of global sensitivity 
analysis as a bottleneck 
identification method was shown 
in the Bottleneck case. As the task 
of debottlenecking is a design task, 
the result answers question 1, but 
also since this task is performed on 
a running plant, it also can be seen 
to contribute to question 2. 
 

Combining the contributing results from the cases now gives support to the 
main hypothesis of this work: extending dynamic simulation with other 
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mathematical methods can bring extended added value to a process or control 
designer. 
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5. Discussion

5.1 Practical implications

This thesis aimed to bring added value by alleviating certain challenges of a 
process/automation designer or an engineer dealing with a running process. 
The results presented above in chapter 4 show that combining dynamic 
simulation with other mathematical methods can be used in finding the right 
focus, alleviating limited knowledge and help dealing with multiple conflicting 
objectives. In doing so, the approach entails certain practical implications.  

The first implication is related to the tools used since, obviously, the approach 
requires the user to master the tools, at least to some extent. The user may not 
have to be able to understand all the detailed mathematics of the tools but what 
is important is to understand the limitations of the tools. For example, the 
simulation models always are simplifications of the real world, the global 
sensitivity analysis depends heavily on the choice of its input parameters and 
their distributions and optimization results reflect the formulation of the 
problem. In addition, such tools typically also have their own, specific quirks 
and oddities, which may require quite a bit of detailed knowledge to overcome 
when implementing such combinations as presented here. Making existing tools 
more amenable to such co-use seems to be an active research topic, which is 
promising. Software tools integration approaches such as FMI 
(https://www.fmi-standard.org/) and Simantics (https://www.simantics.org/) 
in the field of co-simulation, the work on simulation-based optimization (Yang 
et al., 2014) and model-independent global sensitivity (Saltelli et al., 2008) are 
examples. Related to the tools, is also the execution of the massive number of 
simulations needed. This requires computing power and suitable ICT solutions 
to be cost-effective. Execution on dedicated high-performance computational 
clusters is one possibility. Second, perhaps an even more enticing option is the 
utilization of cloud computing which provides flexibility on the needed 
computing power. Furthermore, such technologies as Docker (Docker, 2018) 
pave way to its use in the presented approach. 

The second implication relates to the scope of the analysis. Defining a large 
scope for the analysis may be able to include, in theory, all relevant aspects but 
becomes easily practically impossible to handle as it leads to computationally 
heavy situations. While computing power is nowadays readily and cheaply 
available, this issues should not be forgotten. For example, when conducting 
sensitivity analyses the computing power requirement may grow exponentially 
as a function of the number of parameters. On the other hand, a too-narrow 
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scope leads to results that are not useful or could have been obtained otherwise. 
After the computations, all the results need interpretation and should be looked 
into with a critical eye and evaluated for practical significance. 

Thirdly, application of the approach may even require a larger revamp of the 
design work practices. It may be that new roles, specializing in utilization of 
such tools, will emerge in the design companies. It has even been suggested that 
new organizations may emerge due to the new approaches and tools. For 
example, in (Ritala, 2013) a new element called “optimization and modelling 
organization” has been introduced to existing engineering organizations. Rise 
of such new roles and organizations will probably be a gradual, even slow, 
change since, as Moran has noted, the academic and practical chemical 
engineering/plant design have drifted quite far apart and the current, 
sophisticated methods developed in academia are not much used in practice 
(Moran, 2015). Thus, it seems that there remains a considerable amount of 
practically oriented work to be done here. 

As briefly mentioned in chapter 1.3 the line between R&D and design is 
sometimes quite blurred. This is the case of course in situations where a new 
type of equipment or process concept is built the first time. It seems that the 
approach presented here could be especially suitable in such cases rather than 
in cases where the design work is mainly minor adjustments to tried-and-true 
process concepts. Now, coming back to Figure 5, it could be argued that the 
detail design phase may not benefit as much from the presented approach. This 
is because this phase typically tends to involve routine design tasks since the 
broad process concept is already fixed. This does not mean that the detailed 
design phase could not benefit from other advanced methods though. For 
example, optimization can be used to design the detailed routing of pipelines 
within the constrained physical area of the site or dynamic simulation is used to 
test the automation solution prior to commissioning. 

In summary, to be useful this approach seems to require development of 
certain expertise in the tools and in defining the scope. How this expertise is 
obtained is not analysed in this thesis in detail but it seems that it is no different 
from other types of expert knowledge/ability. Thus, it seems conceivable that 
approaches to expertise development could be applicable and indeed needed 
here. 

5.2 Validity of the research

Validity of research typically refers to two things: internal and external validity. 
The internal validity of research measures whether the used data, methods and 
results justify the claims.  External validity on the other hand deals with the 
extent to which results can be generalized.  

5.2.1 Internal validity 

Validity of the research process 
The object of this research is designing processes, their automation and 
operations, which is a practical thing and as such the motivation for the research 
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has been derived from the practice. This practical starting point has affected the 
choice of how the research work was organised. As presented in chapter 1.2, the 
research of this thesis follows the DSR approach. It was chosen as the 
methodology since while it strives to uncover scientific knowledge, it also is 
closely tied to solving practical problems and providing utility via research. 
More specifically, the present work is based on the application of DSR on 
information technology systems (March and Smith, 1995). This is well suited for 
this thesis because of its quite practical aims and the computational approach 
used. Thus, the choice of research methodology favours the internal validity of 
the research. 

Validity of the results 
The main claim of this thesis is that coupling dynamic simulation with chosen 
mathematical methods can act as a tool to focus process designer’s attention 
and to provide insight into operational personnel of the plant and thus bring 
added value (or in other words utility). To investigate this claim, data was 
gathered from four case-based, computational studies. Justification of the case-
based approach was given in chapter 1.2 on methodology. The tools and 
computer simulation models used will be analysed in the next chapter. From the 
case results, support for the main hypothesis, as summarised in chapter 3.4, was 
derived and argumentation for generalizability of the results will be given in a 
later chapter. Putting these together finally gives support to the validity of the 
results. 

5.2.2 External validity 

Validity of the chosen computational tools and models 
Parker has argued that validity of computer simulations’ results deals mainly 
with external validity – their being indicative of what is true of the target system 
(Parker, 2008b). The obvious and best way of ensuring validity of the computer 
simulations’ results is to compare them with measurements from a 
corresponding real-life process. Since a direct comparison of simulation results 
and measurement data is not always possible, Parker further analysed how the 
strategies employed by experimentalists to build confidence in their results 
could be employed in the domain of computer simulation. Here a distinction 
was made between model evaluation and code evaluation. The former, 
sometimes called model validation, is concerned with how well the model 
describes the phenomenon under study. The latter, sometimes called model 
verification, deals with quality of code implementation to solve the model 
equations, regardless of whether they actually describe the phenomenon. In 
order not to use the term validity in different meanings here, we shall utilize the 
term model evaluation henceforth. 
 

Approach to tool evaluation 
Next, each tool and simulation model is evaluated in more detail. This is done 
following the approach of Parker (2008b) who points out that a so-called 
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Sherlock Holmes strategy may be employed. Basically, it says: “Show that 
plausible sources of significant error can be ruled out”. It has the following 
conditions of successful application: 
 

1. Make a thorough and good-faith attempt to identify all plausible 
sources of error and alternative explanations of the results. 

2. Do not make the situation such that there is little clue how to answer the 
questions raised previously. 

3. Make a thorough and good-faith attempt to uncover any indications that 
the simulation did go wrong in the ways identified above. 

 

To argue the validity of the tools we next employ the Sherlock Holmes strategy 
in code evaluation, i.e., tools used here and in model evaluation, i.e., the 
simulation models used here. 
 
Code evaluation 
In code evaluation, the most obvious source of errors is programming mistakes 
and it pertains to all of the used tools. This can cause instability of the programs, 
spurious and/or non-physical simulation outputs, or otherwise clearly wrong 
results. Regarding Apros, the utilized unit operations models and solvers are 
well tested, some having over 30 years of development and successful 
utilization. This is done with a set of 24 validation simulations that are run 
before every new software version release. In addition, several other less-formal 
test are conducted. Similarly, the other tools (Matlab, Simlab and IND-
NIMBUS) are results of a long period of development and have been quite 
extensively utilized. Thus, we may argue that programming mistakes are 
probably not problematic here. A more detailed source of code error is possible 
numerical instability of the simulators’ time integrations scheme. This would 
lead to non-physical (unstable) or oscillatory behaviour of model states and 
outputs, error messages and even halting of simulations. In Apros, a variable-
step time integration scheme was applied to alleviate this error source, although 
it did not eliminate the problem entirely. In fact, some simulations did halt. This 
small set was removed from the data set. Similar problems may occur due to 
erroneous spatial discretization of the model. In this case, no such problems 
were encountered once the models had been iteratively built and tested. A final 
common possible source of error for all of the tools is a hardware malfunction. 
One detectable indication of this is the complete crashing of the simulator tool. 
In fact, in simulations of Publication I, this error source occurred in the form of 
a forced operating system update, which terminated all simulations. After this, 
the simulations were restarted with saving of intermediate results enabled so 
that the effect of possible future occurrences of this error source were removed. 
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Model evaluation 
Next, we turn to evaluating the simulation models utilized in the case studies. 
This is done in Table 10 for all of the models presented in chapter 4. 
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Although it would be beneficial to give quantitative numerical evidence to 
support the model evaluation, it has been noted that also qualitative analysis is 
helpful (Parker, 2008a). Overall, the above analyses give support to the validity 
of the selected tools and models. 

Generalizability 
External validity of research is defined as the extent to which the results of a 
study can be generalized to other situations and to other people. We argue that 
the main result obtained from the case studies can be, in fact extended beyond 
the cases. Furthermore, we try to characterize such new cases. 

The argumentation is that  
1. The models and tools were appropriate for the task at hand (see previous 

chapter) and the tools are in fact applicable elsewhere also.  
2. The cases represent realistic and not uncommon process industry 

situations. 
3. The analyses were able to bring forth insights, which bring added value 

to a designer. 
 

Thus, it stands to reason that applying such approach to other cases 
originating from the process industry while utilizing models with similar 
foundations, can provide extended added value. While this is not a fully 
inductive generalization of the results, it is in line with abductive reasoning (see 
for example Paavola, 2006). Abductive reasoning, originally proposed by Peirce 
in the early 1900s, is the third mode of scientific reasoning, in addition to 
induction and deduction. Abductive reasoning seeks for the simplest, most 
likely explanation (out of many possible ones) that accounts for the facts. It 
suggests that something may be true, but does not guarantee the conclusion, i.e. 
it closely resembles Occam’s Razor where the simplest explanation is likely to 
be the correct one.  

The abductive research process has been visualized by Kovács and Spens as an 
iterative loop, whereas inductive and deductive approaches are more linear. By 
this is meant that deduction starts from the theory and moves then towards 
empirical, while induction moves in the other direction. Abduction also has 
empirical observations as its starting point, but not solely them because it 
utilizes prior theoretical knowledge as a source inspiration and ideas. It 
incorporates the idea of a “guiding principle”, which may be only an intuitive 
thought or even a well-formulated hypothesis. It is used to focus the empirical 
work on areas which are believed to bring new insights and ideas for theory 
development (Anttila, 2000). The following figure, which is adapted from 
(Kovács and Spens, 2005), depicts this. 



Discussion

64 
 

 
Figure 21 Abductive research process (Kovács and Spens, 2005)

To apply abductive reasoning here, we start with the prior that dynamic process 
simulation and methods such as optimization have been utilized in the process 
design field for a long time, as summarised in chapter 2. The real-life 
observation of step 1 was, that while dynamic process simulation is widely used, 
it “could be still put into better use”. By this we mean that it was observed that 
many times extensive process models are constructed, simulated only a few 
times and then forgotten. Firstly, this seemed to be, on one hand, in conflict or 
at least not in line, with the lofty goals presented in the literature (see chapter 
2). Secondly, this seemed like a terrible waste, in the sense that such models 
have required considerable expert effort. Furthermore, during several years 
such challenges as referred to in chapter 3 were starting to be seen. This led to 
the idea, that combining dynamic process simulation with other mathematical 
methods could be useful, especially over the life cycle of a process industry plant. 
This idea was iteratively tested and refined (step 2) in the case studies presented 
in chapter 3. Typically, case studies have been presented as linear processes 
following the standard research process of a number of planned subsequent 
phases. Dubois and Gadde point out that such approach is ill-suited for case 
research (Dubois and Gadde, 2002), since the researcher typically goes “back 
and forth” between different research activities and between empirical and 
theoretical work. In other words, practical cases bring new viewpoints, which 
then serve to re-orient the research and bring up new research questions. This 
was the situation also in this study. Inside each case study, a “lower-level” 
iterative approach was taken in definition of the simulation problem, the 
utilized methods and conduction of the computations. Step 3 of Figure 21 is 
this thesis, where we propose that combining process simulation with other 
mathematical methods can be used to gain insights that help in overcoming 
practical challenges. Finally, the thesis work also started step 4 in the form of 
application of the combinations in cases not included in this thesis.  

5.3 Limitations and future work

The presented work, like nearly all research, has its limitations and raises 
further issues to be tackled.  
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This thesis is case-based research and thus entails the limitations of all case 
research. The main question naturally is the generalizability of the results. In 
the previous chapter, I have attempted to alleviate concerns of this nature. 
Naturally, the final judgement on generalizability would come from further use 
of the approach, especially when used in real design work rather than academic 
research. To identify new cases in which the presented approach could be 
applied, we characterize the currently presented ones. Firstly, all the cases 
pertained to the process industry and more specifically continuous processes (as 
opposed to batch processes). This probably is not a rigid requirement and 
application to e.g. discrete manufacturing processes seems feasible: only the 
simulation models need to be changed. Thus, a natural avenue of future work 
would be to apply the approach to other domains as well. Secondly, in the cases 
there was present a lack of full input data, i.e. the models contained 
uncertainties. The status of this characterization is somewhat difficult. On one 
hand, if the problem at hand contains severe uncertainties, construction of the 
models may be impossible which prohibits entirely the application of the 
approach. On the other hand, if no uncertainties are present one may question 
whether such analyses are needed at all. Thus, it seems that in a process industry 
plant’s life cycle, especially early phases are appropriate for the presented 
approaches. A third way to characterize potential cases of application is 
complexity. The studied cases were quite complex in the sense that they 
contained numerous parameters, inputs, state variables with several 
interactions, non-linearities and dynamics. This characterization seems quite 
rigid because if the processes were very simple, then many of the insights could 
most likely be obtained without resorting to computational methods. In relation 
to the second characterization, it should be noted that even with no 
uncertainties present, the complexity of the process alone can warrant the use 
of the approach. Thus, while being an interesting ingredient, uncertainties are 
not a requirement.  With the above characterizations, we hope to help in guiding 
the future work. 

The next avenue of future work is the up-take of the approaches presented 
above. At the very core, the presented approach relies on coupling 
computational tools, which presents a practical task of tools development. 
Firstly, the ease of use for the analyst is a requirement to reduce the time to 
perform the analyses. All of the cases presented in this thesis were implemented 
as a mixture of commercial tools and self-made pieces of code. A more 
systematic and user-friendly implementation would be beneficial in reducing 
manual work. In a similar vein, the computational speed is an issue that should 
be addressed. Naturally, new and more powerful hardware as well as readily 
available cloud computing resources alleviate this issue, but developments on 
the method or software side are probably also needed. Regarding the simulation 
tools, also comprehensiveness of the model libraries may require future work. 
It is desirable that the modelling tools chosen should already at the beginning 
of the analysis contain all or most of the needed unit operation models as 
otherwise time-consuming model development may prevent application of the 
presented approaches. Still, as no simulator is an all-encompassing package, it 
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is also desirable for them to be adaptable, i.e. to provide the analyst a possibility 
to “tweak” them, both in fine-tuning of the models as well as in connecting the 
simulator to other tools. Furthermore, the time consumed in constructing the 
needed simulation models for each new case should be minimized. As it seems 
that the presented methods are most applicable in cases where an entirely new 
process is being designed, the rather straightforward idea of a large library of 
(sub-)process models from previous projects might not be feasible. Still, even 
the very early stages of the design nowadays produce plans, designs, etc., in a 
digital format which could be used, to some extent, in automatic generation of 
the simulation models. This would naturally entail appropriate transformations 
from the design software (e.g. COMOS and SmartPlant) to the simulation tool. 
Furthermore, advances in the field of automated process design (e.g. generative 
design) may prove useful. 

The uptake of such approach, as well as other similar PSE methods, may lead 
to major changes in the way that design work is done, as was referred to in 
chapter 5.1. This change is especially interesting since the presented approach, 
while heavily computational in nature, does not exclude the role of the analyst’s 
expertise. In fact, it seems that the need for domain-specific expertise can 
become even more pronounced. This is because formulation of the problem at 
hand, as well as interpretation of the results, needs a person with adequate 
expertise. Thus, a future avenue for research would be to conduct studies on 
how practical design engineers would apply the presented approaches, thus 
putting more emphasis on the observation step of the action research cycle. 

In this thesis, a selected set of mathematical methods were coupled with 
dynamic process simulation. This leads to two issues. First, the methods 
presented here are by no means complete, but rather an active research field. 
Thus, new developments in areas like global sensitivity analysis should be 
looked into. In addition, the natural question is whether other mathematical 
method integrations would be beneficial and how? For example, currently it 
seems that there is substantial hype around machine learning and big data 
methods. These both seem very interesting and their coupling could be a way 
forward. 
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6. Conclusion

This thesis presented research into extending the use of dynamic process 
simulation in order to gain added value, or in the terminology of DSR, utility to 
a process or control designer. The starting points for the work were certain 
challenges faced by a design engineer. First of the challenges was related to 
finding the right focus with limited resources. Secondly, doing design with 
limited knowledge. Finally, when planning the operation of the process, the 
designer faces often-conflicting objectives that need to be balanced and he/she 
needs to gain further insights into the process and its operation. The overriding 
theme was that the computational approach of combining dynamic simulation 
in the abovementioned other methods, help to alleviate these challenges.  

In a bigger picture, the current trend of digitalization of the entire society, 
including the process industry, is progressing fast. This both enables and calls 
for this work. Clearly, the enabling aspect comes from the fact that this work 
relies on simulation models and is computational in nature. A key development 
here is abundant computing power. Traditionally, the power would be obtained 
from a dedicated high-performance computing cluster, but the trends are 
turning towards cloud computing. Azure, AWS and Google Cloud Platform are 
well-known examples. On the simulation side, the emerging trend is digital 
twins, digital representation of physical assets, which can incorporate 
simulation models. Conversely, these developments call for these kinds of 
approaches. In the current hype around digitalization, it seems that data is seen 
as a value of its own, but one could argue that only once something clever is 
done with, do we see added value. This thesis strives to help. It deals with one 
slice of this issue, by showing how simulator-generated data can bring utility. 

The work was in four case studies. In them, dynamic process simulations were 
combined with a novel model comparison method, with global sensitivity 
analysis and with multiple objective optimization. The work involved 
construction of simulator models using various available tools, for example 
Apros® and MatlabTM. An extensive search for mathematical methods was 
conducted. As mentioned previously, the ones presented here are only examples 
of such and it seems that much more could be done here in the future. A massive 
number of simulations were performed. The data generated in this way was then 
analysed, using process engineering know-how, conclusions were drawn and 
argumentation given to support the main result. 

The cases were constructed in such a way that they pertain to a certain phase 
of a process industry plant’s life cycle. This was done to highlight the approach’s 
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wider applicability and generalizability. Two cases were targeted to the early 
phases of the lifecycle. The first of them, Paper production, looked into gaining 
insight and confidence in the results of an optimal process design by utilizing 
more detailed dynamic models and the developed model comparison method. 
Details are in Publication I. The second case, Tower controls, then combined 
dynamic simulation with global sensitivity analysis, in order to focus the 
attention of a control designer to critical parts of the process and its control 
structure. The control structure was characterized with tens of parameters, 
which were the subject of the sensitivity analysis. A small subset arose as critical. 
Analysing the set of critical parameters focused attention towards certain 
process areas. The two latter cases were related to the operation phase of the 
plant. The Filtration case combined a dynamic process simulator and a multiple 
objective optimizer. This was done in order to derive an optimal running 
schedule. The process contained two filters, prone to fouling and a pumping 
system driving the filters. Interactive optimization was applied. The manner in 
which the optimization was conducted helped in gaining insight into the 
process’ operation. Finally, the Bottleneck case combined dynamic process 
simulation again with global sensitivity analysis. This time bottlenecks were 
searched for. This separates the case from the Tower controls case as the control 
structure was not analysed. All the cases were computational studies, typically 
involving thousands of simulations and conducted with dedicated 
computational servers. Quite much work was involved in the technical setup of 
the simulations. 

The main result, or claim, of this work was that added value or utility, beyond 
the traditional simulation results, could be extracted from simulation models 
when they are combined with other mathematical methods. This was supported 
by the case studies. The Paper production case showed that the proposed model 
comparison method works. This leads to the conclusion that it can be of help in 
gaining confidence in optimization results from simplified models, focusing the 
designer’s attention as well as providing insights into the operation of the plant. 
In the Tower control case, the combination was able to highlight process areas 
where the control designer’s attention should be focused. This was similar to the 
Bottleneck case. The Filtration case showed the feasibility of the combination as 
well as the ability of providing insight into the process operation. Combining 
these contributing results then gives support to the main result of this thesis. 

The design of processes and their automation faces ever-growing demand for 
cost-effectiveness leading to challenges to the engineer over many phases of a 
process industry plant’s life cycle. This thesis showed that extending dynamic 
simulation, as presented, seems promising in alleviating these challenges and 
thus adding value to the process or automation designers’ work. The work 
presented is a starting point for new avenues of investigation and hopefully 
practical implementations. 



69 
 

References

Anttila, P., 2000. Tutkimisen taito ja tiedon hankinta, 3rd ed. Akatiimi Oy, Hamina, 
Finland. 

Apros [WWW Document], 2010. URL http://www.apros.fi/en/ 
Azapagic, A., Howard, A., Parfitt, A., Tallis, B., Duff, C., Hadfield, C., Pritchard, C., 

Gillett, J., Hackitt, J., Seaman, M., Darton, R., Rathbone, R., Clift, R., Watson, S., 
Elliot, S., 2002. The Sustainability Metrics, Sustainable Development Progress 
Metrics. Rugby, UK. 

Bahri, P.A., Bandoni, J.A., Romagnoli, J.., 1997. Integrated flexibility and controllability 
analysis in design of chemical processes. Am. Inst. Chem. Eng. AIChE J. 43, 997. 

Bakshi, B.R., 2014. Methods and tools for sustainable process design. Curr. Opin. 
Chem. Eng. 6, 69–74. doi:10.1016/j.coche.2014.09.005 

Ben-guang, R., Fang-yu, H., Kraslawski, A., Nyström, L., 2000. Study on the 
Methodology for Retrofitting Chemical Processes. Chem. Eng. Technol. 23, 479–
484. 

Bennett, S., 1996. A brief history of automatic control. IEEE Control Syst. Mag. 16, 17–
25. doi:10.1109/37.506394 

Biegler, L.T., Grossmann, I.E., 2004. Retrospective on optimization. Comput. Chem. 
Eng. 28, 1169–1192. doi:10.1016/j.compchemeng.2003.11.003 

Biegler, L.T., Grossmann, I.E., Westerberg, A.W., 1997. Systemactic Methods of 
Chemical Process Design. Prentice Hall PTR, Upper Saddle River, New Jersey 
07458. 

Briggs, M., Buck, S., Smith, M., 1997. Decommissioning, Mothballing, and Revamping. 
Institution of Chemical Engineers, Rugby, UK. 

Broeck, H. Ten, 1944. Economic Selection of Exchanger Sizes. Ind. Eng. Chem. 36, 64–
67. doi:10.1021/ie50409a013 

Bucciarelli, L.L., 1996. Designing Engineers. MIT Press, Cambridge, Massachusetts. 
Cabezas, H., Bare, J.C., Mallick, S.K., 1999. Pollution prevention with chemical process 

simulators: the generalized waste reduction (WAR) algorithm—full version. 
Comput. Chem. Eng. 23, 623–634. doi:10.1016/S0098-1354(98)00298-1 

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening design for 
sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518. 
doi:10.1016/j.envsoft.2006.10.004 

Carvalho, A., Gani, R., Matos, H., 2008. Design of sustainable chemical processes: 
Systematic retrofit analysis generation and evaluation of alternatives. Process 
Saf. Environ. Prot. 86, 328–346. doi:10.1016/j.psep.2007.11.003 

Carvalho, A., Matos, H.A., Gani, R., 2013. SustainPro: A tool for systematic process 
analysis, generation and evaluation of sustainable design alternatives. Comput. 
Chem. Eng. 50, 8–27. doi:10.1016/j.compchemeng.2012.11.007 

Chawankul, N., Budman, H., Douglas, P.L., 2005. The integration of design and 
control: IMC control and robustness. Comput. Chem. Eng. 29, 261–271. 
doi:10.1016/j.compchemeng.2004.08.034 

Cukier, R.., Levine, H.., Shuler, K.., 1978. Nonlinear sensitivity analysis of 
multiparameter model systems. J. Comput. Phys. 26, 1–42. doi:10.1016/0021-
9991(78)90097-9 



References

70 
 

Cukier, R.I., 1973. Study of the sensitivity of coupled reaction systems to uncertainties 
in rate coefficients. I Theory. J. Chem. Phys. 59, 3873. doi:10.1063/1.1680571 

Dimian, A., Bildea, C., Kiss, A., 2014. Integrated design and simulation of chemical 
processes, in: Dimian, A., Bildea, C., Kiss, A. (Eds.), Computer Aided Chemical 
Engineering. Elsevier, Amsterdam, p. 863. 

Docker, 2018. Docker - Build, Ship, and Run Any App, Anywhere [WWW Document]. 
URL https://www.docker.com (accessed 4.17.18). 

Dubois, A., Gadde, L.-E., 2002. Systematic combining: an abductive approach to case 
research. J. Bus. Res. 55, 553–560. doi:10.1016/S0148-2963(00)00195-8 

Eisenhardt, K.M., 1989. Building Theories from Case Study Research. Acad. Manag. 
Rev. 14, 532–550. 

Fisher, W.R., Doherty, M.F., Douglas, J.M., 1987. Screening of Process Retrofit 
Alternatives. Ind. Eng. Chem. Res. 26, 2195–2204. doi:10.1021/ie00071a005 

Furman, K.C., Sahinidis, N. V, 2002. A Critical Review and Annotated Bibliography for 
Heat Exchanger Network Synthesis in the 20th Century. Ind. Eng. Chem. Res. 41, 
2335–2370. doi:10.1021/ie010389e 

Garvey, P.R., Lansdowne, Z.F., 1998. Risk Matrix: An Approach for Identifying, 
Assessing, and Ranking Program Risks. Air Force J. Logist. 22, 16–19. 

Grossmann, I.E., 2004. Challenges in the new millennium: product discovery and 
design, enterprise and supply chain optimization, global life cycle assessment. 
Comput. Chem. Eng. 29, 29–39. 
doi:http://dx.doi.org/10.1016/j.compchemeng.2004.07.016 

Grossmann, I.E., Biegler, L.T., 2004. Part II. Future perspective on optimization. 
Comput. Chem. Eng. 28, 1193–1218. doi:10.1016/j.compchemeng.2003.11.006 

Grossmann, I.E., Morari, M., 1983. Operability, Resiliency, and Flexibility: Process 
Design Objectives for a Changing World. 

Grossmann, I.E., Westerberg,  a W., 2000. Research challenges in Process Systems 
Engineering. AIChE J. 46, 1700–1703. doi:Cited By (since 1996) 103\nExport 
Date 6 March 2013 

Grossmann, I.E., Westerberg, A.W., Biegler, L.T., 1987. Retrofit design of processes. 
Pittsburgh. 

GSES, n.d. JADE [WWW Document]. URL http://www.gses.com/wp-
content/uploads/GSE-JADE-Power-Plant-Trn-Sim-datasheet.pdf (accessed 
10.11.16). 

Gundersen, T., 1990. Retrofit Process Design - Research and Applications of Systematic 
Methods, in: Siirola, J.J., Grossmann, I.E., Stephanopoulos, G. (Eds.), 
Foundations of Computer-Aided Process Design. CACHE-Elsevier, pp. 213–240. 

Gundersen, T., Naess, L., 1988. The synthesis of cost optimal heat exchanger networks: 
An industrial review of the state of the art. Comput. Chem. Eng. 12, 503–530. 
doi:http://dx.doi.org/10.1016/0098-1354(88)87002-9 

Hakanen, J., 2006. On Potential of Interactive Multiobjective Optimization in Chemical 
Process Design. University of Jyväskylä. 

Hakanen, J., Sahlstedt, K., Miettinen, K., 2013. Wastewater treatment plant design and 
operation under multiple conflicting objective functions. Environ. Model. Softw. 
46, 240–249. doi:10.1016/j.envsoft.2013.03.016 

Halemane, K.P., Grossmann, I.E., 1983. Optimal process design under uncertainty. 
AIChE J. 29, 425–433. doi:10.1002/aic.690290312 

Hamid, M.K.A., Sin, G., Gani, R., 2010. Integration of process design and controller 
design for chemical processes using model-based methodology. Comput. Chem. 
Eng. 34, 683–699. doi:10.1016/j.compchemeng.2010.01.016 

Hangos, K., Cameron, I., 2001. Process modelling and model analysis / K.M. Hangos, 



References

71 
 

I.T. Cameron. Academic Press, San Diego. 
Harsh, M.G., Saderne, P., Biegler, L.T., 1989. A mixed integer flowsheet optimization 

strategy for process retrofits—the debottlenecking problem. Comput. Chem. Eng. 
13, 947–957. doi:10.1016/0098-1354(89)85067-7 

Heikkilä, A.-M., 1999. Inherent safety in process plant design : an index-based 
approach. VTT publications; 384. 

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design Science in Information 
Systems Research. MIS Q. 28, 75–105. doi:10.2307/25148625 

Humphreys, P., 1991. Computer Simulations, in: Fine, A., Forbes, M., Wessels, L. 
(Eds.), Psa 1990. Philosophy of Science Association, East Lansing, pp. 497–506. 

Hurme, M., Rahman, M., 2005. Implementing inherent safety throughout process 
lifecycle. J. Loss Prev. Process Ind. 18, 238–244. doi:10.1016/j.jlp.2005.06.013 

Hussain, R., Wearne, S., 2005. Problems and Needs of Project Management in the 
Process and Other Industries. Chem. Eng. Res. Des. 83, 372–378. 
doi:10.1205/cherd.04049 

Iooss, B., Lemaître, P., 2014. A review on global sensitivity analysis methods. 
doi:10.1007/978-1-4899-7547-8_5 

ISO, 2004. ISO-15926-1: Industrial automation systems and integration - Integration of 
life-cycle data for process plants including oil and gas production facilities. 

Jacquemin, L., Pontalier, P.-Y., Sablayrolles, C., 2012. Life cycle assessment (LCA) 
applied to the process industry: a review. Int. J. Life Cycle Assess. 17, 1028–1041. 
doi:10.1007/s11367-012-0432-9 

Khan, F., Rathnayaka, S., Ahmed, S., 2015. Methods and models in process safety and 
risk management: Past, present and future. Process Saf. Environ. Prot. 98, 116–
147. doi:10.1016/j.psep.2015.07.005 

Killcross, M., 2012. What is Commissioning?, in: Killcross, M. (Ed.), Chemical and 
Process Plant Commissioning Handbook. Butterworth-Heinemann, Oxford, pp. 
xiii–xv. doi:http://dx.doi.org/10.1016/B978-0-08-097174-2.10009-X 

Klatt, K.-U., Marquardt, W., 2009. Perspectives for process systems engineering—
Personal views from academia and industry. Comput. Chem. Eng. 33, 536–550. 
doi:10.1016/j.compchemeng.2008.09.002 

Klemeš, J.J., Kravanja, Z., 2013. Forty years of Heat Integration: Pinch Analysis (PA) 
and Mathematical Programming (MP). Curr. Opin. Chem. Eng. 2, 461–474. 
doi:10.1016/j.coche.2013.10.003 

Koulouris, A., Calandranis, J., Petrides, D.P., 2000. Throughput analysis and 
debottlenecking of integrated batch chemical processes. Comput. Chem. Eng. 24, 
1387–1394. doi:10.1016/S0098-1354(00)00382-3 

Kovács, G., Spens, K.M., 2005. Abductive reasoning in logistics research. Int. J. Phys. 
Distrib. Logist. Manag. 35, 132–144. doi:10.1108/09600030510590318 

Kucherenko, S., Iooss, B., 2015. Derivative based global sensitivity measures. arXiv. 
Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N., 2009. Monte Carlo 

evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 
94, 1135–1148. doi:10.1016/j.ress.2008.05.006 

Law, A., 2007. Simulation Modeling and Analysis. McGraw-Hill 
Science/Engineering/Math, New York. 

Lawley, H.G., 1974. Operability studies and hazard analysis. Chem. Eng. Prog. 70, 45–
56. 

Linnhoff, B., Vredeveld, D.R., 1984. Pinch Technology Has Come of Age. Chem. Eng. 
Progress1 80, 33–40. 

Ljung, L., 1987. System Identification: Theory for the User, 1st ed. Prentice-Hall, 
Englewood Cliffs, New Jersey. 



References

72 
 

Lucay, F., Mellado, M.E., Cisternas, L.A., Gálvez, E.D., 2012. Sensitivity analysis of 
separation circuits. Int. J. Miner. Process. 110–111, 30–45. 
doi:10.1016/j.minpro.2012.03.004 

Lutze, P., Gani, R., Woodley, J.M., 2010. Process intensification: A perspective on 
process synthesis. Chem. Eng. Process. Process Intensif. 49, 547–558. 
doi:10.1016/j.cep.2010.05.002 

March, S.T., Smith, G.F., 1995. Design and natural science research on information 
technology. Decis. Support Syst. 15, 251–266. 

Marquardt, W., Nagl, M., 2004. Workflow and information centered support of design 
processes - The IMPROVE perspective. Comput. Chem. Eng. 29, 65–82. 
doi:10.1016/j.compchemeng.2004.07.018 

MATLAB, The Language of Technical Computing [WWW Document], n.d. URL 
http://se.mathworks.com/products/matlab/ 

Mentor, G., n.d. Flowmaster V7 [WWW Document]. 
Miettinen, K., 2006. IND-NIMBUS for demanding interactive multiobjective 

optimization, in: Multiple Criteria Decision Making ’05. Katowice, Poland, pp. 
137–150. 

Milton, J.S., Arnold, J.C., 1995. Introduction to Probability and Statistics: Principles 
and Applications for Engineering and the Computing Sciences, 3rd ed. McGraw-
Hill. 

Modelica, A., n.d. Modelica and the Modelica Association [WWW Document]. 
Mohideen, M.J., Perkins, J.D., Pistikopoulos, E.N., 1997. Robust stability 

considerations in optimal design of dynamic systems under uncertainty. J. 
Process Control 7, 371–385. doi:10.1016/S0959-1524(97)00014-0 

Moran, S., 2015. An Applied Guide to Process and Plant Design. Elsevier. 
Morris, M.D., 1991. Factorial Sampling Plans for Preliminary Computational 

Experiments. Technometrics 33, 161–174. doi:10.2307/1269043 
Nishida, N., Liu, Y.A., Ichikawa, A., 1976. Studies in chemical process design and 

synthesis II. Optimal synthesis of dynamic process systems with uncertainty. 
AIChE J. 22, 539–549. doi:10.1002/aic.690220318 

Noronha, M., Mavrov, V., Chmiel, H., 2003. Computer-Aided Simulation and Design of 
Nanofiltration Processes. Ann. N. Y. Acad. Sci. 984, 142–158. doi:10.1111/j.1749-
6632.2003.tb05997.x 

Paavola, S., 2006. On the Origin of Ideas : An Abductivist Approach to Discovery. 
University of Helsinki. 

Panetto, H., 2007. Towards a classification framework for interoperability of enterprise 
applications. Int. J. Comput. Integr. Manuf. 20, 727–740. 
doi:10.1080/09511920600996419 

Parker, W.S., 2008a. Computer simulation through an error-statistical lens. Synthese 
163, 371–384. doi:10.1007/s11229-007-9296-0 

Parker, W.S., 2008b. Franklin, Holmes, and the Epistemology of Computer Simulation. 
Int. Stud. Philos. Sci. 22, 165–183. doi:10.1080/02698590802496722 

Perkins, J.D., Walsh, S.P.K., 1996. Optimization as a tool for design/control integration. 
Comput. Chem. Eng. 20, 315–323. doi:10.1016/0098-1354(95)00022-4 

Pistikopoulos, E.N., Diangelakis, N.A., 2015. Towards the integration of process design, 
control and scheduling: Are we getting closer? Comput. Chem. Eng. 
doi:10.1016/j.compchemeng.2015.11.002 

Psaltis, A., Sinoquet, D., Pagot, A., 2016. Systematic optimization methodology for heat 
exchanger network and simultaneous process design. Comput. Chem. Eng. 95, 
146–160. doi:10.1016/j.compchemeng.2016.09.013 

Reason, J., 1990. The Contribution of Latent Human Failures to the Breakdown of 



References

73 
 

Complex Systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 327, 475–484. 
Reason, J., Hollnagel, E., Paries, J., 2006. Revisiting the “Swiss Cheese” Model of 

Accidents, EEC Note No. 13/06. Brétigny-sur-Orge Cedex. 
Ricardez-Sandoval, L.A., Budman, H.M., Douglas, P.L., 2009. Integration of design and 

control for chemical processes: A review of the literature and some recent results. 
Annu. Rev. Control 33, 158–171. doi:10.1016/j.arcontrol.2009.06.001 

Ritala, R., 2013. Optimizing Structure and Operation of Entire Production Systems, in: 
Efficient Networking Towards Novel Products and Processes. p. 169. 

Ropponen, A., 2013. Design Optimization of Highly Uncertain Processes: Applications 
to Papermaking System. Tampere University of Technology. Publication 1106. 
Tampere University of Technology. 

Sakizlis, V., Perkins, J.D., Pistikopoulos, E.N., 2004. Recent advances in optimization-
based simultaneous process and control design. Comput. Chem. Eng. 28, 2069–
2086. 

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. 
Comput. Phys. Commun. 145, 280–297. doi:10.1016/S0010-4655(02)00280-1 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., 
Tarantola, S., 2008. Global Sensitivity Analysis: The Primer. John Wiley & Sons, 
Ltd. 

Sargent, R.W.H., 1991. What is Chemical Engineering. CAST Newsl. 14, 9–11. 
Savolainen, J., Kannari, L., Pennanen, J., Tähtinen, M., Sihvonen, T., Pasonen, R., 

Weiss, R., 2016. Operation of a P2G plant under power scheduling, in: IRES 
2016. Düsseldorf. 

Savolainen, J., Lappalainen, J., 2015. Identification of process bottlenecks with global 
sensitivity analysis , an application to papermaking processes. Nord. Pulp Pap. 
Res. J. 30, 393–401. 

Savolainen, J., Lappalainen, J., Aikala, A., Ruuska, P., 2015. Enhancing Energy 
Management Of A Car Manufacturing Plant Through Modelling And Dynamic 
Simulation. BT  - 29th European Conference on Modelling and Simulation, 
ECMS 2015, Albena (Varna), Bulgaria, May 26-29, 2015. Proceedings. 
doi:10.7148/2015-0259 

Schneider, R., Marquardt, W., 2002. Information technology support in the chemical 
process design life cycle. Chem. Eng. Sci. 57, 1763–1792. doi:10.1016/S0009-
2509(02)00075-1 

Sepúlveda, F.D., Cisternas, L.A., Gálvez, E.D., 2014. The use of global sensitivity 
analysis for improving processes: Applications to mineral processing. Comput. 
Chem. Eng. 66, 221–232. doi:10.1016/j.compchemeng.2014.01.008 

Siirola, J.J., Powers, G.J., Rudd, D.F., 1971. Synthesis of system designs: III. Toward a 
process concept generator. AIChE J. 17, 677–682. doi:10.1002/aic.690170334 

SimLab - Sensitivity Analysis [WWW Document], 2010. URL 
http://simlab.jrc.ec.europa.eu/ 

Simon, L.L., Osterwalder, N., Fischer, U., Hungerbuhler, K., 2008. Systematic Retrofit 
Method for Chemical Batch Processes Using Indicators, Heuristics, and Process 
Models. Ind. Eng. Chem. Res. 47, 66–80. doi:10.1021/ie070044h 

Skogestad, S., Postlethwaite, I., 2005. Multivariable feedback control : analysis and 
design. John Wiley. 

Sobol’, I.M., 1993. Sensitivity estimates for nonlinear mathematical models. Math. 
Model. Comput. Exp. 1, 407–414. 

Sobol, I.M., Kucherenko, S., 2009. Derivative based global sensitivity measures and 
their link with global sensitivity indices. Math. Comput. Simul. 79, 3009–3017. 
doi:10.1016/j.matcom.2009.01.023 



References

74 
 

Suprapto, M., 2016. Collaborative Contracting in Projects. Delft University of 
Technology. 

Swaney, R.E., Grossmann, I.E., 1985. An index for operational flexibility in chemical 
process design. Part I: Formulation and theory. AIChE J. 31, 621–630. 
doi:10.1002/aic.690310412 

Tello, P., Weerdmeester, R., 2013. SPIRE Roadmap. 
Towler, G., Sinnott, R., 2013. Chapter 1 - Introduction to Design, in: Towler, G., 

Sinnott, R. (Eds.), Chemical Engineering Design (Second Edition). Butterworth-
Heinemann, Boston, pp. 3–32. doi:http://dx.doi.org/10.1016/B978-0-08-
096659-5.00001-8 

Uerdingen, E., Fischer, U., Hungerbühler, K., Gani, R., 2003. Screening for profitable 
retrofit options of chemical processes: A new method. AIChE J. 49, 2400–2418. 
doi:10.1002/aic.690490915 

Vega, P., Lamanna de Rocco, R., Revollar, S., Francisco, M., 2014. Integrated design 
and control of chemical processes – Part I: Revision and classification. Comput. 
Chem. Eng. 71, 602–617. doi:10.1016/j.compchemeng.2014.05.010 

Voss, C., Tsikriktsis, N., Frohlich, M., 2002. Case research in operations 
managementnull. Int. J. Oper. Prod. Manag. 22, 195–219. 
doi:10.1108/01443570210414329 

Voudouris, V.T., 1996. Mathematical programming techniques to debottleneck the 
supply chain of fine chemical industries. Comput. Chem. Eng. 20, S1269–S1274. 
doi:10.1016/0098-1354(96)00219-0 

VTT, n.d. BALAS Process Simulation Software [WWW Document]. URL 
http://balas.vtt.fi/ (accessed 10.11.16). 

Weiss, R., Savolainen, J., Peltoniemi, P., Inkeri, E., 2016. Optimal scheduling of a P2G 
plant in dynamic power, regulation and gas markets, in: 10th International 
Renewable Energy Storage (IRES 2016)International Renewable Energy Storage 
Conference. Düsseldorf. 

Westerberg, A.W., 2004. A retrospective on design and process synthesis. Comput. 
Chem. Eng. 28, 447–458. 
doi:http://dx.doi.org/10.1016/j.compchemeng.2003.09.029 

Wikipedia, n.d. List of chemical process simulators [WWW Document]. URL 
https://en.wikipedia.org/wiki/List_of_chemical_process_simulators (accessed 
10.11.16). 

Winsberg, E., 2015. Computer Simulations in Science, in: Zalta, E.N. (Ed.), The 
Stanford Encyclopedia of Philosophy. 

Yang, X.-S., Koziel, S., Leifsson, L., 2014. Computational Optimization, Modelling and 
Simulation: Past, Present and Future. Procedia Comput. Sci. 29, 754–758. 
doi:10.1016/j.procs.2014.05.067 

Young, P., Byrne, G., Cotterell, M., 1997. Manufacturing and the environment. Int. J. 
Adv. Manuf. Technol. 13, 488–493. doi:10.1007/BF01624609 

Yuan, Z., Chen, B., Sin, G., Gani, R., 2012. State-of-the-art and progress in the 
optimization-based simultaneous design and control for chemical processes. 
AIChE J. 58, 1640–1659. doi:10.1002/aic.13786 

Ziegler, J., Nichols, N., 1943. Process lags in automatic control circuits. Trans. Am. Soc. 
Mech. Eng. 65, 433–444. 

 



srevoc eporuE ni yrtsudni ssecorp ehT  
htiw sesirpretne laudividni fo sdnasuoht  

a sah yrtsudni sihT .seeyolpme fo snoillim  
dna ycneicfife devorpmi rof deen  

eht ylno ton stceffa hcihw ,ssenevititepmoc  
rof ,srotcartnocbus sti osla tub ynapmoc  

.srengised noitamotua dna ssecorp elpmaxe  
eht ni eil netfo seitilibisnopser esohw riehT  

ot gnidael ,elcyc efil s'tnalp eht fo sesahp ylrae  
elbaliava detimil sa hcus segnellahc  

 .llfi ot sevitejbo elpitlum dna noitamrofni
segnellahc esoht woh setagitsevni krow sihT  

fo esu dednetxe yb detaivella eb dluoc  
esac ruof aiv noitalumis ssecorp cimanyd  

si noitalumis ssecorp cimanyD .seiduts  
ledom levon a htiw ti gninibmoc yb dednetxe  

htiw ,noitazimitpo rof dohtem nosirapmoc  
elpitlum htiw dna sisylana ytivitisnes labolg  

 .noitazimitpo evitcejbo
eht ,stluser 'seiduts esac eht gnizisehtnyS  

deddA :noisulcnoc niam sti ot sevirra siseht  
morf detcartxe eb nac rengised eht rof eulav  
denibmoc era yeht nehw sledom noitalumis  

 .sdohtem lacitamehtam rehto htiw

-o
tl

a
A

D
D

 
8

8
/

 9
10

2

 +d
gefi

a*GM
FTSH

9  NBSI 3-6458-06-259-879  )detnirp( 
 NBSI 0-7458-06-259-879  )fdp( 
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

 
ytisrevinU otlaA  

gnireenignE lacirtcelE fo loohcS  
ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD  

 if.otlaa.www

 + SSENISUB
 YMONOCE

 
 + TRA

 + NGISED
 ERUTCETIHCRA

 
 + ECNEICS

 YGOLONHCET
 

 REVOSSORC
 

 LAROTCOD
 SNOITATRESSID

 n
en

ia
lo

va
S i

nu
oJ

 g
ni

nn
al

p l
an

oi
ta

re
po

 d
na

 n
gi

se
d 

ss
ec

or
p 

ni 
no

it
al

u
mi

s 
ci

ma
ny

d 
de

dn
et

xe
 f

o 
eu

la
v 

de
dd

A
 y

ti
sr

ev
i

n
U 

otl
a

A

 9102

 ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD

dednetxe fo eulav deddA  
ni noitalumis cimanyd  

dna ngised ssecorp  
 gninnalp lanoitarepo

 nenialovaS inuoJ

 LAROTCOD
 SNOITATRESSID

srevoc eporuE ni yrtsudni ssecorp ehT  
htiw sesirpretne laudividni fo sdnasuoht  

a sah yrtsudni sihT .seeyolpme fo snoillim  
dna ycneicfife devorpmi rof deen  

eht ylno ton stceffa hcihw ,ssenevititepmoc  
rof ,srotcartnocbus sti osla tub ynapmoc  

.srengised noitamotua dna ssecorp elpmaxe  
eht ni eil netfo seitilibisnopser esohw riehT  

ot gnidael ,elcyc efil s'tnalp eht fo sesahp ylrae  
elbaliava detimil sa hcus segnellahc  

 .llfi ot sevitejbo elpitlum dna noitamrofni
segnellahc esoht woh setagitsevni krow sihT  

fo esu dednetxe yb detaivella eb dluoc  
esac ruof aiv noitalumis ssecorp cimanyd  

si noitalumis ssecorp cimanyD .seiduts  
ledom levon a htiw ti gninibmoc yb dednetxe  

htiw ,noitazimitpo rof dohtem nosirapmoc  
elpitlum htiw dna sisylana ytivitisnes labolg  

 .noitazimitpo evitcejbo
eht ,stluser 'seiduts esac eht gnizisehtnyS  

deddA :noisulcnoc niam sti ot sevirra siseht  
morf detcartxe eb nac rengised eht rof eulav  
denibmoc era yeht nehw sledom noitalumis  

 .sdohtem lacitamehtam rehto htiw

-o
tl

a
A

D
D

 
8

8
/

 9
10

2

 +d
gefi

a*GM
FTSH

9  NBSI 3-6458-06-259-879  )detnirp( 
 NBSI 0-7458-06-259-879  )fdp( 
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

 
ytisrevinU otlaA  

gnireenignE lacirtcelE fo loohcS  
ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD  

 if.otlaa.www

 + SSENISUB
 YMONOCE

 
 + TRA

 + NGISED
 ERUTCETIHCRA

 
 + ECNEICS

 YGOLONHCET
 

 REVOSSORC
 

 LAROTCOD
 SNOITATRESSID

 n
en

ia
lo

va
S i

nu
oJ

 g
ni

nn
al

p l
an

oi
ta

re
po

 d
na

 n
gi

se
d 

ss
ec

or
p 

ni 
no

it
al

u
mi

s 
ci

ma
ny

d 
de

dn
et

xe
 f

o 
eu

la
v 

de
dd

A
 y

ti
sr

ev
i

n
U 

otl
a

A

 9102

 ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD

dednetxe fo eulav deddA  
ni noitalumis cimanyd  

dna ngised ssecorp  
 gninnalp lanoitarepo

 nenialovaS inuoJ

 LAROTCOD
 SNOITATRESSID

srevoc eporuE ni yrtsudni ssecorp ehT  
htiw sesirpretne laudividni fo sdnasuoht  

a sah yrtsudni sihT .seeyolpme fo snoillim  
dna ycneicfife devorpmi rof deen  

eht ylno ton stceffa hcihw ,ssenevititepmoc  
rof ,srotcartnocbus sti osla tub ynapmoc  

.srengised noitamotua dna ssecorp elpmaxe  
eht ni eil netfo seitilibisnopser esohw riehT  

ot gnidael ,elcyc efil s'tnalp eht fo sesahp ylrae  
elbaliava detimil sa hcus segnellahc  

 .llfi ot sevitejbo elpitlum dna noitamrofni
segnellahc esoht woh setagitsevni krow sihT  

fo esu dednetxe yb detaivella eb dluoc  
esac ruof aiv noitalumis ssecorp cimanyd  

si noitalumis ssecorp cimanyD .seiduts  
ledom levon a htiw ti gninibmoc yb dednetxe  

htiw ,noitazimitpo rof dohtem nosirapmoc  
elpitlum htiw dna sisylana ytivitisnes labolg  

 .noitazimitpo evitcejbo
eht ,stluser 'seiduts esac eht gnizisehtnyS  

deddA :noisulcnoc niam sti ot sevirra siseht  
morf detcartxe eb nac rengised eht rof eulav  
denibmoc era yeht nehw sledom noitalumis  

 .sdohtem lacitamehtam rehto htiw

-o
tl

a
A

D
D

 
8

8
/

 9
10

2

 +d
gefi

a*GM
FTSH

9  NBSI 3-6458-06-259-879  )detnirp( 
 NBSI 0-7458-06-259-879  )fdp( 
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

 
ytisrevinU otlaA  

gnireenignE lacirtcelE fo loohcS  
ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD  

 if.otlaa.www

 + SSENISUB
 YMONOCE

 
 + TRA

 + NGISED
 ERUTCETIHCRA

 
 + ECNEICS

 YGOLONHCET
 

 REVOSSORC
 

 LAROTCOD
 SNOITATRESSID

 n
en

ia
lo

va
S i

nu
oJ

 g
ni

nn
al

p l
an

oi
ta

re
po

 d
na

 n
gi

se
d 

ss
ec

or
p 

ni 
no

it
al

u
mi

s 
ci

ma
ny

d 
de

dn
et

xe
 f

o 
eu

la
v 

de
dd

A
 y

ti
sr

ev
i

n
U 

otl
a

A

 9102

 ygolonhceT smetsyS dna noitamotuA fo tnemtrapeD

dednetxe fo eulav deddA  
ni noitalumis cimanyd  

dna ngised ssecorp  
 gninnalp lanoitarepo

 nenialovaS inuoJ

 LAROTCOD
 SNOITATRESSID


	Aalto_DD_2019_088_Savolainen_verkkoversio



