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1. Introduction 

1.1 Background and motivation 

Dynamic models provide simulation results for the transient responses of a pro-
cess in terms of the time dimension due to expected and unexpected disturb-
ances. In recent decades, dynamic simulation has been widely utilized for im-
portant applications in industrial process plants. Process industry domains, 
such as and oil and gas, power generation, pulp and paper and mineral pro-
cessing industries, rely on dynamic simulation results for applications ranging 
from plant engineering [1]–[3] and operation support [4]–[6] to control appli-
cation optimization [7]–[9]. Dynamic simulation has become essential for stra-
tegic decision making throughout the process plant lifecycle [10], [11]. However, 
beyond traditional dynamic simulation-based applications, recent trends in dig-
italization, along with advances in computational power and wider industrial 
adoption of interoperability standards, have resulted in the development of Dig-
ital Twins for process plants [12], [13]. A Digital Twin (DT) is a digital replica of 
an industrial plant, containing the structure of the physical assets of the plant 
as well as the dynamics describing the operation of its devices and processes 
[14]–[18]. DT is a high-fidelity reflection of the physical space that interacts and 
converges with the physical system.  

While  the physical structure of the plant can be determined in a DT by the 
plant’s design material, model-based approaches are required for simulating the 
dynamics of the physical assets in order to predict, optimize and analyse its 
changes [19]. Existing commercially-available DT solutions for process plants 
[20], [21] are commonly based on data-driven models (DDMs) developed purely 
from the measured data of the targeted industrial plant [14], [22]. DTs based on 
data-driven approaches rely on black-box models built to capture relations be-
tween the inputs and outputs of the plant [10]. DDMs are fast to develop and 
can be applied to obtain production forecasts or to detect certain production 
anomalies. However, since DDMs are based only on historical process infor-
mation obtained from the plant, they cannot be used to forecast abnormal plant 
operation states not covered by the available collected data. Additionally, they 
require expert interpretation and are thus difficult to scale up [10]. Moreover, 
applications based on data-driven DTs depend entirely on the automation and 
monitoring system data to provide information on the current plant state.  

In contrast, simulation-based DTs (SBDTs) are those based on online first-
principles simulation models [10], [22]–[24]. First-principles models (FPMs) 
utilize physical, chemical or engineering descriptions to represent the behaviour 



Introduction 

2 

of the modelled plant [9], [25]. SBDTs use a simulation model of the targeted 
plant to derive information and predict the dynamics of the modelled system. 
In these applications, the model runs together with the plant, while model ad-
aptation techniques keep the simulation state in the same state as the targeted 
device or process [26]. These simulation configurations are also known as track-
ing simulators [5], [27] and are based on online model-based applications [10]. 
A SBDT can be used to obtain high-fidelity predictions, including production 
forecasts of operating regions, from which no measurement data is available [6]. 
Furthermore, SBDTs can be used for developing operator training simulation 
systems, for production optimization, or for troubleshooting and failure diag-
noses. SBDTs are a holistic and powerful application for supporting the opera-
tion of modern industrial plants.  

Simulation model development in the process industry 

The industrial process simulation models required for implementing SBDTs are 
generally created manually using flowsheet-based simulation environments 
[28]–[30]. These environments allow for manually dragging, dropping and con-
necting simulated process components into the model configuration canvas of 
their graphical user interfaces (UIs). In these canvases, model components can 
be configured according to the structure of the modelled process [31]. A major 
advantage of these systems is that the development of the model can be per-
formed without a thorough knowledge of the underlying simulation language 
utilized by the modelling tool. In addition, the structure of the model can be 
explored through the UIs of the simulation tool.  However, since the model de-
velopment thereof is carried out manually, creating and maintaining industrial 
FPMs becomes time-consuming and thus expensive [32]–[35]. Reusing existing 
simulation models created for process engineering could significantly reduce 
model development effort and cost [33]. However, FPMs development remains 
laborious [10], making them less attractive than lower fidelity options based on 
data-driven approaches, which can be developed with less engineering effort 
[10], [36].  

Automatic model generation (AMG) is a promising approach for addressing 
laborious development and maintenance of FPMs [26]. Existing AMG methods 
are based on the utilization of plant design data, available from different engi-
neering information sources. These sources include control application pro-
grams, technical data sheets of the process equipment, as well as piping and 
instrumentation diagrams (P&IDs) [28], [37], [38]. However, information on 
the equipment dimensions and of the piping network structure is highly im-
portant for generating high-fidelity FPMs. In particular, pipeline elevations, 
lengths and head loss coefficients are highly important for generating accurate 
simulation models required for implementing SBDTs. Head loss coefficients 
represent head losses caused by abrupt changes on the pipeline network direc-
tion. They can only be obtained from information concerning the structure and 
dimensions of the pipeline and its curved pipe segments [39]. This information 
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can be obtained only after a 3D pipe routing has been accomplished [40]. Infor-
mation from 3D computer assisted design (CAD) models of the plant could be 
used in combination with other plant design information sources to automati-
cally generate the underlying process simulation models of SBDTs [41]. 

Implementation of SBDTs 

DTs interact with real-time and historical data of the plant in order to remain a 
high-fidelity representation of the process [42]. Therefore, during their imple-
mentation, SBDTs must be integrated with the process and its ICT infrastruc-
ture. During this integration phase, also known as Model Deployment [26], the 
simulation system of the SBDT is connected to the process control application 
as well as to its monitoring and historical data repository systems. Integration 
of the simulation system with the process is a safety-critical task, as this is per-
formed during plant operation [4]. At the same time, the complexity of the in-
tegration is highly dependent on the information accessibility conditions that 
can vary according to the plant and its ICT infrastructure [43]. Moreover, ex-
pensive integration hampers the scalability of simulation-based applications, 
particularly when several systems require integration with the process plant 
[44]. A major limiting factor preventing the exploitation of DTs is the manual 
work involved in collecting source information and updating the DT over the 
lifecycle of the plant. Current megatrends, such as Industry 4.0 [45], [46], In-
dustrial IoT [47]–[50] and Cyber-Physical Production Systems [15], [51]–[54], 
offer solutions to the problem of making all relevant data available in real time 
throughout the lifecycle of the plant for generating and maintaining as automat-
ically as possible high-fidelity DTs. Industrial interoperability standards often 
available in modern plants [55], such as OPC and OPC Unified Architecture 
(OPC UA) [56], could be used for interfacing the simulation system with the 
plant. Other examples of industrial interoperability standards examples include 
(but are not limited to) the data distribution service (DDS), proposed by the In-
dustrial Internet Consortium [57]. 

An SBDT of a process plant is a real-time reflection of the physical plant that 
maintains synchronization with the physical system. In a SBDT, this is realized 
by combining model adaptation and dynamic state estimation methods. Model 
adaptation is based on applying model optimization methods for reducing 
model residuals. These methods focus on adjusting model parameters utilizing 
recent plant measurements, obtained from historical process data [58]. In 
highly complex systems, model optimization results may fail to converge at the 
required cycle time [59]. Consequently, these methods must be executed offline. 
In contrast, dynamic estimation methods, such as Kalman filtering [60] or im-
plicit dynamic feedback [58], can be used for real-time model parameter esti-
mation. Dynamic estimation, also known as online calibration [10],  can be seen 
as a feedback process targeted to bring the model results to the real-time process 
measurements. 
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 Despite significant advances in the application of data-driven optimization 
and dynamic estimation of FPMs, little research has focused on the develop-
ment of simulation architectures designed for reducing the time and effort re-
quired to integrate simulation systems and simulation methods with the process 
plant throughout the SBDT lifecycle [43]. These simulation architectures could 
exploit industrial communication standards for reducing integration effort [10], 
automating access to historical plant data as well as for managing the exchange 
of information throughout the SBDT lifecycle [61].  Consequently, there is a 
need for implementation methods and simulation architectures targeted at re-
ducing not only SBDT development effort but also integration complexity be-
tween the SBDT and its corresponding physical plant [26].  

1.2 Research goals 

Due to the aforementioned challenges related to laborious model development 
and complex integration required to implement SBDTs, this work aims to 
achieve the following research goals: 

1. To propose an automatic model generation method for leveraging 3D 
CAD plant model information in order to partially automate the devel-
opment of high-fidelity thermal-hydraulic FPMs.  

2. To propose a semi-automatic methodology for implementing SBDTs 
from FPMs, such as the FPMs generated using the method developed 
in Research Goal 1. The proposed methodology includes the following 
simulation methods applied over the SBDT implementation and oper-
ation phases: model adaptation, model initialization, predictive simu-
lation as well as online and offline parameter estimation. 

3. To propose an SBDT architecture for integrating the simulation meth-
ods from the Research Goal 2 in order to enable their utilization over 
the SBDT lifecycle. This architecture leverages on the application of 
industrial interoperability standards for reducing the effort required 
for configuring the communication between different architecture 
components. Similarly, the industrial communication standards uti-
lized, enable systematic information exchange between the architec-
ture components and methods. 

1.3 Hypotheses  

 This dissertation tests two hypotheses: 
1. A high-fidelity dynamic thermal-hydraulic FPM can be automatically 

generated from source information consisting of 3D CAD plant models 
and other plant design data, such as technical data sheets for plant 
equipment.  

2. SBDTs and their system architectures could leverage on the utilization 
of standard communication interfaces for automating information ex-
change between SBDTs components. Similarly, these architectures 
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could exploit these standards to seamlessly integrate plant ICT sys-
tems with different simulation methods required to implement and 
operate SBDTs. 

1.4 Contribution to the field 

The contributions of this dissertation are three-fold: 
1. An AMG method based on 3D CAD plant model information is pro-

posed. The proposed method exploits process information available 
during the design stage of the plant lifecycle. This enables application 
of the automatically generated model for other important applications 
during subsequent lifecycle stages. Experimental results have shown 
that the proposed method can generate process simulation models 
with higher fidelity compared to those generated by following state-of-
the-art AMG methods.  Additional results confirm that the simulation 
models generated by following the proposed approach can be used for 
implementing SBDTs.  

2. An integrated implementation methodology is proposed for develop-
ing SBDTs. The proposed approach integrates various simulation 
methods required over the lifecycle of SBDTs. This approach consists 
of a model optimization method, used for model adaptation and offline 
model parameter estimation, as well as other methods for model ini-
tialization, dynamic estimation and predictive simulation. The pro-
posed model adaptation approach can be applied for automatic re-es-
timation of model parameters for reducing the model residuals in pre-
viously existing simulation models or in models generated by following 
AMG approaches. Furthermore, the proposed model initialization pro-
cedure is carried out by modelling the real process control system, 
which can be run faster than real time to enable faster initialization. 
Finally, regarding the dynamic estimation needed for the SBDT syn-
chronization with the physical plant, a new estimation method was de-
veloped based on implicit dynamic feedback. This novel dynamic esti-
mation method is proposed to overcome shortcomings in similar ex-
isting approaches. The results of dynamic estimation experiments 
show that the simulated state of the adapted model can be continu-
ously synchronized with the physical process state, thus confirming 
that the proposed approach can be applied for implementing the 
SBDTs of process plants.  

3. Finally, a simulation architecture is implemented based on the indus-
trial interoperability standard OPC UA. This architecture enables 
seamless system integration of the SBDT components into the ICT in-
frastructure of the plant. During connection of the model with the 
physical plant, the utilization of an industrial interoperability standard 
reduced the time required for connecting the simulation model with 
the physical plant and its ICT infrastructure. Finally, the architecture 
utilizes OPC UA for systematically retrieving historical process data as 



Introduction 

6 

well as for reducing the configuration effort needed to interface the 
SBDT components by avoiding the need for point-to-point connec-
tions.  

1.5 Summary of the publications  

 
This thesis consists of eight publications. Two have been published as journal 
papers, and the six remaining have been published as conference papers. The 
publications are summarised as follows: 

Publication I. This paper presents tracking simulation architecture based 
on the OPC UA industrial interoperability standard. The proposed architecture 
was designed for testing dynamic estimation methods required for model pa-
rameter adjustment of SBDTs.  In the proposed system, OPC UA is used for in-
terfacing the physical system with the simulation system. This work first intro-
duces the structure of the testbed. To test the proposed system, a previously 
published dynamic estimation method based on the tuning of the model param-
eters using PI controllers is implemented and tested using the laboratory pro-
cess described in Section 4.1.  

Publication II. This paper presents a hybrid approach for initializing the un-
derlying simulation model of a SBDT. The presented approach exploits OPC 
UA-enabled communication between the simulation system and the process to 
initialize the simulation model. The proposed initialization method performs 
model initialization in two steps. First, the simulation model is provided with 
initial conditions closely corresponding to the current plant state. In the second 
step, the model is run in the same state as the physical system using a model of 
the process control system. Possible mass or energy errors in the state of the 
simulation model are corrected before starting the dynamic parameter estima-
tion. In this paper, the proposed initialization method is implemented and 
tested using the laboratory process described in Section 4.1. 

Publication III.   This paper presents two case studies focusing on dynamic 
estimation, in which the controlled parameters are selected using different tech-
niques. The first case study deals with a laboratory-scale hot water generation 
process, described in Section 4.1, in which the parameters are selected manu-
ally. This paper presents the laboratory process, its online simulation system 
and ICT architecture. In addition, presents the parameter selection procedure 
followed and the dynamic estimation results. The second case study investigates 
a combined heat and power production process with major uncertainties in the 
process structure. In this case, the paper introduces a variance decomposition 
method for determining the most suitable controlled parameters for dynamic 
estimation. 

Publication IV. This paper presents a dynamic estimation method based on 
implicit dynamic feedback estimation. The proposed approach applies sliding 
mode controllers (SMC) for dynamically adjusting model parameters. SMC con-
trollers can be more easily tuned than PI or PID controllers. Furthermore, they 
are more robust against uncertainties caused by simulation model behavior or 



Introduction 

7 

by plant measurement noise. In this work, an SMC-based approach for tracking 
simulation is described, implemented and tested using the laboratory process 
described in Section 4.1. 

Publication V. This paper presents a model adaptation method for imple-
menting SBDTs. The method utilizes a model optimization method to adapt 
simulation models developed during the engineering phases of the process plant 
and then apply them in the operation and maintenance stages. The model ad-
aptation method proposed in this work utilizes OPC UA to seamlessly connect 
the simulation system to the physical plant without disrupting the process op-
eration and to retrieve the historical data of the plant in a systematic manner.  
In this work, the method is described, implemented and tested using the labor-
atory process described in Section 4.1. 

Publication VI.  This work integrates the methods presented in Publications 
I-V into a novel SBDT architecture to address the laborious development of 
FPMs as well as high costs of integrating with the process or with other systems 
and simulation methods. The developed simulation architecture applies the 
proposed methodology during various phases of the tracking simulation. Fur-
thermore, the architecture exploits the industrial communication standard OPC 
UA to avoid the need for point-to-point integration of various simulators and 
other systems used over the course of the SBDT lifecycle. The work is demon-
strated with the laboratory process equipment described in Section 4.1. 

Publication VII. This paper presents a method for automatic generation of 
a thermal-hydraulic process simulation model from a 3D CAD plant model. The 
process structure, dimensioning and component connection information in-
cluded in the 3D CAD plant model is extracted from the machine-readable ex-
port of the 3D CAD tool and used to automatically generate and configure a dy-
namic thermal-hydraulic simulation model. In particular, information concern-
ing piping dimensions and elevations is retrieved from the 3D plant model and 
used to calculate the head loss coefficients of the pipelines and to configure the 
piping network model. This step, not considered in previous studies, is crucial 
for obtaining high-fidelity industrial process models. The proposed method is 
tested using the laboratory process described in Section 4.1, and the results of 
the automatically generated model are compared with experimental data from 
the physical system as well as with a simulation model developed using design 
data utilized by existing state-of-the-art methods.    

Publication VIII. This paper focuses on applying the methods developed in 
Publications I-VII for reducing the implementation effort of SBDTs. First, la-
borious simulation model development is tackled by applying the automatic 
model generation method presented in Publication VII.  Second, the inte-
grated implementation methodology presented in Publication VI is followed 
for developing an SBDT. The SBDT of a laboratory-scale process is implemented 
to demonstrate the proposed method. The results show that the method pro-
posed in this work reduces the implementation effort required for developing 
industrial SBDTs, thereby increasing industrial adoption of these systems. 
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1.6 Structure of the thesis 

 
This thesis presents a novel method for semi-automatically generating the 
SBDT of an industrial process plant. In this work, laborious model development 
is addressed by applying an AMG generation that utilizes 3D plant model infor-
mation for automatically generating the underlying simulation model of a 
SBDT. Furthermore, laborious system integration of the simulation model with 
the plant is overcome by applying an integrated implementation method for a 
lifecycle-wide tracking simulation architecture. Chapter 2 reviews related work 
on the development of SBDTs for the process industry. Chapter 3 presents the 
proposed SBDT implementation method. This chapter also describes the pro-
posed AMG method as well as the integrated tracking simulation architecture 
and implementation method. A description of the case study, as well as the re-
sults of the proposed implementation method, are presented in Chapter 4. 
Chapter 5 provides a critical discussion of the results of this work. Finally, con-
clusions are presented in Chapter 5.   
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2. Related work 

2.1 Simulation-based applications in process industry 

Simulation technology has become highly important for decision support across 
the lifecycle of the process plant in various industries, including chemical, 
power generation, oil and gas, pulp and paper and mineral processing [10], [11].  
Simulation is based on mimicking the physical, chemical, energy or infor-
mation-related behaviour of the system based on a mathematical model [62]. 
Simulation can be understood as a virtual experiment to better understand or 
predict the modelled system. First-principles simulation models use rigorous 
physical, chemical and engineering relations to model the behaviour of the tar-
geted system [9], [25]. They capture more detailed process information than 
data-driven modelling alternatives [10], as DDMs solely focus on finding empir-
ical relations based only on the input and output data collected from the mod-
elled system.  

FPMs can be divided into either static or dynamic models. Static FPMs de-
scribe a system without the time dimension; thus, they can predict only time-
independent system responses [63]. In contrast, dynamic FPMs can predict pro-
cess transient responses to both unexpected and expected disturbances [64] 
even before measurement data from the physical plant becomes available [43].  
Therefore, dynamic FPMs have become essential for several applications 
throughout the plant lifecycle, including lifecycle stages during which the plant 
is not yet functioning. Common industrial simulation-based applications over 
the plant lifecycle are shown Figure 1. 
 

 
Figure 1. Industrial simulation-based applications over the plant lifecycle and their classification 
based on [65]. 

Industrial simulation-based applications have been classified in [35] according 
to their target as: Design simulation; Simulation-supported engineering and 
virtual commissioning; Operator training; and Simulation-supported plant 
optimization. This classification over the plant lifecycle is shown in Figure 1. 
Design simulation applications are targeted to define the process layout as well 

Execution Delivery Operation Maintenance DecommissioningDesign

Plant Lifecycle

Preliminary 
Planning

Plant Design
Procurement Planning

Virtual Commissioning

Operator Training

Offline Optimization Online Optimization

Dynamic Simulation Applications

Design simulation
Engineering & virtual 
commissioning
Operator training

Plant optimization



Related work 

10 

as to investigate the plant behaviour during start-up, shut-down, steady-state 
and possible production transients. Examples of these applications are pre-
sented in [66]–[68]. Simulation-supported engineering and virtual commis-
sioning applications are developed after control system engineering to aid engi-
neering activities, such as procurement planning, further layout refinement as 
well as virtual commissioning. Virtual commissioning refers to the use of a pro-
cess simulation model for testing the control application during plant engineer-
ing when the physical process is yet not available [34]. Operator training appli-
cations are developed to prepare operating personal on how to handle the plant 
[69]–[71]. Finally, Simulation-supported plant optimization applications focus 
on the use of simulation models to support decision making for optimal process 
design and operation [43], [72], [73].  

SBDTs of production plants, also known as tracking simulators [6], [26], [27], 
are a relatively new simulation-based application that has started to be devel-
oped, driven by recent trends in plant digitalization. SBDTs are digital replicas 
of the targeted plant, which rely on first-principles simulation models to repre-
sent its dynamics [22], [23], [54], [74]. These applications leverage the persis-
tent communication between the simulation and physical systems in order to 
permanently synchronize their underlying dynamic simulation model with the 
operational plant. Offline and online model estimation methods are utilized to 
continuously update the simulation model for ensuring that their results corre-
spond to the current process state. SBDTs integrate other simulation-based ap-
plications used during process operation and maintenance, such as operator 
training and online optimization systems. Additionally, since they are based on 
FPMs, non-measured plant data can be derived from the simulation model. This 
application is known as a virtual sensor [10]. Finally, SBDTs can also be used 
for obtaining production forecasts, for trouble-shooting and for diagnosing 
plant failures. Thus, SBDTs are a holistic tool for plant operation support. 

 

 
Figure 2. A simulation-based digital twin and its applications during the operation and mainte-
nance phases of the plant lifecycle [75]. 

2.2 Development of FPMs in the process industry 

Industrial simulation models based on FPMs have been utilized in the process 
industry for several critical applications. Development of industrial FPMs in-
volves three steps [10]. First, mathematical descriptions based on physics, 
chemical or engineering relations of the system are obtained. Next, the actual 
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simulation model is created and configured in the selected simulation environ-
ment. Finally, the simulation model undergoes model initialization, in which 
initial solutions of the model equations are obtained utilizing best-available es-
timates of the simulation variables [61].  

The amount of effort required for model development depends on the com-
plexity of the application. Similarly, it is also dependent on the solver character-
istics of the simulation environment in which the model is being developed 
[76]–[78]. Simulation environments are classified as equation oriented (EO) or 
as simultaneous modular (SM), according to the solver they utilize [10], [79]–
[81]. In EO tools, the model solution directionality is not unique nor pre-de-
fined. Therefore, model equations in EO systems can be solved concurrently 
[43], [73]. In SM tools, simulation streams and units must be solved starting 
with the input feed streams, following a specific unit sequence. EO and SM ap-
proaches have been compared in [82], and their trade-offs have been shown to 
be mainly related to the amount of effort required for initializing the simulation 
model [83], [84].  

Irrespective of the solver characteristics utilized by the simulation tool se-
lected, simulation models of industrial processes are generally created manually 
using flowsheet-based simulation tools [28]–[30]. These tools allow simulation 
process components to be to manually dragged, dropped and connected into the 
model configuration canvas of their graphical user interfaces (UIs). In these 
canvases, model components can be manually configured in accordance to the 
structure of the modelled process  [31]. In this work, model components refers 
to all the simulation elements comprising a given model, such as models of pro-
cess piping network segments as well as models of process equipment and ther-
mal-hydraulic points (TH points). Model configuration is based on providing 
model components with nominal parameters derived from structural data of the 
physical plant. A major advantage of these systems is that the development of 
the model can be performed without a thorough knowledge of the underlying 
simulation language utilized by the modelling tool. In addition, the structure of 
the model can be explored through the UIs of the simulation tool.  However, 
since this model development is carried out manually, creating and maintaining 
industrial FPMs is time-consuming and thus expensive [32]–[35]. Conse-
quently, FPMs are less attractive than other lower fidelity modelling approaches 
based on data-driven modelling, as DDMs are generally faster to develop [10], 
[36]. Reusing models created for process design can reduce the maintainability 
costs of simulation-based applications [33], [37], [66]. However, the actual de-
velopment of FPMs remains laborious, limiting broader adoption of these sys-
tems in the process industry [10]. 

2.3 AMG of industrial process simulation models 

AMG could be applied to enable broader utilization of simulation-based appli-
cations during early plant lifecycle stages and to reduce maintenance costs and 
the development effort of FPMs [26], [40]. AMG methods are based on gener-
ating a simulation model from the design information of the targeted plant [61]. 
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These methods automatically map the available plant information into the 
model configuration defined by the selected simulation tool [85]. AMG methods 
exploit different plant data sources available over the plant lifecycle stages, as 
shown in Figure 3. For this reason, the applicability of specific AMG approaches 
is determined by the availability of the data sources required by the AMG 
method. Data sources for AMG have been classified in the industrial manufac-
turing domain according to their information as Technical, System Load and 
Organizational [86].  No equivalent classification is available for industrial pro-
cess plants, in which there are additional sources from which historical data can 
be obtained describing the process dynamics of common operating regions. For 
this reason, Figure 3 extends the classification presented in [86] and positions 
AMG data sources available in process plants according to the corresponding 
lifecycle in which they are available. 

 

 
Figure 3. Data source availability for automatic model generation during the plant lifecycle and 
their classification [41]. 

AMG methods have been classified in [87] according to the implementation 
techniques followed. This classification groups AMG as Structure, Parametric 
and Hybrid-knowledge-based. Structural AMG utilizes CAD and CAE infor-
mation for generating the simulation model [88]. Parametric methods focus on 
generating the model after connecting components from their corresponding 
simulation libraries [89]. Hybrid-knowledge-based methods combine Struc-
ture and Parametric approaches. They are the most common approach followed 
by existing AMG methods [28], [88], [90], [91], as plant information is seldom 
accessible only from structural or only from parametric sources.  

Some of the earliest implementations of AMG methods in industry have been 
developed in the manufacturing domain. Parametric-based approaches for 
AMG of manufacturing systems have been presented in [31], [92]–[94]. Since 
manufacturing systems dynamics can be captured as discrete sequences of ac-
tions in time, these studies have been implemented utilizing discrete-event sim-
ulation tools. However, this restricts their utilization for automatic generation 
of industrial process models, as the dynamics of industrial process systems must 
be captured using continuous models to track the process transient responses 
over time.  

In the industrial process domain, although some research has been dedicated 
to the automatic generation of plant control applications during plant design 
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[33], [34], [88], [95], [96], these methods have mainly been targeted at devel-
oping the control application configuration of their application for virtual com-
missioning. Consequently, these techniques do not tackle the AMG of the pro-
cess to be controlled. Automatic generation of the process model during plant 
design stages is desired, as the simulation models generated during early stages 
could be utilized in a wider number of applications at subsequent lifecycle stages 
[35], [82], [97]. In addition, simulation results available during plant design are 
key for achieving system-wide optimization throughout the entire plant lifecycle 
[98]. Existing methods for AMG of industrial process models during plant de-
sign [28], [37], [91], [99] have been based on automatically generating a simu-
lation model of the plant after accessing plant information from computer-aided 
design (CAD) and computer-aided engineering (CAE) systems. Plant infor-
mation available from these systems includes technical data sheets of process 
equipment as well as P&IDs. A major advantage of the approaches presented in 
[28], [37], [91], [99] is that, since they utilize data available from P&IDs, the 
AMG based on these methods can be performed during very early plant design. 
This is possible, as P&IDs are one of the earliest design documents created dur-
ing plant engineering. P&IDs are developed before other design documents, 
such as isometric drawings, equipment data sheets and 3D plant models. How-
ever, important structural information on the process piping network and 
equipment, required for developing and configuring highly accurate FPMs of 
the plant, is not available from these sources [39].  

In recent decades, engineering and procurement companies have started cre-
ating and utilizing 3D models of process plants for process design and as a ref-
erence document for early plant commissioning [100]. This raises the possibility 
that 3D plant models could be utilized as an information source for AMG. Par-
ticularly, piping network elevations, lengths and head loss coefficients could be 
derived from the plant structural data included in their 3D models. However, 
such utilization of 3D model information has only been suggested for finite-ele-
ment-based flow calculations [28], [90]. Consequently, the information availa-
ble from 3D plant models could potentially be also exploited for AMG of indus-
trial process simulation models.   

2.4 Digital twins 

A DT has been defined as a digital copy of a physical asset, which contains mod-
els of its structure and of its behaviour [14], [23]. It is a digital description of the 
physical and functional aspects of a component, product or system [101]. DTs 
present information based on previous and current lifecycle phases and are able 
to seamlessly transfer this information to subsequent phases [54]. Additionally, 
a DT must be able to predict future states of the physical asset through simula-
tion [102].  According to the definitions presented in [19], [102], DTs fulfil the 
following characteristics: 1) They are a real-time reflection of the physical asset. 
This is achieved through continuous synchronization between the real asset and 
the DT states. 2) They are fully integrated with the real asset as well as interact 
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with current and historical data of the physical asset, enabling continuous im-
provement of the DT. 3) A DT can directly compare and analyse predicted and 
measured values of the physical asset. As a result, a DT can be used for simulat-
ing, monitoring, optimizing and verifying various activities throughout the en-
tire lifecycle of the asset.  

Various DTs have been implemented in different industrial domains since its 
introduction over a decade ago [103]. Although, the interpretation of DT is rel-
atively homogeneous across different technology fields, the functional charac-
teristics of these systems and their implementation methods vary significantly 
depending on their end-applications. In the automotive and aerospace indus-
tries, DTs have been used as an ultra-high fidelity simulated replica of a vehicle. 
They have been applied for anomaly diagnoses and for predicting future states 
and remaining useful life [22], [24]. In the construction industry, DTs have been 
implemented after combining virtual building models with physical data in or-
der to obtain more accurate information regarding structure fatigue [101].  

In manufacturing, DTs of production assets have been applied for product 
lifecycle management. In these applications, DTs mirror the entire lifecycle of 
end-products, resulting in applications for product lifecycle design as well as for 
services design and optimization [13], [42]. On the other hand, DTs of the actual 
manufacturing system [19], [103], [104] have been mainly based on virtualiza-
tion for achieving improved flexibility, scalability and efficiency. Simulation 
functionalities in the DTs of manufacturing systems utilize discrete-event mod-
els in which the dynamic changes of a system can be represented and predicted 
as discrete sequences of events over time [61].  

In the process industry domain, applications which fulfil some of the charac-
teristics of DTs have been proposed in recent decades. They follow implemen-
tation approaches for capturing the process dynamics that differ from those fol-
lowed in the manufacturing domain, as discrete-event modelling cannot be ap-
plied for prediction of continuous systems [43], [58]. The commercially-availa-
ble DTs for process plants [20], [21], are based on DDMs for representing the 
plant dynamics. Although these models are fast to develop, data-driven-based 
DTs have limited capabilities, as they are strongly dependent on the quality and 
quantity of measurement information available from the targeted plant. More-
over, while DDMs can predict a set of system outputs given a set of inputs, they 
offer limited information on sub-systems states and their process values. This is 
because they are only based on finding relations between the inputs and outputs 
of their targeted systems.  

In contrast, existing SBDTs [4], [6], [27], [105] rely on online FPMs based on 
an up-to-date condition of the physical plant that can be built from plant design 
data and that can be applied to explore operating regions not captured by the 
process measurement systems. SBDTs are based on online model-based appli-
cations (OMBAs) [10], which consist of an online simulation configuration that 
runs a dynamic FPM in parallel with the modelled plant, while being controlled 
by the plant control application. Consequently, these applications are imple-
mented during the operation and maintenance phases of the plant, when it is 
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possible to interface them with the physical system through connections be-
tween the simulation system and the control application of the plant. 

2.5 Online model-based applications in process industry 

OMBAs [10], [58] are online simulation systems that are continuously adjusted 
by dynamic estimation methods to ensure that their result will correspond to 
the current process state. These systems, also known as symbiotic simulation 
systems [106]–[108], have been developed for applications ranging from virtual 
sensors [109] and prediction systems [5] to model-based control [110]. In OM-
BAs, the online simulation system interacts with real-time measurements of the 
plant and benefits from these by continuously adjusting its results through dy-
namic estimation [58]. In contrast, the layout of the feedback connection from 
the simulation system to the plant [111] determines the way in which the physi-
cal system benefits from the online simulation results. Consequently, OMBAs 
are classified into Closed-loop control and Open-loop advisory online model-
based applications [10], [106], as shown in Figure 4.  

In Closed-loop control OMBAs, the direct feedback connection from the sim-
ulation system to the plant is directly interfaced with the control application of 
the plant for directly implementing control actions. Model-predictive control 
(MPC) and optimal control are the most common applications of these systems 
[8]. Consequently, the real-time requirements of industrial control applications 
often limit Closed-loop OMBAs to focus on specific process subsystems. Simi-
larly, they often utilize DDMs derived from collected process data, further lim-
iting their application to study specific process operating regions [110] and lim-
iting their utilization for other important operation support applications, such 
as operator training simulation, virtual sensors, or plant trouble-shooting. 

 
Figure 4. Closed-loop and Open-loop online model-based applications (OMBAs). Tracking sim-
ulators integrate the different variations of Open-loop OMBAs [26]. 

In contrast, Open-loop advisory OMBAs require no feedback connection from 
the simulation system to the physical system. These systems can be developed 
based entirely on either FPMs or hybrid models. In hybrid models, model equa-
tions utilize physical principles, though data-driven methods are applied for 
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modelling process uncertainties. Open-loop advisory OMBAs are decision sup-
port applications which can be used to study entire plants or specific plant sub-
systems. Furthermore, they can also be used for simulating any plant operating 
region and their underlying simulation model can be used for obtaining current 
and future state information regarding the process. Open-loop OMBAs can be 
further divided into three classes: Anomaly Detection, Monitoring, and Fore-
casting Open-loop advisory OMBAs. Anomaly detection Open-loop OMBAs are 
applied for plant anomalies and fault diagnoses [81], [112]. In Monitoring Open-
loop OMBAs, unmeasured plant data is obtained from the results of the online 
simulation model [6]. Forecasting Open-loop OMBAs are utilized for produc-
tion forecasting.  

2.6 Tracking simulation systems 

Simulation-based systems that integrate the applications of different Open-loop 
advisory OMBAs are known as Tracking Simulation Systems [4], [5]. Similar to 
OMBAs, tracking simulators consist of dynamic FPMs, which are continuously 
adjusted by dynamic estimation to synchronize the states of the model and the 
physical plant. These systems provide information that can be used for support-
ing operator training [113], process operation [35], process maintenance [105] 
and plant optimization [114]. Tracking simulators serve as the SBDTs for pro-
cess plants, as they provide a holistic set of simulation-based applications for 
operation support. However, the drawbacks of tracking simulators in terms of 
expensive and laborious development of FPMs, restrict broader adoption of 
these systems in industry [10]. Existing systems [4], [6], [27], [105] have mainly 
focused on proposing different methods for parameter estimation of FPMs. 
Moreover, no work has attempted to address issues related to time consuming 
model development or laborious implementation of tracking simulators. There-
fore, there is a lack of implementation methods that would allow model reutili-
zation, or that could exploit AMG approaches for developing SBDTs.  

Wider adoption of tracking simulators has been further limited by the complex 
integration needed to interface the simulation system and architecture with the 
plant. There is also a need for simulation architectures that could enable reduc-
tion of integration time and effort [43]. A possible approach to overcome this 
particular challenge would be to utilize industrial interoperability standards for 
three purposes: to automate access to the historical data of the plant; to reduce 
the effort needed for establishing communication between the simulation and 
physical system [10];  as well as to manage information exchange more effi-
ciently over the tracking simulation lifecycle [61], [83].  

To further improve the model results, a tracking simulation system is pre-
sented in [105] that applies offline dynamic data reconciliation [115] for adjust-
ing multiple model parameters. This and other existing model optimization 
methods could be applied not only to aid online dynamic estimation but also to 
optimize existing outdated models or models generated automatically based on 
AMG methods. This would further reduce tracking simulation implementation 
effort and time. However, dynamic data reconciliation and other methods for 
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optimization of deterministic models require direct access to information in the 
Jacobian matrix of the model. This is necessary for determining the dependen-
cies between the model results and the model parameters [43], [73]. Moreover, 
the analytical values of the Jacobian matrix are not always available in simula-
tion software utilized in industry [116], such as the simulation system used in 
the case study of this work. This is a critical issue preventing adaptation of pre-
viously created simulation models. 

2.6.1 Tracking simulation lifecycle 

The tracking simulation lifecycle, shown in Figure 5, corresponds to the imple-
mentation and operation phases, in which tracking simulation systems undergo 
[26]. The first phase of this lifecycle involves Model Creation. As previously ex-
plained, plant simulation models are generally created and configured manu-
ally. This occurs immediately before the implementation of the tracking simu-
lator. Alternative model development approaches, such as applying AMG meth-
ods or reutilizing existing models created during process design, would reduce 
model development effort. However, applying these approaches would require 
re-estimation of their model parameter for their results to closely correspond to 
the current plant behaviour. Therefore, a Model Adaptation phase is proposed 
in this work. During Model Adaptation, the model parameters from existing 
models or from models developed following AMG methods are readjusted for 
enabling their results to capture the process behaviour represented by recent 
plant historical data. At the Model Deployment stage, the simulation system is 
connected to the process plant. This is a safety-critical task, as the simulation 
system must be seamlessly interfaced with the plant during process operation. 
At the Online Model Initialization phase, the simulation model is provided with 
a set of initial conditions (ICs) corresponding to the current process state. The 
simulation model can be initialized using a nominal set of input parameters as 
well as best-available estimates of the simulation variable values. The Tracking 
Simulation phase starts after the model, previously initialized, starts being ad-
justed online by the dynamic estimation method after comparing plant meas-
urements with the online simulation results. During Offline Estimation, offline 
optimization is applied to aid dynamic estimation for further improving the 
model results. Finally, during Predictive Simulation, an instance of the tracking 
simulator is utilized for obtaining predictions. These predictions are based on 
the current state of the process and are obtained using a simulation model that 
has been adjusted to mimic the real process. 
 

 
Figure 5. Tracking simulation lifecycle stages [26]. 
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2.6.2 Model adaptation for tracking simulation 

Model adaptation involves re-estimation of model parameters for their results 
to represent the newly observed behaviour of the physical system [117]. Several 
methods for model adaptation of DDMs have been developed in a number of 
application domains [117]–[119]. The steady increase in computational power 
has continuously reduced the development time of DDMs, making them easier 
to develop on demand from recent information. This approach is faster than 
adapting and reutilizing previously created DDMs.  

Model adaptation of FPMs can be seen as a model validation procedure, which 
involves finding the level of agreement between the system modelled and the 
actual physical system. Similarly, model validation is a procedure in which the 
model is iteratively refined until the behaviour best representing the physical 
system is found [44]. A thorough review of existing model validation methods 
has been presented in [120], [121]. However, the methods reviewed in these sur-
veys are not targeted for adapting online or tracking simulation models that can 
exploit persistent communication between the simulation model and the ICT 
infrastructure of the plant in order to decrease model adaptation time and ef-
fort.  

2.6.3 Initialization of tracking simulation systems 

Model initialization procedures are required for obtaining initial solutions for 
the model equations [61], [122]. These procedures vary according to the simu-
lation tool utilized. Although it is possible to directly write an estimate of the 
initial state into the model of some SM simulation tools [80], full plant state 
information is not available or is not accessible until the process operation 
phase [83]. For this reason, in SM simulation tools, state observers can be uti-
lized to obtain estimates of the unknown information of the plant [123]–[125]. 
On the other hand, EO simulation tools cannot directly write the state of simu-
lation variables [26]. Therefore, initialization based on the utilization of state 
observers cannot be applied for EO simulation tools. Steady-state process mod-
els have been used to estimate initial values for dynamic simulators [10], [126]. 
However, steady-state models are not always available, or their configuration 
may not be updated to correspond to the process represented by the underlying 
dynamic model of the tracking simulation system. 

In tracking simulation systems, persistent communication between the simu-
lation system and the plant can be used to feed data from the real system into 
the model for achieving model initialization. Theoretically, it is possible to copy 
the current state of the real process into the online simulation system of the 
tracking simulator. However, in reality, sufficient plant state information 
needed for model initialization might not always be available from the plant ICT 
infrastructure  [61], [83]. An online model initialization method is proposed in 
[83] based on the initialization of a Parent simulation and then creating simu-
lation instances called Child simulations. In this approach, a Parent simulation 
is first initialized by retrieving available plant data and then providing it to the 
model. Next, the Parent simulation model is connected to the plant and is run 
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together with the process. Parent simulation instances, called Child simula-
tions, are created on demand according to the required application. Creating 
simulation instances of the online simulation model according to the required 
application is an interesting approach. However, the authors did not present 
their initialization method. Moreover, it cannot be assumed that all information 
required for initialization is always available from the plant measurements of 
every facility. In cases involving limited availability of measurement infor-
mation, the initial simulation state may differ from the current plant state.  

The work in [61] proposes initialization of discrete-event models by using the 
core manufacturing simulation data (CMSD) specification developed by the 
Simulation Interoperability Standard Organization [127]. CMSD is an XML-
based specification for data exchange between manufacturing systems and dis-
crete-event-based simulation tools. The initialization approach in [61] is based 
on selecting, classifying and mapping the input data required for the initializa-
tion into an XML format. This XML file can be later read by the targeted simu-
lation system. Although this method addresses the need for systematic model 
initialization methods based on standards, the procedure followed is only appli-
cable to manufacturing applications that use discrete-event models to represent 
discrete states of machines, jobs, or parts.  

2.6.4 Dynamic estimation methods for tracking simulation 

Dynamic estimation is based on dynamic adjustment of model parameters for 
reducing model residuals. This estimation is performed after comparing simu-
lation results with real-time measurements of the modelled plant.  This method 
is targeted to determine a best estimate of the current state of the process. Sin-
gle-input-single-output (SISO)-based dynamic estimation methods pair a 
measurement with an unmeasured disturbance for estimating the state of a 
model variable [58]. Although SISO approaches are simple to implement, they 
are limited to pair only a single measurement with a single disturbance. Never-
theless, since they add very little computational overhead, they provide faster 
responses compared to similar methods. Filtered bias update [58] and implicit 
dynamic feedback [128] are two of the most widely utilized SISO approaches for 
dynamic estimation of industrial dynamic systems. 

Filtered bias update assumes a constant disturbance to update the initial con-
dition offset of a controlled variable by calculating an additive model bias b at 
the iteration n with an exponential filter , as shown in Eq. (1). 

 
  (1) 
 
Where  and  represent the measured and model variables, respectively.  

The value of  is the only tuning parameter to balance noise rejection. The cal-
culated value of the bias b can be restricted by validity limits in order to not 
violate physical constraints of the system in context. A major drawback of this 
method is that directly updating offset values of energy or mass may result in 
state instability. Moreover, directly updating the state of variables is not always 
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possible in causal models, as they are not explicitly described as equations but 
as algorithms for solving these equations.  

Implicit dynamic feedback can be seen as a feedback process that aims to align 
the simulated results with the process measurements in the same manner feed-
back is used in a control application to drive measured process variables to their 
set points [10]. This method focuses on adjusting model parameters to match 
the simulated and process outputs by using feedback controllers (called param-
eter controllers), as explained in [27], [58], [128]. Parameter controllers can be 
tuned to avoid abrupt changes in the mass or energy balance of the targeted 
system, thereby reducing spurious transients. Furthermore, implicit dynamic 
feedback is also applicable to causal models. PI controllers have been the obvi-
ous choice to implement tracking simulators based on implicit dynamic feed-
back [27], [105]. The PI-based approach updates parameter values as shown in 
Eq. (2). 

 
  (2) 

 
Where z and y are the measured and model variables, respectively, and Kc and 
 are the tuning parameters. PI tuning is required to balance adjustment speed. 

The application of autotuning techniques is proposed in [27]. An obvious draw-
back of this method is the potential instability caused by the integral term. This 
can be avoided by adequate controller tuning. However, aggressive estimation 
of simulation model parameters can result in poor prediction results [58].  

Other previously studied dynamic estimation methods have included moving 
horizon estimation [59] and Kalman filters [60], as well as variations such as 
the extended Kalman filter  and the unscented Kalman filter. Moving horizon 
estimation [59] is based on optimization of the states or parameters of the tar-
geted model. It is an estimation method applicable mainly to simple systems, 
expressed with a low number of ordinary differential. However, this method be-
comes computationally infeasible in large systems, due to the need for iterative 
model evaluations.  

Kalman filtering is based on calculating a gain after comparing differences be-
tween the real and estimated states. This gain is used for directly updating 
model states. For linear systems with Gaussian noise, Kalman filtering can pro-
duce optimal state estimates. The most straightforward application of Kalman 
filtering to non-linear models applies linearization (Extended Kalman Filter, 
EKF [129]) . A more robust approach is offered by the Unscented Kalman Filter 
(UKF) [60], which is based on an unscented transformation approach to the es-
timation of state uncertainties. It eliminates some of the biases in covariance 
estimation that result in the linearization of the EKF but requires the ability to 
evaluate each simulation time step multiple times from different starting points. 
To be able to utilize the Kalman filtering approach, the simulation model must 
be implemented to allow direct modification of the state variables. In more com-
plex system models that include partial differential equations across a spatial 
domain, the option of making updates to a limited number of state variables is 
not always possible without the introduction of spurious transients. Such is the 
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case in the thermal-hydraulics simulation that is the focus of this research. For 
this reason, Kalman filtering approaches were ruled out in this case. 

2.7 Comparison of existing DT implementation examples 

Different examples of DT implementations for the process industry have been 
presented in this chapter. These examples are compared in Table 1. In a DT, the 
plant structure information can be obtained from plant design and operation 
material, such as the P&IDs, 3D plant models, equipment technical data sheets, 
control configuration programs and automation systems. In [20], [21], which 
are two of the most popular commercially-available solutions for plant digitali-
zation, plant structure is obtained after integrating different CAD/CAE and au-
tomation systems, such as COMOS [130] in the case of [21]. In these systems, 
plant structure information is contextualized after being presented in an inter-
face based on the P&ID of the targeted plant. In [6], [105], the structural infor-
mation is also presented in an interface based on the P&ID. Since these systems 
mainly focus on providing support to plant operators, their user interfaces are 
very similar to those used for developing operator training simulators. An alter-
native option for DT visualization would be to utilize the simulation model con-
figuration canvas as the user interface where the structure information is pre-
sented. The model configuration canvas contains key process data, such as pro-
cess components connections and locations as well as equipment nominal and 
operational data. However, the interfaces of simulation tools are rather simple 
compared to those obtained after integrating structure data from CAD/CAE 
plant material. Moreover, navigation through different plant sub-systems using 
the model configuration canvas can be time-consuming in large processes. 
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Table 1. Comparison of existing examples that implement digital twins for process plants. (The 
notation ”N/A” indicates that no information is available for the approach). 

Implementa-
tion 

Industrial Do-
main 

Approach for 
Presenting 

Asset’s Struc-
ture  

Modelling 
Approach for 

Presenting 
Asset’s Dy-

namics 

Model 
Generation 
Approach 
Followed 

[20] Process and 
Manufacturing 

Integration 
with CAD/CAE 

systems. 
DDMs 

Model cre-
ation on 
demand 

from pro-
cess data. 

[21] Process and 
Manufacturing 

Integration 
with CAD/CAE 

systems. 
DDMs 

Model cre-
ation on 
demand 

from pro-
cess data. 

[27] Process N/A FPMs N/A 
[4] Process N/A FPMs N/A 

[6] Process 

Through UIs 
based on the 

Asset’s 
CAD/CAE ma-

terial. 

FPMs N/A 

[105] Process 

Through a UI 
based on the 

Asset’s 
CAD/CAE ma-

terial. 

FPM/Data-
driven N/A 

 
The modelling approach followed for capturing plant dynamics determines the 
model development method utilized.  In [20], [21], plant modelling is based on 
data-driven methods. These methods use plant data for creating a data-driven 
model of the targeted plant. Since data-driven models can be developed rela-
tively fast, these models can be developed on-demand when the DT is under 
implementation. However, the reliability of their results is strongly dependant 
on the plant data that has been collected. Moreover, it cannot be assumed that 
sufficiently accurate data-driven models can be developed for every facility, as 
the conditions for data availability change from one plant to another. In con-
trast, the SBDTs presented in [4], [6], [27], [105] utilize FPMs to represent the 
plant dynamics. Since no particular information regarding the model creation 
approach utilized is given, it is assumed that these systems follow the manual 
simulation model development practices described in Section 2.2 for developing 
their underlying plant models.   
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3. Proposed method 

3.1 Overview of the proposed method 

Based on the shortcomings of existing methods for implementing SBDTs, it is 
clear that although these systems can bring significant benefits to the operation 
of industrial process plants, their development remains laborious and expen-
sive. Although research on the reuse of existing simulation models could reduce 
implementation effort and cost [33], development of FPMs remains time-con-
suming, and thus expensive [10]. Moreover, wider industrial adoption of SBDTs 
is limited by the lack of integrated approaches for SBDT implementation, which 
could address complex integration of the process with simulation systems and 
the various simulation methods required over their lifecycle  [26]. 

In this thesis, these implementation shortcomings are tackled by utilizing a 
combination of implementation methods proposed in this work. First, laborious 
FPMs development is addressed by applying an AMG method based on utilizing 
3D plant model information for automatically generating the underlying FPM 
of the SBDT [41]. Furthermore, laborious integration between the simulation 
system and the process plant is addressed by utilizing a method for implement-
ing a lifecycle-wide tracking simulation architecture [26]. A conceptual diagram 
of the proposed implementation method is shown in Figure 6. 

 
 

 
Figure 6. Conceptual diagram of the proposed SBDT implementation method. 
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3.1.1 Scope of the proposed method 

This work is limited to study thermal-hydraulics-based systems and their cor-
responding models. Thermal-hydraulic simulation models are based on FPMs, 
which rely on physics, engineering and chemical relations for calculating the 
thermodynamic properties of hydraulic flow [9], [25], [131]–[133]. Dynamic 
thermal-hydraulic simulation models are broadly utilized in the process indus-
try for various important applications, including engineering support [1]–[3], 
operation planning [4]–[6], and online process optimization [7]–[9].  

3.2 Automatic generation of a high-fidelity thermal-hydraulic pro-
cess simulation model from a 3D CAD plant model 

Laborious and expensive development of simulation models based on FPMs, 
has hindered wider industrial adoption of these systems. This is evident from 
the information provided in Table 1, which assumes that the underlying model 
is created manually, since no information is provided regarding the method fol-
lowed to develop the FPM in the surveyed SBDTs examples. 3D plant models 
are created at the process design stage of the plant before building the plant. For 
this purpose, CAD models could be utilized as a source of information for ap-
plying AMG methods, thereby enabling a more efficient and rapid generation of 
simulation models.  

In order to address Research Goal 1 described in Section 1.2, this work pro-
poses an AMG method that leverages the information available from 3D plant 
models for automatically generating dynamic thermal-hydraulic process simu-
lation models. In this work, information on 3D pipe routing is obtained and ap-
plied for calculating and configuring the simulation model based on pipeline 
lengths and their head loss coefficients. Similarly, elevations of process equip-
ment and of piping sections are derived from the 3D plant model for configura-
tion of the corresponding model components. This information is highly im-
portant, as the thermal-hydraulic simulation methodology follows mechanistic 
modelling, which models in detail the structure and characteristics of the target 
process , and uses the first principles of physics to describe process phenomena, 
such as fluid flows and heat transfer [131], [132]. Consequently, the accuracy of 
the dimensions is of utmost importance. The cross-sectional areas, lengths and 
shapes of the pipeline sections affect the flow rates and process delays, system 
volumes, and hydrodynamic losses. Furthermore, the elevations of the equip-
ment and pipe sections affect the pressure levels of the system. This information 
is not available from a typical PI&D.  

The conceptual diagram of the proposed 3D plant model-based AMG method 
and its comparison with existing P&ID-based AMG approaches is shown in Fig-
ure 7. The implementation steps of the proposed AMG method are shown as 
Unified Model Language (UML) activity diagrams in Figure 8 and Figure 9. The 
method is divided into Model Generation and Model Initialization, as shown in 
Figure 8. During Model Generation steps, information is retrieved from the 3D 
plant model. Next, the model components are generated and then connected. 
During Model Initialization, the model is first configured and connected to its 
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control application before being finally initialized. The proposed method is in-
tended to be implemented utilizing flow-sheet-based simulation tools, as these 
are widely used in the process industry to develop thermal-hydraulic simulation 
models. Furthermore, flow-sheet-based simulation tools offer two advantages 
for implementing AMG: 

1. They offer libraries of modelled process components, which can be 
configured and connected according to the corresponding physical 
system.  

2. They commonly offer script-based commands which can be applied to 
ease model development.  

The Model Generation and Model Initialization steps in the proposed method 
are explained in the following sections.  

3.2.1 Model generation 

Model Generation starts when the proposed method retrieves information from 
the 3D plant model. Accessing this information is a non-trivial task which is de-
pendent on both the communication interfaces of the 3D modelling tool used as 
well as the data access options offered by the tool interfaces. Industrial 3D mod-
elling tools typically offer direct communication to their data bases through 
their application programming interfaces (API). Alternatively, some 3D model-
ling systems also offer options for exporting 3D model information as tables of 
comma-separated values (CSV). The 3D modelling tools Aveeva E3D [134] and 
Cadmatic [135] offer export options of files compliant with the Industry Foun-
dation Classes (IFC) data model format. IFC is an XML-based format, standard-
ized in ISO 16739. It is mainly used in the construction industry for describing 
building data, including their heating and ventilation systems. However, IFC 
currently supports only air conditioning, heating and ventilation piping sys-
tems. Therefore, 3D information regarding the complex pipeline and equipment 
utilized in thermal-hydraulic systems cannot be represented using the IFC data 
model.  

 
Figure 7. Comparison of the proposed 3D plant model-based AMG approach and existing state-
of-the-art AMG approaches which are mainly based on utilizing P&ID data and equipment data 
sheets [41]. 
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Figure 8. Flow diagram of the proposed method for automatic simulation model generation from 
3D model information [41]. 

 
Figure 9. Flow diagram of the model components in the configuration subprocess shown in Fig-
ure 8 [41]. 

During recent decades, some efforts have been devoted to the development of 
industrial standards for data modelling and exchange between process plant en-
gineering systems, including 3D modelling tools. The Computed Assisted Engi-
neering Exchange (CAEX) [136] specification is a promising example of these 
standards. CAEX is an XML-based neutral data format for plant information 
modelling and exchange. It is defined in the IEC 62424 specification and has 
been adopted by the industry-driven initiative AutomationML [137]. However, 
commercial 3D modelling tools do not support export or import of CAEX for-
mat. Recently, the Data Exchange in Process Industry (DEXPI) [138] initiative 
has been developing a neutral data exchange standard for the process industry. 
The DEXPI specification is the result of this initiative. It is an extension of the 
ISO 15926 [139], originally intended for information exchange between P&ID 
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and 3D modelling tools. The DEXPI specification is currently supported by a 
group of process owners and most vendors of the main CAD tools. However, 
DEXPI is currently limited to information exchange only between P&IDs tools. 
The study in [140] presents a comparison of CAEX and ISO 15926 specifica-
tions. Broader industrial adoption of standards, such as CAEX and DEXPI, 
would reduce the effort required for integration of 3D modelling tools with other 
systems, including industrial simulation systems. 

Due to the lack of widespread industrial adoption of information exchange 
formats, the AMG method proposed in this work uses 3D plant model infor-
mation retrieved in CSV format directly from the 3D modelling tool database. 
Information available from 3D plant models includes equipment dimensions, 
positions, elevations and connections as well as pipe section lengths and eleva-
tions. It also includes data related to the piping structure, especially elbows and 
branches, needed to calculate the head loss coefficients of the process pipelines. 
In this work, position and elevations are classified separately. Positions refer to 
XY positions on the horizontal plane. Elevations are defined as the Z coordinate 
in respect to the XY plane. Finally, the 3D models also contain process equip-
ment naming and nomenclature information. This is required when connecting 
the simulation model to a real control application or an automation system em-
ulator during plant operation and maintenance phases. Figure 10 shows an 
UML class diagram of the information available from the 3D plant model of a 
process comprised of some of the most common components in thermal-hy-
draulic systems, such as tanks, vessels, valves and pumps. Figure 10 also lists 
various pipe geometries, including tees and elbows. 

The proposed AMG method first retrieves process information from the 3D 
modelling tool as a CSV file. Next, model components are generated automati-
cally according to the process information included in the retrieved CSV file. As 
previously defined, model components are all elements comprising the simula-
tion model, including models of the pipeline network, the process equipment as 
well as the TH points. TH points are defined as coordinate locations in space 
which define the elevations and positions of the connections between process 
components and pipelines. These points play an important role in the thermal-
hydraulic solution, as they represent a calculation volume with state infor-
mation. Model components are generated and positioned on the model config-
uration canvas of the flowsheet modelling tool using configuration commands 
offered by these tools. Elevations of pipelines and process components are also 
highly important, as they are required for calculating hydrostatic pressures in 
the process. This information is essential for obtaining accurate simulation re-
sults and is not available from P&IDs. Generated model components are posi-
tioned at their corresponding XY coordinates specified by the 3D model infor-
mation. After their generation, the model components and the pipeline network 
are connected using TH points. Figure 11 shows a Systems Modelling Language 
(SysML) block definition diagram that depicts the simulation model compo-
nents. Figure 12 shows an internal block diagram that uses the block types de-
fined in Figure 11 to illustrate examples of connections between process equip-
ment and pipes through TH points.  
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Figure 10. UML class diagram of the information available from the 3D plant model comprised 
of common components in thermal-hydraulic systems [41]. 

 
Figure 11. SysML block definition diagram of simulation model components. TH-points refer to 
thermal-hydraulic points [41]. 

 
Figure 12. Internal block diagram that uses the block types defined in Figure 11 for the purpose 
of illustrating examples of connections between process equipment and pipes through TH 
points [41]. 

3.2.2 Model Initialization during AMG 

During Model Initialization, model components are first configured by assign-
ing nominal values to their corresponding parameters. Nominal equipment in-
formation is defined as the de facto information that represents the conditions 
in which the process equipment is expected to function under normal operation. 
Nominal information includes positions, flows, pressure heads, head loss coef-
ficients, power coefficients, and heat coefficients. Nominal values for process 
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equipment, marked in purple in Figure 10, may or may not be included in 3D 
models, depending on the level of detail required by the engineering company 
developing the 3D model. Since it cannot be assumed that nominal equipment 
information is always available from the 3D model, the proposed AMG method, 
retrieves this information from technical data sheets. The sub-step for configur-
ing simulation model components is shown in Figure 9. During this step, the 
retrieved nominal information is utilized to configure the corresponding model 
component.  

Model configuration includes calculation of the head loss coefficients of the 
pipeline network. Head loss coefficients, also known as pressure loss coeffi-
cients or as form loss coefficients [141], are a nominal parameter of pipes that 
represents head losses due to friction and turbulence. These head losses are 
caused by abrupt piping direction changes or by cross-section areas of pipelines 
[142]. Consequently, head losses occur mostly in piping fittings such as elbows, 
expansions, reducers, tees (a 3-way connector) and 4-way connectors. Analyti-
cal methods for obtaining head loss coefficients in pipelines are generally based 
on the Herschel-Bulkley model [143]–[147]. Alternatively, numerical models 
commonly used in industry can be obtained from process engineering hand-
books, such as [148], [149].  

 Calculation of head losses in the pipeline network is very important for gen-
erating accurate thermal-hydraulic simulation models. In the proposed AMG 
method, head loss coefficients are obtained utilizing the geometrical pipe fit-
tings information included in the 3D plant model. This information cannot be 
obtained from other engineering sources. The geometrical information needed 
for calculating head loss coefficients includes the fitting type, its length, diame-
ter ( ), bend angle (δ) and bend radius ( ). The proposed AMG method cal-
culates head loss coefficients for fittings utilizing the equations in [149]. As an 
example, equations (3) - (6) correspond to the calculations followed to obtain 
the head loss coefficient of 90° elbow fittings, shown in Figure 13. The total head 
loss coefficient  of a 90° elbow fitting is the sum  

 
 ,                                                                         (3) 

 
where   is the local head loss coefficient of the elbow fitting; and  is the 
friction coefficient throughout the fitting length. 

 
                                                                              (4) 

 
 is determined as a function of the fitting bend angle δ. In the case of a 90° 

degrees elbow,  = 1.0. 
 

                                                            (5) 
 
 = 1.0 for circular or square cross sections. 
 

                                                (6) 
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where  is the friction coefficient of unit length of the curved pipe.  varies ac-
cording to the relation  of the elbow and can be calculated using equa-
tions 6-12 to 6-14 in [149].  

 
Figure 13. Elbow fitting and its diameter (D0), bend angle (δ) and bend radius (R0) [41].  Figure 
adapted from [149]. 

After completing the model configuration, model initialization must be per-
formed in order to find initial solutions for the set of model variables which de-
fine the starting simulation state. Therefore, the proposed AMG approach per-
forms model initialization using a control system for driving the simulation 
model to a given initial state. This approach is suitable for model initialization 
of SM and EO dynamic simulators and can be followed even if no steady-state 
models of the plant are available. For this reason, before initialization, the au-
tomatically generated simulation model is connected to its control application. 
Upon initialization, the AMG method is completed, and the simulation model 
can now be used for the targeted application.  

3.3 Integrated implementation methodology of a lifecycle-wide 
tracking simulation architecture 

After AMG, the implementation of a SBDT is followed by integration of the au-
tomatically generated model with other plant information systems. This inte-
gration must be carried out in a non-disruptive manner while the process plant 
is under operation. Furthermore, the various simulation methods utilized over 
the tracking simulation lifecycle must also be integrated into the simulation sys-
tem. In order to accomplish this, this work proposes applying an integrated 
tracking simulation methodology of a lifecycle-wide tracking simulation archi-
tecture. The proposed methodology aims to address Research Goals 2 and 3, 
described in Section 1.2. The proposed architecture, originally designed for de-
veloping tracking simulation systems from previously existing models, is ap-
plied to develop SBDTs from automatically generated FPMs. The remaining of 
this chapter focuses on the description of the proposed approach which inte-
grates an implementation method and a lifecycle-wide tracking simulation ar-
chitecture. 

D0
R0

δ = 90° 
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3.3.1 Lifecycle-wide tracking simulation architecture 

The proposed tracking simulation architecture is shown in Figure 14. It is com-
prised of a Simulation System and a Historical Data Repository. The Simulation 
System contains three simulators: Online, Optimization and Predictive. The 
Online Simulator is permanently running in parallel with the plant, controlled 
by the process control application. The Optimization Simulator is used to run 
an offline model optimization to adapt simulation models after adjusting their 
parameters during Model Adaptation. The Optimization Simulation is also used 
to apply model optimization during Offline Estimation to aid in online dynamic 
estimation. The Predictive Simulator is utilized to obtain production forecasts.  

 

 
Figure 14. Proposed tracking simulation architecture components [26]. 

During Predictive Simulation, the simulation model requires to be controlled 
faster than real-time. Unfortunately, commercial control systems do not offer 
options for faster than real time execution. Moreover, different simulation in-
stances must be created for different applications throughout the tracking sim-
ulation lifecycle. Additionally, having a dedicated control system for each simu-
lation instance would involve significant implementation effort. Thus, due to 
differences in their operation cycle approaches, an additional experiment man-
ager would be required to handle the synchronization between the control and 
simulation systems. In order to overcome this, the proposed architecture in-
cludes a model of the process control system (CS). The CS model, developed and 
integrated into the same simulation tool, is used to independently control the 
process model when required, even during Predictive Simulation, when the 
model is run faster than real time.  The CS model is a replica of the structure, 
equations and tuning parameters of the real CS. In addition, having a CS model 
included in the simulation tool reduces the time and effort needed to integrate 
the process simulator into other control systems. The architecture consists of 
four components: 

 Online Simulator: Prior to Tracking Simulation, Online Model Ini-
tialization is handled by the Initialization Manager. Later, during the 
Tracking Simulation stage, the Online Simulator runs in parallel with 
the plant, controlled by the real CS, while the Dynamic Estimator com-
ponent adjusts model parameter to align the simulated results with the 
process measurements. As a result, the Online Simulator and the pro-
cess states are continuously synchronized. A snapshot of the Online 
Simulator is always used for initializing the Optimization and Predic-
tive simulators during the Offline Estimation and Predictive Simula-
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tion stages, respectively. This guarantees that their ICs always corre-
spond to the current state of the process. A model snapshot is defined 
here as an executable copy of a simulation model that includes its ICs.  

 Optimization Simulator: This component consists of a snapshot of 
the Online Simulator that runs a model optimization that is needed to 
find a set of model parameters that best represent the behaviour of the 
plant described by historical process data. Model optimization is ap-
plied during Model Adaptation to adapt a previously developed or a 
model created following AMG methods using historical data of the pro-
cess. Model optimization is also used during Offline Estimation for of-
fline optimization to aid in dynamic estimation. The latter is achieved 
using recent historical process data. The Optimization Simulator is run 
faster than real time and controlled by its CS model in order to reduce 
the time required to obtain the optimization results. The Optimization 
Manager is responsible for starting the optimization by obtaining a 
snapshot of the Online Simulator; retrieving the data relevant to the 
optimization from the Historical Data Repository; and managing the 
automatic execution of the method.  

 Predictive Simulator: This simulator consists of another snapshot 
of the Online Simulator. It is executed faster than real time to obtain 
predictions. The CS model is used to control the process model during 
Predictive Simulation.  

 Historical Data Repository: This component consists of a process 
historian that stores into a database the information generated by the 
process and the simulation system. Many existing process plants al-
ready have this component, as historical data can be used not only for 
implementing SBDTs but also for creating DDMs of the plant. 

3.3.2 Tracking simulation methodology 

 
This section describes the tracking simulation methodology followed, along 
with the way the proposed simulation architecture components are utilized dur-
ing each Tracking Simulation stage. 

Model Adaptation 

AMG can eliminate much of the laborious work required for FPM development. 
However, the results of the automatically generated FPM of the SBDT does not 
always fully correspond to current process measurements. This is also the case 
for models created manually from plant design material. One possible reason 
for this is either that the physical system was not built exactly according to the 
design specifications that were used to generate the FPM, or that the design 
specifications lacked some detail. Another possible reason is that although the 
physical system has long been in use, some parameters, such as friction in the 
piping network or valves, may have changed over time. Thus, the proposed 
method requires a Model Adaptation step to optimize either existing models or 
automatically generated models using historical data from the physical system. 
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This step is required to obtain results representing the current behaviour of the 
physical system. For this reason, adapted simulation models can be used as the 
underlying models for implementing tracking simulators of SBDTs. 

Model Adaptation is based on a multi-parameter model optimization. This dif-
fers from the online model parameter adjustment performed by the dynamic 
estimation methods, as online calibration is limited to adjusting only a few 
model parameters  for synchronizing the states of the model with the process 
[105]. The proposed Model Adaptation method, described in detail in Publica-
tion V, is carried out using the optimization method described in Section III C 
of Publication VI. During the execution of this method, the Optimization Sim-
ulator is controlled by its CS model. The connections between the CS model dur-
ing this and other phases of the tracking simulation lifecycle are presented in 
Figure 15. Model Adaptation is automatically started and handled by the Opti-
mization Manager. 

 
Figure 15. Control system (CS) model set point (SP) & measurement (Meas.) connections dur-
ing tracking simulation lifecycle [26]. 

 
Figure 16. Model optimization for Model Adaptation [26]. 

Model Deployment  
Model Deployment is the procedure during which the simulation system is con-
nected to the running process. This is a safety-critical task, as this integration is 
carried out during process operation [9]. Furthermore, it must be performed 
although the conditions for accessing information from the plant ICT infrastruc-
ture may vary significantly in different facilities [88]. The expensive and labori-
ous work required for integration can restrict the scalability of simulation-based 
applications, especially when multiple systems must be integrated with the pro-
cess plant [44]. In contrast, the proposed implementation approach only re-
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quires integrating the simulation architecture, as the architecture already in-
cludes the components required for model optimization, initialization and dy-
namic estimation. Industrial interoperability standards can be used as commu-
nication mechanisms to interface the simulation system with the physical plant. 
Examples of these standards include (but are not limited to) the OPC and OPC 
Unified Architecture (OPC UA) industrial interoperability specifications [56], 
often available in modern plants.  

Online Model Initialization 
In tracking simulators, direct, persistent communication between the simula-
tion system and the plant can be exploited to achieve efficient model initializa-
tion. The proposed Online Model Initialization method is similar to that applied 
for initialization of models generated using AMG methods, as it based on con-
trolling the simulation model to an initial simulation state. However, during 
Online Model Initialization, instead of controlling the process to any given ini-
tial state, the CS model guides the Online Simulator model to the current state 
of the process, as described by plant measurements. The model initialization 
sequence starts when the adapted, deployed simulation model is connected to 
the CS model, as shown in Figure 15. Next, the process model is controlled to 
the current process state. The initialization stage is completed when the Online 
Simulator and plant states are at the same state, as shown by the example Pro-
cess and Simulated Variables in the uppermost part of Fig. 4 in Publication 
VI.  

Tracking Simulation 
A SBDT must remain an accurate twin of the physical plant throughout the op-
eration and maintenance phases of the plant lifecycle. Therefore, the state of the 
SBDT plant requires continuous alignment. This is accomplished during Track-
ing Simulation by applying dynamic estimation while at the same time running 
the Process Model of the Online Simulator together with the plant, controlled 
by the real control application. Concurrently, the CS model of the Online Simu-
lator is connected to the process measurements and set points in order to syn-
chronize its state with the real control application state. This synchronization is 
shown in Figure 15. The layout of the simulation architecture during Tracking 
Simulation is presented in Fig. 4 of Publication VI. As explained in Section 
2.5.4, direct state adjustment can result in spurious transients that can nega-
tively affect the simulation results [150]. This is a critical issue if the tracking 
simulation is applied as a virtual sensor which requires an accurate estimate of 
the current of the process. Therefore, the proposed architecture applies implicit 
dynamic feedback [128] as the dynamic estimation mechanism.  

Implicit dynamic feedback is a SISO-based dynamic estimation method which 
pairs a single process measurement with an unmeasured disturbance for esti-
mating the state of a single model variable. The advantage of this method is that 
any SISO feedback controller can be applied for its implementation. PI control-
lers have been the most popular controllers for implicit dynamic feedback esti-
mation. Alternatively, this work proposes the utilization of sliding mode con-
trollers [151]. The advantage of sliding mode control (SMC) over PI controller-
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based implicit dynamic feedback is that SMC can eliminate bounded disturb-
ances in finite time in the presence of bounded uncertainties, whereas PI-based 
controllers always exhibit a discrepancy that is proportional to the magnitude 
of the disturbance. Although SMC is not applicable to systems that exhibit sig-
nificant real delays, such delays can mostly be eliminated for tracking simula-
tion purposes. Additionally, SMC controllers are more robust in terms of con-
troller tuning requirements. They are also very robust against uncertainties re-
lated to the presence of noise. However, industrial application of this approach 
might be limited by pending patents regarding the utilization of PI controllers 
for dynamic estimation [152] . The proposed dynamic estimation method based 
on SMC controllers is explained in detail in Publication IV. 

Offline Estimation 
SISO-based dynamic estimation can adjust a limited number of model parame-
ters [105]. Therefore, the proposed architecture applies offline multi-parameter 
estimation to prevent bias concentration on a low number of simulation varia-
bles. This approach can also be applied for obtaining specific sets of model pa-
rameters to improve the simulation results of specific plant operating regions. 
Offline Estimation is carried out by using the Optimization Simulator to opti-
mize a snapshot of the Online Simulator. This is accomplished using the same 
model optimization method employed for Model Adaptation. However, during 
Offline Estimation, the optimization is performed using recent process time 
data series or data series from common operating regions or transients, instead 
of historical plant information. This is shown in Figure 17. Fig. 4 of Publication 
VI shows the layout of the proposed architecture during Offline Estimation. Fig-
ure 15 shows the connections of the CS model connected during this phase.  Alt-
hough model optimization can be performed faster than real time, this method 
cannot be utilized for dynamic estimation, as optimization results may fail to 
converge in the required cycle time, depending on the complexity of the mod-
elled system [43]. For this reason, model optimization for Offline Estimation is 
mainly applied for further improving the Predictive Simulation results. Model 
optimization during Offline Estimation is also managed by the Optimization 
Manager. Once model optimization is completed, the values of the found opti-
mal set of model parameters are provided to the Online Simulator and a new 
optimization is started. 

 
Figure 17. Model optimization method for Offline Estimation [26]. 

Predictive Simulation 
At the Predictive Simulation stage, a snapshot of the Online Simulator is run 
faster than real time for a simulation length through an operation sequence 
specified by the system operator. During this stage, the simulation model is con-
trolled by the CS model, as shown in Fig. 4. of Publication VI and in Figure 

p
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15. During Predictive Simulation, the calibrated model parameters remain con-
stant at the mean value obtained from the Online Simulator before forecast ex-
ecution. This approach has two advantages. First, since predictions are obtained 
using a snapshot of the Online Simulator, they are based on the current state of 
the process. Second, the resulting forecasts are based on a simulation model that 
has been adjusted during Tracking Simulation and Offline Estimation to closely 
match the plant’s behaviour.  
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4. Results 

4.1 Description of the case study 

The described methodology was implemented and tested using a laboratory-
scale heat production plant (HPP) process. The HPP, shown in Figure 18, is a 
hot water production system that is simpler than real process plants. However, 
it has been designed by automation experts and includes key automation func-
tionalities found in industrial processes [153]–[156]. Figure 19 shows the P&ID 
of the HPP process. The process is comprised of three open tanks (B100, B200 
and B400), a vessel (B300), two pumps (M100 and M200), a heating element 
(E100), various shut-off valves and two control valves (Y102 and Y501). During 
operation, the water in the tank B100 is heated by the heating element E100. 
The water temperature of tank B100 is controlled by an on-off controller. The 
water level L200 of tank B200 is controlled by a cascade PID controller which 
adjusts the position of proportional valve Y102.The pressure P300 in tank B300 
is controlled by a PID controller, which adjusts the speed of pump M200. Load 
on the consumption of hot water can be changed by adjusting the position of 
valve Y501. The consumed hot water flows back into tank B100 where it is re-
heated. The control application for the process runs on a soft programmable 
logic controller and was developed following the IEC 61131-3 standard. The CS 
of the HPP offers an OPC UA server for accessing process measured infor-
mation. 

 

 
Figure 18. Heat production plant (HPP) process used as the case study for the proposed meth-
odology [41]. 
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Figure 19. P&ID of the HPP process [153], [157].  

HPP system dynamics exist mostly in the tanks, as they have the largest share 
of the total volume, which can vary. Similarly, the control valves are dynamic 
elements that are used to control flows. Furthermore, since a portion of the sys-
tem volume resides in the pipelines, they also introduce a portion of the system 
heat and fluid flow delay. However, since the system in this study is always op-
erated at a constant temperature, thermal inertia or heat transfer remain negli-
gible. In this work, the simulation model is controlled by a CS model. This CS 
model is an exact copy of the equations, structure and tuning parameters in the 
real control application. An exact copy of the real control application is utilized 
to reduce the impact on the system dynamics and to reduce discrepancies be-
tween physical and modelled systems.  

4.2 Automatic model generation method results 

The HPP system was developed before starting the implementation method pro-
posed in this work. No 3D model of the system was created during its design. 
Therefore, in order to test the proposed AMG methodology, a 3D model of the 
HPP was developed in AutoCAD Plant 3D [158] after measuring physical dimen-
sions of the real process. AutoCAD Plant 3D is a 3D modelling tool utilized in 
industry. The 3D model of the physical system is presented in Figure 20.  
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Figure 20. 3D model of the HPP process developed in AutoCAD Plant 3D [41].  

The proposed AMG method was implemented using Apros [159]. Apros is a 
commercial flowsheet-based tool for modelling and dynamic simulation of ther-
mal-hydraulic processes. Apros has been used for modelling and simulating var-
ious industrial thermal-hydraulic systems, including nuclear power plants [71], 
combined heat power plants [160], renewable energy production systems [161], 
[162], as well as pulp and paper mills [70]. This simulation tool offers libraries 
of simulation components for common process equipment. Model components 
are connected through pipes and TH points. The simulation tool also offers com-
munication interfaces for connecting the process simulation model to industrial 
automation systems. Alternatively, Apros includes simulation components with 
functionalities for developing a model of the process automation system. This is 
particularly useful for independently controlling the simulation model or for 
faster than real time simulation. Detailed descriptions of the thermal-hydraulics 
model, equations and calculation methods in Apros are available in [70], [71], 
[161]. Apros utilizes the Simantics Constraint Language (SCL) [163] to manage 
different model configuration tasks. This script language is based on the inte-
gration platform Simantics [164]. Consequently, the proposed AMG method 
was developed using SCL.  

The proposed AMG method, utilizes information from the 3D plant model for 
automatically generating a thermal-hydraulic simulation model. In AutoCAD 
Plant 3D, this information can be accessed either directly from the 3D model 
database or through the API of this 3D modelling tool. Additionally, AutoCAD 
Plant 3D offers the possibility of exporting the 3D model information in CSV file 
format. The main drawback of the latter option is that the exported CSV format 
is not compliant with any industrial information exchange standard. Moreover, 
the exported CSV file does not contain information on the process equipment 
connections. Consequently, the proposed AMG method directly retrieves infor-
mation from the AutoCAD Plant 3D database. This information is accessed 
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through an SQL server which connects to the data base client of the 3D model-
ling tool and then exports the required data as CSV files.  

After the 3D plant model information is retrieved, the AMG method generates 
model components of the HPP process equipment, such as the vessel, open 
tanks, pumps and valves. Next, the pipeline network, including the pipe fittings 
and TH points are created. Model components are generated and located at the 
corresponding XY position specified by the HPP 3D model information. Infor-
mation on the elevations of the process components is provided as a parameter 
to the TH points. Next, the connections are generated between all the model 
components. The resulting model and its comparison with the lower isometric 
view of the HPP 3D model are shown in Figure 21.  

 

 
Figure 21. Apros’ configuration canvas of the simulation model generated using the proposed 
method, and its comparison with the lower isometric view of the HPP 3D model [41]. 

Some industrial 3D plant models include equipment nominal information on 
the modelled system. However, it cannot be assumed that this information is 
always available from a single information source. Therefore, in the proposed 
AMG method, the model configuration is performed using data obtained from 
both: the HPP 3D model and the process equipment data sheets. Equipment 
nominal data obtained from the data sheets is provided to the AMG method as 
CSV tables. Equipment nominal parameters, such as nominal flows and posi-
tions of valves as well as nominal pressure heads and nominal flows of pumps 
are provided to the corresponding process equipment. Finally, Model Configu-
ration is complemented after calculating head loss coefficients of the pipeline 
fittings (using the equations presented in Section 3.2.), and then providing these 
to the corresponding piping fitting.  

 Model initialization of the automatically generated model is performed by 
connecting the simulation model to its control application and controlling the 
model to the desired initial state. In order to test the method, a CS model was 
manually developed in Apros. The CS model replicates the HPP control appli-
cation equations, structure and tuning parameters. In this work, model initiali-
zation during AMG was carried out by independently controlling each process 
sub-system to the desired initial state and then verifying model stability at that 
state. This is iteratively carried out until the entire system reaches the desired 
initial state. Once the initialization is completed, the automatically generated 
model can be utilized for the desired application. 

The results of the model generated using the proposed AMG method were 
compared with experimental data from the HPP process. The experimental 
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setup during these experiments is explained in the Results section of Publication 
VII. Figure 22 compares the simulation results with the HPP experimental data 
during transients caused by changes in the set point of the B200 tank water level 
L200. The flow F100 is the water flow between tanks B100 and B200, measured 
between valve Y102 and pump M100. Figure 23 shows a comparison between 
the simulation results and the HPP experimental data during transients caused 
by changes in the set point of the pressure in vessel B300. The results of these 
comparisons show that the behaviour of the model generated using the pro-
posed AMG method is in good agreement with the HPP experimental data.  

 

 
Figure 22. Simulation results of the automatically generated simulation model and its compari-
son with the HPP measurements. Transients are caused by changes in the set point of the wa-
ter level L200 of the tank B200. 

 

Figure 23. Simulation results of the automatically generated simulation model and its compari-
son with the HPP measurements. Transients are caused by changes in the set point of the 
pressure P300 in the vessel B300. 
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The automatically generated model is further assessed by comparing its results 
to those obtained from a model created manually using the plant P&ID and 
equipment nominal data. This source information corresponds to the data uti-
lized in the closest state-of-the-art methods for AMG of industrial processes  
[28], [37], [91], [99]. Therefore, the manually created model was developed with 
limited information concerning the pipeline network structure. Nevertheless, 
the pipe lengths and the elevations of process equipment and pipes were meas-
ured and then configured on the manually created model. This is done to high-
light the improvements due to differences in the head loss coefficient values. 
Therefore, in this respect, the manually created model included even more pa-
rameter information than the models created with data used by AMG state-of-
the-art methods. 

The experimental setup during these comparisons is explained in detail in the 
Results section of Publication VII. Figure 24 compares the automatically gen-
erated and the manually created models with experimental data from the HPP 
plant. The figure also compares the water level L200 in tank B200 and the flow 
F100 during transients due to a change in the L200 set point. The same ICs have 
been used in both experiments for the tank B200 level. However, the difference 
between initial conditions for the flow F100 in Figure 24 is an unavoidable result 
of the fact that the head loss coefficients of the manually created and the auto-
matically generated simulation models are different.  

 
Figure 24. Comparison of the simulation results between the automatically generated model 
and the manually created model. Transients are caused by a change in the set point of the wa-
ter level L200 of the tank B200.   

Table 2 shows a comparison between the normalized root mean squared error 
(NRMSE) of the automatically generated model and that of the manually cre-
ated simulation models in respect to the process data series for the experiments 
depicted in Figure 24. NRMSE is used to facilitate the comparison between da-
tasets with different units and scales [165]. These results show that configuring 
the automatically generated model using 3D plant model information can re-
duce model residuals.  
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Table 2. Comparison between the normalized root mean square errors (NRMSE) of the auto-
matically generated and that of the manually created model in respect to the HPP experimental 
data. 

Description NRMSE 
Automatically generated model 102.8 

Manually created model 386.9 
 
A direct comparison between the proposed AMG method and the state-of-the-
art works [28], [37], [91], [99] is not possible, as the case studies are different. 
Nevertheless, the source information utilized for developing the manually cre-
ated model is the same as that suggested by the cited state-of-the-art methods. 
Furthermore, the results of the comparisons shown in Figure 24 are based on 
the same case study and the NRMSEs are calculated from the same transient 
scenarios. Consequently, the obtained NRSME can be considered representa-
tive of a performance improvement resulting from the proposed approach, as 
shown through comparison with state-of-the-art methods. Tracking simulation 
system implementation 

4.3 Implementation of the proposed tracking simulation architec-
ture  

The tracking simulation architecture proposed in this work, relies on OPC UA 
for interfacing the architecture components with the HPP plant. OPC UA is an 
industrial interoperability protocol, standardized in IEC 62541 [166]. It has 
been selected as the only standard for the communication layer in the Reference 
Architecture Model for Industry 4.0 RAMI [74], which will further consolidate 
its relevance in the future [55]. The OPC UA standard offers a set of specifica-
tions for information exchange between various industrial systems, including 
specifications for systematically retrieving historical process data from plant 
historians.  

Figure 25 shows the point-to-point connections required for communication 
between components of the tracking simulation architecture during its lifecycle. 
Point-to-point communication requires laborious configuration of a high num-
ber of connection points. For this reason, the proposed system avoids this by 
utilizing OPC UA, enabling a simpler communication layout based on client-
server connections. This is shown in Figure 26. In this approach, servers provide 
access to an information model with which clients can connect and interact to 
retrieve data and functions through a set of standardized services. OPC UA-
based connections between the architecture components are implemented uti-
lizing the subscription service of the OPC UA standard. Utilizing this communi-
cation standard results in a reduction in the effort required for configuring the 
connections between the architecture components. Furthermore, it reduces the 
number of connections required to interface different components. This is crit-
ical for reducing integration effort throughout the proposed architecture lifecy-
cle. This finding addresses research goal 3, described in Section 1.2. 
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Figure 25. Point-to-point communication required for information exchange during operation of 
the tracking simulation architecture. Based on [26]. 

 
Figure 26. Communication enabled by OPC UA during the tracking simulation lifecycle. Based 
on [26]. 

The Prosys OPC UA Historian [167] is the OPC UA-based historian utilized for 
implementing and testing the proposed architecture. The historian client con-
nects to the OPC UA servers of both the HPP plant and the simulation system 
in order to collect their data into an SQL database. The automatically generated 
model was developed in the described simulation tool Apros. Therefore, the tool 
is also used as the simulation system for implementing the proposed architec-
ture. A further benefit is that Apros offers an OPC UA client and server.  

4.3.1 Model Adaptation results 

Model Adaptation is required for finding an optimal set of parameters to repre-
sent the plant behaviour in terms of its historical data. Model Adaptation is 
based on applying the multi-parameter model optimization presented in Sec-
tion III C of Publication VI. As shown in Figure 16, Model Adaptation starts 
by accessing historical process data from the Historical Data Repository. His-
torical data is systematically retrieved utilizing OPC UA historical access func-
tions. This adaptation method, based on leveraging the OPC UA communication 
standard, is explained in detail in Publication V. To illustrate this process, 
Figure 27 shows 8 months of historical data from the B200 tank and water level 
L200. Figure 28 presents a close-up view of the data enclosed by the ellipse in 
Figure 27.  
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Figure 27. Eight months of historical process data of the B200 tank water level L200 [26]. 

 

Figure 28. Close-up view of the historical data enclosed by the ellipse of Figure 27 [26].  

During Model Adaptation, the model optimization method adjusts five param-
eters of the automatically generated HPP simulation model. These parameters 
are selected using a sensitivity analysis performed to determine how the uncer-
tainty in the output of the model can be apportioned to different sources of un-
certainty in its inputs. The method utilized for selecting parameters is the vari-
ance decomposition global sensitivity analysis [168] . This method, based on 
Monte-Carlo simulation, was selected as it is possible to measure the effect of 
variating the value of a parameter on the variance of an examined process vari-
able. Additionally, it measures the effect that variating a single parameter has 
on all of the other process variables. Results of this analysis can be used to select 
parameters suitable for adjustment during Model Adaptation as well as during 
the Tracking Simulation phases. A detailed description of the parameter selec-
tion method used is available in Publication III. This method is reviewed and 
compared with similar alternatives in [84], [169], [170]. 

In the HPP process, five parameters are adjusted during Model Adaptation: 
the nominal flows of proportional valves Y102 and Y501 as well as the head loss 
coefficients of piping sections P100, P200 and P300. Model components that 
include a parameter adjusted during Model Adaptation are marked in dark 
green in the model diagram of Figure 29. The nominal flow parameter of a pro-
portional valve represents the expected flow rate at different pressure levels. 
Different equipment aging factors, such as static friction, can cause variation in 
head loss coefficients or in nominal flow values over time. Consequently, it is 
expected that equipment parameters available from the original design material 
do not represent the current behaviour of the plant. Figure 30 presents the re-
sults of the optimization during Model Adaptation for the B200 water tank level 
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and the F100 water flow process variables.  Table 3 compares the model param-
eter values before and after their optimization during Model Adaptation.  

Table 4 compares the NRMSE of the simulation model with that of the histor-
ical process data series before and after the model optimization. These results 
show that the model optimization method can successfully be applied for Model 
Adaptation. The model optimization is able to find a set of model parameters 
that significantly reduces residuals of the simulation model generated by follow-
ing the proposed AMG approach. Consequently, the adapted model can be con-
nected to the ICT system of the process to be used as a tracking simulator for 
the SBDT. 

 
Figure 29. Tracking simulation connection diagram. The model components highlighted in dark 
green are those which have a parameter adjusted by the model optimization method during Model 
Adaptation and Offline Estimation phases. 

 
Figure 30. Comparison of the automatically generated model (AGM) results before and after 
Model Adaptation as well as its comparison with the HPP experimental data [75]. 

Table 3. Parameter values before and after model optimization during Model Adaptation. 

Model component Parameter Nominal parameter 
value 

Optimized parameter 
value 

Y102 Nominal flow rate 1.6 [kg/s] 1.33 [kg/s] 
Y501 Nominal flow rate 1.6 [kg/s] 1.45 [kg/s] 
P100 Head loss coef. 0.1 4.90 
P200 Head loss coef. 0.1 0.11 
P300 Head loss coef. 0.1 0.09 
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Table 4. Comparison of the NRMSE obtained from Figure 30 before and after optimization dur-
ing Model Adaptation.  

Description NRMSE 
Model before Model Adaptation 112.85 
Model after Model Adaptation 17.01 

4.3.2 Tracking simulation results 

Model Deployment is performed by connecting the OPC UA client of the simu-
lation system to the OPC UA server of the process CS. Next, at the Online Model 
Initialization phase, the deployed simulation model is controlled to the current 
state of the process by the CS model, as explained in Section 3 of this work and 
in Publication II. Tracking Simulation begins only after the state of the simu-
lation model corresponds to the current plant state. Once this is achieved, the 
model is connected to the outputs of the plant’s control application and the dy-
namic estimation is started. As presented in Section 3, the architecture imple-
mented utilizes SMC controller-based implicit dynamic feedback as its dynamic 
estimation method.  

During the tracking simulation tests, two simulation variables are adjusted by 
two SMC parameter controllers, as shown in Figure 29. The time constant of the 
SMC controllers is tuned to match the behaviour of two PI parameter control-
lers, which are tuned following the Ziegler-Nichols tuning method [171]. One of 
the parameter controllers aligns the simulated flow from tank B100 to B200 
with the real-time process measurement by adjusting the head loss coefficient 
of the modelled proportional valve Y102. The other parameter controller aligns 
the real and simulated B200 tank level L200 by adjusting the head loss coeffi-
cient of the modelled valve Y501. These parameters were selected following the 
same sensitivity analysis used for parameter adjustment during the Model Ad-
aptation phase. Figure 31 shows the tracking simulation results. The upper 
trend in Figure 31 compares the simulation results against the plant data of tank 
level L200 during the production transients caused by changes in the L200 set 
point. The lower trend in Figure 31 compares the simulation results against the 
plant data of flow F100 during the same transients. Figure 32 shows the SMC 
parameter controller outputs during the tracking simulation experiments of 
Figure 31. The proposed architecture allows the utilization of other feedback 
controllers for implicit dynamic feedback estimation. Publication VI presents 
a tracking simulation comparison of the SMC and PI parameter controller ap-
proaches.  The results show that automatically generated model can be success-
fully used for tracking simulation purposes after undergoing Model Adaptation. 
The variables adjusted by dynamic estimation closely match their correspond-
ing process measurement. Curves of the parameter controller outputs during 
the tracking simulation experiment, shown in Figure 31, fluctuate within a 
bounded region of head loss coefficient values. Furthermore, the proposed dy-
namic estimation method performed by the SMC parameters controllers can be 
applied for implementing SBDTs. 
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Figure 31. Tracking simulation results of B200 tank level and F100 water flow. 

 
Figure 32. Head loss coef. values for valves Y102 and Y501 calibrated by the SMC parameter 
controller during the tracking simulation experiment shown in Figure 31. 

4.3.3 Offline Estimation and Predictive Simulation results 

Offline Estimation is carried out in parallel during Tracking Simulation (as 
shown in Fig. 4 of Publication VI) to continuously enhance the prediction re-
sults. Offline Estimation is also based on applying the model optimization pre-
sented in Section 3 of Publication VI, as was done previously during Model 
Adaptation. However, the optimization method evaluates model results with re-
cent process information, instead of using historical process data. It is also pos-
sible to apply Offline Estimation based on historical data series from common 
operating regions or transients for improving the prediction results of those spe-
cific regions. In these experiments, Offline Estimation is carried out for demon-
strating the latter case. Therefore, during Offline Estimation, the same five 
model parameters (see Figure 29) adjusted for Model Adaptation are adjusted 
utilizing historical data from HPP common operation transients. The values of 
the process variables that define the selected transients are described in Table 
5. 

 
Table 5. Process variable values describing the production transients selected for Offline Esti-
mation 

Production [%] Valve Y501 Position [%] P300 [MPa] L200 Set Point Change [m] 

100 60% 0.106 0.15 - 0.16 

100 60% 0.106 0.16 - 0.17 

 
During Offline Estimation, the model optimization is executed in the Optimiza-
tion Simulator. The common operation transients were manually selected by a 
process expert. Upon request, the Optimization Manager retrieves the process 
data of these regions from the historian. This is done using OPC UA historical 
access functions. The historical data is then used to iteratively evaluate the 
model results. Once the model optimization finds an optimal set of model pa-
rameters that best represent the behaviour of the HPP at the transients selected, 
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the parameters are provided to the tracking simulation model. As shown in Fig-
ure 31, the dynamic estimation performed by the SMC controllers produces ac-
curate tracking simulation results even before carrying out offline estimation. 
Offline Estimation is mostly beneficial in the Predictive Simulation stage, where 
model optimization can further reduce the residuals of the predictions.   

During Predictive Simulation experiments, the Predictive Simulator takes a 
snapshot of the Online Simulator and runs it faster than real time through the 
transients selected for Offline Estimation. Figure 33 shows the B200 water tank 
level and the F100 flow predictions obtained before Offline Estimation as well 
as compares these with process measurements during production transients 
corresponding to the regions selected for Offline Estimation. As described in 
Table 5, transients are caused by a change in the L200 set point. Figure 34 shows 
the B200 water tank level and the F100 flow predictions obtained after Offline 
Estimation as well as compares these with process measurements during pro-
duction transients corresponding to the regions selected for Offline Estimation. 
The predictions are obtained using the average parameter values calculated by 
the SMC parameter controllers during Tracking Simulation. Table 6 compares 
the NRMSE of the B200 tank level and F100 flow predictions with the process 
measurements before and after Offline Estimation. These results show that the 
optimization method applied for Offline Estimation significantly improves the 
accuracy of the predictions obtained by the Predictive Simulator. Furthermore, 
applying the same optimization procedure for Model Adaptation and Offline es-
timation reduces the integration time of the architecture with other simulation 
methods. 
  



Results 

50 

 

 
Figure 33. Comparison of the predicted B200 tank level (L200) and the F100 water flow with 
their respective process measurements during production transients caused by a change in the 
L200 set point. These predictions were obtained before the Offline Estimation phase. 

 
Figure 34. Comparison of the predicted B200 tank level (L200) and the F100 water flow with 
their respective process measurements during production transients caused by a change in the 
L200 set point. These predictions were obtained after the Offline Estimation phase. 

Table 6. Comparison of the NRMSE for the predictions before and after Offline Estimation. 

Description NRMSE 
Predictions before Offline Estimation 

(Figure 33) 38.44 

Predictions after Offline Estimation 
(Figure 34) 14.67 
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5. Discussion of the results 

After presenting the results of this work, there are important aspects of the pro-
posed method that should be discussed.  

Regarding the 3D plant model-based AMG method, the results of the pro-
posed approach show that significant improvements in the model fidelity are 
expected by utilizing information available from the 3D plant model for AMG. 
The proposed approach is expected to result in improvements over state-of-the-
art methods that use only equipment data sheets and P&IDs as sources of infor-
mation. The degree of quantitative improvement will depend mostly, but not 
only, on the pipe routing of the particular case study, as the number and prop-
erties of pipe fittings significantly impact head losses. Precise calculation of 
head loss coefficients is vital for accurate modelling of transient behaviour.  

A drawback of the proposed AMG method is its dependence on information 
access options, which can vary according to the 3D modelling tool utilized. This 
can limit the applicability of the proposed AMG method to only those 3D mod-
elling tools that provide access to their 3D model databases. 3D model infor-
mation exchange formats would significantly increase the applicability of AMG 
methods. However, standards supported by some commercial 3D modelling 
tools, such as IFC, should also be extended for data exchange between industrial 
process systems.  

In this work, equipment nominal data from their technical data sheets was 
manually organized and provided to the AMG method as a CSV file. In this re-
spect, approaches followed by some of the existing AMG methods [28], [65], 
[91], in which nominal data is automatically extracted from plant design sys-
tems, could be also applied to completely automate this process. In the proposed 
AMG method, the control application required to control the generated model 
is developed manually. One possible approach for automating this step could be 
to utilize IEC 62424 descriptions for generating the control application model, 
as these descriptions are already available during early plant design. Alterna-
tively, it would be possible to utilize the information of the process control loops 
available from the P&IDs.  

Concerning the proposed tracking simulation architecture, utilizing OPC UA 
industrial interoperability standard reduces implementation and configuration 
effort required to interface the architecture components. This is necessary for 
reducing integration effort throughout the architecture lifecycle. OPC UA client-
server communication between the architecture components was implanted uti-
lizing the OPC UA subscription service. While OPC UA communication could 
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also have been achieved utilizing OPC UA Write and Read services, the infor-
mation flow in the proposed implementation only required OPC UA servers to 
provide data to the subscribed clients. Information exchange based on OPC UA 
subscriptions enables a more efficient exchange of information between servers 
and clients, compared to the OPC UA Write and Read services [166], [172]. This 
is required for maintaining continuous synchronization during the tracking 
simulation lifecycle.  

An important aspect to be considered is the OPC UA communication over-
heads that can cause communication delays, as this interoperability standard 
has limitations for interfacing complex processes with real-time requirements. 
Although communication delays could negatively impact results of more com-
plex and faster processes, in the HPP process, this aspect did not have a signifi-
cant effect in the experimental results. OPC UA is currently being extended in 
order to support real-time capabilities. This extension to the OPC UA standard 
includes the development of a publish-subscribe information exchange model 
that can be utilized over an Ethernet time-sensitive network [56], enabling OPC 
UA-based communication over real-time networks.  

Regarding dynamic estimation, both PI and sliding mode control-based meth-
ods are suitable for the example implementation. However, single-input-single-
output dynamic parameter estimation may cause fluctuation around the target 
value when using overly aggressive feedback controllers. Multiple-input-multi-
ple-output (MIMO) control methods could be applied to dynamically align sim-
ulated variables with process measurements.  
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6. Conclusions and future work 

This work has proposed and tested an integrated method for implementing a 
SBDT from an FPM generated automatically utilizing 3D plant model infor-
mation. A crucial first step in the proposed implementation is the automatic 
generation of the underlying plant simulation model from the 3D plant model.  
Overall results show that the model generated using the proposed AMG ap-
proach can be successfully applied for implementing SBDTs after its integration 
into the physical plant. This integration is enabled by the proposed tracking sim-
ulation architecture as well as by the application of the proposed tracking sim-
ulation methodology. The SBDT developed can be utilized for a number of im-
portant applications during plant operation, including virtual sensor and pre-
dictive simulation of production transients. This is a significant improvement 
compared to the current state-of-the-art for AMG, in which the achieved fidelity 
of the resulting model limits its application to only factory acceptance tests and 
virtual commissioning. Furthermore, this approach should result on a reduction 
of implementation effort for developing SBDTs, thereby increasing industrial 
adoption of these systems.   

The hypothesis and research questions presented in Chapter I are discussed 
as follows: 

Regarding Hypothesis 1, the results show that it is possible to automatically 
generate and configure a thermal-hydraulic simulation model from information 
available in the 3D plant model. An AMG method was developed which utilizes 
3D plant model information for generating and configuring a dynamic simula-
tion model. Since nominal information of the process is not always included in 
the 3D plant model, the proposed method configures modelled equipment nom-
inal data based on information from equipment data sheets. A key step in this 
method, which has not been considered in previous works, is the utilization of 
the pipeline structure information included in the 3D plant model to configure 
the model pipeline network lengths and elevations. In addition, geometrical in-
formation on pipe fittings is utilized for calculating the head loss coefficients of 
the model pipeline network. This information cannot be obtained from other 
data sources previously explored for AMG. Simulation results for the model gen-
erated using the proposed AMG method closely correspond to the process meas-
urements, even during process transients.  

The results of the proposed AMG method show that this work addressed Re-
search Goal 1, described in Section 1.2, as the proposed method enables more 
rapid, efficient model development compared to manual modelling approaches. 
Additionally, it utilizes design data available during early stages of the plant 
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lifecycle. This enables early application of simulation models not only for the 
implementation of SBDTS but also for other important applications even before 
constructing the plant. 

Regarding Hypothesis 2, an integrated methodology for implementing lifecy-
cle-tracking simulation systems enabled reduction of the engineering effort re-
quired to develop SBDTs, thereby addressing Research Goal 2. The proposed 
approach integrates various simulation methods into a tracking simulation ar-
chitecture. This architecture is designed for implementing SBDTs from FPMs 
generated either using AMG or from existing models developed manually dur-
ing process design. The presented tracking simulation methodology consists of 
a model optimization method, used for Model Adaptation and Offline Estima-
tion, as well as other methods for model initialization, dynamic estimation and 
predictive simulation. The proposed Model Adaptation method leverages the 
information availability offered by OPC UA to seamlessly retrieve historical pro-
cess data. The results of this method show that the developed model optimiza-
tion successfully reduces the residuals of models generated automatically from 
3D plant model information. Similar results are obtained after applying the 
model optimization methods for adapting existing models created during pro-
cess design. During Model Deployment, use of the OPC UA standard solved the 
problem of integrating the tracking simulation architecture with the physical 
plant and its ICT infrastructure. In this work, the proposed model initialization 
procedure is performed by a model of the real process control system (CS) that 
can be run faster than real time to enable faster initialization. The tracking sim-
ulation is successfully carried out using the proposed SMC-based implicit dy-
namic feedback estimation. Finally, Offline Estimation experiments show that 
the model optimization method used for Model Adaptation but applied for of-
fline parameter estimation using recent process information or information 
from specific operation regions, significantly improves the prediction results 
during the Predictive Simulation stage.   

Finally, the described approach also addresses Research Goal 3 by presenting 
a tracking simulation architecture that manages the proposed methodology 
across the tracking simulation lifecycle. The proposed architecture is comprised 
of a historical data repository and three independent simulators, which can be 
instantiated according to the application. This system applies the described 
model optimization method for Model Adaptation and Offline Estimation, re-
ducing the time required for integrating different simulation methods for each 
task. Furthermore, the architecture includes a model of the real CS that has 
three objectives: to avoid configuration work when the process model needs to 
be controlled; to enable faster than real time execution of the process model; 
and to enable the parallel running of several simulation instances. In addition, 
the architecture exploits the use of OPC UA both to systematically retrieve his-
torical process data and to reduce the configuration effort required to interface 
system components by avoiding the need for point-to-point connections.  

As partially discussed in Section V, there are important aspects regarding the 
proposed method that should be addressed by future work.  
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Firstly, regarding the proposed AMG method, future work should focus on ex-
tending or proposing new standards for 3D process plant model information 
exchange. Utilizing standard formats for automating model development would 
increase applicability of the proposed and other AMG methods. Another aspect 
that should be addressed by future work is the integration of information from 
both, P&IDs and 3D plant models, for AMG. PI&Ds are created before 3D plant 
models. Therefore, in this case, AMG based on P&IDs information could be fol-
lowed to generate a first version of the dynamic plant model. Later, fidelity of 
this model could be improved after updating the model utilizing AMG methods 
based on 3D plant model information. This should result in automatic genera-
tion of high-fidelity simulation models and of their corresponding control ap-
plications.  

Secondly, concerning the tracking simulation methodology, in this work, the 
tracking simulation results show close convergence of the adjusted model vari-
ables with their corresponding plant measurements. Curves of the parameter 
controller outputs are shown to demonstrate that the model parameter adjust-
ment remains bounded during Tracking Simulation. However, further analysis 
is required to verify full state synchronization between the tracking simulator 
and the plant. This is critical in order to fully rely on the SBDT results if utilized 
as a virtual sensor. Regarding dynamic estimation, MIMO control methods 
could be studied and applied to dynamically adjust multiple simulated varia-
bles. Future work should also focus on the parallelization of the developed 
model optimization method to test the scalability of the architecture.  

Finally, the proposed SBDT implementation method is a semi-automatic ap-
proach since, as previously discussed, there are different steps in the proposed 
implementation method which are not completely automated. In this work, dif-
ferent suggestions have been proposed to achieve a fully automatic implemen-
tation method. Furthermore, the proposed implementation method was tested 
using a laboratory-scale heat production process that is comprised of process 
and automation components found in industrial plants. However, the HPP 
testbed is a considerably smaller and more controlled environment compared 
to real industrial plants. Therefore, applying the proposed methods in an indus-
trial-scale process would raise the technology readiness level of the methods 
presented in this work.  
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