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1 Introduction
To ensure software quality it is essential to test the software during the development
process. There are two main approaches to testing: manual and automated. Manual
tests are performed by human testers, who go through the steps of a test case and
verify that it works as intended. In automated testing, however, the steps and the
verification are scripted. Therefore, automated tests can be run multiple times
without human effort. On the other hand, manual testing is adaptive, because it is
performed by the testers, but automated tests need to be rewritten when the software
is modified. Changes are made rapidly in agile software testing environments, hence
rewriting the tests takes a large portion of the development time. Nevertheless,
manual testing is also very time-consuming. This motivates the research of novel
testing methods that are both adaptive and automated.

Machine learning methods have shown an ability to learn directly from examples
and generalize to previously unseen data. Applications of machine learning include
the capability to detect what is in a picture, as shown in [21] [23], classifying reviews
as positive or negative [28], and predicting stock prices [9]. After training, these
methods can perform the taught task automatically without human effort.

Many successful machine learning methods are supervised. For training, super-
vised learning approaches require examples of input data and wanted outcomes for
each data point. These methods, especially the deep learning-based ones, require
large amounts of collected data to perform well. For example, accurate image classi-
fication algorithms have been trained using large datasets, such as ImageNet [10],
which contains millions of images with desired output labels. While these methods
work well, the downside is that collecting and labeling the data can be very manual
and laborious work.

Reinforcement learning (RL) is an area of machine learning that, in contrast
to supervised learning, does not require datasets in the form of correct input and
output pairs. [36] In reinforcement learning an "agent" learns in an environment by
choosing actions and obtaining rewards. The agent learns to maximize the reward
by choosing the right actions in each state of the environment. While traditional
reinforcement learning methods, such as tabular Q-learning, perform well on small
scale problems, they struggle to scale up. In fact, user interfaces are almost always
too complex for those methods.

Deep reinforcement learning (deep RL) combines deep neural networks (DNNs)
with reinforcement learning methods. The use of DNNs allows scaling to larger
problems. For example, Deep Q-Learning replaces the table of tabular Q-learning
with a deep neural network, allowing faster and more memory-efficient learning.
Recent advancements in deep RL have shown that agents can learn to play games
and navigate in game environments. Algorithms such as DeepMind’s AlphaGo [35]
and DQN [27] are able to outperform human players in the games they were taught
to play.

Reinforcement learning methods are appealing for software testing since they
could learn directly by interacting with the software. An additional benefit over
supervised learning methods is that instead of requiring human demonstrations,
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only a reward function is needed. The reward function is a way to define when the
agent gets rewarded and how large the reward is. The reward can be positive or
negative. Regarding UI testing, one way to design a reward function for the RL
algorithm would be to give a positive reward for each problem that is found. Thus
the RL algorithm should learn to maximize the number of problems. However, it
is not useful to find the same problem again and it is more beneficial if the agent
broadly tests the functionality of the system that is being tested. Furthermore, if
the problems are difficult to find, the agent receives too little or no reward at all and
thus learns nothing. Therefore, this thesis discusses methods that can be used to
efficiently explore the user interface. The idea is to detect problems in the software
automatically while exploring with an efficient algorithm.

This thesis focuses on web-based UIs, but the exploration and problem detection
could be implemented for native desktop and mobile applications using the applicable
APIs. Web applications are often separated into two parts: the frontend and the
backend. The frontend contains the user interface and logic for handling user actions
such as button clicks and communication with the backend. The backend stores
the needed information and provides it to the frontend. In the context of a web
application, there are existing exploratory testing methods for finding errors and
security flaws in the backend. One such method is fuzz testing [11]. In fuzz testing a
program automatically tests how the application behaves with different fuzzed, i.e.
modified, inputs. Fuzz testing can be used to find problems in APIs, such as inputs
that cause server errors.

However, many frontend testing tools require either app-specific programming or
recording actions. The tests can be written using actions such as find element, click
and input text. An alternative way is to record a real user using the application and
then replay the actions when the test is run. These tests require manual work and
can break easily when the software changes. This raises the question; is it possible
to eliminate the need for manual work in user interface testing with the help of deep
reinforcement learning?

1.1 Problem setting
The goal of this thesis is to create a system that can automatically explore the user
interface of a web application and detect problems concurrently. UI-related problems
can be categorized as functionality-related, usability-related, and appearance-related
problems. Functional problems are those that prevent the application from working
the way it is intended. This is the case, for instance, when clicking a button crashes
the application. Usability problems are related to how easy it is for the user to
perform the wanted task, e.g. whether it is easy to navigate to a certain page or
not. The complications that affect the ability to see the important content are called
visual problems. For example, text can be hard to read because of the background
color. This thesis focuses on functional problems, but detection of other problem
types could also be added alongside the exploration algorithm.

We are especially interested in testing web applications that have a JavaScript-
based frontend, which communicates with a backend over a REST API. The functional
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problems we can find in these kinds of applications are JavaScript errors and errors
related to communication with the backend. A request to the backend can cause a
server error that is received by the frontend.

The main component of the automated testing system is an algorithm that can
efficiently navigate the user interface. This thesis discusses how we can train such an
algorithm using deep reinforcement learning. Deep reinforcement learning algorithms
are able to adapt to changes because they can be readjusted or trained again from
scratch after the software is modified. This thesis uses the number of unique UI
states as the reward function of the Deep RL algorithms. Thus, they should learn to
choose what to click so that it takes them to states that have not been seen before,
in other words, learn to explore.

Many deep reinforcement learning methods are tested with video games due to
the ease of use, diversity, availability to everyone, and ability to run an arbitrary
number of environments simultaneously. Therefore it makes sense to compare the UI
exploration problem to video games in order to predict what kinds of challenges there
are and how well the problem can be expected to be solved. The video games that
have been used as benchmarks for deep reinforcement learning usually have a small
number of actions. In contrast, user interfaces can have a large number of elements,
such as links, input elements, and buttons. Thus, rather than requiring a lot of
correct consequent actions to earn rewards, such as going through a maze in Doom
or finding a specific room or completing a level in Mario [29], this UI exploration
task has a potentially small number of steps to get a reward, but the number of
possible actions to choose from is large. The solutions for this problem are discussed
in Section 3.

This thesis will answer the following research questions:

• How can we use deep reinforcement learning to automate exploratory software
testing?

• How should we design the action space and states so that the agent is able to
learn patterns?

• Can we use supervised learning for initial training of the agent?

1.2 Research methods
The following three methods were used to build the system for UI testing using deep
reinforcement learning:

• Discussing with frontend and backend developers to find out what kind of
testing tool is useful and how it could work

• Exploring existing algorithms for this specific problem and testing them

• Experimenting with algorithms that have been proven to work well for similar
problems
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The development of each version of the exploration algorithm followed the iterative
cycle below:

H
yp
ot
he

sis

Results

Experim
ents

Figure 1: Iterative research cycle.

1. Hypothesis: An idea of what could work, what should be tested, how it could
work

2. Experiments: Implementing the idea, testing how it works

3. Results: Looking at the performance of the method based on chosen metrics,
comparing it to the other methods and baselines

Training the RL algorithms on the real product turned out to be slow. So, to
make experimentation fast, many environments with varying levels of difficulty were
created for performance testing. It was assumed that if the RL algorithm did not
perform well on a simpler environment then a better algorithm was required to
proceed to the more difficult environments. The different test environments are
explained in detail in Section 4.3.

1.3 Structure of the system under test
System under test (SUT) refers to the system, in this thesis a web application, which
is tested to ensure it functions correctly. This thesis uses test environments with
varying capabilities to test the performance of the algorithms before moving to the
real product. The test environments were designed to be simple, but still behave
similarly to the actual testing target. The target system is a complex web application
with a JavaScript-based frontend and a microservices backend.
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Frontend

User interface

Backend

Container ContainerContainer

Figure 2: Frontend-backend architecture with containers.

The backend consists of microservices [8], where each microservice lies in its own
container [25]. The microservices communicate with each other over REST API.
This thesis focuses on testing the frontend, but parts of the functionality of the
backend containers is also tested by checking if the requests sent by the frontend
result in server errors on the backend side.

1.4 Related Work
The use of reinforcement learning to test user interfaces is not broadly explored in
the research community. This thesis focuses on deep reinforcement learning methods
that do not use training data at all, with the goal of building a solution that can
be run with a single command. There are existing solutions for navigating user
interfaces, but most of them use precollected human demonstrations. Furthermore,
these solutions are also aimed at the use cases where some kind of web task is to be
automated, rather than software testing. For example, in one use case the methods
are used to automate booking of plane tickets. As training data they have existing
demonstrations that they either use to create new similar action sequences [22] or
are able to adapt the demonstrations to changes [24].

Related work can be divided to three categories. One category is the set of
methods that use reinforcement learning to navigate a user interface. The methods
in this category are the most relevant to solving the UI exploration problem. The
second category contains methods that use reinforcement learning in software testing,
but to test parts of the software other than the UI. Finally, in the third category,
there are the general purpose deep reinforcement learning methods. The performance
of these algorithms is usually tested by teaching them to play video games. Since the
methods in the first and second categories have their difficulties, this thesis applies
the third category algorithms for UI testing and compares the performance against
those in the other categories.

There are existing methods that use reinforcement learning to control a graphical
user interface, such as Q-learning-based testing [4] and Workflow-Guided Exploration
(WGE) [22]. While choosing what to click randomly is a simple way to test a user
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interface, it can be inefficient. Q-learning-based testing improves on this by utilizing
Q-learning to choose actions more wisely than choosing randomly. WGE uses human
demonstrations to accelerate learning and to make the exploration more focused.
In addition to those two, there are methods that utilize machine learning to make
automated tests recover from problems as shown in [24]. Q-learning-based testing
and WGE are discussed in detail in Sections 2.5.1 and 2.5.2, respectively.

Deep reinforcement learning has also been used to generate input for tests. Kim
et al. [19] used Deep RL to create learned metaheuristic algorithms that achieve up
to 100% branch coverage. Böttinger et al. used deep reinforcement learning to find
security vulnerabilities [6].

There are many deep reinforcement learning algorithms that have shown great
performance in video games such as: Deep Q Network (DQN) [27], Rainbow [14],
Asynchronous Advantage Actor Critic (A3C) [26], synchronous Advantage Actor
Critic (A2C) and sample efficient method ACKTR [38], and Proximal Policy Opti-
mization (PPO) [34]. These algorithms learn to play games using just the current
game frame and a reward function. Graphical user interfaces can be also rendered as
images like games and a reward function can be designed. Based on this idea, this
thesis evaluates how well Deep RL methods work in UI exploration.

Writing deep reinforcement learning algorithms from scratch is difficult due to the
fact that small bugs in the code are difficult to track, but may still cause significant
drops in performance. Therefore, an existing A3C GPU implementation [13] was
chosen as the base for the methods proposed in this thesis. The implementation is
attractive due to its parallelizability and possibility to use a graphics processing unit
(GPU) for speeding up the inference of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). The A3C implementation shows fast training. It
learns many Atari games in under 30 minutes and achieves state of the art results for
some games. More details about the implementation can be found in Section 2.4.2.

This thesis introduces a novel way to use deep reinforcement learning in user
interface testing. The introduced deep RL methods learn to navigate the UI in a
way that maximizes a provided reward function. This allows them to work more
efficiently than the previous methods. Additionally, the reward function can be
changed to test specific parts of the user interface.

1.5 Structure of the thesis
The rest of the thesis is structured as follows. Section 2 discusses the main building
blocks used for the development of UI testing methods. In particular, we will give
a brief introduction to supervised learning, reinforcement learning, and artificial
neural networks. Moreover, we will discuss how deep learning can be combined with
reinforcement learning to obtain deep reinforcement learning methods. The proposed
methods are described in Section 3. There are two different approaches: element-
based and image-based. The section starts by explaining the deep reinforcement
learning algorithm that both of the approaches are based on. Then it explores in
further detail how the two approaches work and how they differ. Section 4 shows
the results by starting with baseline algorithms that the deep reinforcement learning
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algorithms are compared against and then shows the improved performance of the
proposed methods. Finally, Section 5 concludes this thesis.
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2 Background
This section will cover the theory behind the exploration algorithms that are described
in the proposed methods in Section 3. Supervised learning is introduced first. After
that we will discuss reinforcement learning, which is, in contrast to supervised learning,
a way to teach machine learning algorithms by interaction with the environment
rather than imitating the training data. Then in the next section, artificial neural
networks are described. Finally, in the deep reinforcement learning section, we
show how neural networks and reinforcement learning are combined to form efficient
learning algorithms.

2.1 Supervised learning
Many successful machine learning methods use supervised learning, which means
that they use labelled datasets to learn patterns. Datasets consist of observations
(also known as data points). If the dataset is for example an image classification
dataset, then an observation is a single image and a label pair.

Observation 1

Bird

Observation 2

Squirrel

Observation N

Bird

Figure 3: An example of an image classification dataset with N observations.

Supervised learning problems can be described using the components: feature
space, label space, hypothesis space and a loss function [18]. Feature space is the
space of all possible feature vectors. Feature vectors are d-dimensional vectors that
contain attributes. The attributes can be, for example, information about whether
text has been entered to a username input box. Label space is the set of possible
outputs. An example of an output is "click login" or "type password". Hypothesis
space contains the functions that are mappings from the feature to the label space.
A simple hypothesis function h is:

h(x) =

⎧⎨⎩"Click login" if x = "credentials written"
"Type credentials", otherwise

(1)

Hypothesis functions can be very complex. For example, in this thesis they are deep
neural networks that do millions of multiplications and additions.

The quality of the hypothesis function can be measured using loss functions.
After a loss function is defined, the hypothesis functions can be optimized by finding



17

the parameters that minimize the loss. The parameter tuning is done by using
optimization algorithms, such as stochastic gradient descent [32].

2.2 Reinforcement learning
The idea of reinforcement learning (RL) is to maximize rewards by choosing correct
actions in different situations [36]. The main components of RL are the agent and
the environment. An agent observes, acts, and learns in an environment. The agent
interacts with the environment by choosing actions. The actions may change the state
of the environment and give the agent a positive or negative reward. Alternatively,
the reward can also be zero.

Agent Environment

Reward

Action

New state

Figure 4: Reinforcement learning

In contrast to supervised learning, where the correct output is provided for each
training sample, in reinforcement learning the reward can be delayed and may be the
result of many actions taken earlier. In addition, reinforcement learning methods
also collect the training data themselves by acting in the environment. Nevertheless,
there are also similarities. Both methods learn a mapping from feature to label space;
in reinforcement learning the labels are, for example, action values in the case of
deep Q-learning or state values when learning a value function.

Markov Decision Processes (MDPs) are mathematical representations of sequential
decision making problems [36]. Actions in MDPs have an effect on the subsequent
states as well as immediate and future rewards.

MDPs are useful because they provide a mathematical representation that can
be used to prove the convergence of reinforcement learning algorithms. Being able to
represent an RL problem as an MDP means that the algorithms that can be used to
solve MDPs are usable for the RL problem. Also algorithms and their convergence
properties in MDPs can be compared.

The main components of MDPs are states, actions, dynamics, and reward func-
tions. State defines the current situation. In UI exploration the state describes on
what page the agent currently is and what the elements on that page are. Actions
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are the agent’s way of interacting with the environment. Example actions are "click
logout" and "enter username". Dynamics tell how the environment changes based on
the current state and the action the agent has chosen and a reward function is used
to incentivize or discourage the agent.

The agent receives reward rt at time step t. The discounted return Rt, for time
step t, using discount factor γ, is defined as follows:

Rt =
∞∑

k=0
γkrt+k+1 (2)

The goal of the agent is to maximize the return.
A policy π is a function that defines how an agent chooses actions. The policy

takes in a state and returns the action. The goal of reinforcement learning is then to
modify the policy so that the actions it outputs result in a large return.

The value function gives the expected return for a state, starting from state s
and then following policy π:

vπ(s) = Eπ[Rt|St = s] (3)

Intuitively, the value of a state s, vπ(s), tells how good it is for the agent to be in
that state.

A core problem in reinforcement learning is the trade-off between exploration
and exploitation [36]. During learning, the agent needs to choose the actions that
are known to be good in order to gain high reward. This is known as exploitation.
However, since there could also be better actions to take, the agent also needs to
try out new things. This is known as exploration. Finding the balance between
the two is challenging. The difficulty of this problem is well described by Sutton
et al. [36]: "The exploration–exploitation dilemma has been intensively studied by
mathematicians for many decades, yet remains unresolved.".

Another problem is the credit assignment problem [36]. It means that it is difficult
for the reinforcement learning algorithm to know which actions to blame when a
bad reward is given or which actions resulted in a good reward. For example when
controlling a UI with a reinforcement learning algorithm, it can initially be difficult
for the agent to know which of the randomly-chosen "click" and "type text" actions
in the end allowed the agent to login to the application.

Advanced deep reinforcement learning methods, such as A3C, have found ways
to balance exploration and exploitation as well as deal with the credit assignment
problem. This has allowed the use of Deep RL in new problems that were not solvable
before.

2.3 Artificial Neural Networks
Neural networks can be used as function approximators. Furthermore, multi-layer
networks can be trained to approximate almost any function [16]. In this thesis
neural networks are used to learn functions that predict what is the best action
to choose and what is the estimated value of being in a certain state (i.e. value
function).
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Artificial neural networks (ANNs) consist of layers of neurons (also known as
units). Neurons are connected to other neurons in different layers. These connections
carry activation signals to the next layer. The neurons are then activated based
on the input from other neurons and the activation function of the neuron [5]. If a
layer is fully connected, it means that all of the neurons of the layer in question are
connected to all of the neurons in the previous layer.

Each connection has a weight that is adjusted in training to fulfill some objective.
These weights are usually initialized randomly and then optimized with a variant of
stochastic gradient descent [32]. When computing the activation value of a neuron,
the values of the input neurons in the previous layer and the corresponding weights
are multiplied. The weighted inputs are then summed together and finally the sum
is passed through an activation function.

Neural networks can approximate more complex functions if they have many
layers. However, adding layers with linear activation (or no activation function at
all) does not make the network more complex. This is because a sequence of linear
operations is equivalent to a single linear operation. Therefore we need nonlinear
activation functions that are applied to the values of each neuron. One commonly-
used nonlinear function is called rectified linear unit, ReLU for short. It is defined as
follows:

ReLU(x) = max(0, x) (4)

Hidden layers

Input Output

Figure 5: An example of an artificial neural network with two hidden layers, and
input and output layers. All layers are fully connected.

2.3.1 Convolutional Neural Networks

In this thesis convolutional neural networks (CNNs) are used to extract features from
a screenshot of the UI. These features define the current state of the user interface
of the application that is being tested.

The name convolutional neural networks comes from the use of convolution
operation [12]. In convolutional networks, kernels (also called filters) slide over the
input image and produce an output value for each position. The kernels contain
numeric values called weights. The output value of each position is calculated by
multiplying the weights with the corresponding values in the image and summing
those together, see Figure 6.
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CNNs are invariant to certain input transformations [5]. For example, two images
with the same button in different positions can produce the same output. The
main differences of convolutional networks compared to fully-connected networks (cf.
Figure 5) is that the neurons have local receptive fields, i.e. they are only connected
to a region of neurons in the previous layer rather than all of them. In addition, the
kernel weights are shared between locations. Subsampling is also used between layers
to reduce the number of units. A smaller number of units allows faster computation.

Kernel

Input

Output

Figure 6: Convolution operation. Image adapted from [7].

Convolutional neural networks have been used successfully for image processing
and other structured data tasks such as sound classification [30]. One of the first
well-performing image classification neural networks, AlexNet [21], used CNNs. Since
then, most of the top classifiers have been using convolutional neural networks [33].

2.3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) can remember previous inputs and use the
memory in decision making. RNNs are used, for example, in speech recognition and
machine translation. In this thesis they are utilized to implement the memory of the
reinforcement learning agent. With RNNs the agent can remember what states it
has visited before instead of just knowing the current state.

The idea of RNNs is to redirect the output back to the network as input. By
doing this, the networks can combine the previous output and the current input to
produce the next output. This is useful, for instance, in text understanding, since the
previous characters and words affect the meaning of the next characters and words.

Simply connecting the output of a fully-connected network back to itself is
not enough, because it causes problems, such as vanishing or exploding gradients.
Gradients are used to update the weights of the neurons in neural networks. Gradients
can be used to find the direction that improves the optimization objective, e.g.
minimizes a loss function. Optimization algorithms, such as stochastic gradient
descent, take a step in that direction. Vanishing gradients cause the updates to
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fade and exploding gradients can cause the network to break due to the weights
changing too much. As a solution for this, long short term memory (LSTM) cells
enable gradients to stay effective over long sequences [12].

The main components of LSTM cells are cell state, input gate, forget gate, and
output gate. The cell state flows through the cells and it can be used to remember
information over many inputs. Each gate has its own task. The input gate decides
what values are changed in the cell state. The forget gate allows the cell to forget
information from its cell state. The output gate is used to define what will be the
output of the cell. It can differ from the cell state.
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Figure 7: LSTM cells are recurrently connected. An example of recurrent connection
is shown on the left. On the right the connection is unrolled. This is done for ease of
computation. Adapted from [2] .
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Figure 8: Three LSTM cells. Each cell consists of input, forget, and output gates.
Adapted from [2] .

2.4 Deep Reinforcement Learning
Deep reinforcement learning combines reinforcement learning and deep neural net-
works, in other words, ANNs with multiple hidden layers. The memory and efficiency
issues of tabular reinforcement learning methods are avoided with the use of neural
networks.
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Agent

State Environment

Reward

Action

New state

Figure 9: Main components of deep reinforcement learning algorithms. Adapted
from [1]

Earlier, deep neural networks were thought to be unstable when used with
reinforcement learning. However, Mnih et al. [27] managed to use the combination of
Convolutional Neural Networks and Q-learning to train reinforcement learning agents
in 2013. They introduced the first end-to-end solution for reinforcement learning
using images as input. One key feature of their solution was the use of experience
replay memory. Experience replay memory stores experience tuples (st, at, rt, st+1).
Using experience replay and random sampling they trained action value functions
that could then be used to construct the optimal policy.

In tabular Q-learning (See Section 2.5.1) action-state values are stored in a
table. In Deep Q-network (DQN) Q-values are approximated by using an artificial
neural network. The use of an artificial neural network instead of a table allows
the algorithm to work with larger state and action spaces. In addition, information
between different states is shared and therefore the values can be learned faster and
without visiting every state. For example, tabular Q-learning is unfeasible for the UI
exploration problem studied in this thesis, but deep reinforcement learning methods
are suitable.

2.4.1 Actor-Critic

In actor-critic methods the reinforcement learning agent consists of two parts, the
actor and the critic. An actor represents the policy and a critic represents the value
function. This means that the actor outputs probabilities for each action and the
critic outputs the value for the state. As an allegory, it can be thought of as two
people interacting with each other. The actor is a dancer choosing their moves and
the critic will give feedback whether the dancer did well or not.

Actor-critic uses bootstrapping, i.e., it updates the value estimate of a state using
the estimated values of the next states ([36] Section 13.5). This reduces the variance,
but introduces some bias. Since variance is reduced, the actor-critic method often
accelerates learning.
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2.4.2 A3C

A3C, introduced by Mnih et al. [26], stands for Asynchronous Advantage Actor
Critic. It extends the actor-critic method introduced in the last section by using an
advantage function and multiple agents that update the policy asynchronously.

Advantage is defined as the difference between the return Rt and the baseline
b(st):

A(at, st) = Rt − b(st) (5)

In A3C, the critic learns the value function V (s), which is then used as the baseline.
Thus the equation becomes:

A(at, st) = Rt − V (st) (6)

The parameters of the critic are optimized based on the loss:

(Rt − V (st; θc))2 (7)

This means that the critic will learn to predict the return Rt.
The actor in A3C is trained using the following gradient:

∇θ′
a

log π(at|st; θ′
a)(Rt − V (st; θc)) + β∇θ′

a
H(π(st; θ′

a)) (8)

Where log π(at|st; θ′
a) is the log probability for taking an action at in state st

using policy π, (Rt− V (st; θc)) is the advantage using V (st; θc)) as the baseline, θ′
a is

the set of parameters of the actor, θc is the set of parameters of the critic, H(π(st; θ′
a))

is the entropy term, and β is a hyperparameter that determines the effect of the
entropy term.

The entropy H is added to the objective function, because it helps A3C to explore
better. Adding entropy means that the optimization algorithm tries to keep entropy
high, and therefore the underlying probability distribution should not converge to a
non-optimal deterministic policy.

A3C actor-learner thread pseudocode, adapted from [26], is shown in Algorithm
1. The algorithm has a global model and multiple actor-learners, each with their own
local models. The individual actor-learners act independently in their own instances
of the environment. At the beginning of each iteration the learners update their
own local copy to match the global model. The learners learn how to maximize
rewards by trying out different actions. After enough experience is collected, each
learner updates the global model asynchronously and immediately at the end of each
iteration. The global model parameters are updated using gradient descent with a
chosen learning rate α. To find the optimal learning rate, Mnih et al. performed
hyperparameter search.
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Algorithm 1 A3C actor-learner thread
// We have global actor parameters θa and critic parameters θc and thread local
versions θ′

a and θ′
c

Initialize global shared counter T ← 1
Thread local step counter t← 1
// tmax is the maximum number of steps per update loop
// We have defined a learning rate α
repeat

Reset gradients: dθa ← 0 and dθc ← 0
// Update thread local parameters to match global parameters:
θ′

a ← θa and θ′
c ← θc

tstart ← t
Observe state st

repeat
Perform action at given by the policy π(at|st; θ′

c)
Observe state st+1 and receive reward rt

t← t + 1
T ← T + 1

until terminal st is reached or t− tstart == tmax

R =

⎧⎨⎩0, if st is terminal
V (st, θ′

c), otherwise
for i ∈ (t− 1, ..., tstart) do

R← ri + γR
// Accumulate gradients:
dθa ← dθa +∇θ′

a
log π(ai, si; θ′

a)(R− V (si; θ′
c))

dθc ← dθc + ∂(R− V (si; θ′
c))2/∂θ′

c

// Update global parameters asynchronously using a variant of gradient descent
and learning rate α:

Update θa with dθa

Update θc with dθc

until T > Tmax
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2.5 Existing UI navigation methods
In this section, we will discuss how Q-learning-based testing and WGE approach the
task of controlling a GUI with a reinforcement learning algorithm.

2.5.1 Q-learning-based testing

Sebastian Bauersfeld and Tanja E. J. Vos have proposed a method for GUI robustness
testing using tabular Q-learning [4] [3]. Q-learning is an off-policy temporal difference
learning method [36]. Off-policy means that a different policy is used for exploration
than the policy that is being optimized. In the case of Q-learning a greedy policy is
used in the updates to choose the optimal next action by maximizing Q(s, a), but the
exploration policy may choose actions differently. Temporal difference means that
the new estimates are based on samples and previous estimates. Tabular Q-learning
uses a table to represent the state-action values, Q(s, a).

Q-learning is used to calculate and update expected rewards for each state-action
pair. The reward function is defined as shown below.

rt(s, a) =

⎧⎨⎩rinit, if xa = 0
1

xa
, otherwise

(9)

Where rinit is a large positive number and xa is the number of times an action a has
been taken in state s.

The algorithm learns state-action values or Q values, Q(s, a). These are functions
of the state and the action, and they output the expected return. The values are
updated as follows:

Q(st, at)← rt + γ ·max
a

Q(st+1, a))

Their algorithm acts greedily, i.e., it chooses the action with the highest Q value.
The idea is that the reward for each action in each state decreases when the action
has been taken many times. Thus the algorithm should favor the actions that have
been tried the least frequently.

In this thesis this tabular Q-learning method and random action selection were
compared. More details of about the random action selection can be found in Section
4.2.1. It turned out that tabular Q-learning is notably better. The results can
be seen in Figure 25. While the algorithm is substantially better than random
action selection, it has some difficulties. To distinguish between states the algorithm
creates a hash that is based on the elements in the GUI and their attributes. The
performance therefore depends on what is chosen to be included in the state. Due
to the use of hashes and tabular Q-learning, it cannot share information between
states. Since information is not shared, the algorithm may try out more actions than
necessary. For instance, for a human user it is easy to see that the menu bar works
the same way on every page. The links that have the same text direct to the same
page even if the page where the links are changes. However, since a new page has a
new state, the tabular Q-learning algorithm will treat it as completely different page
and will need to try clicking those links again.
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In addition, it can be difficult to choose what information should be included
when calculating the state hash. It makes sense to include what elements are on the
page and what their attributes are, such as type (e.g. button or text box). However,
including too much information makes the state change very easily and thus the
algorithm may find many states while actually staying on a single page. An example
of this is the choice of whether to include the text that has been entered or not. If
the text is included as-is and the algorithm is able to enter any text, it can generate
an infinite number of states with just a single text box. On the other hand, if entered
text is not included, the algorithm cannot tell the difference between a form with all
details filled versus an empty form.

Since the rewards are initialized with the constant rinit it is possible to have
state-action pairs with the same expected reward. This makes the action selection
unclear. What should be done if the expected values are the same? Should the
algorithm choose the first one or choose randomly? In this thesis both ways were
tested and choosing the first one was effective, because, for example, on the login
page, username, password, and the login button happened to be in the right order.
However, if they were not in the right order, the algorithm might have never been
able to login. Thus choosing randomly is a safer choice. In this thesis the tabular
Q-learning method uses random selection for solving ties.

This thesis tries to solve these difficulties by using a state representation that
allows shared knowledge and a Deep Reinforcement Learning algorithm that is able
to make use of that information. Additionally, this thesis experiments with an image-
based state representation, which is essentially a screenshot of the application’s
current state. It does not have the same difficulty in choosing what information to
include. Also, the underlying Deep Reinforcement Learning algorithm handles action
selection by using a neural network that outputs a probability value for each action
and the action is then sampled from that probability distribution. Therefore, the Deep
RL algorithm can learn what actions are worth trying and keep their probabilities
high while minimizing others. In this way, it can concentrate exploration on the
most promising actions.

2.5.2 Workflow-Guided Exploration

Learning with random exploration can be slow when the task we want to learn is
complicated. The goal of Workflow-Guided Exploration (WGE) [22], introduced by
Liu et al., is to use a small number of human demonstrations to make the agent learn
faster. The human demonstrations are used to constrain the exploration of the agent
rather than directly training the agent to do what was shown.

Exploration is constrained by utilizing so-called workflows. Workflows are higher
level instructions and they are induced from the human demonstrations. For example
in an email forwarding task, the demonstration shows which specific email was
clicked, but the workflow does not contain that information, rather it contains the
information that these steps were required to forward an email. WGE works very
well in various web tasks, such as clicking certain checkboxes and replying to emails,
reaching 100% success rate in many tasks.
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Web pages are often represented with a document object model (DOM) [37].
DOM tells what elements (buttons, links, images, etc.) are on a page and how they
are related. To embed the DOM elements of a web page, Liu et al. use a model called
DOMNet. DOMNet is a neural network that encodes the spatial and hierarchical
structure of the web page. Elements have a base embedding, which contains the
attributes of the element such as tag name, class names and text. Spatial information
is taken into account by summing up the base embeddings of all elements that are
closer than 30 pixels away from the element. Hierarchical information is added by
including the base embeddings that are fed to a learnable function. The highest
values of the processed base embeddings are included at each depth in the DOM tree.
The authors used depths 3, 4, 5, and 6.

Since WGE is intended to improve personal assistants to do normal web tasks,
such as sending email, it may not be usable for UI testing as-is. However, it could
be used to detect problems by training agents to perform normal tasks in the SUT
and check if something went wrong while executing the task. Thus the method
could work for verification of intended functionality, but in the context of this thesis
explorative testing is more interesting.

Because this thesis tests a complex web-based application, acquiring even a small
number of human demonstrations for each feature of the application can be time
consuming. Since this thesis is focused on methods that do not use training data,
WGE was not used. There is still a possibility that the proposed methods would
perform even better by utilizing techniques similar to WGE.
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3 Proposed methods
In order to apply deep reinforcement learning for UI testing, this thesis will address
the following questions:

• How to represent the states and actions?

• How to make the agent explore the user interface on its own?

• How to prevent the agent from getting stuck?

The problem of UI testing can be modelled as a Markov Decision Process in the
following way. The state st represents the current state of the UI. It contains the
information about the contents of the current page. The state can be encoded in
multiple ways and the two ways presented in this thesis are detailed in Section 3.2
and Section 3.3. Additionally, the MDP is partially observable, because the whole
state of the SUT is not visible from a single web page. For example, the contents
of the backend database and the pending API requests cannot be seen from the
screenshot or document object model (DOM).

For each state there is a finite set of available actions A(st). The actions contain
all different ways to interact with the current page. Interactions can be clicking a
button or a link, or typing text into a text box. The two approaches, image-based and
element-based, described in the following sections use different action representations.

The reward function R(s, a, s′) defines what behavior is wanted from the rein-
forcement learning agent. This thesis experiments with two reward functions: a
URL-based reward and a DOM state reward. These functions give reward for finding
unique URLs (web addresses) or states.

A discount factor γ is used to discount rewards when calculating the return.
Discounting is used to make intermediate rewards matter more, but also take into
account future rewards. This thesis uses a discount factor 0.99. If the factor were 0,
only intermediate rewards would matter and if it were 1, all rewards would be equal
regardless of the time the reward was obtained.

The goal of the deep reinforcement learning algorithm is to maximize the expected
discounted return Rt (See Equation 2). By maximizing the expected return, the deep
RL algorithm maximizes the number of unique URLs or unique states, depending on
the reward function used.

One might expect that the transitions in a UI are deterministic, since clicking a
link should navigate to the same page with 100% probability. However, since the
MDP is partially observable, a state can appear to be the same for the agent, but an
action may have a different result. Depending on the state of the backend database,
clicking a button can navigate to a different page. Because of this the transitions
have to be modelled as probabilistic.

Overview of the proposed methods:
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Figure 10: Proposed methods and their relations.

While deciding how to encode the state of the UI, two different approaches seemed
the most reasonable. These approaches are called element-based and image-based.
The element-based approach uses the DOM element information of the web page to
construct a vector representing what elements are on the web page, and what their
attributes, such as type and id, are. The image-based approach takes a screenshot of
the rendered web page and encodes it as a three-dimensional tensor (multidimensional
array).

The following sections will first cover the base deep reinforcement learning algo-
rithm, A3C implementation, upon which both proposed methods are based. Then the
element-based and image-based approaches for the state and action representations
will be discussed. In addition, the different ways to utilize the action output of the
image-based approach are described.

3.1 Base deep reinforcement learning algorithm
The base deep RL algorithm is based on David Griffis’ implementation [13]. An
already-tested implementation was chosen as the base, because deep reinforcement
learning is difficult to get working and implementations require a lot of tuning to
achieve the desired results [17].The contribution of this thesis is in experimenting with
different input and output methods for the learning algorithm as well as designing
a reward function and setting up an environment for controlling a browser with a
reinforcement learning agent. The implementation uses A3C and utilizes GPUs. The
neural network consists of convolution layers, LSTM cells, and fully-connected layers.
In this thesis the model was split into three parts: feature extractor, policy, and
action output modules.
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In the case of the image-based approach, the feature extractor is a CNN (c.f.
Section 2.3.1) and the element-based approach uses an ANN with all layers fully
connected. The policy is the same for both models, an RNN with an LSTM cell,
where the input, the output, and the hidden state are vectors. The action output
module takes the output of the policy and applies some operations on it to produce
the final actions. Actor and critic share all layers except for the last fully-connected
layer.

Compared to video games, the UI exploration task adds three additional challenges:
variable state size, large and variable action space, and slower execution speed. The
number of elements differs between pages. For example, a login page may contain just
three elements: username, password text boxes, and a login button, but a settings
page may contain dozens of elements.

The execution slowness comes from the loading of the web pages and waiting for
responses from the backend. Some of the actions are instantaneous, such as typing
the password, but others can take a variable time to finish. The pages may have
animations that smoothly transform from one view to another. While the animations
are pleasing for the end user, they pose a challenge for the reinforcement learning
agent. Some actions require data from the backend, which is fetched over the REST
API. The time it takes to process the request depends on the server load and the
complexity of the request.

We can define the task of finding errors using sets. After choosing how we define
a UI state, we have a state space X which represents the space of all theoretically
possible states. The real states xp ∈ Xp ⊂ X are the states that actually exist. Then
we have states that contain errors xe ∈ Xe ⊂ Xp. Our goal is to find the error states.
However, we do not know beforehand which states cause errors and we do not know
how many states there are in total. Thus by exploring and finding as many states xp

as possible we maximize our chances of finding the states xe.
This thesis uses the Algorithm 1 to train the element-based and image-based

methods. The training hyperparameters are the following. The algorithm uses the
Adam optimizer [20] with shared statistics and a learning rate α = 0.0001. The
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Figure 12: The state sets and their relations visualized.

discount factor is chosen to be 0.99. General advantage estimation is used with
τ = 1.

3.2 Element-based approach
The idea of the element-based approach is to find all interesting elements of the web
page and encode them so that they can be fed to a neural network. The difficulty for
the implementation arises from the fact that the number of elements varies between
pages. Neural networks usually have a constant-size input, thus fitting a variable
number of elements to a constant-size vector is challenging. One solution is to create
vectors that are long enough so that the number of elements is never larger than what
would fit in the vector. Then if the number of elements is less than the maximum,
zeros will be added so that the size of the vector remains the same.

Some of the important information for the HTML elements is stored in their
attributes. In this thesis the attributes that were extracted from the elements were
the type of the element, its id, and the text it contains. The type of the element
tells whether it is a link or a button or a text input box. The id of the element gives
information about its use. For example the username and the password fields have
different ids, so the algorithm can detect from the encoded representation which is
which. The contained text is used to tell the algorithm when text has been typed
into input boxes. Therefore the algorithm can, for instance, understand to click the
login button after typing the username and the password.

To encode the elements into the real valued vector, elements need to be represented
as numbers. One common way of coding classes to vectors is using one-hot encoding.
One-hot encoding means that a vector of size x is created and initialized with zeros,
where x is the number of classes. Then the classes are ordered so that each class has
its own position in the vector. The final encoding is created by setting the element
of the vector to one that corresponds to the class.
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Figure 13: Element-based A3C.

To construct a fixed size vector representing the state of a web page assume that
the page can have at most n elements (such as buttons, text boxes and links). For
each element the state vector contains a one-hot encoded element type, a one-hot
encoded identifier, and a number that is one or zero depending on whether the
element contains text or not. Assume that we have at most t different element types
and at most i different element identifiers. Now we can fit all possible web pages
under these assumptions to a state vector with a size of n× (t + i + 1).

We can model the problem as a Markov Decision Process as follows.

• The state space S is {0, 1}n×(t+i+1), which is the space of binary vectors of size
n× (t + i + 1).

• The action space A is a set of actions where the set size is n. So there is one
action for each element on the web page.

• The discount factor γ = 0.99.

• The reward function R is:

R(s, a) =

⎧⎨⎩1, if A new URL or state was found
0, otherwise

(10)

Next we will shown an example of the element representation vector when there
are two element types: buttons and text boxes and element identifiers 0 and 1.

A button with id 0 has the following information in the state vector:⎡⎢⎢⎢⎢⎢⎢⎣
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

The first two values encode the element type, the 3rd and 4th values encode the
element identifier and the last value tells if the element contains text.
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A text box with id 1 has the following information in the state vector:⎡⎢⎢⎢⎢⎢⎢⎣
0
1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

Because the last value in the vector is zero it means that the text box is empty.
If the agent takes the action 1, which means enter text to the text box, then the
state of the text box will be updated to:⎡⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

This example showed the element representation vector for each element separately.
However, in the actual implementation, the element vectors are concatenated to one
long vector.

3.2.1 Problems of the Element-based approach

The element-based approach has the following problems:

• It is unclear how the elements should be ordered. The trained neural network
model may learn that certain elements are in specific positions in the input
vector. However, if the order suddenly changes, for example if a new element
is added as the first element in the vector due to some change in the UI, the
neural network may start to output wrong actions.

• Elements that are invisible can be found unless a sophisticated element processor
is implemented. There can be many reasons why an element that exists in
the DOM is not actually visible. The element can be behind another element,
the hidden attribute can be true, or the style of the element can make it
transparent.

• The element representation contains no spatial information. Spatial information
can be very important. For example related elements are usually close to each
other, large elements are the most commonly used, and small, infrequently
used elements are on the edges of the page.

• We need to choose the maximum number of elements, element types, and
ids. If too small a number is chosen for any of the three, the representation
vector cannot be formed and learning fails. If the number is too large, training
becomes slow.
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3.2.2 Advantages of the Element-based approach

The advantages of the element-based approach are:

• Compared to the image-based solution there are no problems in finding elements.
The visual size of the elements does not matter, thus even tiny buttons can be
found.

• All elements are equally likely to be clicked.

• Action space is limited to the number of elements.

• The input vector is smaller than the image that is fed to the image-based
approach. Thus it is faster to process.

3.3 Image-based approach
The image-based approach uses the same learning algorithm, A3C, as the element-
based approach. Instead of taking an element representation vector as the input, the
image-based approach uses the screenshot of the current web page. The screenshot
is a color (RGB) image with a resolution of 128 by 128 pixels. Thus the input is
128× 128× 3 = 49152 numbers.

CNN

Image

FC

Critic

Value

FC Actions

Actor

LSTM

Figure 14: Image-based A3C.

When getting the state of the UI, a screenshot of the current web page is taken.
The screenshot is resized to a lower resolution so that it is faster to process with a
neural network. The resized image is then fed to a Convolutional Neural Network
(the feature extractor). CNN extracts features out of the image and these features
can be then used to make the decision what to click.

The main advantages of the image-based approach compared to the element-based
approach are that the screenshot should contain all useful information about the



35

current state of the UI. After all, that is the same as what a human user would see
when using the web application. In addition to that, no other information should
be required. The element-based approach has a variable number of elements, but
an image maintains the same size. If the size of the browser window changes, the
screenshot image can be resized. Additionally, if the output is presented as an image
with each pixel telling the probability of clicking, the output is also constant size.

The image-based approach output is also easy to visualize. It can be depicted
as a grayscale image where there is a pixel for each possible click location. The
brightness of the pixel tells how high the probability is for clicking that pixel, white
means high probability, black low probability. An example output visualization can
be seen in Figure 14.

One of the difficulties of the image-based approach is that the feature extractor
needs to be more complex than with the element-based approach, because the input
is a raw screenshot image. Also, when outputting the click probability of each pixel,
the number of actions is very large. Thus it is slow to go through all the actions in
all states and find out which is the best.

The following sections will focus on solving the problem of having too many
possible actions by discussing different ways to output actions. The cursor can be
moved in two different ways. The neural network may output how many pixels to
move in each direction. This is discussed in the Section 3.3.1 Relative Movement.
Another way is to directly tell where to click (Section 3.3.2 Absolute Movement).
The click location can be modelled as a probability distribution or the model can
predict the probability of clicking each pixel. Since there are a lot of pixels, there
are a lot of actions to try when using the latter method. A large number of actions
means that exploring and thus also learning can be slow. The sections 3.3.3, 3.3.4,
3.3.5 will discuss how this problem can be addressed.

3.3.1 Relative Movement

One of the ways to solve the problem of having too many possible actions was to
have a set of actions that move the cursor in different directions by n pixels. In fact,
this simulates human users better than absolute clicking. There are two possibilities
for this, discrete and continuous action spaces. In the discrete case, we can choose a
set of actions such as move left, move right, move up, move down, and click. Then
the policy network has to output five values, one for each action (we assume that
there is no use for a "do nothing"-action). In the continuous case the network can
output one value for movement delta along the x axis, one value for movement delta
along the y axis, and a probability for clicking.

This method reduces the size of the action space, but on the other hand, doing
the same tasks may require that the agent chooses the action more times. With the
click probability map, a single action is enough to click a button anywhere on the
screen. Relative movement requires the actions it takes to move to the button and
an additional action to click the button.

Deep reinforcement learning has been found to be problematic when the reward
function is sparse [31]. That is, when the reward is mostly zero and only rarely
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positive or negative. This case is no exception, and since the relative movement
makes the rewards even more sparse, learning becomes too difficult.

The efficacy of this method was tested in a simple website where there was a
single page with one button that was randomly initialized anywhere on the page. A
reward of one is given when the agent clicks the button and otherwise the reward is
zero. When the button is clicked the episode ends and the page is reset, causing the
button to move to a new randomly-chosen location. In these tests, the algorithm is
able to learn to locate the button and click, but the training takes a long time and
the agent spends most of the time clicking the background. If a negative reward is
given for clicking the background, the agent learns quickly to not click at all and
never succeeds in the task. Even though this method is more realistic, it had to be
abandoned, because the training was too slow for a single button task, making it
unfeasible for larger websites.

3.3.2 Absolute Movement

Absolute movement means that the algorithm directly outputs the click location. In
addition to the click probability map, a method that outputs the parameters for two
normal distributions was tested as a way to learn what to click. By outputting two
mean values and two standard deviation values, it was possible to create one normal
distribution for the vertical axis and one for the horizontal axis. These two marginal
distributions can be then combined to form a probability distribution for the click
location as shown in Figure 15.

However, it turned out in the tests that the two normal distributions output
did not work well. The author believes that this is due to the fact that when there
are two or more buttons far away from each other and they have a similar action
value, a single normal distribution does not work. This is because the mean of the
distributions would be visually halfway between the two buttons and therefore the
standard deviation needs to be high so that the buttons have a high probability of
being clicked. As a side product, the probability of clicking increases all around the
web page.
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Y

X
Figure 15: Two normal distributions output. The final click position distribution is
formed from the marginal distributions for the horizontal (x) and the vertical (y)
axes.

Even though the action space is large, with some adjustments to how the action
is chosen based on the click probability map, the algorithms were found to learn well.
The following three sections will discuss how the probability map is calculated and
how it can be processed so that the learning is faster.

3.3.3 Click probability image

FC Click (x, y)

Actor

Figure 16: Image-based method with click position (x,y) as output.

The click probability image method outputs the probability of clicking for each pixel.
The policy network outputs an image of size pw x ph. The size of the output can be
different from the input image size. The smaller the size, the fewer actions there are
to try, but also the size has to be large enough to have at least one pixel for each
element on the page. For example if the input image is 128x128, and in that image
there is a button that has a width of 4, the output should be at least 32x32 to make
it possible to click that button.
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3.3.4 Paint in the area of the clicked element

Painting the area of the clicked element means using the visual boundaries of the
clicked element to simulate clicks to the other parts of the element. Since in the click
probability image method the click locations need to be tried one by one even if the
results are the same, this method improves the sample efficiency by telling the deep
RL algorithm that all these other actions would work the same way.

The idea for this came from the fact that clicking an element will have the same
effect regardless of which part of the element was clicked. It does not matter if the
top or bottom part of the login button is clicked, both will trigger the same action:
logging in the user.

3.3.5 Means of elements in the prediction image

FC Element id

Actor

Means

Element
Areas

Figure 17: Image-based with element id output that is calculated by taking the mean
over the element area.

Means of elements in the prediction image takes the predicted click locations from
the actor and the areas of each element and calculates the mean click probability for
each element.

This method has the advantage compared to click probability and the painting
that the actions can be restricted to just the elements and there is only one action
for each element. Entropy is used to encourage trying out actions other than the
one that worked the best [39]. Entropy is subtracted from the loss and since small
entropy means there are a small number of actions that are often selected, minimizing
the loss causes entropy to increase and therefore the actor will explore other actions.

This is a problem with the click probability and paint methods, because increasing
the entropy means trying out not only the actions that click on other elements but
also the actions that land in the area of the same element and thus "exploring" the
same action.

Since the entropy in the means method is calculated after computing the element
area means, only the probabilities for the click locations that fall outside the clicked
element will be increased.
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Algorithm 2 Element-based algorithm
// For every episode
repeat

tstart ← t
// For each time step in an episode
repeat

Initialize an empty element representation vector st

Get all elements E in the current view
for each element e ∈ E do

Get the type, id, and contained text of the element e
One-hot encode the type and id
Create a boolean telling whether the element contains text or not
Combine the encoded attributes into the element representation vector

Feed st to the A3C model and get per element probabilities
Choose an element from the per element probability distribution
Interact with the chosen element

until t− tstart == tmax

until stopping criteria is met

Algorithm 3 Image-based means algorithm
// For every episode
repeat

tstart ← t
// For each time step in an episode
repeat

st ← screenshot of the current view
bt ← visual boundaries of the DOM elements in the current view
Feed st to the A3C model and get per pixel probabilities
Combine per pixel probabilities and bt to compute per element probabilities
Choose an element from the per element probability distribution
Interact with the chosen element

until t− tstart == tmax

until stopping criteria is met
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Figure 18: Sample login page

Figure 19: The areas of the elements on the sample login page
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Number of updates

Figure 20: Click probability method update visualization.

Number of updates

Figure 21: Paint method update visualization.

Number of updates

Figure 22: Means method update visualization.
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4 Numerical results
This section describes the executed experiments and their results. The experiments
were carried out to find out how well the proposed methods work. This section starts
by presenting the evaluation criteria, after which the baseline methods are detailed.
Then the test environments are described. The remaining subsections are about the
different experiments and their results.

4.1 Evaluation criteria
The reward functions that are discussed in this thesis are:

• Reward for finding bugs

• Reward for unique URLs

• Reward for unique states

There are no standardized metrics for measuring the performance of each algorithm
in UI exploration. In this thesis these metrics are: number of unique URLs and
number of unique states (web pages) found during the exploration session. Reward
for found problems was also considered, but not used in the experiments, because it
was expected to be too sparse. The number of unique URLs was chosen as a measure
of how diverse the exploration is: the more different URLs are found, the more web
pages are explored. The number of unique states was chosen to measure how well
the algorithm tests the functionality of the UI. This is thought to be closely related
to discovering problems. The assumption is that the more different things are tried
the more likely problems are found.

So why should we give reward for finding unique states or URLs? Why not use
number of found problems as reward? Initially it was considered to give the agent
reward for every problem it can find. However, it turns out that this may not be what
is wanted because of the following reasons. The amount of reward given depends
significantly on the system that is being tested. Since deep reinforcement learning
methods are difficult to train when rewards are sparse, a system that does not have
many problems would make the learning process hard. The deep RL methods, such
as the ones used in this thesis, use random exploration to find out what states give
rewards. Thus the deep RL agent would be somewhat equivalent to random search
until it starts to find bugs.

Also, finding the same bug again is not useful and detecting whether a bug is
new or not is challenging. Is it the same bug if the error message is the same? What
if the state and actions taken were entirely different, is it still the same bug?

Additionally, giving reward for exploring as many states or URLs as possible
makes the agent try to cover as much of the functionality of the system as possible.
It may be more helpful to know that the agent covered this many states and URLs,
and that these bugs were found or that there were no bugs.
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4.2 Baseline algorithms
This section will discuss the already existing algorithms that the proposed methods
will be compared against. Since there are no common benchmarks for UI testing,
two baseline algorithms were implemented to provide a comparison to the proposed
methods. Using the baseline algorithms, random agent, and tabular Q-learning it
can be seen whether the proposed methods are better or not. First, the random
agent algorithm will be described and then the tabular Q-learning algorithm, that is
based on the algorithm introduced in Section 2.5.1, will be outlined.

4.2.1 Random Agent

One way to explore without a separate learning phase is to simply choose a random
action out of all available actions. Theoretically, this method should be able to
explore the web application entirely if it is run long enough. Since the actions
are chosen randomly, all possible action sequences should be generated when the
algorithm is run enough times. However the probability of specific action sequences
is small. For example, if the UI has 20 links on each page and reaching a new page
requires clicking the correct link on five consecutive pages, the probability of reaching
the page is 1

205 = 3.125e− 7. Thus the algorithm may not be practical, but will be
included in the experiments for comparison.

Algorithm 4 Random agent
repeat

Get all elements in the current view
Choose one of the elements uniformly at random
Interact with the chosen element

until stopping criteria met

4.2.2 Baseline Q-learning algorithm

As a baseline for UI exploration, a tabular Q-learning algorithm was implemented
based on the solution proposed by Sebastian Bauersfeld and Tanja E. J. Vos [4].
More information about the solution can be found in Section 2.5.1.

In the original paper, the algorithm creates a string from the fetched elements
and their attributes, but in this thesis a constant-size vector is used. The reason
why a constant-size vector is used instead is to make it easy to feed the same input
to neural networks later on. To get a fixed-size vector with a variable number of
elements, the algorithm requires a few parameters that set the maximum number of
items. The vector has to be large enough to fit all elements up to the max number
and leave all unused parts as zeros.

The algorithm works as follows. First all button, input, and link (tag name
"a") type html elements are fetched from the current page. For each element the
algorithm finds their attributes: id, value, type. The element type and id are
one-hot encoded. Value is either 0 or 1 depending on whether the element value



44

is a string longer than 0. Finally the algorithm combines all element information
to a constant-size vector based on the hyperparameters. The size of the vector is
(max_elems × (max_ids + element_types + 1)). The vector is then hashed with
sha256, because the algorithm only needs to detect unique states, not how similar
the states are. A hash lets us store the state without using a lot of memory and
detecting if a state has been visited is fast to compute. Then, based on the stored
states, state-action values, and action counts, the algorithm chooses the action that
is expected to lead to a part of the UI that has not been tested before.

How does this method compare to the deep reinforcement learning based solutions?
This method does not need a separate learning phase and is therefore faster to take
into use. But, this tabular Q-learning algorithm can only recognize if states are
different, but not the differences or how similar the states are. Deep RL algorithms
use neural networks as function approximators. This eliminates the need for storing
states and enables the agent to make use of the similarities of the states.

The pseudo-code for the algorithm can be written as follows (adapted from [4]).

Algorithm 5 Q-Learning baseline
Q(s, a) = rinit ∀s ∈ S, a ∈ A
repeat

obtain current state s and available actions As

a∗ ← argmaxaQ(s, a), a ∈ As

execute action a∗

obtain next state s′ and available actions As′

Q(s, a∗)← R(a∗, s, s′) + γ maxa∈As′ Q(s′, a)
until stopping criteria met

The rinit is chosen to be 10000.

4.3 Test environments
The test environments are browser-based applications that are controlled program-
matically. Numerous test environments were created to rapidly test the performance
of the different algorithms.

The browser is controlled by using Selenium [15]. Selenium is an open-source
project for testing browser-based applications. Selenium allows the testing program
to find what elements are on the web page and what their attributes are. It can also
be used to interact with the page. This is done by calling simple commands, for
example "click element" or "type text".

Since training the agent on the real product usually took a few days, multiple
environments were used to find out early if an algorithm or setup works or not. Also
in the beginning, it was not known whether or not the agent is able to navigate the
real product, so it was first tested on smaller applications.

For example, to test how feasible relative movement is, a site with only a single
button was created and the algorithm was given reward every time the button was
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clicked. The three most important environments are described in the next three
sections.

4.3.1 Simple site

This environment is a traditional website with login. Pages are loaded fully when a
button is pressed. There is a home page that has links to three pages. Each of those
three pages has a link back to the home page. The site also has a login page. The
agents need to learn to input the username and the password and press the login
button in the right order to gain access to the website. The website also includes
buttons for generating javascript and server errors to test the error detection and
the algorithm’s ability to find the states and actions that cause them. The goal is to
visit all pages in as few clicks as possible.

Figure 23: A visualization of the pages of the simple site environment.

4.3.2 Single-page application

This test environment is used to test that the algorithms and the system for controlling
the browser works well with single-page applications. Single-page applications (SPAs)
differ from traditional websites in the sense that the pages are not loaded fully; only
the content of the page is loaded. The use of SPA usually means that the web
application responses faster, but it is harder to detect whether the page is ready
or not. Selenium waits for the page to load in the case of traditional websites, but
it does not by default wait for the asynchronous API requests that the single-page
applications send to finish.

This environment has a few pages that can be changed using the menu bar. The
menu bar is visible on all pages, thus the algorithm needs to learn to recognize which
pages it has already visited to be able to choose a link from the menu bar that leads
to a new page.
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Figure 24: Visualization of the single-page application.

4.3.3 Real product

Real product is the actual system that we want to test. In this thesis it is a web-based
application with a single-page application frontend and it has a backend for processing
API requests. The product also has a login page, but in the experiments it is scripted
so that the algorithms do not need to learn to login. This was done to prevent the
algorithm getting stuck on the login.

4.4 Exploration: Q-learning versus random search
In this section, the exploration speed of the tabular Q-learning algorithm is compared
to that of the random search algorithm. As an experiment, tabular Q-learning and
random search were run in the real product environment. By running the experiment
for both methods and recording unique states over number of actions taken it can be
seen that the Q-learning based algorithm is substantially faster at finding unique
states than random search. Figure 25 shows the results of this experiment.

The states were calculated by fetching the information of html elements on the
page, creating a vector containing all the information and calculating a sha256 hash
of the vector. Thus the number of unique states is the number of unique hashes
calculated so far. Both methods were run for 10,000 actions and the browser was
reset to the home page of the product every 1000 actions. Running 10,000 actions
took about 6 minutes for each of the methods. The number of unique states was
calculated as an average of 10 runs, because the algorithms are probabilistic.
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Figure 25: Number of unique states explored. Q-learning (Algorithm 5) shown with
the blue line and random search (Algorithm 4) with the orange. Both methods
were run 10 times. The darker color shows the mean and lighter color the standard
deviation of the obtained results. Q-learning is more efficient at finding new states.

4.5 Testing the algorithm on a real product
Since the image-based means algorithm turned out to be the best proposed method,
this section concentrates on comparing it against other algorithms. In terms of
learning speed, the image-based means algorithm learns quickly to outperform the
tabular Q-learning method. The untrained image-based means algorithm is slow
and works similarly to the random agent. However, after only 8 minutes of training,
the means algorithm outperforms Q-learning in the number of unique states per
1000 actions. Furthermore, after training for two days, the means algorithm finds
substantially more unique states than Q-learning in 10,000 actions.

Image-based means method was compared against people performing the same
task. The task was to find as many unique URLs as possible within 100 clicks. The
image-based algorithm learned a deterministic policy that was able to find 52 unique
URLs. As a comparison, the same task was first given to two human users. The
users were only informed to navigate the website so that they find as many different
URLs as possible. They were not told how the application works and what can
be done with it. The task was performed by using a browser as usual, but with a
program running in the background to keep track of how many unique URLs were
found and how many clicks are left. During the task, the users were able to see how
many URLs were found and how many times they can click. Performing the task
took about 5 minutes, including the time to click and thinking about what to click



48

to maximize URL count. As a result the two users found 37 and 38 unique URLs.
The image-based means method performed the task in under 10 seconds.

The time difference is not very significant in such a short time, but if it were 1000
or 10,000 clicks, for example, it would be quite unfeasible for the human user.

12Random

13Q-learning

37Inexperienced user 1

38Inexperienced user 2

52Image-based means algorithm

54Experienced user

0 10 20 30 40 50

Chart 1: 100-click URL maximization task results

As shown in Figure 26, the image-based means algorithm outperforms the others
and the element-based method is also notably better than the Q-learning and random
algorithms. The interesting part is that both the image and element based methods
were trained to maximize the number of unique states in 1000 clicks. But since the
action selection is stochastic, both methods are able to find substantially more states
when run longer. The algorithms have learned action probability distributions that
favor those actions that lead to finding many unique states.

4.6 Performance and robustness
To verify that the image-based means solution works properly two additional ex-
periments were executed. The method was tested by training it to navigate both
the simple site (4.3.1) and the single page application (4.3.2). The environment in
this experiment worked so that the site was chosen randomly with equal probability
for both websites. It turned out that the agent is able to learn to navigate both
sites efficiently and find all pages. This experiment shows that the policy can be
trained to navigate many different sites and therefore it could potentially generalize.
However, testing how well the policy generalizes is out of the scope of this thesis.
Generalization would mean that the method could be only trained once and then be
used for many different websites.

The ability to make decisions based on the state was also tested in the simple
site login. By clearing the username and password fields in the login page after the
agent had entered those, it was verified that the agent actually makes the decisions
based on the screenshot rather than only memorizing the correct action order. The



49

Figure 26: Comparison of the random (Algorithm 4), Q-learning (Algorithm 5),
element-based (Algorithm 2) and image-based (Algorithm 3) algorithms testing their
ability to find unique states. Each method was run 10 times. The darker color shows
the mean and lighter color the standard deviation of the obtained results.

agent was able to recognize that the username or password was missing and enter
them again before clicking the login button.

4.7 Curiosity in UI exploration
It is difficult to know what kind of reward function is the best to encourage the
agent to explore. There have been multiple ways to improve exploration by creating
a curiosity-based reward instead of using an environment-provided reward in the
research community. One of these is curiosity-driven exploration, proposed by Pathak
et al. [29]. Their solution uses an Intrinsic Curiosity Module (ICM) to give reward
for finding states that cannot be predicted well. In the beginning the agent is bad at
predicting the next state, but during training the agent improves and thus tries out
things that lead to new states.

Since curiosity-based reward sounded promising, it was implemented for the UI
exploration problem in this thesis. Figure 27 shows the training performance of the
image based means algorithm on the real product environment with and without
ICM. The reward is in this experiment the number of unique URLs. ICM seems to
provide noise to the reward function in this case. Thus, the one with ICM is slower
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Figure 27: The performance of the image based algorithm with and without intrinsic
curiosity module (ICM). The lines were smoothed using exponential moving average
with discount coefficient 0.5. The reward is the number of unique URLs found.

to learn and has significant drops in performance. This can be explained by the fact
that web pages are quite static; the pages change fairly little after the actions. Thus,
the model quickly learns what comes next and therefore the curiosity reward is small.

The intrinsic curiosity module implementation that was done by the author of
this thesis did not seem to work in cases where the camera does not move. For
example in the Atari video game Montezuma’s Revenge, the model quickly learned
to predict mostly correct next state features and thus the prediction loss became
very small. The same happened in the simple site environment (4.3.1) where the
agent tries to type username and password and then click login. The prediction loss
started high, but after not so many iterations, the prediction loss became very low
and the agent was not curious anymore.

Curiosity as the only reward has a lot of potential in GUI testing. If the agent
is able to learn with just the intrinsic curiosity, it could be used in environments
where we have no access to the application or browser. It would suffice to get a
screenshot of the current screen and be able to click and type. The agent would
give itself reward based on how surprised it is for its actions. At first it would be
surprised for everything and later learn to predict what is going to happen and thus
it would move towards new functionality in the SUT. The method could be then
used to test desktop applications, mobile applications, the graphical user interfaces
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of operating systems and more, assuming that taking screenshots and clicking and
typing can be done programmatically. However, it requires more research to get a
working curiosity-based solution.
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5 Conclusion
We will now answer the research questions. In this thesis we saw that deep reinforce-
ment learning can be used for exploratory software testing by designing a reward
function that encourages trying out new things. We found that the state of the user
interface can be represented as an element vector or as an image and we may use one
action per element or probability for clicking each location on the UI. Supervised
pretraining, i.e. training the agents with human demonstrations before applying
reinforcement learning, was not needed, because the algorithms are able to learn from
scratch. Generally, the problem of supervised pretraining is that the algorithm learns
to imitate what was done in the demonstration, but the performance of the algorithm
could be limited by the data. In addition, generalization to different scenarios can
be difficult. Also, the training process may require a lot of data, thus the proposed
methods are easier to use. If the system changes or a new system is tested and the
trained policy does not work anymore, the proposed methods can be trained from
scratch without requiring any demonstrations.

The presented methods can already be used to find problems in user interfaces.
During the testing of the methods, novel problems were found in the development
version of a real product. However, the methods could be improved in many aspects.
The learning could potentially be sped up by using a more stable deep reinforcement
learning algorithm such as proximal policy optimization (PPO). Also, more UI
problems could be detected such as visual problems and readability of the text. The
solution saves the taken actions (clicks and typed text) into a log file, but the taken
actions could be saved as a runnable test. The test could be then used when fixing
the problem to verify that it is actually fixed.

One of the most difficult factors of this thesis was that the learning process of
the proposed methods took days on a real product. And since it was not known
whether or not the algorithm could learn to maximize the number of unique states
or URLs it was challenging to know when to stop the learning process and note that
the algorithm did not work properly.

Luckily, since the same deep reinforcement learning algorithms had been used
to train agents to play video games, it was possible to roughly estimate how many
samples it would take. Many papers, such as [26], [34] and [14], have shown that it
often requires millions of steps to reach good performance in games. And it turned
out that it took around 8-15 million steps to reach the highest number of unique
states per episode for the image-based means method.

Since the methods are able to find problems that are otherwise difficult to find,
it is intriguing to start using them. We look forward to integrating the methods as
part of the normal development pipeline.
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5.1 For Future Studies
5.1.1 Generalization

The proposed methods are used to train deep-reinforcement-learning-based agents
that can explore a specific UI efficiently. However, training takes a few days, thus it
may not be feasible to retrain the methods often. Therefore it would be useful to
find out how well the method generalizes to different versions of the same UI and to
entirely different UIs. Do we need retraining if the UI changes slightly? Can we train
a generic policy that can efficiently navigate a large number of different websites or
web applications without training?

5.1.2 Content

Currently the proposed methods enter randomly-generated text to the text boxes.
How could we design a model so that it can choose what type of input to put in a
form input box?

Another open area for future research is how to handle more action types. These
include for example email, password, number, textarea, and dropdown elements.
How can we add support for drag and drop? Is it possible to expand the action space
to include the possibility to choose these actions?

5.1.3 Reward function

This thesis used the number of unique URLs or states as the reward functions.
However, maximizing unique URLs makes the agent navigate around many pages,
but does not incentivize it to try different things, such as pressing buttons or typing
text to text boxes, on those pages. On the other hand, depending on the application
that is being tested, maximizing unique states may make the agent find a page where
it can create a lot of new states and stay there. Thus, a better reward function could
help the agent explore better and focus on more important parts of the application.
Different reward functions could be tested by comparing them in their ability to find
problems, how well they find new pages and how many things they try on each page.
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