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The building sector consumes about 40 % of global primary energy and contributes to 30 % of 
global CO2 emissions. The building sector has a great potential on reducing global energy use and 
emissions by improving overall energy efficiency and using more renewable energy sources 
instead of fossil fuels. Building sector in Finland includes about 220 ice halls and 280 swimming 
halls, which are easily overlooked as significant energy consumers and CO2 emission producers. 
The Ministry of the Environment of Finland has set no limits for the energy consumption of these 
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water, dehumidification and exhaust air. Demand response reduces the peak-load of electricity 
or district heat grid, which in turn reduces emissions, since the energy for peaks is produced with 
high-polluting plants.  
 
The objectives of this thesis were to analyze the potential energy and cost saving potential of 
waste heat recovery and smart control of energy system in a combined energy system of ice and 
swimming halls. This thesis examines a case in Pirkkola (Helsinki), which includes an old existing 
medium-sized swimming hall and a new training ice hall. This study was carried out by dynamic 
building energy simulations and post-processing of the simulation results. The models of the ice 
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This study found out that 99 % of purchased district heat in the ice hall could be replaced by 
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the swimming hall are reduced by 1.1 %. With all previous measures of utilization of waste heat 
and smart control of energy system, the changes in the total annual energy consumptions with 
summer breaks for the ice and swimming halls are 83 % reduced purchased district heat, 23 % 
increased electricity and 45 % reduced total purchased energy. 

Keywords Waste heat recovery, demand response, smart control of energy, combined 

energy system, ice hall, swimming hall, dynamic building energy modelling  



 

Aalto-yliopisto, PL 11000, 00076 AALTO 

www.aalto.fi 

Diplomityön tiivistelmä 

 

 

 

Tekijä Leo Lindroos 

Työn nimi Hukkalämmön hyödynnys ja älykäs energiasysteemi yhdistetylle jää- ja 

uimahallille  

Koulutusohjelma Energiatekniikka Koodi K3008 

Työn valvoja Professori Risto Kosonen 

Työn ohjaaja Tekniikan tohtori Juha Jokisalo 

Päivämäärä 13.03.2019 Sivumäärä 115+19 Kieli englanti 

Maailmanlaajuisesti rakennussektori kuluttaa noin 40 % primäärienergiasta ja tuottaa noin 30 % 
hiilidioksidipäästöistä. Rakennussektorilla on potentiaali vähentää maailmanlaajuista 
energiakulutusta ja päästöjä parantamalla hyötysuhdetta ja käyttämällä enemmän uusiutuvia 
energialähteitä fossiilisten sijasta. Suomen rakennuskantaan kuuluu noin 220 jäähallia ja 280 
uimahallia, joiden suuri energiakulutus ja päästöt jäävät helposti huomiotta. Ympäristöministeriö 
ei ole poikkeuksellisesti asettanut rajoja näiden rakennustyyppien energiakulutukselle. Näiden 
rakennustyyppien suurimmat mahdollisuudet energiakulutuksen ja päästöjen vähentämiseksi 
ovat hukkalämmön hyödyntäminen ja kysyntäjouston mukaan ohjatut järjestelmät. 
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Tämän tutkimuksen tavoitteina oli analysoida yhdistetyn jää- ja uimahallin energiasysteemin 
energiakulutuksen pienentämistä ja kustannussäästöjä hyödyntämällä hukkalämpöjä ja älykästä 
energiaohjausta. Tarkastelukohteena on kohde Helsingin Pirkkolassa. Kohteessa on vanha 
keskikokoinen uimahalli ja uusi rakenteilla oleva harjoitusjäähalli. Tämä tutkimus toteutettiin 
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Symbols 

Aice  [m2] surface area of ice 

Aw  [m2] surface area of water 

Bp  [m/h] empirical evaporation coefficient 

COPM  coefficient of performance 

EPHD [kWh] predicted total heat demand of the hour  

R  [J/(kg·K)] gas constant of water vapor  

Rsp [J/(kg·K)] specific gas constant for dry air  

Rsp,da [J/(kg·K)] specific gas constant for dry air 

S  [Pa] pressure difference caused by stack effect  

SE,a [€/a] annual energy cost savings  

Sinv [€] the maximum cost of profitable investments  

Taw  [K] average temperature of air (on surface layer of water)  

Tc [K] condensation temperature 

Tcw [°C] cold water temperature 

TDHW [°C] domestic hot water temperature 

Te [K] evaporation temperature  

Tea [°C] set point temperature of exhaust air in EAHP 

TIR  [°C] temperature of used water for ice resurfacing 

Tin [K] indoor air temperature  

Tout [K] outdoor air temperature  

Tsh [°C] average shower temperature 

VIR [m3] water amount per one ice resurfacing 

Vwater,d  [m3/d] average water usage per day 

an
′′ [a] total discount yield 

cp,j  [W·s/kg·K] specific heat of ice 

cp,v  [W·s/kg·K] specific heat capacity of water 

fe [%] annual inflation of energy prices 

fT  loss factor of exhaust air heat pump  

h  [m] height of space 

g  [m/s2] gravitational acceleration  

i [%] annual nominal interest rate  

lf  [W·s/kg·K] condensing heat of fusion from liquid to solid 

n [a] repayment period 

ng,d [1/d] average number of games per day 

nIR   number of ice resurfacing uses 

nocc  number of occupants in swimming hall 

nsh,g  average number of showers per game 

pa  [Pa] vapor pressure of air 

patm [Pa] atmospheric pressure  

pda  [Pa] dry air pressure 

pv  [Pa] vapor pressure 

pv,sat  [Pa] vapor pressure of saturated air at the temperature of pool water  

qDHW,d,SH  [m3/d] average DHW usage per day in the swimming hall 

qIR [W/m2] average heat load to ice from ice resurfacing 



 

 

 

qsh [m3/s] average shower flow 

qwater,a  [m3/a] annual water usage in Pirkkola ice and swimming halls 

qwater,a,IH  [m3/a] annual water usage in the Pirkkola ice hall 

qwm [kg/h] mass flow of evaporating water 

re [%] annual real interest rate of energy price 

tdays,open,SH  [d] days the swimming hall is open during a year  

tsh  [s] average time of a shower 

x [gwater/kgair] absolute moisture content of air 

∆Tavg,use,SH  [K] temperature difference between cold water and used water 

∆TDHW  [K] temperature difference between cold water and DHW 

∆t   [h] time period 

ρin  [kg/m3] indoor air density  

ρout  [kg/m3] outdoor air density  

ρw  [kg/m3] density of water 

ϕ [%] relative humidity 
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1 Introduction 

1.1 Background  

The European Union (EU) Commission has expressed its position on climate change. Three 

main goals of the EU Commission (2014) by 2030 are to reduce overall carbon dioxide (CO2) 

emissions by 40 % compared to the levels of 1990, to increase the share of renewable energy 

sources to 27 % of final energy consumption and to increase energy efficiency by 27 % 

compared to the levels of 1990. EU commission (2018) has also proposed a climate neutral 

Europe by 2050. According to Costa et al. (2013:1) building sector consumes 40 % of global 

primary energy and contributes to a total of 30 % CO2 emissions. Thus, building sector has 

potential to reduce a significant portion of the total energy consumption and emissions. This 

can be done by improving energy efficiency and using more renewable energy sources 

instead of fossil fuels.  

 

Building sector in Finland includes about 220 ice halls and 280 swimming halls (Hemmilä 

and Laitinen, 2018:8). Ice and swimming halls are easily overlooked as significant energy 

consumers and CO2 emission producers. They consume 1.2 % of total energy consumption 

of Finnish building sector (Appendix A). Ice and swimming halls are special building types 

due to their indoor air conditions and high specific energy consumption. The Ministry of the 

Environment (2017a:4) has set no limits for the energy consumption of these type of 

buildings. Do to the lack of regulations and relative low amount of these buildings, there has 

not been as much study and implementation of energy saving measures and systems 

compared to the rest of the building sector.  

 

Ice and swimming halls consume lots of electricity and heat. Biggest electricity consumer in 

ice halls are ice refrigeration and dehumidification. In swimming halls the biggest electricity 

consumer are saunas and pool water pumping. The biggest heat consumer in ice halls is 

domestic hot water (DHW). In swimming halls biggest heat consumer are DHW, space 

heating and pool water heating. 

 

The main potential energy saving measures for these type of buildings are waste heat 

recovery and demand based control of systems. Hemmilä and Laitinen (2018) recently 

studied methods to reduce energy consumption in ice and swimming halls. This thesis 

utilizes conclusions of Hemmilä and Laitinen, but focuses on waste heat recovery and 

demand response.  

 

Possible sources of waste heat recovery in ice halls are ice refrigeration, gray water and 

condensing water from dehumidification. Heat recovery from ice refrigeration is 

recommended system to implement into new ice halls according to international ice hockey 

federation (IIHF, 2016:29). Heat can be recovered from sewage water, also called gray 

water, with heat exchangers. Sewage water is produced in significant amounts in both ice 

and swimming halls. In condensing heat recovery, the condensing heat is recovered from 

condensing water during air dehumidification. 

 

Combining energy systems of closely located ice and swimming halls to utilize more waste 

heat is suggested in many studies (Kuyumcu et al., 2016; Linhartová and Jelínek, 2017; 

Nesbit, 2011). An example of a combined ice and swimming halls is located in Mänttä, 
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Finland. Ice hall of Mänttä was built in 2015 and it utilizes waste heat from ice refrigeration 

and sells the excess heat to a nearby swimming hall (Lautiainen, 2018:12).  

 

Possible sources of waste heat recovery in swimming halls are gray water and exhaust air. 

Exhaust air heat recovery utilizes heat from exhaust air, mainly as condensing water, but in 

a situation where dehumidification is not used. Exhaust air heat recovery could be utilized 

in big amounts in swimming halls due to high moisture load (Hemmilä & Laitinen, 2018:21).  

 

Demand response is a smart control of energy system method for reducing energy demand 

and especially CO2 emissions. Studies of demand response often focus only on electricity. 

Alimohammadisagvand et al. (2018:71) concluded that demand response can “prevent 

exposure of its infrastructure to critical strains” and “improve grid-wide load factor of the 

electric power system”. Demand response is widely studied and adopted in modern smart 

energy grids (Cappers et al., 2010). However, demand response of district heat has been 

studied only in few publications, for example by Martin (2017) and Mäki (2018). This thesis 

studies both demand response of electricity and district heat.  

 

Demand response can be implemented with different strategies. Strategies used in this thesis 

include short-term demand response by means or rule based control algorithms, which are 

controlled by dynamic energy prices. Energy demands are shifted from times of high 

dynamic energy price to times of low dynamic energy price or alternatively by simply 

limiting energy demands during times of high dynamic energy price. These strategies lower 

especially CO2 emissions, since more polluting energy production from auxiliary power 

plants are used in times of high dynamic energy price. Demand response for a combined 

energy system of ice and swimming halls has not been studied previously. 

1.2 Research questions and objectives 

The objective of this thesis is to analyze the potential energy cost savings of waste heat 

recovery and demand response in the combined energy system of ice and swimming hall. 

This study was carried out by dynamic simulations and post-processing of the simulation 

results. The models of the ice and swimming halls and component models of ventilation and 

energy systems that were not available were built in this study. 

 

This thesis examines a case in Pirkkola (Helsinki), which includes an old existing swimming 

hall and the new ice hall. The new ice hall is currently (1/2019) under preliminary design 

and will replace the old ice hall. This thesis analyzes reduction of energy consumption and 

energy cost savings for the new ice hall, the swimming hall and their combined energy 

system. The methods used to reduce energy consumption and energy costs are waste heat 

recovery and smart control of energy system. Other parties can use the calculated energy 

cost savings for evaluation of different investment options.  

 

Research questions of this thesis are: 

1. How much waste heat could be utilized in Pirkkola ice and swimming halls. 

2. How much energy costs can be saved in Pirkkola ice and swimming halls with waste 

heat recovery and smart control of energy system. 

 

To fulfill the first research question, this thesis evaluates the utilization of different waste 

heat sources with different heating systems. Heat demand of low temperature applications 

such as floor heating may be smaller than amount of available waste heat energy. Low 
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temperature applications are to be utilized first and higher temperature applications 

alternatively with heat pumps. The full utilization potential of waste heat is examined. A 

mismatch of waste heat and heat demands is taken into account. 

 

The second research question is to find out the electricity and heating costs savings by 

implementation of smart control of energy system in addition to waste heat recovery. 

Strategies for smart control of energy system in this thesis consist of demand response of 

electricity and district heat use, short-time storing of waste heat and a demand based control 

of exhaust air heat pump. The saved electricity and heat demand costs are to be evaluated 

for different combinations of smart control of energy system. In addition, the combined 

effect of waste heat recovery and demand response is evaluated. 

1.3 Research restrictions 

Ice halls are classified according to spectator stand capacity and swimming halls according 

to pool surface area (Hemmilä & Laitinen, 2018:8). This thesis studies a training ice hall and 

a middle-sized swimming hall. 

 

The topic of this thesis is extensive, and thus it cannot observe all included theories in detail. 

The extensiveness is consequence by the large energy system. Crucial part of the energy 

systems are components in which the energy is processed, such as heat exchangers and heat 

pumps. These components are observed in a general theoretical level. The parameters of 

these components, such as efficiencies are defined according to regulations or technical 

specifications of actual recent components.  

 

In this thesis, rule based demand response control algorithms were developed and used. 

Demand response control is used control heating systems and electricity systems of ice 

refrigeration, exhaust air heat pump and saunas. Hourly electricity price is available in 

Finland (Nordpool, 2019), but hourly district heat prices are not available for end user 

contracts in Finland. In this thesis, a contract with hourly changing heat price is used based 

on calculations from Rinne (2017). Thus, the possible future dynamic district heat price will 

not be similar to the price data used in this thesis.  

 

The cost analysis gives savings from energy costs for fixed interest rates and payback 

periods. Profitability during life cycle of the systems is not analyzed, since the investment 

costs are not evaluated in this thesis. Conclusions of this thesis give investment 

recommendations based on energy cost savings.   
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2 Energy systems of ice and swimming halls 

This Chapter presents energy systems of ice and swimming halls as well as different waste 

heat recovery and smart control of energy system. This Chapter also presents the latest 

scientific studies carried on energy saving measures of energy systems of ice and swimming 

halls. 

2.1 Energy consumption 

Energy consumptions of ice and swimming halls are high. Ice halls consume a lot of 

electricity on ice refrigeration and swimming halls consume a lot of electricity on pool water 

pumping and saunas. Swimming halls consume also a significant amount of heat on keeping 

the pool water and indoor air warm enough to maintain thermal comfort. 

2.1.1 Energy regulations 

Ice and swimming halls are classified according to building class 9 and do not have a limit 

for energy consumption, but an E-value is needed to be calculated (Ministry of the 

Environment, 2017a).  E-value is calculated based on purchased energy per surface area, and 

by taking into account new energy type coefficients defined for year 2018 by Finnish 

Government (2017). E-value is supposed to make comparison of building energy 

consumption easier and thus simplify discovering buildings with high energy consumption. 

E-value and is required to be calculated for ice and swimming halls even though there are 

no limitations to be met (Ministry of Environment, 2017a). In addition, Compliance of heat 

loss requirement needs to be shown. It is seen that ice and swimming halls are not 

comparable in terms of energy consumption per area and thus would need their own energy 

certificate which there is none currently.  

 

Heat loss is regulated for ice and swimming halls by comparing the total heat loss to a 

standard heat loss of the same building with defined parameters (Ministry of Environment, 

2017a). The calculation is done according to Ministry of Environment (2017b). Total heat 

loss consists of heat losses of envelope, ventilation and infiltration air. The standard model 

allows some of heat losses to be over standard, as long as the total heat loss does not exceed 

the corresponding standard value. 

2.1.2 Swimming halls 

A swimming hall is defined in this thesis as an enclosed exercise hall that provides at least a 

25 meters long pool of water to be used for swimming. The building also includes all 

necessary sanitary and bathroom units, saunas, locker rooms and technical spaces. The 

swimming pool spaces can also include different kinds of pools, such as smaller pools for 

children, whirlpool bath and cold- and hot water basin, and it can include water activities 

such as water slides and jump towers. 

 

Energy consumption 

 

Hemmilä and Laitinen (2018:8) divided swimming halls to groups by pool surface area and 

presented the average energy consumptions per gross floor area by group (Table 1). The 

specific surface areas are gross floor area of the whole building. Specific consumptions are 

relatively even between different size swimming halls. This means that the building size 

increases as the pool surface area and visitor count increases.  
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Table 1. Energy consumption of swimming halls classified by pool surface area (Hemmilä 

& Laitinen, 2018:8). 

The swimming hall size Small  Medium Big Stadium unit 

Pool surface area under 300 300 - 500 500 -750 Over 750 [m2] 

Number of halls 34 62 26 21  

Specific heating energy 508 461 492 438 [kWh/m2] 

Specific electricity energy 257 248 267 230 [kWh/m2] 

Specific water consumption 3946 4538 5116 4727 [dm3/m2] 

 

Building an energy efficient swimming hall is challenging in the cold climate of Finland 

because of the big temperature difference between indoor and outdoor air. In addition, 

swimming halls have a high moisture load in pool spaces, which can cause building structure 

to gather condensation moisture and mold. The condensation can be prevented by heating 

the indoor air over the temperature of pool water and by dehumidification of room air, but 

this consumes significant amount of energy. 

 

Environmental Product Declaration (EPD) has made an official Finnish design regulation 

guide for swimming halls based on multiple standards that are more general (EPD, 2009). 

The guide is extensive in terms of a swimming hall design and thus referenced many times 

in this thesis. 

 

The water temperature of the big swimming pool should be kept between 26 and 28 °C due 

to thermal comfort according to EPD (2009:3). According to EPD, the indoor air temperature 

should be maintained at 1.5 to 2.5 °C higher temperature than the indoor surface temperature 

of the structures. This temperature difference limits evaporating and improves thermal 

comfort. Indoor air relative humidity should be maintained below 60 % to prevent 

microorganism growth and over 45 % to improve energy efficiency due to decreased 

evaporation. (EPD, 2009:3) 

 

Energy distribution 

 

Hemmilä and Laitinen (2018) did a breakdown of energy use of Finnish swimming halls. 

Figure 1 shows a breakdown of heat energy use of a swimming hall. Domestic hot water 

(DHW) is divided into shower, washing and other usage.  
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Figure 1. Typical breakdown of heat energy use of a Finnish swimming hall (Hemmilä & 

Laitinen, 2018:13, edited). 

 

Shower water and washing water are drained into sewers. Other DHW usage consists of pool 

water changing, filter flushing and resupply pool water. Indoor air heating is implemented 

by space heating and supply air heating, which constitute of only about third of total heating 

(Figure 2). Space heating units consist of underfloor heaters and radiators. The significant 

amount of pool water and supply air heating demand is caused mainly by evaporation from 

pool to air. The evaporation consists of 77 % of heat losses from pool water (Kuyumcu, 

2016:354). Evaporating water also transfers heat from air to evaporating water increasing 

heat demand of supply air. The evaporation can be decreased by increasing the temperature 

difference between pool water and indoor air.  

 

 

Figure 2. Typical breakdown of electricity use of a Finnish swimming hall (Hemmilä & 

Laitinen, 2018:13, edited). 
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Figure 2 shows a typical breakdown of electricity use of a Finnish swimming hall (Hemmilä 

& Laitinen, 2018:13). Even without the use of steam saunas, saunas are the biggest electricity 

user, which is because multiple big saunas are kept on during opening hours and used 

actively. The active use of saunas increases energy use since the sauna door is opened 

frequently and water is being thrown into the stove, which transfers heat from stove to 

exhaust air. Pool pumps use a significant amount of energy for recycling the pool water. The 

water is pumped to heat exchangers to keep the water warm and to filters to keep the water 

clean. Ventilation energy use is high because relative humidity of indoor air should be kept 

below 55 % and temperature over 26 to 28 °C (EPD, 2009:3). Figure 2 does not include air 

dehumidification, since it is not a compulsory in swimming halls as indoor air could also be 

dehumidified with outdoor air (EPD, 2009:31).  

2.1.3 Ice halls 

In this thesis, an ice hall is defined as an enclosed exercise hall that provides at least one EU 

full-sized 29 meters times 60 meters ice rink and separate spaces for dressing rooms, 

showers, lavatories and technical spaces. Ice halls usually have at least a small spectator 

stand on one side of the ice rink for spectators of ice hockey game.  

 

Energy consumption 

 

Specific energy consumption of an ice hall is highly dependent on the ice hall type, such as 

a training ice hall without spectator stand and a big ice arena with spectator stand capacity 

of tens of thousands of people. Hemmilä and Laitinen (2018:8) classified Finnish ice halls 

by number of seats in the spectator stand and presented the average energy consumptions 

per gross floor area by groups (Table 2). The specific surface areas are gross floor area of 

whole building. Specific heating and water consumption of ice halls are significantly smaller 

than in swimming halls, while specific electricity consumption stays about at the same level 

(Table 2). The specific consumptions of heating, electricity and water consumption of the 

groups is different because of the different kind of usage of the halls. For example, stadiums 

are not used in for training and they have a significant amount of auxiliary space reducing 

the specific consumption. 
 

Table 2. Energy consumption of ice halls classified by spectator seat count (Hemmilä & 

Laitinen, 2018:8). 

Ice hall size Small  Medium Big Arena unit 

Spectator seat count 100 - 300 300 - 1500 1500 - 6000 over 6000   

Number of halls 16 28 6 3   

Specific heating energy 157 142 230 82 [kWh/m2] 

Specific electricity energy 258 197 347 110 [kWh/m2] 

Specific water consumption 822 681 938 586 [dm3/m2] 

 

The biggest energy sink of an ice hall is the ice, which has to be cooled to maintain a 

temperature of -3 °C for training and -5 °C for a hockey game according to International ice 

hockey federation (IIHF, 2016:38). The ice is cooled by cooling pipes inside concrete, which 

is located below the ice and on top of thermal insulation layers. Below the ice and the 

insulation layer, there are heating pipes to prevent ground frost with circulating hot water 

illustrated in Figure 3. The insulation thickness can be increased to limit heat losses from 

heating pipes to cooling pipes. Ice rink spaces are cold spaces, since the indoor air is cooled 
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by the cold ice sheet. The ice significantly increases the heat demand of spaces, since the ice 

temperature is lower even at room temperatures at around 6 to 12 °C. Cooling of the indoor 

air also causes condensation risk and thermal discomfort, which in turn requires 

dehumidification of indoor air.  

 

 

Figure 3: An example structure of an ice rink (IIHF, 2016:37). 

 

Energy distribution 

 

Laitinen and Kosonen (1994) developed a simulation program and evaluated the effect of 

different parameters on heat and electricity demand of ice halls. They calculated and 

presented the energy balance as a Sankey diagram for a training ice hall (Figure 4). The 

energy balance is for a year, the air temperature is +12 ºC and it includes refrigeration heat 

recovery. The values are scaled to match the percentage of total heat load on ice sheet, which 

equals 1680 MWh. The total heat, electricity and total energy usages are 1330, 920, 2250 

MWh respectively. Excess condensation means the heat that can be transferred to other 

buildings, for example, to a swimming hall. 
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Figure 4. Energy balance of the ice hall with heat recovery from ice refrigeration (Laitinen 

& Kosonen, 1994:13, edited). 

 

Figure 4 shows energy fluxes of the ice hall compared to percentage of condensation heat 

produced by ice cooling. Most of the heat losses are caused by the ice (96 %) compared to 

other heat losses (10 %). Space heating has the biggest heat demand (66%), but also a 

considerable amount of heat demands are caused by ice resurfacing water heating (16 %). 

Most of the electricity is used in the ice refrigeration compressor (36 %).  

 

Nichols (2009:18) analyzed inefficient ice halls in Canada, which have an annual combined 

electricity and heating consumption of 1950 MWh. Figure 5 presents breakdown of energy 

consumption on the ice hall. The heat demands (1050 MWh) are colored red-brownish to 

separate them from electricity demands (900 MWh). Only the lighting seems to differ from 

the energy distribution by Laitinen and Kosonen. The lighting electricity portion is 

significantly bigger and it is a good example on how energy consumption can be reduced by 

upgrading to lighting with better efficiency. 
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Figure 5. Breakdown of energy use of an inefficient ice hall in Canada (Nichols, 2009:18, 

edited). 

 

Heating and ice refrigeration are the most significant part of energy consumption of ice rink. 

These are caused mainly by heat loads on ice from indoor air. IIHF (2016:13) states the heat 

loads on ice to be as follows: 

 
Ceiling radiation is generally the largest single component of the heat loads. Other ice 

heat load components are: the convective heat load of the ice rink air temperature, 

lighting, ice maintenance, ground heat, humidity condensing from the air onto the ice, 

and pump-work of the cooling pipe network. 

 

Heat loads of ice according to Laitinen and Kosonen (1994:13) are presented in Figure 6. 

The order of magnitude is the same as stated by IIHF. Biggest single components of ice heat 

load are the amount of radiation and convection to ice. They are determined mainly by 

emissivity factor of the inner ceiling coating and the temperature difference between air and 

ice surface. The other considerable heat loads on ice is ice resurfacing. Ice resurfacing is 

done by first smoothing the ice surface by scraping and then spreading hot water on ice, 

which freezes as a new layer of ice. Other heat loads of ice are condensation from indoor air 

on ice surface, lighting and conduction heat load from ground frost protection to ice. 

Condensation heat load is affected by absolute moisture content of indoor air. Lighting heat 

load is affected by lighting power and orientation. Heat load of ground frost protection is 

affected by thermal insulation thickness between the cooling and heating pipes. 
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Figure 6. Heat load components of an ice rink (Laitinen & Kosonen, 1994:13, edited). 

2.2  Ventilation 

Ventilation has a significant impact on heating and electricity consumption of ice and 

swimming halls. Supply air heating is the main heating solution for pool and rink spaces, 

since it does not require any devices on floors. The proportion of heat demand of supply air 

heating compared to total space heating depends mainly on the used space heating systems, 

such as water radiators or underfloor heating. Supply air heating may need increased 

ventilation rate compared to space heated fully with other heating systems. The increased 

ventilation rate increases electricity consumption of ventilation fans. 

 

Ventilation plays a crucial role in controlling of the indoor air quality. The Finnish 

Association of HVAC Societies (FINVAC) has set new guidelines in 2017 for ventilation of 

different types of Finnish buildings. FINVAC (2017:15) specifies exercise halls and 

swimming halls into own ventilation group. It is important to note that the dimensioning 

values of exercise spaces are based on occupancy or moisture load and not on floor surface 

area. Other warm space airflows are dimensioned normally on either occupancy or floor area 

(FINVAC, 2017:16). 

2.2.1 Swimming halls 

EPD (2009:3) interprets, that outdoor airflow rate of a swimming hall space must be kept at 

a minimum of value of 2 dm3/s/m2 (gross floor area). However, the new guidelines by 

FINVAC (2017:15) state that the ventilation is controlled only by moisture content of indoor 

air. The biggest moisture load and thus biggest dimensioning effect of airflow rate of 

ventilation comes from pool evaporation. Evaporation from pool happens due to vapor 

pressure difference of indoor air and saturated air at the temperature of pool water (Equation 

1). EPD (2009:4) provides empirical Equation to define the mass flow of evaporated water 

from pools 

 
 

𝑞𝑤𝑚 = 𝐴𝑤 ⋅
𝐵𝑝

𝑅 ⋅ 𝑇
⋅ (𝑝𝑣,𝑠𝑎𝑡 − 𝑝𝑎) (1) 

where 
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qwm mass flow of evaporating water [kg/h] 

Aw  surface area of water [m2] 

Bp  empirical evaporation coefficient [m/h]. For example, 28 for a deep pool meant 

for swimming and 40 for a shallow pool meant for children 

R  gas constant of water vapor = 461.52 [J/(kg·K)] 

Taw  average temperature of air (on surface layer of water) [K] 

pv,sat  vapor pressure of saturated air at the temperature of pool water [Pa] 

pa  vapor pressure of air [Pa]. 

 

According to EPD (2009:8), the spaces with different temperature set points should be 

divided into separate zones, which are supplied by, dedicated air handling units (AHU) and 

heat distribution systems. Spaces with swimming pools are recommended to be equipped 

with displacement ventilation supplied near the edge of pool (EPD, 2009:5).  

 

Moisture control 

 

Indoor air in humid pool spaces needs to be underpressured with ventilation to prevent humid 

indoor air going from inside through building envelope to outdoor air (EPD, 2009:6-11). 

Swimming halls are high spaces which causes the air pressure to be higher on top of the 

space compared to bottom of the space, this phenomenom is called a stack effect and is 

caused by temperature difference between indoor and outdoor air. Underpressure is 

implemented by  dimensioning the ventilation to extract more air than supply air. This 

underpressure is used to compensate the overpressure in top part of pool space caused by 

stack effect, but it is not always enough, especially when outdoor air is at coldest or the 

ventilation is lowered during closing times. Even underpressure does not prevent water vapor 

from diffusing into the envelope, which has to be taken care of with a vapor barrier. EPD 

(2009:10) provides Equation to calculate the pressure difference caused by stack effect 

inside the space 

 
 𝑆 = (𝜌𝑜 − 𝜌𝑖) ⋅ 𝑔 ⋅ ℎ (2) 
   

which as a function of temperatures becomes 

 
 

𝑆 = (
1

𝑇𝑜𝑢𝑡
−

1

𝑇𝑖𝑛
) ⋅

𝑝𝑎𝑡𝑚

𝑅𝑠𝑝,𝑑𝑎
⋅ 𝑔 ⋅ ℎ (3) 

where 

 

S  pressure difference caused by stack effect [Pa] 

ρout  outdoor air density [kg/m3] 

ρin  indoor air density [kg/m3] 

Tout outdoor air temperature [K] 

Tin indoor air temperature [K] 

patm atmospheric pressure [Pa] 

Rsp,da specific gas constant for dry air [J/(kgK)] 

g  gravitational acceleration [m/s2] 

h  height of space [m]. 

 

If the envelope were assumed to leak evenly, the pressure difference in top of pool space for 

the ventilation to compensate would be half of the given equation, and for the worst case, it 
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would be equal to given Equations 2 and 3. The worst case would happen when the bottom 

part of building envelope leaks. Figure 7 visualizes the effect of ventilation on stack effect 

in swimming halls. 

 

 

Figure 7. Stack effect on inside space with different envelope leak heights (EPD, 2009:9, 

edited). 

 

Relative humidity of a swimming hall air has to be controlled. Air temperature of a 

swimming hall decreases when evaporation from pool happens, since the evaporating water 

absorbs heat from air. Higher relative humidity of indoor air reduces water evaporated from 

pool. Yli-Rosti (2012) found out that by raising relative humidity of the indoor air from 40% 

to 50% at outdoor temperature of 0 °C, the energy demand of air conditioning is halved. On 

the other hand, raising relative humidity too much may cause condensation and 

microorganism growth on cool surfaces of pool spaces (EPD, 2009:3). Overheated supply 

air can be directed into windows and other cool surfaces to heat them in order to prevent 

condensation by increasing the lowest indoor envelope temperature (EPD, 2009:5). 

Dehumidification is not compulsory in swimming halls (EPD, 2009:31). 

 

For swimming halls in Helsinki, the supply air is dimensioned for a moisture content of 9 

gwater/kgair (EPD 2009:5). The dehumidification can be implemented by increasing outdoor 

airflow, as air can be dehumidified with less humid outdoor air (ME, 2007:83). An example 

annual outdoor air moisture content is compared to the dimensioned moisture content value 

in Figure 8. The absolute moisture content of air is calculated from Finnish Metrological 

Institute (FMI, 2012) test year temperature and relative humidity as follows 

 
 𝑥 =

𝑝𝑣

𝑝𝑑𝑎
 (4) 

 
 

𝑝𝑣 = 𝜙 ⋅ 𝑝𝑎𝑡𝑚 ⋅ 𝑒
11.78⋅

𝑇𝑜−372.79

𝑇𝑜−43.15  (5) 

 
 𝑝𝑑𝑎 = 𝑅𝑠𝑝 ⋅ 𝜌𝑑𝑎 ⋅ 𝑇𝑜 (6) 

where 

 

x absolute moisture content of air [gwater/kgair] 

pv  vapor pressure [Pa] 

pda  dry air pressure [Pa] 

ϕ relative humidity [%] 
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patm atmospheric pressure [Pa] 

Rsp specific gas constant for dry air [J/(kg·K)] 

ρda  dry air density [kg/m3] 

Tout outdoor air temperature [K]. 

 

 

Figure 8. Dimensioned indoor air moisture content of a swimming hall (dashed line) and 

outdoor air moisture content (blue) calculated from test year data (FMI, 2012).  

 

Figure 8 shows that dehumidification by increasing outdoor airflow rate works for most of 

the time, when outdoor air is dryer than the dimensioning value. However, during the 

summer the indoor air humidity will increase if dehumidification by cooling is not used. 

2.2.2 Ice halls 

FINVAC states (2017:15) that ventilation of exercise halls, such as ice rink space and 

spectator stand are dimensioned based on occupancy and metabolic rate. According to 

FINVAC (2017:16), the metabolic rate of a hockey player is 6 met requiring 30 dm3/s per 

person and of a spectator is 1.2 met requiring 6 dm3/s per person. This can be fulfilled with 

a variable air volume (VAV) system, which modulates airflow rate based on carbon dioxide 

(CO2) concentration of indoor air. 

 

An energy efficient ventilation requires heat recovery, air re-circulation and variable air 

volume control based on indoor carbon dioxide concentration (Toomla et al. 2018:3). 

Toomla et al. (2018) found out that during the normal ice hall use, carbon dioxide based set 

point was fulfilled with outdoor air entering the hall only from leakages and by infiltration 

air. Thus, during the normal ice hall use, there was no need to supply outdoor air inside, 

expect for dehumidification purposes. 

 

Ice halls are challenging for ventilation, because the temperature of ice surface is much lower 

than temperature of indoor air. This temperature difference causes a stratification of air on 

top of the ice. This phenomenon was studied by Toomla et al. (2018) and they found that 

indoor air created a stagnant zone 3 meters on top of the ice. Toomla et al. (2018:15) 

concluded that indoor air in the case of studied ice hall was replaced inefficiently because of 

ceiling distribution, which was not able to blow supply air to the stagnant zone (Figure 9). 

The study did not consider ice-skaters on the mixing of indoor air but noted that movement 
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on ice did not cause significant effect on the stagnant zone (Toomla et al. 2018:7). Thus, the 

air should be supplied at lower heights. 

 

 

Figure 9. Stratification of an ice hall indoor air temperature with measured values (Toomla 

et al., 2018:14). 

 

The biggest energy consumer in ice halls is space heating which is implemented by supply 

air heating. The heat losses of space heating are caused by the ice rink. The spectator stand 

is located in the same space as the ice rink and it can have an additional supply air heating 

to maintain spectator thermal comfort. The supply air heating causes the air rise towards 

ceiling increasing the ceiling temperature and thus increasing thermal radiation towards the 

ice (Figure 10). This results in a heat flux from spectator stand to the ice rink. Heat load from 

spectators also raises the temperature of spectator stand. 

 

 

Figure 10. Heated supply air rises and increases heat loads to ice (Retscreen, 2005, edited). 

 

Moisture control 
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The specific airflow rate per gross floor area (dm3/s/m2) of an ice hall is not as high as in 

swimming halls due to smaller moisture loads. Moisture loads of an ice hall consist of 

evaporation from occupants and moisture from outdoor air. Evaporation moisture load from 

occupants is especially high when spectator stand is fully occupied. Outdoor air causes a 

high moisture load during warm season when absolute moisture content of outdoor air is 

high. Thus, ice halls need a dehumidification of air to prevent condensation on indoor 

surfaces (IIHF, 2016:28). Ice temperature is below indoor air dew point and thus 

condensation happens on ice surface. IIHF suggests using 70 % as a design value for relative 

humidity (2016:38). However, the maximum relative humidity to avoid fog can be briefly 

80% or 90% for indoor temperatures of +10 and +5 °C respectively (IIHF, 2016:44).  

 

Outdoor infiltration air causes a moisture load. The infiltration air cannot be dehumidified, 

but it can be limited. Indoor air in an ice hall has low absolute moisture content of air due to 

low temperature. During times when outdoor air is warmer than indoor air, the stack effect 

causes an underpressure inside an ice hall. The air should be overpressured with ventilation 

to limit humid infiltration air. Overpressure is implemented by dimensioning the ventilation 

to supply more air than extract air.  

 

In ice halls, dehumidification is implemented for most cases (Zhen et al. 2010) with 

condensing dehumidification method. In the method, supply air is cooled below its dew point 

causing the vapor to condense out of the air into cooling coil surface, from where the water 

is directed away. Other less commonly used dehumidification methods are using liquid 

desiccant or spray dehumidifiers. Liquid desiccant is used mainly in applications needing 

very dry air, such as in hot climates and in industries, such as pharmaceutical, food and 

chemical (Mujahid et al., 2015:182). Spray dehumidifiers cool the air down to dew point by 

spraying water with a temperature below dew point. Spray dehumidifiers remove pollutants 

from outdoor air due to water droplets binding small particles from air. However, the 

downside is the management of more generated water to direct away from air handling unit 

(AHU) than in electric cooling coils. 

 

After dehumidification, outdoor air is heated with a heating coil to set point temperature of 

supply air. Dehumidification causes electricity demand for AHU cooling and the heating 

process causes heat demand for AHU heating.  

 

For indoor air state of +6 ºC temperature and 70 % of relative humidity (RH), the 

corresponding absolute moisture content of indoor air is 4 gwater/kgair and corresponding dew 

point is +2 ºC (IIHF, 2016:38). The cooling set point for supply air dehumidification has to 

be even lower, for example -3 ºC, to ensure the required relative humidity of indoor air 

(Kianta, 2018). An example of annual outdoor air moisture content is calculated according 

to Equations 4, 5 and 6 and is compared to the dimensioned value in Figure 11. Figure 11 

shows why dehumidification is necessary in ice halls. The moisture content of outdoor air is 

almost always higher than the dimensioned indoor air.  
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Figure 11. Dimensioned indoor air moisture content of an ice hall (dashed line) and outdoor 

air moisture content (blue) from Finnish Metrological Institute test year data (FMI, 2012).  

2.3 Waste heat recovery 

Waste heat recovery means utilizing excess heat, which would otherwise be wasted. It is 

implemented by transferring waste heat into a medium, which is usually water. The sources 

for waste heat in ice and swimming halls include ice, sewage water and air. According to 

Environmental Product Declaration (EPD) (2009:12), the waste heat fluxes are low 

temperature heat sources. Waste heat can be utilized straight only into low temperature heat 

demands, such as heating of underfloor heating and pool water heating (EPD, 2009:23). 

Possible space heating systems used in ice halls are supply air heating and convectors, and 

in swimming halls underfloor heating and supply air heating (EPD, 2009:12). Waste heat 

can be also used for pre-heating of higher temperature heat demands, such as DHW. 

Alternatively, a heat pump is required to raise the temperature of waste heat to be utilized 

for higher temperature applications. Heat pumps consume electricity, which consumption 

should be minimized. 

2.3.1 Waste heat sources 

Possible measures of waste heat recovery for ice and swimming halls are: 

- Refrigeration heat recovery 

- Condensing heat recovery 

- Exhaust air heat recovery 

- Gray water heat recovery  

Waste heat recovery in this thesis is defined as the combination of refrigeration -, condensing 

-, exhaust air- and grey water heat recovery.  

 

Refrigeration heat recovery 

 

Refrigeration heat recovery utilizes heat received from ice rink cooling. The heat loads of 

ice and compressor electricity turned into heat are transferred from coolant into water in a 

condenser. Refrigeration heat recovery is recommended system in new ice halls according 

to international ice hockey federation (IIHF, 2016:29).  
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The ice refrigeration can be implemented with either an indirect or a direct refrigeration plant 

(IIHF, 2016:39). Indirect refrigeration works by pumping coolant from ice cooling piping to 

an evaporator. The energy efficiency would be better in a direct refrigeration but it is more 

expensive and thus indirect refrigeration is mainly used in ice rinks (IIHF, 2016:39). In an 

indirect cooling, the refrigeration heat pump has a separate cycling coolant inside. Figure 12 

presents a schematic of a refrigeration heat pump. The coolant states are numbered in Figure 

12, starting before compressor (1), before a condenser (2), before an expansion valve (3) and 

before an evaporator (4). In a direct refrigeration, the rink piping replaces the heat pump 

evaporator and thus only one cycle of coolant is needed.  

 

 

Figure 12. Schematic of refrigeration heat pump processes. 

 

Figure 13 shows an example change of state of coolant for refrigerator during the cooling 

cycle. The pressure-enthalpy diagram can be used to analyze the four processes. Different 

quantities to analyze are enthalpy (heat per mass), condensing heat of coolant including 

superheat portion, temperatures and pressures of the processes. Coefficient of performance 

(COP) of the compressor defines the amount of heat transferred per electricity consumption. 

Electricity consumption of compressor is equal to the enthalpy change between coolant 

states 1 and 2. The amount of heat transferred from ice is equal to the enthalpy change 

between coolant states 4 and 1 (Figure 13). 
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Figure 13. Pressure-enthalpy diagram of an example refrigerator coolant cycle (Ohio 

University, 2018). 

 

Figure 14 illustrates an example how refrigeration heat recovery could be connected to a 

heating system of the building. Heating systems included are supply air-, floor-, DHW- and 

ground frost protection. Figure 14 shows also that DHW requires a hot water storage. 

 

 

Figure 14. An example schematic for connecting refrigeration heat recovery to heating 

systems of an ice hall (IIHF, 2016:41). 

 

Condensing heat recovery 

 

Specific enthalpy, kJ/kg 
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Condensing heat can be recovered during condensing dehumidification. Dehumidification is 

compulsory in ice halls, but not in swimming halls (EPD, 2009:31; ME, 2007:83). This is 

because the dimensioning moisture content for supply air is lower in ice halls than it is in 

swimming halls.  

 

The condensation happens, when the air is cooled below its dew point. The dehumidification 

process inside an air handling unit (AHU) can be used for outdoor and recirculation air. Heat 

is recovered mainly as condensing heat from condensing water, but heat is also received 

from dry air portion of the moist air. The condensing heat stands for heat released, when air 

moisture condensates from gas to liquid.  

 

Exhaust air heat recovery 

 

Recovering heat from exhaust air by cooling is called exhaust air heat recovery.. Exhaust air 

heat recovery requires its own heat pump, which increases the electricity consumption of the 

system. Exhaust air of a swimming hall has a bigger heat potential than an ice hall since it is 

warmer and contains more moisture.  

 

Hemmilä and Laitinen (2018:76) stated that 80 to 90 % of heat demand of a swimming hall 

could be covered by heat recovery of exhaust air with a cooling temperature between 0 ºC 

and +5 ºC. They also state that even after an energy efficient heat recovery in AHU, the 

heating potential of exhaust air is still significant (Hemmilä & Laitinen, 2018:31). Lowering 

the temperature for exhaust air cooling increases the heat received but also increases 

electricity consumption. Thus, exhaust air heat recovery of swimming halls should be 

carefully analyzed to prevent increasing overall energy costs by increasing electricity 

consumption for unutilized waste heat. 

 

Gray water heat recovery 

 

In grey water heat recovery, heat is received from sewage water with a heat exchanger. 

Sewage water is produced in significant amounts in both ice and swimming halls, since 

almost all of the occupants of these building types take a shower after a visit. Shower water 

and washing water are drained into sewers and are sources of grey water heat recovery. Other 

DHW usage consists of ice resurfacing water, pool water changing, pool filter flushing and 

pool resupply water (Hemmilä & Laitinen, 2018:13). However, these other DHW usages are 

not drained into sewers and are thus not sources of grey water heat recovery. 

 

The efficiency of heat exchangers for grey water heat recovery is about 30 % (Hemmilä & 

Laitinen, 2018:49). The total efficiency can be increased by combining multiple heat 

exchangers. The efficiency is defined as ratio of waste heat received from heat exchangers 

to heat used for DHW heating entering the sewers. The temperature level of heat from grey 

water heat recovery is too low to be utilized straight into high temperature heat demands. 

The temperature is still higher than in refrigeration- or condensing heat recovery and thus 

requires less electricity to be raised with a heat pump to a required temperature level. The 

temperature level can also be increased by, for example, constructing a separate sewage for 

hot shower waters and cold waters or by insulating the sewers. 
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2.3.2 Combined energy system 

Swimming halls have a high specific heat demand and they could utilize significant amount 

of waste heat. Training ice halls have excess waste heat from refrigeration alone (Laitinen 

& Kosonen, 1994:13). The excess waste heat can be transferred to other buildings, such as 

swimming halls. Refrigeration heat recovery is correlated to the amount of ice rinks in the 

building. According to Ministry of Education (2007:47) in ice halls bigger than 4000 m2 

(gross floor area) per one ice rink, the total heat demand of an ice hall becomes bigger than 

the amount of refrigeration waste heat and thus no excess waste heat would be available. 

Small ice halls and especially halls with multiple ice rinks should have excess waste heat. 

Thus, there is no need for excess heat to be transferred from a swimming hall to a small ice 

hall. 

 

According to Environmental Product Declaration (EPD) (2009:23), ice halls can utilize most 

of the waste heat that an ice hall produces and during the ice hall closing hours, refrigeration 

heat recovery drops to about half. Case parameters have a significant effect on the amount 

of excess heat from an ice hall. For example, the ice hall in Mänttä consumes 1009 MWh of 

district heat and produces 1210 MWh of waste heat, of which 254 MWh is sold to a nearby 

swimming hall (Lautiainen, 2018:53, 58). 

 

Only the following two studies were found on utilizing waste heat from an ice hall to a 

swimming hall. Linhartová and Jelínek (2017) performed a study, where they analyzed how 

waste heat recovery and demand of different applications match each other in the combined 

energy system of ice and swimming halls. The study states that waste heat recovery needs 

to be evaluated on a case-by-case basis due to the differences in energy systems. The study 

was performed on an ice hall located in Czech and thus the energy amounts differ from 

corresponding values in ice halls in Finland.  

 

Linhartová and Jelínek (2017:7) state that “only 19 % of the total amount of condensing heat 

(from ice rink) can be used in the ice arena” and that “the low percentage is caused by a time 

mismatch between the delivery and consumption”. Which indicates that the full utilization 

in an ice hall needs thermal energy storages. For the heat utilization in swimming halls, 

Linhartová and Jelínek (2017:7) state, “In the swimming hall, the refrigeration heat may be 

used for space heating of cloakrooms, for domestic hot water heating and for pool-water 

heating”. Linhartová and Jelínek also conclude (2017:8) that the system is profitable when 

the refrigeration waste heat from an ice hall is utilized in a nearby swimming hall. Having a 

thermal energy storage (TES) tank to even out the mismatch should also increase the 

profitability of the system.  

 

Superheat is a high temperature heat available from heat pumps in amounts ranging from 10 

% to 20 % of the total heat pump condenser heat depending on coolant and temperatures 

(Kianta, 2018; Keinänen 2018; Laitinen & Kosonen, 1994:12). For superheat, Linhartová 

and Jelínek (2017:5) decided on a design, where water is heated up by superheat and 

accumulated in a 4 m3 tank, which sets to a temperature of +40 °C. Figure 15 shows their 

design as a scheme. Linhartová and Jelínek (2017:4) also found out, that the ammonia 

refrigerator condensing heat temperature level (from +25 to +33 °C) was too low to be used 

directly without heating up. Thus, an ammonia heat pump was added into the cycle to raise 

the temperature to +60 °C. 
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Figure 15. Condensing heat and superheat utilization from ice refrigeration to combined 

energy system of ice and swimming halls (Linhartová & Jelínek, 2017:5). 

 

Kuyumcu (2016) optimized the performance of a swimming hall heating system in Turkey 

by utilizing refrigeration waste heat from an ice hall with an underground thermal energy 

storage (TES) tank (Figure 16). The TES tank was big enough (100…300 m3) that no hourly 

mismatch was need to be taken into account between waste excess heat and heat demands. 

A TES tank of this size is enough to work as a season storage, thus the starting point of the 

study is different from this thesis. In addition, the ice hall of the study is located in Turkey 

and it is built in much warmer climate than in Finland.   

 

 

Figure 16. Ice rink heat utilization to a swimming hall energy system with a TES tank 

(Kuyumcu, 2016). 

 

Kuyumcu (2016:357) concluded, “An ice rink with a size of 475 m2 gives the optimum 

performance for a system with a semi-Olympic size swimming pool (625 m2)”. This 

indicates that Kuyumcu assumed all the heat from refrigeration heat recovery to be 

transferred to the TES tank and further into the swimming hall, which makes it an 
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optimization problem for relation of ice rink and swimming pool sizes. Kuyumcu (2016:357) 

also concluded, “The temperature of the water in the TES tank has a great effect on the 

cooling performance of the chiller and the heating performance of the heat pump”. Meaning 

the temperature of a TES has a notable effect on the electricity consumption of the system.  

 

To conclude the findings from the studies. Refrigeration heat recovery of an ice hall is 

beneficial to be used with a swimming hall. Temperature of the condensing heat has to be 

high enough to be utilized without heat pumps. In addition, at least TES with discharge time 

of 30 minutes are needed in the system. None of the studies found in the literature took 

simultaneously into account grey water heat recovery, condensing heat recovery or exhaust 

air heat recovery. 

2.4 Smart control of energy system 

Smart control of energy system in this thesis is limited to demand side management. Energy 

production is not included in this thesis. Different smart controls of energy system discussed 

in this thesis are demand response of district heat, demand response of electricity, utilizing 

short-term thermal energy storages and demand controlled energy systems. These strategies 

for smart control of energy system aim on reducing energy consumption or energy costs. 

Reducing energy consumption or costs reduces emissions created during energy production.  

2.4.1 Demand response 

Demand side management adjusts the energy demand of the system based on the strategy 

used (Figure 17). Demand side management can be divided to long-term and short-term 

strategies. The short-term strategies are also called demand response and shown in Figure 

17. Demand response is widely studied and adopted in modern smart energy grids (Cappers 

et al., 2010). The two demand response concepts used in this thesis are peak clipping and 

load-shifting. The peak clipping can limit the load for example based on building load 

capacity or energy price.  

 

Load-shifting specifically optimizes energy costs by shifting the load from times of high 

demand to times of lower demand, since demand and energy price correlate. The load-

shifting needs a thermal energy storage (TES) to work. Swimming halls including pools and 

ice halls including layer of ice can act as a natural thermal energy storage (passive), 

alternatively load-shifting is combined with a TES (active). The sheer volume of the pool is 

a great asset for load-shifting implementation, even though the pool water temperature can 

be adjusted only by a few degrees. TES are an expensive option for storing a large amount 

of heat and thus passive TES should be utilized first.  
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Figure 17. Effect of different strategies for demand side management on energy demand 

(Shan et al., 2014, edited by Martin, 2017:17). 

 

Figure 18 shows the possible methods on implementing strategies for demand side 

management. Global temperature adjustment method is a control strategy, which adjusts 

temperature set points instead of loads. By adjusting temperature set point, the heat load of 

the heating system changes depending on design power and a control used. Schedule of 

equipment –method can be used for charging structures extending the time the structure can 

hold heat with lower heat load. Other methods include straight system adjustment and active 

thermal energy storages. Onsite renewable generation can also be integrated with a demand 

response system. 

 

 

Figure 18. Methods on implementing strategies for demand side management (shan et al., 

2016:696). 

 

The possible energy cost savings achieved with demand response are significant. Le Dreau 

and Heiselberg (2016) decreased heating set point during periods of expensive electricity 

spot prices and increased heating set point during periods of cheap electricity spot prices. Le 

Dreau and Heiselberg (2016:1000) achieved energy cost savings between 3 to 10 % for both 

poorly and well-insulated residential buildings.  

 



 

 
25 

 

Alimohammadisagvand (2018) studied electric demand response in Finnish residential 

houses with geothermal heat pump and houses with direct electric heating system. 

Temperature set points controlled in the study were thermal energy storage water and space 

heating. Alimohammadisagvand (2018:71, 72) concluded that the heating electricity cost 

was reduced up to 15 %, while thermal comfort was maintained according to standard EN 

15251. 

 

District heating use can also be adjusted with demand response. Martin (2017) used dynamic 

district heat price based control algorithm in an energy simulation software to adjust 

temperature set points of ventilation supply air and space heating. Martin concluded 

(2017:116) that by using decentralized heating control, which allows for higher flexibility 

than centralized heating control, demand response could reduce annual heating costs by 6 

%. With peak limiting, Martin (2017:116) was able to achieve even more significant energy 

cost savings due to reduced energy consumption and power charge. Although the power 

charge is highly dependent of the energy provider (Martin, 2017:112). 

2.4.2 Other strategies for smart control of energy system   

Thermal energy storages (TES) can be divided to short-term and long-term TES. TES are 

usually implemented as water tanks. A long-term TES can act as a seasonal TES, which 

stores heat during summer and releases it in winter. A short-term TES changes heat load 

only temporarily and does not require nearly as big TES as in long-term. A short-term TES 

is needed to avoid time mismatch between waste heat recovery and heat demands. Changes 

in available waste heat and heat demands happen based on opening hours, summer breaks, 

outdoor temperature and occupation.  

 

Hemmilä and Laitinen (2018) presented multiple energy saving measures for building 

services in ice and swimming halls. These methods included energy efficient lighting, 

demand controlled ventilation and using inverter control for adjusting pump and fan speeds. 

Specifically for improving energy efficiency of swimming halls, they suggested keeping 

relative humidity under control with humidification and dehumidification, demand 

controlled saunas and increasing relative humidity in pool space during nights to reduce 

evaporation heat loss from pool. Specifically for improving energy efficiency of ice halls, 

Hemmilä and Laitinen suggested low emissivity coating for inner surface of ceiling to reduce 

radiation heat exchange between ceiling and ice, reflecting outer surface of ceiling to prevent 

overheating from sun radiation. In addition for ice halls, they suggested dehumidification of 

supply air to reduce condensation on ice and better thermal insulation between ice cooling 

and ground frost protection pipes. (Hemmilä & Laitinen, 2018:21-25) 
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3 Methodology 

Methodology used in this thesis consisted of dynamic building energy simulations and post-

processing in a spreadsheet. The simulation program used was IDA Indoor Climate and 

Energy (ICE) version 4.8. The input data for the simulation were data from Pirkkola, 

assumed parameters for the models, hourly weather data and hourly energy prices for district 

heat and electricity. Algorithms for smart control of energy system were implemented in the 

simulations. The spreadsheet computation program for post-processing was Microsoft Excel 

2016. Utilization of waste heat was analyzed as a post-processing in Excel from hourly 

energy fluxes received from simulations. The resulted total energy needed to purchase was 

used to calculate the total savings from the investment. Figure 19 illustrates the methodology 

of this study. 

 

 

Figure 19. Methodology of the study as a logical diagram. 

3.1 IDA ICE building energy simulation tool 

IDA Indoor Climate and Energy (ICE) version 4.8 was used as the simulation program. IDA 

ICE is a dynamic multi-zone simulation program, which can be used to calculate the energy 

consumption of a building in depth. IDA ICE is a general-purpose simulation tool, which 

allows the user to simulate a wide range of system designs and configurations (IEA, 1999:3). 

The validation of IDA ICE simulation tool is performed in multiple studies successfully 

(EQUA Simulation AB, 2010; Achermann & Zweifel, 2003) and thus the validation of the 

tool is not needed in this thesis.  

 

IDA ICE takes into account for example solar radiation, shading from other buildings and 

condensation in zones and inside cooling coils. Zone model fidelity in the simulation 

program is set on climate. The climate fidelity provides more detailed physical model of the 

building and its components (EQUA Simulation AB, 2013:54).  

 

In this thesis, the advanced level of IDA ICE was used. In advanced level of IDA ICE, the 

building energy system components are interconnected by equalities between variables 

described in a mathematical sense with equations and parameters (EQUA Simulation AB, 

2013:32). Appendix B shows two example views of IDA ICE advanced level interface. 
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Test reference year 

 

A test reference year (TRY) is imported into IDA ICE and used in the simulations. The TRY 

is introduced by Finnish Meteorological institute (FMI), Aalto University and Tallinn 

University of Technology from a combination of earlier years to recreate a typical year in 

Helsinki (Kalamees et al., 2012). The used TRY describes the current climatic conditions of 

Southern Finland. The TRY defines temperature, relative humidity, wind direction, wind 

speed and solar radiation on direct normal surface and diffuse horizontal surface. Figure 20 

shows temperature and relative humidity of the TRY. Temperature of the TRY ranges 

between -20 and +30 °C and relative humidity ranges mainly between 30 and 100 %. 

 

 

Figure 20. Temperature and relative humidity of the TRY (FMI, 2012). 

3.2 The Pirkkola ice hall model 

The parameters and assumptions for the Pirkkola ice hall model are presented in this Chapter. 

The old Pirkkola ice hall has been closed since spring 2018 due to moisture damages in the 

structures. The ice hall has been decided to demolish and rebuild tentatively during year 

2020 with energy efficiency as one of the key priorities. The new ice hall is at the preliminary 

design phase and thus there are no design parameters available. In addition, energy 

consumption of the new ice hall has to be evaluated with simulations and references. (Priha, 

2018) 

 

The Pirkkola ice hall has two ice rinks and works mainly as an exercise hall and the heating 

set point is assumed to be at a relatively low temperature of +6 °C. The ice hall is operating 

from 13.8 to 31.4 (Korva, 2018). In this study, the ice hall is assumed to have the same 

amount of occupants as before the closing of the hall. 

 

Energy consumption 

 

The Pirkkola ice hall has a closely located swimming hall. The Pirkkola ice hall with a size 

of 6700 m2 (gross floor area) and two ice rinks can be called either a training hall or a small 

ice hall (Hemmilä & Laitinen, 2018:8). The Pirkkola ice hall has about 1000 seats for 

spectators (Korva, 2018). For a corresponding size of ice halls compared to spectator stand 

seats in Pirkkola (300 – 1500), the average heat consumption per gross floor area is 142 
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kWh/m2 (sample size of 28) and electricity consumption is 197 kWh/m2 (sample size of 51) 

(Hemmilä & Laitinen, 2018:16). By multiplying these values by the Pirkkola ice hall gross 

floor area of 6741 m2, the first approximation (1) for the total energy consumptions are 1000 

MWh of district heat and 1300 MWh of electricity (Table 3).  

 

Another approximation (2) is shown in Table 3 by comparing the Pirkkola ice hall to a 

similar the ice hall in Myllypuro (Helsinki). The ice hall of Myllypuro consumed between 

years 2013 to 2015 average of 500 MWh of district heat and 1500 MWh of electricity 

according to Jyväskylä University database (2018a). The small amount of district heat in the 

ice hall of Myllypuro indicates utilization of waste heat.  

 

During year 2017, Pirkkola ice and swimming halls had a combined district heat 

consumption of 4850 MWh and electricity consumption of 3200 MWh, but the 

consumptions are not specified by buildings and only the total monthly heat and electricity 

consumption are known for Pirkkola (Appendix C). This allows for an another 

approximation on the ice hall energy consumption, since the latest months (September and 

October of 2018) do not include the ice hall consumption as it is closed. This approximation 

(3) for total annual average consumptions for the Pirkkola ice hall are for heating 2100 MWh 

and for electricity 1600 MWh (Appendix C) (Table 3). 

 

The main design target of the Pirkkola ice hall is energy efficiency. The Pirkkola ice hall 

will thus assumable consume especially less electricity than these approximations, due to 

state-of-the art technologies of the building systems. These values are rough approximates. 

The energy consumptions of IDA ICE simulation were compared with the approximated 

energy consumptions (Table 3). 

 

Table 3. Annual energy consumptions of three different approximations for the Pirkkola ice 

hall.  

  District heat [MWh] Electricity [MWh] 

Approximation 1  957 1328 

Approximation 2 481 1474 

Approximation 3 2107 1568 

Average 1182 1457 

 

Envelope 

 

The new ice hall will be the same size as the old one, with small changes in layout (Priha, 

2018). The old the Pirkkola ice hall is shown in Figure 21. The geometry of the simulation 

model is built according to facade and floor plans of the old  Pirkkola ice hall, which are 

received from online database held by City of Helsinki (2018) and from team manager of 

Pirkkola (Korva, 2018). The geometry of the model is built with AutoCAD MagiROOM 

extension made by AutoDesc. The rink spaces of the ice hall are simulated with flat ceilings 

instead of actual arched ceilings. The heights of the halls (6 and 10 meters) are chosen to 

have the same volume of the hall than before. Figure 22 visualizes the model used and Table 

4 lists main values of the geometry. 
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Figure 21. Pirkkola ice hall before renovation (Google, 2019). 

 

 

Figure 22. Model geometry of the simulated Pirkkola ice hall. 

 

Table 4. Model geometry of the Pirkkola ice hall. 

Model  
floor 
area 

Model  
volume 

Model 
ground 

area 

Model 
 envelope 

area 

Window / 
Envelope 

area 

Average  
U-value 

Envelope 
area per 
Volume 

[m2] [m3] [m2] [m2] [%] [W/(m2K)] [m2/m3] 

6 674 48 780 6 741 16 671 0.10 0.1891 0.3417 

 

Table 5 presents parameters for the envelope of the ice hall model. U-values for ceiling and 

walls of the ice hall model are chosen to be 0.28 W/(m2K). According to study by Partanen 

(2014:92), these U-values do not have a significant effect on energy consumption of the ice 

hall. U-values for warm spaces are chosen according to Finnish code of building regulation 

(FCBR Part D3, 2012:13). Low-emissive coating with emissivity factor of 0.1 is used inside 

of the ice hall ceilings. The coating decreases electricity consumption by 15 to 20 % and 

heat consumption by 17 to 20 % (Hemmilä and Laitinen, 2018:68). Thermal bridge extra 

conductances are chosen according to the design values of Ministry of Environment 

(2017c:19). New ice halls have usually a tight envelope. Average annual infiltration rate of 

0.03 1/h was used in the simulations based on the measurements by Toomla et al (2018). 

The used infiltration rate corresponds to air leakage rate of q50 = 2.1 m3/h/m2 based on the 

approximation defined by Ministry of Environment (2017a), when assuming a height factor 

of 20. 
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Table 5. Envelope parameters for the ice hall model. 

Structure location 
U-value 

[W/(m2K)] 
 Layers from outside to inside: 

material, thickness [mm] 

Base slab Ice rink hall 

0.16 

 Polystyrene, 230 
Concrete, 40 

Vinyl flooring, 5 

Warm space  

Ceiling Ice rink hall 

0.28 

 Gypsum, 6 
Steel, 6 

Light insulation, 122 
Steel, 6 

Low-emissive coating (ɛ=0,1) 

Warm space 

0.09 

 Bitumen felt, 10 
Mineral wool, 49 

Concrete, 15 
Render, 10 

External wall Ice rink hall 

0.28 

 Steel, 6 
Light insulation, 122 

Steel, 6 
Gypsum, 6 

Warm space 

0.17 

 Render, 10 
Concrete, 10 

Mineral wool 250 
Concrete, 10 
Render, 10 

Internal wall Ice rink / Warm space 

0.4 

 Concrete, 10 
Light insulation, 80 

Concrete, 10 

Warm space / Warm space 

0.62 

 Gypsum, 26 
Air gap, 30 

Light insulation, 30 
Air gap, 30 

Gypsum, 26 

        
Air leakage rate q50 [m3/h/m2] 2.1   

        
Additional thermal bridge conductance [W/(mK)]   

Thermal 
bridges 

Ceiling / External wall 0.08   
Base slab / External wall 0.24   
External wall / External wall 0.06   
External window and door 0.03   

 

Ice rinks 

 

The Pirkkola ice hall has two ice rinks. The ice rinks are identical in the model. The 

parameters of the rinks are presented in Table 6. According to International Ice Hockey 
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Federation (IIHF), the recommended ice thickness is 3.0 cm and ice temperature for a 

training hockey game is -3 °C (IIHF, 2016:38, 50). The coolant used in the model is 

Freezium, which is developed by Eastman and is used in indirect cooling systems and heat 

pumps (Arteco, 2019). The chiller cooling capacity is 400 kW to supply two ice rinks even 

during big heat load from spectator stand full of spectators. The schematic of the cooling 

system of ice rinks are shown in Figure 23. The cooling system of ice rinks includes PI-

controlled condenser fan, two pumps, two expansion valves, two water tanks and PI-

controlled refrigerator. In the model, the condenser fan (Figure 23) transfers the refrigerator 

waste heat to air. Instead of the condenser fan, the utilization of refrigerator waste heat is 

calculated as a post processing in a spreadsheet.  
 

Table 6. Parameters for ice rinks cooling system. 

Temperature set point for ice 3 [°C]   Ice layer thickness 0.03 [m] 

Chiller total cooling capacity 400 [kW]   Concrete thickness 0.4 [m] 

Coolant  Freezium     Pipe depth in concrete  0.05 [m] 

Coolant freezing point  -35 [°C]   Supply line length 40 [m] 

Cooling power 450 [W/m2]   Supply line diameter 0.3 [m] 

Supply coolant temperature -12 [°C]   Length per coil 120 [m] 

Return coolant temperature -9 [°C]   Coil inner diameter 0.06 [m] 

Pump efficiency 0.8     Number of coils 145 x2   

Pump max pressure head 3000 [Pa]       
 

 

Figure 23. The schematic of ice rinks cooling system. 

 

Heat loads to ice are simulated in IDA ICE with an exception of ice resurfacing heat load. 

Ice rinks in the Pirkkola ice hall are both resurfaced 40 times per week with 450 liters per 

run (Jyväskylä University, 2018a). Assuming a little higher use for the upcoming ice rinks, 

a value of 45 resurface runs per week is used. Ice resurfacing hot water is heated to an energy 

efficient temperature of +32 °C (Korva, 2018). The ice is assumable transferred outside and 

it does not need a separate ice-melting heat. Ice resurfacing heat load is calculated manually 

as a post-processing according to Laitinen et al. (2010:53): 

 
 

𝑞𝐼𝑅 =
𝑉𝐼𝑅𝑛𝐼𝑅𝜌𝑤

3600 ⋅ ∆𝑡 𝐴𝑖𝑐𝑒
[𝑐𝑝,𝑣(𝑇𝐼𝑅 − 0) + 𝑙𝑓 + 𝑐𝑝,𝑗(0 − 𝑇𝑖𝑐𝑒)] (7) 

where 

 

qIR average heat load to ice from ice resurfacing [W/m2] 
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VIR water amount per one ice resurfacing [m3] 

nIR  number of ice resurfacing uses 

ρw  density of water [kg/m3] 

∆t   time period [h] 

Aice  ice surface area [m2] 

cp,v  specific heat capacity of water [4190 Ws/kgK] 

TIR  temperature of used water for ice resurfacing [°C] 

lf  condensing heat of fusion from liquid to solid [334 000 Ws/kgK] 

cp,j  specific heat of ice [1800 Ws/kgK] 

Tice  average ice temperature [°C]. 

 

Schedules 

 

The ice hall weekly opening times are as follows: from 7:00 to 22:30 except for Saturday 

from 13:00 to 22:30. DHW use is scheduled once every 1.5 hour for half an hour, which 

simulates the training session cycles in ice rinks. The locker room occupancy (24 people per 

locker room) also follows the same 1.5 hour cycle. Ice resurfacing machine is assumable 

filled at even rate during training sessions. Lighting is kept on during opening times. 

 

Occupancy of the two ice rink spaces including spectators and players are shown in Table 7 

(Korva, 2018The length of the spectator occupancy time per game is 2 hours. Three hockey 

games with different spectator amounts are held once a week. A game with full spectator 

stand is held once in every two months. The two ice rinks are occupied fully (48 people per 

ice rink) during opening times.  
 

Table 7. Occupancy of the two ice rink spaces in the ice hall model. 

Space Occupants Frequency Time 

Ice rink space with  
big spectator stand 

48 players Day Opening times 

250 spectators Week Sunday 17-19 

750 spectators 2 months Sunday 17-19 

        

Ice rink space with 
small spectator stand 

48 players Day Opening times 

62 spectators Week Saturday 13-15 

125 spectators Week Sunday 13-15 

 

Air handling units (AHU) 

 

The AHU:s are built specifically for this thesis. Ice rink spaces with spectator stands are 

supplied with a variable air volume (VAV) system based on CO2 concentration. A minimum 

outdoor airflow per net floor area is chosen to be 0.5 m3/h/m2 according to Laitinen and 

Kosonen (1995:12), which corresponds in the ice hall model to a total airflow of 0.8 m3/s. 

During  maximum occupancy 875 spectators each need 6 dm3/s of outdoor air, 12 players on 

both ice rinks each need 30 dm3/s of outdoor air and 36 players resting on benches each need 

12 dm3/s outdoor air (FINVAC, 2017:16). This maximum occupancy requires 6.1 m3/s of 

outdoor air, which is set to the maximum outdoor air of the AHU.  

 

The Ice rink space AHU (Figure 24) is equipped with condensing dehumidification by 

cooling the supply air to a temperature of 0 °C. In addition, the AHU uses recycling air when 
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needed to dehumidify and heat the space. During games with a full spectator stand, the VAV 

recycles up to 14 m3/s to keep the relative humidity below 70 %. The heating set point of 

indoor air is +6 °C, which is achieved by heating the supply air with a PI-controller to a 

temperature between +6 and +25 °C. The heat exchanger efficiency is 0.75 (Nichols, 2009). 

 

 

Figure 24. Schematic of AHU serving ice rinks and spectator stands in IDA ICE 4.8. 

 

Warm spaces have a separate AHU, which has a constant supply air heating to a temperature 

of +17 °C. The airflow rate is controlled according to occupancy schedule. Maximum airflow 

is 3 dm3/s/m2 related to net floor area (FINVAC, 2018:16). The minimum airflow of 0.3 

dm3/s/m2 is kept during times of no occupancy including closing times. The warm space 

AHU has a heat exchanger with an efficiency of 0.6. 

 

In Table 8, different space groups of the ice hall model are listed with main average 

parameters, heat loads and set points. Ice rinks include spectator stands. Warm spaces 

include hallways and social spaces. The value of 1 Metabolic Equivalent of Task (MET) is 

equal to 104 W for an average human. 

 

Table 8. Parameters of the ice hall model for different space groups. 

Space group Surface 
area 

Heating 
set point 

Minimum 
outdoor 
airflow 

Maximum 
outdoor 
airflow 

Lighting 
when 
used 

Occupancy 
average 

Average 
MET of 
occupant 

  [m2] [°C] [dm3/s/m2] [dm3/s/m3] [W/m2] [1/m2]   

Ice rinks 5624 6 0.8 6.1 5 0.012 3.0 

Locker rooms 426 21 0.3 3.0 12 0.047 2.0 

Warm spaces 625 21 0.3 3.0 12 0.012 1.8 

 

DHW usage 

 

DHW heating set point in Pirkkola is +55 °C (Appendix D), which is also the minimum 

allowed temperature for DHW, according to Finnish Energy (FE, 2013:12). Incoming cold-

water temperature is according to Finnish building code +5 °C when calculating energy 

consumption (FCBR part D5, 2017:69). The actual value is in practice higher, since the 
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incoming water is heated up in warm underground tunnels, along which the cold water 

arrives. Finnish Energy defines in an example cold-water temperature to be +10 °C (FE, 

2013:80). The chosen value for incoming cold-water in Pirkkola energy calculation is +8 °C. 

 
Total DHW usage in the ice hall is approximated by calculating the average DHW usage per 

day and scaling it by DHW usage schedule. The average water usage per day is 

 

 𝑉𝑤𝑎𝑡𝑒𝑟,𝑑 = 𝑞𝑠ℎ ⋅ 𝑡𝑠ℎ ⋅ 𝑛𝑔,𝑑 ⋅ 𝑛𝑠ℎ,𝑔  

= 0,15 ⋅ 10−3
𝑚3

𝑠
⋅ 170 𝑠 ⋅ 19 ⋅ 40 = 19

𝑚3

𝑑𝑎𝑦
 

(8) 

where 

 

Vwater,d  average water usage per day [m3/d] 

qsh average shower flow [m3/s] 

tsh  average time of a shower [s] 

ng,d average number of games per day [1/d] 

nsh,g average number of showers per game 

 

and the total DHW usage per day is 

 

 
𝑉𝐷𝐻𝑊 =

𝑇𝑠ℎ − 𝑇𝑐𝑤

𝑇𝐷𝐻𝑊 − 𝑇𝑐𝑤
⋅ 𝑉𝑤𝑎𝑡𝑒𝑟 

=
38 °𝐶 − 8 °𝐶

55 °𝐶 − 8 °𝐶
⋅ 19

𝑚3

𝑑𝑎𝑦
= 12

𝑚3

𝑑𝑎𝑦
  

(9) 

where 

 

VDHW,d average domestic hot water usage per day [m3/d] 

Tsh average shower temperature [°C] 

Tcw cold water temperature [°C] 

TDHW domestic hot water temperature [°C] 

Vwater,d  average water usage per day [m3/d]. 

 

Heating system temperatures 

 

Different heating systems work at specific temperatures. The design values for these 

temperatures for the ice hall model are presented in Table 9. Before heating, supply air is 

cooled to a temperature of 0 °C, recovers heat in heat exchanger and then finally heated in a 

heating coil to a temperature between +14 and 29 °C depending on current heat demand. 

Water radiator heating is used in other warm spaces. Ground frost protection heats the 

ground below ice rinks to a temperature of +4 °C according to Sutherland (2015:79). 
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Table 9. Design temperatures for heating systems in the ice hall model. 

Heating system Working temperatures [+ °C] 

Supply air heating 0…4 / 6…25 

Water radiator heating  40 / 50 

Ground heating 7 / 14 

Domestic hot water heating 8 / 55 

Ice resurfacing hot water heating 8 / 32 
 

3.3 The Pirkkola swimming hall model 

The parameters and assumptions for the Pirkkola swimming hall model are presented in this 

Chapter. The Pirkkola swimming hall is built in 1968 and renovated at 2002. The building 

U-values of structures are relatively poor compared to modern regulations. The windows are 

changed during the renovation (Korva, 2018). The building technical systems are assumed 

to match the modern systems installed in 2002. For this study, Pirkkola swimming hall has 

comprehensive data to build the model on, except energy consumption of the swimming hall 

is unknown and it has to be evaluated with simulations and references. 

 

Energy consumption 

 

Pool surface area in the Pirkkola swimming hall is 575 m2. For a corresponding size of 

swimming halls (500 – 750 m2 of pool surface area), the average heat consumption per gross 

floor area is 492 kWh/m2, and electricity consumption is 267 kWh/m2 (sample sizes 26) 

(Hemmilä & Laitinen, 2018:12,14). By multiplying these values by the Pirkkola swimming 

hall gross floor area of 7982 m2, the first approximation (1) for the total energy consumptions 

are 4000 MWh of district heat and 2100 MWh of electricity (Table 10). 

 

In year 2017, Pirkkola swimming and ice halls had a combined district heat consumption of 

4850 MWh and electricity consumption of 3200 MWh, but the consumptions are not 

specified by building (Appendix C). The total monthly heat and electricity consumption are 

known for combined swimming and ice halls in Pirkkola. This allows for second (2) 

approximation on the swimming hall energy consumption, since the latest months 

(September and October of 2018) do not include the ice hall consumption as it is closed. The 

approximation (2) of total annual average consumption for the Pirkkola swimming hall are 

for heating 2700 MWh and for electricity 1600 MWh (Appendix C) (Table 10). 

 

The approximation 2 in Table X can be held more valid than approximation 1 as Pirkkola 

keeps energy consumption as low as possible with relatively low heating set points 

(Appendices D and E). The approximated consumptions can be further divided to different 

systems according to energy distribution of swimming halls presented in Chapter 2.1.2 

(Figure 1). IDA ICE simulations are compared with the approximated energy consumptions 

(Table 10). 
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Table 10. Annual approximated energy consumptions of Pirkkola swimming hall. 

  District heat [MWh] Electricity [MWh] 

Approximation 1  3927 2131 

Approximation 2 2743 1632 

Average 3335 1882 

 

Pools 

 

The Pirkkola swimming hall has three swimming pools, a big pool for fitness swimming, a 

children pool for practicing swimming and a pool for young children. The big pool and the 

children pool are located in the same space and share an AHU (Figure 25). Young children 

pool is located in a separate space and has its dedicated AHU. Table 11 shows parameters 

for these pools. Evaporation coefficients for IDA ICE model are chosen according to 

ASHRAE (2003:4.6). The 10 meter long water slide in small pool increases water 

evaporation by 5 kg/h (EPD, 2009:5). Design power of the model pools is set to 200 W/m2 

per pool surface area. Design supply water temperature controlled by PI-controller is +37 

°C. Pool water temperatures are set according to mean temperature from latest measurements 

from Pirkkola (Nikkola, 2018). 

 

Table 11. The swimming hall parameters. 

Pool AHU Pool surface 
area  

Average 
depth 

Tempe-
rature 

Evaporation 
coefficient 

Evaporation and 
supply water flow 

  [m2] [m] [°C]   [kg/s] 

Big pool Big pools 400 2.8 26.5 1 0.024 

Children pool Big pools 112 1.4 26.5 1.5 0.010 
Young children Small pool 63 0.75 28.0 1 0.006 

 

 

Figure 25. The main pools in the Pirkkola swimming hall (City of Helsinki, 2019). 
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Envelope 

 

The geometry of the swimming hall model is built according to facade and floor plans for 

the Pirkkola swimming hall, which are received from online database held by City of 

Helsinki and from the team manager of Pirkkola (City of Helsinki, 2018; Korva, 2018). The 

geometry of the model is built with AutoCAD MagiROOM extension made by AutoDesc. 

Figure 26 shows the geometry visually and Table 12 lists main values of the swimming hall 

model geometry. 

 

 

Figure 26. Model geometry of the Pirkkola swimming hall. 

 

Table 12. Main values of the model geometry of the Pirkkola swimming hall. 

Model  
floor 
area 

Model 
volume 

Model 
ground 

area 

Model  
envelope 

area 

Window 
/Envelope 

Average  
U-value 

Envelope 
area per 
Volume 

[m2] [m3] [m2] [m2] [%] [W/(m2K)] [m2/m3] 

7 982 53 463 4 047 13 705 8.90 0.2696 0.2563 

 

Table 13 presents parameters for the envelope of the swimming hall model. The U-values of 

the Pirkkola swimming hall are not known. The window U-value is the most significant 

parameter due to high window surface area in the big pool space. The windows are set to 1.0 

W/m2K according to Finnish code of building regulation (FCBR Part D3, 2012:13). The rest 

of the envelope U-values for the model are chosen to be between 0.20 and 0.24 W/m2K. Pool 

spaces are set to have better U-values than rest of the internal walls, since pool spaces are 

significantly warmer than other spaces. Table 13 also shows structure layer materials and 

thicknesses. The layers in the model mostly consist of concrete and insulation. Saunas have 

a reduced concrete thickness to reduce excess heating of the structures. 

 

Thermal bridge extra conductances are chosen according to design values by Ministry of 

Environment (2017c:19). Hemmilä and Laitinen (2017:45) used q50 =1.0 m3/h/m2 related to 

envelope surface area in their simulation of the swimming hall. Envelope of an old Pirkkola 

swimming hall building is assumable not nearly as tight. Average annual infiltration rate of 

0.6 m3/h/m2 was used in the simulations corresponding to air leakage rate of q50 = 3.3 

m3/h/m2 based on the approximation defined by Ministry of Environment (2017a), when 

assuming a height factor of 20. 
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Table 13. Parameters for the envelope of the swimming hall model. 

Structure location 
U-value 

[W/(m2K)] 
Layers from outside to inside: 

material, thickness [mm] 

Base slab 

Saunas 

0.24 

Light insulation, 140 
Concrete, 10 

All other spaces 
Light insulation, 140 

Concrete, 20 

Ceiling All spaces 0.2 

Bitumen felt, 9 
Concrete, 150 

Mineral wool, 210 
Render, 10 

External wall All spaces 0.23 

Render, 10 
Concrete, 10 

Mineral wool 180 
Concrete, 10 
Render, 10 

Internal wall 

Pool spaces 0.47 
Concrete, 10 

Light insulation, 50 
Concrete, 10 

All other spaces 0.8 

Wood,  20 
Air gap, 20 

Light insulation, 20 
Air gap, 20 

Gypsum, 20 

     
Air leakage rate q50 [m3/h/m2] 3.3 

 

     
Additional thermal bridge conductance [W/(mK)]  

Thermal 
bridges 

Ceiling / External wall 0.08  
Base slab / External wall 0.24  
External wall / External wall 0.06  
External window and door 0.03  

 

Schedules 

 

Annual opening schedule in the swimming hall is from 14.7 to 31.5. The swimming hall is 

open every weekday from 7:00 to 22:30. In the model, lighting is off during closing times, 

at half power during weekdays from 7 to 16 and at full power during other opening times. 

Weekly schedules for occupancy and DHW usage of the model are shown in Figure 27. 

Maximum number of occupants and DHW usage correspond to a value of 1.0 in Figure 27. 

The swimming hall spectator stand is fully occupied (300 people) once per 2 months from 

18 to 21 on Sundays. The spectator stand is occupied at 10 % usage during other Sundays 

from 18 to 21 and not occupied during rest of the time. 
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Figure 27. Weekly schedules for occupancy and DHW usage of the swimming hall model. 

 

Saunas have a heating schedule according to opening times. Saunas are heated from a 

nighttime temperature of +18 °C to a temperature of +85 °C. A leak area of 0.08 m2 is set to 

sauna doors. Sauna doors are also left open 10 % during opening hours to simulate people 

entering and exiting saunas. Each of the 6 saunas has an electric heater with a maximum 

heating power of 40 kW. The use of saunas and showers also emit liquid water droplets, 

which remove heat from air. Each sauna is set to emit maximum of 10 kg/h and each shower 

maximum of 2.6 kg/h, both related to occupancy schedule (Kokko et al., 1999:15). 

 

Air handling units (AHU) 

 

Existing AHU schematics for the Pirkkola swimming hall were provided from Pirkkola 

(Appendix E). The most significant are the AHU:s serving the two pool spaces, big pool 

space and the young children pool space. These AHU:s are built in IDA ICE accurately. To 

both pool spaces, supply airflow rates are supplied with own VAV AHU based on relative 

humidity (RH). The schematic of the AHU is shown in Figure 28. Moisture content is the 

dimensioning factor for airflow rate of pool space AHU (FINVAC, 2017:16). The supply 

airflow per net floor area changes from 2 dm3/s/m2 to 4 dm3/s/m2 for values of 50 to 57 % 

RH respectively. Recycling of indoor air is used to replace 0.5 to 0 portion of outdoor supply 

air to increase RH from low values of 40 % to 50 % respectively. A cooling coil of exhaust 

air  is used with an exhaust air heat pump (EAHP) . The cooling coil also recycles exhaust 

air to replace 0 to 0.5 portion of outdoor air, when RH increases to values of 57 and 60 % 

respectively, which works as an emergency condensing dehumidification. The total outdoor 

air per occupant is set to 10.0 dm3/s. The heating set point of indoor air in big pool space is 

+28 °C, which is achieved by heating the supply air between +25 and +37 °C. The 

corresponding temperature set points are 2 °C higher for AHU supplying young children 

pool space. The heat exchangers have an efficiency of 0.60 according to Hemmilä and 

Laitinen (2017:45). 
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Figure 28. Schematic of the two AHU:s serving pool spaces of the swimming hall model. 

 

Warm spaces and showers both have own VAV AHU, which supply airs are increased 

linearly based on CO2 levels between 1000 and 1200 ppm. Warm space AHU has a constant 

supply air temperature of +16 °C and the supply air temperature of shower AHU varied  

between +13 and 30 °C based on the room air temperature. The smaller temperature limit of 

shower AHU is low because of heat loads from saunas. Both AHU:s have a heat exchanger 

with an efficiency of 0.60, but only shower AHU has an exhaust air heat pump (EAHP). 

 

Table 14 lists average parameters of the four AHU serving areas. Spectator stand is located 

in same space as big pools. Shower AHU also serves saunas. Warm spaces include sports 

field, gym, dressing rooms, technical spaces and rest of the dry spaces.  

 

Table 14. Average parameters of the four AHU serving areas in the swimming hall model. 

Space group 
of AHU 

Net 
surface 

area 

Heating 
set 

point of 
air 

Min. 
outdoor 
airflow 

Max. 
outdoor 
airflow 

Lighting 
when 
used 

Occupancy 
average 

Average 
MET of 

occupant 

Equipment  
during 

opening 
times 

 [m2] [°C] [dm3/s/m2] [dm3/s/m2] [W/m2] [1/m2]  [W/m2] 

Big pools 1 144 28 2.0 4.0 7.5 0.342 4.0 2.0 

Young 
children 
pool 

231 30 2.0 4.0 7.5 0.200 2.0 2.0 

Showers 411 24 3.3 6.7 7.5 0.100 1.6 1.9 

Other 
spaces 

6 196 18 0.5 2.6 5.1 0.025 1.6 2.2 

 

The amount of supplied outdoor airflow rate for sports halls and gym is 30 dm3/s per 

occupant (FINVAC, 2017:16). Shower outdoor air per net floor area is dimensioned based 

on heavy usage needing minimum of 5 dm3/s/m2 and dressing room minimum of 3 dm3/s/m2 

(FINVAC, 2017:16). Humid spaces are controlled to be under pressured by setting return 

airflow from 10 to 30 % lower than supply air according to EPD (2009:6-8). Big pools 

occupants are given a value of 4 MET, which is an average of swimming (6 MET) and 

resting at spectator stand (2 MET). Swimming small children are assumed to have a MET 
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of 2. Sports field and gym occupants have a MET of 6 and occupants in rest of the spaces 

have a MET of 1.6. 

 

DHW usage 

 

DHW heating set point in Pirkkola is +55 °C (Appendix D). The selected value for incoming 

cold-water in Pirkkola energy calculations is +8 °C. Average water usage is set to the same 

as the consumption during years 2010 and 2016, which is 30700 m3 according to database 

held by Jyväskylä University (2018b). Assuming average water temperatures (Table 15) and 

the usage portion according to Hemmilä and Laitinen (2018:13), the average used of the hot 

water temperature becomes +39 °C.  

 

Table 15. Water usage breakdown in the swimming hall model. 

Water type Portion 
Temperature 

[°C] 
Portion times 

Temperature [°C] 

Showers 0.54 38 20.5 

Filter washing 0.23 45 10.4 

Space washing 0.13 40 5.2 

Pool resupply  0.08 28 2.2 

Pool changing 0.02 28 0.6 

Sum 1.00   38.9 

 

Since the water meter is shared for swimming and ice halls (Korva, 2018), the ice hall hot 

water usage is reduced from the total (Equation 10). Now the average DHW usage per day 

can be calculated in the swimming hall, which is 

 
 

𝑞𝐷𝐻𝑊,𝑑,𝑆𝐻 =
𝑞𝑤𝑎𝑡𝑒𝑟,𝑎 − 𝑞𝑤𝑎𝑡𝑒𝑟,𝑎,𝐼𝐻

𝑡𝑑𝑎𝑦𝑠,𝑜𝑝𝑒𝑛,𝑆𝐻
⋅

∆𝑇𝐷𝐻𝑊

∆𝑇𝑎𝑣𝑔,𝑢𝑠𝑒,𝑆𝐻
 

=
30700 𝑚3 − 12.22

𝑚3

𝑑
∗ 261 𝑑

322 𝑑
⋅

(55 − 8)𝐾

(38,9 − 8)𝐾
= 51

𝑚3

𝑑
 

(10) 

where 

 

qDHW,d,SH  average DHW usage per day in the swimming hall [m3/d] 

qwater,a  annual water usage in Pirkkola ice and swimming halls [m3/a] 

qwater,a,IH  annual water usage in the Pirkkola ice hall [m3/a] 

tdays,open,SH  days the swimming hall is open during a year [d] 

∆TDHW  temperature difference between cold water and DHW [K] 

∆Tavg,use,SH  temperature difference between cold water and average used water in the 

swimming hall [K]. 

 

Heating systems and temperatures 

 

Heating system temperatures for the swimming hall model are presented in Table 16. Supply 

air recovers heat in a heat exchanger and afterwards is heated with a heating coil to a value 

between +13 and 37 °C depending on heat demand. Supply air heating is the main heating 

system for pool spaces. Water radiator heating is used in all spaces except shower rooms. 

Underfloor heating is used in pool spaces and shower areas as supportive heating for supply 
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air heating. The design powers for underfloor heaters are for big pool space 40 kW, small 

pool space 6 kW and for showers 24 kW. The design heating powers for water radiators are 

for big and small pool spaces 23 kW and 5 kW respectively. 

 

Table 16. Design temperatures for heating systems in the swimming hall model. 

Heating system Temperatures [+ °C] 

Supply air heating 10…28  / 13…37 

Water radiator heating  30 / 50 

Underfloor heating 30 / 34 

Domestic hot water heating 8 / 55 

Pool water heating 27 / 40 
 

3.4 Utilization of waste heat 

Post-processing calculations were made in this thesis to analyze how building energy 

systems of ice and swimming halls can utilize waste heat. In the utilization of waste heat, 

there should be taken into account temperature levels, temperature differences between sub-

systems and mismatch of heat demands and available excess heats.  

 

The main sub-systems in the utilization of waste heat are heat pumps and thermal energy 

storages (TES). Figures 29 and 30 show heat fluxes between heat pumps, TES and ice and 

swimming halls. By combining the energy systems of ice and swimming halls, the utilization 

ratio of waste heat is increased. The merging of the two energy systems is implemented by 

connecting excess heat from the ice hall to a low temperature TES of the swimming hall. 

These heat fluxes are marked with red color in Figures 29 and 30. From the swimming hall, 

the excess heat is transferred out from the combined energy system.  
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Figure 29. Heat fluxes analyzed in the ice hall. 

 

 

Figure 30. Heat fluxes analyzed in the swimming hall. 
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According to Finnish Energy (2013), the district heating network works at a high pressure 

of 1.6 MPa and temperature of +120 ºC. For the excess waste heat to match the state of 

district heat grid, a significant investment for a heat pump would be needed. Thus, excess 

waste heat is not sold to district heat grid in this thesis. The excess waste heat could be 

utilized nearby, for example to heat an outdoor turf football field or an outdoor swimming 

pool. 

3.4.1 Short-term thermal energy storages 

A short-term thermal energy storages (TES) are needed to avoid time mismatch between the 

available waste heat and heat demands. In this study, the post processing is conducted with 

an hour time step and with an assumption, that during each hour the recovered waste heat 

can be utilized. In practice, the mismatch between heat demands and waste heat fluxes would 

increase the amount of unutilized waste heat. With short-term TES, the mismatch can be 

eliminated and the assumption of full waste heat utilization inside a time step is valid. 

 

The model for TES tanks used in the calculations of this thesis is a two zone model with a 

moving boundary. The moving boundary defines height, which divided the two zones with 

fixed temperatures. The schematic of the TES model is shown in Figure 31. The TES model 

is a tank, which is charged by heating cold water at bottom of the tank to a required 

temperature level. The heated water is located in the top of the tank. The boundary height of 

cold and heated water is calculated with energy balance including heat input and output 

(Dumont et al., 2016). In the two-zone model, full mixing conditions are assumed inside the 

zones. Ambient losses and mixing of water between the two zones are neglected.  

 

 

Figure 31. Schematic of a two-zone moving boundary model of a TES tank. 

 

In Figure 31, the water flows to TES tank are depicted. The height of the boundary of the 

two zones follows the charge level of the tank. The tank is charged with heat from heat 

pumps, which recover the waste heats. The water mass flows are used straight without heat 

 

 

pumps 
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exchangers, thus supply waters to heat demands are at the same constant temperature (TC) 

as the heated water. The tank is discharged by heat demands, which take heated supply water 

from the top of the tank and return it in the bottom of the tank. Some heat demands utilize 

water directly from the tank without returning the water; the removed water is replaced with 

cold water from the bottom of the tank.  

 

Waste heats stored in the TES tanks are prioritized to cover heat demand of systems with 

high temperatures, such as DHW heating, and alternatively heat demands of systems with 

lower temperatures, such as underfloor heating. Heating of some of the heat demands are 

divided to preheating and heating. Preheating of heat demands is calculated first. Excess heat 

after utilization of waste heat is stored into TES tanks to be utilized during the next time 

step. 

 

Each of TES tanks has a possibility for two capacities. The capacity is the same as the volume 

of the tank, which includes both of the zones. The smaller capacity is defined as a capacity, 

which discharges within 30 minutes and the bigger capacity discharges within 2 hours. The 

discharge times are calculated with average heat demands of the systems, which the 

corresponding TES tank serves. Table 17 lists the four TES tanks constant heated water 

temperatures, sizes and capacities for the two different discharge times.  

 

Table 17. TES tank sizes, temperatures and capacities for two different discharge times. 

    Temperature  Capacity Size 

    [°C] [kWh] [m3] 

Discharge 

time of 30 
minutes  

Swimming hall TES1 +34 75 2.5 

Swimming hall TES2 +55 100 4.2 

The ice hall TES1 +33 51 1.8 

The ice hall TES2 +55 39 1.5 

Total   265 9.9 

          

Discharge 

time of  
2 hours 

Swimming hall TES1 +34 313 10.5 

Swimming hall TES2 +55 462 19.1 

The ice hall TES1 +33 204 7.1 

The ice hall TES2 +55 154 6.1 

Total   1133 42.7 
 

3.4.2 Heat pumps for different waste heat sources  

Waste heat is utilized for all heating systems of ice and swimming halls. Heat pumps are 

used in utilization of waste heat to increase the temperature of waste heat to the suitable 

level. Heat pumps consume electricity and COP of the heat pump depends on the temperature 

difference of heat pump evaporation and condensation temperatures. Thus, the heat pump 

condensation temperature has to be set to a level, which produces temperature high enough 

for the utilization of waste heat, but not too high to use excess electricity. 

 

Preheating can be used if the temperature of waste heat water is too low for utilization. 

Preheating raises the temperature of the waste heat into some temperature between the 

system working temperatures. The complete heating demand is not met with preheating. 
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Preheating also creates requirement for additional technical appliances, which increases 

investment costs and space requirements. 

 

Superheat of heat pump is acquired at higher temperatures than condensing heat and is 

suitable even for high temperature heat demands, such as DHW (Keinänen, 2018; Linhartová 

& Jelínek, 2017:3). The benefits of the higher temperature should be fully utilized. For 

example, superheat usage can be reduced by preheating DHW first with condensing heat and 

then heating it further with superheat compared to heating DHW fully with superheat. 

Superheat is extracted with its own heat exchanger before condenser in a heat pump 

(Keinänen, 2018). In this study, refrigeration heat recovery in the ice hall and exhaust air 

heat pump in the swimming hall are equipped with a superheat heat exchanger.  

 

Superheat temperature depends on the used coolant, condensing temperature and pressure. 

According to different references superheat temperature ranges between +70…100 °C (ME, 

2007:55), +80…90 °C (Laitinen & Kosonen, 1994:12), up to 110 °C (Kianta, 2018) and even 

up to +127 °C (Linhartová & Jelínek, 2017:3). In this thesis, superheat temperature is 

assumed to be at +100 °C. According to different references, the portion of the superheat 

varied between 10-20 % (Kosonen and Laitinen, 1994:12), 10-28 % (Linhartová and Jelínek, 

2017:3) and 20 % (Keinänen, 2018; Kianta, 2018). In this thesis, the portion of 15 % is used. 

 

Two TES tanks with different temperature set points are used for both the ice hall and the 

swimming halls. The two low temperature TES tanks have a set point temperature of about 

+34 °C and the two high temperature TES tanks have a set point temperature of +55 °C. The 

lower temperature level of the two TES tanks is selected to be able to cover majority of the 

low temperature heat demands. The higher set point temperature level of the other two TES 

tanks is selected to match the heat demand of DHW. Flow chart (Figure 32) illustrates the 

logic of storing strategy (TTES,low or TTES,high) and the control strategies of the heat pump 

for each of the waste heat sources. The different control strategies of heat pumps are with a 

superheat heat exchanger, a heat pump with a high condensation temperature of +60 °C, a 

normal heat pump and without heat pump. The deciding conditions are shown in sharp 

quadrangles and the five outcomes are shown in rounded quadrangles. 
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Figure 32. Logical chart of the control strategy of temperature of TES tank and of heat pump 

operations. 

 

The symbols used in Figure 32 are 

EWH  energy of waste heat (annual) 

EHD,low  energy of low temperature heat demands (annual) 

EHD,any  energy of any heat demand (annual) 

EExcess,low  excess energy after utilization to low temperature heat demands (annual) 

EShortage,high shortage of energy for high temperature heat demands (annual) 

TWH  temperature of waste heat  

THD,low  temperature of all low temperature heat demands = TTES,low 

THD,any  temperature of any (lowest) heat demand 

TTES,low  temperature of low temperature TES 

TTES,high  temperature of high temperature TES. 
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Coefficient of performance (COP) of heat pumps in the ice hall 

 

COP is defined as the relation between heat amount raised from lower to higher temperature 

and electricity consumed. The electricity consumed of heat pumps is depending on the 

operation temperatures. The loss factor of heat pump 𝑓𝑇 is defined as relation between the 

actual coefficient of performance 𝐶𝑂𝑃𝑀 and Carnot efficiency 𝐶𝑂𝑃𝐶 (Verley et al., 2014). 

The loss factor can be calculated (Eskola et al., 2012:20) as the relation 

 
 

𝑓𝑇 =
𝐶𝑂𝑃𝑀

𝐶𝑂𝑃𝐶
. (11) 

 

Carnot efficiency of a refrigeration corresponds to a reversed Carnot cycle (Cengel & Boles, 

1998:10-3). The Carnot efficiency as a function of evaporation temperature 𝑇𝑒 and 

condensing temperature 𝑇𝑐 is 

 
 

𝐶𝑂𝑃𝐶 =
𝑇𝑒

𝑇𝑐 − 𝑇𝑒
. (12) 

 

This thesis utilizes study by Hemmilä and Laitinen, who used COP value of 2.7 for a 

refrigerator system of an ice rink (2018:63). Evaporation temperature is -14 °C and 

condensing temperature is +40 °C according to simulations done with IDA ICE, the loss 

factor can be calculated from equations 11 and 12 to be 

 
 

𝑓𝑇 =
𝐶𝑂𝑃𝑀

(
𝑇𝑒

𝑇𝑐−𝑇𝑒
)

=
2.7

(
259𝐾

313𝐾−259𝐾
)

= 0.56. (13) 

 

This loss factor is used to calculate COP of condensing heat pump and gray water heat pump, 

which are used in the ice hall, from equation 13 as follows 

 
 

𝐶𝑂𝑃𝑀 = 𝑓𝑇 ⋅
𝑇𝑒

𝑇𝑐 − 𝑇𝑒
. (14) 

  

Condensing heat recovery utilizes heat from the ice hall dehumidification, in which supply 

air is cooled to a temperature of 0 °C. Evaporation temperature of heat pump is 5 °C lower 

than the cooling coil supply temperature, which is also 5 °C lower than the cooling set point 

temperature. This results in an evaporation temperature of -10 °C. The heat pump of 

condensing heat recovery increases the temperature of waste heat to the same condensing 

temperature of +40 °C as in ice refrigerator condenser. The waste heats can be stored to the 

same TES tank when the waste heat temperatures are at least the same as the temperature of 

the heated TES tank. Using the loss factor 𝑓𝑇 calculated in Equation 13 and calculating with 

Equation 14, the COP of condensing dehumidification is 

 
 

𝐶𝑂𝑃𝑀 = 0.56 ⋅
263𝐾

313𝐾 − 263𝐾
= 3.0. 

 
(15) 

Grey water heat recovery utilizes heat from hot water used in showers. In the ice hall, all 

DHW is utilized in grey water heat recovery. The gray water flow in the ice hall is assumed 
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to be periodical during the opening times, since the showers are typically taken after each 

hockey trainings. Heat exchangers for grey water heat recovery have a wide range of 

efficiencies depending on temperatures, water and coolant flows. By assuming that the 

shower water enters the sewage pipes at a temperature of +38 °C, the water entering the heat 

exchanger could be 10 °C lower due to heat losses along the sewage pipes and mixed cold 

water. Thus, the grey water entering heat exchanger is at a temperature of +28 °C. Heat 

received from gray water in the ice hall could be estimated with the product data (Ecowec, 

2018) to be 35 % (Appendix F). The gray water heat exchanger is combined with a heat 

pump. The heat pump evaporation temperature is set to 0 °C when coolant entering the heat 

pump is +5 °C and condensing temperature is +40 °C. Using the loss factor 𝑓𝑇 calculated in 

Equation 13 and calculating with Equation 14, the coefficient of performance of gray water 

heat pump is 

 
 

𝐶𝑂𝑃𝑀 = 0.56 ⋅
273𝐾

313𝐾 − 273𝐾
= 3.9. (16) 

 

Coefficient of performance (COP) of heat pumps in the swimming hall 

 

Exhaust air heat recovery (EAHP) in the swimming hall is recovered from the AHU serving 

the pool spaces and showers, but not from AHU supplying other spaces, since the extract air 

of the other spaces contain only a low amount of heat. EAHP is equipped with a superheat 

heat exchanger due to high amount of heat in exhaust air. In this thesis, COP of EAHP is 

varied, since it depends on continuously changing evaporation temperature. The loss factor 

of EAHP is assumed constant. According to an energy consultant Keinänen (2018), the 

actual coefficient of performance 𝐶𝑂𝑃𝑀 of modern heat pumps is 3.5 in those conditions, 

when exhaust air is cooled to +5 °C and condensing temperature 𝑇𝑐 of heat pump is +40 °C. 

Assuming 10 °C lower evaporation temperature 𝑇𝑒 of -5 °C, the loss factor for EAHP is 

calculated using Equation 13  

 
 

𝑓𝑇 =
𝐶𝑂𝑃𝑀

(
𝑇𝑒

𝑇𝑐−𝑇𝑒
)

=
3.5

(
268𝐾

313𝐾−268𝐾
)

= 0.60. (17) 

   

Grey water heat recovery in the swimming hall utilizes heat from hot water used in the 

showers and washing water of floors. These two hot water usages consist of 67 % of the total 

DHW usage a swimming hall (Hemmilä and Laitinen, 2018:13). In swimming hall, gray 

water flow is assumed to follow occupancy schedule. Due to high gray water flow during 

the operation hours, two heat exchangers are used in swimming hall instead of one to recover 

more heat. Heat received from the two heat exchangers (Ecowec, 2018) is 18 % of the heat 

used for the total DHW heating (Appendix F). The COP of gray water heat exchanger is 3.9 

according to Equation 16. 

3.5 Smart control of energy system 

Smart control of energy systems in this thesis includes demand response systems controlled 

by dynamic energy prices of electricity and district heat, and exhaust air heat pump 

controlled by predicted heat demand of swimming hall. This Chapter presents the studied 

systems dynamic energy prices and the predicted heat demands. The last part of the Chapter 

presents the developed rule-based control algorithms of the systems. 
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3.5.1 Systems included 

In ice and swimming halls, demand response can utilize heat capacities of the water of 

swimming pools and ice layer of rinks in addition to the thermal mass of building structures. 

Global temperature adjustment is a control strategy, which is used in the simulations. The 

global temperature adjustment adjusts temperature set points based the on global control 

signal. The temperature set points have to be set at ranges ensuring that thermal comfort in 

the swimming hall and ice quality in ice rink is acceptable. 

 

Temperature of the two ice rinks is controlled by demand response of electricity with the 

peak clipping strategy. The normal and minimum set point temperatures of the ice surface 

are -3 °C and -6 °C (Table 18). The temperature set point for room air is always set to 9 °C 

warmer than the ice temperature to prevent increasing heat losses of ice rinks. In the ice hall, 

demand response of district heat is not included, since the ice hall is almost fully independent 

of district heating due to high amount of waste heat available.  

 

In the swimming hall, temperature of the big pool and the children pool water is controlled 

by demand response of district heat with the load-shifting strategy. The temperature set 

points of the two swimming pools are minimum of 26 °C, normal of 26.5 °C and maximum 

of 30 °C (Table 18). The temperature set point for indoor air is controlled to be 2 °C warmer 

than the pool water temperature in all cases to prevent condensation. In practice, this would 

require a continuously measuring temperature sensor in the pool return water to set the air 

heating set point depending on water temperature. 

 

The saunas in swimming hall are controlled by demand response of electricity with peak 

clipping strategy. The normal and minimum temperature set points for sauna air are +90 °C 

and +75 °C (Table 18). The normal temperature of sauna is increased from +85 °C to +90 °C 

to maintain average temperature and electricity consumption close to the reference case. 

 

Cooling the swimming hall exhaust air to a constant temperature of 0 °C or +5 °C according 

to Hemmilä and Laitinen (2018:77) produces continuously excess heat. This happens, 

because the exhaust air heat pump (EAHP) produces more heat than the heat demands of the 

swimming hall. Thus, the optimal would be to match EAHP waste heat production to 

upcoming heat demand of the swimming hall. In this thesis, smart control of EAHP means 

adjusting the evaporation temperature based on predicted heat demands of the swimming 

hall. The evaporation temperature is adjusted between values of 0 °C and +30 °C (Table 18). 

Smart control of EAHP also enables the possibility of demand response of electricity of the 

EAHP. The heating of pool-space water and indoor air heating can be done partially with 

heat produced from the smart EAHP. 

 



 

 
51 

 

Table 18. Energy systems with smart control and temperature ranges. 

System Hall Energy type 
Adjusted 

temperature 

Minimum 
temperature  

[°C] 

Maximum 
temperature 

[°C] 

Swimming pools Swimming hall 
District heat 
& electricity 

Water +26 +30 

Ice rinks Ice hall Electricity Ice -6 -3 

Saunas Swimming hall Electricity Indoor air +75 +90 

Exhaust air heat 
pump (EAHP) 

Swimming hall Electricity 
Exhaust air 
after EAHP 

0 +30 
 

3.5.2 Dynamic energy prices 

This thesis uses hourly energy prices for both electricity and district heat. Hourly electricity 

price called spot price is available in Finland and is announced every day at 12:42 (CET) for 

the upcoming day (Nordpool, 2019a). District heat prices are currently constant during 

seasons for end user contracts in Finland. In this thesis, hourly district heat price is used 

based on the previous study (Rinne 2017). 

 

The latest full year hourly electricity spot price from year 2017 is used in this thesis 

(Nordpool, 2019b). Transfer cost and electricity tax are added to spot price according to 

Helen (2019). Transfer contract with medium voltage power transfer is used. Base monthly 

transfer fee is 175 €/m and monthly maximum power fee is 3.68 €/kW calculated with 

maximum power of 700 kW making the base fee for transfer costs 2750 €/kk (Helen, 2019). 

The actual transfer fee is normally 6.30 €/MWh with an exception of 14.10 €/MWh for 

winter days from December to February during weekdays between times of 7 and 21. A 

taxation class of I is assumed with a price of 22.53 €/MWh (Helen, 2019). A value-added 

tax (VAT) of 24% is added to all of the mentioned prices. Also a seller marginal of 2.40 

€/MWh is added to the total.  

 

The hourly total electricity price is shown in Figure 33 for the year 2017. The average annual 

electricity price is 86.29 €/MWh and standard deviation is 12.78 €/MWh. Since the standard 

deviation is 15 % of the average price, the price is relatively stable. Excluding around 5 % 

of the most expensive price peaks, which stand out from the average price. 

 



 

 
52 

 

 

Figure 33. Hourly total electricity prices for year 2017. 

 

Hourly district heat price for year 2012 is used (Rinne, 2017). A value-added tax (VAT) of 

24% is added to the price. The price is generated based on hourly fuel price data. It is 

important to note, that the price may not describe accurately a possible hourly district heat 

price in the future. Hourly district heat price (Rinne, 2017) is compared to latest (2017-2018) 

seasonal district heat contract from Helen with all the fees (Finnish energy, 2019) in Figure 

34. 

 

The average annual hourly district heat price is 50.63 €/MWh and standard deviation is 23.24 

€/MWh. Since the standard deviation is 46 % of the average price, the price is alternating 

significantly and thus gives a bigger potential for demand response than hourly electricity 

price. Especially around 20 % of the most expensive prices stand out from average price. All 

of the price peaks happen during the winter season. 
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Figure 34. Hourly district heat price for year 2012 (Rinne) and seasonal district heat price 

for year 2017 (Helen). 

3.5.3 Predicted heat demands 

Smart control of EAHP in swimming hall means adjusting the evaporation temperature 

based on upcoming total heat demands, since waste heat is always utilized for the upcoming 

hour. The total heat demand of the swimming hall for upcoming hour is predicted with linear 

correlation using swimming hall occupancy and outdoor temperature as parameters as 

follows 

 
 𝐸𝑃𝐻𝐷 = 346.5 + 1.336 ⋅ 𝑛𝑜𝑐𝑐 − 16.07 ⋅ 𝑇𝑜𝑢𝑡 (18) 

where 

 

EPHD predicted total heat demand of the hour [kWh] 

nocc number of occupants in swimming hall 

Tout Outdoor temperature [°C]. 

 

Swimming hall occupancy and outdoor temperature are known upfront. Figure 35 compares 

IDA ICE simulated total heat demand of the Pirkkola swimming hall to predicted heat 

demands (Equation 18). The average annual simulated and predicted total heat demands are 

both 401 kW. The average error of predicted hourly heat demand against simulated heat 

demand is 49 kW. Thus with a relative error of 12 %, the predicted heat demands are 

sufficient for smart control of EAHP. 
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Figure 35. Simulated heat demands (blue) compared to predicted heat demands (orange). 

3.5.4 Control algorithms 

The used control algorithms are rule-based control algorithms, which either uses dynamic 

energy prices or predicted heat demand as parameters. The goal of the control algorithms is 

to give control signal for the energy systems, which reduces the overall energy consumption 

or energy cost. The control signals are set to adjust temperature set points of the energy 

systems, which affect either the heating or electricity power of the system. 

 

Dynamic energy price algorithm 

 

Demand response systems are controlled by dynamic energy prices. The system temperature 

set points are decreased during times of expensive energy prices and increased during times 

of cheap energy prices. Thus, it is important to decide the percentage of times for cheap and 

expensive energy prices, since the system temperature set points are changed according to 

these percentages. Figures 36 and 37 show the annual dynamic prices of electricity and 

district heat as a duration curve with dotted lines presenting the excluding percentages of 8, 

20 and 30 % for both cheap and expensive energy prices. The percentages are chosen to 

divide the energy prices to different price classes according to the shape of the duration 

curves. 
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Figure 36. Duration curve for hourly total electricity prices of year 2017. 

 

 

Figure 37. Duration curve for hourly district heat price of year 2012. 

 

Algorithm developed in this thesis defines if the current energy price (CEP) is expensive, 

normal or cheap. The algorithm is the same for electricity and district heating. The algorithm 

uses as input the given percentages of 8, 20 or 30 % for the minimum amount of cheap and 

expensive prices, last 2 weeks of energy prices and the following 12-hour energy prices. The 

algorithm gives as an output a control signal of -1, 0 or +1 whether the CEP is expensive, 

normal or cheap respectively. The algorithm aims on classifying the corresponding 

minimum percentage of 8, 20 or 30 % for cheap and expensive prices. Figure 38 shows 

dynamic energy price algorithm as a flowchart with input data, output data and decision 

making.  
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Figure 38. Dynamic energy price algorithm decision making, input data and output data. 

 

The algorithm decides the price class for CEP by comparing it to higher price limit (HPL) 

and lower price limit (LPL). The calculation process for HPL and LPL based on input data 

is explained in detail in Appendix G. If energy price goes below LPL, the price is classified 

as cheap. If energy price goes over HPL, the price is classified as expensive. When energy 

price is between LPL and HPL, the price is classified as normal. The control signals of -1, 0 

and +1 correspond to the classified expensive, normal and cheap prices respectively. Figure 

39 shows an example price data for the last two weeks and the following 12-hours, CEP, 

current HPL and current LPL. In Figure 39, the resulting control signal would be +1. 

 

 

Figure 39. Example price data of the last two weeks and the following 12-hours, CEP, 

current HPL and current LPL. 

 

Chosen excluding energy price percentages for the systems included in demand response are 

shown in Table 19. For heating of swimming pool water, 20 % is chosen as the HPL 

percentage, since about 20 % of the most expensive district heat prices are clearly higher 

than the rest of the prices (Figure 37). The LPL percentage for swimming pool water is 
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chosen to be the same 20 %, which is pretested with IDA ICE simulation to result in a water 

temperature, which stays within the acceptable limits. For cooling of ice rink, 30 % is chosen 

as the LPL percentage, which should include most of cheap night electricity. Saunas are 

chosen to have HPL percentage of 30 % to limit about half of electricity prices during the 

day. Exhaust air heat pump (EAHP) is important part of the swimming hall energy system 

and is turned off only during the most expensive electricity prices (8%). 

 

Table 19. Chosen excluding energy price percentages for the systems included in demand 

response. 

System 
Excluding minimum 
percentage for HPL 

Excluding minimum 
percentage for LPL 

Swimming pool water 
(district heat) 

20 % 20 % 

Ice rink ice (electricity)  30 % 

Sauna air (electricity) 30 %  

Exhaust air heat pump  
exhaust air (electricity) 

8 %  

 

Figure 40 shows an example period (2 last weeks in December) for hourly electricity price. 

HPL excludes the expensive prices while lower price limit (LPL) excludes the cheapest 

prices according to Table 19. The example period shows that the algorithm performs well 

with the defined price limits. The fast daily changes in price limits are caused by data from 

the following 12-hour prices. The values between which the price limits oscillate are limited 

by data from the last 2 weeks, which can be seen as a flat period for the price limit. 

 

 

Figure 40. Hourly electricity price with price limits in December. 

 

Figure 41 shows an example period (December) for hourly district heat price with price 

limits excluding energy prices according to Table 19. The algorithm performs well during 

big changes in the price, since it uses as parameters both the last two weeks of prices and the 

following 12-hour prices. During some periods, LPL and HPL are limited by each other and 

50

70

90

110

130

150

8400 8500 8600 8700

P
ri

ce
, 
€
/M

W
h

Time, h

Hourly electricity price

Ice rink LPL 30 %

EAHP HPL 8 %

Sauna HPL 30 %



 

 
58 

 

result in the same price. During these kind of periods, the price can only be classified as 

expensive or cheap.  

 

 

Figure 41. Hourly district heat price with price limits in December. 

 

Smart exhaust air heat pump (EAHP) algorithm 

 

Smart EAHP algorithm gives the set point temperature of exhaust air after the heat pump as 

an output. The set point temperature is controlled based on the predicted total heat demand 

of the upcoming hour. The acquired waste heat power from EAHP as a function of 

temperature set point of exhaust air is pretested with multiple simulation and shown in Figure 

42. A trend line of second-degree polyline is placed according to acquired waste heats from 

EAHP. 
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Figure 42. Available waste heat energy for one hour from EAHP as a function of set point 

temperature of exhaust air. 

 

The evaporation temperature is assumed 10 °C lower than set point temperature of exhaust 

air. The coefficient of performance (COP) for EAHP is calculated dynamically for each hour 

depending on evaporation temperature according to Equation 16 presented in Chapter 3.4.2, 

where loss factor of exhaust air heat pump is 0.60 and condensation temperature is +60 °C. 

 

The temperature set point of exhaust air as a function of acquired waste heat energy from 

EAHP, which is set to be equal with the predicted heat demand of the upcoming hour, obeys 

function 

 
 𝑇𝑒𝑎 = 30.262 −   √2.036 ⋅ 𝐸𝑃𝐻𝐷 −  3.924 (19) 

where 

 

EPHD predicted heat demand of the hour [kWh] 

Tea set point temperature of exhaust air [°C]. 

 

Controlling the smart EAHP also with demand response of electricity allows demand 

response of electricity of pool water heating, since the pool water can be heated with heat 

from EAHP. Pool water heating with smart EAHP can be controlled with demand response 

of electricity only, or with demand response of both electricity and district heat. Control 

signals for combined demand response of electricity and district heat of pool water are listed 

in Table 20. A contradiction between electric and district heat control signals of -1 and +1 

results in combined control signal of 0. 
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Table 20. Control signal for demand response of combined electricity and district heat for 

pool water heating. 

Demand response of electricity control signal  -1 +1 -1 +1 0 0 -1 0 +1 

District heat demand response control signal +1 -1 0 0 -1 +1 -1 0 +1 

Combined control signal 0 0 -1 +1 -1 +1 -1 0 +1 

 

Figure 43 shows flowchart of the smart EAHP algorithm with input data, output data and 

calculation process. First, the set point temperature of exhaust air is controlled based on the 

predicted total heat demand of the upcoming hour (Equation 19). This algorithm uses control 

signals from dynamic energy price algorithm as input. A control signal of +1 from dynamic 

energy price algorithm for swimming pool increases the smart EAHP power or a control 

signal of -1 decreases the power. The change in EAHP power is defined as a 5 °C increase 

or decrease in temperature set point of exhaust air, which is tested with simulations to match 

the change in EAHP waste heat to the change in swimming pool heating. The smart EAHP 

is also controlled with peak clipping strategy of demand response of electricity. The EAHP 

is set to turn off during 8 % of most expensive electricity price periods. Finally, EAHP 

exhaust air cooling set point is limited to a minimum temperature of 0 °C.  

 

 

Figure 43. Smart EAHP algorithm input data, calculation process and set point temperature 

of exhaust air as an output data. 

 

Figure 44 shows the EAHP cooling set point temperature of exhaust air for one year. The 

cooling set point temperature is lower during winter season due to bigger heat demands. The 

periods, in which EAHP is turned off do not show in Figure 44, because the periods are 

relatively short (1 to 2 hours) compared to the timescale. 
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Figure 44. Smart EAHP temperature set point of exhaust air for one year. 

 

Control of the energy systems based on demand response 

 

Demand response control strategy used in this thesis is global temperature adjustment. In the 

strategy, a control signal of -1 lowers the temperature set point and control signal of +1 

increases the temperature set point. The two demand response concepts used in this thesis 

are load-shifting and peak clipping. Using load-shifting strategy requires control signals of 

at least 0 and +1. The peak clipping strategy requires -1 and 0 control signals.  

 

Table 21 shows temperature set points according to control signals for different systems and 

percentage the set points are active. Systems included are swimming pools, ice rinks, saunas 

and EAHP. Only swimming pools are controlled with demand response of district heating. 

All of the systems are controlled with demand response of electricity.  
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Table 21. Temperature set points and percentage the set points are active for different 

systems and demand response cases. 

System and demand response case Conservation  
-1 

Normal 
0 

Loading 
+1 

Swimming pool set point temperature 
(district heat) 

+26 °C  
32 % 

+26.5 °C 
38 % 

+30 °C  
30 % 

Swimming pool set point temperature 
(electricity) 

+26 °C  
27 % 

+26.5 °C 
43 % 

+30 °C  
30 % 

Swimming pool set point temperature 
(district heat and electricity) 

+26 °C  
36 % 

+26.5 °C 
35 % 

+30 °C  
29 % 

Ice rink set point temperature 
(electricity) 

  -3 °C 
59 % 

-6 °C  
41 % 

Sauna set point temperature 
(electricity) 

+75 °C  
38 % 

+90 °C 
62 % 

  

Smart exhaust air heat pump (EAHP) 
(electricity) 

off 
12 % 

0…+30 °C 
88 % 

 

 

Figure 45 shows an example period (December) for swimming pool set point temperature 

controlled with demand response of district heating. The length of even temperature set point 

periods differ from only few hours to multiple days. This is caused by the unpredictable 

nature of the dynamic district heating price. The swimming pool has a significant heat 

capacity and requires long time to be heated from lower to higher temperature set point. 

Thus, the short periods of higher temperature increase the actual swimming pool temperature 

only by little. 

 

 

Figure 45. Pool water temperature set point during December. 

 

Figure 46 shows an example period (2 last weeks of December) for temperature set point of 

ice rink. The lower temperature of -6 °C is shown on top of the chart as it corresponds to 

control signal +1. The relatively even alternation between low and normal temperature set 

point is caused by electricity being cheaper during nights than days. Longer periods of 

normal temperature set point (-3 °C) happen when electricity is classified as expensive even 

during nights. Longer periods of loading with lowered temperature set point (-6 °C) happen 

when electricity is classified as cheap even during days. The sauna temperature set point is 

similar to ice rink with only two temperature set points. However, saunas are controlled with 

conservation of electricity during times of expensive electricity instead of loading during 

times of cheap electricity. 
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Figure 46. Ice rink temperature set point during 2 last weeks of December. 

 

The heating and cooling systems in the simulation model use PI-controllers to match the 

temperature to the given heating set point. The proportional part of the controller (P) adjusts 

the load more if temperature set point is more off from the measured value, and integral part 

of the controller (I) continuously adjusts the load to reduce the error without 

overcompensating the difference between measured temperature and temperature set point. 

Other important parameters for global temperature adjustment are design powers. Design 

powers of the heating and cooling systems affect the rate, at which the system is able to 

approach the temperature set point during loading.  

3.6 Cost investment analysis 

The cost investment analysis in this thesis calculates the maximum costs of profitable 

investments, which equals the total energy cost savings achieved with the investment. The 

calculation takes into account the energy cost savings for each case, inflation of energy 

prices, nominal interest, and the assumed minimum lifecycle of the implemented system, 

called repayment period. The cost investment analysis is done for the ice hall only and for 

the combined energy system of ice and swimming halls. 

 

The general increase in expenses is called inflation, which lowers the purchasing power of 

money. Inflation of energy prices focuses specifically to energy price. Nominal interest rate 

expresses the change in value of money in terms of time. The effect of inflation of energy 

prices and nominal interest rate can be combined to real interest rate of energy price as 

follows (Sirén, 2015:20) 

 
 

𝑟𝑒 =
𝑖 − 𝑓𝑒

1 + 𝑓𝑒
 (20) 

where 
 

re annual real interest rate of energy price [%] 

i annual nominal interest rate [%] 

fe annual inflation of energy prices [%]. 
 

This thesis assumes the value for escalation of energy price of 3 %, which corresponds to 

nominal interest of 5.1 % and inflation of energy prices of 2 % (Equation 20). Three 

repayment periods of 7, 10 and 15 years are used in this thesis. Discount yield calculates the 

return on investment and is calculated as follows (Sirén, 2015:21) 
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𝑎𝑛
′′ =

1 − (1 + 𝑟𝑒)−𝑛

𝑟𝑒
 (21) 

where 

 

an
′′ total discount yield [a] 

re annual real interest rate of energy price [%] 

n repayment period [a]. 

 

The maximum cost of profitable investments equals the total energy cost savings, which is 

calculated by multiplying the total discount yield by the annual energy cost savings as 

follows 

 
 𝑆𝑖𝑛𝑣 = 𝑎𝑛

′′ ⋅ 𝑆𝐸,𝑎 (22) 

where 

 

Sinv the maximum cost of profitable investments [€] 

an
′′ total discount yield [a] 

SE,a annual energy cost savings [€/a]. 
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4 Results 

The results for waste heat utilization and smart control of energy system for the Pirkkola ice 

and swimming halls are presented in this Chapter. The results include breakdown of annual 

energy fluxes for 13 analyzed cases for the Pirkkola energy systems. Most relevant annual 

energy fluxes are presented as dynamic graphs and duration curves for corresponding energy 

power. The energy prices are always dynamic.  

 

This Chapter first explains the analyzed cases and presents energy balances of the ice and 

swimming halls. The results are presented as 5 different energy balances. The reference cases 

are presented first, after that utilization of waste heat is analyzed as the first measure and 

smart control of energy system as the second measure. Finally increasing thermal energy 

storage sizes is analyzed. Summary of annual energies and cost investment analysis compare 

the analyzed cases collectively. 

4.1 Analyzed cases 

Altogether 13 different cases are analyzed. The analyzed cases are chosen to clarify 

individual effects of different measures for the energy consumption and to find out the effect 

of different combinations of those measures. The parameters and the measures chosen as 

variables, which define the cases, are the summer brake schedule of Pirkkola (with and 

without), waste heat recovery (WHR) usage, demand response (DR) usage and thermal 

energy storage (TES) discharge time. Figure 47 shows the 13 analyzed cases as paths defined 

by previous four variables. The variables are shown on top of the columns, the case paths 

are numbered and the reference case path is marked with yellow color (Figure 47). Case 

numbers 8, 9 and 10 are used twice for different TES discharge times. The variable values 

for the reference case are with summer break, no waste heat recovery, no demand response 

and TES discharge time of 30 minutes. 
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Figure 47. Analyzed cases as paths. 

 

Figure 47 is separated into two brackets. The top bracket separates the different waste heat 

recovery (WHR) cases and the bottom bracket separates cases with demand response (DR) 

of only one system per case. WHR means all the measures of waste heat recovery including 

Exhaust air heat pump (EAHP) are used.  

 

The summer breaks are held for the swimming pool from 1.6 to 13.7 and for the ice rink 

from 1.5 to 12.8. Cases with different EAHP temperature set point for exhaust air cooling 

and EAHP condensation temperature are included. In Figure 47, EAHP temperature Tea 

means the temperature set point for cooling of exhaust air, which can be +5 °C, +10 °C or 

smart control. Smart control means that the temperature of exhaust air is controlled based on 

predicted heat demands. Tc,HP for EAHP means the chosen condensation temperature in the 

heat pump, which is either +40 °C or +60 °C. One case with WHR but without EAHP is also 

analyzed. DR consists of controlling electricity in swimming pools, saunas and ice rinks, 

and controlling district heat in swimming pools. TES discharge time is defined as the 

duration time of TES from full to empty for average heat demands.  
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A breakdown of the analyzed cases is shown in Table 22. The cases, which do not have 

utilization of waste heat, are divided to cases, which separate the ice hall (IH) and the 

swimming hall (SH). 

 

Table 22. Breakdown of the analyzed cases. 

Case 
number 

Presenting 
Chapter 

IH SH 

Summer 
break 
during 

the year 

Utiliza-
tion of 
waste 
heat 

EAHP and 
temperatures 

for exhaust 
air cooling / 

condensation 

Demand 
response 

Discharge 
time of 
thermal 
energy 
storage 

1IH 4.3 X - Yes - - - 30 minutes 

1SH 4.3 - X Yes - -   30 minutes 

2IH 4.3 X - - - - - 30 minutes 

2SH 4.3 - X - - -   30 minutes 

3 4.4 X X Yes Yes - - 30 minutes 

4 4.4 X X Yes Yes 5 °C / 40 °C - 30 minutes 

5 4.4 X X Yes Yes 10 °C / 60 °C - 30 minutes 

6IH 4.5 X - Yes - - Only IR EL 30 minutes 

7SH 4.5 - X Yes - - Only SH DH 30 minutes 

8 4.5 X X Yes Yes SC / 60 °C Only SH EL 30 minutes 

9 4.5 X X Yes Yes SC / 60 °C All systems 30 minutes 

10 4.5 X X - Yes SC / 60 °C All systems 30 minutes 

82h 4.6 X X Yes Yes SC / 60 °C Only SH EL 2 hours 

92h 4.6 X X Yes Yes SC / 60 °C All systems 2 hours 

102h 4.6 X X - Yes SC / 60 °C All systems 2 hours 

Notation: EAHP = Exhaust Air Heat Pump, SC = Smart Control, IR = ice refrigerator, 

IH = ice hall, SH = Swimming Hall, EL = Electricity, DH = District Heat 
 

4.2 Energy balances of the ice and swimming halls 

The results of this thesis are presented as annual energy fluxes in energy balances. 

Connection scheme for the ice and swimming hall energy system was designed in this thesis. 

The energy balances and annual energy fluxes are presented for that designed connection 

scheme. Energy balances for separately both the ice and swimming halls are defined for 

building level and for processing of waste heat of the combined energy system. The 

corresponding annual energy fluxes for connection schemes are presented in table format. 

The tables in this chapter presenting the annual energy fluxes for the 13 cases are separated 

for the ice hall, the swimming hall and the combined ice and swimming halls. 

 

Figure 48 shows connection scheme for the energy system of the ice hall with energy balance 

of the building (EB1), energy balance of processing of waste heat (EB2) and energy flux 

indices. Energy balance boundaries are marked as red dashed lines where energy fluxes out 

of the set boundaries are shown with arrows. Cold water enters the system into the low 

temperature TES. Each waste heat source has a separate heat pump. The sizes of energy flux 

arrows, TES tanks and heat pumps indicate the order of the magnitude of the flux. Energy 
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fluxes are also transferred as cycling water or coolant streams between the sub-systems 

inside energy balance 2. The shortage of heat demand is covered with purchased district 

heat. Excess heat flux to the swimming hall is shown in Figure 48. All different heat loads 

of the ice hall are marked with indices with prefix of capital I. 

 

 

Figure 48. Connection scheme for energy system of the ice hall with energy balance of 

building (EB1), energy balance of processing of waste heat (EB2) and energy flux indices. 

 

The energy fluxes of the ice hall marked with indices in Figure 48 are presented in Table 23. 

Table 23 divides energy fluxes to sections of the two energy balances, total energies, 

breakdown of heat energy of systems and breakdown of heat loads and losses. Utilized waste 

heat and purchased electricity do not have indices, as they are combination of multiple 

energy fluxes. 
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Table 23. Energy fluxes of the ice hall with indices corresponding to Figure 48. 

Annual energy [MWh/a]. Ice hall floor area 6674 m²         

Energy  
balance 1:  
Building 

Heat energy of systems IA  Total  
energies 

Utilized waste heat  

Heat loads from electricity IB  Purchased district heat IS 

Other heat loads IC  Purchased electricity  

Heat losses ID  
Breakdown 

of heat 
energy of 
systems 

Supply air heating IU 

Total removed heat for use IE  DHW heating IV 

Energy  
balance 2:  

Waste 
heat 

Ice refrigeration heat IF  Ice resurfacing water freezing IW 

Ice refrigeration HP electricity IG  Water radiator heating IX 

Gray water heat  IH  Ground frost protection IY 

Gray water HP electricity II  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing I1 

Dehumidification heat IJ  Lighting I2 

Dehumidification electricity IK  Occupants I3 

Supply air heating IL  Ventilation fans I4 

DHW heating IM  DHW sewage losses I5 

Ice resurfacing water IN  DH substation losses I6 

Water radiator heating IO  Infiltration air I7 

Ground frost protection IP  Envelope I8 

Excess heat to the swimming hall  IQ  Other heat loads(+) / losses(-) I9 

Notation:   HP = Heat Pump      
  

 

Figure 49 shows the connection scheme for the energy system of the swimming hall with 

energy balance of the building (EB3), energy balance of processing of waste heat (EB4) and 

energy flux indices.  

 

 

Figure 49. Connection scheme for energy system of the swimming hall with energy balance 

of the building (EB3), energy balance of processing of waste heat (EB4) and energy flux 

indices. 
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The energy balances, energy fluxes and components are shown in Figure 49 similarly to the 

connection scheme of the ice hall. Excess heat flux from the ice hall and excess heat flux out 

from swimming hall are shown in Figure 49. The relevant energy fluxes of the swimming 

hall are marked with indices with prefix of capital S. The indices are presented in Table 24. 

Table 24 divides energy fluxes to similar sections than in the ice hall with an addition of 

breakdown of waste heat, which separates the amounts utilized from the ice hall and the 

swimming hall. Energies in Table 24, which do not have an index, are a combination of 

multiple energy fluxes. 

 

Table 24. Energy fluxes of the swimming hall with indices corresponding to Figure 49. 

Annual energy [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 
building 

Heat energy of systems SA  
Breakdown 

of waste 
heat 

Utilized the ice hall waste heat  SV 

Heat loads from electricity SB  Utilized SH waste heat  SW 

Other heat loads SC  Excess heat from TES 1 SX 

Heat losses SD  Excess heat from TES 2 SY 

Total removed heat for use SE  

Breakdown 
of heat 

energy of 
systems 

Supply air heating SA1 

Energy  
balance 4:  

Waste heat 

Heat from the ice hall SF  Supply air preheating SA2 

Exhaust air HP heat SG  Pool water heating SA3 

Exhaust air electricity SH  Water radiator heating SA4 

Gray water heat  SI  Underfloor heating SA5 

Gray water HP electricity SJ  DHW preheating SA6 

Supply air preheating SK  DHW heating SA7 

Supply air heating SL  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna S1 

Water radiator heating SM  Lighting S2 

Underfloor heating SN  Ventilation fans S3 

DHW heating SO  Pool pumps S4 

DHW preheating SP  Equipment S5 

Pool water heating SQ  HVAC aux. S6 

Total excess heat SR  Occupants S7 

Total  
values 

Utilized waste heat SS  Radiation through windows S8 

Purchased district heat ST  DHW sewage losses S9 

Purchased electricity SU  DH substation losses S10 

    Infiltration air S11 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope S12 

    Other heat loads(+) / losses(-) S13 

 

Figure 50 shows simplified scheme of the combined energy system of the ice and swimming 

halls with total energy balance (EB5) and energy flux indices. Energy flux arrows are 

directionally pointed to the swimming hall, the ice hall or the waste heat processing systems. 

Energy inflows are colored blue and energy outflows are colored red. The potential excess 

heat flux from the combined energy system is shown in Figure 50, which is not included in 

the heat losses, since it could be utilized elsewhere. The energy fluxes are marked with 

indices with prefix of capital C. 
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Figure 50. Simplified scheme of the combined energy system of ice and swimming halls with 

total energy balance (EB5) and energy flux indices.  

 

Energy fluxes of the total energy balance of the ice and swimming halls with indices in 

Figure 50 are presented in Table 25. Energies in Table 25 are a combination of multiple 

energy fluxes shown in Figure 50 as recurring indices. 

 

Table 25. Energy fluxes of the total energy balance of ice and swimming halls (EB5) with 

indices corresponding to Figure 50. 

Annual combined energy [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat CA 

Total purchased electricity CB 

Total heat loads CC 

Total heat losses  CD 

Total potential excess heat CE 
  

4.3 Annual energies of the reference cases 

Two reference cases are used as a comparison for utilization of waste heat and smart control 

of energy systems. The first reference case simulates year with summer breaks and the 

second reference case simulates full year operation without the summer breaks. Altogether 

10 cases are compared to the reference case with summer breaks and 2 cases are compared 

to the reference case without summer breaks. The reference case energies should correspond 

to energy consumptions of a new ice hall and an old swimming hall. 

4.3.1 The ice hall 

Table 26 shows the simulated annual energies for the ice hall in the reference case with 

summer break. Chapter 3.2 presents approximations for an average consumption of an ice 

hall with two rinks to be for district heat 1200 MWh/a and for electricity 1500 MWh/a. The 

corresponding simulated consumption for the Pirkkola ice hall are for district heat 1600 

MWh/a and for electricity 1000 MWh/a. The higher district heat consumption is within 

acceptable range, because the input data for approximations is quite uncertain and direct 
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comparison with the measurement data is not possible. The lower electricity consumption 

simulated is explained by new technical systems.  

 

Energy balance 1 of the building shows that heat energy of systems (1600 MWh/a) 

constitutes 73 % of heat losses of the ice hall (2200 MWh/a). Energy balance 2 of the 

technical systems shows zeros as utilization of waste heat is not included in the reference 

cases. Supply air heating (1300 MWh/a) dominates heat energy of systems (1600 MWh/a) 

with an 81 % portion. Ice refrigeration heat pump is the biggest electricity consumer with a 

57 % portion. Biggest heat loads are coming from ice resurfacing water (150 MWh/a) and 

lighting (170 MWh/a). Heat losses are dominated by ice refrigeration heat (1600 MWh/a) 

with a portion of 72 % of total heat losses. Other notable heat losses are caused by DHW 

sewage losses (190 MWh/a). (Table 26) 

 

Table 26. Simulated annual energies for the ice hall in the reference case with summer break 

(Case 1IH). 

Energy flows [MWh/a]. The ice hall floor area 6674 m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 614  Total  
values 

Utilized waste heat 0 

Heat loads from electricity 244  Purchased district heat 1 614 

Other heat loads 355  Purchased electricity 1 007 

Heat losses -2 212  
Breakdown 

of heat 
energy of 
systems 

Supply air heating 1 304 

Total removed heat for use 0  DHW heating 191 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 593  Ice resurfacing water freezing 42 

Ice refrigeration HP electricity 578  Water radiator heating 23 

Gray water heat  0  Ground frost protection 54 

Gray water HP electricity 0  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155 

Dehumidification heat 221  Lighting 174 

Dehumidification electricity 73  Occupants 90 

Supply air heating 0  Ventilation fans 69 

DHW heating 0  DHW sewage losses -191 

Ice resurfacing water 0  DH substation losses -48 

Water radiator heating 0  Infiltration air -37 

Ground frost protection 0  Envelope -56 

Excess heat to swimming hall  0  Other heat loads(+) / losses(-) -1 842 

Notation:   HP = Heat Pump     
  

 

Figure 51 shows hourly heat power of systems (1600 MWh/a) and electricity power (1000 

MWh/a) of the ice hall during the simulated year. In Figure 51, the gap in the middle of the 

year is caused by the summer break. The heat power of systems is caused mainly by supply 

air heating, which is higher during winter. The demand of the electricity power is quite stable 

thorough the year. This is because the electricity demand of ice refrigeration heat pump, ice 

rink coolant pumping, dehumidification, lighting and ventilation fans are stable over the 

whole year. Only dehumidification load is dependent on outdoor weather conditions. 

 



 

 
73 

 

 

Figure 51. Heat power of systems (Red) and electricity power (Blue) during the simulated 

year with summer break for the ice hall (Case 1IH). 

 

Table 27 shows annual energies for the full year reference case of the ice hall. In the full 

year simulation, heat power of systems and electricity power are identical to Figure 51, 

except the powers continue during the summer break cap. The operation time of the full year 

simulation is 40 % longer than the case with summer break. Ice refrigeration heat and 

electricity are increased a corresponding amount of 41 %. Heat energy of systems is 

increased only 31 %, since heat demand is lower during the summer. The lowered heat 

demands are caused by increased heat loads, which are increased by 90 % when excluding 

electricity heat loads. Dehumidification demand is increased by 82 %, since absolute 

humidity of air is higher during summer period. Purchased electricity is increased by 46 % 

due to increased dehumidification.  
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Table 27. Simulated annual energies for the full year reference case of the ice hall (Case 

2IH). 

Energy flows [MWh/a]. The ice hall floor area 6674 m² 

Energy  
balance 1:  
Building 

Heat energy of systems 2 109  Total  
values 

Utilized waste heat 0 

Heat loads from electricity 341  Purchased district heat 2 109 

Other heat loads 676  Purchased electricity 1 466 

Heat losses -3 124  
Breakdown 

of heat 
energy of 
systems 

Supply air heating 1 683 

Total removed heat for use 0  DHW heating 267 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 2 250  Ice resurfacing water freezing 58 

Ice refrigeration HP electricity 818  Water radiator heating 26 

Gray water heat  0  Ground frost protection 76 

Gray water HP electricity 0  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 217 

Dehumidification heat 403  Lighting 244 

Dehumidification electricity 133  Occupants 126 

Supply air heating 0  Ventilation fans 97 

DHW heating 0  DHW sewage losses -267 

Ice resurfacing water 0  DH substation losses -63 

Water radiator heating 0  Infiltration air -18 

Ground frost protection 0  Envelope 30 

Excess heat to swimming hall  0  Other heat loads(+) / losses(-) -2 575 

Notation:   HP = Heat Pump     
  

  

4.3.2 The swimming hall 

Table 28 shows the simulated annual energies for the swimming hall in the reference case 

with summer break. Chapter 3.3 presents approximations for an average consumption of a 

swimming hall to be for district heat 3300 MWh/a and for electricity 1900 MWh/a. The 

corresponding simulated consumption for the Pirkkola swimming hall are for district heat 

2700 MWh/a and for electricity 1400 MWh/a. The lower consumptions are acceptable, since 

the Pirkkola swimming pool surface area is smaller than in the compared swimming halls 

used in the approximation and the water temperature set point (26.5 °C) is low compared to 

guidelines (EPD, 2009:3).  

 

Energy balance 3 of the building shows that heat energy of systems (2700 MWh/a) 

constitutes 60 % of heat losses of the swimming hall (4500 MWh/a). Energy balance 4 of 

technical systems shows zeros as utilization of waste heat is not included in the reference 

cases. Biggest heat energy of system is DHW heating (980 MWh/a), seconded by pool water 

heating (670 MWh/a). Saunas (530 MWh/a) and pool pumps (440 MWh/a) are biggest 

electricity consumers and internal heat loads of the building. Biggest heat losses are caused 

by exhaust air of ventilation. Heat losses of exhaust air are not separated in the simulations, 

but they constitute for the rest of the heat losses of the swimming hall (3300 MWh/a). Adding 

an exhaust air heat pump (EAHP) would greatly reduce heat losses of exhaust air. DHW 

sewage losses (980 MWh) are another significant heat loss, especially in the reference cases, 

since no heat is recovered from sewage water. (Table 28) 
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Table 28. Simulated annual energies for the swimming hall in the reference case with 

summer break (Case 1SH). 

Energy flows [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 

Heat energy of systems 2 717  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  0 

Heat loads from electricity 1 445  Utilized SH waste heat  0 

Other heat loads 365  Excess heat from TES 1 0 

Heat losses -4 487  Excess heat from TES 2 0 

Total removed heat for use 0  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 322 

Energy  
balance 4:  
Technical 
systems 

Heat from the ice hall 0  Supply air preheating 292 

Exhaust air HP heat 0  Pool water heating 669 

Exhaust air electricity 0  Water radiator heating 348 

Gray water heat  0  Underfloor heating 110 

Gray water HP electricity 0  DHW preheating 540 

Supply air preheating 0  DHW heating 436 

Supply air heating 0  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 527 

Water radiator heating 0  Lighting 177 

Underfloor heating 0  Ventilation fans 119 

DHW heating 0  Pool pumps 437 

DHW preheating 0  Equipment 89 

Pool water heating 0  HVAC aux. 96 

Potential excess heat 0  Occupants 300 

Total  
values 

Utilized waste heat 0  Radiation through windows 65 

Purchased district heat 2 717  DHW sewage losses -976 

Purchased electricity 1 404  DH substation losses -82 

    Infiltration air -92 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope -335 

    Other heat losses (exhaust air) -3 263 

 

Figure 52 shows hourly heat power of systems (2700 MWh/a) and electricity power (1400 

MWh/a) of the swimming hall during the simulated year. In Figure 52, the gap in the middle 

of the year is caused by the summer break. The heat power of space and pool water heating 

is reduced during summer due to bigger heat loads to the building. Fluctuation range of 

electricity power stays almost the same thorough the year, since the outdoor temperature and 

humidity affect only the electricity consumption of ventilation fans in the swimming hall 

simulation. 
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Figure 52. Hourly heat power of systems (Red) and electricity power (Blue) during the 

simulated year with summer break for the swimming hall (Case 1SH). 

 

Table 29 shows simulated annual energies for the full year reference case of the swimming 

hall. In the full year simulation, heat power of systems and electricity power are identical to 

Figure 52, except the powers continue during the summer break cap. The full year simulation 

is 13 % longer than the simulation with summer break. Heat energy of systems is increased 

only 9 %, since heat demands are lower during the summer period. Pool water heating is 

increased only 10 %. The lowered heat demands are caused by increased heat loads, which 

are increased by 25 % when excluding electricity heat loads. Electricity demands are 

increased 13 % as expected. 
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Table 29. Annual energies for the full year reference case of the swimming hall (Case 2SH). 

Energy flows [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 

Heat energy of systems 2 951  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  0 

Heat loads from electricity 1 636  Utilized SH waste heat  0 

Other heat loads 458  Excess heat from TES 1 0 

Heat losses -4 997  Excess heat from TES 2 0 

Total removed heat for use 0  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 337 

Energy  
balance 4:  
Technical 
systems 

Heat from the ice hall 0  Supply air preheating 293 

Exhaust air HP heat 0  Pool water heating 734 

Exhaust air electricity 0  Water radiator heating 365 

Gray water heat  0  Underfloor heating 116 

Gray water HP electricity 0  DHW preheating 612 

Supply air preheating 0  DHW heating 494 

Supply air heating 0  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 594 

Water radiator heating 0  Lighting 201 

Underfloor heating 0  Ventilation fans 135 

DHW heating 0  Pool pumps 495 

DHW preheating 0  Equipment 101 

Pool water heating 0  HVAC aux. 109 

Potential excess heat 0  Occupants 340 

Total  
values 

Utilized waste heat 0  Radiation through windows 118 

Purchased district heat 2 951  DHW sewage losses -1 106 

Purchased electricity 1 590  DH substation losses -89 

    Infiltration air -96 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope -361 

    Other heat loads(+) / losses(-) -3 642 
  

4.3.3 Total energy balance 

The energy balance 5 defined in Chapter 4.2 of total ice and swimming hall energy flows is 

shown in Table 30. The total values are a sum of corresponding ice hall and swimming hall 

values.  

 

Table 30. Simulated combined annual energies for ice and swimming halls in the reference 

case with summer breaks (Case 1IH + Case 1SH). 

Combined energy flows [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat 4 331 

Total purchased electricity 2 411 

Total heat loads 721 

Total heat losses  -7 365 

Total potential excess heat 0 
 

Figure 53 shows hourly heat power of systems (4300 MWh/a) and electricity power (2400 

MWh/a) during the simulated year with summer breaks for the total of ice and swimming 

hall. The fast changes in the powers between the hours of 2900 h and 5300 h are caused by 

summer break of the ice hall, while the swimming hall is still open. 
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Figure 53. Hourly heat power of systems (Red) and electricity power (Blue) during the 

simulated year with summer breaks for the total of ice and swimming halls (Case 1IH + Case 

1SH). 

 

Table 31 shows annual energies of the full year reference case for the total of ice and 

swimming halls energy flows. Without summer breaks, the increases in the energies are for 

purchased district heat +17 %, for purchased electricity +27 %, for heat loads +57 % and for 

heat losses +23 %. 

 

Table 31. Simulated annual energies of the full year reference case ice and swimming halls 

(Case 2IH + Case 2SH). 

Combined energy flows [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat 5 060 

Total purchased electricity 3 056 

Total heat loads 1 134 

Total heat losses  -9 094 

Total potential excess heat 0 
  

4.4 Annual energies with utilization of waste heat 

This Chapter presents the results for how much waste heat could be utilized in Pirkkola ice 

and swimming halls. Possible sources of waste heat recovery are ice refrigeration, gray 

water, condensing water from dehumidification and exhaust air. Three cases are presented 

in this Chapter, one without exhaust air heat pump (EAHP) in the swimming hall and two 

cases with different EAHP temperatures in the swimming hall. All of the cases include all 

rest of the sources of waste heat recovery. The cases assume summer breaks. Two cases are 

presented for the ice hall and the swimming hall as a connection scheme with annual energies 

in addition to the Table format. The methodology for these cases is presented in Chapter 3.4. 
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4.4.1 The ice hall 

Table 32 shows the annual energies for the ice hall with utilization of waste heat. Purchased 

district heat is decreased by 99 %, which means the ice hall is self-sufficient for heat energy. 

Total electricity demand increases only by 9 %. The total purchased energy of the ice hall is 

decreased by 45 %. The comparison is done to reference (Case 1IH). The energy of heat 

demand in the ice hall stays the same, since no improvements are made on demand side. The 

cases 3, 4 and 5 are identical between each other for the ice hall. 

 

Also heat losses stay the same, except for DHW sewage losses, which are reduced by 38 % 

due to gray water heat recovery. Utilized waste heat in the ice hall (1600 MWh/s) still leaves 

950 MWh/a of excess heat to be transferred for the swimming hall. Energy balance 2 of 

technical systems shows that ice refrigeration heat dominates as a waste heat source by being 

8 times bigger than condensing heat from dehumidification and 25 times bigger than gray 

water heat. (Table 32) 

 

Table 32. Annual energies for the ice hall with utilization of waste heat (Cases 3, 4 & 5). 

Energy flows [MWh/a]. The ice hall floor area 6674 m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 614  Total  
values 

Utilized waste heat 1 603 

Heat loads from electricity 244  Purchased district heat 22 

Other heat loads 355  Purchased electricity 1 093 

Heat losses -259  
Breakdown 

of heat 
energy of 
systems 

Supply air heating 1 304 

Total removed heat for use -1 953  DHW heating 191 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 593  Ice resurfacing water freezing 42 

Ice refrigeration HP electricity 578  Water radiator heating 23 

Gray water heat  64  Ground frost protection 54 

Gray water HP electricity 16  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155 

Dehumidification heat 221  Lighting 174 

Dehumidification electricity 73  Occupants 90 

Supply air heating -1 266  Ventilation fans 69 

DHW heating -182  DHW sewage losses -118 

Ice resurfacing water -42  DH substation losses -48 

Water radiator heating -23  Infiltration air -37 

Ground frost protection -54  Envelope -56 

Excess heat to swimming hall  -950  Other heat loads(+) / losses(-) 110 

Notation:   HP = Heat Pump     
  

 

Figure 54 presents the annual energies of the ice hall presented in Table 32 as a connection 

scheme with temperatures of all of the heating and waste heat processing systems. The arrow 

sizes of the energy fluxes indicate the amount of energy. 
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Figure 54. Annual energies of the ice hall with utilization of waste heat as a connection 

scheme of waste heat processing systems (Cases 3, 4 & 5). 

 

Figure 54 is depicting the location and direction of all heat fluxes. The heat is transferred 

either as big energy flux arrows or as thin arrows indicating liquid flow rates transferring 

heat. The temperatures of all heating and waste heat processing systems are shown in Figure 

54. Heat from ice refrigeration is divided into high temperature superheat and low 

temperature latent heat. This superheat transferred to water from low temperature TES 

creates the +55 °C high temperature water. All three waste heat sources produce +38 °C 

water for the low temperature TES. Only heating system requiring high temperature water 

is DHW heating, which is fully supplied by high temperature TES. Heating systems 

requiring heat exchangers are shown in Figure 54. Only heating systems requiring district 

heat is supply air heating. The excess heat from both TES tanks is mixed and transferred to 

the swimming hall, in this case as a 38 °C water. 

 

Figure 55 shows a stacked chart of total heat in the ice hall (2600 MWh), divided to 

purchased district heat (red, 1 %), waste heat utilized in the ice hall (orange, 67 %) and 

excess heat in the ice hall (purple, 32 %). The chart shows visually the portion of total heating 

power of the ice hall (red + yellow) compared to total waste heat produced in the ice hall 

(yellow + purple). After summer break, the ice hall has a period of two months, when the 

produced waste heat is exceptionally high. This is caused by the warmer season. The 

utilization of the ice hall excess heat in the swimming hall may encounter limitation, since 

the excess heat is clustered into the warm season. 
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Figure 55. Total heat in the ice hall divided to purchase district heat, waste heat utilized in 

the ice hall and excess heat out from the ice hall (Cases 3, 4 & 5). 

4.4.2 The swimming hall 

Waste heat of ice hall in this thesis is transferred to the swimming hall, which is assumed in 

all cases with waste heat recovery. The utilization of waste heat in the swimming hall is 

separated for waste heat from the ice hall and for waste heat from the swimming hall. The 

calculations were done with an assumption, that the swimming hall utilizes its own available 

waste heats before it utilizes the waste heat from the ice hall. This way it is possible to 

observe, how much of the ice hall waste heat is used in the swimming hall compared to a 

case where the swimming hall only utilizes its own waste heats. 

 

Case 3, utilization of waste heat in the swimming hall 

 

Table 33 shows the annual energies for the swimming hall with utilization of waste heat. 

The case does not include exhaust air heat pump (EAHP). Thus, only waste heat source from 

the swimming hall is gray water (240 MWh/a) in addition to excess waste heat from the ice 

hall (950 MWh/a). Purchased district heat is decreased by 26 %, while electricity demand is 

increases only by 4 %. The heat energy of heating systems in the swimming hall stays the 

same, since no changes are made on demand side. Total of utilized waste heat is 730 MWh/a, 

of which 77 % is excess heat from the ice hall. All of the waste heat is from low temperature 

TES, which limits the utilization, since most of the swimming hall heat demands require 

high temperature heat. Heat losses are reduced by 4 % due to gray water heat recovery, which 

reduces DHW sewage losses by 27 %. (Table 33) 
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Table 33. Annual energies for the swimming hall with utilization of waste heat but without 

exhaust air heat pump (Case 3). 

Energy flows [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 

Heat energy of systems 2 717  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  557 

Heat loads from electricity 1 445  Utilized SH waste heat  162 

Other heat loads 365  Excess heat from TES 1 512 

Heat losses -4 299  Excess heat from TES 2 0 

Total removed heat for use -188  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 322 

Energy  
balance 4:  
Technical 
systems 

Heat from the ice hall 950  Supply air preheating 292 

Exhaust air HP heat 0  Pool water heating 669 

Exhaust air electricity 0  Water radiator heating 348 

Gray water heat  188  Underfloor heating 110 

Gray water HP electricity 49  DHW preheating 540 

Supply air preheating -232  DHW heating 436 

Supply air heating 0  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 530 

Water radiator heating 0  Lighting 177 

Underfloor heating -71  Ventilation fans 118 

DHW heating 0  Pool pumps 437 

DHW preheating -417  Equipment 89 

Pool water heating 0  HVAC aux. 108 

Potential excess heat -458  Occupants 300 

Total  
values 

Utilized waste heat 720  Radiation through windows 65 

Purchased district heat 1 997  DHW sewage losses -715 

Purchased electricity 1 462  DH substation losses -83 

    Infiltration air -90 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope -334 

    Other heat loads(+) / losses(-) -3 077 

 

Figure 56 presents the annual energies of the swimming hall presented in Table 33 as a 

connection scheme with temperatures of all of the heating and technical systems. The arrow 

sizes of the energy fluxes indicate the amount of energy. 
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Figure 56. Annual energies of the swimming hall with utilization of waste heat as a 

connection scheme of waste heat processing systems (Case 3). 

 

Figure 56 shows how waste heat from the ice hall (bottom right) is transferred to low 

temperature TES tank. If the TES tank is full, the waste heat from the ice hall becomes 

potential excess heat out from the total system. All the swimming hall heat demands, except 

for underfloor heating, require high temperature heat. 

 

Figure 57 shows a stacked chart of the total heat in the swimming hall (3200 MWh), divided 

to purchased district heat (red, 63 %), waste heat utilized in the swimming hall (orange, 623 

%) and potential excess heat from the swimming hall (purple, 14 %). The chart shows 

visually the portion of total heating power of the swimming hall (red + yellow) compared to 

total waste heat produced in the total system (yellow + purple). 
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Figure 57. Total heat in the swimming hall divided to purchase district heat, waste heat 

utilized in the swimming hall and potential excess heat out from the swimming hall (Case 3). 

 

Figure 57 shows well, that the waste heat remains unused while district heat is purchased. 

This is consequence from the temperature mismatch between the low temperature waste heat 

and high temperature heat demands. Thought potential excess heat from the swimming hall 

(purple) may seem in the chart bigger than its portion (14 %) due to small spikes coloring 

large areas. 

 

Case 4, utilization of waste heat in the swimming hall with low temperature EAHP 

 

The comparison for energies is done against the reference case. Table 34 shows the annual 

energies for the swimming hall with utilization of waste heat and with low temperature 

EAHP. The EAHP cools the exhaust air to a temperature of +5 °C and raises the condensation 

heat to a temperature of +40 °C. Purchased district heat is decreased in this case by 44 %, 

while electricity demand is increases greatly by 50 %. Total of utilized waste heat is 1200 

MWh/a, of which 30 % is excess heat from the ice hall. Heat losses are reduced by 38 % due 

to EAHP. (Table 34) EAHP produces a huge amount of waste heat (2100 MWh/a) but 

increases the amount of utilized waste heat by only 500 MWh/a compared to case 3 where 

EAHP is not used. Thus, only 29 % of EAHP is utilized. All of the waste heat is from low 

temperature TES, which greatly limits the utilization, since most of the swimming hall heat 

demands require high temperature heat. Thus, the rest of the cases are done with an EAHP 

with high condensation temperature, which is able to supply all of the swimming hall heat 

demands. 
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Table 34. Annual energies for the swimming hall with utilization of waste heat with low 

temperature EAHP (Case 4). 

Energy flows [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 

Heat energy of systems 2 749  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  378 

Heat loads from electricity 1 459  Utilized SH waste heat  794 

Other heat loads 365  Excess heat from TES 1 2 266 

Heat losses -2 769  Excess heat from TES 2 0 

Total removed heat for use -1 764  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 332 

Energy  
balance 4:  
Technical 
systems 

Heat from the ice hall 950  Supply air preheating 292 

Exhaust air HP heat 1 576  Pool water heating 688 

Exhaust air electricity 450  Water radiator heating 349 

Gray water heat  188  Underfloor heating 112 

Gray water HP electricity 49  DHW preheating 540 

Supply air preheating -281  DHW heating 436 

Supply air heating -43  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 530 

Water radiator heating -225  Lighting 177 

Underfloor heating -106  Ventilation fans 118 

DHW heating -49  Pool pumps 437 

DHW preheating -523  Equipment 89 

Pool water heating -13  HVAC aux. 108 

Potential excess heat -2 267  Occupants 300 

Total  
values 

Utilized waste heat 1 240  Radiation through windows 65 

Purchased district heat 1 509  DHW sewage losses -715 

Purchased electricity 2 107  DH substation losses -83 

    Infiltration air -90 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope -334 

    Other heat loads(+) / losses(-) -1 546 

 

Figure 58 shows a stacked chart of total heat in the swimming hall (5000 MWh), divided to 

purchased district heat (red, 30 %), waste heat utilized in the swimming hall (orange, 25 %) 

and potential excess heat from the swimming hall (purple, 45 %). Figure 58 shows well the 

ratio of the unused waste heat. Thought excess heat from the swimming hall (purple) may 

seem in the chart bigger than its portion (45 %) due to small spikes coloring large areas. 
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Figure 58. Total heat in the swimming hall divided to purchase district heat, waste heat 

utilized in the swimming hall and potential excess heat out from the swimming hall (Case 4). 

 

Case 5, utilization of waste heat in the swimming hall with high temperature EAHP 

 

In this case, the total purchased energy of swimming hall is decreased by 18 % compared to 

reference (Case 1SH). An EAHP with high condensation temperature of +60 °C is able to 

supply all of the swimming hall heat demands. In this case, also the temperature of exhaust 

air cooling is raised to +10 °C to limit huge amount of excess heat. 

 

Table 35 shows the annual energies for the swimming hall. EAHP produces 1400 MWh/a of 

high temperature heat in addition to low temperature heat produced by gray water heat pump 

(240 MWh/a) and excess waste heat from the ice hall (950 MWh/a). Portion of waste heat 

utilized (1100 MWh/a) from EAHP is 78 %. Purchased district heat is decreased by huge 

amount of 72 %, while electricity demand is increases only by 34 %. Total of utilized waste 

heat is 2000 MWh/a, of which only 28 % is excess heat from the ice hall. Heat losses are 

reduced by 28 % mainly due to EAHP. The heat energy of heating systems in the swimming 

hall stays the same. (Table 35)  
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Table 35. Annual energies for the swimming hall with utilization of waste heat and high 

temperature EAHP (Case 5). 

Energy flows [MWh/a]. The swimming hall floor area 7982 m² 

Energy  
balance 3:  
Building 

Heat energy of systems 2 746  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  558 

Heat loads from electricity 1 455  Utilized SH waste heat  1 415 

Other heat loads 365  Excess heat from TES 1 512 

Heat losses -3 218  Excess heat from TES 2 316 

Total removed heat for use -1 308  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 331 

Energy  
balance 4:  
Technical 
systems 

Heat from the ice hall 950  Supply air preheating 292 

Exhaust air HP heat 1 121  Pool water heating 687 

Exhaust air electricity 320  Water radiator heating 349 

Gray water heat  188  Underfloor heating 112 

Gray water HP electricity 49  DHW preheating 540 

Supply air preheating -232  DHW heating 436 

Supply air heating -263  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 530 

Water radiator heating -331  Lighting 177 

Underfloor heating -72  Ventilation fans 118 

DHW heating -332  Pool pumps 437 

DHW preheating -417  Equipment 89 

Pool water heating -280  HVAC aux. 104 

Potential excess heat -827  Occupants 300 

Total  
values 

Utilized waste heat 1 973  Radiation through windows 65 

Purchased district heat 773  DHW sewage losses -715 

Purchased electricity 1 921  DH substation losses -83 

    Infiltration air -90 

Notation:   SH = swimming hall,   HP = Heat Pump  Envelope -335 

    Other heat loads(+) / losses(-) -1 996 

 

Figure 59 presents the annual energies of the swimming hall presented in Table 35 as a 

connection scheme with. Figure 59 shows how different heat demands of the swimming hall 

are supplied mostly by high temperature waste heat. Pool water heating is supplied as the 

last heat demand with waste heat and thus only 41 % portion of pool water heating is supplied 

with waste heat. All other heat demands are mostly covered with waste heat. 
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Figure 59. Annual energies of the swimming hall with utilization of waste heat and high 

temperature EAHP (Case 5) as a connection scheme of waste heat processing systems. 

 

Figure 60 shows a stacked chart of total heat in the swimming hall (3600 MWh), divided to 

purchased district heat (red, 22 %), waste heat utilized in the swimming hall (orange, 55 %) 

and excess heat out from the swimming hall (purple, 23 %). 

 

 

Figure 60. Total heat in the swimming hall divided to purchase district heat, waste heat 

utilized in the swimming hall and potential excess heat out from the swimming hall (Case 5). 
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Figure 60 shows visually the portion of the total heating power of the swimming hall (red + 

yellow) compared to total waste heat produced in the combined system (yellow + purple). 

Figure 60 shows the ratio of the utilized waste heat. Only a period after summer breaks has 

a significant amount of potential unused excess waste heat due to warmer season. Most of 

the potential excess heat to other buildings is low temperature excess heat from the ice hall. 

4.4.3 Total energy balance 

The energy balance 5 defined in Chapter 4.2 of total ice and swimming halls energy flows 

for cases 3, 4 and 5 are shown in Tables 36, 37 and 38. The total values are a sum from 

corresponding ice hall and swimming hall case values.  

 

Table 36. Simulated combined annual energies for ice and swimming halls with utilization 

of waste heat but without EAHP (Case 3). 

Combined energy flows [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat 2 019 

Total purchased electricity 2 554 

Total heat loads 721 

Total heat losses  -4 558 

Total potential excess heat -633 

 

For the case 3, the total purchased district heat is reduced by 53 %, mostly due to self-

sufficient the ice hall for heat. Total purchased electricity is increased only by 6 %, since 

only gray water heat pumps consume additional electricity compared to the reference case. 

Total heat loads stay the same, but heat losses decrease by 38 % due to recovered heat. Total 

potential excess heat (630 MWh/a) is not included in the heat losses, since it could be utilized 

elsewhere. 

 

Table 37. Simulated combined annual energies for ice and swimming halls with utilization 

of waste heat with low temperature EAHP (Case 4). 

Combined energy flows [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat 1 531 

Total purchased electricity 3 205 

Total heat loads 721 

Total heat losses  -3 028 

Total potential excess heat -2 267 

 

For the case 4, the total purchased district heat is reduced by 65 %. Total purchased 

electricity is increased by 33 % mostly due to EAHP. Total heat loads stay the same, but 

heat losses decrease by 41 % due to recovered heat. Total excess heat is huge (2300 MWh/a), 

mostly due to EAHP. 
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Table 38. Simulated combined annual energies for ice and swimming halls with utilization 

of waste heat and high temperature EAHP (Case 5). 

Combined energy flows [MWh/a]. Total floor area 14656 m² 

Energy  
balance 5: 

Total 

Total purchased district heat 795 

Total purchased electricity 3 019 

Total heat loads 721 

Total heat losses  -3 477 

Total potential excess heat -827 
 

 

For the case 5, the total purchased district heat is reduced by huge amount of 82 %, while 

purchased electricity is increased only by 25 %. This indicates huge energy cost savings. 

Total heat loads stay the same, but heat losses decrease by 53 % due to recovered heat. Total 

amount of potential excess heat is moderate (830 MWh/a). 

4.5 Annual energy cost savings and energies with smart control 

This Chapter presents the results for smart control of energy system, which includes demand 

response and smart control of exhaust air heat pump (EAHP). The different systems 

controlled with demand response are ice refrigeration (Case 6IH), swimming pool water 

(Case 7SH), smart EAHP and saunas (Case 8). Cases 9 and 10 include all of the mentioned 

demand response systems. Case 10 is calculated as an exception without summer break. 

Cases 6IH and 7SH do not include waste heat recovery, which makes the analyzing of demand 

response more distinct. The methodology for these cases is presented in Chapter 3.5. Tables 

showing all annual energy fluxes for these cases are provided as an Appendix (Appendix H). 

4.5.1 The ice hall 

The case 6IH does not include WHR to clarify the benefits of demand response of electricity 

for ice refrigeration. This system is implemented also for cases from 9 to 13. 

 

The temperature set points for ice in demand response cases are -6 °C and -3 °C and in the 

reference case only -3 °C. In addition, the air temperature is lower in demand response cases. 

The temperature set point of indoor air is decreased the same amount as the ice temperature. 

The changes in annual energy consumptions are small compared to the reference case. Lower 

heating set point of indoor air causes lowered heat energy of systems, which are reduced by 

3.7 % due to reduced heat demand of supply air. Purchased electricity remained about the 

same (-0.2 %), while electricity consumption of ice refrigeration is increased by 3 MWh/a 

and dehumidification is decreased by 5 MWh/a. Demand response of electricity for ice 

refrigeration decreases the total electricity costs of the ice hall by 1.9 %.  

 

A surface temperature of ice is used to control the ice temperature. On average, the inside 

temperature of ice is 0.4°C colder than the surface. The temperatures of the two ice rinks in 

the ice hall are almost identical. The average temperature of the two rinks differs only by 

0.07 °C. Figure 61 shows an example period (The two last weeks of December) for ice 

temperature of the ice rink in the bigger hall, which is controlled with demand response. 
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Figure 61. Ice temperature controlled with demand response for an example period (The 

two last weeks of December). 

 

The ice temperature controlled with demand response follows daily cycles, since the 

electricity price is mostly classified as cheap during nights and as expensive during days 

(Figure 61). The cycles are not exactly identical, since the electricity price does differ 

between days. The average ice and air temperatures for the reference case are -3.0 °C and 

6.0 °C, and for cases with demand response -3.6 °C and 5.4 °C respectively. Figure 62 shows 

the ice temperature for the first day (24 hours) of the two-week period, where the night time 

temperature of the ice is reduced to -4.5 °C and in the day time the temperature is normalized 

to -3.0 °C 

 

 

Figure 62. Ice temperature controlled with demand response for an example day. 

 

The ice temperature has a delay from 1 to 2 hours, before it starts fully increasing (Figure 

62). This delay is caused either by heat loads of ice hall, which take hours to have a full 

effect after the hall opening, or by ice refrigerator system, which takes time to adjust to the 

new temperature set point. The refrigerator works in decreased power during the time, when 
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the ice temperature is increasing. Thus, the model for demand response of ice refrigeration 

works as intended. The low thermal capacity of ice is the reason, why only a small portion 

of the daily expensive electricity can be saved. 

 

With demand response of ice refrigeration the average price of purchased electricity and the 

total electricity costs of the ice hall are decreased by 1.9 %. Purchased district heat energy is 

reduced by 3.7 % due to lower average indoor temperature and district heating costs are 

reduced by 3.9 %. The total energy cost saving in ice hall is 2.9 %. Figure 63 shows 

electricity prices as a function cumulative distribution of purchased electricity energy for the 

reference case and a case with demand response of ice refrigeration. 

 

 

Figure 63. Electricity prices as a function of cumulative distribution of purchased electricity 

energy for reference (Case 1IH) and with demand response of ice refrigeration (Case 6IH). 

 

Figure 63 shows the difference between electricity prices of purchased electricity energies. 

The difference can be seen for 50 % of the expensive end of the cumulative distribution. For 

example at electricity price of 90 €/MWh, the cumulative purchased electricity is for the 

reference case 39.6 % and for demand response case only 37.7 %. This difference of 1.9 % 

corresponds well to the reduced electricity costs of 1.9 % for ice hall. 

 

The case 10 for the ice hall includes demand response as case 6IH does, except it does not 

include summer breaks. The length of full year simulation for ice hall is 40 % longer, than 

with summer break. Most of the heat loads and system annual energies are increased by the 

corresponding 40 %. However, the benefits of demand response of ice refrigeration increase 

even more, since the ice refrigeration electricity is increased by +46 %. 

4.5.2 The swimming hall 

Case 7, demand response of district heat for pool water heating 

 

This case does not include WHR to clarify the benefits of only demand response of district 

heat for swimming pool and pool space air. The average temperature of big pool water 
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increases from the normal set point of 26.5 °C to 27.3 °C and the children pool water 

increased from 26.5 °C to 26.8 °C. The temperature set point of pool space air is kept 2 °C 

higher than pool water temperature. These higher heating set points increased heat energy of 

systems and purchased district heat by 1.7 %. In this case, the district heating costs of 

swimming hall decrease by 1.1 %. Pool water heating is increased by 5.5 %. Other than these 

changes, the annual energies of swimming hall have stayed the same as in the reference case 

1SH. 

 

Figure 64 shows water temperature through the year for the big pool and Figure 65 for the 

children pool. The big pool has 4 times more surface area and thus has bigger heat demand. 

 

 

Figure 64. Water temperature of the big pool with demand response through the year with 

summer break. 

 

 

Figure 65. Water temperature of the children pool with demand response through the year 

with summer break. 
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The big pool is average of 2 times more deep than the children pool and thus has about two 

times higher thermal capacity. The bigger thermal capacity of water increases the potential 

of demand response. With the used control strategy, the longest period, when the water 

temperature is over the normal set point of 26.5 °C is 25 days (hours 200 to 800, Figure 64). 

The average temperatures are higher during the first half of the year (27.5 and 27.0 °C) than 

the second half of the year (27.1 and 26.7 °C). This is caused by district heating trends of 

decreasing price during the first half of the year and increasing price trends during the second 

half of the year. This effect could be compensated with a more advanced control algorithm, 

which takes into account the price trends. 

 

The average purchased district heat price is decreased by 2.8 % in the swimming hall with 

demand response of pool water heating. Figure 66 shows district heat price as a function of 

cumulative distribution of purchased district heat energy for the reference case and a case 

with demand response of pool water heating. The total district heat costs of swimming hall 

are reduced by 1.1 %, which is less than the change in average price, since the total purchased 

district heat has increased. The total energy cost saving in swimming hall is 0.4 %. 

 

 

Figure 66. District heat price as a function of cumulative distribution of purchased district 

heat energy for the reference case 1SH and with demand response of district heat for pool 

water heating (Case 6SH). 

 

Figure 66 shows the difference between prices of purchased district heat. The difference can 

be seen for about 25 % of the expensive end of the cumulative distribution. For example at 

district heat price of 75 €/MWh, the cumulative purchased district heat is for the reference 

case 21.9 % and for demand response case only 20.7 %. This difference of 1.2 % corresponds 

well to the reduced district heat costs of 1.1 % for the swimming hall. 
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Demand response of electricity in swimming hall and smart EAHP reduce the total energy 

cost of the swimming hall by 23 %. The district heating costs of the swimming hall decreased 

by 64 %, while the electricity costs of swimming hall increased only by 23 %. The 

comparison is done to reference (Case 1SH). The annual energies in this case are the same as 

in case 5, except for EAHP, pool water heating and saunas. Swimming pool water heating, 

sauna heating and EAHP are controlled with demand response of electricity in this case. 

 

The average price of purchased electricity in the swimming hall decreases by 2.0 % 

compared to the reference case and 1.2 % compared to the case 5 without demand response. 

Figure 67 shows electricity price as a function of cumulative distribution of purchased 

electricity for the reference case and this case with demand response of electricity in the 

swimming hall. 

 

 

Figure 67. Electricity price as a function of cumulative distribution of purchased electricity 

energy for reference (Case 1SH) and with demand response of electricity for swimming hall 

(Case 8SH). 

 

Figure 67 shows the difference between prices of purchased electricity. The difference can 

be seen for about 60 % of the expensive end of the cumulative distribution. For example at 

electricity price of 90 €/MWh, the cumulative purchased electricity is for the reference case 

45 % and for demand response case only 39 %. 

 

The swimming pool heating uses also district heating during times, when waste heat is not 

available. The maximum design power of the big pool is limited in this case to 120 W/m2 

(per water surface area) from the default of 200 W/m2. Without doing this reduction in this 

case, the temperature of the big pool water would not normalize to the normal set point of 

+26.5 °C from the higher temperature set point of +30 °C. This is caused by higher 

temperature set point during each night, which is caused by cheap electricity during the 

nights. In addition, the significant thermal capacity of the big swimming pool prevents the 

pool from cooling down. Limiting the maximum design power prevented the temperature of 
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the big pool water from increasing over +27 °C. A maximum temperature between +28 °C 

and +30 °C would have been optimal but was not achieved. 

 

Temperatures of big pool and children pool water are both controlled with demand response. 

The following figures present the temperature of the big pool. In this case, the average 

temperature of the big pool water decreased from the normal set point of 26.5 to 26.3 °C. 

Pool water heating stays about the same as in case 5 (-0.5 %), even though the average 

temperature is lower. This is probably caused by time mismatch between heat received from 

EAHP and heat demand of pool water heating. Figure 68 shows the water temperature 

through the year for the big pool. 

 

 

Figure 68. Water temperature of the big pool through the year with summer break. Demand 

response of electricity for EAHP is utilized in swimming pool water heating. 

 

The water temperature stays close to the normal set point of 26.5 °C through the year, which 

is not intended. This relatively constant temperature limits the benefits of demand response. 

Thus, the performance of the algorithm of pool water heating controlled with demand 

response of EAHP electricity is not optimal. Still, the total energy cost savings is higher than 

any previous cases. 

 

Saunas are heated during opening times. With demand response of electricity, saunas have 

two temperature set points, 75 and 90 °C, compared to one temperature set point of 85 °C in 

reference (Case1IH). Average sauna temperature stays close to reference with 1 °C decrease 

and heating energy of saunas decreased by 2 % compared to the reference case. Figure 69 

shows sauna temperature controlled with demand response of electricity during an example 

period (The last week of December). 
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Figure 69. Sauna temperature controlled with demand response of electricity during an 

example period (The last week of December). 

 

Figure 69 shows, how the sauna temperature decreases rapidly, when the temperature set 

point is lowered. Thus, saunas are not suitable for loading strategy of demand response. The 

saunas in the model did have lower thermal capacity than the rest of the building. While 

increasing the concrete thickness would increase thermal capacity of saunas, it would not 

decrease the heat losses. Thus, saunas are suitable mainly for peak clipping strategy of 

demand response. The sauna temperature set point is decreased for most of the days from 17 

to 20 according to the highest electricity prices of the day. 

 

In the case 5, the EAHP with constant evaporation temperature produces a lot of excess heat. 

In this case 8 and the following cases, the smart EAHP adjusts the temperature set point of 

exhaust air to match the heat demand of the upcoming hour. The algorithm is presented in 

Chapter 3.5.4. The condensation temperature of EAHP is kept at the same constant value of 

+60 °C as in the case 5.  

 

The smart EAHP decreases the electricity consumption by 29 MWh/a compared to the case 

5, which corresponds to 1.6 % decrease in electricity consumption of the swimming hall. 

The energy cost savings are assumable even more, since the smart EAHP is turned off during 

12 % of hours of most expensive electricity price. The smart EAHP produces 1310 MWh/a 

heat, of which 87 % (1130 MWh/a) is utilized. The EAHP with a constant evaporation 

temperature of +10 °C (Case 5) produces 1440 MWh/a heat, of which 78 % (1130 MWh/a) 

is utilized. Thus, the smart EAHP is about 10 % more efficient in terms of producing utilized 

waste heat. 

 

A breakdown of total heat in the swimming hall is very close to a stacked chart presented 

for case 5 in Chapter 4.4.2 (Figure X). The small changes being that the purchased district 

heat is decreased from 22 to 20 %, waste heat utilized in the swimming hall is increased 

from 55 to 57 % and potential excess heat from the swimming hall stays at 23 %. 

 

Cases 9 and 10 , demand response of combined electricity and district heat in swimming 

hall and smart EAHP 

 

These cases include demand response of electricity for smart EAHP and saunas, and as a 

new system to previous cases; demand response of combined electricity and district heat for 
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heating of swimming pool water and pool space air. The yearly opening times are different 

for cases 9 and 10, since case 10 does not include a summer break. 

 

The only difference between case 9 and the previous case 8 is the addition of demand 

response of district heat for heating of swimming pool water and indoor air. Figure 70 shows 

water temperature through the year for the big pool. The average water temperatures during 

the year are for these cases 26.9 °C (Case 9) and 26.8 °C (Case 10), which are 0.4 °C lower 

than with demand response of electricity (Case 8), but 0.5 °C higher than with demand 

response of district heat (Case 7). The average temperature of pool water for these cases is 

with the set targeting range. 

 

 

Figure 70. Water temperature through the year for the big pool with demand response of the 

combined electricity and district heat for heating of the water. 

 

Demand response of electricity (Case 8) caused long periods of high water temperature 

during winter. With this combined electricity and district heat algorithm, the long periods of 

high water temperature were not caused. Figure 70 shows, that the only period of high water 

temperature (hours 1800 to 2000) was reversed to normal temperature set point of 26.5 °C 

as soon as it reached the higher temperature set point of 30 °C. Thus, the algorithm keeps 

the water temperature at intended ranges better than in case 8. However, compared to case 

8, the utilized waste heat to pool water heating is decreased by 8 % (30 MWh/a). This 

decrease in utilized heat is assumable caused by the time mismatch of demand response of 

EAHP and the actual heating power of pool water heating. 

 

The average price of purchased electricity in swimming hall in this case 9 is decreased 

compared to reference (Case 1SH) by the same amount of 2.0 % as in case 8. The average 

price of purchased district heat is increased by 12 % compared to the reference case. 

However, this increase does not imply the faultiness of demand response, since the annual 

purchased district heat in swimming hall is reduced by 68 % due to utilization of waste heat, 

which changes the profile of purchased district heat prices. 

 

Case 10 for swimming hall is identical to the presented case 9, except it does not include 

summer breaks. The length of full year simulation for the swimming hall is 13 % longer, 
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than with summer break. Most of the heat loads and system annual energies are increased by 

the corresponding 13 %. Exception increases in annual energies are pool water heating (+10 

%), supply air heating (+3 %) and water radiator and underfloor heating (+5 %). Purchased 

district heat is increased only by 2 % due to increased excess heat from the ice hall (+68 %) 

and lower space heating demand, which are caused by the warm summer season.  

4.5.3 Total energy balance 

The energy balance 5 (defined in Chapter 4.2) of total ice and swimming halls annual energy 

flows for cases 6 to 10 are shown in Table 39. The energy balance for case 6IH is calculated 

by combining the ice hall energy flows with reference (Case 1SH) swimming hall energy 

flows. The energy balance for case 7SH is calculated by combining the swimming hall energy 

flows with reference (Case 1IH) ice hall energy flows. 

 

Explanations for the cases: 

- Case 6IH + Case 1SH: demand response of electricity for ice refrigerator. 

- Case 7SH + Case 1IH: demand response of district heat for pool water heating. 

- Case 8: demand response of electricity in swimming hall and smart EAHP. 

- Case 9: demand response of electricity for ice refrigerator, demand response of 

combined electricity and district heat in swimming hall and smart EAHP. 

- Case 10: same as case 9, but full year without summer breaks. 

 

Table 39. Simulated combined annual energies for ice and swimming halls for cases 6 to 10. 

Combined energy flows [MWh/a] 
Total floor area 14656 m² 

Case 6IH + 
Case 1SH 

Case 7SH + 
Case 1IH 

Case 8 Case 9 Case 10 

Energy  
balance 
5: Total 

Total purchased district heat 4 271 4 378 795 921 949 

Total purchased electricity 2 410 2 411 2 948 2 947 3 720 

Total heat loads 718 718 722 717 1 147 

Total heat losses  -7 303 -7 409 -3 558 -3 547 -3 881 

Total potential excess heat 0 0 -696 -847 -1 514 

 

Table 39 shows the differences between the cases where cases 6IH and 7SH do not include 

waste heat recovery and thus have energy flows close to the reference case (Case 1IH + Case 

1SH) with differences less than 1 %. Cases 8 and 9 have the least purchased district heat and 

electricity of the presented cases. Case 10 annual energy values are bigger than in cases 8 

and 9, since it does not include summer break. 

4.6 Purchased district heat with bigger thermal energy storages 

This Chapter presents the results for cases 82h, 92h and 102h. These cases are identical to cases 

8, 9 and 10, which are presented in the Chapter 4.5, except the thermal energy storage (TES) 

capacities are increased. The increase in TES capacities allows more waste heat to be 

utilized, which decreases the amount of purchased district heat. The TES capacities are 

expressed as discharge times during average heat demands. The TES discharge times are 

increased from 30 minutes to 2 hours. The methodology for TES is presented in Chapter 

3.4.1. Tables showing all annual energy fluxes for these cases are provided in Appendix H. 

 

The ice hall is almost self-sufficient in terms of heat (99 %) even with smaller TES tanks. 

By increasing the TES tanks for cases 8, 9 and 10, the amounts of annual purchased district 
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heat decrease from 22 to 14 MWh/a (Case 82h), from 50 to 19 MWh/a (Case 92h) and from 

57 to 19 MWh/a (Case 102h). The swimming hall has a bigger potential for increasing TES 

capacities, since swimming hall still purchased about 30 % of its heat demands as district 

heat for cases 8, 9 and 10. The changes for total utilized waste heats for the cases are 

presented in Table 40. 

 

Table 40. Changes in total utilized waste heats for cases 8, 9 and 10 with bigger TES tanks 

in ice and swimming halls. 

Case number 8 82h 9 92h 10 102h 

Unit [MWh/a] [ΔMWh/a] [MWh/a] [ΔMWh/a] [MWh/a] [ΔMWh/a] 

Total utilized waste 
heat in ice hall 

1 603 +8 1 506 +32 1 979 +38 

Total utilized waste 
heat in swimming hall 

1 965 +45 1 890 +73 2 110 +92 

Total purchased district 
heat in ice and 
swimming hall 

795 -53 921 -105 949 -130 

 

TES tanks with 2 hour discharge time decrease the amount of the total purchased district 

heat a further 7 %, 11 % and 14 % for cases 8, 9 and 10 respectively (Table 40). Case 9 

benefits more from bigger TES tanks than case 8, since more waste heat is unutilized due to 

different algorithm. Case 10 without summer breaks benefits even more than case 9 due to 

longer operation period. The amount of purchased district heat stay relatively low, since the 

smart EAHP is not able to produce enough high temperature waste heat even with the 

minimum evaporation temperature of 0 °C (maximum power) during the coldest periods of 

the year. The coldest periods of the year are in average longer than the discharge time of 2 

hours used for the bigger TES tanks. The investment for bigger TES tanks in swimming hall 

is more cost-effective than in ice hall. 

4.7 Annual energy comparison 

Table 41 shows annual purchased district heat, electricity and total energies for the 

swimming hall, the ice hall and the total energy consumption for all the 13 cases. The 

numbers are rounded to nearest tens. The reference cases 1 and 2 are used as a comparison 

and are thus not included in Table 41. In addition, the non-worthwhile case with low 

condensation temperature EAHP (Case 4) is left out. Cases 10 and 102h are compared to the 

reference without summer breaks (Case 2) and the rest of the cases are compared to the 

reference with summer breaks (Case 1). Negative values mean a decrease and positive values 

mean an increase compared to the reference case. 
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Table 41. Absolute and relative changes in annual energies compared to the reference cases. 

Case 
[ΔMWh/a] 

3 5 6 7 8 9 10 82h 92h 102h 

SH 

DH -720 -1 940 0 +50 -1 940 -1 850 -2 060 -1 990 -1 920 -2 150 

EL +60 +520 0 0 +450 +450 +490 +460 +460 +530 

Tot -660 -1 430 0 +50 -1 500 -1 390 -1 560 -1 520 -1 460 -1 620 

IH 

DH -1 590 -1 590 -60 0 -1 590 -1 560 -2 050 -1 600 -1 590 -2 090 

EL +90 +90 0 0 +90 +90 +170 +90 +90 +170 

Tot -1 510 -1 500 -60 0 -1 500 -1 480 -1 880 -1 510 -1 510 -1 920 

SH + 
IH 

DH -2 310 -3 540 -60 +50 -3 540 -3 410 -4 110 -3 590 -3 510 -4 240 

EL +140 +610 0 0 +540 +540 +660 +550 +540 +700 

Tot -2 170 -2 930 -60 +50 -3 000 -2 870 -3 450 -3 030 -2 970 -3 540 

Case 
[Δ%] 

3 5 6 7 8 9 10 82h 92h 102h 

SH 

DH -26 % -72 % 0 % +1.7 % -72 % -68 % -70 % -73 % -71 % -73 % 

EL +4 % +37 % 0 % -0.0 % +32 % +32 % +31 % +33 % +33 % +33 % 

Tot -16 % -35 % 0 % +1.1 % -36 % -34 % -34 % -37 % -35 % -36 % 

IH 

DH -99 % -99 % -3.7 % 0 % -99 % -97 % -97 % -99 % -99 % -99 % 

EL +9 % +9 % -0.2 % 0 % +9 % +9 % +12 % +9 % +9 % +12 % 

Tot -57 % -57 % -2.4 % 0 % -57 % -56 % -53 % -58 % -58 % -54 % 

SH + 
IH 

DH -53 % -82 % -1.4 % +1.1 % -82 % -79 % -81 % -83 % -81 % -84 % 

EL +6 % +25 % -0.1 % -0.0 % +22 % +22 % +22 % +23 % +23 % +23 % 

Tot -32 % -43 % -0.9 % +0.7 % -44 % -43 % -42 % -45 % -44 % -44 % 

SH = swimming hall, IH = ice hall, DH = district heat, EL = electricity, Tot = total DH + EL 

 

The purchased district heat in swimming hall decreases significantly more in cases, which 

include EAHP with high condensation temperature (case 5 and cases 8 onwards). The 

downside of the EAHP with high condensation temperature is the increased electricity 

consumption. Most of the waste heat in ice hall does not require additional electricity 

consumption, since the ice refrigeration and dehumidification are mandatory. This shows in 

bigger total consumed energy reduction with utilization of all waste heat in ice hall (-53 to -

58 %) than in swimming hall (-34 to -37 %). (Table 41) 

 

Cases 6 and 7 include demand response without utilization of waste heat. The annual 

energies in these cases stay close to reference, since the demand response does not aim on 

changing the energy mounts. The total decrease in annual purchased district heat due to 

bigger TES tanks for cases 82h, 92h and 102h are -1.2 %, -2.4 % and -2.6 % respectively, but 

the values are overwhelmed by the decreases due to utilization of waste heat. (Table 41) 

4.8 Cost investment analysis 

This Chapter presents the savings and cost investment analysis. Table 42 shows annual 

purchased district heat, electricity and total energy costs for swimming hall, ice hall and total 

energy costs for all the 13 cases. The numbers are in thousands of euros and are calculated 

with hourly energy prices, which include all fees and value-added taxes (VAT). The 

reference case total energy costs are with summer breaks 463 000 € and without summer 

breaks 549 000 €. 
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Table 42. Annual purchased district heat, electricity and total energy costs for swimming 

hall, ice hall and total energy costs for all the 13 cases. The absolute values are in thousands 

of euros. 

Case 
[k€] 

1 2 3 4 5 6 7 8 9 10 82h 92h 102h 

SH 

DH 155 165 120 88 58 155 153 54 56 58 52 52 53 

EL 127 143 132 188 172 127 127 164 164 184 164 164 184 

Tot 282 308 252 276 231 282 280 218 220 242 216 216 237 

IH 

DH 92 112 4 2 2 88 92 2 4 4 1 2 2 

EL 89 128 95 97 97 87 89 97 95 140 97 95 140 

Tot 181 240 99 100 100 176 181 100 99 145 99 97 142 

SH + 
IH 

DH 247 278 123 90 60 243 245 56 60 62 53 54 55 

EL 216 271 227 286 270 214 216 261 259 324 261 259 324 

Tot 463 549 351 376 330 457 461 317 319 386 314 313 379 

SH = swimming hall, IH = ice hall, DH = district heat, EL = electricity, Tot = total DH + EL 

 

Table 43 shows the absolute and relative changes in annual energy costs. The reference cases 

1 and 2 are used as a comparison. The reference cases and case 4 are not included in Table 

43. Cases 10 and 102h are compared to the reference without summer breaks (Case 2) and 

the rest of the cases are compared to the reference with summer breaks (Case 1). Negative 

values mean a decrease and positive values mean an increase compared to the reference case. 
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Table 43. Absolute and relative changes in annual energy costs compared to the reference 

cases. The absolute values are in thousands of euros. 

Case 
[Δk€] 

3 5 6 7 8 9 10 82h 92h 102h 

SH 

DH -35 -97 0 -2 -101 -99 -107 -103 -103 -112 

EL +5 +45 0 -0 +37 +37 +41 +37 +37 +41 

Tot -30 -51 0 -2 -64 -62 -67 -66 -65 -71 

IH 

DH -88 -90 -4 0 -90 -88 -108 -90 -90 -111 

EL +6 +8 -2 0 +8 +6 +12 +8 +6 +12 

Tot -82 -81 -5 0 -81 -82 -96 -82 -84 -98 

SH + 
IH 

DH -123 -186 -4 -2 -190 -187 -215 -193 -193 -222 

EL +11 +54 -2 -0 +45 +43 +53 +45 +43 +53 

Tot -112 -133 -5 -2 -145 -144 -162 -148 -149 -169 

Case 
[Δ%] 

3 5 6 7 8 9 10 82h 92h 102h 

SH 

DH -23 % -62 % 0 % -1.1 % -65 % -64 % -65 % -66 % -66 % -68 % 

EL +4 % +36 % 0 % -0.0 % +29 % +29 % +28 % +29 % +29 % +28 % 

Tot -11 % -18 % 0 % -0.6 % -23 % -22 % -22 % -23 % -23 % -23 % 

IH 

DH -96 % -98 % -3.9 % 0 % -98 % -96 % -96 % -98 % -98 % -98 % 

EL +7 % +9 % -1.9 % 0 % +9 % +7 % +10 % +9 % +7 % +10 % 

Tot -45 % -45 % -2.9 % 0 % -45 % -45 % -40 % -45 % -46 % -41 % 

SH + 
IH 

DH -50 % -75 % -1.4 % -0.7 % -77 % -76 % -78 % -78 % -78 % -80 % 

EL +5 % +25 % -0.8 % -0.0 % +21 % +20 % +20 % +21 % +20 % +20 % 

Tot -24 % -29 % -1.1 % -0.4 % -31 % -31 % -30 % -32 % -32 % -31 % 

SH = swimming hall, IH = ice hall, DH = district heat, EL = electricity, Tot = total DH + EL 

 

The most important values in Table 43 are the change in absolute energy costs for ice hall 

and for the total energy costs. These values include summer breaks. The ice hall alone is able 

to save annually between 81 000 and 84 000 € (-45 %). Almost all of the energy savings for 

ice hall are brought by utilization of waste heat (81 000 €, 97 %). The rest of the energy 

savings are from demand response of ice refrigeration and bigger thermal energy storages 

(TES). The demand response of ice refrigeration without utilization of waste heat (Case 6) 

brings cost saving of 5 000 €, but when combined with utilization of waste heat, the cost 

saving are reduced to under 1 000 €. This is caused by breaks in waste heat recovery. 

 

Table 43 shows the cumulative energy cost savings for the ice and swimming halls, which 

are annually between 112 000 (-24 %) (Case 3) and 149 000 € (-32 %) (Case 92h). The 

breakdown of energy cost savings for smart control measures and utilization of waste heat 

(Case 92h) are shows visually in Figure 71. The biggest portion, after utilizing waste heat in 

ice hall, is the utilization of waste heat from ice hall to swimming hall, which brings annual 

savings of 30 000 €. Using an EAHP with high condensation temperature of constant +60 

°C brings annual savings of 21 000 € and adding the smart control an additional 6 000 €. The 

demand response of district heat in swimming hall brings annual savings of 5 000 € and 

using bigger TES tanks increases the savings by an additional 3 000 €. Without summer 

breaks, the annual savings would increase from 149 000 € (Case 92h) to 169 000 € (Case 

102h). 
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Figure 71. Breakdown of energy cost savings for smart control measures and utilization of 

waste heat in ice and swimming hall (Case 92h). 

 

Table 44 presents the total energy cost savings for the three repayment periods, which are 

the same as the maximum cost of profitable investments. The methodology of the 

calculation is presented in Chapter 3.6. Swimming hall is studied separately only for 

demand response of district heat, which brings annual savings of 5 000 € (Case 7). Other 

cases assume utilization of waste heat from ice hall to swimming hall.  

 

Table 44. The maximum cost of profitable investment in thousands of euros for three 

repayment periods. 

Case 
[Δk€] 

3 5 6 7 8 9 10 82h 92h 102h 

IH 

7 a 510 510 30 0 510 510 590 510 520 610 

10 a 700 690 40 0 690 700 810 700 720 840 

15 a 970 970 60 0 970 970 1 140 980 1 000 1 170 

SH + 
IH 

7 a 700 820 30 10 900 890 1 010 920 930 1 050 

10 a 950 1 130 40 10 1 240 1 220 1 380 1 260 1 270 1 440 

15 a 1 330 1 580 60 20 1 730 1 710 1 930 1 760 1 780 2 010 

SH = swimming hall, IH = ice hall 

 81 400 
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 5 700  5 300  3 500   400

00 
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The investment is profitable, if the cost of the investment is lower than the achieved total 

energy cost savings. The maximum cost of investment is for the ice hall between 500 000 € 

and 1 000 000 € depending mainly on repayment period. For the combined ice and 

swimming halls the maximum cost of investment is between 700 000 € and 2 000 000 €, 

depending on repayment period and used measures. These values include utilization of 

waste heat and summer breaks. The total energy cost savings for demand response only are 

for ice refrigeration between 30 000 and 60 000 € and for demand response of district heat 

in swimming hall between 10 000 and 20 000€. (Table 44)  
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5 Discussion 

New ice halls are built in Finland an average of 5 per year and 100 are to be renovated in the 

near future according to Laitinen et al. (2014:5). The amount and age profile of Finnish 

swimming halls is similar to ice halls and thus is the amount of upcoming swimming hall 

renovations. Average of 2 new swimming halls per year have been built in the last 10 years 

(Jyväskylä University, 2018b). This high amount of building and renovating of these type of 

buildings in Finland create many opportunities to implement utilization of waste heat and 

smart energy systems for ice and swimming halls. 

 

Recommendations 

 

Utilization of heat from ice refrigeration in an ice hall reduces almost all of the need for 

purchased district heat for a training ice hall with low indoor temperature, while the increase 

in electricity consumption is marginal. The investment for the utilization of heat from ice 

refrigeration seems to be profitable especially in new ice halls. Utilization of heat from ice 

refrigeration should be set as a regulation for new ice halls, since it alone about halves the 

total energy consumption of an ice hall with a relatively small investment cost. 

 

An ice hall has excess waste heat even after utilization in the ice hall. A portion of this excess 

heat can be utilized in a nearby swimming hall for underfloor heating or preheating of DHW 

or supply air. However, swimming halls have a lot of potential heat in exhaust air and sewage 

water, which can also be recovered and used to reduce heat demands of the swimming hall, 

without the need for extra piping from an ice hall to a swimming hall. However, if the 

temperature of the waste heat is increased with a heat pump close to +60 °C, the waste heat 

can be utilized to all of swimming hall heat demands. The full heat demand of a swimming 

hall is so big, that both waste heat sources from the ice and swimming halls can be utilized. 

This utilization of all waste heat sources in Pirkkola swimming hall reduces the total energy 

consumption of the combined energy system up to 43 %. Based on this thesis, I would 

recommend the utilization of all waste heat sources by combining the energy systems of 

upcoming closely located ice and swimming halls. 

 

From the combined energy system of the Pirkkola ice and swimming halls, about 800 

MWh/a (20 %) of all waste heat is left as a potential excess waste heat, due to alternating 

heat demands and waste heats. This amount of heat could heat 27 000 m2 of modern building 

area with average annual heat demand of 30 kWh/m2/a. However, a long-term thermal 

energy storage would be needed, since most of the excess waste heat is clustered to period 

during August and September. 

 

The demand response systems in ice and swimming halls have a small investment cost, since 

the adjusting is done based on temperature set points with specific algorithms. Thus, demand 

response is possibly profitable even with the relatively low energy cost savings, which are 

less than tenth of the energy cost savings achieved with utilization of waste heat.  

 

Reliability of the results 

 

The reliability of the results is affected by inaccuracy of the used parameters, the 

assumptions made, the simplifications in the simulation model. However, the results were 

compared to similar buildings or studies of similar buildings. In addition, in the post-
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processing of utilization of waste heat, the energy balances were verified to hold true with a 

maximum error of about 5 %. Thus, at least the magnitude of the results can be held reliable.  

 

Future research topics 

 

The topic of utilization of waste heat in combined ice and swimming halls was studied in 

this thesis thoroughly for a new training ice hall with two ice rinks and an old medium sized 

swimming hall. However, the results are not to be generalized for different size of halls, for 

different climate or for a different age of ice or swimming halls. New calculations are needed 

for each case with different baselines. 

 

The topic of demand response in ice and swimming halls is not previously studied so this 

research has a significant novelty value. Since there are no earlier studies on the topic, the 

results of this study should be compared to future studies. The algorithms of this thesis were 

not optimized, and thus the potential energy cost saving could be bigger than what is 

presented in this thesis. The future research could be focused on finding more optimal 

demand response methods and algorithms for ice and swimming halls. Especially the 

significant thermal capacity of swimming pool water yields a significant potential for 

demand response, which should be researched more. 

 

Accuracy of power control of energy systems of ice refrigeration and pool water heating 

should be improved in the future simulation studies to achieve more saving potential for 

demand response control. 

 

In addition, demand response of district heat in not yet implemented in Finland and for it to 

occur, more research and co-operation between different companies in fields of energy 

production and consumption are needed.  
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6 Conclusions 

The objectives of this thesis were to analyze the potential reduction of energy consumption 

and energy cost savings with waste heat recovery and smart control of energy systems in the 

combined energy system of the ice and swimming halls. This thesis studied a case in Pirkkola 

(Helsinki), which includes an old existing swimming hall and a new training ice hall. 

Measures for smart control of energy systems in this thesis consisted of demand response of 

electricity and district heat and a demand based control of exhaust air heat pump. In addition, 

the combined effect of waste heat recovery, short-time storing of waste heat and demand 

response were evaluated. This study was carried out by dynamic simulations and post-

processing of the simulation results. The models of the ice and swimming halls, the 

ventilation and the component models that were not available were built in this study. 
 
 

Utilization of the waste heat from ice refrigeration in the ice hall is the most profitable and 

the most suggested investment found in this thesis. Including condensing and gray water 

heat recoveries in the ice hall, the total annual savings are 81 000 €, which is 45 % of the ice 

hall energy costs. In the Pirkkola ice hall, up to 99 % of purchased district heat can be 

replaced by waste heat mainly from ice refrigeration, while the total electricity demand in 

the ice hall increases only by 9 %. Thus, the ice hall can be self-sufficient in terms of heat. 

 

The swimming hall was not studied separately, since the swimming hall does not have any 

source of waste heat, which could be utilized in the swimming hall without the need of 

additional electricity consumption of a heat pump. One focus of utilization of waste heat in 

this thesis was transferring excess heat from the ice hall to the swimming hall. By 

transferring the excess heat and utilizing the waste heats of the swimming hall, the total 

purchased district heat in the swimming hall is reduced by 72 % and the electricity 

consumption is increased by 37 % resulting in a total reduction of consumed energy of 35 

% in the swimming hall. Utilization of the excess heat from the ice hall to the swimming hall 

is the second most profitable investment bringing annual savings of 30 000 €. 

 

In the combined energy system of the ice and swimming halls, up to 81 % (3540 MWh/a) of 

the waste heat can be utilized. Most of the utilized waste heat in the swimming hall is from 

an exhaust air heat pump (EAHP) with high condensation temperature and the smaller 

portions are from the excess heat from the ice hall and from the heat recovery of gray water 

in the swimming hall. The EAHP has the biggest portion, because it is the only waste heat 

able to supply most of the high temperature heat demands in the swimming hall. The changes 

in the annual energy consumptions of the combined energy system are 82 % reduced 

purchased district heat, 25 % increased electricity and 42 % reduced total consumed energy. 

The annual energy cost savings the EAHP brings is 21 000 €. 

 

Demand response of electricity for ice refrigeration decreases the total electricity costs of 

the ice hall by 1.9 %. The low thermal capacity of the ice limited the demand response 

potential. In addition, the amount of waste heat utilized in the ice hall was decreased due to 

demand response.  

 

Demand response of district heat for swimming pool water and pool space air decreases the 

average price of purchased district heat in the swimming hall by 2.8 % and the total district 

heat costs in the swimming hall by 1.1 %. Demand response of electricity for heating of pool 

space water and indoor air with heat from EAHP did not decrease the total energy costs. 
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Demand response of electricity for saunas in the swimming hall did not decrease the total 

energy costs and resulted in rapid temperature decreases due to big heat losses when the 

temperature set point was lowered. Thus, saunas are not suitable for loading strategy of 

demand response, but are suitable for peak clipping strategy of demand response. 

 

The increase in TES capacities allows more waste heat to be utilized, which decreases the 

amount of purchased district heat. In utilization of waste heat, TES tanks with discharge time 

of 2-hour compared to 30 minutes decrease the annual purchased district heat in the ice and 

swimming halls up to 2.6 %. 

 

With all the measures for the ice and swimming halls the annual energy cost savings are 149 

000 € (-32 %). The total energy cost savings during the lifecycle of the systems equal the 

maximum cost of profitable investment, which are for the ice hall between 500 000 and 1 

000 000 € and for the combined ice and swimming halls between 700 000 and 2 000 000 €. 
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Appendices 

Appendix A. Calculation for value mentioned in introduction 

 

Energy consumption of ice and swimming halls in Finland of total energy consumption of 

Finnish building sector is 

 
 

𝑝 =
𝑁𝐼𝐻 ∗ 𝑄𝑎𝑣𝑔,𝐼𝐻,𝑎 + 𝑁𝑆𝐻 ∗ 𝑄𝑎𝑣𝑔,𝑆𝐻

𝑄𝐵𝑆
 (A.1) 

where 

 

NIH  amount of ice halls in Finland (Hemmilä & Laitinen, 2018:8) 

Qavg,IH,a average annual energy consumption of an ice hall in Finland (Jyväskylä 

University, 2018a)  [MWh/a] 

𝑁𝑆𝐻 amount of swimming halls in Finland (Hemmilä & Laitinen, 2018:8) 

Qavg,SH average annual energy consumption of a swimming hall in Finland (Jyväskylä 

University, 2018b) [MWh/a] 

𝑄𝐵𝑆  total annual energy consumption of Finland building sector in 2016 (SVT, 

2017) [MWh/a]. 
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Appendix B. Two example views of IDA ICE advanced level interface 

 

 

Figure B.1. View of ice hall schematic. 

 

 

Figure B.2. View of main pool space in swimming hall.  



 

 
3 

 

Appendix C. Energy reports for Pirkkola and calculation of the energy consumption 

division between Pirkkola ice and swimming halls 

 

 

Figure C.1. Report for annual consumption of district heat in Pirkkola ice and swimming halls. 
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Figure C.2. Report for monthly consumption of district heat in Pirkkola ice and swimming 

halls. 

 

The latest monthly district heat consumptions are from months September and October 2018 

(Figure C.2). The ice hall has been closed April 2018 and thus, the consumption of these 

months is assumed to come fully from the swimming hall. To get the approximation for district 

heating in the swimming hall only of the total consumption pDH,SH, the consumption of these 

months (9 and 10) is compared to consumption of the same months in the year 2017 as follows 

 
 

𝑝𝐷𝐻,𝑆𝐻 =
𝑄𝐷𝐻,2018,9 + 𝑄𝐷𝐻,2018,10

𝑄𝐷𝐻,2017,9 + 𝑄𝐷𝐻,2017,10
=

(175 + 300)𝑀𝑊ℎ

(350 + 490)𝑀𝑊ℎ
= 56.6%. (C.1) 

 

Figure C.1 shows the annual district heat consumption to be about 4850 MWh/a. By 

multiplying this consumption by the percentage calculated in Equation C.1, the consumptions 

acquired are for the swimming hall 2700 MWh/a and for the ice hall 2100 MWh/a. 
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Figure C.3. Report for annual electricity consumption in Pirkkola ice and swimming halls. 

 

The total monthly electricity consumption are provided as an excel Table (Korva, 2018). The 

approximation for electricity in the swimming hall only is done in the same way as with district 

heat. The total electricity consumption of the swimming hall pEL,SH is 

 
 

𝑝𝐸𝐿,𝑆𝐻 =
𝑄𝐸𝐿,2018,9 + 𝑄𝐸𝐿,2018,10

𝑄𝐸𝐿,2017,9 + 𝑄𝐸𝐿,2017,10
=

(161 + 175)𝑀𝑊ℎ

(322 + 334)𝑀𝑊ℎ
= 51.0%. (C.2) 

 

Figure C.3 shows the annual district heat consumption to be about 3200 MWh/a. By 

multiplying this consumption by the percentage calculated (Equation C.2), the consumptions 

acquired are for the swimming hall 1600 MWh/a and for the ice hall 1600 MWh/a.  
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Appendix D. Schematic of DHW system in Pirkkola 

 

 

Figure D.1. View of control panel for DHW system in the Pirkkola ice and swimming halls. 
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Appendix E. Schematic of air handling unit in the main Pirkkola swimming hall space 

 

 

Figure E.1. Schematic of air handling unit in the main Pirkkola swimming hall space (1/2). 

 

 

Figure E.2. Schematic of air handling unit in the main Pirkkola swimming hall space (2/2). 
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Appendix F. Efficiency of gray water heat exchangers 

 

 

Figure F.1. Power dimensioning guide for gray water heat exchanger, which is combined to a 

heat pump with coolant (Ecowec, 2018). 

 

Efficiency of gray water heat exchanger in the ice hall 

 

The power dimensioning is done according to guide shown in Figure F.1. The ice hall is 

dimensioned with one heat exchanger. The average gray water flow in the ice hall is 
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 𝑞𝐷𝐻𝑊 =
𝑉𝐷𝐻𝑊,𝑑

𝑡𝑠ℎ ⋅ 𝑛𝑔,𝐼𝑅
=

12
𝑚3

𝑑
⋅ 1000

𝑙

𝑚3

2000 𝑠 ⋅ 9.5
1

𝑑

= 0.63 
𝑙

𝑠
 (F.1) 

where 

 

𝑞𝐷𝐻𝑊 average domestic hot water (DHW) flow during shower usage [l/s] 

VDHW,d average DHW usage per day [m3/d] 

𝑡𝑠ℎ average time, during which the showers are taken after a game [s] 

𝑛𝑔,𝑑,𝐼𝑅 average number of games per day per ice rink [1/d]. 

 

The coolant flow in the heat exchanger is assumed the same as the gray water flow. The 

minimum temperature of the coolant is assumed 0 °C and the input temperature of gray water 

is assumed 10 °C lower than the average used water temperature of 38 °C. Thus, the 

temperature difference is 28 °C. The average gray water flow and the temperature difference 

give according to Figure F.1 the average power for the heat exchanger  

 

 𝜙ℎ𝑒 = 𝐶1 ⋅ 𝐶2 = 60 𝑘𝑊 ⋅ 0.44 = 26.4 𝑘𝑊. (F.2) 

 

The power used for heating of the DHW for a time step, during which the showers are taken, 

is received from IDA ICE simulations. The heat exchanger efficiency is defined as the relation 

of heat recovered from the gray water to the heating of DHW as follows 

 

 𝜂ℎ𝑒 =
𝜙ℎ𝑒

𝑃𝐷𝐻𝑊
=

26.4 𝑘𝑊

77.5 𝑘𝑊
= 34 %. (F.3) 

 

Efficiency of gray water heat exchangers in the swimming hall 

 

The swimming hall is dimensioned with two heat exchanger due to high gray water flow. The 

heat gray water drained to sewers consists of only shower water and washing water, which is 

67 % of total swimming hall DHW usage according to Hemmilä and Laitinen (2018:13). The 

average gray water flow in the sewers in the swimming hall is 

 

 𝑞𝐷𝐻𝑊,ℎ𝑒 =
𝑉𝐷𝐻𝑊,𝑑 ⋅ 𝑝𝑠ℎ,𝑤𝑤

𝑡𝑜𝑝𝑒𝑛,𝑑 ⋅ 𝑁ℎ𝑒
=

51
𝑚3

𝑑
⋅ 1000

𝑙

𝑚3 ⋅ 0.67

15.5 ℎ ⋅ 3600
𝑠

ℎ
⋅ 2

= 0.31 
𝑙

𝑠
 (F.4) 

where 

 

𝑞𝐷𝐻𝑊,ℎ𝑒 average DHW flow in one heat exchanger during opening times [l/s] 

VDHW,d average DHW usage per day [m3/d] 

𝑝𝑠ℎ,𝑤𝑤 portion of shower water and washing water of total DHW 

𝑡𝑜𝑝𝑒𝑛,𝑑 daily opening time [s] 

𝑁ℎ𝑒 number of heat exchangers. 

 

The coolant flow in the heat exchanger is assumed the same as the gray water flow. The 

minimum temperature of the coolant is assumed 0 °C and the input temperature of gray water 

is assumed 10 °C lower than the average used water temperature of 37 °C. Thus, the 
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temperature difference is 27 °C. The average gray water flow and the temperature difference 

give according to Figure F.1 the average power of the heat exchangers during opening times 

are 

 

 𝜙ℎ𝑒 = 𝐶1 ⋅ 𝐶2 ⋅ 𝑁ℎ𝑒 = 57 𝑘𝑊 ⋅ 0.30 ⋅ 2 = 34.2 𝑘𝑊. (F.5) 

 

The average heating of DHW in the swimming hall during opening times is received from the 

IDA ICE simulations. The heat exchanger efficiency in this thesis is defined as the relation of 

heat recovered from the gray water to the heating of DHW as follows 

 

 𝜂ℎ𝑒 =
𝜙ℎ𝑒

𝑃𝐷𝐻𝑊,𝑎𝑣𝑔
=

34.2 𝑘𝑊

189.6 𝑘𝑊
= 18 %. (F.6) 
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Appendix G. Calculation process for dynamic energy price limits 

 

Higher price limit (HPL) and lower price limit (LPL) are defined for each hour based on two 

limiting values, which are the last 2 weeks of history data and the following 12-hour data. The 

prices are known 12 hours upfront. The calculation process of the algorithm for price limits is 

shown in Figure G.1.  

 

 

Figure G.1. The calculation process of algorithm for higher price limit (HPL) and lower price 

limit (LPL) for each hour. 

 

This paragraph explains Figure G.1. The limiting value from the last 2 weeks of history data is 

chosen as the value from an order of magnitude of the history prices, which excludes the 

corresponding percentage of energy prices. The limiting value from following 12-hour prices 

is calculated by adding a chosen constant marginal value (positive or negative) to the average 

value of the following 12-hour prices, which excludes the corresponding percentage. The 

marginal value can be approximated for example with history data. The price limits HPL and 

LPL are a combination of these two limiting values; for LPL the bigger value is chosen and for 

HPL the smaller value is chosen. Finally, LPL and HPL are prevented from exceeding each 

other. 
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Appendix H. Tables showing all annual energy fluxes for cases from 6 onwards 

 

Table H.1. Annual energies for the ice and swimming halls with demand response of electricity 

for ice refrigeration (Case 6). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 554  

Energy  
balance 3:  
Building 

Heat energy of systems 2 717 

Heat loads from electricity 244  Heat loads from electricity 1 445 

Other heat loads 353  Other heat loads 365 

Heat losses -2 150  Heat losses -4 487 

Total removed heat for use 0  Total removed heat for use 0 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 568  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 0 

Ice refrigeration HP electricity 581  Exhaust air HP heat 0 

Gray water heat  0  Exhaust air electricity 0 

Gray water HP electricity 0  Gray water heat  0 

Dehumidification heat 207  Gray water HP electricity 0 

Dehumidification electricity 68  Supply air preheating 0 

Supply air heating 0  Supply air heating 0 

DHW heating 0  Water radiator heating 0 

Ice resurfacing water 0  Underfloor heating 0 

Water radiator heating 0  DHW heating 0 

Ground frost heating 0  DHW preheating 0 

Excess heat to swimming hall  0  Pool water heating 0 

Total  
values 

Utilized waste heat 0  Potential excess heat 0 

Purchased district heat 1 554  
Total  

values 

Utilized waste heat 0 

Purchased electricity 1 004  Purchased district heat 2 717 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 240  Purchased electricity 1 404 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  0 

Ice resurfacing water freezing 42  Utilized SH waste heat  0 

Water radiator heating 24  Excess heat from TES 1 0 

Ground frost heating 58  Excess heat from TES 2 0 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 322 

Lighting 174  Supply air preheating 292 

Occupants 90  Pool water heating 669 

Ventilation fans 69  Water radiator heating 348 

DHW sewage losses -191  Underfloor heating 110 

DH substation losses -47  DHW preheating 540 

Infiltration air -31  DHW heating 436 

Envelope -46  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 527 

Other heat loads(+) / losses(-) -1 801  Lighting 177 

  
 

 Ventilation fans 119 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 4 271  Equipment 89 

Total purchased electricity 2 410  HVAC aux. 96 

Total heat loads 718  Occupants 300 

Total heat losses  -7 303  Radiation through windows 65 

Total potential excess heat 0  DHW sewage losses -976 

      DH substation losses -82 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -92 

    Envelope -335 

    Other heat loads(+) / losses(-) -3 263 
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Table H.2. Annual energies for the ice and swimming halls with demand response of district 

heat for the swimming pool water and pool space air heating (Case 7). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 554  

Energy  
balance 3:  
Building 

Heat energy of systems 2 765 

Heat loads from electricity 244  Heat loads from electricity 1 445 

Other heat loads 355  Other heat loads 362 

Heat losses -2 212  Heat losses -4 531 

Total removed heat for use 0  Total removed heat for use 0 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 593  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 0 

Ice refrigeration HP electricity 578  Exhaust air HP heat 0 

Gray water heat  0  Exhaust air electricity 0 

Gray water HP electricity 0  Gray water heat  0 

Dehumidification heat 221  Gray water HP electricity 0 

Dehumidification electricity 73  Supply air preheating 0 

Supply air heating 0  Supply air heating 0 

DHW heating 0  Water radiator heating 0 

Ice resurfacing water 0  Underfloor heating 0 

Water radiator heating 0  DHW heating 0 

Ground frost heating 0  DHW preheating 0 

Excess heat to swimming hall  0  Pool water heating 0 

Total  
values 

Utilized waste heat 0  Potential excess heat 0 

Purchased district heat 1 614  
Total  

values 

Utilized waste heat 0 

Purchased electricity 1 007  Purchased district heat 2 765 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 240  Purchased electricity 1 404 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  0 

Ice resurfacing water freezing 42  Utilized SH waste heat  0 

Water radiator heating 24  Excess heat from TES 1 0 

Ground frost heating 58  Excess heat from TES 2 0 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 338 

Lighting 174  Supply air preheating 291 

Occupants 90  Pool water heating 706 

Ventilation fans 69  Water radiator heating 353 

DHW sewage losses -118  Underfloor heating 100 

DH substation losses -48  DHW preheating 540 

Infiltration air -37  DHW heating 436 

Envelope -56  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 526 

Other heat loads(+) / losses(-) -1 842  Lighting 177 

  
 

 Ventilation fans 119 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 4 378  Equipment 89 

Total purchased electricity 2 411  HVAC aux. 96 

Total heat loads 718  Occupants 300 

Total heat losses  -7 409  Radiation through windows 62 

Total potential excess heat 0  DHW sewage losses -715 

      DH substation losses -84 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -94 

    Envelope -336 

    Other heat loads(+) / losses(-) -3 302 
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Table H.3. Annual energies for the ice and swimming halls with demand response of electricity 

for the swimming hall, utilization of waste heat and smart EAHP (Case 8). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 614  

Energy  
balance 3:  
Building 

Heat energy of systems 2 738 

Heat loads from electricity 244  Heat loads from electricity 1 444 

Other heat loads 355  Other heat loads 367 

Heat losses -259  Heat losses -3 299 

Total removed heat for use -1 953  Total removed heat for use -1 205 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 593  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 950 

Ice refrigeration HP electricity 578  Exhaust air HP heat 1 018 

Gray water heat  64  Exhaust air electricity 291 

Gray water HP electricity 16  Gray water heat  188 

Dehumidification heat 221  Gray water HP electricity 49 

Dehumidification electricity 73  Supply air preheating -233 

Supply air heating -1 266  Supply air heating -270 

DHW heating -182  Water radiator heating -317 

Ice resurfacing water -42  Underfloor heating -62 

Water radiator heating -23  DHW heating -300 

Ground frost heating -54  DHW preheating -417 

Excess heat to swimming hall  -950  Pool water heating -334 

Total  
values 

Utilized waste heat 1 603  Potential excess heat -696 

Purchased district heat 22  
Total  

values 

Utilized waste heat 1 965 

Purchased electricity 1 098  Purchased district heat 773 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 304  Purchased electricity 1 849 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  550 

Ice resurfacing water freezing 42  Utilized SH waste heat  1 415 

Water radiator heating 23  Excess heat from TES 1 520 

Ground frost heating 54  Excess heat from TES 2 175 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 327 

Lighting 174  Supply air preheating 293 

Occupants 90  Pool water heating 684 

Ventilation fans 69  Water radiator heating 360 

DHW sewage losses -118  Underfloor heating 98 

DH substation losses -48  DHW preheating 540 

Infiltration air -37  DHW heating 436 

Envelope -56  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 518 

Other heat loads(+) / losses(-) 110  Lighting 177 

  
 

 Ventilation fans 118 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 795  Equipment 89 

Total purchased electricity 2 948  HVAC aux. 104 

Total heat loads 722  Occupants 300 

Total heat losses  -3 558  Radiation through windows 67 

Total potential excess heat -696  DHW sewage losses -715 

      DH substation losses -83 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -92 

    Envelope -332 

    Other heat loads(+) / losses(-) -2 077 
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Table H.4. Annual energies for the ice and swimming halls with demand response of the ice 

and swimming halls, utilization of waste heat and smart EAHP (Case 9). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 554  

Energy  
balance 3:  
Building 

Heat energy of systems 2 761 

Heat loads from electricity 244  Heat loads from electricity 1 444 

Other heat loads 353  Other heat loads 364 

Heat losses -242  Heat losses -3 306 

Total removed heat for use -1 908  Total removed heat for use -1 220 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 568  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 1 006 

Ice refrigeration HP electricity 581  Exhaust air HP heat 1 032 

Gray water heat  64  Exhaust air electricity 295 

Gray water HP electricity 16  Gray water heat  188 

Dehumidification heat 207  Gray water HP electricity 49 

Dehumidification electricity 68  Supply air preheating -220 

Supply air heating -1 205  Supply air heating -280 

DHW heating -182  Water radiator heating -314 

Ice resurfacing water -42  Underfloor heating -65 

Water radiator heating -24  DHW heating -301 

Ground frost heating -58  DHW preheating -362 

Excess heat to swimming hall  -1 006  Pool water heating -308 

Total  
values 

Utilized waste heat 1 506  Potential excess heat -847 

Purchased district heat 50  
Total  

values 

Utilized waste heat 1 890 

Purchased electricity 1 093  Purchased district heat 871 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 240  Purchased electricity 1 854 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  459 

Ice resurfacing water freezing 42  Utilized SH waste heat  1 431 

Water radiator heating 24  Excess heat from TES 1 640 

Ground frost heating 58  Excess heat from TES 2 206 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 336 

Lighting 174  Supply air preheating 292 

Occupants 90  Pool water heating 698 

Ventilation fans 69  Water radiator heating 357 

DHW sewage losses -118  Underfloor heating 101 

DH substation losses -47  DHW preheating 540 

Infiltration air -31  DHW heating 436 

Envelope -46  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 518 

Other heat loads(+) / losses(-) 108  Lighting 177 

  
 

 Ventilation fans 118 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 921  Equipment 89 

Total purchased electricity 2 947  HVAC aux. 104 

Total heat loads 717  Occupants 300 

Total heat losses  -3 547  Radiation through windows 64 

Total potential excess heat -847  DHW sewage losses -715 

      DH substation losses -84 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -93 

    Envelope -334 

    Other heat loads(+) / losses(-) -2 080 
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Table H.5. Annual energies without summer breaks for the ice and swimming halls with 

demand response of the ice and swimming halls, utilization of waste heat and smart EAHP 

(Case 10). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 2 032  

Energy  
balance 3:  
Building 

Heat energy of systems 3 003 

Heat loads from electricity 341  Heat loads from electricity 1 635 

Other heat loads 690  Other heat loads 457 

Heat losses -236  Heat losses -3 645 

Total removed heat for use -2 820  Total removed heat for use -1 399 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 2 224  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 1 692 

Ice refrigeration HP electricity 849  Exhaust air HP heat 1 187 

Gray water heat  90  Exhaust air electricity 339 

Gray water HP electricity 22  Gray water heat  213 

Dehumidification heat 379  Gray water HP electricity 55 

Dehumidification electricity 125  Supply air preheating -207 

Supply air heating -1 547  Supply air heating -297 

DHW heating -255  Water radiator heating -328 

Ice resurfacing water -58  Underfloor heating -74 

Water radiator heating -26  DHW heating -354 

Ground frost heating -81  DHW preheating -478 

Excess heat to swimming hall  -1 692  Pool water heating -363 

Total  
values 

Utilized waste heat 1 979  Potential excess heat -1 514 

Purchased district heat 57  
Total  

values 

Utilized waste heat 2 110 

Purchased electricity 1 636  Purchased district heat 893 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 600  Purchased electricity 2 085 

DHW heating 267  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  629 

Ice resurfacing water freezing 58  Utilized SH waste heat  1 481 

Water radiator heating 26  Excess heat from TES 1 1 214 

Ground frost heating 81  Excess heat from TES 2 300 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 217  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 355 

Lighting 244  Supply air preheating 293 

Occupants 126  Pool water heating 768 

Ventilation fans 97  Water radiator heating 375 

DHW sewage losses -165  Underfloor heating 106 

DH substation losses -61  DHW preheating 612 

Infiltration air -10  DHW heating 494 

Envelope 43  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 585 

Other heat loads(+) / losses(-) 304  Lighting 201 

  
 

 Ventilation fans 135 

Combined energy flows [MWh/a]  Pool pumps 495 

Energy  
balance 5: 

Total 

Total purchased district heat 949  Equipment 101 

Total purchased electricity 3 720  HVAC aux. 118 

Total heat loads 1 147  Occupants 340 

Total heat losses  -3 881  Radiation through windows 117 

Total potential excess heat -1 514  DHW sewage losses -810 

      DH substation losses -91 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -98 

    Envelope -360 

    Other heat loads(+) / losses(-) -2 287 
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Table H.6. Annual energies for the ice and swimming halls with bigger TES discharge time, 

demand response of electricity for the swimming hall, utilization of waste heat and smart EAHP 

(Case 82h). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 614  

Energy  
balance 3:  
Building 

Heat energy of systems 2 738 

Heat loads from electricity 244  Heat loads from electricity 1 444 

Other heat loads 355  Other heat loads 367 

Heat losses -259  Heat losses -3 299 

Total removed heat for use -1 953  Total removed heat for use -1 205 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 593  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 947 

Ice refrigeration HP electricity 578  Exhaust air HP heat 1 018 

Gray water heat  64  Exhaust air electricity 291 

Gray water HP electricity 16  Gray water heat  188 

Dehumidification heat 221  Gray water HP electricity 49 

Dehumidification electricity 73  Supply air preheating -231 

Supply air heating -1 266  Supply air heating -271 

DHW heating -182  Water radiator heating -319 

Ice resurfacing water -42  Underfloor heating -66 

Water radiator heating -23  DHW heating -311 

Ground frost heating -54  DHW preheating -421 

Excess heat to swimming hall  -947  Pool water heating -363 

Total  
values 

Utilized waste heat 1 607  Potential excess heat -648 

Purchased district heat 14  
Total  

values 

Utilized waste heat 2 009 

Purchased electricity 1 098  Purchased district heat 729 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 304  Purchased electricity 1 867 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  553 

Ice resurfacing water freezing 42  Utilized SH waste heat  1 411 

Water radiator heating 23  Excess heat from TES 1 511 

Ground frost heating 54  Excess heat from TES 2 137 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 327 

Lighting 174  Supply air preheating 293 

Occupants 90  Pool water heating 684 

Ventilation fans 69  Water radiator heating 360 

DHW sewage losses -118  Underfloor heating 98 

DH substation losses -48  DHW preheating 540 

Infiltration air -37  DHW heating 436 

Envelope -56  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 518 

Other heat loads(+) / losses(-) 110  Lighting 177 

  
 

 Ventilation fans 118 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 743  Equipment 89 

Total purchased electricity 2 948  HVAC aux. 104 

Total heat loads 722  Occupants 300 

Total heat losses  -3 558  Radiation through windows 67 

Total potential excess heat -648  DHW sewage losses -715 

      DH substation losses -83 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -92 

    Envelope -332 

    Other heat loads(+) / losses(-) -2 077 
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Table H.7. Annual energies for the ice and swimming halls with bigger TES discharge time, 

demand response of the ice and swimming halls, utilization of waste heat and smart EAHP 

(Case 92h). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 1 554  

Energy  
balance 3:  
Building 

Heat energy of systems 2 761 

Heat loads from electricity 244  Heat loads from electricity 1 444 

Other heat loads 353  Other heat loads 364 

Heat losses -242  Heat losses -3 306 

Total removed heat for use -1 908  Total removed heat for use -1 220 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 1 568  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 957 

Ice refrigeration HP electricity 581  Exhaust air HP heat 1 032 

Gray water heat  64  Exhaust air electricity 295 

Gray water HP electricity 16  Gray water heat  188 

Dehumidification heat 207  Gray water HP electricity 49 

Dehumidification electricity 68  Supply air preheating -223 

Supply air heating -1 205  Supply air heating -283 

DHW heating -182  Water radiator heating -317 

Ice resurfacing water -42  Underfloor heating -69 

Water radiator heating -24  DHW heating -313 

Ground frost heating -58  DHW preheating -380 

Excess heat to swimming hall  -957  Pool water heating -351 

Total  
values 

Utilized waste heat 1 536  Potential excess heat -743 

Purchased district heat 19  
Total  

values 

Utilized waste heat 1 963 

Purchased electricity 1 093  Purchased district heat 798 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 240  Purchased electricity 1 862 

DHW heating 191  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  461 

Ice resurfacing water freezing 42  Utilized SH waste heat  1 481 

Water radiator heating 24  Excess heat from TES 1 585 

Ground frost heating 58  Excess heat from TES 2 159 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 155  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 336 

Lighting 174  Supply air preheating 292 

Occupants 90  Pool water heating 698 

Ventilation fans 69  Water radiator heating 357 

DHW sewage losses -118  Underfloor heating 101 

DH substation losses -47  DHW preheating 540 

Infiltration air -31  DHW heating 436 

Envelope -46  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 518 

Other heat loads(+) / losses(-) 108  Lighting 177 

  
 

 Ventilation fans 118 

Combined energy flows [MWh/a]  Pool pumps 437 

Energy  
balance 5: 

Total 

Total purchased district heat 817  Equipment 89 

Total purchased electricity 2 947  HVAC aux. 104 

Total heat loads 717  Occupants 300 

Total heat losses  -3 547  Radiation through windows 64 

Total potential excess heat -743  DHW sewage losses -715 

      DH substation losses -84 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -93 

    Envelope -334 

    Other heat loads(+) / losses(-) -2 080 
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Table H.8. Annual energies without summer breaks for the ice and swimming halls with bigger 

TES discharge time, demand response of the ice and swimming halls, utilization of waste heat 

and smart EAHP (Case 102h). 

Energy flows [MWh/a]. Ice hall floor area 6674 m²  Energy flows [MWh/a]. SH floor area 7982m² 

Energy  
balance 1:  
Building 

Heat energy of systems 2 032  

Energy  
balance 3:  
Building 

Heat energy of systems 3 003 

Heat loads from electricity 341  Heat loads from electricity 1 635 

Other heat loads 690  Other heat loads 457 

Heat losses -236  Heat losses -3 645 

Total removed heat for use -2 820  Total removed heat for use -1 399 

Energy  
balance 2:  
Technical 
systems 

Ice refrigeration heat 2 224  

Energy  
balance 4:  
Technical 
systems 

Heat from ice hall 1 656 

Ice refrigeration HP electricity 849  Exhaust air HP heat 1 187 

Gray water heat  90  Exhaust air electricity 339 

Gray water HP electricity 22  Gray water heat  213 

Dehumidification heat 379  Gray water HP electricity 55 

Dehumidification electricity 125  Supply air preheating -213 

Supply air heating -1 547  Supply air heating -299 

DHW heating -255  Water radiator heating -331 

Ice resurfacing water -58  Underfloor heating -80 

Water radiator heating -26  DHW heating -367 

Ground frost heating -81  DHW preheating -497 

Excess heat to swimming hall  -1 656  Pool water heating -412 

Total  
values 

Utilized waste heat 2 015  Potential excess heat -1 386 

Purchased district heat 19  
Total  

values 

Utilized waste heat 2 202 

Purchased electricity 1 636  Purchased district heat 801 

Breakdown 
of heat 

energy of 
systems 

Supply air heating 1 600  Purchased electricity 2 118 

DHW heating 267  
Breakdown 

of waste 
heat 

Utilized ice hall waste heat  655 

Ice resurfacing water freezing 58  Utilized SH waste heat  1 541 

Water radiator heating 26  Excess heat from TES 1 1 148 

Ground frost heating 81  Excess heat from TES 2 238 

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Ice resurfacing water freezing 217  

Breakdown 
of heat 

energy of 
systems 

Supply air heating 355 

Lighting 244  Supply air preheating 293 

Occupants 126  Pool water heating 768 

Ventilation fans 97  Water radiator heating 375 

DHW sewage losses -165  Underfloor heating 106 

DH substation losses -61  DHW preheating 612 

Infiltration air -10  DHW heating 494 

Envelope 43  

Breakdown 
of heat 

loads (+) 
and  

losses (-) 

Sauna 585 

Other heat loads(+) / losses(-) 304  Lighting 201 

  
 

 Ventilation fans 135 

Combined energy flows [MWh/a]  Pool pumps 495 

Energy  
balance 5: 

Total 

Total purchased district heat 819  Equipment 101 

Total purchased electricity 3 720  HVAC aux. 118 

Total heat loads 1 147  Occupants 340 

Total heat losses  -3 881  Radiation through windows 117 

Total potential excess heat -1 386  DHW sewage losses -810 

      DH substation losses -91 

Notation:   SH = Swimming Hall,   HP = Heat Pump  Infiltration air -98 

    Envelope -360 

    Other heat loads(+) / losses(-) -2 287 

 

 


