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Abstract

This thesis discusses Bayesian statistical inference in supervised learning problems where the data
are scarce but the number of features large. The focus is on two important tasks. The first one is
the prediction of some target variable of interest. The other task is feature selection, where the goal
is to identify a small subset of features which are relevant for the prediction. A good predictive
accuracy is often intrinsically valuable and a means to understanding the data. Feature selection
can further help to make the model easier to interpret and reduce future costs if there is a price
associated with predicting with many features.

Most traditional approaches try to solve both problems at once by formulating an estimation
procedure that performs automatic or semiautomatic feature selection as a by-product of the
predictive model fitting. This thesis argues that in many cases one can benefit from a decision
theoretically justified two-stage approach. In this approach, one first constructs a model that
predicts well but possibly uses many features. In the second stage, one then finds a minimal subset
of features that can characterize the predictions of this model. The basic idea of this so called
projective framework has been around for a long time but it has largely been overlooked in the
statistics and machine learning community. This approach offers plenty of freedom for building
an accurate prediction model as one does not need to care about feature selection at this point, and
it turns out solving the feature selection problem often becomes substantially easier given an
accurate prediction model that can be used as a reference.

The thesis focuses mostly on generalized linear models. To solve the problem of predictive model
construction, the thesis introduces novel methods for encoding prior information about sparsity
and regularization into the model. These methods can in some cases help to improve the prediction
accuracy and robustify the posterior inference, but they also advance the current theoretical
understanding of the fundamental characteristics of some commonly used prior distributions. The
thesis explores also computationally efficient dimension reduction techniques that can be used as
shortcuts for predictive model construction when the number of features is very large.
Furthermore, the thesis develops the existing projective feature selection method further so as to
make the computation fast and accurate for large number of features. Finally, the thesis takes the
initial steps towards extending this framework to nonlinear and nonparametric Gaussian process
models. The contributions of this thesis are solely methodological, but the benefits of the proposed
methods are illustrated using example datasets from various fields, in particular from
computational genetics.
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Tama vaitoskirja kisittelee bayesilaista tilastollista paéttelya ohjatuissa oppimistehtavissa, joissa
havaintoja on niukasti, mutta piirteiden mééra on suuri. Tyossé keskitytdén kahteen
osaongelmaan. Ensimmainen néistd on jonkin mielenkiinnon kohteena olevan muuttujan
ennustaminen. Toinen ongelma on piirrevalinta, jossa tarkoituksena on 16ytda vain pieni joukko
piirteité, jotka ovat merkityksellisid ennusteiden kannalta. Monissa tapauksissa hyva
ennustetarkkuus voi olla arvokasta sinalldan ja usein auttaa ymmartamaédn havaintoaineistoa.
Piirrevalinta voi edelleen parantaa mallin tulkittavuutta ja selitettavyyttd, mutta silla voidaan
saavuttaa myos sadstdjd, mikali suuren piirremaaran kayttoon liittyy kustannuksia.

Valtaosa aiemmin ehdotetuista menetelmista pyrkii ratkaisemaan molemmat ongelmat
samanaikaisesti kdyttden estimointimenetelmas, jossa piirrevalinta saadaan varsinaisen
ennustemallin sovittamisen sivutuotteena tdysin tai lahes automaattisesti. Tdssd ty0ssi esitetddn,
ettd monissa tapauksissa voidaan paasta parempaan lopputulokseen, mikéli noudatetaan
paidtosteoreettisesti perusteltua kaksivaiheista lihestymistapaa. Tdssa lahestymistavassa
muodostetaan ensin malli, joka ennustaa hyvin, mutta joka mahdollisesti kiyttda isoa maaraa
piirteita. Piirrevalinta suoritetaan tdmaén jalkeen etsimilla pienin mahdollinen joukko piirteita,
joilla saavutetaan olennaisesti samanlaiset ennusteet kuin alkuperiiselld mallilla. TAt4 niin
kutsuttua projektiivista lahetysmistapaa on ehdotettu kirjallisuudessa jo kauan sitten, mutta
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ennustemallin rakentamiseen, koska mallintajan ei tdssé vaiheessa tarvitse valittda
piirrevalinnasta. Toisaalta piirrevalinta usein helpottuu huomattavasti, mikéli tissd vaiheessa
voidaan hy6dyntdd aiemmin sovitettua tarkkaa ennustemallia ja kéyttda tatd referenssing.

Tyossé keskitytddn padasiassa yleistettyihin lineaarimalleihin. Ennusteongelman ratkaisemiseksi
tyOssa esitetddn uusia menetelmid harvuutta ja regularisointia koskevan priori-informaation
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ehdotetaan alkuperiiseen projektiiviseen piirrevalintamenetelméén useita metodologisia
parannuksia, joilla laskenta saadaan nopeaksi ja tarkaksi aineistoille, joissa piirteiden miara on
hyvin suuri. Tyossa tutkitaan alustavasti myos, kuinka projektiivinen muuttujavalinta voidaan
toteuttaa epilineaarisille ja ei-parametrisille malleille kuten gaussisille prosesseille. Vditoskirjan
kontribuutiot ovat tdysin metodologisia, mutta esitettyjen tekniikoiden etuja havainnollistetaan
esimerkkiaineistoilla useilta sovellusaloilta, erityisesti laskennallisesta genetiikasta.

Avainsanat Bayesilaiset yleistetyt lineaarimallit, piirrevalinta, dimension redusointi

ISBN (painettu) 978-952-60-8538-8 ISBN (pdf) 978-952-60-8539-5
ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2019

Sivumaara 190 urn http://urn.fi/URN:ISBN:978-952-60-8539-5







Preface

This thesis is the culmination of a learning process and work that has taken
place in Aalto University during years 2014—2018. The research was carried
out first in the Bayesian Methodology group in the Department of Biomedical
Engineering and Computational Science (BECS), and later at the Computer
Science Department (CS) after the former group moved and joined together
with the Statistical Machine Learning and Bioinformatics group to form the
new Probabilistic Machine Learning (PML) group. I am grateful and want
to acknowledge BECS Graduate School for partially funding my studies and
making this research possible. I also wish to thank Prof. Jim Griffin and Prof.
James G. Scott for pre-examining this thesis, and Dr. José Miguel Hernandez-
Lobato for agreeing to serve as an opponent.

Above all, I wish to thank my supervisor and instructor Prof. Aki Vehtari for
the support and guidance during these years. I still remember the time when I
was unsure whether to start the doctoral studies in the first place, and without
your encouragement at the beginning, this thesis might never have come into
existence. You have taught me many things about Bayesian statistical inference,
but also about research and science in general. In addition to giving important
instruction, I am very grateful that you have always given me plenty of freedom
to explore my own ideas, and many of the papers in this thesis were born (at
least partly) as a consequence of these explorations. I also appreciate the fact
that the extra duties you have given me have always been very moderate, and I
have always been able to focus on the research without too much disturbance.

I am also grateful to many colleagues whom I have worked with during these
years and many of whom have provided me advice related to research and all
sorts of things one might encounter in everyday work. In particular, I would like
to thank (in a rough order I have gotten to know you) Prof. Arno Solin, Dr. Tomi
Peltola, Janne Ojanen, Ville Tolvanen, Dr. Juho Kokkala, Olli-Pekka Koistinen,
Tuomas Sivula, Dr. Jarno Lintusaari, Eero Siivola, Marko Jarvenpad, Markus
Paasiniemi, Topi Paananen, Akash Dhaka, Kunal Ghosh, Dr. Michael Riis
Andersen, Gabriel Riutort Mayol, Dr. Mans Magnusson and Federico Pavone.
I have enjoyed the numerous chats we have had; those which have been quite
intellectual and taught me a lot, but also those perhaps not so intellectual ones



Preface

but which have been very entertaining nevertheless. I wish to thank also the
other people in the PML group and the former Bayes group for a relaxed and
enjoyable atmosphere. Special thanks go to the IT people at the BECS and CS
departments, who have helped me in numerous computer related issues during
the past few years.

I would also like to express my sincere gratitude to my family and in partic-
ular to my parents who have always supported and encouraged me in those
endeavours I have decided to commit myself to. Last but definitely not least,
thank you, Aura, for your support during these years.

Helsinki, April 29, 2019,

Juho Piironen



Contents

Preface

Contents

List of Publications

Author’s Contribution

1. Introduction
2. Bayesian linear models
2.1 Linearregression. . . . . . .. ... ... ... ... .. ...
2.2 Generalized linearmodels . . . . .. ... .............
2.3 Priorchoices. . . . . ... . ... ... ...
2.3.1 Gaussian scale mixture priors . . . ... ........
2.3.2 Role of the global shrinkage . ..............
2.4 Inference . . . . .. .. ... ..
2.5 Gaussian ProCeSSeS . . . v v v vt v e e e e e e e e e
3. High-dimensional problems
3.1 Classical approaches . . . . ... ... ... .............
3.2 Predictiveinference . . ... ... ... ... ... .........
3.3 Featureselection . . . . . ... ... ... ... ... .. ...
3.3.1 Selection based on posterior information. . . . .. ..
3.3.2 Projection predictive framework . . . . . ... ... ..
4. Summary of the contributions
4.1 Predictive inference (Publications I-IV) . . ... ... ... ...
4.2 Feature selection (Publications I, Vand VI) . . . . ... ... ..
5. Conclusion
References
Publications

11
11
12
13
13
17
18
19

21
22
23
25
26
28

33
33
34

37

39

45






List of Publications

This thesis consists of an overview and of the following publications which are
referred to in the text by their Roman numerals.

I Juho Piironen and Aki Vehtari. Comparison of Bayesian predictive methods
for model selection. Statistics and Computing, 27(3):711-735, 2017.

II Juho Piironen and Aki Vehtari. On the hyperprior choice for the global
shrinkage parameter in the horseshoe prior. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), volume
54 of Proceedings of Machine Learning Research, pages 905-913. PMLR. Fort
Lauderdale, Florida, USA, 2017.

IIT Juho Piironen and Aki Vehtari. Sparsity information and regularization
in the horseshoe and other shrinkage priors. Electronic Journal of Statistics,
11(2):5018-5051, 2017.

IV Juho Piironen and Aki Vehtari. Iterative supervised principal components.
In Proceedings of the 21st International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 84 of Proceedings of Machine Learning
Research, pages 106-114. PMLR. Lanzarote, Spain, 2018.

V Juho Piironen, Markus Paasiniemi and Aki Vehtari. Projective inference
in high-dimensional problems: prediction and feature selection. Submitted,
2018.

VI Juho Piironen and Aki Vehtari. Projection predictive model selection for
Gaussian processes. In IEEE 26th International Workshop on Machine Learn-
ing for Signal Processing (MLSP), pages 1-6, Salerno, Italy, 2016.






Author’s Contribution

Publication I: “Comparison of Bayesian predictive methods for
model selection”

The topic was proposed by Vehtari but Piironen designed and carried out all the
experiments. Piironen also had the main responsibility of writing the article
while Vehtari reviewed and proposed suggestions to the manuscript.

Publication II: “On the hyperprior choice for the global shrinkage
parameter in the horseshoe prior”

The methodological innovations are due to Piironen who also derived all the
theoretical results and carried out the experiments. Piironen also had the main
responsibility of writing the article while Vehtari reviewed and proposed some
modifications to the manuscript.

Publication lll: “Sparsity information and regularization in the
horseshoe and other shrinkage priors”

Both authors contributed in designing the content of the paper. The new method-
ological innovations are due to Piironen who also derived the new theoretical
results, carried out the experiments and had the main responsibility of writing
the article. Vehtari reviewed and proposed some additions to the manuscript.

Publication IV: “lterative supervised principal components”

The topic was proposed by Piironen who also derived the new method and
carried out the experiments. Piironen also had the main responsibility of writing



Author’s Contribution

the article while Vehtari reviewed and proposed some modifications to the
manuscript.

Publication V: “Projective inference in high-dimensional problems:
prediction and feature selection”

Piironen and Vehtari both contributed in designing the topic of the study, but
Piironen designed the content of the paper, derived the new methods and the-
oretical results, and carried out all the experiments. Piironen and Paasiniemi
had about equal contributions in writing the software package. Piironen had the
main responsibility of writing the article while Vehtari reviewed and proposed
some additions to the manuscript.

Publication VI: “Projection predictive model selection for Gaussian
processes”

The topic was proposed by Vehtari who also provided some ideas, but Piironen
did most of the work in deriving the new method. Piironen also implemented
the method, carried out all the experiments and had the main responsibility of
writing the article. Vehtari reviewed and provided several small additions to the
manuscript.



1. Introduction

This thesis deals mainly with Bayesian generalized linear models in setups
where the data are scarce and the dimensionality of the feature space high—a
regime which in the statistical jargon is often referred to as “small n, large d”.!
Linear models are often adopted as a default tool for these problems due to
their interpretabiliy and ease of analysis but also because of their computational
efficiency (at least relative to some of the more complex models). Another reason
is statistical: often with very high-dimensional feature space and scarce data
it can be difficult to learn nonlinear functions without overfitting, and in many
cases linear models tend to be rich enough. Furthermore, some statistical
relationships in the real-world mechanisms from which these datasets are
collected can inherently be approximately linear or at least monotonic. A typical
example could be the gene expression datasets where expressions of certain
genes are either high or low for cancer samples and vice versa for controls—not
for example so that both extremes (high and low) would be related to cancer and
intermediate values to normal samples.

Due to the small sample sizes, these problems are often characterized by high
uncertainties. Bayesian inference (e.g., O’'Hagan and Forster, 2004; Gelman
et al., 2013) provides a systematic framework for dealing with uncertainty using
the rules of probability and by expressing the uncertainties using probability
distributions. Accounting for uncertainty in the model parameters can result in
better calibrated uncertainties also in predictions in comparison to using only
point estimates for the parameters. Another benefit of Bayesian modeling is
that it allows a natural way of incorporating prior information into the model.
This can be useful, for example, for expressing that some parameter values are
unlikely a priori which may improve the performance of the model. All this
comes with a price, though; fully Bayesian inference can be computationally
intensive. To alleviate this computational cost, one of the goals in this thesis is
to study and develop techniques that can scale to large number of features.

The thesis is concerned with a setup which in machine learning is known as
supervised learning: given a set of observations & = {x;,y;}]_; infer the statisti-

1In the classical literature the number of features is often denoted by p, but we reserve
this symbol for the probability density functions.
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cal relationship between the features x = (x1,...,x4) and the target variable y.
The focus will be on two important problems. The first one is prediction: build
a model which given new feature values % can predict the associated target
variable ¥ as accurately as possible. In Bayesian formalism, this means learning
a conditional probability distribution p(¥|%,2). The second problem is feature
selection: in many cases not all of the features are likely to play a crucial role
in making the predictions, and we might want to identify a small subset of the
features that can characterize the predictions. Feature selection can potentially
have many benefits and we shall discuss these in some more detail in Chapter 3.

The most common approach of handling these two problems is to formulate
an estimation procedure that performs (semi-)automatic feature selection at
model fitting time. This means that both problems are attempted to be solved
simultaneously, so that the feature selection is obtained as a “by-product” of
the predictive model construction. One of the goals of this thesis is to challenge
this traditional approach. We argue that in many cases one can gain if the
two problems are solved in two stages using a decision theoretically justified
approach: first construct a model that gives as good predictions as possible
(not caring about feature selection), and then find a small subset of features
that can characterize the predictions. As we shall see later on, perhaps rather
surprisingly, this approach can both be computationally efficient and at the same
time improve feature selection without sacrificing predictive accuracy.

The thesis consists of six publications and this introductory part. The contri-
butions are solely methodological and covered in the original publications which
can be found at the end of the thesis. The role of this introductory part is to
provide a brief recap on the essential statistical methodology and summarize the
overall philosophy behind the aforementioned two-stage approach for prediction
and feature selection.

The remainder of this introductory part is structured as follows. Chapter 2
shortly reviews the used models. The focus is on Bayesian generalized linear
models and their prior specification, but also Gaussian processes which are used
in Publication VI are briefly discussed. Chapter 3 discusses the peculiarities
encountered in problems with high-dimensional feature spaces. This chapter
discusses the predictive inference and feature selection, and introduces the idea
of the two-stage inference. Finally, the contributions of the thesis are briefly
summarized in Chapter 4 followed by some concluding remarks in Chapter 5.

10



2. Bayesian linear models

This chapter briefly reviews the essential parts of Bayesian linear models that
are relevant for the six publications. Section 2.1 discusses linear regression and
Section 2.2 the generalized linear models which are used in Publications I-V.
The prior choices are reviewed in Section 2.3 which also summarizes the method-
ological innovations of Publications II and III. Finally, Section 2.5 provides a
brief introduction to Gaussian processes which are used in Publication VI.

2.1 Linear regression

Linear regression is one of the cornerstones of statistical analysis. In the basic
setup, the goal is to model a real-valued target (or outcome) variable y € R with
features x = (x1,...,x4) by assuming that the expected value of y given x is given
by a linear combination of the features (often also referred to as covariates or
predictors). With the customary assumption of normally distributed errors, the
model can be written as

yi=B'xi+ei, €~N(0,0%), i=1,...,n, 2.1)

where i denotes the observation index and € R? the regression coefficients that
determine how strongly each of the features is weighted in explaining variation
of the target.! The other sources of variation not captured by the features x are
modeled by the error terms ¢; that are assumed to be i.i.d. zero mean Gaussian
random numbers with variance o2.

Assume we are given n measurementsy = (y1,...,y,) € R” and X = (XI, ... ,XI) €

R™*<. We can write (2.1) in a matrix form as
y=Xp+e, (2.2)

where € =(g1,...,&,). It is easy to show that the maximum likelihood estimates

1Typically an intercept term By is added on the right hand side of model (2.1), which is
equivalent to having an additional constant predictor xo = 1. We drop the intercept here
for simplicity.

11
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for the regression coefficients are given by
B=X"X)""XTy, (2.3)

provided that (X"X)~! exists, which is usually true when d < n.
Let us now assume a zero mean Gaussian prior for the regression coefficients

BIA ~N(O,A), (2.4)

where the covariance A is assumed to be given for now. With this choice, it is
straightforward to show that the posterior for  given o2 and the data 2 = {X,y}
is a Gaussian

p(BIA,0%,2)=N(BI1B,%), (2.5)

where the mean and covariance are given by

1 1 -1
== (A—l + ;xTx) Xy, (2.6)

1
2= (A4 5XTX) 2.7)
o

It is straightforward to show that also the predictive distribution will be a Gaus-
sian (see, e.g., O’Hagan and Forster, 2004, ch. 9). In case the noise variance o2 is
also unknown (as it usually is), both the posterior for the regression coefficients
and the predictive distribution become ¢-distributions (see O’Hagan and Forster,
2004, for more details).

A common choice is to use a diagonal prior covariance with a common variance,
A = 72I, which is referred to as (Bayesian) ridge regression. The prior variance 72
can be fixed to some constant value but a more flexible and adaptive approach
is to give it a weakly informative prior and infer it from data along with other
parameters (see Section 2.4 for more details about the inference). If we let
the prior to approach uniform distribution 7 — oo, the posterior mean (2.6) will
approach the maximum likelihood solution (2.3) as expected. Ridge regression is
a reasonable choice when most of the features are assumed to have a regression
coefficient f; clearly distinguished from zero, but a variety of choices for A can

be considered (see Section 2.3).

2.2 Generalized linear models

As the name suggests, generalized linear models (GLMs) (McCullagh and Nelder,
1989) generalize the setup discussed in Section 2.1. The limitation of model (2.1)
is that it seems unreasonable for other than a real-valued, such as a discrete or
positively constrained outcome. The GLM approach is to force the real-valued
latent variable f = BTx through a function that maps it to the target domain

12
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and let this denote the expected value of y in an appropriate observation model.
More specifically, we have

u=E(ylx)= g_l(f), or equivalently f =g(p),

where g is a monotonic function called the link function and g~! its inverse, also
known as the response function.

A common and important example of GLMs is the logistic regression model
where the target value is either a Bernoulli distributed binary variable y € {0, 1}
or a binomial distributed non-negative integer y € {0,1,2,...}. As the former is a
special case of the latter, we can write the logistic regression model as

1

= 2.8
1+exp(—ﬁTxi)’ 28)

yilxi ~Bin(ng,p), pi
where n; is the number of trials (n; = 1 denoting the Bernoulli case) at fea-
ture values x;. The “success” probability u € (0,1) for a given trial is given
by the logistic response function u = ﬁp(*f) that maps f = fTx € R to the
interval (0,1). Some common alternatives to the logistic response function are
the probit and cauchit functions, which are the cumulative density functions of
standard Gaussian and Cauchy distributions, respectively.

Other common examples of GLMs include the Poisson regression (e.g., Gelman
et al., 2013, ch. 16) and survival models (e.g., Ibrahim et al., 2001) but we shall
not discuss them further. All these observation models and link functions widen
the applicability of the linear model but the downside is that due to the non-
Gaussian likelihood, the posterior inference is no longer analytically available
and some approximate inference technique must be adopted (see Section 2.4).

2.3 Prior choices

This section reviews some of the most common prior choices for the regression
coefficients in GLMs. All priors discussed here can be formulated as scale
mixtures of Gaussians (Section 2.3.1) which allows for convenient theoretical
analysis. The priors imposed on the effective model complexity for different
hyperprior choices are briefly discussed in Section 2.3.2.

2.3.1 Gaussian scale mixture priors

Many common priors can be obtained by placing a hyperprior on the prior
covariance A in (2.4). By employing a few simplifying assumptions, one can also
gain insights about how different choices affect the resulting posterior fit. Here
we follow the analysis presented in Publications II and III.

Consider the posterior distribution for linear regression coefficients, given by
Equation (2.5) (see Publication II or III for discussion about non-Gaussian likeli-
hoods). Assuming the inverse (X"X)™! exists, with a little bit of manipulation

13
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Table 2.1. Example prior distributions for the regression coefficients ; that can be expressed as
scale mixtures of Gaussians. The middle column gives the conditional prior for §; given
the hyperparameters, and the last column gives the hyperprior. All hyperparameters
for which prior is not specified (7, v, 7 and ¢) are assumed to be given, although in
practice these can be given hyperpriors as well. Symbol ¢ is purposely used both in
regularized horseshoe and spike-and-slab as it serves for the same purpose in both
cases. For the inverse-gamma distribution, parameters a and b denote the shape and
scale, respectively, and also for the exponential distribution, b denotes the scale.

Name Prior Hyperprior
. 292 _
Gaussian N(O,‘L’ AJ-) Aj=1
Student-t, ” /1? ~ Inv-Gamma (a =b= %)
Laplace ? /1? ~Exp(b =2)
Horseshoe ” Aj~C*(0,1)
c?A2

Regularized horseshoe N(O,Tch?) (f? = rﬂ’ﬁ, Aj~C*(0,1)
Spike-and-slab N(O,c2/1?) A; ~Ber(rm)

the posterior mean (2.6) can be rewritten as
B=A(A+c* X)) B, 2.9)

where f is the maximum-likelihood solution (2.3). Now, assuming further
that the features x are uncorrelated with zero mean and unit variance, then
%XTX — I as n — oo (see Publication III for discussion on unequal feature
variances). Using approximation X'X = nI, with a diagonal prior covariance
A =12diag (A%,...,Afl) the elements of f = (f1,..., Bq) have a simple form

ﬂ_jz(l—Kj)ﬁj’ (2.10)

where

1

= Trno A @1

Kj
We call the terms «; € (0,1) the shrinkage factors (or coefficients) following the
terminology of Carvalho et al. (2009, 2010). Shrinkage factors describe how
much the posterior mean is shrunk towards zero from the maximum likelihood
solution. In particular, at one extreme we have x; — 1 and B ; — 0, and on
the other hand when xj — 0 then f§; — B ;. Allowing different features to have
different local hyperparameter 1; allows them also to have different shrinkage
factors.

The shrinkage factors are a useful concept since they provide a tool for under-
standing the behaviour of some commonly used priors as well as a means for
designing new ones. Since the shrinkage factors are determined by the hyper-
parameters A; and 7 together with the noise variance o2, different (hyperprior)
choices for 1; and 7 can be understood based on their effect on the shrinkage
profile, that is, the prior imposed on «;.
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Figure 2.1. Priors densities imposed on the shrinkage factor (2.11) for different prior choices
p(B;) (see Table 2.1). For Gaussian and spike-and-slab, the prior contains mass only
at some discrete values depicted by the thick vertical bars. For all priors except spike-
and-slab, black denotes the density when \/ﬁa’lr =1 and grey denotes \/ﬁo’lr =0.3.
For spike-and-slab, black and grey denote cases 17—177: =1and ﬁ =0.3, respectively
(the bar locations are the same in both cases but are drawn here with a small
horizontal shift to avoid overlap). For the regularized horseshoe and spike-and-slab,

the left mode is located at x = Wlf%z’ and for visualization we have selected slab

scale ¢ =1 and no~2 = 10.

Table 2.1 lists some example priors that are Gaussian with diagonal covari-
ance A when the hyperparameters are given. The corresponding hyperpriors are
given in the last column. The imposed priors on a single shrinkage coefficient  ;
are shown in Figure 2.1. Gaussian prior (ridge regression) fixes the local variance
parameters /1? to unity for each feature which results in a constant shrinkage
for each coefficient f8;, and the magnitude of the shrinkage depends on the value
for the global hyperparameter 7. Allowing the local hyperparameters A; to vary
leads to a more flexible prior that allows the regression coefficients to adapt
better to the observed data. In particular, the horseshoe prior (Carvalho et al.,
2009, 2010; Polson and Scott, 2011) favors values both close to x; =0 and x; =1
which is useful for encoding prior information that some coefficients §; are likely
to be large and some close to zero. While both the Student-¢ family (Tipping,
2001; Gelman et al., 2008) and the Laplace prior (Park and Casella, 2008) can
accommodate a wide range of values for x;, neither of them encourages both
large and small values simultaneously.?

The horseshoe prior originally got its inspiration from the popular spike-and-

21t should be noted, though, that the relevance vector machine (RVM) of Tipping (2001)
employs improper Student-¢ priors with v = 0 which does induce truly sparse solutions
when the hyperparameters are optimized to the marginal maximum a posterior solution.
This is because the hyperprior then becomes p(A;) /le which does encourage some of

the 1; to collapse to zero.
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slab prior (Mitchell and Beauchamp, 1988; George and McCulloch, 1993) that—

in the form presented in Table 2.1—allows only two discrete values, x; = 1 or
__ 1

Ki = Teno2c2

is either set exactly to zero (“spike”) or given a Gaussian prior (“slab”) with

where ¢ denotes the slab scale. In other words, each coefficient §;

variance c2. Several variants of the spike-and-slab prior have been proposed.
For example, instead of a delta spike, one can use a distribution with small but
nonzero variance, place a hyperprior on ¢ to obtain a more heavy-tailed slab, and
consider different slab widths c; for each feature (George and McCulloch, 1993,
1997; Johnstone and Silverman, 2004; Ishwaran and Rao, 2005; Peltola et al.,
2012). When the spike is taken to be a delta spike at the origin §; = 0, integrating
over the posterior uncertainty about the regression coefficients corresponds to
Bayesian model averaging (BMA) where each feature combination is considered
as a separate model (Raftery et al., 1997; Hoeting et al., 1999).

The original horseshoe and the spike-and-slab are not fully analogous, how-
ever. The difference is that while in spike-and-slab even the largest §; will

1
Tino2e2)
the horseshoe encourages zero regularization (that is, x; = 0), see Figure 2.1.

experience regularization by a Gaussian slab with scale ¢ (that is, x; =

The regularized horseshoe introduced in Publication III bridges this gap by
introducing a modified prior
2,2 2 c®A7

BjlAj,T,c ~N(0,7%¢%), @:TT;A?, A ~C*(0,1). (2.12)
Here the local parameters A; are given half-Cauchy priors as in the original
horseshoe, but they enter the prior for §; through the transformation ¢; which
introduces a slab scale parameter ¢ as in spike-and-slab. The idea is quite
simple. For those §; for which A; is small (that is, 12/1? < ¢2) we have 5? ~ /1?
and the prior is approximately the same as the original horseshoe (see Table 2.1).
However, for those §; for which A; is large (that is, rzﬂti > ¢2) we have é? =~ i—;
and the prior for §; approaches N(O,cz), that is, a Gaussian slab. Figure 2.1
confirms that the new prior indeed mimics the shrinkage profile of the spike-and-
slab with a finite slab width. Setting ¢ — oo, we recover the original horseshoe
which resembles the spike-and-slab with an infinitely wide slab.

Having a way to control the regularization for the largest regression coefficients
can be useful with weakly identified parameters. An example are the logistic
regression coefficients when the classes are perfectly separable because the
likelihood becomes then flat. It is known that in such a situation the posterior
moments may vanish for independent Cauchy-priors (Ghosh et al., 2018), and
since also horseshoe has Cauchy-tails, it is vulnerable to the same phenomenon.
Even if vanishing moments were not an issue, the regularized horseshoe is often
empirically observed to robustify and speed-up the inference (see Publication III).

Similar extensions as for the spike-and-slab can be applied also to the regu-
larized horseshoe. For example, instead of fixing c it can be given a hyperprior
to allow a more flexible model. A reasonable hyperprior recommended in Publi-
cation ITI is ¢2 ~ Inv-Gamma (a = %,b = %‘2 which results in a Student-¢ slab
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with scale s and v degrees of freedom.

As a final remark, it should be noted that here we have discussed only some
of the most commonly used and fairly well established priors. Indeed, several
priors have been proposed many of which can be represented as scale mixtures
of Gaussians as those mentioned above. These include the normal-gamma
(Griffin and Brown, 2010), Bayesian hyper-Lasso (Griffin and Brown, 2011),
three parameter beta normal scale mixture (Armagan et al., 2011), generalized
double Pareto (Armagan et al., 2013), Dirichlet-Laplace (Bhattacharya et al.,
2015), horseshoe+ (Bhadra et al., 2017) and R2-D2 (Zhang et al., 2017). Some
empirical comparisons indicate that some of these perform quite similarly (Zhang
et al., 2017; Tang et al., 2018) but much more research would be needed in order
to get a good idea of the differences between all these priors.

2.3.2 Role of the global shrinkage

Figure 2.1 illustrates that the shape of the shrinkage profile changes when the
value of the global parameter 7 is changed (in spike-and-slab this role is played
by the prior inclusion probability 7). In particular, by decreasing the value
of 7 (or reducing 7 in spike-and-slab) one can place more mass near x; = 1 and
encourage therefore more shrinkage. Given that 7 has a notable effect on the
shrinkage profile, how should one then decide the value or a hyperprior for it?

To address this issue, Publications II and III introduce the concept of effective
number of nonzero coefficients which is defined as

d
mer= Y _(1-x,). (2.13)
j=1

This quantity measures the effective complexity of the model. In other words,
those regression coefficients that are penalized very little (that is, x; = 0) con-
tribute one to the sum, and those that are shrunk heavily towards zero (that is,
k; = 1) contribute nothing. By studying the imposed prior on ms one can get an
idea about how different prior choices for 7 affect the effective model complexity.
Figure 2.2 illustrates this idea. The subplots show the histograms of prior
draws for mg with two different choices for 7 and 7 in the horseshoe and spike-
and-slab priors, respectively. Decreasing the value of 7 or 7 favors models with
smaller effective complexity. For both priors, fixing the sparsity hyperparameter
(t or 7) leads to a prior which is fairly informative about m.. A more flexible
choice is to specify a hyperprior which leads to a less informative prior for m ¢
(see Publications II and III for an illustration on this point for the horseshoe).
The results shown in Figure 2.2 are generated simply by drawing the hyper-
parameters 11,...,14 from their priors and then computing the shrinkage fac-
tors (2.11) and finally the effective number of nonzero coefficients (2.13). Clearly
for the spike-and-slab this distribution is easily characterized also analytically
since for a given 7, mef is binomial distributed with success probability 7. Pub-
lications II and III show that, even though the analytic form of the prior for mes
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Figure 2.2. Illustration of the imposed priors on the model complexity for different choices of
sparsity hyperparameters when p = 50. Left graph shows the histograms of prior
draws for m g (Eq. (2.13)) for the horseshoe prior with vno~lr =1 (black) and with
Vvno~Ll1 =0.3 (gray). The right graph shows the same for the spike-and-slab (infinite
slab width) with {Z- =1 (black) and % = 0.3 (gray). Notice that with spike-and-
slab, m ¢ obtains only integer values whereas with horseshoe it is real-valued.

is intractable for the horseshoe, the mean and variance of this distribution are
analytically available for a given 7. This framework can also be used to design
weakly informative default hyperpriors for 7 based on the prior information
about the sparsity (see Publications II and III for the procedure).

2.4 Inference

As discussed in Section 2.1, for the linear regression model (2.1) the posterior
inference for B and o2 is analytically available when the prior covariance A is
given, and when the noise variance is also given, the posterior has a simple
Gaussian form. However, when the prior covariance A also has unknown hyper-
parameters, the posterior inference for these is no longer analytically possible.
Still, as the marginal likelihood for a given A can be computed analytically,
for simple prior covariance choices such as A = 72I the integration over 7 can
easily be approximated using numerical quadratures. This strategy is used in
Publication I.

When A has many unknown hyperparameters (Section 2.3.1) or when the
observation model is non-Gaussian (Section 2.2), one has to resort to more
sophisticated inference algorithms. The most generic choice is to use Markov
chain Monte Carlo (MCMC) algorithms (e.g., Robert and Casella, 2004) which can
handle both of these issues. The advent of modern generic sampling tools such
as Stan (Stan Development Team, 2018) has made MCMC inference efficient
and easily available for a very wide class of models. Stan implements static
Hamiltonian Monte Carlo (HMC) (e.g., Neal, 2011) and dynamic HMC (Hoffman
and Gelman, 2014; Betancourt, 2017) which provide efficient inference in many
cases even for high-dimensional parameter spaces. Stan is used for inference in
Publications II-V.
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The big advantage in MCMC is its generality, but this can come at the price
of a large computation time. The analytical approximations based on Laplace
approximation (e.g., Gelman et al., 2013, ch. 4), expectation propagation (EP)
(Minka, 2001) or variational inference (e.g., Jordan et al., 1999; Bishop, 2006;
Blei et al., 2017) can in many cases provide faster alternatives, but especially for
EP and VI this typically means a substantial increase in the amount of analytical
work and time required for the implementation. The automated variational
inference algorithms that require minimal input from the user (Ranganath et al.,
2014; Kucukelbir et al., 2017) hold promises, but these techniques are still too
often either too inaccurate or fragile in order to really compete with MCMC as
reliable black box inference algorithms.

2.5 Gaussian processes

Gaussian processes (GPs) (Rasmussen and Williams, 2006) are a rich and flexible
class of models which contain GLMs as a special case. For this reason, they
would deserve a chapter of their own but because of their limited role in this
thesis (Publication VI) we shall discuss them only briefly here.

As were discussed in Section 2.2, in GLMs the expected value of the target vari-
able y is obtained by transforming the latent function value f—which is obtained
as a linear combination of the features f = f(x) = B x—through the response
function g~1. Giving a prior distribution on the regression coefficients f induces
a prior distribution on the latent function f. For instance, if  ~ N(0,A), then
the latent function values f = (f(x1),...,f(x,)) =X in an arbitrary collection of
feature values X = (x-lr, ... ,XI) will have a joint Gaussian distribution

£~ N(0,XAXT). (2.14)

This is an example of a Gaussian process; a collection of random variables, any
finite subset of which have a joint Gaussian distribution.

Instead of using a parametric model for f and then placing a prior on its
parameters, the core idea of GP models is to place the prior directly on the
latent function. That is, we assume that all the function values have a joint
Gaussian distribution for which we specify mean and covariance functions,
m(x) =E(f(x)) and k(x,x') = Cov(f(x), f(x’)), that encode our prior assumptions
about the function. In the previous GLM example, the mean function is simply
m(x) = 0 and the covariance (or kernel) between any two points x and x’ is given
by k(x,x’) = x" Ax'. Another common covariance function (and the one used
in Publication VI) is the squared exponential (or exponentiated quadratic, or

. 9 4 (xj—x)?
Gaussian) k(x,x') = o exp (—ijl ’44’

functions. This essentially says that the function values in nearby points have

) which produces smooth nonlinear

a high covariance and the covariance decays to zero when the two points are
far from each other. Here 0’? and {¢ j}?:l are hyperparameters that describe the
overall magnitude of variation in the function values and how fast the covariance
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decays in different input directions.

The actual “parameters” of a GP model are the latent function values
f=(f(x1),...,f(x,)) for which the inference is in principle quite straightfor-
ward. Assuming a standard zero mean GP, the prior is Gaussian f ~ N(0,K),
where K;; = k(x;,X;), and given an observation model (likelihood) y ~ p(y |f), we
can combine these to get the posterior distribution. If the observation model is
Gaussian y |f ~ N(f,ozl) , the posterior for f given o2
then easy to show that the predictive distribution for the latent value at a given

remains Gaussian. It is

test point X will also be a Gaussian with mean and variance given by

E(f®|2)=k"(K+o’D) 'y, (2.15)

Var(f(X)|2) = k(x,%) + k' (K+0?D 'k, (2.16)

where k = (k(%,x1),...,k(X,X,)). The hyperparameters (noise variance and ker-
nel parameters) are typically unknown in practice but since the marginal likeli-
hood given the hyperparameters is analytically available (see Rasmussen and
Williams, 2006, for details), these parameters can be estimated from the data.
The most common strategy is to optimize them to the maximum marginal likeli-
hood solution, but an alternative and more Bayesian approach is to integrate
over them by using some deterministic or Monte Carlo based algorithm (e.g.,
Rue et al., 2009; Vanhatalo et al., 2010).

GPs provide an elegant and flexible way of encoding the prior assumptions
of the underlying function into the model. The main drawback, however, is the
computational cost; in a general case the exact inference scales cubicly O(n?)
with the number of data points n due to the matrix inversion which becomes
quickly prohibitive. Another complication is that the inference is analytically in-
tractable for non-Gaussian likelihoods. Consequently, much of the GP literature
has been focusing on making the inference feasible for large n and non-Gaussian
likelihoods (e.g., Quifionero-Candela and Rasmussen, 2005; Snelson and Ghahra-
mani, 2006; Titsias, 2009; Hensman et al., 2013, 2015; Matthews et al., 2016;
Hernandez-Lobato and Herndandez-Lobato, 2016; Salimbeni and Deisenroth,
2017; Hensman et al., 2018). Since this thesis focuses on problems with small n,
we shall not discuss these techniques further. For a recent useful overview of
many of these approaches, see Bui et al. (2017) and references therein.
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3. High-dimensional problems

Inference and analysis for models discussed in Chapter 2 is typically straight-
forward when the model contains only a few predictors. However, problems
with a large number of features—especially those where the number of features
exceeds the number of observations—pose extra challenges. These problems
usually arise from data collection processes where several features are measured
but so that it is likely that not all of them are statistically predictive about the
target variable.

In these problems the goals of the statistical analysis are often twofold: one
would like to construct a model that predicts unseen data well but also to identify
which of the features are relevant for prediction. The latter problem is typically
referred to as feature or variable selection. Although sometimes overlooked, it
is important to distinguish between two different problems that could both be
considered as feature selection:

1. Identify a minimal subset of features so that adding more will not substan-
tially improve the predictive performance.

2. Identify all those features (or as many as possible) that are statistically
related to the target variable.

In machine learning literature where prediction is typically the most important
concern, most authors refer to the first problem when talking about feature
selection (see, for example, Guyon and Elisseeff, 2003). However, the latter
problem—often called multiple (hypothesis) testing—is a much studied and still
actively pursued topic in the statistics literature (e.g., Johnstone and Silverman,
2004; Scott and Berger, 2006, 2010; Efron, 2010). There the prediction typically
plays a much smaller role and the main interest is to study the statistical
relationships between the features and the target in order to better understand
the real world process that generated the data.

This distinction is useful as it turns out that very often with large number
of features many of them carry similar information, that is, there is a lot of
redundancy. A simple example is the case of two features x1 and x2 which are
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strongly correlated with each other and about equally correlated with the target
variable y. Since x; = x2, consequently f1x1 + faxa = (B1 + B2)x1 = (B1 + f2)x2
which shows why it can be possible to reduce the number of features without
seriously affecting the predictions although the left-out feature(s) could not
be considered as irrelevant. In other words, if we were interested in solving
Problem 1, we would select either x1 or x9, whereas in Problem 2, we would
want to identify both x; and x2. Due to the different nature of the two problems,
it is natural to expect that a single approach cannot be ideal for solving both
problems. It should be emphasized here that this thesis focuses solely on the first
problem and this is also what is meant by “feature selection” in what follows.

An important point argued in this chapter is that feature selection may not
be necessary for obtaining good predictions even when the number of features
is very large. This point is clearly illustrated in the papers of this thesis, see
for example Publications I and II. For very high-dimensional problems it might
be necessary to use some shortcuts in order to reduce the computation time
(especially for Bayesian methods), but in many cases computation time can
be reduced by dimension reduction techniques that do not necessarily perform
any feature selection or at least use a relatively large number of features (see
Section 3.2).

We shall briefly review some of the most commonly used classical techniques
for feature selection in Section 3.1. Section 3.2 then discusses approaches that
are useful for predictive model construction but that do not perform feature
selection in the sense that they would attempt to produce a very sparse model.
Section 3.3 then reviews some Bayesian approaches and discusses the projective
framework that can be used to simplify non-sparse models if a truly sparse
model is desired.

3.1 Classical approaches

Classical approaches for sparse estimation typically formulate the feature selec-
tion as a maximum likelihood estimation problem with an additional penalty
that enforces sparsity in the solution. Probably the most well-known such
method is the Lasso (Tibshirani, 1996), which for the GLMs can be written as

ﬁ/l:argm&n{—logp(ylﬁ)+/1||ﬁ||1}. 3.1)

In Lasso the sparsity stems from the Li-penalty on the regression coefficient
vector. Solving (3.1) for a number of values for the regularization parameter A
yields a sequence of models with different number of nonzero regression co-
efficients. An appropriate value for A is then typically selected based on the
estimated predictive performance using cross-validation. Lasso has several
advantages that have made it extremely popular: the method is very simple,
the optimization problem is convex facilitating efficient computation (Friedman
et al., 2010), and in most problems it yields reasonably good results (in terms of
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predictive accuracy) while performing automatic feature selection.

On the other hand, one of the drawbacks is that for large values of A (that is, for
the sparsest models) the L;-penalty tends to overshrink the nonzero coefficients
and produce substantial bias in the estimation. To reduce this excessive bias,
one must reduce A which can cause many extra features to enter the model.
This phenomenon is well-known and illustrated also in Publication V. Another
consideration is that estimation of additional parameters such as the noise

variance o2

in regression is non-trivial (Reid et al., 2016).
Another well-known penalization is the elastic net of Zou and Hastie (2005)
which can be considered as a bridge between Lasso and ridge regression. The

elastic net for GLMs is given by
A 1
B = argmin{~logp(y| )+ (G- BIG+allplh) . 32

which introduces a new parameter a € [0,1]. Lasso is obtained when a =1
and ridge when a = 0. Intermediate values «a € (0,1) yield models with more
nonzero coefficients than in Lasso, but the benefit is that the strongly correlated
predictors tend to get selected in groups. Smaller values of a can also lead to
somewhat better predictive accuracy even for very high-dimensional problems if
there are plenty of relevant features (see Publication V).

There are also several other extensions or otherwise closely related approaches
(see Hastie et al., 2015, for a useful overview). These include the group Lasso
(Yuan and Lin, 2006) which can be used to select features in groups. The nonneg-
ative garrote (Breiman, 1995) and adaptive Lasso (Zou, 2006) are closely related
to each other and to the Lasso, and the former was actually the inspiration to the
original Lasso paper (Hastie et al., 2015). These techniques can undo to some
extent the undesirable excessive shrinkage to the largest coefficients inherent
for Lasso while maintaining the convexity of the optimization problem. Thus
they can also recover the true model (assuming such exists) under more general
conditions than does the Lasso (see Zou, 2006, for more details). There are also
some well developed non-convex penalties that can overcome the bias due to
the excessive shrinkage. These include the smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001) and the minimax concave penalty (MC+) (Zhang,
2010). Due to nonconvexity, finding the globally optimal solutions is difficult but
some efficient heuristics that can find good locally optimal solutions have been
developed (for example, Mazumder et al., 2011)

3.2 Predictive inference

The classical sparsity enforcing methods discussed in Section 3.1 attempt to
perform the predictive model construction and feature selection simultaneously.
However, even for very high-dimensional datasets it is often possible to come
up with a model with high predictive accuracy even without doing much or any
feature selection. This point is often overlooked but especially with Bayesian
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methods and reasonable prior choices (see Sec. 2.3), it is usually possible to avoid
overfitting without any feature selection. This is illustrated for example in Pub-
lications IT and III where good results were obtained with a logistic regression
model with (regularized) horseshoe prior in some example microarray datasets
with very scarce data, n < 100, but the number of features going up to about
d = 7000, so that n < d. Perhaps surprisingly, as demonstrated in Publication V,
even ridge regression which encourages all regression coefficients to be away
from zero can yield very accurate predictions in some of these problems. Natu-
rally it depends on the problem which approach performs best, but it is safe to
say that there are very high-dimensional datasets where no feature selection is
required to achieve accurate predictions.

This does not mean, however, that the recommended or the most practical
way of constructing a predictive model would be to use all features as they are.
With high-dimensional feature spaces, especially fully Bayesian inference using
MCMC can be computationally costly even for simple models such as logistic
regression. In order to reduce the computation time one might want to use
some shortcuts. Still, the computation time can often be reduced with dimension
reduction techniques that do only little if any feature selection.

This was the key idea behind Neal and Zhang (2006) who were the over-
all winners of the NIPS 2003 feature selection challenge where the goal was
to construct a model that optimizes prediction accuracy on a test set for five
datasets with large number of features (Guyon et al., 2006). As classifiers in
their challenge submissions, Neal and Zhang used Bayesian neural networks
and Dirichlet diffusion trees. To reduce the computation time to something
that could be handled by fully Bayesian inference for these models, they used
feature screening (also called filtering) based on univariate feature relevance
assessment (such as correlations with the class label) together with dimension
reduction using principal component analysis (PCA). Depending on the dataset
and submission—each contestant was allowed several submissions—they used
either only screening or PCA, or a combination of the two. This way they reduced
the dimensionality to about a few hundred features (the exact number being
selected based on the results on the validation data) and then used sparsity
promoting priors—or automatic relevance determination (ARD) as they called
it—that could further adapt to features with different relevances. Many other
contestants who achieved good results in the challenge used very similar ideas,
and rather remarkably, most good results were obtained with very simple tech-
niques. Another interesting take-home message from the overall results was
that eliminating all or even most of the irrelevant features was not critical for
obtaining a good classification accuracy (Guyon et al., 2006).

Dimensionality reduction using PCA can be an effective way of cutting down
the computations, and this still typically corresponds to using all the original
features (that is, no feature selection) since the principal components are almost
always non-sparse. However, if the features contain a lot of variation unrelated
to the variation in the target variable y, the first principal components may not
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be very predictive about y and large number of principal components might be
required in order to capture all the relevant variation. In these cases a more
effective approach might be combining feature screening and PCA, an approach
that is called supervised PCA (SPCA) (Bair et al., 2006). This approach works
as follows:

1. Compute the univariate relevance scores r; = r(x;,y) for each feature x;.

2. Select some screening threshold y, and retain only those features that have
their score above this value, that is r; >y, and compute principal components
from the reduced feature matrix X,.

The scoring function r is typically taken to be the absolute sample correlation
between x; and y, but also other choices could be considered. The screening
threshold y can be either selected using cross-validation for the model con-
structed using the extracted features, or one could simply discard features with
the score not statistically significantly different from zero (see Publication IV).
The screening step attempts to discard variables which are irrelevant for pre-
dicting y which usually causes the predictive power to be more heavily loaded
on the first few components facilitating more effective dimension reduction for
predictive model construction. A probabilistic version of the above idea has also
been proposed (Yu et al., 2006) but we shall not discuss it here.

Publication IV proposes a modification to the original SPCA by introducing an
iterative screening process that could possibly discover also features that are
not necessarily relevant alone but become relevant after some other features are
included (the original SPCA would miss these). As one might expect, based on
the comparisons on several benchmark datasets, no single method appears to
perform better than the others in all cases, and the optimal method is dataset
dependent (Publication IV).

3.3 Feature selection

As argued in Section 3.2, aggressive feature selection may not be necessary for
obtaining a good predictive model. Still, even if we had a model that predicts
well, in many cases some form of feature selection is beneficial, since it can
aid data understanding by making the model easier to explain and interpret.
Feature selection can also make the model much more convenient and faster to
use at prediction time, and it can also help reducing future costs if there is a price
associated with predicting with many features. In the following two sections,
we shall briefly review the traditional Bayesian approaches with some caveats
(Section 3.3.1) and then introduce the projective framework (Section 3.3.2) that
is argued to be superior.
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3.3.1 Selection based on posterior information

Some of the most common classical feature selection techniques were discussed
in Section 3.1. In the Bayesian literature, the dominant approach by far is to
formulate a prior that favors sparse solutions for the regression coefficients,
and the most common choice is undoubtedly the spike-and-slab (e.g., Lee et al.,
2003; Zhou et al., 2004). Also many of the other continuous shrinkage priors
discussed in Section 2.3 could be considered. Unlike the classical methods, these
approaches do not automatically produce a truly sparse model, since regardless
of the prior, there will always be a nonzero posterior probability for each feature
being included in the model. Sparse models could be produced for example
by thresholding, so that those features with estimated posterior effect below
some threshold are removed (Barbieri and Berger, 2004; Ishwaran and Rao,
2005; Narisetty and He, 2014). In case of spike-and-slab prior, an alternative
strategy is to select the maximum a posteriori (MAP) model (e.g., Johnson and
Rossell, 2012) which utilizes Bayes factors (Kass and Raftery, 1995; Han and
Carlin, 2001) together with prior probabilities for different feature combinations.
Spike-and-slab prior has also been used in combination with Li-penalty for
penalized maximum likelihood estimation (Rockova and George, 2018).

Unfortunately, the approach of inferring a good feature combination directly
based on the posterior for the regression coefficients has many difficulties which
are discussed in detail in Publication V. Firstly, as discussed in Section 3.2, the
posterior inference for a sparsifying prior (or any prior for that matter) with
a large number of features can be a great computational challenge if MCMC
is used for inference. Analytical approximations based on EP or VI have been
proposed to speed up the computation but these require a substantial amount of
analytical work and can be complex to implement (Hernandez-Lobato et al., 2010,
2013, 2015, Titsias and Lazaro-Gredilla, 2011; Carbonetto and Stephens, 2012).
Secondly, for spike-and-slab the relative marginal likelihoods of different feature
combinations can be sensitive to the hyperprior or hyperparameter choices (e.g.,
Kass and Raftery, 1995). The sensitivity of the posterior distribution to the
hyperprior on the global shrinkage parameter in the horseshoe prior has been
demonstrated in Publications IT and III.

Another serious issue is that pretty much regardless of the prior, the marginal
posteriors for the regression coefficients can be challenging to interpret when
some of the features are correlated. As discussed in the introduction of this
chapter, the reason is that when two features x; and x2 are highly correlated
(that is x1 = x2) then B1x1 + Baxa = (B1 + P2)x1 = (B1 + P2)x2. In practice this
means that the likelihood is relatively flat in the direction where fB; + B2 is
constant, and therefore it provides little information whether both or only one of
these coefficients should be nonzero.
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Figure 3.1. Illustration of a typical difficulty encountered with correlated features. The model
is the simple linear regression (2.1) without intercept and assuming the noise vari-
ance o2 is known. Visualized are the likelihood, prior (horseshoe with 7 =1) and
posterior densities for the regression coefficients 1 and B9 for a random data re-
alization with n = 50 observations when the features x1 and x9 have a correlation
of p = 0.8 (see the text for more details). The likelihood for both coefficients being
zero is small, but the data provides little evidence whether both or only one of them is
nonzero. A sparsifying prior such as the horseshoe results in a multimodal posterior
but does not help in solving the feature selection problem.

To illustrate this point, consider the following data generating mechanism:
f~N(Q,1),
yIf ~N(f,0?) 3.3)

x|f ~N(ypf,1-p), Jj=1,....d.

The target variable values y are noisy observations from latent function values f
which are drawn randomly from the standard Gaussian. The features x; are
also noisy observations from f which makes them correlated and on average
equally predictive about y (each feature has unit variance and all pairwise
feature correlations are equal to p). Figure 3.1 shows the likelihood, horseshoe
prior and posterior densities for the regression coefficients with d = 2 features
for a randomly generated dataset with p = 0.8, 02 = 22 and n = 50 observations
(assuming the noise variance and the intercept Sy = 0 are known for simplicity).
The likelihood that both f; and B2 are zero is small, but there are solutions with
high likelihood where only one of the coefficients is nonzero. In other words,
the likelihood is relatively uninformative about whether both or only one of
these features should be included in the model. A sparsifying prior is not much
of a help; it simply forces the posterior to become multimodal with modes at
where one of the coefficients is close to zero, but it is still challenging to decide
which of the modes should be selected and what would be the effect on the
predictive performance. Publication V demonstrates that the problem becomes
even more difficult when the number of correlating features increases, since for
each feature the posterior mass starts to focus more near zero as then most of
the features can be removed as long as some are retained. For a recent work
on generalizations and limitations of marginal posterior based selection with
correlated features, see Barbieri et al. (2018).
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Finally, it is worth keeping in mind that even when none of the things discussed
above were an issue, the selection based on marginal posterior probabilities
attempts to identify the “true feature combination”, that is, solve Problem 2
as framed in the introduction of this chapter. This means that the marginal
posterior probabilities may not be good indicators about how relevant each of
the features is. For example, we might have two features so that the first one
explained 50 percent of the variation in y whereas the other one explained only
5 percent, but they both would end up having posterior probability close to one
given enough data. For finding a sparse feature combination where features
that are either redundant or have a negligible effect are removed, the projective
framework (Sec. 3.3.2) offers a more natural answer. In addition to solving many
of the issues described above, this framework offers a natural solution to how to
make predictions with the selected feature combination—a question to which
the traditional approaches do not give a clear answer.

3.3.2 Projection predictive framework

The projective feature selection discussed in Publications I, V and VI solves
many problems inherent for traditional selection based on marginal posterior
relevance assessment discussed at the beginning of Section 3.3. The key idea
behind the projective philosophy is to separate the feature selection from the
predictive model construction. More precisely, the projective framework (for
feature selection) consists of the following two-step procedure:

1. Construct the best possible predictive model you can, which might be complex
and potentially uses a lot of features.

2. If the model is too complex, find a simpler model (with acceptable complexity)
that gives as similar predictions as possible compared to the original model.
For a given model complexity (number of features), the model with the smallest
predictive discrepancy compared to the original model should be selected.

The model constructed in the first stage is called the reference model and the
simplification step a projection. The simplified models are usually referred to
as a submodels. As we shall discuss in a moment, an important aspect of the
projection is that it depends solely on the predictive properties of the reference
model. In other words, the projection does not care how many features the
reference model uses, or whether it employs a sparsifying prior, for instance.
Another important aspect is that the simplification step is carried out only if
the reference model is too complex or cannot be used for some other reason; if
one was satisfied with the original model, there is no need for further feature
selection or other simplification.
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Projection for GLMs

There are a few different ways of formulating the projection, and these are
reviewed in detail in Publication V, so we shall introduce them here only briefly.
These techniques are generic in the sense that they do not assume any particular
model family but they are still best suited for GLMs.

Suppose we have a reference model and a submodel which are parametrized
by 6. and 0, respectively. If the reference model parameters are given, a natural
way of selecting the submodel parameters would be to minimize the discrepancy
between the predictive distributions p(¥|%,0.) and p(¥|X%,0). In the original
formulation of Goutis and Robert (1998) and Dupuis and Robert (2003), the
discrepancy is measured as average Kullback—Leibler (KL) divergence between
the two distributions over the empirical distribution of the features

n
6, = argmin > KL(p(51x;,0.) 1 p(7 |x;,0)). (3.4)
o ni4

As discussed in Publication V, as long as the observation model of the submodel is
in the exponential family, projection (3.4) is equivalent to finding the maximum
likelihood parameters for 8 with the observed targets y; replaced by their
expected values E(§|x;,0,) as predicted by the reference model.! For this
reason the above projection is fairly easy to compute for many models.

Since in fully Bayesian inference one accounts for the uncertainty in the
reference model parameters, Goutis, Dupuis and Robert proposed taking a set
of posterior draws {05‘}‘89:1 and projecting these individually to obtain a set of
projected parameter values {65 ;g: 1 for the submodel. The projection discrepancy
is then defined as the average discrepancy over the draws. We refer to this as
the draw-by-draw projection following terminology in Publication V.

An alternative strategy proposed by Tran et al. (2012) is to integrate over the
uncertainty in the parameters of the reference model and form the full posterior
predictive distribution p(§1%,2) = [ p(71%,0.)p(0.12)d0. ~ éZlep(ylﬁ,Gi)
and then for the submodel find parameter point estimates that minimize the
discrepancy to this distribution

n
0, =argmin = > KL(p( 1x:,2) | p(7 1 x:,0)). (3.5)
0 niH
We refer to this as the single point projection as only point estimates for the
submodel are computed. This has the advantage that it is much faster to
compute since the computational complexity is the same as for projecting a single
draw using (3.4) and therefore the computation time is cut down by a factor
of S. In practice for GLMs the draw-by-draw projection (3.4) can sometimes
yield a slightly more accurate predictive distribution for the submodel, but the
difference to the single point projection is typically small and not worth the
greatly increased computation time.

INotice though, that this does not hold for the dispersion parameters, such as the noise
variance o2 in regression. See Publication V for more detailed discussion.
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Publication V proposes a clustered projection that attempts to maintain the ac-
curacy of the draw-by-draw projection but with a greatly reduced computational
cost. The idea is to cluster the posterior draws {Hi}le of the reference model
into M clusters {65 :s€l,,}, m=1,...,M, and then perform a single point pro-
jection for each cluster. Here I1,...,I3; denote the index sets that indicate which
draw belongs to which cluster. To make the approach effective, the goal is to
assign draws that result in similar predictive fit into the same cluster. Such clus-
tering is easily obtained using, for example, k-means algorithm (see Section 3.3
in Publication V for more details). When the number of clusters approaches
the number of draws, the clustered projection approaches the draw-by-draw
projection. However, as illustrated in Publication V, often a small number of
clusters such as M =5 or M = 10 is enough for obtaining predictive distribution
close to that of the draw-by-draw projection.

In GLMs where the projected parameters are the regression coefficients f
(and potentially some dispersion parameter such as the noise variance), the
search for sparse submodels is most conveniently done by using a single point
projection with some sparsity enforcing penalty (see Section 3.1). For example,
Publication V uses Lasso-type Li-penalization

1 n
B =argmgn{n;KL(p(5f|xL’,@) I o5 1%, ) +/1||ﬁII1}, (3.6)

which yields a sequence of models with varying number of nonzeros in f when 1
is varied. In Publication V it is argued, however, that the penalization should
only be used to sort the features and that the predictive accuracy of the sparsest
submodels improves if the final projection is done without any penalty. This
approach is similar in spirit to the Lasso-OLS hybrid (Efron et al., 2004) and
the relaxed Lasso (Meinshausen, 2007). A fairly similar approach was also used
by Tran et al. (2012) but with the difference that they used different penalties
for different features which resembles more the adaptive Lasso. An alternative
to Li-penalization (or other penalties) is to use generic search heuristics such
as forward stepwise excursion. Forward search is computationally more costly
but can yield even better results. Furthermore, it has the benefit that it can be
used also for draw-by-draw and clustered projections and it does not assume
the model to be parametrized by a set of regression coefficients. Regardless
of the search strategy, model size selection can be done by selecting the least
number of features after which the predictive performance does not markedly
improve. The predictive performance can be estimated using cross-validation
(see Publication V for details).

One might wonder why the projection with Lj-penalized search would be
better than simply using Lasso. This point has been discussed in detail in
Publication V, but here we show a simple motivating example. Consider the
toy data from the previous subsection given by Equation (3.3). We generated
a random dataset of n = 100 observations with ¢ = 1, together with d = 100
features with correlation p = 0.5. In addition, 900 irrelevant noise features
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Figure 3.2. Illustration of projective selection. The training data has n = 100 observations
with 1000 features out of which 100 are relevant but correlated with each other
and therefore carry similar information (the rest are completely irrelevant). Left
plot shows the mean log predictive density (MLPD) and right plot the predictive
mean squared error (MSE) as a function of features selected, both evaluated on an
independent test set of 1000 observations (vertical lines denote one standard error
bars). The reference model (dashed horizontal) is obtained from Bayesian linear
regression using the first 5 principal components. The projection (black) is the single
point projection with L1-search (Eq. (3.6)) but the predictions are computed without
any penalization. Results for Lasso (gray) are shown for comparison.

generated from standard Gaussian were added so that the total number of
features was 1000. The reference model was constructed simply by fitting the
Bayesian linear regression model to the first 5 principal components of the
features. The sparse submodels using the original features were found by the
single point projection with Li-search (Eq. (3.6)) but the predictions for the
submodels were computed without any penalization as explained above.

Figure 3.2 shows the results. The Bayesian principal component regression
gives more accurate results than the Lasso and the projected submodels even-
tually converge towards the reference model when more features are added.
The submodels found by projection strictly dominate the ones found by Lasso in
terms of accuracy for a given model size.? This example is a manifestation to the
principle argued throughout this chapter; no feature selection is always needed
for obtaining good predictions (principal component regression), and solving the
prediction problem first may lead to improved feature selection (projection). This
example illustrates also that the reference model construction can be compu-
tationally very efficient: in this case the principal component regression using
MCMC takes only a few seconds on a standard laptop.

Projection for GPs

The above formulation of the projection (Equations (3.4) and (3.5)) is not ideally
suited for the nonparametric GP models (Section 2.5). Due to their flexibility,
it is nontrivial to design a projection that would be computationally feasible
but would guarantee a small discrepancy between the reference model and the

270 compute the log predictive density for the Lasso, the noise variance 2 for each
model size d’ was estimated using the method proposed by Reid et al. (2016), that is, by
dividing the squared residuals by n —d’.
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submodel not only at the training points but also everywhere else in the feature
space. This topic is pursued tentatively in Publication VI.

The approach proposed in the paper is to estimate the submodel hyperparame-
ters by minimizing the KL-divergence between the posterior distributions for
the latent values f in the full model and in the submodel with fewer features

0. =argmin KL(N(p,,2.) IN(pg.29)). (3.7)

Here p, and X, are the posterior mean and covariance of f in the full model
and py and Zg correspondingly for the submodel with hyperparameters 6. After
having learned the hyperparameters of the submodel, the predictions can be
made in a standard GP fashion. The results in Publication VI indicate that when
combined with a forward search, the minimization of the above KL-criterion
tends to find better tradeoff between submodel accuracy and sparsity than
selecting features using the learned length-scale values (ARD). The drawback
is that the KL-minimization is computationally hugely more expensive as in
the forward excursion up to d’ features the projection needs to be computed for
O(dd’) models, and each projection has a computational complexity of O(n?).
For more discussion on the method, see the original paper.

Related approaches

The approach of using a reference model with projective selection has received
relatively little attention in the linear model literature but some closely related
methods exist. The most closely related approach is the frequentist “precondi-
tioning” for feature selection proposed by Paul et al. (2008). A related Bayesian
method is the “posterior summary selection” by Hahn and Carvalho (2015) which
is essentially merely a different formulation of the projection (a different loss
function).

Another interesting idea is the “model compression” of Bucila et al. (2006)
where a complex neural network (or an ensemble of them) is replaced by a
simpler one with the motivation to achieve faster out-of-sample predictions at
test time. In this approach the smaller network is trained on a large (artifi-
cial) dataset where the labels are determined by the ensemble network, so the
smaller network learns to mimic the larger model. A very similar method is
the “knowledge distillation” of Hinton et al. (2015) which is greatly inspired by
the model compression idea of Bucila et al. It appears that since the paper by
Hinton et al., the compression of neural networks has drawn notable attention;
at the time of writing this, the knowledge distillation paper has received more
than 1600 citations according to Google Scholar.

Yet another related method is the local interpretable model-agnostic explana-
tion (LIME) framework (Ribeiro et al., 2016). In this method a simpler model
(linear) is fitted to the predictions of a complex model (neural network) in the
vicinity of a given test point which allows one to get insights of which features
(such as pixels in an image) have high weights in the classification. This has
been explored also from a more Bayesian viewpoint by Peltola (2018).
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4. Summary of the contributions

This chapter briefly summarizes and discusses the main contributions of the six
publications of the thesis.

4.1 Predictive inference (Publications I-1V)

Publication I compares several Bayesian methods for selecting features in linear
regression and classification models over a wide range of simulated and real
world datasets. Some of the methods are general purpose methods for estimating
the predictive performance of any Bayesian model (such as cross-validation and
information criteria) and some are designed for feature selection (for example
marginal posterior relevance assessment). An important take-home message of
the paper is that regardless of the used technique, feature selection rarely im-
proves the predictive performance compared to accounting for model uncertainty
with a reasonable prior over the competing models. Although it might appear
surprising, this result is in perfect accordance to what has been advocated earlier
by some other authors, see the discussion in Section 3.2. In the paper the full
Bayesian solution is taken to be the Bayesian model averaging over the different
feature combinations which—as pointed out in Section 2.3—is the same as using
spike-and-slab prior for the model with all features. Given that empirically the
horseshoe prior has been reported to give very comparable results to spike-and-
slab on a variety of problems (Carvalho et al., 2009, 2010; Polson and Scott, 2011;
Hernandez-Lobato and Herndndez-Lobato, 2013; Herndndez-Lobato et al., 2015)
it could be expected that the conclusions of Publication I are not sensitive to
adopting the spike-and-slab instead horseshoe or some other sparsity promoting
prior. The paper also gives recommendations about the preferred approaches for
feature selection when simplification of the model is desirable (see Section 4.2).

Publications II and III discuss the horseshoe prior and advance the theoretical
understanding of the role played by the global shrinkage parameter 7 (see Sec-
tion 2.3). Furthermore, the latter paper introduces the regularized horseshoe
prior that can be used to control the shrinkage for the parameters that are
far from zero. The connection to the spike-and-slab is discussed in detail. The
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benefits of these methodological advances are twofold. Firstly, they aid the
understanding about how the sparsity and regularization effects are encoded in
the horseshoe prior and help formulating the prior information about these char-
acteristics. Secondly, as demonstrated through practical examples, even weakly
informative choices both for the sparsity and regularization can typically help
to robustify and speed up the MCMC sampling and in some cases also improve
the predictive accuracy simultaneously. It is worth emphasizing that neither
of the proposed ideas—that is, how to incorporate sparsity and regularization
information to the prior—is restricted to the horseshoe prior but can also be
used with other priors that can be expressed as scale mixtures of Gaussians.
This broadens their applicability and can potentially make them useful for other
priors as well.

Also the empirical results of Publications II and III strongly support the idea
that no feature selection is necessary for obtaining good predictions, but this
can come with a high computational price. Motivated by this, Publication IV
studies some computational shortcuts for datasets with a high-dimensional
feature space. In addition to PCA and supervised PCA, the paper proposes an
iterative version of the latter algorithm and compares the performance of these
three methods when used to reduce the dimensionality to something that is
conveniently handled by Bayesian methods. The paper concludes that in many
cases the dimension reduction can be very effective; the model fitted using the
reduced set of features can obtain a high accuracy while the computation time
might be only a small fraction of what would be needed when fitting a Bayesian
model using the original set of features.! The paper also concludes that none
of the three dimension reduction algorithms performs better than the other
two over all datasets, but in almost all experiments at least one of them gave
very good results. Dimension reduction is something not routinely used in the
Bayesian literature—perhaps because people have tendency to either use fully
Bayesian methods or not Bayesian methods at all—but from a pragmatic point
of view, this approach can certainly be very useful.

4.2 Feature selection (Publications I, V and VI)

As discussed in Section 4.1, Publication I compares several Bayesian model
selection techniques for feature selection but recommends to avoid the selection
completely if the predictive inference is the only concern. However, when a
smaller subset of features need to be selected, the paper advocates the projective
framework (Section 3.3.2) which demonstrates overall superior performance
among the methods under comparison. The results indicate that the projection
tends to find an excellent tradeoff between the number of features and predictive

IThe paper does not actually compare to fully Bayesian approach using the original
features, but this pattern applies to those datasets that were also used in Publication IIT
where fully Bayesian inference (without dimension reduction) was used.
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accuracy, which is obviously hugely beneficial if the goal is to find the simplest
possible model that does not sacrifice much predictive accuracy compared to
using all the features.

The paper argues that the superior performance of the projection over the
other methods—especially the generic model selection techniques such as cross-
validation and information criteria—is due to better tradeoff between bias and
variance in the performance estimates for the submodels. For example leave-one-
out cross-validation (LOO) is known to give a nearly unbiased accuracy estimate
for any candidate model (Watanabe, 2010), but for small n the estimator has
a high variance. Model selection based on optimizing LOO therefore results
in high variability in the model selected. Furthermore, when many models
are being compared (such as in feature selection), the selection process tends
to (over)fit to the random noise in the LOO estimates. This can lead to a
selection of a suboptimal model and considerable selection induced bias in the
performance evaluation of the selected model (see Section 3 in Publication I).
This phenomenon has been known for a long time (Stone, 1974; Rencher and
Pun, 1980; Ambroise and McLachlan, 2002; Reunanen, 2003; Cawley and Talbot,
2010) but often tends to get overlooked. The projective selection on the other
hand is likely to have some bias since the reference model is never perfect in
practice but this is more than compensated by substantially reduced variability
in the feature combination that gets selected.

Publication V studies the projection further by reviewing the different pro-
jection techniques and by proposing a new projection method that unifies the
existing techniques and gives a good tradeoff between accuracy and speed (see
Section 3.3.2). The paper makes also some other methodological contributions
such as showing a fast way of validating the selection process and selecting
an appropriate model size using approximate LOO. The paper provides also
an extensive comparison to popular non-Bayesian techniques, in particular to
Lasso and elastic net (Section 3.1), and shows the superiority of the projection
in the “small n, large d” settings. Furthermore, the paper proves a theorem
that gives a theoretical argument of why learning the parameters in a linear
model via projection from a reference model can improve predictive accuracy
compared to standard fitting to the observed data regardless of the method used
to select the feature combination—a phenomenon that was empirically observed
and demonstrated also in Publication I. The methods discussed in the paper
are implemented in a freely available R-package projpred which makes them
easily available to the community.?

Finally, Publication VI explores the implementation of the projective selection
to GP models. The paper demonstrates empirically the difficulty of the input
relevance assessment based on the length-scale values (automatic relevance
determination, ARD) by showing that this tends to favor features along which
the latent function is nonlinear. The paper proposes a way of implementing
the projection to GPs together with empirical results that show the superiority

2The software is hosted at https://github.com/stan-dev/projpred.
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compared to ranking the features using ARD. This technique could still be
considered tentative and immature due to the high computational cost which
limits its practical applicability (see Section 3.3.2). Another issue is that due
the flexibility of the GPs the minimization of the KL-divergence can sometimes
behave in an undesirable manner, namely so that a small divergence locally at
the training data points does not guarantee small discrepancy elsewhere.
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5. Conclusion

This thesis has focused on predictive inference and feature selection for problems
with scarce data but high-dimensional feature space. The main argument has
been that in many cases it can be beneficial to solve these problems in two stages,
by first solving the prediction problem and then reducing the number of features
using the projective framework if needed. This strategy can both be computa-
tionally efficient, give an excellent tradeoff between predictive accuracy and
model complexity, and avoid several difficulties characteristic to the traditional
Bayesian approaches. As discussed in some of the papers and this introduction,
the advocated conceptual idea is not new but has been largely overlooked by the
statistical community.

To make this approach easily accessible, the thesis has proposed and dis-
cussed practical and computationally efficient tools both for predictive model
construction and the subsequent projective feature selection. The emphasis
has been on Bayesian generalized linear models but preliminary exploration of
these ideas to the Gaussian processes (Publication VI) has also been made with
promising results. In addition, this work has advanced the theory of the contin-
uous shrinkage priors by introducing new tools for formulating the sparsity and
regularization information to the prior. These theoretical advances are useful
for better understanding some of the priors that are currently in common use,
but they can also help in the construction of a predictive model.

Currently the proposed framework is fairly mature for the GLMs but more
work is needed for extending this to a wider range of models. Another aspect is
that while the framework makes perfect sense conceptually and is observed to
give good results in many cases empirically, the current theoretical understand-
ing of the technique is very limited. There is no formal understanding of when
the proposed approach could be expected to work better than the alternative
strategies. This point has been touched upon in Publication V, but more research
would be needed in this area.
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