
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Teemu Taskula

Advanced Data Fetching with GraphQL:

Case Bakery Service

Master’s Thesis
Espoo, February 12, 2019

Supervisor: Professor Eero Hyvönen
Advisors: Janne Kario M.Sc. (Tech.)

Jukka Keski-Luopa M.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in Computer, Communication and In-
formation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Teemu Taskula

Title:
Advanced Data Fetching with GraphQL: Case Bakery Service

Date: February 12, 2019 Pages: 56

Major: Computer Science Code: SCI3042

Supervisor: Professor Eero Hyvönen

Advisors: Janne Kario M.Sc. (Tech.)
Jukka Keski-Luopa M.Sc. (Tech.)

In today’s world building modern applications for multiple environments requires
deep knowledge of advanced data fetching solutions. While many longstanding
technologies, such as REST and SOAP, have provided robust solutions for most
use cases a more advanced data fetching solution is still needed to alleviate issues
in efficiency, complexity, and maintainability of current web services.

This thesis studies and compares two data fetching approaches: REST and
GraphQL in the context of a case study for a web application, called Bakery
Service, which possess several issues related to data fetching in its current REST
API. An experiment was conducted by first creating separate API implementa-
tions for REST and GraphQL. Then the data fetching performance was measured
by fetching a single recipe, extracted from the Bakery Service, followed by cal-
culating the total network time of all requests in conjunction with the total size
of the response payload and the data utilization percentages based on prede-
termined set of recipe fields. Additionally, the complexity and maintainability
of both technologies were analyzed to gain a better understanding of the non-
measurable qualities.

The results of the experiment showed that GraphQL performed considerably
better than REST in most test cases. Only REST with field level filtering was
able to overcome GraphQL in the data utilization part of the test. Also, the
qualitative analyzing hinted that by adopting GraphQL the complexity of an API
could be reduced while additionally gaining enhanced development capabilities.
These results resemble the findings from other similar studies and strengthen the
conclusion that GraphQL can be proposed as an advanced data fetching solution
for modern data-heavy applications. However, some future work is needed to
broaden the study to take aspects such as caching, mutations, and security into
account.

Keywords: GraphQL, REST, data fetching, performance, complexity,
maintainability

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Master’s Programme in Computer, Communication and In-
formation Sciences

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Teemu Taskula

Työn nimi:
Edistyksellinen tiedonhaku GraphQL:n avulla: tapaustutkimus Leipuripalvelu

Päiväys: 12. helmikuuta 2019 Sivumäärä: 56

Pääaine: Computer Science Koodi: SCI3042

Valvoja: Professori Eero Hyvönen

Ohjaajat: Diplomi-insinööri Janne Kario
Diplomi-insinööri Jukka Keski-Luopa

Nykyajan modernien sovelluksien luominen eri ympäristöille vaatii syvällistä
tietämystä kehittyneistä tiedonhakuratkaisuista ja vaikka monet teknologiarat-
kaisut, kuten REST tai SOAP, ovat tarjonneet tiedonhakuratkaisuja yleisimpiin
käyttötarkoituksiin, on kehittyneemmille tiedonhakuratkaisulle siitä huolimatta
tarve. Myös verkkopalvelujen kompleksisuuden ja ylläpidettävyyden hallinnointi
sekä datan tehokas hakeminen vaativat uusia ratkaisuja.

Tämä työ tutkii ja vertailee kahta tiedonhakumenetelmää: REST ja GraphQL
tapaustutkimuksen kontekstissa. Tapaustutkimus kohdistuu verkkopalveluun, jo-
ta työssä kutsutaan nimellä Bakery Service, ja jonka nykyinen rajapintatoteu-
tus sisältää useita tiedonhakuongelmia. Työn ohella suoritettiin koe, jota varten
luotiin omat rajapintaratkaisut molemmille tutkittaville teknologioille. Kokeessa
testattiin tiedonhaun tehokkuutta mittaamalla palvelusta otetun reseptin haku-
nopeutta rajapinnoista. Myös rajapinnan palauttaman datan koko ja käyttöaste
sovelluksessa laskettiin esimääriteltyjen reseptikenttien perusteella. Lisäksi mo-
lemmat teknologiat analysoitiin kompleksisuuden ja ylläpidettävyyden suhteen
tarkemman kokonaiskuvan saamiseksi.

Tutkimuksen tulokset osoittivat sen, että GraphQL suoriutui selkeästi parem-
min kuin REST lähes jokaisessa testissä. REST suoriutui paremmin vain data
käyttöasteen suhteen, kun haussa hyödynnettiin kenttäkohtaista suodattamis-
ta. Laadullinen analyysi antoi myös vihjettä siitä, että GraphQL:n käyttöönotto
vähentäisi rajapintatoteutuksen kompleksisuutta antaen samalla käyttöön tehos-
tettuja kehitysominaisuuksia. Saadut tulokset muistuttavat muiden vastaavien
tutkimusten tuloksia antaen tukea sille, että GraphQL:n käyttäminen tehokkaa-
seen tiedonhakuun on suositeltavaa nykyajan dynaamisissa sovelluksissa. Jatko-
tutkimusta on kuitenkin suoritettava laajemman ymmärryksen saamiseksi aina-
kin seuraavista osa-alueista: välimuistin käyttö, mutaatiot ja tietoturva.

Asiasanat: GraphQL, REST, tiedonhaku, tehokkuus, kompleksisuus,
ylläpidettävyys

Kieli: Englanti

3

Acknowledgements

I would like to thank Taito United for giving me the time and opportunity to
write my thesis about a subject that I truly was curious about. Also, huge
thanks to Jukka Keski-Luopa who was always supporting me when things
felt difficult or when I was not sure how to continue my research. Additional
thanks to Janne Kario who helped me finalize my thesis by providing valuable
feedback about the work as a whole.

Espoo, February 12, 2019

Teemu Taskula

4

Abbreviations and Acronyms

AJAX Asynchronous JavaScript And XML
API Application Programming Interface
CMS Content Management System
CRUD Create-Read-Update-Delete operations
DAO Data Access Object
DOM Document Object Model
GraphQL Graph Query Language
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
REST Representational State Transfer
SOAP Simple Object Access Protocol
SPA Single Page Application
SQL Structured Query Language
URI Uniform Resource Identifiers
URL Uniform Resource Locator
4G Broadband cellular network, fourth generation
5G Broadband cellular network, fifth generation

5

Contents

Abbreviations and Acronyms 5

1 Introduction 7
1.1 Problem Statement . 8
1.2 Case Study Details . 9
1.3 Objectives . 10
1.4 Outline . 11

2 Background 12
2.1 REST . 13
2.2 GraphQL . 15
2.3 Alternatives . 18

2.3.1 Falcor . 18
2.3.2 JSON API . 19

2.4 Related Work . 20

3 Methods 23
3.1 Performance . 23
3.2 Complexity and Maintainability 25

4 Implementation 28
4.1 Experiment . 28
4.2 Technical Details . 29

5 Evaluation 34
5.1 Performance . 34
5.2 Complexity and Maintainability 42
5.3 Challenges . 44

6 Discussion 45

7 Conclusions 49

6

Chapter 1

Introduction

Today’s data-driven world pushes us forwards to implement new ways of
processing and managing large amounts of data that power our everyday ap-
plications. The rise of the Internet has brought forth multiple sophisticated
methods for handling this vast amount of data, such as Simple Object Ac-
cess Protocol (SOAP) [5], Representational State Transfer (REST) [18], and
most recently Graph Query Language (GraphQL) [17]. There is a continuing
need for efficient management of the ever increasing data consumption of the
devices in our pockets. Fortunately, the cellular networks for these devices
are improving constantly from today’s 4G connections to near future’s 5G
wireless systems [10] allowing us to consume even more data via our every-
day devices. However, not all people have access to these fast networks [32].
Furthermore, the amount of data that modern applications require can be so
enormous that advanced methods for data fetching need to be incorporated
into an application in order to keep it functional even in fast networks. This
issue is evident especially in popular and globally used applications, such
as Facebook and Netflix, that provide practically endless feed of data and
need efficient solutions for fetching that data in order to provide an unified
experience for all their users [6, 30]. Thus, it is not a surprise that many
recent data fetching solutions have been developed by these large companies.
However, the described data fetching challenges are not restricted to the gi-
ants of the web industry. More and more solutions for handling dynamically
fetched data is needed as the complexity of today’s applications is constantly
shifting towards the client-side.

This thesis is a case study about advanced data fetching architectures and
methods for a fairly recent commercial Web-based service built for Finnish
bakeries and suppliers referred to as Bakery Service for confidentiality pur-
poses. The thesis is implemented in conjunction with a software consulting

7

CHAPTER 1. INTRODUCTION 8

company called Taito United1 that was responsible for building this service.
Next, the wider problem of data fetching will be expanded further and then
the case study will be introduced in more detail.

1.1 Problem Statement

Many modern client-side leaning applications rely solely on external data
sources. Fetching data efficiently over the network becomes a critical task in
the system that needs to be solved in a way that latency is minimized as much
as possible [34]. Numerous solutions for data fetching exist and new ones are
being constantly developed, so it can be difficult to decide which approaches
to use without in depth knowledge about the technologies involved. Hence,
technologies that have robust built-in capabilities that help solve both the
common and more advanced use cases of data fetching are notably valuable.
With these technologies the responsibility of deciding what to implement
and how to implement various complex elements of a data fetching system is
lifted off from the implementer.

For software systems, especially on the Web, it is common that the data
requirements of an application evolve over time and can become increas-
ingly complex via new features and growing user base. Fulfilling constantly
evolving requirements in today’s fast phased development can often lead to
sub-optimal solutions to problems that need to be solved quickly in order to
satisfy customers or retain certain business advantages. When sub-optimal
solutions start to stack on top of each other over time, the maintainability
of a system can substantially degrade from the introduced complexity.

Having robust technical solutions that allow efficient data fetching and
withstand the inevitable changes in requirements of the system without caus-
ing major maintainability problems is a critical necessity for modern appli-
cations. In this thesis two technologies, REST and GraphQL, are researched
and inspected with these problems in mind. The main research questions for
this thesis related to problems described earlier are as follows:

• What are the advantages and disadvantages of GraphQL and REST in
the context of data fetching?

• Which one performs better with highly hierarchical data?

• Which one is more maintainable and less complex to implement?

1http://taitounited.fi/

http://taitounited.fi/

CHAPTER 1. INTRODUCTION 9

These questions will be initially touched on in the next chapter when
REST and GraphQL are described in more detail, and finally answered after
the evaluation and analysis of the experiment conducted in this thesis. But
next, the case study that forms the guiding thread of this thesis is introduced.

1.2 Case Study Details

Bakery Service is a Web-based service that helps bakeries to automate and
produce the necessary label information for their products. These product
labels are lawfully required to contain information about the ingredients,
allergens, and nutrients of the product which can be easily handled with the
service. The service involves two user groups: the bakeries that input their
recipes into the system and receive the calculated product label information,
and the suppliers that offer their product and ingredient information for the
use of the bakeries.

For a bakery that is registered in the Bakery Service it is common to have
many recipes with multiple sub-recipes and ingredients that then consist of
a wide range of different nutrients and allergens. This deep hierarchy of
the data means that the final data structure for the whole recipe and the
product label that is based on the recipe can be quite large and complex,
inevitably introducing challenges for efficient data fetching in the system.
More precisely, these large and complex data structures can, depending on
the API design choices, either cause a few slow and expensive requests to the
server or several smaller requests that add up to an expensive operation as
a whole. As a result the client application can become unresponsive while
waiting for the requests to resolve thus decreasing the user experience.

In the case of the Bakery Service the API was designed in a way that the
number of requests could be minimized in order to reduce the total network
time while having idiomatic endpoints for each resource of the system. This
was achieved by following the JSON API specification [26] that enabled flex-
ible data fetching via capabilities such as field filtering and resource nesting.
However, following such a specification introduced complexity in various sec-
tions of the system. Firstly, the data access layer of the API responsible of
fulfilling the convoluted data requirements of the client incorporated com-
plex database queries in order to minimize the number of queries to keep
the response times as fast as possible and to facilitate the powerful features
dictated by the JSON API specification. The JSON API specification will
be introduced further when the alternatives to REST and GraphQL are dis-
cussed about in the next chapter.

In addition to the server-side complexity, the data format enforced by

CHAPTER 1. INTRODUCTION 10

the JSON API specification in conjunction with the deep hierarchical nature
of the recipe and product label data makes it difficult to manage the state
of the client application with high confidence which is why many custom
methods and functions have been implemented attempting to handle this
complexity in Bakery Service’s client application. The current API mostly
supports flexible data fetching based on the specific needs of the client but
in spite of following the JSON API specification, some data under- and over-
fetching issues are present in the client application. In many cases it is
simpler to fetch more data than is actually needed because the coordination
of the application state becomes difficult to manage when various parts of the
application require different subsets of the same data. So, fetching only the
required amount of data and ensuring that any custom built utility functions
perform properly is a difficult task, and a more preferable solution would be
to reduce the complexity of the data or shift the responsibility for handling
the complexity to a more robust third-party solution or pass the responsibility
to the server all together.

1.3 Objectives

The objective of this thesis is to first research GraphQL as a full or partial
replacement for the current REST architecture in the Bakery Service and
identify any valuable tools related to using it in practice. Then an experiment
with the tools and technologies found will be implemented focusing on only
a single page inside the Bakery Service system: the page for showing the
details of a recipe. Other pages in the Bakery Service were also considered
but only the chosen page is focused on to keep the scope of this case study
manageable. Also, the recipe details page is one of the data heaviest pages
in the system and thus has an urgent need for data fetching optimization.

The main goal of the experiment is to answer the research questions
described earlier and to find a data fetching solution, based on the research
made, that compared to the current REST based architecture decreases the
load time for all the data required to show the selected page and thus have
it be responsive to user activity more quickly. This should be the case even
for recipes that have a large number of sub-recipes and ingredients in it.
Various aspects of the API requests made in the system will be measured to
determine the efficiency of the experimented technologies. Additionally, the
inspected solutions will be analyzed from assorted angles related to actually
implementing and maintaining them in the practice. These metrics will be
introduced in Chapter 3.

CHAPTER 1. INTRODUCTION 11

1.4 Outline

Now that the problem for this case study has been formulated and the
main objectives have been defined the general structure of this thesis can
be scanned through. First, the technical details of REST and GraphQL for
data fetching are introduced and compared to gain better understanding of
the differences between them and the use cases they fit into. Alternatives
to GraphQL and REST are also briefly considered and compared. Next
some related work will be presented to broaden the academic horizon for this
study. Then the selected methods and metrics for evaluating the two tech-
nologies are going to be introduced, and after this the implementation for the
experiment will be presented. Then the experimented technologies will be
evaluated and analyzed, and the results of the experiment will be discussed
about in conjunction with going over the challenges encountered during the
experiment. Finally, based on the experiment and the analysis results the
potential solution for the Bakery Service will be proposed and future work
for the study will be discussed.

Chapter 2

Background

The World Wide Web has evolved from a purely document-centric form into
a more dynamic and data-driven form where websites are not just server-side
rendered static pages anymore but respond to user actions dynamically by
combining data from multiple sources. Today many applications are moving
the complexity towards the client-side by taking advantage of the modern ca-
pabilities of JavaScript for manipulating the HTML Document Object Model
(DOM) and making AJAX calls to the server for data needs. In extreme
cases, like in the Bakery Service, the whole application logic is contained
inside a handful of scripts that are loaded asynchronously when the page is
visited by a user. The initial HTML document for the page can consist of
only a few lines of minimal HTML code to bootstrap the required resources.
Even technologies behind inherently static websites, such as Content Man-
agement Systems (CMS), most notably Wordpress that powers a large part
of the Web [42], have started to offer API endpoints that expose the same
data, that would be normally inlined to the static document, to the clients
in order to enable the development of more dynamic applications [47].

For almost a decade REST has been considered as the standard technolog-
ical solution for dynamic applications on the Web. REST in conjunction with
other Web specifications, such as Hyper Text Transport Protocol (HTTP)
and Uniform Resource Identifiers (URI), has guided the development and
design of the Web into a more resource-centric direction and allowed us to
build highly scalable applications [18].

However, while REST has laid down the foundations of the modern Web
it still lacks many aspects that are needed in today’s data-heavy applications
that have to function efficiently in numerous network environments and in
an unfathomable number of different devices ranging from cheap low-end
mobile devices to extremely powerful high-end desktop computers. For these
challenging needs many solutions have been introduced from which GraphQL

12

CHAPTER 2. BACKGROUND 13

is a notable one. Next, the background in conjunction with the strengths and
weaknesses of REST and GraphQL are discussed in more detail, and at the
end of this section other alternatives to the former solutions are introduced
and briefly analyzed.

2.1 REST

REST, first described by Fielding [18], is an architectural style for distributed
and scalable Web systems. Fielding introduced five major design factors for
REST: cacheability, client-server communication, hierarchical layers, state-
lessness, and uniform interfaces. Additionally, an optional sixth factor called
Code-On-Demand can be considered allowing the clients to enhance their
functionality by downloading code as applets or scripts. However, this can
be ignored as the modern Web has moved away from applet-based applica-
tions [44].

The core idea of REST revolves around resources identified by URIs,
and the combination of these URIs form the endpoints of an API. These
resources can be fetched and managed by sending HTTP requests, such as
GET, POST, or DELETE, that correspond to the actions performed against
the resource to the URI of the resource. For example, a response to a GET
request made to an endpoint, such as /recipes/1, can look something like
shown in Listing 1 where the response is in JSON format. Another rela-
tively common response format is XML which, however, is far less popular
in Web applications because it is more difficult to parse into a usable form
in JavaScript compared to JSON [43]. Notably, the REST specification does
not limit what a resource can be so it is possible to have for example images
or documents as resources. The specification however enforces that when the
client makes a request to the server it must provide all the necessary state
that is needed to process the request to keep the interaction context-free [35].

{

"id": 1,

"name": "Granny's apple sauce",

"bakery": "Parker's Bakery",

"ingredients": [1, 3, 8]

}

Listing 1: Example JSON response

In Listing 1 one can also see a common design aspect of REST APIs:

CHAPTER 2. BACKGROUND 14

any sub-resources included in a response are represented by their identifiers
or by URI strings to the resource instead of the resource data itself. These
identifiers can then be used to further request the complete data for the sub-
resources. However, having to request N sub-resources one by one requires
N additional HTTP requests to the server instead of receiving all the needed
data in one round-trip. The requests are handled on the server-side by routes
that are bound to the specific URIs of the resources in the system. There is
no built in concept of nested URIs in REST meaning that a single request
can only invoke one route handler making it inconvenient to include sub-
resources.

Nonetheless, REST is not without it’s strengths. Having resources in the
center of REST guides the design of the whole system into a more modular
direction delegating the responsibilities of data handling to each resource
entity respectively. By leaning against fairly simple protocols, such as HTTP
and URI, REST is simple to adopt and use in any application. There is
no need for custom libraries and tools to establish a connection between a
client and a server and to send data between them. Also, REST makes it
simple to design the API interface in a human-readable manner since after
all everything consists of simple URIs and a limited set of HTTP verbs. The
design result for an API should be a clear and uniform description of the
various endpoints of the system. Furthermore, another advantage of REST
related to it’s modular nature is maintainability of services. If designed with
the REST mindset the responsibilities of different services should not overlap
making it straightforward to maintain them separately.

But, as stated by Fielding and discussed earlier, one notable weakness for
REST based systems is that a client has to conform to the uniform interface
provided by the API [18]. Generally the data is transferred in a standardized
form possibly including only the identifier of any sub-resources or the whole
requested resource even though only some small portion of that resource is
needed by the client application. Consider a view such as the listing of all
recipes owned by a bakery in the Bakery Service where only the names of
the recipes are shown in the list. With the REST architecture requesting
these recipes involves fetching the whole resource for each recipe in order to
just list their names. This is highly inefficient, especially for a large number
of requested resources, and can create a bottleneck inside the application
degrading the user experience. In general, this kind of behaviour is called
data over-fetching where most of the requested data is actually not needed
by the client. Another common shortcoming of REST APIs is data under-
fetching where the client has to first request some resource and then read
the identifiers of any sub-resource of that resource and request them one by
one to fill in the missing data of the original resource. So, since REST is

CHAPTER 2. BACKGROUND 15

a resource-centric architecture it more easily leads to data over- and under-
fetching than a more data-centric approach, such as GraphQL, that provides
only the data that is requested by the client [4].

An additional minor weakness of REST is that it does not have any
notion of session management built into it other than enforcing context-free
communication between the client and the server leaving the responsibility
of session management to the developer [35]. Common approaches to session
management include usage of browser cookies, authentication tokens and
offline storage.

At this point it is important to note that many of the weaknesses of REST
can be solved via use case specific filters [27] or custom endpoints that ful-
fill the specific data need for the client application. However, implementing
these filters can get cumbersome and the number of custom endpoints can
start to grow in an unmaintainable manner increasing the server-side com-
plexity as the data requirements of the application evolve over time [34, 40].
Furthermore, using these kind of sparse field sets to filter the data to the
clients needs imposes problems for caching [3]. So, instead of having a dozen
custom endpoints that serve only a certain need it would be more manage-
able to have a built in way to request only the data that the client needs
inside the data fetching technology itself. This is what GraphQL does in it’s
core as can be seen in the next section.

2.2 GraphQL

GraphQL, created in 2012 and standardized in 2015 by Facebook, is a query
language that enables client-server applications to precisely describe the ca-
pabilities, interactions, and requirements of their data models [17]. Contrary
to the resource-centric approach that REST follows, GraphQL is a data-
centric specification to building APIs. When a whole resource would be
requested with REST, a set of specific fields of a resource can be asked with
GraphQL moving the responsibility of selecting the required data to the client
from the server [17]. Listing 2 shows a simple GraphQL query that requests
the same data shown in Listing 1 in the case of REST. The only difference to
that request is that the names of the ingredients are added to the GraphQL
query, and the response for this can be seen in Listing 3.

Listings 2 and 3 demonstrate the data-centric approach that GraphQL
has for data fetching compared to REST. The fields for sub-resources, here
only the name of the ingredient, are included to the query, and then present
in the response for this query without having to make additional requests.

The design principles behind GraphQL, as listed in the specification [17],

CHAPTER 2. BACKGROUND 16

query {

recipe(id: 1) {

name,

bakery,

ingredients {

name

},

}

}

Listing 2: Simple GraphQL query

{

"id": 1,

"name": "Granny's apple sauce",

"bakery": "Parker's Bakery",

"ingredients": [

{ "name": "Sugar" },

{ "name": "Flour" },

{ "name": "Apple" }

]

}

Listing 3: Response from GraphQL query

are hierarchical structure for queries, driven by a product-centric mindset,
safety by strong-typing, client-specific queries and responses, and introspec-
tion for enhanced development experience. So, in order to enable many of
these principles GraphQL revolves around schemas of different types present
in the system instead of resource URIs to define what is available in the API
and what kind of actions are possible. Moreover, GraphQL APIs only have
one endpoint capturing all queries instead of multiple endpoints as in the case
of REST. Listing 4 shows a simple schema constituting of a few truncated
types.

The top level types of operations in GraphQL are queries (Query), mu-
tations (Mutation), and subscriptions (Subscription) that describe all the
possible ways to fetch and alter the data [14]. They act as entry points for
the system while the rest of the types describe the structure of the objects
which is why they are called object types [15]. Object types, such as the
Recipe and Ingredient types in Listing 4, are composed from other object

CHAPTER 2. BACKGROUND 17

type Query {

recipe(id: ID!): Recipe

ingredient(id: ID!): Ingredient

}

type Mutation {

addRecipe(input: AddRecipeInput): Recipe

}

type Recipe { ... }

type Ingredient { ... }

input AddRecipeInput { ... }

Listing 4: Example GraphQL type definitions

types or primitive scalar types such as strings (String) or integers (Int). Ad-
ditionally, there exists other more higher level types such as interfaces, unions
and input types that can be used to handle complex data requirements.

Compared to REST, and many other solutions before REST, GraphQL
makes it simple for client to take control of it’s own data requirements en-
abling lighter network communication between the client and server. Having
all the necessary data in a lightweight response payload and making less net-
work requests is especially important for people with low-end devices and
people that have limited bandwidth and restricted data usage limits. Also,
network activity is one of the most battery intensive activity in today’s mo-
bile phones which is why mobile phones benefit greatly from GraphQL [45].

Since GraphQL requires the developer to describe all the data structures
and interactions with types it allows various tools to verify that a query is
syntactically correct and valid within the GraphQL type system before actu-
ally executing the query [17]. This can have a considerable positive impact on
developer experience and lead into having less bugs in the implementation.

GraphQL also alleviates the pain points related to versioning of an API by
following a tactic of always adding new fields instead of removing them [12].
So in practice, there is no need to explicitly version the API since the client
can always request only the data it needs by selecting only a specific subset
of fields instead of conforming to the data the server decides to return like
in the case of REST [12]. But, if needed the developers can add deprecation
warnings to the fields of the schema they wish to remove in the future.
This approach of always adding fields and never removing them would be
problematic in the context of REST since all the fields of an resource are

CHAPTER 2. BACKGROUND 18

included in the payload of a request by default, so the payload size would
keep increasing over time when new fields are added.

Finally, a notable strength that should not be overlooked is the ability to
introspect the exposed API easily with built-in tools provided by GraphQL.
This makes exploration of the data and available actions simple, and serves
as a powerful development tool for developers that are either building or
consuming the API. [13]

Every technology is not without it’s weaknesses. Both GraphQL and
REST are served over HTTP but since GraphQL has only one entry endpoint
for the API it only uses the GET and POST methods instead of the full set
of available HTTP methods commonly mapped to Create, Read, Update,
and Delete (CRUD) operations. Developers also need to be careful to only
use GET method for queries and POST method for everything else [16].
Furthermore, since there is only one URI for the API it is impossible to
cache the responses of the API in a traditional manner but instead a custom
caching mechanism has to be implemented on the client-side or on the server-
side with the help of globally unique identifiers [11]. Lastly, it can be argued
that GraphQL is inherently not as simple to use as REST since it requires
upfront work for defining the schema of the API with the proper resolvers for
various fields of the entitites in the schema. Also, due to the unique query
language it can be more difficult to handle various custom edge cases, such as
file upload, with GraphQL and usually a combination of REST and GraphQL
APIs is introduced to achieve these requirements. However recent work has
been done to introduce a specification for multipart form field structure in
GraphQL to support file uploads [36].

Now that both REST and GraphQL have been introduced in detail some
alternatives to these approaches are briefly discussed in the next section.

2.3 Alternatives

2.3.1 Falcor

GraphQL is not the only data-centric specification for efficient data fetching
on the Web. In 2015 Netflix introduced their approach to handle massive
amounts of data in their applications called Falcor [29]. Falcor allows the
server to model and expose data as a single JSON resource to its clients
while supporting queries that request only some parts of that resource. Both
GraphQL and Falcor aim to solve the same problem of managing the constant
increase of data requirements in modern applications. However, there are
some notable differences between the two. While GraphQL has a schema and

CHAPTER 2. BACKGROUND 19

static types Falcor does not provide any built-in way to add type checking or
schema validation. Moreover, Falcor only allows passing simple arguments,
IDs, and specific ranges to queries. Finally, a valuable feature for developers
that Falcor is missing compared to GraphQL is a built-in schema exploration
tool that makes it simple to understand the API surface of an application.

So, even though Falcor and GraphQL are relatively similar and attempt
to solve the same issue presented in this thesis, GraphQL was selected for
further research instead of Falcor because of it’s powerful features, wider
adoption in the web development community and vast offering of tools, li-
braries, and other resources that make it easier to use GraphQL than Falcor
at the moment of writing this thesis.

2.3.2 JSON API

While GraphQL is a specification for efficient data handling with a large
number of reference implementations in different programming languages and
Falcor is a ready to use solution for the same matter, JSON API is a specifi-
cation for REST architectures describing how a client should make requests
for resources to be fetched or altered and how a server should respond to
those requests [26].

JSON API attempts to solve data under- and over-fetching issues by
restricting in what format the data should be passed between the client
and the server and how that data can be filtered by clients without losing
too much discoverability, flexibility, or readability of the data and the API
endpoints [26].

The client-server communication for the Bakery Service has been imple-
mented with the rules of JSON API specification in mind from the start.
Even though following the specification has helped to mitigate some data
fetching issues in the Bakery System, it has generated various other issues,
such as maintainability overheads, difficulties of extending existing features,
and project-wide complexity, that have started hinder the development speed
and reduce developer experience and confidence.

The most notable issues have to do with lack of tooling and libraries,
and added complexity in state management on the client-side. For example,
requesting only a subset of the fields of some resource is supported by JSON
API but keeping track of what fields have already been fetched and stored
in the state is a major challenge. Without a built-in way of doing this it
can quickly become tedious to handle all the logic for caching and state
management for all different subsets of the data.

In addition to the client-side challenges, the requirements enforced by the
specification make it extremely difficult to implement robust server-side solu-

CHAPTER 2. BACKGROUND 20

tions that satisfy the specification. Especially implementing sparse fieldsets
with support for nested resources requires considerable amount of work. For
these reasons exploring other solutions, such as GraphQL, for efficient data
fetching and management is essential to alleviate the pain of maintaining and
extending the Bakery Service in the future.

Next, before diving deeper into the research methods for this case study,
some related work is presented to gain better understanding of the academic
field for REST, GraphQL, and other data managing approaches.

2.4 Related Work

GraphQL is a fairly recent technology specification in the web development
industry [17] especially compared to the REST specification which has been
around for almost twenty years [18]. A consequence of GraphQL’s young age
is that the academic spectrum for it is still rather narrow which makes it
difficult to have a comprehensive view of the academic field in the context
of this thesis. However, some in depth research has been made solely about
GraphQL and also about the adversarial nature of GraphQL and REST as
competing approaches for data fetching on the Web.

There have been a few other theses published that compare REST and
GraphQL as data fetching solutions. Firstly, Cederlund [7] compared three
API implemetation technologies: Falcor, GraphQL with Relay, and REST in
his thesis in order to determine which technology provided the fastest data
fetching in terms of latency, number of network requests, and the amount of
data transferred. The naive initial result was that a custom endpoint specific
to the data requirements of a client was the fastest solution from all three.
However, Cederlund pointed that when multiple requests were needed to re-
solve all of the data GraphQL in conjunction with Relay, a client-side library
for GraphQL, provided the lowest latency. Finally, the key finding from
Cederlund’s thesis was that even thought the response payload size could be
decreased with GraphQL the size of the HTTP request could mitigate some
or all of the benefits of a leaner response due to sending a large query string
with the request. Another thesis related to GraphQL, by Eeda [9], proposes
and implements GraphQL as a solution for web applications that need to
increase their data fetching performance and avoid over- and under-fetching
of data. Eeda integrated GraphQL into an existing real-time dashboard sys-
tem in order to investigate potential performance improvements. While the
thesis was mainly user interface architecture specific the key findings showed
that GraphQL was able to reduce the total number of network requests con-
siderably achieving a 153% and 245% faster render times for specific views

CHAPTER 2. BACKGROUND 21

inside the dashboard application.
Vazquez et al. [40] implemented a GraphQL API to replace the former

REST API for the Observatory of University Employability and Employ-
ment (OEEU). The initially developed REST API was found inflexible to
data requirements of new and existing clients that wanted to prototype new
analysis methods based on the data from the API. Additionally, due to the
nature of the data collected by OEEU the high number of endpoints made
it difficult to fetch all the required data by the client without resorting to
multiple requests. Also, OEEU’s REST API endpoint outputs were tailored
to fulfill the needs of all possible clients in the ecosystem causing difficulties
in reutilization and maintainability. By moving to GraphQL, OEEU man-
aged to free the clients of the API to evolve independently and reduced client
specific complexity related to data restructuring when the data provided by
the REST API did not directly fit the needs of the client. Furthermore,
maintaining the GraphQL API turned out to be much simpler than main-
taining the REST API since changes in the client did not demand changes
in the API. All in all, OEEU managed to improve one specific presentation
component significantly by decreasing the average network time by 32.26%
and request payload size by 47.86%.

Hartig and Pérez [21] studied GraphQL defining the semantics of its query
language based on a logical data model to further inspect the complexity of
the language. They concluded that many performance related aspects of the
language, such as evaluation, enumeration, and size-computation of a query,
could be solved efficiently. Since GraphQL queries can potentially be highly
nested and recursive the resulting server-side execution of the query might
incur a heavy burden on the server and cause denial of service issues. Hartig
and Pérez investigated ways to determine the cost of the query without hav-
ing to fully evaluate it beforehand. They also examined how this issue was
handled in popular GraphQL libraries and found out that some libraries sig-
nificantly overestimated the cost of a query in a frequent manner. In depth
analysis of the performance characteristics of GraphQL is vital for any pro-
duction level API in order to avoid denial of service issues and user experience
regressions born from slow data resolution. Yet, the implementation for the
experiment related to the Bakery Service examined in this thesis will ignore
any query complexity aspects to keep the scope of this study focused. Ap-
plying these kind of performance improvements will, however, be mentioned
when potential future improvements are discussed later in this thesis.

When adopting GraphQL in existing applications that are built with
REST it can be easier to adopt it incrementally by first introducing GraphQL
as a gateway API that uses REST endpoints to resolve requested data.
Hernandez-Mendez et al. [22] introduced a Query Service meta-model that

CHAPTER 2. BACKGROUND 22

was based on a GraphQL server implementation communicating with ex-
ternal REST API endpoints to define a unified endpoint for Single Page
Applications (SPA). The Query Service can be semi-automatically generated
via four steps requiring some hands on work from a developer to refine the
output code. The end result of this process is a set of JavaScript files that
constitute a well structured and consistent GraphQL server that promoted
higher development speed than a manually created server. However, the
generated server implementation was not able to merge data from multiple
sources without manual modification, which turned out to be a notable limi-
tation to the approach proposed by Hernandez-Mendez et al. Also, updating
existing code generated by models was an unwieldy process since after the
code had been created it was detached from the model that created it, and
changes in underlying API specifications required either manual changes to
the code or a new model that would be used to generate new code to replace
the existing code. The main advantage of a semi-automatically generated
API implementation is not directly applicable to the Bakery Service since
all the data is provided by a single REST API. Nevertheless, the notion of
having a GraphQL server in front of a single or multiple microservices, which
might be based on REST or other technologies, is an interesting approach
that will be investigated in this thesis by experimenting with a GraphQL
layer on top of a REST API.

Now that the academic field for GraphQL and REST related technologies,
studies, and solutions has been glanced over it is time to present the methods
for evaluating and analyzing the experiment conducted in this thesis.

Chapter 3

Methods

There are various ways one can evaluate and compare technical implemen-
tations. Quantitative analysis can be done via measuring various aspects of
a system such as performance to gain deep insight of the numeric character-
istics of the system under inspection. For the Bakery Service the relevant
quantitative metrics include the total number of network requests made, the
total network time from the start of first request to the end of the last request,
the payload size of the response, and the response data utilization percent-
age in the application. These metrics describe the performance of the system
and they are easily measured and comparable between different technical im-
plementations. Other possible metrics include memory-utilization [38] and
HTTP communication throughput [39] but they are not included in the anal-
ysis for being unnecessarily low level metrics and not posing an important
relevance for the Bakery Service and thus not providing valuable information
for technical comparison in this thesis. In addition to quantitative analysis
the system can be inspected from qualitative point of view describing the
characteristics of the system that are not easily or sensibly measured in a
quantitative way. For the Bakery Service these qualitative characteristics
include complexity and maintainability. All mentioned metrics were chosen
to establish a well rounded analysis of the implemented systems and to an-
swer the technical concerns of Taito United. Next, the chosen metrics are
elaborated on and methods for measuring them are introduced.

3.1 Performance

As already stated, the performance metrics relevant to this thesis are the
number of network requests and their duration, the response payload size,
and the response payload utilization percentage. Especially the total du-

23

CHAPTER 3. METHODS 24

ration of all network requests is of interest since it is possible to request
resources in parallel, instead of in sequence, to some extent by utilizing the
browser capabilities for multiple simultaneous connections [37]. In recent
years modern web applications have adopted the SPA approach for client-
side implementations making the network layer one of the main bottlenecks
for an application since all required data needs to be dynamically fetched
from external sources during runtime. This means that the faster the appli-
cation can resolve its data requirements the better the application works in
practice. So, making multiple API requests that hit the network will degrade
user experience. Also, it is beneficial to avoid slow requests that arise from
requesting large data payloads. So, in order to have satisfactory performance
for the system at whole it is essential to make as few network requests as
possible and request only the necessary data needed by the client.

The methods for recording performance metrics in the Bakery Service
experiment are straight forward. Firstly, the number network requests made
by the client will be recorded and a label of the resource in question (recipe,
ingredient, bakery, supplier) will be attached to that recording. Additionally,
the network time for each recorded request will be measured to see which
requests took the longest. Secondly, the size of the response payload will be
calculated with the estimation function shown in Listing 5.

const estimatedSize = JSON.stringify(jsonPayload).length;

Listing 5: Estimated request payload size

Finally, the data utilization percentage for the response payload will be
calculated based on the list of object fields that are actually used in the
hypothetical user interface defined for the experiment. A resource such as
a recipe or an ingredient can have numerous fields stored in the database
but only a subset of these fields are used on the client-side. The fields of
this experiment are selected to reflect the real-world user interface in the
Bakery Service for displaying details of a single recipe. The selected fields
used for both technical solutions are shown in Listings 6 and 7 represented
as GraphQL queries. Some fields and resource entities, such as nutrients
and allergens, are neglected since they are only used in special occasions in
the Bakery Service and in order to keep the experiment straightforward to
implement. Also, the body size of the requests is not taken into account for
the payload size calculation since there exists ways to minimize the effect of
it for the network request duration. These solutions will be discussed more
in Chapter 6.

CHAPTER 3. METHODS 25

query recipe {

recipe(id: "1") {

modified

nameFi

netWeight

domesticity

bakery {

companyName

}

ingredients {

amount

ingredient {

eanCode

generalNameFi

supplier {

companyName

}

}

}

}

}

Listing 6: A GraphQL query for a recipe without sub-recipes

3.2 Complexity and Maintainability

Code complexity has been studied extensively in the past decade to get valu-
able insight about the elements that contribute to code quality. Measuring
and evaluating the complexity of a software implementation enables devel-
opers to make insightful decisions about the implementation details that can
help make improvements to the code quality and decrease maintainability
time [2]. Various metrics for calculating numeric values for code complexity
exists, such as Halstead [20] and McCabe [28] complexity measures, which can
be incorporated into tools for developers to use. One such tool is complexity-
report1 which is used to programmatically analyze Node.js programs written
in JavaScript by running the tool against the files of the program. The out-
put for this analysis is a report listing complexity measures, such as Halstead

1https://github.com/escomplex/complexity-report

https://github.com/escomplex/complexity-report

CHAPTER 3. METHODS 26

and McCabe, for each file of the program and for each function in that file.
From there on the results can be used to identify potentially problematic
sections in the program for more detailed manual analysis.

In addition to numerical analysis of complexity it is beneficial to inspect
non-measurable qualities of a software system. Especially when it comes to
web development industry, which constantly moves forward in a rapid pace
[31], qualities that improve maintainability of given software are highly valu-
able. For software in general and especially for technologies such as REST
and GraphQL used to create APIs, a non-exhausting list of valuable quali-
ties include: solid security, fast development speed, evolutionary robustness,
and high cohesion and low coupling between the client and the server. It
is favorable for these qualities to be built-in to the core technologies of the
API in order to establish standardized ways of utilizing them. Yet, often
these same qualities can be attained via external libraries that supplement
the core technologies. So, later in this thesis the implemented experiments
will be evaluated in the context of the stated qualities to gain a well rounded
understanding of the involved technologies.

CHAPTER 3. METHODS 27

fragment RecipeIngredients on Recipe {

ingredients {

amount

ingredient {

eanCode

generalNameFi

supplier {

companyName

}

}

}

}

query recipe {

recipe(id: "1") {

modified

nameFi

netWeight

domesticity

bakery {

companyName

}

...RecipeIngredients

subrecipes {

...RecipeIngredients

}

}

}

Listing 7: A GraphQL query for a recipe with sub-recipes

Chapter 4

Implementation

Now that the chosen analysis methods have been introduced it is time to
examine the experiment conducted in this thesis. First, the general struc-
ture of the experiment is presented, then the technical details of the final
implementation are briefly displayed, and finally the challenges encountered
during the implementation phase are discussed about.

4.1 Experiment

In order to compare GraphQL and REST in the context of the Bakery Service
a set of experiment cases was constructed to explore various conditions where
the API could be used in real life. When the case study’s problem statement
was introduced in Chapter 1 the main challenges mentioned were complex
data handling and state management in conjunction with data over- and
under-fetching issues on the client-side and severe technical complexity on
the server-side causing maintainability overhead. Therefore, any constructed
test case should take these issues into account to meaningfully challenge the
technical implementations for sound comparison and analysis. Table 4.1 lists
all the test cases included in the study.

As seen from Table 4.1 the experiment is split into two main categories
based on the type of data involved: a recipe without sub-recipes and a recipe
with its sub-recipes. A recipe without any sub-recipes represents a sim-
ple base case inside the Bakery Service. On the other side, a recipe with
sub-recipes represents a highly nested data structure present in the Bakery
Service. Both types of recipes are used in a hypothetical user interface for
showing the most important details of given recipe. These details include
the bakery of the recipe, all ingredients of the recipe including the supplier
of the ingredient, and any sub-recipes of the recipe recursively including its

28

CHAPTER 4. IMPLEMENTATION 29

Data type Technology Source of data
No sub-recipes REST Local
No sub-recipes GraphQL Local
No sub-recipes GraphQL (in front of REST) External API
With sub-recipes REST Local
With sub-recipes REST (with field filtering) Local
With sub-recipes GraphQL Local
With sub-recipes GraphQL (in front of REST) External API

Table 4.1: Experiment test cases

ingredient data.
After defining the two guiding categories for the test cases it is necessary

to define the technical variations included in this study. Firstly, the simulated
REST API for the Bakery Service is tested with and without field filtering
which was discussed in Chapter 2 when REST was introduced. Additionally,
all REST implementations in the experiment use a local source of static data
simulated as a database. Furthermore, the implementation of the REST API
will follow an idiomatic approach meaning that no custom endpoints will be
used to satisfy client specific needs but only client-agnostic endpoints for each
resource will be implemented. Secondly, a GraphQL API is implemented with
two sources of data: local static data and the REST API described earlier.
The reason for this is that implementing a GraphQL API as a complete
replacement for the current REST API is most likely not a viable option for
Taito United. Instead an incremental adoption of GraphQL would be more
feasible. This can be done by initially having the GraphQL API in front of
the existing REST API using it as the data source. A potential downside
for this approach is that the network requests made between the GraphQL
API and the REST API add up to substantial amount of latency degrading
the client-side user experience. Finally, all test cases will be executed in the
Chrome browser in two different network conditions: fast WiFi and slow 3G
mobile network. Conducting the experiment in both fast and slow network
environments is critical to ensure that the results are not distorted by a
non-realistically optimal environment.

4.2 Technical Details

The technical details of the implementations for both REST and GraphQL
will only be shortly described and the description for the client-side im-
plementation is totally skipped due to it not being relevant for this study.

CHAPTER 4. IMPLEMENTATION 30

The technologies and libraries used to implement APIs for both REST and
GraphQL were selected based on a literature review [1, 25, 46]. Figures
4.1, 4.2 and 4.3 illustrate the different architectures of the implemented API
servers. The different actors are color coded as follows: green indicates a
client that makes requests for data, blue indicates the API server that fulfills
the data needs of the client, and yellow represents the data source of the API
server.

A simple REST API was implemented with a Node.js library called ex-
press1 having separate routes for each resource entity in the system. Each
route defines its sub-routes that form the final endpoints of the system.
Clients can send HTTP request to these endpoints to fetch data. The coarse
architecture of the REST API can be seen in Figure 4.1 where in addition to
the endpoints there exists Data Access Objects (DAO) that are used via Data
Access Manager in the routes for data access. Using DAOs makes it simple
to switch between various data sources behind the scenes without having to
modify the routes in any way.

The basic structure of the GraphQL API server is mostly the same as
of REST API server’s as can be seen in Figure 4.2. The server was boot-
strapped with express just like in the case of REST but the GraphQL part of
the server was implemented with apollo-server-express2 library. Unlike with
REST which has multiple endpoints for the API there only exists one end-
point for the GraphQL API that the client can use to send GraphQL queries
to fetch data. These queries are validated against the GraphQL schema and if
the query is valid it will be executed against the schema filling the requested
data with the help of resolvers. Each entity in the system: recipe, ingredient,
etc. has its own resolver functions that are responsible of resolving a specific
field in the schema. The resolvers have access to the DAOs in order to access
the requested data. The only difference between the GraphQL API using the
local data, shown in Figure 4.2, and the GraphQL API using the REST API
as its data source, shown in Figure 4.3, is the data access layer. In practice
only a single GraphQL API implementation was created and it was possible
to change the data source of the API on the fly via a DAO specific route.

Both described API servers were deployed to Google Cloud Platform3 in
the europe-west1 zone in the same Kubernetes4 cluster to have them physi-
cally close to the location where the experiment was conducted and to guar-
antee that all HTTP requests between the APIs were executed inside the
same cluster ensuring that no unnecessary latency was introduced to the ex-

1https://www.npmjs.com/package/express
2https://www.npmjs.com/package/apollo-server-express
3https://cloud.google.com/
4https://kubernetes.io/

https://www.npmjs.com/package/express
https://www.npmjs.com/package/apollo-server-express
https://cloud.google.com/
https://kubernetes.io/

CHAPTER 4. IMPLEMENTATION 31

Figure 4.1: The structure of the REST API with a local data source.

periment. And to conclude, the experiment was run one hundred times and
an average of the measured results was taken to mitigate random network
issues and establish valid measurements.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.2: The structure of the GraphQL API with a local data source.

CHAPTER 4. IMPLEMENTATION 33

Figure 4.3: The structure of the GraphQL API communicating with the
REST API.

Chapter 5

Evaluation

Now that the test cases and the high level technical implementation details
of the experiment have been described it is time to evaluate how successful
the conducted experiment was by first going through the results of the ex-
periment, and then analyzing them based on the criteria defined in Chapter
3, and finally talk about the challenges that were encountered during the ex-
ecution of the experiment. The results and the analysis of various aspects of
the experiment are split into two sections where the first section introduces
the results of the numerical performance measurements of the experiment
visualized with graphs, and the second section talks about the qualitative
characteristics of GraphQL and REST in the context of the experiment and
in a general manner with respect to complexity and maintainability.

5.1 Performance

As stated in Chapter 3 the recorded performance metrics were the number
of network requests made, and the total duration of these network requests,
the payload size of the responses, and the data utilization percentage of the
response data. For each REST related test case: a recipe without sub-recipes,
a recipe with sub-recipes, and a recipe with sub-recipes combined with field
filtering the results of the measured payload sizes are shown in Figures 5.1
- 5.3 and results of the measured network times are shown in Figures 5.4 -
5.6. The results for the GraphQL test cases are not separately visualized
but instead they are combined with the aggregated results of the REST test
cases to gain a more useful perspective of the results. Aggregating the REST
results is done by simply summing the response payload sizes together and
calculating the average data utilization percentage. Also, the total network
duration for each REST test case is presented in Figure 5.8 accompanied with

34

CHAPTER 5. EVALUATION 35

the network duration results of the GraphQL test cases. The total network
duration is calculated from the start of the first request to the fulfillment of
the last request.

The first test case to inspect is the fetching of a recipe without any sub-
recipes from the implemented REST API which represents a simple data
fetching task in the Bakery Service as described in Chapter 4. The Figure
5.1 shows the response payload size and the data utilization percentage for
each resource of the recipe. Without including any sub-recipes the recipe
contains in total seven resources that were separately fetched from the REST
API. The estimated response payload sizes for the full resource without any
field filtering ranges from 250 bytes to almost two kilobytes based on the
requested resource. For all resources the utilization percentage is extremely
low ranging from five percentage to twelve percentage which reflects the harsh
reality of modern single page applications where the amount of data requested
overshoots the actual usage of that data. This kind of behaviour was defined
earlier as data over-fetching. The Figure 5.2, showing the results for fetching
a recipe with sub-recipes from the REST API, reveals the issue of data over-
fetching even more clearly than Figure 5.1 since the amount of requested
resources is almost twice the number of resources in the first test case due
to the included sub-recipes. So, the severity of data over-fetching increases
with the number of requested resources. However, by having a mechanism
such as field filtering implemented in the REST API it is possible to mitigate
data over-fetching all together. Figure 5.3 shows how the size of the response
payload was minimized to include only the necessary data achieving a full
one hundred percent data utilization score for all resources when fetching a
recipe with sub-recipes from the REST API.

CHAPTER 5. EVALUATION 36

Figure 5.1: REST response payload sizes and utilization (no sub-recipes)

Figure 5.2: REST response payload sizes and utilization (with sub-recipes)

CHAPTER 5. EVALUATION 37

Figure 5.3: REST response payload sizes and utilization (with sub-recipes
and field filtering)

Figure 5.4: REST network duration (no sub-recipes)

CHAPTER 5. EVALUATION 38

Figure 5.5: REST network duration (with sub-recipes)

CHAPTER 5. EVALUATION 39

Figure 5.6: REST network duration (with sub-recipes and field filtering)

Network related measurements were conducted in two different network
environments: fast WiFi and mobile 3G in order to get an accurate view how
the implementations perform in a realistic environments where the Bakery
Service would be used in practice. Figures 5.4 - 5.6 show the individual
network round-trip times for each resource of a recipe in various test cases.
In the REST implementation some resources were fetched in parallel, such
as the ingredients of the recipe, to maximize the fetching efficiency. Most
modern browsers can have up to six simultaneous open connections [24] which
explains the spread between the different network times. Some resources are
fetched in parallel while some resources are put in a queue to wait for a
free connection. It is also possible to fetch all resources sequentially which
would result into a more balanced graph, however, by fetching resources in
parallel whenever possible the aggregated network time will be noticeably
less than the aggregated network time when fetching resources in sequence.
It is important to notice that the possibility of parallel fetching depends on
the data hierarchy, so for example, it is not possible to fetch the bakery of a
recipe at the same time as the recipe itself since in order to fetch the bakery
it’s identifier has to be first known. Comparing Figures 5.5 and 5.6 shows
that the effect of field filtering has no substantial impact, like it had on the
payload data utilization percentage, on the network duration when fetching

CHAPTER 5. EVALUATION 40

individual resources. So, even though the client is fetching less data per
request it still has to make the same number of requests to receive all the
necessary data it needs.

By only looking at the results of each resource separately it is not possible
to see the big picture of the experiment results which is why Figures 5.7 and
5.8 show the aggregated results for data and network results for both REST
and GraphQL. In Figure 5.7 it can be seen that GraphQL has the most
consistent data utilization percentage, around 65%, for all test cases. The
reason why GraphQL does not have full 100% data utilization, like REST
with field filtering has, is because the response payload has some additional
meta fields that are needed by the client-side library that manages the state
of the GraphQL queries and their data. The remaining REST test cases
with and without sub-recipes have a very low data utilization percentage
meaning that almost 90% percentage of the received data is irrelevant. The
data utilization percentage for the aggregated payloads for the field filtering
case is 100% as expected based on the earlier analysis.

Figure 5.7: REST (aggregated) and GraphQL response payload sizes.

CHAPTER 5. EVALUATION 41

The Figure 5.8 for the total network duration results clearly shows the
major difference between idiomatic REST and GraphQL. Firstly, for all test
cases without sub-recipes the GraphQL implementation is more than twice
faster than the REST implementation. Secondly, when it comes to recipes
with sub-recipes the difference is even larger having the GraphQL implemen-
tation be from six to almost ten times faster than the REST implementation.
Even on mobile 3G network environment the data is loaded under 200 mil-
liseconds in the slowest test case where the GraphQL API uses the REST
API to resolve the fields of the query. The difference between WiFi and
mobile 3G is much more noticeable for REST than it is for GraphQL since
GraphQL only needs one HTTP request to query the data where as REST
has to make multiple HTTP requests to achieve the same result. On fast
connections the REST API might be able to respond quickly enough to en-
sure a satisfying user experience but on slow connections the loading times
will increase dramatically degrading the user experience.

Figure 5.8: REST (aggregated) and GraphQL network duration.

CHAPTER 5. EVALUATION 42

5.2 Complexity and Maintainability

Designing robust, flexible, and efficient REST APIs is a challenging task
which is why design specifications such as JSON API [26] have been pub-
lished to help and guide developers. Following these kind of specifications is
however often difficult and cumbersome because of a lack of official tooling
around the specification forcing developers to either lean on unofficial, and
many times untested or unmaintained, libraries or to create their own spec-
ification compliant tooling. In the case of the Bakery Service, following the
JSON API specification enabled highly flexible and efficient data fetching
between the client and the server but created a massive amount of technical
complexity from various custom tools and utilities around the JSON API
specification. Additionally, the complexity from the specification leaked into
the database layer which was responsible for parsing and evaluating the re-
quests from the client with respect to the data fulfillment. Also, since the
JSON API specification allows both filtering of the response fields and in-
clusion of any nested resources to the response the database queries had to
take these facts into account when building the SQL query strings. Having
the data resolution logic in the database layer ensured optimized data access
and excellent performance but lead to extremely complex and verbose SQL
queries that are burdensome to maintain.

An alternative approach to the flexible but complex API design, driven
by the adopted specification, is to create simple and idiomatic endpoints such
as the endpoints in the conducted experiment or to create custom endpoints
that satisfy the specific needs of the client. Multiple simple endpoints require
the client to make multiple HTTP request to fetch the required data which
causes performance problems as discussed earlier. With custom endpoints the
required data can be fetched via one HTTP request and the client does not
need to provide any parameters for field filtering or nested resource inclusion
reducing the technical complexity on the client-side. However, maintaining
and scaling custom endpoints is problematic since over time more and more
API endpoints will have to be implemented when new client-side functionality
is added to the application. Furthermore, the opposite case where the client
removes some functionality from the application will cause over-fetching until
the server-side implementation for the related custom endpoint is updated
[25]. Also, there can be multiple clients for different environments such as
web, mobile, and TV which might require their own custom endpoints since
the data is represented differently in each environment.

On the contrary to REST, any GraphQL backend only has one endpoint
that represents the whole API. Also, all data provided by the API and ways

CHAPTER 5. EVALUATION 43

to alter it is declared in a strongly typed schema promoting an API design
that reduces tight coupling between the client and the server since the server
does not have to know the data requirements of the client. The client is able
request any data present in the schema via custom queries that conform to
the data requirements of that client. In most cases any data that the client
needs for any specific use case can be fetched via a single HTTP request.
Additionally, the complexity of data merging and filtering is hidden from the
developer so there is no need to implement custom tools or complex data
access functions that would hinder the maintainability of the application.
Thus, GraphQL enables increased efficiency, flexibility, and maintainability
compared to REST APIs [40].

Maintaining an API comprises of additions, deletions, or improvements of
functionality in the endpoints or the schema of the API over time. Handling
these modifications in a way that the clients of the API stay functional while
the quality of the code remains high is a difficult task. Various versioning
approaches can be used to gracefully modify existing APIs. In the case of
REST a common approach is to provide multiple versions of the same API
under different URI prefixes, such as /api/v1 and /api/v2, or declare the
desired version in the request headers [19]. In order to avoid explicit version-
ing the developers of an API can adopt an approach where new features, such
as new fields to resources or new endpoints, are always only added and never
removed to make sure no existing clients break due to changes. Without
advanced field filtering methods this approach clearly leads to over-fetching
since the client does not know that new fields have been added and the server
has no way of knowing which fields the client actually wants. On the other
hand with GraphQL versioning is not necessarily needed since the client is
always responsible of querying exactly the data it needs so the server has
comprehensive information about field level usage. Thus, the server is able
to add deprecation warnings on a field level and remove the field from schema
when the usage of it is low enough [46]. All in all, for the Bakery Service
versioning is not an important topic since the API is used only by one client
and all parts of the service are controlled by one entity, but, in the general
case versioning can be an important part of an API design.

Other important qualities not yet discussed that make the development
and the maintenance of an API easier include documentation and introspec-
tion. For both REST and GraphQL it is possible to automatically generate
documentation and provide an introspection playground for the given API.
With REST this process requires external tools, such as Swagger1, that re-
quire defining descriptions of the API endpoints in inline comments or in

1https://swagger.io/

https://swagger.io/

CHAPTER 5. EVALUATION 44

separate files. Having to change the API description every time something
is modified is a laborious task and could be considered as a maintainability
burden. GraphQL however, has built-in introspection with extensive doc-
umentation about the schema [13]. Having this kind of development play-
ground available out of the box reduces development time and ensures that
the documentation stays up to date when the implementation of the API
changes.

5.3 Challenges

While conducting the complexity measurements with the complexity-report
tool, mentioned in the previous chapter, it became evident that the measure-
ments obtained did not reflect the complexity of the system in a valuable way.
First of all, the size of the server-side implementations for both GraphQL and
REST were fairly small compared to real-world production level implemen-
tations which skewed the measurements to a great extent making them irrel-
evant to this study. Avoiding this issue was not possible since implementing
a large scale system similar to the existing Bakery Service was not feasible
for this thesis. Secondly, the complexity measures in general were deemed as
non-decisive metrics for the comparison of GraphQL and REST since they
mostly reflected the subjective technical decisions of the implementer instead
of innate characteristics of the technologies under inspection. So, in the end
it was decided that the numeric evaluation of various complexity metrics
should be left out of the evaluation of the implemented experiment.

Another challenge encountered early on during the implementation pro-
cess was the question of how the server-side data should be stored and ac-
cessed. The real Bakery Service uses SQL database to store all the data
in the system. Due to the nature of the current REST API implementa-
tion, accessing that data involves overly complex SQL queries that has been
identified as critical maintainability issue by Taito United. Implementing a
similar data management system for the experiment was not reasonable in
the scope of this study which is why the technical decision to not use a real
database was made in favor of static JSON data representing structurally the
same data as that is stored in the Bakery Service. Furthermore, by adopting
GraphQL on the server-side it is possible to reduce the complexity of the
data access methods by delegating the data resolution to GraphQL.

Chapter 6

Discussion

Having evaluated the performance metrics of the conducted experiment and
analyzed the complexity and the maintainability characteristics of both REST
and GraphQL it is now time to sum up the major strengths and weaknesses
of both technologies, and then propose a path forward for the Bakery Service,
and finally discuss about future work.

Firstly, the numerical measurements illuminated some performance char-
acteristics of REST and GraphQL showing that GraphQL performed up to
six times faster in mobile 3G network and almost ten times faster in a WiFi
network. Even when the server-side data resolution was done by fetching the
data from the REST API, the GraphQL implementation managed to load
the data under 200 milliseconds in all test cases while similar REST test cases
took over one second to resolve. Additionally, the amount of data requested
by the client was considerably less with GraphQL in all test cases except for
REST with field filtering which was the only one that managed to utilize all
of the data from the server. Even though field filtering for REST utilized the
data perfectly it still had to make multiple API request to various endpoints
to receive all the data needed. A highly positive finding was that GraphQL
was able resolve data almost equally fast with local data sources and with
the REST API as a data source. This finding makes it feasible to incremen-
tally replace parts of the current Bakery Service REST API endpoints with
GraphQL API in a way that the current REST API can be utilized as the
data source.

Secondly, the complexity of both technologies was attempted to measure
but the results of this process turned out to be non-relevant for this study.
However, analyzing the non-measurable characteristics related to complex-
ity and maintainability gave a deeper insight into GraphQL and REST as
technical solutions for API development. REST was found to be simpler
than GraphQL for smaller applications that do not have complex data needs

45

CHAPTER 6. DISCUSSION 46

that involve field level filtering and nesting of sub-resources. However, many
modern applications depend on a large amount of data being fetched from
APIs, so in order to provide these kinds of high level features for REST APIs
various custom endpoints would have to be implemented. Custom REST
endpoints then again were found to be a source of complexity and a common
cause of maintenance issues in general and for the Bakery Service. GraphQL
on the other hand hides most of the complexity in the technology itself and
shifts the specification of the data requirements to the client while providing
only one endpoint for the whole API. A GraphQL schema defines all the pos-
sible ways how clients are able to interact with the API enabling an enhanced
playground for fast development with built-in introspection and automati-
cally generated documentation which is guaranteed to stay up to date when
any API related code is updated. While a solid support for versioning, or
more specifically in the case of GraphQL the possibility to avoid it, was not
found to be of importance for the Bakery Service, it was still regarded as a
supporting factor for GraphQL.

So, based on the discussed advantages it can be proposed that GraphQL
should be adopted on the server-side for the Bakery Service. However, the
level of adoption is not entirely definite based on the study conducted in this
thesis since certain aspects of interest were left out of the experiment due
to scope management. The implementation was scoped to exclude custom
endpoints for maintainability reasons, usage of a real database for being non-
relevant for the study, and some recipe related resources, such as nutrients
and allergens, which are only used in special occasions in the Bakery Ser-
vice. But, based on the experiment the path of least resistance and highest
utility would be to build a GraphQL API on top of the existing REST API
and incrementally migrate features from the old REST implementation to
the new GraphQL implementation. Additionally, the infrastructure needed
for efficient communication between two server-side endpoints already ex-
ists which lessens the initial investment required for a GraphQL API using
a REST API as a data source. Moreover, migrating the most data heavy
endpoints of the current API first would make it straightforward to validate
the technology right away without investing too much effort in to the mi-
gration. Also, since the data layer of the current Bakery Service is overly
coupled with the adopted JSON API specification, causing notable mainte-
nance complications, it should be refactored to support the field level data
resolution of GraphQL. Moving the filtering and nesting logic out of the data
layer and delegating it to the GraphQL libraries should notably simplify the
code complexity on the server-side alleviating the current maintenance issues.

Finally, the conducted experiment was not without its shortcomings so
some future work would be appropriate to deepen the knowledge on GraphQL

CHAPTER 6. DISCUSSION 47

as a potential replacement for REST and solidify the findings for a more com-
prehensive proposal. Future work could include adding a cache layer to the
experiment implementation in order to see how both technologies perform
with and without a cache. Caching is a common performance improvement
technique used in many modern web applications to reduce the time for fetch-
ing data from the server. For REST APIs caching can be done via the end-
point URLs by using simple HTTP caching mechanisms [34]. Since GraphQL
API only has one URL and every request from the client is done via a HTTP
POST method it is not possible to use generic HTTP caching mechanisms
for GraphQL queries. However, most common GraphQL client-side libraries
such as Apollo, which was used in the experiment, provide a built-in caching
mechanism based on browser offline storage [41]. More advanced caching
can be achieved by utilizing globally unique object IDs within queries [41].
Today’s single page applications rely heavily on data fetching from APIs so
having an efficient caching layer in place can improve the loading times for
requests immensely especially in slow network conditions.

Another potential improvement to the experiment is to add automatic
persistent queries1 to the GraphQL implementation. GraphQL queries that
are sent in the body of a HTTP POST request can be relatively large, up
to ten kilobytes [23], which can impose a performance overhead for client-
server communication. Automatic query persistence involves hashing the
query string before it is sent to the server and using the generated hash for
any following requests to reduce the request body size [23]. In the conducted
experiment the query strings used amounted to around 500 bytes which is
negligible but in real-world usage of the Bakery Service the size of the query
strings could be much larger.

Even though GraphQL enables client applications to describe their data
needs with a rich query language that is capable of fetching all the required
data in one request the trend for many modern web frameworks is to split
the application into small components that are themselves responsible of
fetching the data they need. Having multiple components with multiple
queries can lead into a situation where the application is making too many
network requests causing a heavy load on the server. Query batching on the
client-side is a process where multiple queries are grouped together into a
single list of queries that is sent via a single HTTP request. The batching
process is usually implemented with a timing threshold in a way that when
a new query is made it will be withheld until the timer ends and if other
queries are made during that time they will be grouped together to be sent
via one request. Query batching can however cause performance issues if one

1https://github.com/apollographql/apollo-link-persisted-queries

https://github.com/apollographql/apollo-link-persisted-queries

CHAPTER 6. DISCUSSION 48

of the grouped queries takes a long time to execute causing the client to wait
possible longer for the results of the other queries than it would have had to
if the queries would have been made individually. [8]

Also, the security aspects of both technologies should be studied to better
understand the possible attack vectors when using these technologies in pro-
duction. The security of REST is more known due to it being almost twenty
years old but the security of GraphQL still needs more research. The most
apparent security problem with GraphQL is the fact that clients are able to
send large queries to the API that can take too much time and resources to
process. However, there exists various strategies and tools to counter these
kinds of attacks against the server. The first and the simplest strategy is to
add a timeout to the execution of each query and if that timeout is passed
the execution will be terminated [33]. Another strategy is to calculate the
complexity of the query by assigning complexity costs to the fields of the
query and disallow queries that have too high total query complexity [33].
Many other strategies exists and investigating them and the ones mentioned
would give valuable insight on how to achieve robust security for the Bakery
Service.

In summary, analyzing an experiment that simulates a real-world im-
plementation cannot give an absolute conclusion on whether GraphQL is a
better solution for building APIs than REST, but it can give a well-educated
conclusion that can be used to initiate prototyping with GraphQL in order to
validate it in a production environment and to perform additional research.

Chapter 7

Conclusions

Creating applications today involve much more attention to the performance
of data fetching than before. Many applications dynamically fetch the data
they need on the client-side instead of rendering the whole page on the server-
side with the data and then serving the static page to the client. Additional
trouble is added when multiple network conditions and countless different de-
vices have to be taken into account. At the moment, a common and a popular
way to implement APIs is to use REST which promotes defining idiomatic
endpoints for the data resources. However, it was found that following the
principles of REST can easily lead to performance issues where the client is
either over-fetching or under-fetching data from the API. These issues are
then usually circumvented by implementing custom endpoints that return
only the specific data that is needed by the client. Custom endpoints were,
however, found to be a source of complexity and maintainability problems so
adopting them in a large scale manner is not desirable. Alternatives to REST
have been implemented in recent years from which Falcor and GraphQL were
considered in this study and GraphQL was chosen for closer inspection.

The premise of this study was to determine the major advantages and
disadvantages of both GraphQL and REST, understand which one performs
better with hierarchical data, such as the one used in the Bakery Service, and
to conclude which one is more maintainable and less complex to implement.
The study was conducted as a case study for a Bakery Service in order
to find potential improved alternatives to its current REST API, focusing
on GraphQL. The main pain points of the current implementation included
complex custom made data handling and state management on the client-
side, convoluted data layer logic tightly coupled with the adopted JSON
API specification, various custom endpoints that satisfy only specific client
needs, and lastly, as a combination of many factors, difficulties in maintaining
the API implementation. So, the objective of this thesis was to investigate

49

CHAPTER 7. CONCLUSIONS 50

whether GraphQL could be utilized as complete or as a partial replacement
for the current REST API in order to solve the mentioned issues.

An experiment was conducted to compare REST and GraphQL after
researching and selecting the tools and technologies suggested by recent lit-
erature related to both technologies. The methods used to compare these
technologies included performance analysis of the experiment implementa-
tions and qualitative analysis of complexity and maintainability. The experi-
ment was implemented in a context of a single page inside the Bakery Service
which was identified to be data intensive and in need for data fetching im-
provements. All the implemented variations of REST and GraphQL APIs
were tested in both fast and slow network conditions measuring the number
of network request and the total times of all requests made to the API in
conjunction with the response data sizes and utilization percentages inside
the client application.

The results of the conducted experiment showed that GraphQL performed
generally better than REST in all test cases in both network conditions. Al-
though the highest data utilization percentage was achieved with field filter-
ing for REST, the corresponding total network time performed considerably
worse compared to GraphQL. In all test cases the total network time for
GraphQL requests were under 200 milliseconds whereas for REST the slow-
est times measured were over one second. So, on average GraphQL was
able to fetch less data quicker than REST making it more suitable for fetch-
ing data with complex hierarchical structures. Qualitative analysis on both
technologies showed that REST was lacking built-in support for field level
filtering and nesting of sub-resources which lead into complex custom so-
lutions in the Bakery Service that hindered the maintainability of the API
implementation. GraphQL however, provided built-in way to select the fields
of interest and include any sub-resources via GraphQL queries on the client-
side moving the responsibility of defining the data requirements to the client.
A strongly typed schema was used for declaring all the possible ways to in-
teract with the GraphQL API enabling high confidence for using the API
via query validation in conjunction with enhanced developer experience via
introspection and automatically generated documentation from the schema.

In summary, this thesis was focused on advanced data fetching solutions
for modern applications that dynamically fulfill their data needs during run-
time. Some challenges were encountered during the experiment phase of the
study when the complexity metrics that were tried to be numerically mea-
sured were determined to be irrelevant for this study. Future work for this
study includes concepts such as caching, automatic persistent queries, query
batching, and security. Also, one aspect that was not studied was the concept
of mutating data in REST and GraphQL. So, in order to have a full picture of

CHAPTER 7. CONCLUSIONS 51

the inspected technologies some future work is needed to study the mutation
operations available in REST and GraphQL. However, the findings from the
conducted experiment provide valuable cues for potential improvements in
the API implementation illuminating a path forward for the Bakery Service.

Bibliography

[1] Alex Banks, E. P. Learning GraphQL: Declarative Data Fetching for
Modern Web Apps. O’Reilly Media, 2018.

[2] Antinyan, V., Staron, M., and Sandberg, A. Evaluating code
complexity triggers, use of complexity measures and the influence of
code complexity on maintenance time. Empirical Software Engineering
22, 6 (2017), 3057–3087.

[3] Baer, E. A GraphQL Primer: The Evolution Of API Design (Part
1). https://www.smashingmagazine.com/2018/01/graphql-primer-new-

api-part-1/, Jan 2018. Accessed: 2018-5-19.

[4] Baer, E. A GraphQL Primer: The Evolution Of API Design (Part
2). https://www.smashingmagazine.com/2018/01/graphql-primer-new-

api-part-2/, Jan 2018. Accessed: 2018-5-19.

[5] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendel-
sohn, N., Nielsen, H., Thatte, S., and Winer, D. Simple
Object Access Protocol (SOAP) 1.1. Tech. rep., W3C, May 2000.
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[6] Byron, L. GraphQL: A data query language. https://code.fb.com/

core-data/graphql-a-data-query-language/. Accessed: 2018-12-17.

[7] Cederlund, M. Performance of frameworks for declarative data fetch-
ing: an evaluation of falcor and relay+ graphql. Master’s thesis, KTH
Royal Institute of Technology, 2016.

[8] Dawkins, J. Batching Client GraphQL Queries. https://blog.

apollographql.com/batching-client-graphql-queries-a685f5bcd41b.
Accessed: 2018-12-07.

[9] Eeda, N. Rendering real-time dashboards using a graphql-based ui
architecture. Master’s thesis, The University of Western Ontario, 2017.

52

https://www.smashingmagazine.com/2018/01/graphql-primer-new-api-part-1/
https://www.smashingmagazine.com/2018/01/graphql-primer-new-api-part-1/
https://www.smashingmagazine.com/2018/01/graphql-primer-new-api-part-2/
https://www.smashingmagazine.com/2018/01/graphql-primer-new-api-part-2/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://code.fb.com/core-data/graphql-a-data-query-language/
https://code.fb.com/core-data/graphql-a-data-query-language/
https://blog.apollographql.com/batching-client-graphql-queries-a685f5bcd41b
https://blog.apollographql.com/batching-client-graphql-queries-a685f5bcd41b

BIBLIOGRAPHY 53

[10] European Commission. EU and Brazil to work together on 5G mo-
bile technology. http://europa.eu/rapid/press-release_IP-16-382_

en.htm, 2016. Accessed: 2018-01-26.

[11] Facebook. Caching. http://graphql.org/learn/caching/. Accessed:
2018-12-01.

[12] Facebook. GraphQL Best Practices. http://graphql.org/learn/

best-practices/. Accessed: 2018-10-15.

[13] Facebook. Introspection. https://graphql.org/learn/

introspection/. Accessed: 2018-12-01.

[14] Facebook. Queries and Mutations. http://graphql.org/learn/

queries/. Accessed: 2018-4-10.

[15] Facebook. Schemas and Types. http://graphql.org/learn/schema/.
Accessed: 2018-4-12.

[16] Facebook. Serving over HTTP. https://graphql.org/learn/serving-
over-http/. Accessed: 2018-12-09.

[17] Facebook. GraphQL. Tech. rep., Facebook, Inc, Oct 2018.

[18] Fielding, R. T. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/

top.htm.

[19] Giessler, P., Gebhart, M., Sarancin, D., Steinegger, R., and
Abeck, S. Best practices for the design of restful web services. In In-
ternational Conferences of Software Advances (ICSEA) (2015), pp. 392–
397.

[20] Halstead, M. H., et al. Elements of Software Science (Operating
and programming systems series). Elsevier Science Inc., New York, NY,
1977.

[21] Hartig, O., and Pérez, J. Semantics and complexity of graphql.
In Proceedings of the 2018 World Wide Web Conference (Republic and
Canton of Geneva, Switzerland, 2018), WWW ’18, International World
Wide Web Conferences Steering Committee, pp. 1155–1164.

http://europa.eu/rapid/press-release_IP-16-382_en.htm
http://europa.eu/rapid/press-release_IP-16-382_en.htm
http://graphql.org/learn/caching/
http://graphql.org/learn/best-practices/
http://graphql.org/learn/best-practices/
https://graphql.org/learn/introspection/
https://graphql.org/learn/introspection/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/schema/
https://graphql.org/learn/serving-over-http/
https://graphql.org/learn/serving-over-http/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

BIBLIOGRAPHY 54

[22] Hernandez-Mendez, A., Scholz, N., and Matthes, F. A Model-
driven Approach for Generating RESTful Web Services in Single-Page
Applications. In MODELSWARD (2018), pp. 480–487.

[23] Hingston, T. Improve GraphQL Performance with Automatic Per-
sisted Queries. https://blog.apollographql.com/improve-graphql-

performance-with-automatic-persisted-queries-c31d27b8e6ea. Ac-
cessed: 2018-12-07.

[24] Hogan, L. C. Designing for Performance: Weighing Aesthetics and
Speed. O’Reilly Media, Inc., 2014.

[25] John Resig, L. S.-R. The GraphQL Guide. https://graphql.guide/,
2018.

[26] Klabnik, S., Katz, Y., Gebhardt, D., Kellen, T., and
Resnick, E. JSON API Specification v1.0 (Archived Copy). http:

//jsonapi.org/format/1.0/. Accessed: 2018-01-23.

[27] Masse, M. REST API Design Rulebook: Designing Consistent REST-
ful Web Service Interfaces. O’Reilly Media, Inc., 2011.

[28] McCabe, T. J. A complexity measure. IEEE Transactions on software
Engineering, 4 (1976), 308–320.

[29] Netflix, I. Falcor, A JavaScript library for efficient data fetching.
https://netflix.github.io/falcor/. Accessed: 2018-02-05.

[30] Netflix, I. Why Falcor? https://netflix.github.io/falcor/

starter/why-falcor.html. Accessed: 2018-12-17.

[31] npm. This year in JavaScript: 2018 in review and npm’s predictions
for 2019. https://blog.npmjs.org/post/180868064080/this-year-in-

javascript-2018-in-review-and-npms. Accessed: 2018-12-09.

[32] OpenSignal. The State of LTE (November 2016). https://

opensignal.com/reports/2016/11/state-of-lte. Accessed: 2018-01-
23.

[33] Prisma. Security. https://www.howtographql.com/advanced/4-

security/. Accessed: 2018-12-07.

[34] Riva, C., and Laitkorpi, M. Designing web-based mobile services
with REST. In International Conference on Service-Oriented Computing
(2007), Springer, pp. 439–450.

https://blog.apollographql.com/improve-graphql-performance-with-automatic-persisted-queries-c31d27b8e6ea
https://blog.apollographql.com/improve-graphql-performance-with-automatic-persisted-queries-c31d27b8e6ea
https://graphql.guide/
http://jsonapi.org/format/1.0/
http://jsonapi.org/format/1.0/
https://netflix.github.io/falcor/
https://netflix.github.io/falcor/starter/why-falcor.html
https://netflix.github.io/falcor/starter/why-falcor.html
https://blog.npmjs.org/post/180868064080/this-year-in-javascript-2018-in-review-and-npms
https://blog.npmjs.org/post/180868064080/this-year-in-javascript-2018-in-review-and-npms
https://opensignal.com/reports/2016/11/state-of-lte
https://opensignal.com/reports/2016/11/state-of-lte
https://www.howtographql.com/advanced/4-security/
https://www.howtographql.com/advanced/4-security/

BIBLIOGRAPHY 55

[35] Roy T. Fielding, Richard N. Taylor, J. R. E. M. M. G. J. W.
R. K., and Oreizy, P. Reflections on the REST Architectural Style
and “Principled Design of the Modern Web Architecture”. In Proceed-
ings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (2017), pp. 4–14.

[36] Seric, J. GraphQL multipart request specification. https://github.

com/jaydenseric/graphql-multipart-request-spec. Accessed: 2018-
12-09.

[37] Smith, P. G. Professional Website Performance: Optimizing the Front-
End and Back-End. John Wiley & Sons, 2012.

[38] Sun, H., Bonetta, D., Humer, C., and Binder, W. Efficient
dynamic analysis for node.js. In Proceedings of the 27th International
Conference on Compiler Construction (New York, NY, USA, 2018), CC
2018, ACM, pp. 196–206.

[39] Ueda, T., Nakaike, T., and Ohara, M. Workload characterization
for microservices. In Workload Characterization (IISWC), 2016 IEEE
International Symposium on (2016), IEEE, pp. 1–10.

[40] Vázquez-Ingelmo, A., Cruz-Benito, J., and Garćıa-Peñalvo,
F. J. Improving the OEEU’s Data-driven Technological Ecosystem’s
Interoperability with GraphQL. In Proceedings of the 5th International
Conference on Technological Ecosystems for Enhancing Multiculturality
(New York, NY, USA, 2017), TEEM 2017, ACM, pp. 89:1–89:8.

[41] Vogel, M., Weber, S., and Zirpins, C. Experiences on Migrating
RESTful Web Services to GraphQL. In International Conference on
Service-Oriented Computing (2017), Springer, pp. 283–295.

[42] w3 Techs. Usage of content management systems for websites. https:
//w3techs.com/technologies/overview/content_management/all. Ac-
cessed: 2018-02-06.

[43] W3School. JSON vs. XML. W3School tutorial, https://www.

w3schools.com/js/js_json_xml.asp. Accessed: 2018-02-06.

[44] Warren, T. Oracle’s finally killing its terrible Java browser
plugin. https://www.theverge.com/2016/1/28/10858250/oracle-java-

plugin-deprecation-jdk-9, Jan 2016. Accessed: 2018-02-06.

https://github.com/jaydenseric/graphql-multipart-request-spec
https://github.com/jaydenseric/graphql-multipart-request-spec
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9
https://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9

BIBLIOGRAPHY 56

[45] Weyl, E. Mobile HTML5: Using the Latest Today. O’Reilly Media,
Inc., 2013.

[46] Wieruch, R. The Road to GraphQL. https://www.robinwieruch.de/

the-road-to-graphql-book/, 2018.

[47] Wordpress. REST API Handbook. https://developer.wordpress.

org/rest-api/. Accessed: 2018-5-06.

https://www.robinwieruch.de/the-road-to-graphql-book/
https://www.robinwieruch.de/the-road-to-graphql-book/
https://developer.wordpress.org/rest-api/
https://developer.wordpress.org/rest-api/

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Case Study Details
	1.3 Objectives
	1.4 Outline

	2 Background
	2.1 REST
	2.2 GraphQL
	2.3 Alternatives
	2.3.1 Falcor
	2.3.2 JSON API

	2.4 Related Work

	3 Methods
	3.1 Performance
	3.2 Complexity and Maintainability

	4 Implementation
	4.1 Experiment
	4.2 Technical Details

	5 Evaluation
	5.1 Performance
	5.2 Complexity and Maintainability
	5.3 Challenges

	6 Discussion
	7 Conclusions

