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Meanings of nouns are widely thought to be grounded in experience. The ex-
perience of the world is unique for everyone, but many experiences are shared
with other people. This study investigated whether human brain-level semantic
representations of items are shared between individuals.

Brain activity of 20 healthy volunteers was measured using magnetoencephalog-
raphy (MEG), while they were shown black-and-white photographs of concrete
nouns. MEG data was analysed on the sensor level. The aim was to predict, for
each participant, the presented stimuli based on the participant’s brain activa-
tion, using a model which was trained on the data of the other participants. The
semantic relationship among the stimuli was modelled using a semantic feature
set collected through a web-based survey. The correspondence between the stim-
ulus items and the MEG patterns was learned and, subsequently, predicted using
machine learning methods, specifically with a zero-shot decoding algorithm.

Cross-subject decoding was successful at the item-level with accuracy significantly
above chance level. Most commonalities in semantic representations between
subjects were found at 150–250 ms and 350–550 ms after the stimulus onset.
Some subjects had more similar brain responses than others, however, similar
internal structures of brain responses between individuals did not directly imply
good cross-subject decoding performance. Cross-subject decoding did not reach
the accuracy of within-subject decoding, suggesting that semantic representations
of concrete items are partly individual and partly shared.

More research is needed to uncover the factors that may cause individual differ-
ences in semantic representations and in decoding of such representations in the
cortex using machine learning methods.
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Pääaine: Complex Systems Koodi: SCI3060

Valvoja: Professori Riitta Salmelin

Ohjaaja: Annika Hultén PsT

Yleisen näkemyksen mukaan sanojen merkitykset muodostuvat kokemuksen kaut-
ta. Kokemus ympäröivästä maailmasta on yksilöllinen, mutta monet kokemukset
ovat yhteisiä. Tässä diplomityössä tutkittiin merkitysedustumien samankaltai-
suutta eri koehenkilöiden aivokuorella.

Koeasetelmassa koehenkilöiden aivoaktivaatiota mitattiin MEG-laitteella hen-
kilöiden katsellessa musta-valkoisia valokuvia, jotka esittivät konkreettisia subs-
tantiiveja. MEG-data analysoitiin kanavatasolla, ja aivovasteiden samankaltai-
suutta tutkittiin zero-shot -dekoodausalgoritmin avulla. Tavoitteena oli määrittää
näytetty ärsykevalokuva koehenkilön aivoaktivaation perusteella käyttäen ko-
neoppimismenetelmää, jossa ennustusmalli opittiin toisen koehenkilön aivoakti-
vaatiosta. Sanojen merkityksiä mallinnettiin ominaisuusmatriisilla, joka perustui
verkkokyselyn tuloksiin.

Koehenkilöiden ajattelemat ärsykesanat pystyttiin tulkitsemaan aivodatasta toi-
selta koehenkilöltä opitun mallin avulla tilastollisesti merkitsevällä tarkkuudel-
la. Eniten yhtäläisyyksiä aivoaktivaatioissa löydettiin 150–250 ms ja 350–550 ms
ärsykkeen esittämisen jälkeen. Havaittiin myös, että joidenkin koehenkilöiden se-
manttiset merkitysedustumat olivat samankaltaisempia kuin toisten. Kuitenkaan
aivokuoren merkitysedustumien etäisyyksien samankaltaisuus eri koehenkilöiden
välillä ei suoraan korreloinut hyvän ennustustarkkuuden kanssa. Ennustustark-
kuus oli myös huonompi dekoodauksessa koehenkilöiden yli, kuin jos koneoppi-
mismalli opetettiin ja testattiin saman koehenkilön datalla. Tuloksista voidaan
päätellä, että osa merkitysten käsittelystä aivokuorella on yksilöllistä ja osa sa-
mankaltaista eri ihmisillä.

Näitä yksilöllisiä eroja synnyttävien tekijöiden tunnistaminen vaatii jatkotutki-
muksia.

Asiasanat: semantiikka, sanan merkitys, aivot, MEG, dekoodaus

Kieli: Englanti
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Chapter 1

Introduction

Meanings of concepts are widely thought to be grounded in experience (Binder

et al., 2016; Kiefer et al., 2012). The experience of the world is unique for

every individual, however we can communicate through our common lan-

guages, but sometimes misunderstandings occur. In this study, the aim is to

determine how similar the brain activation of different individuals is when

processing meanings of concrete nouns.

The term semantic representation refers to how meanings are represented

in the brain. The topic is typically studied using tasks that require semantic

processing while brain activation is recorded (Rupp et al., 2017). Such tasks

are, for example, reading written words (Borghesani et al., 2016) or sentences

(Wehbe et al., 2014), listening to spoken words (Correia et al., 2014) or speech

(Huth et al., 2016b), naming pictures (Rupp et al., 2017; Clarke et al., 2014)

or watching movies (Huth et al., 2016a). Studies of semantic disorders have

also yielded much information about the processing of meanings (Harley,

2008).

In semantic disorders the processing of semantic information is disrupted

by brain damage (Harley, 2008). There are reports of disorders where pro-

cessing of some specific semantic category is defective or where the patient

has problems to name, for example, some specific nonliving items. In se-

mantic dementia, patients suffer from problems of naming items and forming

1



CHAPTER 1. INTRODUCTION 2

meanings. They may have difficulty in listing features related to words or

classifying items based on their semantic similarity (Harley, 2008).

Brain decoding methods have enabled researchers to read the mind, in

terms of identifying a stimulus based on neural activity (Murphy et al., 2018).

Decoding methods are based on machine learning where an algorithm uses

training data to learn patterns linked with predictor features in order to

make predictions about unseen data (Kotsiantis et al., 2007). These methods

are extremely useful in neuroscience as they allow researchers to investigate

abstract aspects of brain functions such as semantic processing (Contini et

al., 2017; Murphy et al., 2018).

In brain research, most decoding studies are done within-subject, mean-

ing that the training and testing of the model is done on data from the same

person. Cross-subject decoding, where the model is trained on data from one

person and tested on data from another is much less common. This study

investigates the similarity of semantic representations between individuals by

performing decoding across subjects. The aim is to predict which individ-

ual item the subject has been thinking about, based on the measured brain

activity of another subject. The studied brain data is measured with mag-

netoencephalography (MEG), which is a noninvasive brain imaging method

that has an excellent time resolution (1 ms) and a localisation accuracy of 2

to 3 mm in optimal conditions (Lopes da Silva, 2010). Using this method,

it is possible to obtain the time course and spatial estimation of brain ac-

tivity while the subject is performing, for example, a picture naming task.

Similar studies have been done using functional magnetic resonance imaging

(fMRI) data (Shinkareva et al., 2008; Raizada et al., 2012), but there is a

lack of studies that provide accurate time information of neural processes and

operate with classification algorithms that are trained and tested on single

subjects.

This thesis consists of six chapters. Chapter 2 presents the background

of this study, starting with topics of semantic processing and brain decoding

and ending with a short theoretical description of MEG and neurophysiology.
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Chapter 3 explains the overview of the present study and justifies the chosen

methods. Chapter 4 provides a more detailed description of the used meth-

ods. The results of the study are reported in the chapter 5 and discussed in

chapter 6. Finally, chapter 7 concludes with the main findings of the study.

This study was done as a part of the larger study related to semantic

representations of words conducted by Imaging Language group at the Aalto

University Department of Neuroscience and Biomedical Engineering.



Chapter 2

Background

2.1 How humans process semantics

Based on a common view of semantics, the meanings of concepts are grounded

in experiences of perception and action (Binder et al., 2016; Kiefer et al.,

2012). For example, the meaning of ’dog’ might be linked to information

about the look, sound and feel of a dog. The meanings of concepts are stored

as conceptual representations in semantic memory, where the concepts are

not linked to any specific event, time or place (Harley, 2008). This conceptual

knowledge allows us to understand a word ’dog’ even though we haven’t met

all the dogs in the world.

Decompositional views propose that word meanings can be deconstructed

into smaller units called semantic features (Clark, 1973; Vigliocco et al., 2007;

Harley, 2008). Semantic features of words form a semantic space. According

to Friederici et al. (2015) the semantic space can be thought to be a network

where each node represents each feature. The activation of all features is

unnecessary for the correct use of words in communication. The number of

activated features affect the speed of word recognition, and brain responses

depend on how much the features of a word differ from prior context.

A semantic feature space can be utilised in studies of semantic process-

ing (Vigliocco et al., 2007). The feature space can be modelled with several

4



CHAPTER 2. BACKGROUND 5

different methods. A broad representation of features can be obtained, for

example, by utilising large text corpora or using feature production norms.

In modern linguistics, a corpus database is a large digital collection of au-

thentic texts which are based on written or spoken language (McEnery et

al., 2006). A corpus-based feature space could be, for example, a collection

of vectors which represent co-occurrences of a target word and neighbouring

words (i.e. linguistic context). A vector could contain, for example, 300 most

common words which occur with a word ’dog’. Feature production norms

can be obtained by asking several people to list important features that de-

scribe or define the target word (Cree et al., 2003; McRae et al., 2005). A

comprehensive feature space can be used in finding commonalities between

words.

Behavioural and electrophysiological studies have suggested that the se-

mantic space of a word and the representation of the word in the brain are

organised by similar principles (Friederici et al., 2015). The literature as

summarised by Binder et al. (2011) suggest that the semantic space is rep-

resented in a distributed fashion all over the cortex.

2.2 Brain decoding

Brain decoding is the ability to predict the presented stimulus based on neu-

roimaging data using multivariate machine learning methods. Using such

methods, it is possible to extract more information from brain activity record-

ings than with traditional univariate methods that only compare the aver-

age activation between different experimental settings (Contini et al., 2017).

Brain decoding can enable testing of new theories and examination of how

the information is processed in the brain, for example, how the meaning

representations of words change in time (Contini et al., 2017).

One way to perform brain decoding is to use a supervised machine learn-

ing classifier that aims to learn a set of rules in terms of predictor features

from training data to classify new instances in a testing data set (Kotsiantis
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et al., 2007). In the training data set, the values of predictor features as well

as the class labels are known, whereas the values of predictor features are

known in the testing data set. The trained classifier is evaluated by prediction

accuracy which tells the percentage of correct classifications with respect to

all possible classifications (Kotsiantis et al., 2007). In brain decoding studies,

the classification algorithm is typically trained to learn a mapping between

stimuli and brain activity. The algorithm is then evaluated on testing data,

which consists of brain responses not used during training. The aim is to

predict the class (for example the item or category) of a stimulus.

Brain decoding is a powerful tool in basic brain research, but, in addition,

it can be applied, for example, to the development of brain-computer inter-

face (BCI) applications (Chan et al., 2011). For example, Collinger et al.

(2013) demonstrated that by training a neural decoder, they were able to

perform complex movements with a robotic arm, controlled via microelec-

trodes that were implanted in the motor cortex. There are also promising

results about the use of neural decoders to assist in communication (Bir-

baumer et al., 1999; Birbaumer et al., 2004; Birbaumer, 2006). Researchers

have been developing systems where a patient could select letters by regulat-

ing their slow cortical potentials. However, the use of these systems requires

long training periods, and the selection of the correct letter takes about one

minute, which makes the communication slow. In the future, a deeper un-

derstanding of how meanings are represented in the brain may also bring

advancements in the BCI field, which allow patients to communicate more

effectively.
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2.3 Decoding of semantic representations and

the similarity of activation patterns

between individuals

Mitchell et al. (2008) introduced a novel approach to study word meanings

utilising the view of the decompositional theory of semantics and machine

learning. They predicted brain patterns of unseen stimulus words by combin-

ing data from a large text corpus and data from brain activity measurements

to train a linear model. The corpus was used to create a feature space which

consisted of 25 verbs and the values of frequencies of their co-occurrences with

target words. Using the mapping between this feature space and the brain

data (recorded using fMRI) the model was able to generate brain patterns of

unseen words. Mitchell et al. (2008) employed a method called semantic out-

put classifier, introduced by Palatucci et al. (2009), which utilises zero-shot

learning. The zero-shot learning algorithm learns a mapping between seman-

tic features and input brain data and, thereafter, uses the learned mapping

to predict the semantic encoding of unseen brain responses.

Brain decoding has been successful in within-subject classification tasks

(Mitchell et al., 2008; Chan et al., 2011). There are a few studies where de-

coding is done across subjects, meaning that the prediction model is learned

from one subject or a group of subjects and then tested on an unseen sub-

ject’s data. This approach is useful to describe commonalities and differences

between subjects.

Shinkareva et al. (2008) performed cross-subject decoding on fMRI data.

They trained a näıve Bayes classifier with the data of 11 of the 12 subjects and

then tested the model with data of the left-out 12th subject. This procedure

was done for all subjects in the study. The stimulus set consisted of line-

drawings from two categories, tools and dwellings, and both categories had

five exemplars. The classifier was able to distinguish between two categories,

and for some cases, even to distinguish between exemplars. Prediction ac-
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curacy results on item-level were significant for 8 out of 12 left-out subjects,

but they were on average lower than when the decoding was done within

each subject. These results suggest that subjects have common components

of semantic representations, but some components are individual.

Later, the same authors (Shinkareva et al., 2011) explored the common-

alities across subjects further and used the same procedure (trained an algo-

rithm on data of 11 subjects and tested on 12th left-out subject) to perform

category identification across stimulus modalities (written words and pic-

tures) and across subjects. They had fMRI data of 12 subjects and the

stimulus set consisted of line-drawings and written words from two seman-

tic categories, tools and dwellings, and both categories had five exemplars

in each modality. When the classifier was trained on picture activation and

tested on written word activation, the cross-subject decoding accuracies on

category-level were significant for 9 of 12 left-out subjects. In the opposite

direction, i.e., when the algorithm was trained on written word activation

and tested on picture activation, the cross-subject decoding accuracies on

category-level were significant for 8 of 12 left-out subjects. They found out

the decoding accuracies were generally higher when identifying the category

of a picture stimulus than the category of a written stimulus, both within and

across subjects. These results suggest that brain activation is more stable to

picture than word stimuli, as the accuracy results of the classification task

were more accurate when training on picture activation.

Shinkareva et al. (2012) used the same data set as in 2008 and suggests

that most of their subjects shared a similar internal structure of object rep-

resentations. This was determined by analysing the similarity of the distance

matrices of individuals derived from whole-brain fMRI data. However, the

authors emphasised that the similarity of distance matrices does not indicate

that the object representations would occur in the same spatial locations

across individuals.

Just et al. (2010), using Gaussian näıve Bayes and linear regression ap-

proaches, performed cross-subject decoding on fMRI data and were able to
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identify which of the 60 concrete nouns a subject (1/11) was viewing based

on the data of the other 10/11 subjects. All prediction accuracies were sig-

nificant. The stimulus set consisted of 60 different written words from twelve

categories.

Huth et al. (2012) used principal component analysis to compare seman-

tic representation of individuals measured with fMRI. They investigated how

much of the variance in the data of one individual can be explained by the

principal components of combined data from other individuals or stimuli.

Their results suggested that semantic representations include similar compo-

nents across subjects, but that the finer scale of semantic representations is

individual.

All of the results discussed above support the assumption that semantic

representations consist of shared components, but some portion of processing

semantics is individual. Charest et al. (2014) suggested that individual dif-

ferences in semantic representations occur because the individual experiences

modify the microstructure of the cortex. They showed personally meaning-

ful and unfamiliar images to subjects while fMRI data was recorded. They

found that part of the individual perception can be detected in the inferior

temporal cortex. The study of Chen et al. (2017) supports this finding as

they demonstrated that people with shared memories had a more similar ac-

tivity structure than people who did not have common memories. This was

studied by recording fMRI while subjects were verbally describing the movie

they watched before the measurements were performed. The authors found

weak but significant correlation between the similarity of activity structure

of different subjects and semantic similarity of the verbal description given

by subjects during the measurements.
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2.4 Magnetoencephalography

Time-series of brain activity can be decoded using data measured with MEG

(Contini et al., 2017). Many decoding studies have been done using data

measured with fMRI, but those studies give accurate information only about

the location of brain activity. Decoding neural measures that also provide

millisecond information about the time course of the neural activity, will

therefore provide important additional value on the temporal dynamics of

semantic processing. Performing decoding on MEG data is a relatively new

approach (Contini et al., 2017).

MEG is a noninvasive brain imaging method which measures the weak

magnetic fields produced by small changes in the electrical activity of the

cerebral cortex (Hämäläinen et al., 1993). During the measurement, the

subject is seated in the system with the head covered by a helmet in which

the MEG sensors are located. During the measurement, the distance between

the sensors and the skull is about 2 to 3 cm. The time-resolution of this

imaging method is extremely precise - on the order of 1 ms - and the origin

of brain activation can be estimated with an accuracy of 2 to 3 mm, in ideal

conditions, by solving the inverse problem (Hämäläinen et al., 1993).

Magnetic fields are measured using flux transformers, magnetometers or

gradiometers, where pick-up coils convey the magnetic flux to Supercon-

ducting Quantum Interference Devices (SQUID) that convert the flux to a

measurable voltage (Parkkonen, 2010). The SQUID sensors are placed in a

special container called a dewar which is filled with liquid helium (at tem-

perature of 4 K). Due to the weakness of the magnetic fields generated by

neuronal activity, the SQUID sensors need to be extremely sensitive to detect

such fields. Therefore, they are also sensitive to artefacts.

Magnetometers are flux transformers that have a pick-up coil with one

loop (Hari et al., 2012). They measure magnetic fields that are orthogonal to

the surface of the pick-up coil, and also detect magnetic fields that originate

outside the head. Gradiometers are flux transformers that are not that sen-
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sitive to external interference as their pick-up coils have two loops wound in

opposite directions, which cancel out fields from distant sources (Hari et al.,

2012). There are two types of gradiometers: axial and planar gradiometers.

An axial gradiometer has the two loops arranged vertically one above the

other, whereas a planar gradiometer has the two loops placed in the same

horizontal plane. Due to the arrangement of the two loops, a planar gra-

diometer is the most sensitive to neural current flow directly underneath the

sensor.

The MEG device is located in a magnetically shielded room to protect the

measurements from the magnetic noise and artefacts caused by powerlines,

traffic and electrical devices (Hämäläinen et al., 1993). The room is typically

isolated from the rest of the building to avoid mechanical vibrations. The

subjects should not to have any metal in their body (jewellery or screws

from orthopedic surgery etc.) because that could cause artefacts. They

should also avoid movement and keep their head in the same position to

provide reliable estimates of the head positions. Nevertheless, the recorded

MEG data is often noisy and requires preprocessing to clean it before further

analysis (Hämäläinen et al., 1993).

Figure 2.1 presents 10 s of cleaned gradiometer data. The data was

processed with the signal space separation method (Taulu et al., 2006) and

low-pass filtered to remove artefacts.
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Figure 2.1: An example of MEG data representing a 10 s time window mea-

sured by a subset of gradiometers

2.5 Neurophysiology

Neural activity results in flow of electric current, and currents generate mag-

netic fields (Lopes da Silva, 2010). Neural activation can be divided into two

main forms: action potentials and postsynaptic potentials. Action potential

refers to the fast depolarisation of the axon membranes, whereas postsynap-

tic potentials refer to an extended change of membrane potential caused by

synaptic activation at the receiving neuron. There are two types of postsy-

naptic potentials: excitatory and inhibitory potentials. Excitatory potentials

are caused by the move of positive ions into the cell, and inhibitory poten-

tials originate from the move of negative ions into the cell or positive ions
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out from the cell (Lopes da Silva, 2010).

Action potentials are much faster phenomena (∼1 ms) than postsynaptic

potentials (∼10 ms) (Baillet et al., 2001). Furthermore, action potentials are

essentially current quadrupoles, as opposed to the dipolar currents of postsy-

naptic potentials, and their magnetic field thus dies away with distance much

more rapidly than magnetic field generated by the postsynaptic potentials.

Therefore, MEG signals are primarily generated by postsynaptic activity.

Furthermore, the magnetic fields must be strong enough (10fT-1000fT) to be

detected by MEG (Hämäläinen et al., 1993). This requires synchronous post-

synaptic activity of tens of thousands of cells. Such summation is possible in

populations of pyramidal cells that display a parallel alignment.

The folding of the cortex further affects the detection of magnetic field

generated by neurons. Some neurons are located in gyri and others are found

in the sulcal walls. Pyramidal cells that are located on a wall of a sulcus,

with currents oriented parallel to the skull, generate an open magnetic field

which can be detected outside the head (Lopes da Silva, 2010).



Chapter 3

Overview of the present study

The purpose of this study was to investigate the similarity of neural semantic

processing in time between individuals. Previous fMRI studies have found

commonalities in semantic processing (Shinkareva et al., 2008; Shinkareva

et al., 2011; Shinkareva et al., 2012; Huth et al., 2012; Just et al., 2010),

but the time course of the possible similarity of semantic processing remains

unknown.

This master’s thesis aims to address three questions:

1. Do different individuals have a common time course of semantic pro-

cessing?

2. Which time intervals are the most similar between subjects in terms of

brain activation when they process item meanings?

3. Are some of the subjects better decoding partners than others?

To address these questions, brain data of 20 individuals was measured

with MEG, while they were shown object pictures representing concrete

nouns. It was decided to use picture stimuli to activate semantic processing

in the brain, as prior studies with the data set used in this study have indi-

cated better decoding performance from brain data for pictures than written

or spoken words. The brain data was recorded using MEG to address the

14
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time course of activation. The time course could also be measured using

EEG, but then the data would be noisier (Murphy et al., 2018). Here, noise

was reduced by averaging across 18 representation times of each stimulus per

each subject.

This study employed machine learning, which requires careful experimen-

tal design and interpretation of the results to ensure that the desired phe-

nomena are considered as a target of decoding (Murphy et al., 2018). The

stimuli were composed of five different picture exemplars of each target word;

the stimuli had been tested behaviourally to ensure their quality. By averag-

ing the brain responses across multiple presentations of different exemplars

of the same object, the effects of particular visual features in the stimuli were

minimised. The data was further cleaned by preprocessing before decoding.

The core idea of this study was to compare semantic processing between

individuals using zero-shot decoding (Palatucci et al., 2009). A semantic

model was trained on the brain data of one subject and then tested on other

subjects’ brain data to predict the presented stimulus based on MEG data.

The semantic content of each stimulus word was modelled using semantic

features derived from a large behavioural study which was based on feature

production norms. The semantic features were used as predictor features in

decoding.

To perform brain decoding, there must be sufficient amount of variation

in the data between different stimulus nouns. Therefore, inter-item variance

was first computed. The average signal strength was further calculated to

evaluate its effect on decoding accuracy, because the hypothesis was that

a lower average signal strength might be linked with decreased prediction

accuracy of cross-subject decoding. The similarity of the internal structure

of the brain responses was evaluated using distance matrices computed on

the MEG data. As a quality check of the data and methods, within-subject

decoding was performed before cross-subject decoding. Within- and cross-

subject decoding were done at various time intervals of brain data.

If it is possible to decode meanings of individual nouns across subjects, it
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means that there are commonalities in the time course of semantic represen-

tations between subjects. This will bring new information into group-level

studies of brain functions and lead research towards questions about which

parts of semantic processing are individually unique vs. shared and why that

might be the case.



Chapter 4

Methods

In this chapter the experimental design and analysis methods are reported.

The data was collected during the summer of 2015 in Otaniemi as a part of a

study conducted by the Imaging Language group at the Department of Neu-

roscience and Biomedical Engineering at Aalto University. The stimulus set

used in the measurements included three kind of stimulus: pictures, written

words and spoken words. In this thesis, the focus is on the data collected

while pictures were presented.

4.1 Subjects

Twenty healthy Finnish native speaking individuals (10 females, 10 males)

with no history of neurological diseases participated in the study. All had

normal or corrected to normal vision, and they were strongly right-handed,

as indicated by the Edinburgh handedness questionnaire (Oldfield, 1971).

Edinburgh handedness questionnaire as well as the other measurement docu-

ments are reported in Appendix A. The mean age of volunteers was 22 years

(sd. 1.80, range 20–27 years). Individuals with metal or tattoos in their

body were excluded from participating. All subjects read the instructions of

the study and task before the measurements and filled out a permission form

to participate in the study. The study was approved by the research ethics

17



CHAPTER 4. METHODS 18

committee of Aalto University.

The data of three subjects was excluded from the analysis because of poor

signal from the coils measuring the head position during the measurements.

4.2 Stimuli

MEG responses were collected to a total of 60 depicted nouns, classified as

belonging into one of seven semantic categories: Animals, Body parts, Build-

ings, Nature, Human characters, Tools and artefacts and Vehicles. However,

due to a missing feature vector (see section 4.6.1) one stimulus word was

excluded from data analysis; the final set of stimuli was thus 59 nouns. The

nouns were common, high-frequency words within the 90th percentile of the

corpus distribution derived from Finnish internet pages. There was no statis-

tically significant difference in the lemma frequency of the different categories.

Word length was predetermined to be 3-8 letters and did not statistically dif-

fer between the categories. The full stimulus list is reported in Appendix B.

Before the MEG study, the nouns were tested behaviourally to evaluate

their age of acquisition, imageability, emotionality and valence (on a scale

1–7), using a web-based questionnaire with 13 respondents. The pretest

revealed statistically significant differences regarding age of acquisition[1 =

before school age, 7 = adult] between categories. The nouns in Body parts

category [mean rating: 1.02 (sd. 0.03)] were learned earlier than nouns in

Buildings category [mean rating: 6.94 (sd.0.09); Wilcoxon rank test W=1.5,

p < 0.01], Human characters [mean rating: 1.35 (sd. 0.21); (W=1, p < 0.01]

and Nature [mean rating 1.15 (sd. 1.20); W=4, p < 0.01)] categories. All

words were judged to be easily visualised [mean rating: 6.73 (sd. 0.32), 1=dif-

ficult to visualise, 7=easy to visualise] and emotionally neutral [emotionality:

mean rating: 3.50 (sd. 0.93), valence: mean rating: 4.43 (sd. 0.76)]. There

were small statistically significant differences in imageability, emotionality

and valence between categories when the significance level of p < 0.05 was

used, but they were not significant on the level of p < 0.001.
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Each noun was represented by five different exemplars, all of which were

black-and-white photographs. The naming agreement of each photograph

was estimated from separate pretest with 13 naive respondents naming each

item.

The naming agreement based on the statistic H (Snodgrass et al., 1980)

was computed using the following function

H =
k∑

i=1

pilog2(1/pi) (4.1)

where k is the number of different names given to each picture and pi is

the number of respondents giving each name. The bigger the statistic H is

the worse the naming agreement is. In this study, the synonyms and inflected

forms of the target word were considered as different names of the picture.

The maximum value of the statistic H was 1.7; for each item the naming

agreement was > 80%.

4.3 Experimental design

There were altogether three MEG sessions, on separate days for each subject.

The subjects had also one MRI session to provide the anatomical data of the

brain, but the MRI data was not analysed in this study.

Each noun in a certain modality was repeated 18 times, in total, across

the sessions to achieve a sufficient signal-noise ratio. The duration of a MEG

session was one hour including two breaks. The stimuli were presented in

blocks according to their modality, so that there were six sets of picture

objects, six sets of spoken words and six sets of written words on each mea-

surement day. The order of nouns and modalities were randomly generated

on each measurement day to avoid bias. Before the first session each subject

was asked to name the stimulus pictures to ensure naming agreement.

During the measurements, the stimuli were presented on a screen with a

grey background 140 cm away from the subjects’ face. The experiments were
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performed using Presentation R© software (Version 18.0, Neurobehavioral Sys-

tems, Inc., Berkeley, CA, www.neurobs.com). The size of the pictures was

10.6 cm x 10.6 cm, which equals to a visual angle of 4.3 degree. Picture stim-

uli were displayed for 300 ms, and the inter-stimulus interval was randomised

at 700 to 1200 ms. Figure 4.1 illustrates the procedure of the experiment.

Figure 4.1: The procedure of the experiment when 90% of the picture stimuli

were displayed (The original picture of a horse: Broster, 2010, Wikimedia

Commons)

The task was to think about the item shown in the picture. Silent naming

was used to avoid unnecessary muscle activation and, thereby, to improve the

data quality. To ensure a subject was focusing on the stimuli, catch trials

were shown after 10% of the stimuli. These trials were sentences, and the

task was to determine whether the sentence made sense if the last shown

stimulus was placed at the beginning of the trial sentence. For example, if

the item ’dog’ was followed by a phrase ’barks outside’ the right answer was

’yes’. Subjects were told to answer ’yes’ or ’no’ with optical response pads.

Half of the subjects answered ’yes’ with their right hands and the other half

with their left hand. Figure 4.2 illustrates the procedure of the experiment

in case the catch trial occurred. The catch trial lasted on the screen until

the subject answered.
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Figure 4.2: The procedure of the experiment when a catch sentence occurred

(i.e. the procedure when 10% of the picture stimuli were displayed)(The

original picture of a horse: Broster, 2010, Wikimedia Commons)

4.4 MEG measurements

Brain activity was recorded at the Aalto Neuroimaging Infrastructure at

Aalto University, in Espoo, Finland using a 306-channel whole-head MEG

system (Elekta NeuromagTM, Elekta Oy, Helsinki, Finland) with 204 gra-

diometers and 102 magnetometers. The pass-band was set to 0.03–330 Hz

and sampling rate to 1000 Hz. Subjects were in a seated position during the

measurement.

The position of the head within the MEG helmet was determined by

using five head position indicator coils whose locations, prior to the MEG

recordings, were determined in relation to three readily identifiable points

on the head: nasion, right and left preauricular points. The head position

was tracked continuously during measurements by energising the coils using

a high-frequency signal. Vertical and horizontal eye movements as well as

blinks were recorded with two electrode pairs. The first pair was placed

above and below the left eye and the second at the outer corners of each eye.
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4.5 Data analysis

The MEG data analysis was performed using the Python implementation

provided by the MNE software (Gramfort et al., 2014) with the exception of

signal space separation (see section 4.5.1). To improve the data quality, only

the data measured by the planar gradiometers was used.

4.5.1 Signal space separation and low-pass filtering

To diminish the influence of magnetic fields generated outside the sensor ar-

ray, the data was first processed using the Signal Space Separation (SSS)

method with temporal extension (tSSS) in the Elekta Maxfilter software

package (Taulu et al., 2006). Using Maxwell’s equations, this method sepa-

rates the measured MEG signal into three subspaces based on the origin of

the signal. The goal is to remove components which originate outside the

sensor array or have sources of interference located very close to the sensors

as well as noise and artefacts generated by the sensors. The temporal exten-

sion detects artefacts by computing correlations between subspaces. If there

are high correlations between internal and external subspaces, the subspaces

are removed. It has been demonstrated that tSSS improves the signal-to-

noise ratio more than the basic SSS approach especially when working with

gradiometer data (Haumann et al., 2016).

During this preprocessing phase, the length of the data buffering was set

to 16 s, which corresponds to the cut-off frequency of 1/16 Hz. The sub-

space correlation limit was set to 0.9, and the default settings for automated

detection of MEG sensors with poor-quality data were used. In this part

of the analysis the data of each subject was transformed to the same refer-

ence head position, which was the average position of all subjects across all

measurement sessions.

After tSSS processing, a low-pass filter at 40 Hz was applied on MEG

data.
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4.5.2 Independent component analysis

Eye movements and blinks create artefacts in the MEG signal. In this study,

independent component analysis (ICA) was used. ICA expresses the data

using projections that are statistically maximally independent and can be

very helpful in extracting artefacts to improve data quality (Vigário et al.,

2000).

In this analysis, the eye-movements and blinks were detected using EOG-

signals (electrooculography signals) measured by two electrode pairs placed

close to eyes of a subject. EOG-epochs were created around the detected

eye-movements. Thereafter, the EOG-epochs were chosen manually so that

only EOG-epochs representing a typical eyeblink were used in the following

analysis. After the manual selection, an automatic procedure provided by

MNE-Python package was followed to produce the ICA components of the

MEG data corresponding the selected EOG-epochs. In this procedure, the

’Fastica’ algorithm (Hyvärinen, 1999) was used and 1-3 ICA components that

explained 95% of variance were selected. After the automated procedure, the

selected ICA components were visualised to ensure that they corresponds to

blinks and eye-movements. Thereafter, ICA-projections were created and ap-

plied to MEG data to remove the eye-movement and blink components. ICA

projections were made for each subject separately using the data measured

in the first MEG session of each subject.

4.5.3 Evoked responses

The data was cropped into segments (epochs) centred around the stimulus

triggers, from 200 ms before to 1000 ms after the stimulus onset. The cortical

responses to each of the 59 stimuli were obtained, for each subject, by aver-

aging the epochs across the three sessions (number of averaged trials = 18).

Averaging improves the signal-to-noise ratio as single trials are typically too

noisy to use in the analysis (Salmelin, 2010). The data was baseline corrected

using the 200 ms pre-stimulus interval.
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4.5.4 MEG data matrices

The data dimensionality was reduced to enable decoding and statistical eval-

uation. In this step of the analysis, the time line of the responses was cor-

rected for the time-delay of 38 ms caused by the projector which was used to

display the stimuli. Three different sized MEG data matrices were created

using evoked responses. To evaluate the data quality including inter-item

variance and average signal strength the time course from -200 to 1000 ms

was used. For this analysis, the evoked responses were downsampled to have

20-ms time windows, resulting in 60 time points. For each subject, a data

matrix was formed with the size of 59 (items) x 204 (channels) x 60 (time

points).

In decoding phase of the study, shorter time course was used: the re-

sponses corresponding to each noun were cropped from 0 ms to 700 ms and

downsampled to have 20-ms time windows, resulting in 35 time points. For

decoding, a data matrix was formed with the size of 59 (items) x 204 (chan-

nels) x 35 (time points) for each subject.

To investigate more the time course of decodability (i.e. what are the

time intervals which give the best prediction accuracies), the decoding was

done also using cropped evoked responses with length of 100 ms. Therefore,

the evoked responses were cropped to have a length of 100 ms in 50 ms time

intervals starting from -200 ms to 1000 ms (i.e. the first cropping covered the

period from -200 to -100, the second cropping covered the period from -150

to -50 etc. so that the last period was from 900 to 1000 ms). These cropped

evoked responses were downsampled to have 10 ms time windows resulting

in 10 time points. Therefore, the third size of the MEG data matrices was

59 (items) x 204 (channels) x 10 (time points).

4.5.5 Inter-item variance

Inter-item variance was calculated from downsampled MEG data using ma-

trices of the size of 59 (items) x 204 (channels) x 60 (time points), covering
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the time course from -200 ms to 1000 ms. The variance (Mellin, 2010) was

calculated for each subject across items at every time point for each channel

separately, using the following function

σ2 =

n∑
i=1

(xi − µ)2

n
(4.2)

where n is the number of items (59), xi is the measured activation on

a channel evoked by ith item and µ is the average activation on a channel

across all items.

4.5.6 Average signal strength

The amplitude strength of the MEG signal varies between individuals (Salmelin,

2010). In this study, a hypothesis was that lower average signal strength

might be linked with decreased prediction accuracy of cross-subject decod-

ing. In order to test the hypothesis, the average signal strength, across items,

was calculated using the same matrices that were used to compute the inter-

item variance (59 items x 204 channels x 60 time points).

4.5.7 Signal-to-noise ratio

In order to examine the effect of signal-to-noise ratio on decoding perfor-

mance the amount of noise was estimated by calculating the standard de-

viation of the average amplitude strength of the MEG signal during the

prestimulus interval from -200 to 0 for each of the subject separately. The

average signal-to-noise ratio was then determined from downsampled MEG

data and time window from -200 to 1000 ms by dividing the average signal

strength by the calculated standard deviation.
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4.5.8 Dissimilarity matrices of feature space and MEG

data

To investigate the category structure of the feature space (see section 4.6.1),

the Euclidean distances (Kaufman et al., 2005) between feature vectors cor-

responding to each pair of stimulus nouns were computed. The following

function was used

D(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 (4.3)

whereX = (x1, x2, ...xi) is a feature vector of one item and Y = (y1, y2, ...yi)

is a feature vector of another item. n refers to the length of the feature vector.

In this study, the aim was to investigate the commonalities of semantic

representations in the brain across subjects. The main idea was to perform

decoding across subjects, but similarity measures were also used to compare

the internal structure of representations. Therefore, the euclidean distances

between each pair of item representations were calculated for each subject

using their MEG data matrices of the size (59 x 204 x 35). Before distance

calculation, the MEG data matrices were z-transformed to obtain a vector

representation for each of the 59 items and then the dissimilarity matrices

were computed.

Thereafter, to compare the internal structure of representations across

subjects, the Spearman correlation (Mellin, 2010) between the dissimilar-

ity matrices of each pair of subjects was computed based on the following

equation

ρ = 1− 6
∑n

i=1 d
2
i

(n2 − 1)n
(4.4)

where the calculated dissimilarity matrices are first ranked based on the

distances to compute the value of di which is the difference between ranks of

each distance. n refers to number of computed distances (59 x 59). The range
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of correlation value ρ is from -1 to 1, where -1 indicates a strong negative

correlation and 1 a strong positive correlation.

4.6 Decoding

Decoding was done to compare the semantic representation in the brain

across subjects. First the decoding was done within each subject to ensure

the reliability of the methods used; subsequently, the decoding was done

across subjects. The aim was to predict which stimulus noun a subject was

thinking about based on a model which was trained on another subject’s

data. The zero-shot decoding algorithm (Palatucci et al., 2009) was used as

the classifier.

4.6.1 Predictor features

The semantic space of stimulus nouns was modelled using the Aalto-norms

feature set. The Aalto-norms set was created in two steps using web-based

questionnaires. First, feature production norms were gathered: 241 respon-

dents listed typical features for each stimulus word. In addition to the stimu-

lus words used here, the questionnaire included 241 extra words. The average

number of produced unique features for each word was 192 (sd. 43). Sparse

feature sets do not work well with machine learning, so the aim was to con-

struct a feature set that could be used to describe all of the stimulus words

such that a unique vector would account the degree to which each word is

described by each feature.

To optimise the feature set, 73 questions were created based on the most

frequent features produced to a subset of 118 words of the total of 300 words

used in the first web-based questionnaire. These 118 words included 59 stim-

ulus words used in the present study and as well as 59 words which were used

in another study. To ensure that the created questions captured enough of

the important features of all the stimulus words, 12 extra questions were

added to the question set. Then, this set of 85 questions was used in a
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new web-based questionnaire. The task of the 120 novel respondents was to

evaluate how much a certain feature relates to a stimulus word on a scale

from zero (= not a feature at all) to five (=a very prominent feature). Each

respondent evaluated a subset of 20 stimulus words. The set of 85 questions

is reported in Appendix C.

The questionnaire responses were averaged across subjects. Thus, a fea-

ture space was formed where each of the 59 stimulus words was described

by a feature vector with a length of 85. Figure 4.3 illustrates the dissimilar-

ity matrix of this feature space where Euclidean distances between feature

vectors were computed. The figure shows that this feature space clusters

stimulus words together according to the different categories.
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Figure 4.3: Dissimilarity matrix of the feature space

4.6.2 Semantic output code classifier

The aim of the zero-shot decoding algorithm is to learn a semantic output

code classifier (SOCC) f : X → Y , which can predict new values of Y that

are not included in the training data set. The procedure used here is the

same as that introduced by (Sudre et al., 2012).

Let X ∈ RN∗d, where the input MEG data X is given as a matrix with the

shape of 59 (items) x timepoints x 204 (channels). Each row of X consists



CHAPTER 4. METHODS 30

of the evoked responses activated by each stimulus noun. N is the number

of items (59) and d corresponds to the number of dimensions of the neural

response (channels*times). The data was z-tranformed and normalised to

minimise the effect of differences in signal strength between subjects. Then

let F ∈ RN∗p be a matrix of semantic features, where N again is the number

of items and p is the length of the feature vector (85). Linear ridge regression

was used to learn the weight vector W ∈ Rd∗p with the following function

W = XT (XXT + IN)−1F (4.5)

where IN is an identity matrix and is a scalar regularization parameter.

The prediction f for neural activity of the semantic features of a previously

unseen word is obtained as f = x ∗W .

After the linear mapping has been learned, the SOCC aims to match

two previously unseen stimulus words with two unseen MEG data segments.

This step is referred to as leave-two-out cross-validation. First, the algorithm

translates the MEG segments into two predicted feature vectors using the

previously learned linear mapping. Then, the algorithm computes a cosine

distance between the predicted feature vector f and the true feature encoding

for the two unseen items. The labels (stimulus words) are chosen based on

the smallest distance. This process is repeated for all possible leave-two-out

combinations; in this study, this analysis was performed for 1711 different

combinations.

In the case of cross-subject decoding, separate data matrices were used for

training and testing the algorithm. Again, two items were left out from the

training data set (of one subject), then the algorithm computed the cosine

distance between the predicted feature vector f and the true feature encoding

for those two left-out items from the testing data set (of another subject).

In this study, the decoding performance is reported using prediction ac-

curacy, which is an average accuracy across all left-out word pairs. In each

distinguishing task, there is a 50% probability of the algorithm choosing cor-

rectly between the target words. However, the decoding was performed on
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all the possible left-out word pairs, so the chance level of the decoding per-

formance was simulated using permutation tests to get a reliable estimate of

the significance (see section 4.6.3). An accuracy of 100% would indicate that

the algorithm succeeds in correctly labelling every MEG segment.

4.6.3 Permutation tests

A permutation test was performed to determine the chance level of predic-

tion accuracies to evaluate the performance of the zero-shot classifier. Here,

the zero-shot classification was performed 1 000 times on randomly selected

subject, whose data was randomised in terms of word labels and MEG data

segments. The idea was to find a level where the results are significant and

the prediction accuracy is not achieved by coincidence. In case of cross sub-

ject decoding, the both training and testing subjects were selected randomly.

4.6.4 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering was done to group the subjects based

on similarity of MEG data and cross-subject decoding performance. The

clustering was performed, first, based on vectors of correlation coefficients

between subjects and, second based on vectors of decoding performance ac-

curacies.

Agglomerative hierarchical clustering is based on the distances between all

observations (Kaufman et al., 2005). Here, the euclidean distance metric (see

section 4.5.8) was used to determine the distances. First, each observation

(here, a subject) is in their own clusters and then the algorithm starts to

merge the closest pair of clusters together until there is only one cluster

left which covers the entire data set. Here, the Ward variance minimisation

algorithm (Müllner, 2011) was used to determine the closest cluster. The

Ward variance minimisation algorithm uses the following equation
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d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2 (4.6)

where u is a novel cluster consisting of clusters s and t, and v is an unused

cluster. T represents the sum of |v|, |s| and |t|.
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Results

5.1 Task compliance during the MEG

measurements

Task compliance during the MEG measurements was evaluated by showing

phrases to subjects after 10% of the stimuli. The subject was asked to judge

if a sentence made sense, when the previously shown stimulus was placed

in front of the phrase. The purpose of this task was to make sure that

the subject was concentrating on the stimulus shown and thinking about

its meaning. The average percentage of correct answers across subjects was

96.3% (sd. 3.5%). These results confirm that the subjects were thinking

about the meanings of the stimuli.

33
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5.2 Inter-item variance of brain activation

Inter-item variance of evoked responses were calculated to ensure the separa-

bility of brain responses between items for successful decoding. The variances

were computed per channel using the time window of -200 to 1000 ms and are

presented in figure 5.1, where each subject is indicated by a separate colour.

For all subjects, the variance was largest approximately from 200 to 500 ms,

which means that the brain responses to different stimuli varied most during

that time interval.

Figure 5.1: A topography of inter-item variance of each MEG channel from

-200 to 1000 ms

In figure 5.2, the average variance across channels are presented; each

colour refers to a different subject. The figure illustrates that the variance

increased as a function of time with a small peak at the time-point 140
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ms. The variance differed significantly across subjects (One-way ANOVA,

F=235.22 p < 0.001). Subject s08 had notably higher variance than the

other subjects. During the baseline, the variance was comparably low for

each subject, but there were also some differences between subjects. For

example, the inter-item variance was high for subject s08 also during the

baseline.

Figure 5.2: The time course of inter-item variance in the different subjects,

measured as an average across the MEG channels. The straight vertical red

line signifies the stimulus onset.
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5.3 Average signal strength and signal-to-noise

ratio

The average signal strength was determined to investigate its effect on de-

coding performance and was computed across the items and MEG channels

using the time window of -200 to 100 ms in relation to picture onset. Figure

5.3 shows that the signal strength varied greatly between individuals (One-

way ANOVA, F=53.19, p < 0.001). The highest signal amplitudes were

approximately at 150 ms and at 240 ms after the stimulus onset for most of

the subjects (excluding subject s08). The largest amplitudes were detected

for subjects s08, s16 and s02. During the baseline, the amplitude of the sig-

nal strength was comparably low and after 700 ms there were not any clear

peaks in the amplitude strengths.

Figure 5.3: The time course of average signal strength. The straight vertical

red line signifies the stimulus onset.
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The signal-to-noise ratio was estimated by dividing the average signal

strength in every time point by standard deviation of the signal strength

during the baseline. The standard deviations of the signal strength during

the baseline are illustrated in figure 5.4. The figure shows the subject s08

and s10 had the largest variation in signal strength during the baseline. High

variation during the baseline indicate there are still some noise left despite

the noise-reduction techniques used.

Figure 5.4: Standard deviation of average signal strength across channels

during the baseline. The horizontal red line illustrates the mean of standard

deviations.
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Figure 5.5 illustrates the estimated signal-to-noise ratio. The subjects

s03, s14 and s16 seem to have the best ratio as their have the strongest

effects whereas the subject s10 has the worst ratio. The signal-to-noise ratio

varied greatly between individuals (One-way Anova, F=31.81, p < 0.001).

Figure 5.5: The time course of the estimated signal-to-noise ratio. The

straight vertical red line signifies the stimulus onset.
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5.4 Item-level within-subject decoding

To establish the baseline level of decoding accuracy with respect to this data

set, decoding was first done within each subject, that is, the model was

trained and tested on the same subject’s data.

In figure 5.6, the within-subject decoding accuracies are presented. Here,

the data from 0 to 700 ms was used. The mean accuracy across subjects was

86.7% (sd. 4.6%). A permutation test indicated that prediction accuracies

above 62.0% were significantly above chance level at p < 0.05. Therefore, all

the within-subject decoding results were significant, indicating that it was

possible to find a linear mapping between the semantic features and the brain

data so that the classification algorithm could succeed in labelling the brain

data correctly in most of the leave-two-out tasks.

Figure 5.6: Within-subject decoding accuracies. The significance level is

marked as a red line.

Figure 5.7 presents a time course of prediction accuracies for each subject.

The data was cropped to 100-ms bins, and the algorithm was trained and

tested for each data bin. The model succeeded in distinguishing between two

target words best during the time window from approximately 150 ms to 500

ms. It indicates that most of the semantic information was processed during
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that time. For some subjects, the algorithm was able to label the MEG data

correctly even when the data from 700 to 1000 ms was used, which suggests

that semantic processing can last longer for some individuals. During the

baseline (-200-0 ms), the prediction accuracies were below the significance

level.

Figure 5.7: Within-subject decoding accuracies for 100 ms time windows,

every 50 ms. The subjects are presented in different colours and the

straight horizontal red line indicates the significance level, whereas the ver-

tical straight line indicates the stimulus onset.
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5.5 Correlation between MEG dissimilarity

matrices

To investigate the similarity of the internal structure of semantic represen-

tations across subjects and to verify the results of cross-subject decoding,

the correlation between distance matrices of the MEG data were computed.

The results are presented in figure 5.8. The significant (p < 0.05) Spearman

correlation coefficients between different subjects varied in the range from

0.05 to 0.46. The largest correlation was between subjects s16 and s20, and

for most of the subjects, the correlation was significant. Hierarchical cluster-

ing shows how the subjects were clustered based on correlations between the

distance matrices of the MEG data. Subjects close to each other had more

similar internal structure than those further away from each other.
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Figure 5.8: Correlations between MEG dissimilarity matrices of each subject.

The white colour indicates insignificant correlation, yellow indicates relatively

high correlation and blue indicates low correlation.
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5.6 Item-level decoding across subjects

In this study the aim was to examine similarities in semantic representation

across subjects. Similarity was investigated by performing decoding across

subjects. The model was trained with the data of one subject and tested with

the data of another subject; here this subject combination is called a testing

pair (N = 17 ∗ 17− 17). The significance level determined by a permutation

test was 58.1% (p < 0.05). Of all the testing pairs, 95.2% demonstrated

significant results, thus, successful decoding (mean 66.5%, sd. 7.1%). The

best prediction accuracy was 85.6% and was achieved when the model was

trained with data of s20 and tested with the data of s01.

Figure 5.9 displays the prediction accuracies of all the subject combina-

tions. The within-cluster decoding accuracies were higher than the average

across all the subjects, which supports the idea that some of the subjects

have more similar brain responses than others.
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Figure 5.9: Cross-subject decoding accuracies. Yellow indicates high predic-

tion accuracy and blue low accuracy. The yellowish diagonal line presents

the within-subject decoding results. On the right side of the figure, the

hierarchical clustering is presented.

The subjects that performed well as testing pairs seemed to also have a

more similar internal structure of brain responses reported in section 5.5. For

example, the subjects s01, s12 and s20 were clustered together in both cases.

On the other hand, the subjects s16 and s20 seemed to have the most similar

internal structure of brain responses, but in decoding task the prediction

accuracies of this pair of subjects were not remarkably precise compared to

other testing pairs and they occurred in different clusters.

Figure 5.10 illustrates the percentage of significant decoding results (p <

0.05) as a function of time. Here, the data was cropped to 100-ms bins, at

50-ms time intervals. The model was tested on every testing pair, with the
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testing and training data taken from the same time intervals. The results

show that during the time from 100 ms to 600 ms more than half of the

decoding results were significant, so most of the similarities across subjects

occurred during that time. More precisely, when the time-window of 150 to

250 ms was used for training and testing the algorithm 80% of the decoding

results were significant. Another peak in decoding occurred in the time

window from 350 to 500 ms. This indicates that those time windows are the

most similar across subjects, as regards semantic processing.

Figure 5.10: Percentages of significant cross-subject decoding results per

100 ms time windows. The percentage shows the portion of all the testing

pairs that reached a significant prediction accuracy (>58.1%, (p < 0.05), per

time window. Therefore, if 100% of the decoding results were significant,

all the testing pairs (N=272) would have resulted with significant prediction

accuracy.
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Discussion

In this study, the semantic representations of individual words were inves-

tigated. The aim was to study similarities in the timing of representations

across subjects using zero-shot decoding across subjects. It was possible to

predict individual words from MEG responses by training the algorithm on

the data of one subject (with the to-be-tested items removed) and testing on

another subject’s data. This indicates that there are commonalities between

individuals in how words are represented in the brain.

6.1 Quality of the data

To test the quality of the data, inter-item variance, signal-to-noise ratio and

average signal strength were computed and item-level decoding was per-

formed within each subject. During the decoding process, the semantic con-

tent of the stimulus items was modelled using the Aalto-norms as a feature

set. The dissimilarity matrix of this feature set displayed clear clusters which

followed the pre-defined categorical structure (Animals, Body parts, Human

characters, Buildings, Nature, Tools and artefacts and Vehicles). When the

feature set was used, the within-subject decoding results were significant for

all the subjects. This shows the representations of meanings were modelled

successfully as such correlations were found between brain activity and the

46
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feature set.

The brain responses to different items varied for all the subjects. There

was a peak in inter-item variances for all the subjects at 140 to 160 ms after

picture onset. Previous picture naming studies have suggested that this is

part of the time window where visual object recognition happens (Indefrey,

2011; Levelt et al., 1998; Salmelin, 2007). The large inter-item variance in

this time window is, therefore, likely to reflect real item-level differences in

the visual properties of the presented pictures.

The average signal strength varied greatly for different subjects and the

subject (s08) who had the largest inter-item variance had also the highest

amplitude of the signal strength. For some of the subjects (s02, s08 and s10)

the inter-item variance was fairly high also during the 200-ms prestimulus

interval, which may indicate noise in the brain signal and that is why the

signal-to-noise ratio was estimated.

Despite the inter-subject differences in the signal-to-noise ratio and the

inter-item variance the within-subject prediction accuracies were markedly

above the significance level for all the subjects, with the average accuracy

86.7% (sd. 4.6%). This suggest that the signal-to-noise ratio was acceptable

because the decoding model was able to distinguish between the two target

words in most of the leave-two-out cases. The best prediction accuracies were

achieved during 150-500 ms which indicates that during this time window the

representations of items are most different and the brain activity correlates

best with the feature set. The peak decoding time starts approximately,

when there is a peak in inter-item variance.

The amount of variance in the amplitude of the brain response to the

different items did not directly correlate with the decoding accuracy. For

example, the subjects s08 and s02 had the greatest variance but the within-

subject prediction accuracies for these subjects were not especially precise or

poor. Also the variances were relatively low for subject s13 but the prediction

accuracy was still precise. It was found that the subjects (s03, s14 and s16)

who had the best signal-to-noise ratio performed well in the within-subject
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decoding, whereas the subject (s10) who had the lowest signal-to-noise ratio

had also the lowest prediction accuracy. This finding is supported by the fact

that typically a classifier performs better when it is tested on cleaner data

(Shinkareva et al., 2011).

Successful within-subject decoding results demonstrate that the brain

activity varies for different meanings and confirms the quality of the data

and algorithms used.

6.2 Similar semantic representations in

different individuals

The meanings of words were successfully decoded across subjects, which sug-

gests there are commonalities between individuals in the time course of how

words are represented in the brain. The vast majority of the testing pairs

were well above chance level. The prediction accuracies (66.5%) were still

notably worse than the within-subject decoding results (86.7%), which are

in line with earlier studies that even though there are shared components of

semantic representations, all aspects are not shared (Shinkareva et al., 2008;

Shinkareva et al., 2011; Shinkareva et al., 2012; Just et al., 2010; Huth et al.,

2012).

There were differences in how each testing pair performed. For example,

the decoding model trained on subject s01 was able to predict the data of

subjects s12 and s07 but not s08 and s09. Interestingly, the model trained on

subject s20 was able to successfully decode the items from the data of all but

one other subject. The signal-to-noise ratio was better for subjects s03, s14

and s16 than for the other subjects, but this did not affect the cross-subjects

decoding performance.

These asymmetrical differences in decoding accuracies could be due to

a number of factors. In this study, there was no link detected between

the signal-to-noise ratio and cross-subject decoding performance, though the

signal-to-noise ratio affected on within-subject decoding performance. It may
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be that the methods used to determine the signal-to-noise ratio were not able

to measure the ratio correct. An another possible factor affecting to cross-

subject decoding could be that the semantic space of certain individuals are

closer to the average space than others.

Hierarchical cluster analysis of the decoding results demonstrated that

the within-cluster decoding accuracies were higher than the average decod-

ing accuracy. The best within-cluster decoding accuracy was 75% which was

achieved when the data of s01, s07, s12 and s20 were used for training and

testing the algorithm. Nevertheless, these subjects did not perform particu-

larly well compared to other subjects in the within-subject decoding task, so

these results cannot be explained merely by a good model fit to the semantic

feature model. Instead, the finding suggests that some subjects have more

similar semantic spaces than others.

During the time window from 100 to 650 ms, more than 50% of the

cross-subject decoding results were significant. This is also the time window

where the within-subject decoding accuracies were highest. Thus, most of the

inter-subject commonalities as well as within-subject properties in semantic

processing occurred in that time window. The peak performance in cross-

subject decoding was between 150 and 250 ms, and another smaller peak

occurred between 350 and 550ms. The first peak agreed with the time win-

dow, when the inter-item variance was highest. The latter peak occurred in a

time window, that is typically associated with phonological code retrieval and

preparation of the oral output (Indefrey, 2011; Levelt et al., 1998; Salmelin,

2007). This is interesting, as it points to a possibility that the information

in the Aalto-norms might correlate with the phonological properties of the

words, even though these are not directly semantic in nature. During these

time windows, the within-subject decoding results were also significant.

There were significant correlations between the inter-item distance ma-

trices computed from the individual subjects’ MEG data, which implies that

there are commonalities in the internal structure of semantic representations.

It was found that well-performing testing pairs in decoding had also a more
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similar internal structure than other subjects. Nevertheless, a hierarchical

clustering analysis found differences in the composition of subjects in differ-

ent clusters, when analysis was done on the decoding results compared to the

analysis performed on correlations between distance matrices. For example,

there was a high correlation between distance matrices of subjects s16 and

s20, but these subjects appeared in a completely different clusters when the

decoding results were used. This suggests that even though there are com-

monalities in the internal structure of representation in terms of distances

between item activations, the items are not necessarily encoded similarly in

the brain of different individuals. This finding was also highlighted in the

research conducted by Shinkareva et al. (2012).

6.3 Limitations of the methods

In this study, a common feature set was used for all the subjects, which

resulted from the average responses to a behavioural feature survey. This

means that the present study also incorporated the question of how similarly

the different individuals interpreted the stimulus words; in other words, the

question was not only about the similarity of brain responses. To obtain more

accurate results concerning the similarity of brain representations between

subjects, individual feature spaces could be used. That could also improve

the within-subject decoding results, if certain features are indeed the building

blocks of meaning for certain subjects.

When a common feature space is used for every subject, the feature set

is a chosen group of attributes, which may not include all of the important

properties. This could have been tested by using a survey where subjects

would have been asked to determine, based on a certain set of features,

what target word the features describe. If the subjects had been unable to

choose a target word, there might have been too few properties. Due to

the fairly large number of features (85), this kind of method could lead to

a complicated and long survey, which would have affected to the quality of
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the answers. Nonetheless, that kind of survey could have confirmed that the

features represented the same item for everyone.

There are also some limitations related to decompositional theories of se-

mantics. For example, when a meaning is cut into small features, the features

themselves are already small concepts, and it has not been demonstrated

how these verbal features are actually represented in the brain (Binder et al.,

2016). Therefore, only the meaning is modelled by these features, but there

are no particular neurons which would, for example, represent some primitive

feature (Binder et al., 2016).

In this study, the semantic representations between individuals were com-

pared by performing cross-subject decoding. An assumption was that, after

coordinate transformation, the sensors picked up signals from the same gen-

eral locations in the brain, across subjects. Nevertheless, the structure of

the head is individual and the similarity of the sensor-locations is only an

approximation.

The signal-to-noise ratio of the MEG data varied greatly between individ-

uals. For further analysis, it is recommended to examine more the possible

source of high standard deviation of average signal strength during the base-

line to improve the data quality of subjects s08 and s10. One obvious way to

improve signal-to-noise ratio in the future would be to increase the number

of presentation times of each item during the measurements. In this study,

it was limited to 18 times, because of the already long measurement times.

Long measurement times (1 hour) are likely to cause fatigue, which affects

the quality of the measured brain signal (Grill-Spector et al., 2006). There

were three measurement days, and stimuli were randomised, which minimises

the effect of getting tired. The measurements were long because they also

included stimuli that were not analysed in this particular study. By focusing

on picture stimuli in future measurements the number of presentation times

per item could be increased.
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6.4 Future directions: Is ’beauty’ in the brain

of the beholder?

The present results imply that there are commonalities in how concrete nouns

are represented in the brains of different individuals. These findings raise new

questions: Are there more individual differences for some words than others?

For example, are the semantic representations of abstract or emotional words

more, or less, similar between different people than those of common concrete

nouns? The concrete nouns used here were unambitious in their meanings,

but what about words with more nuanced meanings that vary depending on

the context? It would be interesting to investigate those differences in mean-

ings and how they are mirrored in brain activity. If we say ’the beauty is in

the eye of the beholder’, are perceived differences in the meaning of ‘beauty’

actually grounded in brain activity? More generally, could this phenomenon

be part of the basis for the many misunderstandings in communication?

In the beginning of the thesis, the importance of experiences in relation

to semantic processing was discussed. It might be possible to experimen-

tally create shared or individual experiences, for example, by using stories

or movies as stimuli. It would be also interesting to see if within-subject

decoding accuracies could be improved by using individual semantic feature

sets which would correlate with individual experiences. If individual feature

sets were available, it would be possible to compare, first, the similarity of

the feature spaces themselves and, subsequently, investigate whether those

similarities might be found in the brain responses.

Here, it was demonstrated that healthy subjects share common compo-

nents of semantic representations. It has been suggested that emotionally-

valenced words evoke different kinds of activation in patients with schizophre-

nia compared to healthy individuals (Klumpp et al., 2010). Such differences

were not detected when depressed patients and healthy control groups were

compared. It would be useful to further investigate the differences to find

hidden indicators of illness and factors that could be taken into account when
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planning treatment.

Findings of common components of semantic processing could be used

in the design of new brain-computer interface applications. For example,

there could be a communication tool for individuals who cannot move or

communicate verbally. Using a similar machine learning approach as here, it

might be able to facilitate communication for these patients by translating

brain activation into words. For this implementation to work, more method

development is needed to improve the signal-to-noise ratio of single trials,

which is currently too poor to allow successful decoding.
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Conclusions

This study found commonalities between individuals in how items are repre-

sented in the brain. It was possible to decode meanings across subjects using

MEG data and Aalto-norms as predictor features. High inter-item variance

in the MEG data did not directly influence decoding performance. However,

a good signal-to-noise ratio resulted in better within-subject decoding accu-

racy. Most commonalities between subjects occurred at 150 to 250 ms and

350 to 550 ms with respect to the stimulus onset. Testing pairs (two subjects

with training performed on data of one subject and testing on data of the

other subject) that resulted in high decoding accuracies seemed to also have

more similar internal structures of semantic representations than others, but

these phenomena did not correlate directly. As the cross-subject decoding

results were worse than within-subject decoding results, it is suggested that

there are commonalities in semantic representations in the brain but some

of the components of semantic processing are individual. However, more re-

search is needed to answer which factors cause the differences in semantic

representations.

A better understanding of how the brain processes semantics will give us

more knowledge about how information is stored and used in the brain and

here, how it occurs in individuals. By using machine learning, it has become

possible to decode relatively abstract aspects of brain function including

54
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meanings of words. In this research, these new approaches made possible to

examine shared and individual content of thought.
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 Aalto-yliopisto Postiosoite Käyntiosoite   Neurotieteen ja lääketieteellisen teknii-kan laitos PL 15100 00076 AALTO Puumiehenkuja 2A ESPOO    
 

 

   Tietoa tutkimuksesta:  Yksittäisten käsitteiden hermostolliset merkitysedustumat 
 Tämä tutkimus on osa Neurotieteen ja lääketieteellisen tekniikan laitoksen (Aalto-yliopisto, Otaniemi) työtä ja sen tarkoituksena on selvittää, miten, missä ja milloin yksittäiset kielen merkitysyksiköt ovat edustettuina ihmisaivojen sähköfysiologisessa toiminnassa. Jotta  tämän kaltaisesta aivotoiminnasta saadaan luotettava käsitys, tutkimukseen kuuluu 3 MEG mittauskertaa (yksi mittauskerta kestää noin 2 tuntia, josta tunti varsinaista mittausta). MEG-mittaus tapahtuu osoitteessa Puumiehenkuja 2A, 02150 Espoo (Nano-talo).  Koehenkilöksi soveltuvat 18-40 vuotiaat, oikeakätiset, äidinkielenä suomea puhuvat terveet henkilöt. Mikäli käytätte hermostoon vaikuttavia lääkkeitä (esim. masennuslääkkeet), teillä on todettu luki- tai muu kielellinen häiriö tai kehossanne on metallia (esim. hammasraudat), ette voi osallistua koehenkilöksi. Mikäli epäilette soveltavuuttanne, ottakaa yhteys tutkijaan. Tutkimukseen ei voi osallistua päihtyneenä.  Tutkimuksessa mitataan heikkoja aivosolutoiminnan tuottamia sähkömagneettisia signaaleja magnetoenkefalografia (MEG) -menetelmää käyttäen. Mittauksessa tutkittava istuu muka-vassa tuolissa MEG-kypärän alla samalla, kun mittalaite kerää pään ulkopuolelta tietoa ai-voissa syntyvistä magneettikentistä. Magneettiset kentät syntyvät, kun aivosolun sisällä tieto siirtyy sähköisenä aaltona. MEG-tutkimus on täysin turvallinen ja kivuton, eikä siihen liity esi-merkiksi säteilyä tai lääkeaineita. Tutkimuksessa kiinnitetään iholle pään asennon paikanta-miseen käytettävät pienet mittakelat sekä silmän liikkeitä seuraavat elektrodit (elektro-oku-lografia, EOG). Nämäkin ovat turvallisia ja kivuttomia.   Koska aivojen signaalit ovat hyvin pieniä, mittauslaite on sijoitettu magneettisesti suojattuun huoneeseen, johon on puhe- ja videokamerayhteys. Jos koette suljetun paikan kammoa, se saattaa estää osallistumisenne tutkimukseen. Tutkimuksen aikana keskitytte Teille esitet-täviin sana-, kuva- ja ääniärsykkeisiin. Toisinaan mittauksessa tehtävänä on myös yhdis-tää esitetyn ärsykkeen merkitys lauseeseen. Tarkempia ohjeita annamme mittauspäivänä ja tutkija vastaa mielellään, jos mikään tuntuu epäselvältä. Mittauksen aikana tutkijat ovat jat-kuvassa videokuva ja ääniyhteydessä teihin, ja te voitte ilmaista puheella tai liikkeellä, jos teillä on jokin hätä.   Teitä pyydetään välttämään liikkumista ja lihasjännitystä (esim. niskajännitys) mittauksen ai-kana, koska se aiheuttaa häiriöitä MEG-mittaukseen. Istukaa siis vain liikkumatta paikoillaan mittauksen aikana. Turhia silmänräpäytyksiä ja -liikkeitä tulisi myös välttää, koska nekin ai-heuttavat häiriöitä. Katse pyydetään keskittämään projektoriruudun keskiosaan. Mittauksen aikana on säännöllisesti taukoja joiden aikana voitte lepuuttaa silmiänne, mutta muuten pyy-dämme Teitä pysymään paikallanne näidenkin aikana.   MEG-mittauksen lisäksi keräämme anatomiset aivokuvat magneettikuvauksella (MRI-kuvat). Tätä tietoa tarvitaan MEG-signaalien lähteiden paikantamiseen. Jos Teistä on jo anatominen kuva aiemmasta kokeesta Aalto-yliopistolla, niin kirjallisella suostumuksellanne 
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tätä voidaan hyödyntää myös tässä kokeessa. MRI-kuvat mitataan Otaniemen kampuksella sijaitsevassa AMI (Advanced Magnetic Imaging) -keskuksessa sovittuna aikana. Kuvaus on turvallinen ja kivuton terveelle tutkittavalle, mutta vaatii, ettei kehossa ole metallia (esim. sy-dämentahdistin, metallinen proteesi). Ennen MRI-kuvausta Teille selitetään huolellisesti mit-tauksen kulku sekä tehdään turvallisuuskysely. Mittauksen aikana Te makaatte kuvauslait-teessa. Kuvauksen kesto on noin 10 minuuttia. AMI-keskus sijaitsee osoitteessa Otakaari 5 (I-siipi, Magneettitalo).  Osallistuminen tähän kokeeseen on täysin vapaaehtoista. Teillä on oikeus keskeyttää tutki-mus missä vaiheessa tai mistä syystä tahansa. On erittäin epätodennäköistä, että aivoku-vissa havaittaisiin poikkeavuutta, joka saattaisi vaikuttaa terveyteenne. Mikäli poikkeavuuk-sia kuitenkin havaitaan, tutkijat konsultoivat ryhmässä työskentelevää lääkäriä ja ilmoitamme löydöksistä teille. Koehenkilöille, jotka eivät ole töissä Neurotieteen ja lääketieteellisen tek-niikan laitoksella tai AMI-keskuksessa, korvataan matkakustannukset ja menetetystä työ-ajasta maksetaan pieni korvaus (36 euroa/kerta).   Kiitämme mahdollisesta osallistumisesta tutkimukseemme, jolla pyrimme lisäämään kielen sanojen merkitysten aivoperustan ymmärtämistä! Jos Teillä on mitään kysyttävää, ottakaa yhteyttä alla olevaan vastuulliseen tutkijaan:   Annika Hultén, PhD   Lotta Lammi, tutkimusavustaja  
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  MEG-ohjeistus koehenkilölle    MEG-kokeessa esitetään yksitellen kirjoitettuja ja puhuttuja sanoja sekä kuvia. Kokeen aikana tehtävänäsi on lukea sanoja, katsoa kuvia ja nimetä ne mielessä sekä kuunnella puhuttuja sanoja. Suorittaessasi tehtävää sinun tulee ajatella esitettävien ärsykkeiden merkityksiä. Toisinaan ärsykettä seuraa lause, jonka ensimmäinen sana on korvattu kolmella pisteellä (...).. Jos juuri esitetty sana/kuva/ääni sopii merkitykseltään lauseen ensimmäiseksi sanaksi, vastaa ”kyllä” nostamalla oikeaa etusormea. Jos juuri esitetty sana ei sovi lauseen ensimmäiseksi sanaksi, vastaa ”ei” nostamalla vasenta etusormea.   
 Esimerkki 1 

Esimerkki 2 

  

+ 
mu
uri 

hanhi 

”KYLLÄ” 

+ 
muuri 

+ 
melodia 

+ 
hanhi 

…osaa 
lentää. 

+ 
+ 

+ 
… pyöräili 
polkupyö-
rällä. 

”EI” 
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Koe jaksotetaan noin 7 minuutin osiin. Pyri olemaan mittausten aikana niin liikkumatta kuin mahdollista. Pyri räpyttämään silmiäsi mahdollisimman vähän tai räpäyttele sanojen välissä esitettävän ristin aikana. Yritä myös pitää katse koko ajan ruudun keskellä, jolloin vältät tehokkaammin silmänliikkeitä.  
 Kokeen ensimmäisessä osassa on yhteensä 6 jaksoa, joiden välissä pidetään 2 hieman pidempää taukoa. Näiden taukojen aikana voit vapaasti räpyttää silmiä ja liikkua maltillisesti.  
 Näemme sinut ja kuulemme sinua koko mittauksen ajan, joten voit missä tahansa vaiheessa ilmoittaa, jos kokeen aikana ilmenee ongelmia (esim. et ymmärtänyt ohjeita) tai haluat keskeyttää kokeen.   Älä epäröi kysyä, jos joku asia jää epäselväksi!   
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Lue alla olevat sanat ja ilmoita kokeenjohtajalle, jos joku niistä on sinulle vieras tai merkitykseltään epäselvä. 
jalka 

sotilas 

lammas 

lääkäri 

leijona 

sakset 

nenä 

lapio 

laiva 

haarukka 

kampa 

lapsi 

juna 

pappi 

bussi 

kirkko 

vene 

ankka 

karhu 

silmä 

kirjasto 

kallio 

hevonen 

vankila 

aalto 

vanki  

tehdas 

hiiri 

meri 

varvas 

korva 

auto 

torni 

käsi 

vuori 

pallo 

sormi 

saha 

pilvi 

tie 

puisto 

kuningas 

kotka 

linna 

saari 

silta 

museo 

sormus 

poliisi 

rekka 

lusikka 

opettaja 

selkä 

tuomari 

pesä 

kissa 

joki 

kirjasto 

suu 

koira 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  Taustatietolomake    Nimi: ___________________________________  Sukupuoli________________________________  Ikä:_____________________________________  Puhelin numero:___________________________  Sähköposti: ______________________________  Koulutustaso, tutkinto:______________________  Ammatti:_________________________________  Kätisyys:_________________________________  Äidinkieli:________________________________  Onko koulussa ollut vaikeuksia lukemaan tai kirjoittamaan oppimisessa (luki-häiriö)?:  ___________________________________________________________  Onko todettu neurologisia sairauksia (onko tutkittu aivoja, epilepsia, kallovamnmoja, pidempi tajuttomuus tms.)?:  ___________________________________________________________  Onko kehossasi metallia (esim. hammasraudat,  kirurgiset  klipsit/naulat, sydämmentahdistin tms.)  ___________________________________________________________  Muuta: ___________________________________________________________  ___________________________________________________________  ___________________________________________________________  



Tutkittavan nimi: ____________________________________________ 

Päivämäärä: ________________________________________________ 

 

 

Edinburghin kätisyyskartoitus (Edinburgh Handednes Inventory) 

 

Laita yksi rasti oikeaan sarakkeeseen sen mukaan, kumpaako kättä 

käytät seuraavissa toiminnoissa tai seuraavia esineitä käyttäessäsi. Jos 

käytät toiminnossa ainoastaan toista kättä, etkä käyttäisi toista missään 

tilanteessa, laita kaksi rastia oikeaan sarakkeeseen. Jos taas voisit käyttää 

kumpaa kättä tahansa, laita rasti molempiin sarakkeisiin. Täytä kaikki 

kohdat, ja jätä tyhjää vain, jos sinulla ei ole lainkaan aiempaa kokemusta 

toiminnosta. 

Jotkut toiminnot listassa vaativat molempien käsien käyttöä. Näissä 

tapauksissa se osa toiminnosta, johon käytettävästä kädestä ollaan 

kiinnostuneita, lukee suluissa. 

 

 

Toiminto Oikea Vasen 

Kirjoittaminen   

Piirtäminen   

Heittäminen   

Sakset   

Hammasharja   

Veitsi (ilman haarukkaa)   

Lusikka   

Lattiaharja (ylempi käsi)   

Tulitikun sytytys (tikku)   

Laatikon avaus (kansi)   

YHTEENSÄ (rastien 

lukumäärä sarakkeissa) 
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 Aalto-yliopisto Postiosoite Käyntiosoite   The Department of Neuroscience and Biomedical Engineering PL 15100        00076 AALTO Puumiehenkuja 2A Espoo         
 

 

 Tietoon perustuva suostumus magnetonenkefalografialla (MEG)  suoritettavaan tutkimukseen Aalto-yliopiston Neurotieteen ja lääketie-teellisen tekniikan laitoksessa.    Tutkittava:   Nimi:  _______________________________________________  
Henkilötunnus:  _______________________________________________ 
Osoite:  _______________________________________________ 
Sähköposti: _______________________________________________ 
Puhelinnumero:  _______________________________________________ 
  Olen lukenut ja ymmärtänyt saamani tutkimustiedotteen ja saanut riittävästi tietoa tutkimuksen kulusta. Olen ymmärtänyt, että osallistumiseni tutkimukseen on täysin vapaaehtoista ja että voin missä tutkimuksen vaiheessa tahansa keskeyttää tutkimuksen sen vaikuttamatta kohteluuni jat-kossa. Minulle on selvitetty, että halutessani saan alla nimetyltä tutkijalta lisätietoja tutkimuksen yleisistä periaatteista ja edistymisestä tai itseäni koskevista tuloksista.  Tutkimustulokseni ovat vain tutkijaryhmän tutkijoiden käytettävissä eikä niitä anneta ulkopuoli-selle taholle ilman erikseen antamaani kirjallista suostumusta. Tutkimuksesta vastaava tutkija voi kuitenkin antaa muiden yhteistyökumppaniensa analysoida tutkimustuloksiani tieteellisiä tarkoi-tuksia varten ilman erillistä suostumusta edellyttäen että tulosten anonyymisyys on varmistettu. Tulosten kaikenlainen kaupallinen hyödyntäminen on kielletty. Ymmärrän, että aineistoa ja tutki-mustietoa kerätään pelkästään tieteellistä tutkimusta varten eikä sitä luovuteta osittainkaan koe-henkilölle itselleen. Allekirjoituksellani vahvistan osallistumiseni tähän tutkimukseen ja suostun vapaaehtoisesi tutkimushenkilöksi.      _________________________________________________________  Paikka ja aika   _________________________________________________________  Tutkittavan henkilön allekirjoitus     ______________________________  Vastuullisen tutkijan allekirjoitus (nimen selvennys)  Aalto University, / The Department of Neuroscience and Biomedical Engineering Puumiehenkuja 2 B, 00076 Aalto 



Appendix B

Stimulus words

koira/dog varvas/toe vanki/prisoner kirja/book

hevonen/horse sormi/finger pappi/priest pallo/ball

ankka/duck nenä/nose opettaja/teacher saha/saw

kotka/eagle kirkko/church lääkäri/physician sormus/ring

kissa/cat tie/road tuomari/judge sakset/scissors

leijona/lion tehdas/factory lapsi/child lusikka/spoon

hiiri/mouse linna/castle joki/river lapio/shovel

karhu/bear silta/bridge saari/island kampa/comb

lammas/sheep vankila/prison meri/sea auto/car

selkä/back torni/tower puisto/park laiva/ship

käsi/hand kirjasto/library vuori/mountain juna/train

silmä/eye museo/museum kallio/rock vene/boat

jalka/foot kuningas/king aalto/wave bussi/bus

korva/ear sotilas/soldier pilvi/cloud rekka/truck

suu/mouth poliisi/police pesä/nest

Table B.1: Stimulus words in Finnish/English
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Feature questions

Liittyykö se taiteeseen?/Is it related to art?

Onko se nisäkäs?/Is it a mammal?

Onko sillä tai liittyykö siihen jalat?/Does it have or is it related to legs?

Voiko sen omistaa?/Can it be owned?

Onko se esine?/Is it an object?

Liittyykö se valtioihin?/Is it related to states?

Onko se ihminen?/Is it a human?

Voiko sitä oppia tai opiskella?/Can you learn or study it?

Onko sitä erikokoisina?/Is it different in size?

Liittyykö se lapsuuteen?/Is it related to childhood?

Liittyykö siihen vihreä väri?/Is it related to green?

Onko se rakennettu tai valmistettu?/Is it built or manufactured?

Liittyykö se rikoksiin?/Is it related to crimes?

Voiko siinä olla tekstiä?/Can it contain text?

Voiko sen sisälle mennä?/Can somebody go inside of it?

Onko sillä tai liittyykö siihen kädet?/Does it have or is it related to hands?

Pidetäänkö sitä hyvänä asiana?/Is it a good thing?

Voiko se olla vaarallinen?/Can it be dangerous?

Liittyykö se aikaan?/Is it related to time?

Onko se kulkuneuvo?/Is it a vehicle?

73
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Koostuuko se sanoista?/Does it consist of words?

Liittyykö se kuninkaallisuuteen?/Is it related to royalism?

Liittyykö se vesistöihin?/Does it relate to waterways?

Tarvitaanko sen käyttämiseen sormia?/Is it needed to use fingers when using it?

Koostuuko se monesta osasta?/Does it consist of many parts?

Liittyykö se kasvoihin?/Does it relate to the face?

Onko se fysikaalinen suure?/Is it a physical quantity?

Voiko sitä kehittää tai parantaa?/Can it be developed or improved?

Käytetäänkö sitä johonkin?/Is it used for something?

Voiko sen havaita merellä?/Can it be detected at sea?

Liittyykö siihen raha?/Does it relates to money?

Onko se osa jotakin?/Is it part of something?

Sisältääkö se tarinan?/Does it contain a story?

Onko se pitkä tai korkea?/Is it long or high?

Liittyykö se oikeuslaitokseen?/Does it relate to the judiciary?

Pidetäänkö sitä arvokkaana?/Is it considered valuable?

Onko se eläin?/Is it an animal?

Liittyykö se asumiseen?/Is it related to housing?

Voiko sitä kontrolloida?/Can it be controlled?

Voiko sen havaita metsässä?/Can it be detected in the woods?

Onko siinä nestettä?/Does it contain liquid?

Liittyykö se koulunkäyntiin?/Is it related to education?

Voiko se olla huono?/Can it be bad?

Liittyykö siihen numero neljä?/Does the number four relates to it?

Voiko se mennä rikki tai vaurioitua?/Can it be broken or damaged?

Liittyykö siihen paperi?/Is it related to paper?

Voiko sen nähdä?/Can it be seen?

Liittyykö se ajatteluun?/Is it related to thinking?

Liittyykö se menneisyyteen?/Is it related to the past?

Onko se konkreettinen?/Is it concrete?

Onko siinä varsi?/Is there a stem?
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Pidetäänkö sitä viisaana?/Is it wise?

Liittyykö se sairauksiin?/Is it related to diseases?

Onko se pieni?/Is it small?

Onko se tärkeä?/Is it important?

Voiko sitä pitää kädessä?/Can it be held in hand?

Onko siinä jotain terävää?/Is it something sharp?

Liittyykö se luontoon?/Is it related to nature?

Liittyykö siihen virkapuku?/Does it relate to a uniform?

Voiko se olla aikuinen?/Can it be an adult?

Onko se ihmisen keksimä?/Is it invented by man?

Pidetäänkö sitä lemmikkinä?/Is it considered a pet?

Herättääkö se paljon tunteita?/Does it awaken a lot of emotions?

Liittyykö se kehonosiin?/Is it related to body parts?

Osaako se lentää?/Can it fly?

Voiko sen ostaa?/Can it be bought?

Liikkuuko se laumoissa?/Does it move in hordes?

Voiko niiden määrän laskea?/Is it countable?

Voiko siinä olla metallia?/Can it be metal?

Lisääkö sen olemassaolo turvallisuuden tunnetta?/Does its existence add security?

Liittyykö siihen sininen väri?/IS it related to blue?

Käytetäänkö sitä vahingontekoon?/Is it used for damage?

Onko se eloton?/Is it inanimal?

Liittyykö se pelaamiseen?/Is it related to gaming?

Voiko sen kuulla?/Can it be heard?

Liittyykö se työntekoon?/Is it related to work?

Onko siinä jotakin valkoista?/Is there something white?

Liittyykö se kauneuteen?/Is it related to beauty?

Onko se karvainen?/Is it hairy?

Sisältääkö se puuta?/Does it contain wood?

Liittyykö se johonkin tapahtumaan?/Is it related to an event?

Liittyykö siihen moottori?/Is tit related to an engine?
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Onko useimmissa kodeissa sellainen?/Is it typically located at home?

Voiko se olla henkilökohtaista?/Can it be personal?

Liikkuuko se?/Does it move?
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