

AALTO UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING

Department of Communications and Networking

Shuang Gu

Page Load Performance Evaluation for Mobile Browser on a Cloud

Computing Platform

Master’s Thesis submitted for the degree of Master of Science in Technology.

Espoo, 26 May, 2011

Supervisor: Adjunct Professor Timo O. Korhonen

Instructor: Adjunct Professor Timo O. Korhonen

i

AALTO UNIVERSITY

SCHOOL OF ELECTRICAL ENGINEERING Abstract of the Master’s Thesis

Author: Shuang Gu

Name of the thesis: Page Load Performance Evaluation for Mobile Browser on a

Cloud Computing Platform

Date: 26 May, 2011

Number of pages: 12 + 81

Faculty: Faculty of Electronics, Communications and Automation

Professorship: S-72 Communications

Supervisor: Adjunct Professor Timo O. Korhonen

Instructor: Adjunct Professor Timo O. Korhonen

Abstract text:

More and more network data flows of the Internet are nowadays contributed by wireless

access which is initiated from mobile devices, such as smartphones and tablets. As a

result, the performance of mobile browser applications integrated in software stacks of

these portable devices draws more and more attentions. In order to meet the needs of

software engineering and benchmarking among various device vendors particularly, it is

getting increasingly important to evaluate the performance of mobile browser accurately

and efficiently. However, due to the distinct hardware and software characteristics,

conventional measurement methods which are widely deployed in desktop browsing are

not so applicable for mobile browsers.

This study tries to solve this problem by finding out a practical approach to evaluate the

page load performance of mobile browsers without additional software and hardware

measurement investments. Several measurement models are therefore introduced,

discussed and evaluated in order to point out the accurate and efficient one. As a

benchmarking tool, an online measurement application is designed and implemented in

the experimental part of this study. Verification data are then analyzed and discussed.

The implementation of such a web application and its context of the evaluation model

provide an outline of an ideal approach to benchmark page load performance of mobile

browsers. This optimized approach not only reduces the complexity of configuring a

measurement environment for mobile devices, but also provides relatively accurate

measurement results for continuous evaluation of mobile browsers’ page loading speed,

which is useful for developers to increase mobile browser’s performance incrementally.

The collected measurement results using such a measurement model are also useful as a

reference for benchmarking various mobile browsers from different manufacturers.

Our research found out also possible factors which may influence to the performance of

mobile browsers. The practice targeting of these factors, such as the design of web pages,

will help users of mobile devices to achieve better user experience when surfing the

Internet.

Keywords:

Mobile browser, Page load performance, Page loading speed, Cloud computing,

JavaScript, Ajax, Google App Engine

ii

Preface

I started to be interested in investigating on an easier method to measure the page loading

speed of mobile browsers since one and half years ago when I was working as a consulting

software tester in Nokia’s Maemo browser team which was working on a customized version

of Mozilla Firefox Mobile. The efforts on the development of ideas and practical codes and

finally summarized into this literature as my Master’s thesis in Helsinki University of

Technology.

I need to thank my current employer, HiQ, on providing me an opportunity to work together

with the Maemo Browser team in Nokia, so that I can get familiar with the concepts of

performance evaluation of mobile browsers to generate the idea of this study. And thanks to

Google to provide its App engine platform, without its ease to use, I would not be able to finish

coding and deployment of such a kind of coding work.

I want to thank my supervisor Timo O. Korhonen, who helped me a lot for turning my code

into this study paper, and Martin William, who helped me with the language checking of the

final thesis manuscript.

I would like to thank my parents who are living in my home city in China now. Without their

support, both financially and spiritually, I would not have managed to complete this study.

Special thanks to my husband, Hengzhi Liu, for always believing in and encouraging me, and for

having the patience to take care of our baby daughter when I had to steal time to work on

completing this Master’s thesis.

And also, best wishes to Cindy, my beautiful angle.

Espoo, 26 May, 2011

Shuang Gu

iii

Table of Contents

Preface ..ii

Table of Contents ... iii

List of Figures ... vi

List of Abbreviations ... vii

List of Concepts .. ix

1. Introduction ... 13

1.1. Purpose of the Study ... 15

1.2. Research Questions .. 17

1.3. Structure of the Thesis .. 19

2. Literature Overview ... 22

2.1. Mobile Browser ... 22

2.1.1. Definition of Mobile Browser .. 22

2.1.2. Structure of Mobile Browser .. 23

2.1.3. Performance Metrics of Mobile Browser ... 25

2.2. Page Load Performance .. 27

2.2.1. Definition of page load performance .. 28

2.2.2. Measurement of page load performance ... 28

2.3. Utilities for Web Application Development .. 29

2.3.1. Ajax .. 29

2.3.2. JavaScript library ... 30

2.3.3. Web application framework ... 31

2.4. Cloud Computing .. 32

2.4.1. Definition of cloud computing .. 32

2.4.2. Google App Engine .. 33

3. Research ... 34

3.1. Research Method .. 34

3.2. Requirement Analysis ... 36

3.2.1. Functionality ... 37

3.2.2. Portability .. 37

iv

3.2.3. Cost restriction .. 38

3.2.4. Manual vs. automatic.. 38

3.3. Design .. 39

3.3.1. Measurement modules ... 39

3.3.2. User interface of measurement control ... 41

3.3.3. Possible measurement models ... 43

3.4. Implementation .. 48

3.4.1. Choice of hosting platform ... 48

3.4.2. Selection of development tools .. 49

3.4.3. Capacity of measurement model .. 50

3.5. Verification .. 50

3.5.1. Browser compatibility ... 51

3.5.2. Category of mirrored web pages .. 51

3.6. Deployment and Maintenance ... 53

3.6.1. Deployment ... 53

3.6.2. Maintenance ... 53

4. Results .. 54

4.1. Decision of Design ... 54

4.1.1. Measurement model .. 54

4.1.2. Measurement process .. 55

4.2. Measurement practices .. 58

4.2.1. Measurement participants ... 58

4.2.2. Verification across browsers ... 59

4.2.3. Verification across web pages... 60

5. Discussion ... 62

5.1. Answering Research Questions... 62

5.2. Benchmarks ... 66

5.2.1. Comparison with SunSpider .. 66

5.2.2. Comparison with Speed-battle ... 67

5.2.3. Comparison with Numion Stopwatch ... 67

v

6. Conclusion .. 69

6.1. SWOT Analysis ... 69

6.2. Challenge of the study .. 75

6.3. Possible future work ... 76

Bibliography ... 77

Appendices ... 81

Appendix A: Source Code of the Experimental Work .. 81

vi

List of Figures

Figure 1-1: The infrastructure of mobile access to the Internet (Ye, 2010) 14

Figure 1-2: Scope of the study .. 20

Figure 2-1: High level structure of web browsers .. 24

Figure 2-2: Cloud computing visual diagram .. 32

Figure 3-1: The Waterfall model of software engineering process .. 35

Figure 3-2: The agile model of software engineering process applied in this study 35

Figure 3-3: The Projects Management Triangle ... 38

Figure 3-4: Modular components of automatic measurement environment 40

Figure 3-5: UI draft on view of new execution ... 42

Figure 3-6: UI draft on view of running execution .. 42

Figure 3-7: UI draft on view of execution results ... 43

Figure 3-8: A measurement model, web page serving on device .. 44

Figure 3-9: A measurement model, web page serving in local environment 45

Figure 3-10: A measurement model, web page serving distributed .. 46

Figure 3-11: A measurement model, web page serving in cloud ... 47

Figure 3-12: Top 35 of Global Top Sites retrieved from Alexa.com ... 52

Figure 4-1: Screenshot of Main page, captured by using Nokia N900 56

Figure 4-2: Screenshot of Run page, captured by using Nokia N900 ... 57

Figure 4-3: Screenshot of Result page, captured by using Nokia N900 57

Figure 4-4: Mobile browsers within devices in measurement ... 58

Figure 4-5: Page loading speed across browsers .. 59

Figure 4-6: Average page loading speed ... 61

Figure 6-1: The SWOT model (CIPD, 2008) ... 69

vii

List of Abbreviations

Ajax Asynchronous JavaScript and XML

API Application Programming Interface

CSS Cascading Style Sheets

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete

DOM Document Object Model

DRAM Dynamic Random-Access Memory

DRY Don’t Repeat Yourself

EC2 Elastic Compute Cloud

FTP File Transfer Protocol

GUI Graphical User Interface

HCI Human-Computer Interaction

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IIS Internet Information Services

IO Input and Output

JSON JavaScript Object Notation

JVM Java Virtual Machine

LAMP Linux, Apache, MySQL, and PHP

MTV Model-Template-View

MVC Model-View-Controller

viii

ORM Object-Relational Mapping

OS Operating System

REST Representational State Transfer

RIA Rich Internet Application

RSS Really Simple Syndication / Rich Site Summary

SDK Software Development Kit

SQA Software Quality Assurance

SQL Structured Query Language

SWOT Strengths, Weaknesses, Opportunities, and Threats

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

UX User Experience

WLAN Wireless Local Area Network

YAML YAML Ain’t Markup Language

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

ix

List of Concepts

Ajax refers to a group of interrelated web development techniques

used on the client-side to create interactive web applications.

[Section 2.3.1]

Cloud computing refers to Internet-based development and use of computer

technology. Instead of traditional client-server structure, cloud

computing abstracts the details of control over technology

infrastructure from users and sets up a new supplement,

consumption, and delivery model based on the Internet. It

typically involves the provision of dynamically scalable and often

virtualized resources as a service over the Internet. [Section 2.4.1]

Convention over configuration

refers to a software design philosophy and technique with a

strategy of defaults over explicit configuration. (Miller, 2009)

DOM events refer to Document Object Model (DOM) events which allow

JavaScript language to listen and handle inside a HTML document

being manipulated by a web browser.

Don’t Repeat Yourself refers to a principle of software development to reduce

repetition of source code and all related information of software

engineering. (Hunt, 2010)

Facebook refers to the most popular social networking application. It

enables e.g. creating your own profile, contacting friends, and

sharing photos. (Facebook, 2010)

Google App Engine refers to a development environment for web applications and a

hosting service provided by Google. It consists of a Python-based

web framework and an un-relational data base, which is called

Bigtable. For personal usage, it is free of charge to register and

use with CPU and storage limitations. [Section 2.4.2]

JavaScript library refers to a library of pre-written JavaScript controls which

provides convenience to development of JavaScript-based

x

applications, especially for Ajax and other web-centric

technologies. [Section 2.3.2]

jQuery refers to a fast and concise JavaScript library that simplifies HTML

document traversing, event handling, animating, and Ajax

interactions for rapid web development. [Section 2.3.2] jQuery is

designed to change the way that you write JavaScript. (jQuery,

2006)

Language runtime refers to one of the standard web infrastructures on server side

which explains and executes computer language scripts or binary

executables. This includes, for instance, PHP’s runtime, Python’s,

Ruby’s, JVM (Java Virtual Machine), and so on.

Mobile browser refers to a web browsing software application designed for use

on various mobile devices, such as smartphones or tablet

computers. [Section 2.1.1]

Model-View-Controller refers to a software architectural pattern widely accepted in

structural design of web application frameworks.

Object-relational mapping refers to a programming technique for converting data between

incompatible type systems in relational databases and object-

oriented programming languages.

Operating system refers to one of the standard web infrastructures on server side

which provides an interface between the hardware and other

software. This includes for instance Unix, Linux, FreeBSD,

Microsoft Windows, and so on.

Page load performance refers to one of the most important performance metrics for a

mobile browser to specify the browser application’s abilities in

general, and thus to acknowledge the hardware and software

appearances of the running mobile device. [Section 2.2.1]

Page loading speed refers to the average time period spent for a mobile browser on

one single web page, or the sum of all time periods spent for a

bunch of web pages. The page loading speed of a mobile browser

is a measure to tell how fast the mobile browser’s infrastructure,

xi

such as parsers and engines, can parse, interpret and render web

contents to the browser’s user interface when responding to user

requests for web addresses. [Section 2.2.1]

Python refers to a general-purpose high-level programming language. Its

design philosophy emphasizes code readability. (Python Software

Foundation, 1990-2010)

Representational State Transfer (REST)

refers to a style of software architecture for web applications and

other distributed hypermedia systems. A web application

framework is RESTful by providing convenience to the application

development following REST style. (Fielding & Taylor, 2002)

Rich internet application refers to an online application working more like a desktop

application than a traditional web application, e.g. webmail. RIAs

are enabled by rich technologies such as Ajax which lead into

faster response times and more interactive graphical user

interface (GUI) elements, e.g. always visible floating menus, and

controls, e.g. the dragging of GUI elements.

Social networking refers to online communities which are formed with social

networking applications, which offer ways of finding people with

similar interests, communicating with others, and expressing the

user himself. Facebook is the most popular application worldwide.

Usability refers to a part of user experience that measures how easy and

pleasurable a product or service is to use.

User experience refers to experience from a user which is positively achieved

when service’s features and design meet user’s needs and

expectations in a usable and pleasurable way.

Web 1.0 refers to a concept in order to present traditional web

technologies being used before Web 2.0 concept appearing. The

web technologies of Web 1.0 include for instance HTML, XHTML

and CSS.

xii

Web 2.0 refers to a concept for a collection of new technologies,

applications, concepts, ideas, business strategies, and social

trends in the web. Web 2.0 is more dynamic and more interactive

than Web 1.0.

webapp refers to a simple web application framework provided by Google

App Engine by default. [Section 2.4.2]

Web application framework refers to a software framework that is designed to support the

development of dynamic websites, web applications and web

services. These include, for instance, Rails, Django, Spring, etc.

[Section 2.3.3]

Web server refers to one of the standard web infrastructures on server side

which delivers contents using kinds of data transferring protocols

over network. This includes for instance Apache, Microsoft IIS,

Lighttpd, and so on.

Wiki refers to a web-based tool for creating, modifying, and deleting

web content collaboratively. Web-based encyclopedia Wikipedia

is the best known online wiki application worldwide.

13

1. Introduction

With the explosive growth on personal usage of smartphones and handheld computing

devices in recent years, especially after the launch of the revolutionary mobile device,

iPhone (iPhone, 2011) introduced by Apple Incorporation (Apple, 2011) to public in early

2007, the proportion of mobile access to the Internet [Figure 1-1] keeps increasing

dramatically compared to the traditional web access initiated from desktop computers and

laptops. Consequently, people pay more and more attention to the software performance

of mobile browser applications which are used most frequently (Gardner, 2010) on their

handheld devices. However, instead of variously convenient software measurement tools

to evaluate performance of web browser applications running on desktop computing

environment, there are seldom such kinds of performance measurement tools available

which are optimized specifically for those web browser applications integrated in mobile

computing devices.

Different than running in capable hardware and software environments on desktop

computers and laptops, the performance of web browser applications running on handheld

devices is deeply affected by limited hardware capacities, restricted software execution

environment, slow and unstable wireless connection, and shrunken interfaces for HCI

(Human-Computer Interaction). Furthermore, it is difficult to completely execute a

comprehensive performance evaluation for a mobile browser because there are a huge

amount of performance metrics to be measured for comparison and benchmarking.

Depending on various intentions of device manufacturers, vendors, network operators,

technology media agencies and end users, a large number of human resources and

computing resources are committed to measure and benchmark the performance of

various brands and editions of mobile browsers together with hosted devices in the market

in their own way. Increasing amounts of measurement facilities and environments are

therefore established and served privately or in public all over the world although many of

them are actually, as a matter of fact, redundant and unsustainable.

14

3G

Wi-Fi

The Internet

Mobile device

WLAN AP

Cell site

Web server

Figure 1-1: The infrastructure of mobile access to the Internet (Ye, 2010)

Explanation of the terms in the figure above:

Mobile device refers to smartphone or other handheld computing devices

which is used to access the Internet via wireless connection.

3G refers to the third generation of mobile telecommunication

standards for wide-area wireless voice telephone, mobile

Internet access, and other application services.

Wi-Fi refers to a narrow range of connectivity technologies including

WLAN (Wireless Local Area Network) based on the IEEE 802.11

standards and etc.

Cell site refers to a base station consists of antennas and electronic

communication equipment to create a cell in a cellular 3G

network.

WLAN AP refers to an access point of WLAN connecting to a wired

network.

Web server refers to both hardware and software help on delivering

content to access through the Internet.

15

The page load performance of a mobile browser is defined as the time period spent by a

browser application to completely present the contents on a web page to the browser’s

display area immediately after acknowledging a new request submitted by user. The

average time period spent for a mobile browser on one single web page, or the sum of all

time periods spent for a bunch of web pages, is called page loading speed. The page loading

speed of a mobile browser is a measure to tell how fast the mobile browser’s infrastructure,

such as parsers and engines, can parse, interpret and render web contents to the browser’s

user interface when responding to user requests for web addresses. Compared to some

other performance metrics of a mobile browser, such as initial start-up speed or JavaScript

execution speed, page loading speed is more convenient and more frequent to be observed

by users, who used to access the Internet and switch back and forth within a bunch of

hyperlinks to web sites. Consequently, the page load performance of a mobile browser is

more intuitive and relevant to the user experience of the browser.

However, like with the evaluation of other performance metrics of mobile browsers, there

are no conventions for the measurement of page loading speed which are available in

public documentation. For example, the usage of stopwatches to manually measure the

page loading time of a web page is simple but lacks reliability and scalability for large-scale

and continuous performance evaluation. Meanwhile some development and testing teams

of mobile browsers working for mobile device manufacturers, such as Nokia’s Maemo

Browser teams, utilize high level SQA (Software Quality Assurance) process and more

standardized practices to evaluate the page load performance than individuals, which

makes the measurement process and data storage automatic. The teams had to commit a

lot of hardware and human resources at the beginning to establish a specific measurement

environment. However, the established environment consisting of valuable hardware and

software commitments would not be portable to fit the performance evaluation demand

on any other mobile device than the one in investment.

1.1. Purpose of the Study

In order to help the current situation of performance evaluation of mobile browsers, this

study focuses on finding out an efficient and accurate measurement process to determine

the page loading speed of mobile browsers while avoiding unnecessary manual

intervention and dependencies to the measurement environment. The purpose of this

study is to identify a relatively accurate and efficient process to evaluate the execution

performance of a mobile browser, and to implement a measurement application

16

accordingly in the experimental part. The study concentrates on one of the critical

performance metrics, the page loading speed, instead of trying to cover every possible

performance metric of a mobile browser, because page load performance of a mobile

browser is more intuitive and significant than other metrics relevant to the browser user’s

experience.

Furthermore, as a part of the implementation of the measurement application in the

experimental part, this study tries to eliminate the complexity of setting up the

measurement environment by introducing cloud computing services as the hosting

platform and transferring the execution environment to the measurement application

which is thus publicly accessible anytime anywhere from the Internet as most modern web

2.0 applications are.

In order to measure the page loading speed of mobile browsers, a set of web pages should

be defined beforehand as the standard responding data for browser’s page loading

requests. In the experimental part of the study, the category of web pages which are used

in the measurement process as the basis for detecting page loading speed of mobile

browsers is collected from a well-known Internet traffic and page ranking service provider,

Alexa.com, which provides a reliable list of global top sites based on their traffics.

There is no standard data of absolute values available to judge a browser’s page load

performance. Instead, continuous measurement of page loading time and data collecting is

used to provide reliable reference to determine possible performance advancement or

regression after changes have been made to the application implementation or execution

dependencies of the mobile browser. This recorded data on page loading time is also useful

for weighing up the performance gap between various mobile browsers from different

manufacturers.

The engineering process for design and implementation of such an online measurement

model for mobile browsers’ page loading speed is similar as to create web 2.0 applications

which are more and more popular on the Internet. The UI (User Interface) design specific

for mobile devices and some Web 2.0 techniques, such as Ajax, are also beneficial for the

implementation to improve the online experience of mobile users.

17

1.2. Research Questions

The research questions of this study mainly focus on finding out a measurement process for

the page loading speed and according practices to ease the evaluation on the page load

performance of mobile browsers in an accurate and efficient way. The research also focuses

on the benefits and defects brought by using the cloud computing services as the

implementation environment and hosting platform of the experimental work. Through the

observation on practical usage of the implemented online application in the experimental

part of the study, this research tries also to find out possible factors which affect the page

load performance of a mobile browser. The research questions are presented here in an

order of importance.

1st Question: How to evaluate page load performance of mobile browsers

accurately and efficiently?

This study concentrates on identifying an optimized measurement model and according

operational process to determine the page loading speed of a mobile browser, which

should not only be easy to operate by measurement tool users, and proper on collected

results, but also widely applicable to most kinds of mobile browsers on various mobile

devices available in the market no matter on their manufactures or vendors.

The structure of a mobile browser will be introduced and discussed from part to part in

order to understand the procedure for a mobile browser to execute a page loading

operation to a web page and find out possible measurement approaches. Both advantages

and disadvantages of these approaches will be presented and discussed during the study.

By selecting the measurement model as a fundamental part of the results of our research,

[Section 4.1.1] which is based on web 2.0 concepts and techniques, an according

operational process of the measurement is specified and described in detail. The main

objectives are to indicate:

 What should be considered for a common measurement process that would

determine the page loading speed of a mobile browser?

 How to identify a practical measurement model from alternatives?

Looking through the factors which influence measurement accuracy and efficiency in page

loading speed of mobile browsers helps in improving other performance evaluation

processes which are in use in the mobile industry.

18

2nd Question: What are the benefits and drawbacks of implementing the

measurement model on a cloud computing platform?

In the experimental part of this study, a software application is designed, implemented,

tested and deployed to examine and verify the usability of the measurement model which

is determined as the answer of previous question. Different from traditional software

engineering practices, the experimental work is implemented and deployed on a cloud

computing platform. There are many cloud computing services available on the Internet

served by various providers, such as EC2 (Elastic Compute Cloud) from Amazon, and App

Engine from Google. The selection of the cloud computing platform in the experimental

work is Google’s App Engine, as it is the only cloud service which is free of charge to get

started without limitation on time of usage, and its data traffic restriction is sufficient to

sustain all of the data flows generated from the measurement practices in the experimental

work.

Compared to software applications running in local environment, online applications based

on cloud computing services are similar as modern web 2.0 applications popular on the

Internet nowadays, which is accessible online all the time and ready to be used from

anywhere in the world. As the experimental part of the study achieved the design and

implementation of the measurement application within cloud computing services, this

study tries to determine the influences brought by this kind of practices. Therefore, this

thesis focuses also on the following topics:

 What are the benefits and drawbacks of introducing a cloud computing platform

into the experimental work?

 What are the drawbacks of deploying the measurement tool onto a cloud

computing platform?

Determining the benefits and drawbacks of implementing and deploying the performance

management tool on a cloud computing platform may help to find out more possibilities on

the design and development of a more practical measurement environment for device

manufacturers and end users of mobile browsers.

3rd Question: How to improve the page load performance of a mobile browser?

After discussing the factors that influence the measurement process and the practical

implementation of a measurement application, there will be some related observation on

the possible factors which influence the page loading speed of a mobile browser. Some

19

come from the content of the web pages visited on page loading operation while others

come from the specific features or components of the mobile browser, and yet more from

the adopted measurement process and practical environment and software tool chains.

The factors observed from the operation practices by using the implemented online

management application in the experimental part of the study would be part of the answer

of this question. The purpose is to find out:

 How does the design of a web page influence its page loading time in a mobile

browser?

 What features or components of a mobile browser may influence its page load

performance?

Determining the factors that affect the page load performance of a mobile browser is

beneficial not only for the web page designers and developers to create faster web sites for

mobile access, but also for end users to achieve a better user experience when using

mobile devices to surf the Internet in daily occasions.

1.3. Structure of the Thesis

The structure of this Master’s thesis is the following: the literature overview concentrates

on determining the concepts of mobile browser [Section 2.1], page load performance

[Section 2.2] and cloud computing [Section 2.4], as well as the characteristics and features

provided by the practical development environment and hosting platform, Google App

Engine [Section 2.4.2]. The research chapter describes the research methods using in the

experimental part of the study, and lists issues found, as well as considerations and possible

solutions which emerged during the research. [Section 3] The results of the research

[Section 4.1] and practical measurement results for verification on the experimental part

[Section 4.2] are located in the results chapter. In the discussion chapter, the

predetermined research questions are answered [Section 5.1] with benchmarks to several

popular performance measurement applications [Section 5.2]. In the last chapter of the

thesis, the conclusions of the research, defects and possible directions of future research

are discussed. [Section 6] The developed source code of the implementation in the

experimental part of the study is presented in the appendices.

20

Web UI engineering

Ajax JavaScript library

HTML & CSS

Mobile browser

Device context

Performance metrics

Cloud computing

Web application framework

Google App Engine

Mobile web browsing Browser structure

Mobile online UX

Internet as a platform

Browser evaluation Page load performance

Measurement practice

DOM events

Figure 1-2: Scope of the study

Explanation of the terms in the figure above, from top to bottom and left to right:

Mobile browser refers to a web browsing software application designed for

use on various mobile devices, such as smartphones or tablet

computers. [Section 2.1.1]

Browser structure refers to the software architectural structure of a modern

mobile browser clarified in high level. [Section 2.1.2]

Device context refers to systematic contexts to interact with the executing

browser on a mobile device, which may include hardware

capacities, software system, network connections and etc.

Performance metrics refer to possible performance indicators being able to be

measured and compared for performance evaluation across

various mobile browsers. [Section 2.1.3]

Page load performance refers to the performance of a mobile browser to respond to

page loading requests, which is commonly indicated by the

page loading speed of specified web pages as references.

[Section 2.2.1]

21

Measurement practice refers to the measuring process and practical operational

steps when doing the performance measurement of a mobile

browser. [Section 2.2.2]

HTML & CSS refer to acronyms for HyperText Markup Language and

Cascading Style Sheets, which are two basic construction

components of web pages.

DOM events refer to an acronym for Document Object Model events,

which allow JavaScript language to listen and handle inside a

HTML document being manipulated by a web browser.

Ajax refers to an acronym for Asynchronous JavaScript and XML,

which is a group of inter-related web development techniques

used to create interactive web applications on the client side.

[Section 2.3.1]

JavaScript library refers to a set of pre-written JavaScript controls which

provides convenience to the development of JavaScript-based

applications. [Section 2.3.2]

Web application framework refers to a software framework that is designed to support the

development of dynamic websites, web applications and web

services. [Section 2.3.3]

Mobile online UX refers to user experience of an online application for users of

mobile browsers.

Cloud computing refers to a computing capability that provides an abstraction

between the computing resource and its underlying technical

architecture, enabling convenient, on-demand network access

to a shared pool of configurable computing resources that can

be rapidly provisioned and released with minimal

management effort or service provider interaction. [Section

2.4.1]

Google App Engine refers to a set of Internet services consisting of web

application development environment and hosting platform

provided by Google. [Section 2.4.2]

22

2. Literature Overview

The page load performance of a mobile browser is related to performance and modularity

of both software and hardware components. Additionally, bandwidth of the wireless

network connection and performance measuring approaches may also affect obtained

measurement results. In this chapter some general definitions of mobile browser are

discussed. Several commonly used measurement approaches for performance evaluation

on mobile browsers are then described in brief. In the last part the concept of cloud

computing services and the selected instance in the experimental part of the study, Google

App Engine, are also introduced.

2.1. Mobile Browser

In this section the concept of mobile browser is defined and explained in detail. In order to

identify the possible factors in the components of the software structure of a mobile

browser which could affect the page load performance of the application, the general

structure of a mobile browser is introduced in high level. And in the final part several

performance metrics popularly used in public measurement practice are introduced and

discussed.

2.1.1. Definition of Mobile Browser

A mobile browser, also called a micro-browser, mini-browser or wireless Internet browser,

is a web browsing software application designed for use on a mobile device, such as a

mobile phone, PDA, tablet computer or one of any other kinds of wireless handheld devices.

(Ari Jaaksi, 2002) Mobile browsers are commonly optimized depending on the hardware

capabilities of hosting handheld devices, which considerably means weak computing power,

limited memory capacity, insufficient electric power provided by batteries, low and

unstable bandwidth of wireless connection, restricted HCI (Human-Computer Interaction)

interface, and compact display area, to present web content quickly and properly in best

efforts.

In order to achieve the similar user experience as traditional web browser applications

running on desktop computing environment, a number of mobile browsers developed in

early ages had to restrict some useful functionalities and storage consumption, thus

stripped away some non-trivial features, such as advanced CSS (Cascading Style Sheets)

support, JavaScript interpretation, and allowance of multimedia plugins which are playing

critical roles in modern social network services supported by Web 2.0 technologies.

23

Gradually, these features are implemented in mobile devices since dramatic evolutions on

their hardware capabilities keep going all the way.

Nowadays, mobile browsers play more and more important roles in the field of

telecommunication and information technology industry. For mobile operators, mobile

browsers introduce an extensive and fully customizable data services platform and

consistent end user experience across multiple device types; For device manufacturers,

mobile browsers provide a modularized architecture, easy integration, extensibility,

compact footprint, and a reliable and proven solution on all major platforms and operating

systems; For end users, they offer the fastest, richest and most intuitive, full-Internet

browsing experience and services on mobile devices; And for contents providers, they

contribute a rich content rendering platform for embedded devices.

2.1.2. Structure of Mobile Browser

In order to identify a mobile browser’s performance, the software realization of a mobile

browser needs to be clearly understood. Derived from fully functional web browser

applications running on desktop computing environment, most modern mobile browsers

are constructed following software architectures similar to those of their predecessors. As

the main components in the high level structure of these mobile browsers are kind of

similar, they will be introduced here in a unified way. A general structuration of mobile

browsers is shown in the graph. [Figure 2-1] It comprised eight major subsystems, which

consist of User Interface, Browser Engine, Rendering Engine, Networking subsystem,

JavaScript Interpreter, XML Parser, UI Backend, and Data Persistence subsystem, together

with the dependencies between them. (Alan Grosskurth, 2006)

User Interface

The User Interface (UI) subsystem is the layer between the user and the Browser Engine. It

provides features such as toolbars, visual page-load progress, smart download handling,

preferences, and printing. It may be integrated with the desktop environment to provide

browser session management or communication with other desktop applications.

Browser Engine

The Browser Engine subsystem is an embeddable component that provides a high-level

interface to the Rendering Engine. It loads a given URI (Uniform Resource Identifier) and

supports primitive browsing actions such as to go forward, back, and to reload. It provides

hooks for viewing various aspects of the browsing session such as current page load process

24

and JavaScript alerts. It also allows the querying and manipulation of Rendering Engine

settings.

Rendering Engine

The Rendering Engine subsystem produces a visual representation for a given URI. It is

capable of displaying HTML and XML (Extensible Markup Language) documents, optionally

styles with CSS, as well as embedded content such as images. It calculates the exact page

layout and may use “reflow” algorithms to incrementally adjust the position of elements on

the page. This subsystem also includes the HTML parser, which is often tightly integrated

with the Rendering Engine for performance reasons and can provide varying levels of

support for broken or nonstandard HTML. This tight integration is the result of a design

decision and seems to be a common feature of web browser architectures.

Figure 2-1: High level structure of web browsers

Networking

The Networking subsystem implements file transfer protocols such as HTTP (HyperText

Transfer Protocol) and FTP (File Transfer Protocol). It translates between different character

sets, and resolves Internet media types for files. It may implement a data transfer cache of

recently retrieved resources.

25

JavaScript Interpreter

The JavaScript Interpreter evaluates JavaScript code, which may be embedded in web pages.

JavaScript is an object-oriented scripting language developed originally by Netscape

(Netscape Communications, 2008). Certain JavaScript functionality, such as the opening of

pop-up windows, may be disabled by the Browser Engine or Rendering Engine for security

purposes.

XML Parser

The XML Parser subsystem parses XML documents into a DOM (Document Object Model)

tree. This is one of the most reusable subsystems in the architecture. In fact, almost all

browser implementations leverage an existing XML Parser rather than creating their own

from scratch. Although arguably less important to the functionality of the system, the XML

Parser is a generic, reusable component with a standard, will-defined interface.

Display Backend

The Display Backend subsystem provides drawing and windowing primitives, a set of user

interface widgets, and a set of fonts. It may be tied closely with the operating system.

Data Persistence

The Data Persistence subsystem stores various data associated with the browsing session

on disk. This may be high level data such as bookmarks or toolbar settings, or it may be low

level data such as cookies, security certificates, or cache.

2.1.3. Performance Metrics of Mobile Browser

There are a great amount of performance metrics to evaluate a mobile browser among

other alternatives in current market. Depending on different intentions from device

manufacturers, vendors, network operators, technology media agencies and end users,

various performance evaluation metrics are identified and adopted to measure and

benchmark the performance of various brands and editions of mobile browsers together

with the located mobile devices in the market in people’s own way. As the same as a web

browser running on powerful computing environment, these performance metrics of a

mobile browser can be separated into several aspects based on user requirements.

Startup speed

Browser’s Startup speed means the time a browser application uses to launch when the

software running environment is boot up and ready to serve, which starts commonly from a

26

single or double click on its application icon to the visible view area of the pre-defined first

page being correctly presented to the display on the mobile device for user.

JavaScript speed

JavaScript, also known as ECMAScript, is a dynamic, weakly-typed, object oriented scripting

language that is primarily used in the form of client-side script interpreter and executor as

part of a web browser in order to provide enhanced user interfaces on dynamic websites.

Combined JavaScript with asynchronous data transferring interface provided by most web

browsers and redefined data packaging convention for streaming, Ajax techniques provide

the opportunities to create much better user experiences than ever, on social network

websites and other web applications.

The speed of JavaScript interpreter deeply influences the speed for web browser to render

websites, especially to Web 2.0 websites which are implemented with comprehensive

scripts to present interactive effects on user interface and to manipulate the data across

the browser and remote servers. Faster JavaScript execution time means that those web

sites which use Ajax heavily, such as Digg.com, and most of online software applications,

such as Gmail from Google, will be more responsive to user actions.

DOM selection speed

The DOM (Document Object Model) is a platform-neutral and language-neutral interface

that will allow programs and scripts to dynamically access and update the content,

structure and style of documents. The document can be further processed and the results

of that processing can be incorporated back into the presented page. The faster a browser

application can select elements in a web page, the more responsive it is on asynchronous

page updates, which most Web 2.0 online applications heavily rely on.

Page loading speed

The page loading speed, which is also called as page loading time, is the total time a mobile

browser takes to load one single web page, or the sum of all time spent for a bunch of web

pages. The page loading speed is a measure to tell how fast a browser application’s

infrastructural components, such as parsers and engines, can parse, interpret and render

web contents to User Interface of the browser when responding to requests for web

addresses from user.

27

Average CPU and memory usage

The usage of CPU (Computer Processing Unit) power and physical memory reveals how

much system resources a browser application needs to be performing. Higher CPU

utilization or more memory occupation indicates more resource consumption by a browser

application, which is a negative factor when evaluating the performance of a mobile

browser.

CSS rendering speed

The CSS (Cascading Style Sheets) is a style sheet language used to describe the presentation

semantics, such as the look and formatting, of a document written in a markup language,

which is HTML (HyperText Markup Language) or XHTML (Extensible HyperText Markup

Language) in most common applications. A mobile browser with faster CSS rendering speed

would have faster page response time when loading a web page. This speed is commonly

measured by detecting the page loading duration which a browser application spent on

completely rendering a specific-designed web page consisting of a large number of table-to-

div conversion requested from CSS formatting statement.

Browser cache performance

The browser cache is a mechanism for a web browser application to employ the temporary

storage of web documents, such as web pages and images, which have ever been accessed

to reduce connection bandwidth usage and perceived lag on page loading. The browser

cache is also beneficial to visited web sites as it decreases the workload for the servers of

those web sites to respond to duplicated user requests.

2.2. Page Load Performance

A user of a mobile browser always hopes both the browser application itself and the web

pages he tries to surf to respond to his operation instantly. However the fact is quite

complicated in real world. In order to make the web work faster and faster on mobile

devices, many online service providers are doing their best on increasing the accessibility of

the entrance page to their network services. Furthermore, mobile device manufacturers are

putting their efforts into creating more powerful hardware with higher performance

browser applications integrated in the software stacks on devices. The page load

performance of mobile browsers is affected by all of these dynamic factors.

28

2.2.1. Definition of page load performance

The page load performance is one of the most important performance metrics for a mobile

browser to specify the browser application’s abilities in general, and thus to acknowledge

the hardware and software appearances of the running mobile device. It is commonly

indicated by the time period spent by a browser application to completely present visual

contents on a web page to the browser’s display area immediately after acknowledging the

initial request submitted by user.

The time period spent for one single web page, or the sum of all time periods spent for a

bunch of web pages, is called page loading time, as known as page loading speed. The page

loading speed of a mobile browser is a measure to tell how fast the mobile browser’s

infrastructure, such as parsers and engines, can parse, interpret and render web contents

to the browser’s user interface when responding to user requests for web addresses.

Compared to some other performance metrics of a mobile browser, such as initial start-up

speed or JavaScript execution speed, page loading speed is more convenient and more

frequent to be observed by browser users who used to access the Internet and switch back

and forth within a bunch of hyperlinks to web sites, and thus is more intuitive and relevant

to the user experience.

2.2.2. Measurement of page load performance

There is no absolutely standardized data of page loading speed available to judge a

browser’s page load performance. Due to latency differences that occur with variable site

traffic and server load, the measurement results of the page loading speed cannot be

treated as the intuitive basis for evaluation. Instead, they should be interpreted with

caution. However, continuous measurement and collections of recorded values are useful

to provide reliable reference to determine possible advancement or regression of

performance after changes in source code or runtime environment of the browser

application. The recorded measurement results are also used to weigh up the performance

gap among alternative mobile browsers which come from different manufacturers.

When a user submits a web address as a request to a browser application, which commonly

means to input a URL (Uniform Resource Locator) in browser’s Location Bar and to press

the “Go to” button next to the Location Bar, the browser needs to do a series of actions to

fetch the specified content of the web page remotely though network connection, and then

parse and render it properly onto the user interface. During this comprehensive process,

not only the performance of the mobile browsing application but also the hardware

29

capacities of the mobile device and the connection throughput between the browser and

the server play important roles on the dependencies of the page loading speed.

2.3. Utilities for Web Application Development

During the implementation of the experimental part of the study, some modern web

programming techniques and helpful tools are applied to create a practical online

measurement application to specify and verify the generated measurement process of

mobile browser’s page loading speed in research. For instance, Ajax is used in the

application to transfer generated data back and force between the measuring browser and

the application server located on Google’s cloud computing platform. The jQuery library,

which consists of a great number of useful JavaScript controls to provide convenience to

JavaScript related programming, is also used to ease the workload of coding and to

enhance user experience to the online experimental application. Additionally, the default

web application framework integrated in Google’s App Engine services, webapp,

established the standardized development environment and the deployment structure for

the actual implementation. These concepts are therefore explained and discussed in the

following sections.

2.3.1. Ajax

Ajax (Asynchronous JavaScript and XML) is a group of inter-related web development

techniques used to create interactive web applications on the client side. With Ajax, web

applications can retrieve data from the server asynchronously in the background without

interfering with the display and behavior of the existing page. (Garrett, 2005)

Ajax is not a solo technology but a group of technologies instead. Ajax uses a combination

of HTML (HyperText Markup Language) and CSS (Cascading Style Sheets) to mark up and

style information. The DOM (Document Object Model) is accessed with JavaScript to

dynamically display and to allow the user to interact with the information presented. The

use of Ajax techniques has led to an increase in interactive or dynamic interfaces on web

pages. Despite the name of Ajax, the use of XML (Extensible Markup Language) is not

actually required for data interchange. Instead, JSON (JavaScript Object Notation) (JSON,

1999) is often used as an alternative format for data interchange, although other formats or

plain text can also be used.

In many cases, related pages on a website consist of much content that is common

between them. Using traditional methods that content would have to be reloaded on every

request. By using Ajax, however, a web application can request only the content that needs

30

to be updated, thus drastically reducing bandwidth usage and page load time. Additionally,

the use of asynchronous requests allows the client’s web browser UI (User Interface) to be

more interactive and to respond quickly to user inputs, and sections of pages can also be

reloaded individually. Users may perceive the application to be faster or more responsive

even if the application has not changed on the server side. Furthermore, using Ajax reduces

connections from the client to the server, since scripts and style sheets only have to be

requested once.

Despite all of these benefits, in practical situations, Ajax interfaces are often harder to

develop due to their dynamic nature when compared to static pages. To reduce the barriers

to Ajax development for web developers, most modern JavaScript Libraries provide an Ajax

framework and corresponding utilities.

2.3.2. JavaScript library

The JavaScript library is a set of pre-written JavaScript controls which provides convenience

to the development of JavaScript-based applications, especially for Ajax and other web-

centric technologies. It was developed to meet the expended demands for JavaScript with

the rise of Web 2.0 concepts and their implementations.

By combining most of common operations invoked through JavaScript functions and

common Ajax invoking functions, the JavaScript library allows developers to concentrate

more upon the web user interface behaviors, without being disturbed by the compatibility

issues caused by the client-side browser difference. For instance, the jQuery JavaScript

library (jQuery, 2006) supports browsers which consist of Mozilla’s Firefox version 2.0 and

above, Microsoft’s Internet Explorer version 6 and above, Apple’s Safari version 3 and

above, Opera’s Opera version 9 and above, and Google’s Chrome version 1.0 and above.

(jQuery, 2010)

The JavaScript library is even chosen to be embedded into some web application

frameworks as a component of those to provide further convenience to web developers.

For instance, the web application framework Rails (Rails, 2004-2010) natively supports a

JavaScript library which is called Prototype (Prototype, 2006). There are also some web

application frameworks which do not embed a JavaScript library, but are easy to work with

one or several JavaScript libraries together depending on their loose design and modular

structure. (Bennett, 2006)

31

2.3.3. Web application framework

A web application framework is not only a web-based software development framework

but also a reusable, skeletal, semi-complete modular platform. It is designed to support the

development of dynamic websites, web applications and web services. Additionally, it is

commonly allowed to be specialized to serve as a custom web server via HTTP(S) protocol.

(Shan & Hua, 2006) The framework aims to relieve the overhead associated with common

activities performed in web development. There are numerous web application frameworks

available which associate different programming languages for each. These include, for

instance, Rails framework which is built on top of Ruby language, (Rails, 2004-2010) Django

built on Python language, (Django Software Foundation, 2005-2010) and Spring on Java.

(SpringSource, 2004-2010)

Most web application frameworks were constructed with built-in modules to provide a

range of services by following industrial standard software architectural patterns and

coding guide principles which had been defined and broadly used in software engineering.

For instance, the famous software architectural pattern MVC (Model-View-Controller) is

always integrated to gain the benefits from the isolation of business logic from the user

interface and easier code maintenance; (Selfa, Carrillo, & Del Rocio Boone, 2006) A

software coding principle, DRY (Don’t Repeat Yourself) is widely respected in the

framework implementation; (Thomas, 2003) A software design philosophy, convention over

configuration (Miller, 2009) and a software architectural style specific for web application

design, REST (Representational State Transfer) are also carefully included in the

implementation of most web application frameworks as well. (Fielding & Taylor, 2002) A

mature and productive web application framework will be in-complete when lacking of any

of these characteristics.

In client-server structure, a web application framework plays the role of the middleware

receiving all requests from the client, querying data from database, and responding back to

the client with the generated results, which are commonly rendered web pages. Built with

the design patterns, development principles and architectural styles by nature, most web

application frameworks provide various features to simplify the work for web developers.

These features aim to become helpers on a number of matters from rendering web pages,

user authorization, fetching data from a database, to reducing the time consumed by a

single query. (DocForge, 2010)

32

2.4. Cloud Computing

The concepts of cloud computing and related services are nowadays getting more and more

familiar to online service providers and Internet users. Cloud computing services provide

secure access to all online content, such as web applications and data, from any network

device. [Figure 2-2] Running online software applications on a platform provided by cloud

computing services brings a lot of benefits against traditional software applications running

in local computing environment. In the experimental part of this study, the practical

implementation of the measurement tool is programmed and hosted within a cloud

computing platform, App Engine provided by Google. Therefore the concepts of cloud

computing and Google App Engine are explained and discussed here.

Figure 2-2: Cloud computing visual diagram

2.4.1. Definition of cloud computing

Cloud computing is a computing capability that provides an abstraction between the

computing resource and its underlying technical architecture, enabling convenient, on-

demand network access to a shared pool of configurable computing resources that can be

rapidly provisioned and released with minimal management effort or service provider

interaction. (Mell & Grance, 2009) It is often considered as web application development

and technical manipulation based on the Internet.

33

Instead of a traditional client-server structure, cloud computing abstracts the details of

control over technology infrastructure from users and sets up a new supplement,

consumption, and delivery model based on the Internet. Furthermore, it involves also

dynamical scalability and resource virtualization as an Internet service.

2.4.2. Google App Engine

Nowadays, there are quite some cloud computing services available in the business market.

One of them is Google App Engine. Google App Engine is a platform for developing and

hosting web applications in Google’s infrastructure. With the power of Google-managed

servers and data centers, web applications implemented and deployed on App Engine are

migrated with cloud computing technology seamlessly, which assures the stability and

flexibility of its hosting service globally. (Google, 2008)

Google App Engine was designed and implemented to be programming language

independent to attract web developers from different technical backgrounds. When it was

first released as a beta version in April 2008, Google App Engine supports Python language

only. And one year later the support of Java language was added. After the Java support

was added in early 2009, theoretically, any programming language which is supported by

the JVM (Java Virtual Machine) is available to be used for coding with App Engine nowadays.

Google App Engine was designed to work with most web application frameworks which are

written in any one of its supported programming languages. For Python programmers,

Google App Engine provides also a simple web application framework named as webapp,

(Google, 2008) which inherited some advantages and characteristics from another powerful

Python-based web application framework, the Django web framework (Django Software

Foundation, 2005-2010) . With this built-in web application framework and other unique

features, Google App Engine provides a complete, feature-rich environment for

implementation and online publication of web applications.

34

3. Research

In order to find out an accurate and efficient method to measure page loading speed of

mobile browsers, a measurement model and according measurement operational process

should be designed, implemented and verified based on practices of evaluation activities. In

this chapter, the research method which has been applied to design and programming on

the implementation in the experimental part of the study is described. Each step of the

research process has been clarified and discussed separately with details of consideration,

possible alternative solution, and final decision on implementation. Some coding practices

of the research issues are also presented in this chapter.

3.1. Research Method

Because the aim of the experimental part of the study is to create an online software

application, as similar as to create a local software application, to measure and record the

page loading speed of mobile browsers, the research method in the study tries to follow

the standard development process popularly used on industrial software engineering. As

the workout of the code implementation needs to be verified with actual measurement

activities and modified based on the verification when necessary, some steps of the

software engineering process, such as Design and Implementation, should be allowed to be

revisited. So the traditional Waterfall model [Figure 3-1] does not fit in this work. Instead, a

model of agile software engineering process [Figure 3-2] is applied all the way in the

research and the programming work in the experimental part of the study.

The agile software engineering process applied in the experimental part of the study

supposed to have six steps, which consists of requirement analysis, design, implementation,

verification, deployment and maintenance. As the implementation of the experimental part

will be developed and hosted on a cloud computing platform, the steps of deployment and

maintenance, which get benefits on hosting the completed application on the cloud

computing services, are therefore simplified a lot so that unnecessary to be discussed

separately in this study. So there is only one section for the discussion on these two steps.

The outline of the description of each step of the agile software engineering process

applied in the experimental part of the study is listed below.

35

Figure 3-1: The Waterfall model of software engineering process

Figure 3-2: The agile model of software engineering process applied in this study

Requirement Analysis

The Requirement Analysis phrase is the first step of the software engineering process in

order to identify the requirements of the purpose. During the research work of this study,

the analysis will collect and classify the initial needs and conditions for creation on the

measurement process of the page loading speed of mobile browsers. The concern about

project budgets and the portability of the measurement process will be mentioned and

discussed. Additionally, a comparison between the manual approach and the automatic

measurement method will be presented and the choice will be made.

36

Design

In order to illustrate practical measurement models, the fundamental modular components

of the measurement process will be identified at the beginning of the design phrase. And

then several possible measurement models will be illustrated for discussion on both

advantages and disadvantages. Each part of the discussing measurement models will be

justified with possible alternatives. In the last part of the design the elements of the user

interface of the experimental online measurement application would be drafted and

optimized.

Implementation

The implementation will try to make the selection on standard development tools at the

beginning. And then the specified measurement model will be implemented as the

foundation work of the experimental part of this study. Some concerns and tricks useful in

the implementation phrase will also be presented and explained.

Verification

In the verification phrase a category of web pages will be defined and collected as the

reference to support the measurement results of the page loading speed. Several different

models of mobile devices will be used as the testing objects for data collection on

measurement results.

Deployment and Maintenance

This last engineering phrase of the research process will deploy the implementation onto

the selected cloud computing platform, with the help from convenient SDK (Software

Development Kit). The benefits of hosting the experimental work on a cloud computing

platform will also be specified.

3.2. Requirement Analysis

Instead of trying to do the evaluation on all possible performance metrics of mobile

browsers which are integrated in mobile devices available in the market, this research

focuses only on measuring and evaluating the page load performance of mobile browsers

because of its importance to user experience. [Section 2.2.1] The main purpose of this

research is to identify a practical operational process to execute the measurement on the

page loading speed of web browsing applications running on mobile devices. In order to

prove the measurement process is easy to execute and adaptable for possible requirement

changes, a practical software application should be designed and implemented as the

37

experimental part of the study. Based on this purpose, the main concerns of the

requirement are listed below.

3.2.1. Functionality

The implemented software application in the experimental part of the study should be able

to detect, to record and to review the data of measurement results generated after each

measurement rounds being executed in the measurement process. The detection approach

should be automatically executed without manual intervention in order to achieve better

accuracy on generated data. All generated data needs to be stored in database consistently

and available to follow-up manipulation at any time in the future. The establishment and

configuration of relevant measurement environment should be easy to operate and cost

saving.

Since the measurement process concentrates on web browsing applications running on

mobile devices, the implemented measurement application should provide a friendly UI

(User Interface) specific for mobile access. It means that the color contrast of UI should be

clear enough and the font size should be easy to read through compact display area on

mobile devices.

3.2.2. Portability

The solution of measurement process should be as much as possible to be portable to

various kinds of mobile devices produced by different mobile device manufactures, no

matter of differences on hardware capacities or on software operation systems.

The implemented software application should provide a convenient approach to measure

the page loading speed of various mobile browsers, which may come from different mobile

device manufactures, to ensure the measurement process is portable and reusable onto

most kinds of mobile devices.

If the implemented measurement tool is a traditional software application running in local

environment, the implementation and related hardware or software configuration should

be easy to replicate in order to be deployed to other environment if needed. However if the

implemented work is an online software application which is serving in public domain area

as a normal Internet application, the requirement for replication would be significantly

reduced accordingly.

38

3.2.3. Cost restriction

From the point of view on general project management theory for software engineering

process, cost is one of the most fundamental factors which affect the quality of the output

at the end of a project. [Figure 3-3] However, in the experimental part of this study the

budget in fact does not exist at all. Within this none budget as a premise requirement of

the research, the research phrases of the engineering process for the experimental work in

this study, such as development, verification and deployment phrases, should avoid any

possible expenses. This would inevitably affect the decision on the selection of optional

software development environment, programming tools, and hosting platform of the

experimental work. It would also influence the functional complexity of the implementation

in the experimental work and particularly relevant programing practices.

Figure 3-3: The Projects Management Triangle

3.2.4. Manual vs. automatic

There are some individual users of mobile devices keeping trying to measure the page

loading speed of a mobile browser manually. This kind of manual operation of

measurement process is easy to execute without any preparation or environment setup

except a stopwatch in hand. For instance, starting up the mobile browser on a running

mobile device with available network connection, typing in a new web address as the

reference to the location bar of the browser UI, and then clicking the “Go” button next to

39

the location bar to launch the page loading operation of browser application, while pressing

the stopwatch in the other hand to start timing at exactly the same time. The stopwatch is

then pressed again when the user observed at the first moment that the requested web

page is completely rendered in the visible display area of the browser application.

Although the operation process is intuitive and easy to execute, it is obvious to tell that the

measurement results of such a kind of manual practice lack of either reliability or accuracy.

There are too many unreliable factors being able to infect the measurement results during

the execution. Such a kind of measurement practice might be useful to do a casual

comparison between two or three different mobile devices, but is unsustainable to be

adopted in productive environment.

In the productive environment there exists another practice to do the measurement on the

page loading speed of a web browser application, which captures the finishing moment of a

page loading behavior automatically by detecting a specific DOM (Document Object Model)

event, “onload”, which would be dispatched out by JavaScript when the content of a web

page is completely loaded in the browser. By coding with JavaScript to listen to this DOM

event, the measurement process is able to be executed automatically with certain accuracy.

In consideration of accuracy of measurement results and the convenience of automatic

operation, the latter practice is selected as a fundamental part of the design and

implementation in the experimental work of the study.

3.3. Design

According to the results generated from the requirement analysis, possible solutions of the

measurement model and alternatives are presented and discussed during design before

starting the implementation. And the user interface of the measurement application is also

drafted and discussed in this step of the research process.

3.3.1. Measurement modules

Since the choice to execute the measurement in automatic way has been made, [Section

3.2.4] the HTML DOM event, “onload”, which plays a key role to listen and handle the

beginning and ending time moments of a page loading procedure, gets to be critical for the

implementation in the measurement practice. In order to capture this event automatically

during a set of referenced web pages, each web page used in the page loading process

needs to be embedded into a sub frame of a scripted, unified web page which is

40

responsible for capture the DOM event, switching web pages, and committing detected

results to database.

Based on the design to arrange necessary modular components around this multi-

functional web page which supposed to be the main control point of the measurement

environment, the fundamental components of the measurement environment have been

identified, which consist of a set of scripted online pages as the access and control point, a

storage module to provide pre-defined web pages as the measurement reference, and a

database server module to store and fetch the generated data as the measurement results.

[Figure 3-4]

Mobile browser Access & control

Web page server

Database server

Bi-directional data flow

Figure 3-4: Modular components of automatic measurement environment

As the figure above illustrated, the access and control module of the measurement

environment is the main entry for the measuring mobile browser to access the whole

measurement environment. This module is responsible to invoke and switch the web page

which will be allocated into a sub frame of the main page and launch the page loading

process. When the embedded web page is loaded into the sub frame completely, the DOM

event “onload” will be captured by the JavaScript event listener located in the main page.

The time spent on page loading will then be calculated and recorded into the database

module.

41

The three modular components presented in the figure are unnecessary to be departed. All

of them can be set up to one single computer or nay other computing unit which have

storage space. Additionally, except the access and control module which needs to provide

network serving service as the entry for mobile device to access, the web page server and

database server are even unnecessary to be real serving applications. It would be fine for

the measurement environment to work as expectation if those web pages are not served

but simply stored in storage. And the database server is also replaceable by other data

logging approaches, such as XML file logging.

3.3.2. User interface of measurement control

Based on decided measurement modules, [Section 3.3.1] the online entry and main control

point module should be the only access for a mobile device to connect to the measurement

environment. The user interface of the experimental implementation is therefore drafted

here according to the functionality identified in the requirement analysis phrase [Section

3.2.1] of software engineering process.

View of new execution

The view of new execution [Figure 3-5] is drafted in purpose to provide enough information

for the control point to register the execution to database. Although there is some

information easy to be acknowledged automatically by server, such as the execution time,

there is some other information hard to be fetched from server side, which includes the

measuring device model, the connection the device is using, and the category that the new

measurement round would like to run on. These pieces of information have to be manually

input by the user before executing the measurement.

View of running execution

The view of running execution [Figure 3-6] is prepared for the execution process of the

measurement. The actual measurement happens in this page by loading web pages into the

embedded frame of main page frame. After a web page is fully loaded, the controller will

switch to load a second web page automatically. The progress will show at the top of the

sub frame. After all assigned web pages being loaded, the browser should jump back to the

main entry page immediately.

42

Name of new measurement

Device information

Connection information

Category of web pages

Browser information

Execution trigger

Figure 3-5: UI draft on view of new execution

Information of running execution

Hints on execution progress

Embedded frame

Figure 3-6: UI draft on view of running execution

View of execution results

The view of execution results [Figure 3-7] is drafted to present the detected page loading

speed of each web page contained in the selected category. The speed of each web page is

presented in the form of integer with time unit of millisecond.

43

Information of running execution

Web page

Web page

Web page

Detected speed

Detected speed

Detected speed

Figure 3-7: UI draft on view of execution results

3.3.3. Possible measurement models

Based on acknowledged modular components of the automatic measurement environment,

[Figure 3-4] it is easy to identify possible solutions to set up a measurement model which

interprets the measurement operational process.

In the automatic measurement environment, the mobile browser in measurement needs to

execute the page loading operation on a category of web pages which are located in the

module of web page server. The location of the web page server module is therefore a

critical factor which affects the time consumed on data transmission from web page server

to the mobile device. This time consumption may influence the measurement results of the

page loading speed.

From technical points of view, there are several possible locations to address the module of

web page server. Each selection of locations thus evolves to a sketch map of a

measurement model. These models will be outlined in this section one after another.

Web page on device

The best way to eliminate the time consumption on transferring data from web page server

module to measuring mobile device is to allocate the module onto the device. The time

used for the mobile browser to request and fetch the content of pre-defined web pages can

be mostly ignored in this way, since the only delay of time would happen based on the flash

44

storage IO (Input and Output) speed of the mobile device, which would be hundreds of

thousands time faster than network transmission. [Figure 3-8]

The according measurement model contains a powerful computer to serve the entry and

the main control point of the measurement environment. The computer and the mobile

device in measurement are connected with wired data connection, which is commonly a

USB (Universal Serial Bus) cable or an extensional dock of device indirectly.

Database server

Access & control

ComputerMobile browser

Web page server Located into

Direct connection
(USB, LAN, local, etc.)

Figure 3-8: A measurement model, web page serving on device

The wired connection between the mobile device and the computer can not only transmit

the measurement data back and forward between the browser and the control point, but

also provide a channel for the user working on the computer to control the behavior of the

mobile browser and debugging the application remotely. And the all-around wired

connection in the closed measurement environment gets rid of possible interference from

unknown data traffic, which increases the accuracy of the measurement results greatly.

However, the establishment of such a measurement environment takes money and time.

Since the hardware and software divergence, mobile devices from various manufacturers

require completely different methods and data cables to connect and communicate to a

computer. Some manufacturers block the possibility to manipulate their devices remotely

45

without broken the system. And the later configuration on the computer and the device is

even more complicated.

Another drawback of this measurement model comes from the storage capacity of mobile

device. In productive occasions it is common to pre-define a large category of web pages

for the measurement on the page loading speed. Sometimes the storage space of the

mobile device is overwhelmed by the content of these web pages, which prevents the use

of such a kind of measurement model.

Web page in local environment

Similar as placing the web page server module on mobile device, the measurement model

which allocates the module into the computer together with access and control point gets

benefit by closed environment to avoid interferences from outside network traffic. [Figure

3-9]

WLAN AP
Mobile browser

Access & control Web page server

Database serverComputer

Located into

Direct connection
(USB, LAN, local, etc.)

Wi-Fi

Figure 3-9: A measurement model, web page serving in local environment

Instead of strict wired connections, in this measurement model the connection between

the mobile device and the computer is Wi-Fi, which is also recognized as WLAN (Wireless

Local Area Network), by transmission through a WLAN access point directly connected to

the computer. This practice removes the requirement to set up or configure the hardware

and software environment of device. Instead, the measurement operation on the mobile

46

device turns to be the same as the steps to surf the Internet, which eliminates the

inconvenience from diversity of setting up mobile device environment.

The drawback of this measurement model is also similar to the previous one. This

measurement environment requires investment at the beginning on hardware and time,

which would be spent to set up and configure the network interfaces.

Web page distributed

Instead of other measurement models which centralized the pre-defined web pages into a

web page server module, the measurement model without web page server module tries

to provide the similar network connections as the real Internet surfing experience. In this

measurement model, the control point located in the computer maintains a list of actual

web addresses of referenced web pages. During the measurement operational process the

mobile browser sends requests actually to the real web sites on the Internet, and gets

responses with real-time web content back. [Figure 3-10]

WLAN AP
Mobile browser

Access & control

Database serverComputer

Located into

Direct connection
(USB, LAN, local, etc.)

Wi-Fi

The Internet

Figure 3-10: A measurement model, web page serving distributed

47

Using URL (Uniform Resource Locator) on the Internet to serve web pages as reference for

measuring the page loading speed of a mobile browser avoids the creation and

configuration of a web page server module. Instead, such a measurement model would

guide the mobile browser to directly communicate to web sites serving on the Internet.

The removal of web page server module from a measurement model reduces the workload

to collect the copies of pre-defined web pages, however introduces big uncertainty of time

consumption on network connection which is heavily affected by the Internet traffic. The

measurement results by using such a kind of measurement models are not consistent to be

used as reference for further evaluation.

Web page in cloud

With the help from more and more popular cloud computing services, it is nowadays more

convenient to move network services into the cloud. In a measurement model with cloud

computing platform, it is possible to allocate all fundamental modular components into the

cloud, which eliminates the necessity of the local computing resources in the model.

[Figure 3-11]

Web page server

Database server

WLAN AP
Mobile browser

Access & control

Direct connection
(USB, LAN, local, etc.)

Wi-Fi

Cloud computing platform

Figure 3-11: A measurement model, web page serving in cloud

48

Instead of forwarding the browser requests on web pages directly to the Internet, this

model still contains the web page server module, which means all pre-defined web pages

will be copied and collected to a centralized location on the cloud computing platform. The

network connection between mobile device and the web page server module is not as

stable as those in a closed measurement environment, but much better than distributed

objects, and improvable with efforts from the cloud computing service provider.

3.4. Implementation

The practical implementation work started after the user interface had been drafted out

and the decision of development tools had been made. Unavoidably, there was some time

consumed for the pre-study of necessary knowledge to become familiar with develop tools,

which included the jQuery JavaScript library, webapp framework and database API

(Application Programming Interface) provided by App Engine, and also the JavaScript and

Python languages for coding practice. Fortunately, there were rich documents available

online for web developers to learn these skills relevantly rapidly.

3.4.1. Choice of hosting platform

The choice of hosting location is critical to every web service and online application, which

demands on being accessible from anywhere, and stable enough to be usable at any time.

Depending on the programmable characteristic of the online application in this

experimental part, the hosting platform needs to provide background database support,

and an environment for running dynamic language scripts also.

The limitation of a non-existent budget [Section 3.2.3] required that the selected web

hosting platform needs to be completely free of charge for its services. Unfortunately, the

majority of hosting services available on the Internet did not satisfy this requirement when

considering dynamic language programming ability.

The main alternative, however, is the public online hosting service provided by Google App

Engine. [Section 2.4.2] As a feature-rich hosting platform, App Engine provides industrial

scalability and is free of charge when the storage and page views per month do not exceed

limited values. (Google, 2010) After balancing these values with the required server

capability discussed in the requirement analysis [Section 3.2], it has been agreed that the

limited values for the free usage of App Engine service is sufficient for the experimental

part of this study.

49

Compared with a traditional web server solution such as the open source software bundle

LAMP (Linux, Apache, MySQL and PHP), Google App Engine has better accessibility which

allows anyone who wishes to help with the maintenance work of the experimental online

application. Furthermore, App Engine provides relatively complete documentation of

integrated APIs and a feature-rich SDK for web developers, which was absent from

traditional LAMP-based web servers.

After the measurement of benefits and limitations among possible solutions, Google App

Engine was finally chosen to be the hosting platform of the experimental online

measurement application. As a matter of the fact, this decision influenced also the choice

of online application development tools.

3.4.2. Selection of development tools

In order to create the measurement application as verification to the indicated

measurement process in research, the experimental part of the study will use a web

application framework as a part of the development tools together with a JavaScript library

which contains the necessary Ajax functionalities. All choices of development tools

highlighted reducing the programming workload while minimizing the necessary time

required learning how to use and to maintain the implemented work.

Web application framework

Based on the decision of using the cloud computing services provided by Google, its default

web application framework integrated in Google App Engine, webapp, turned out to be the

first, as well as the best, choice for the experimental part of this study. Webapp is simple

but powerful enough to be used in the research work as it provides all general features a

web application framework should have. Since it is built-in to App Engine by default, it is

not necessary for developers to be concerned about the binding work which is compulsory

for any other web application framework to work with the App Engine platform.

JavaScript library

The JavaScript library is commonly used nowadays in web development on the Internet. It

releases web developers from tedious JavaScript coding and debugging, and make it

possible for beginners to implement the comprehensive behaviors of web page elements.

Although webapp in Google App Engine does not contain a JavaScript library by default,

there are many JavaScript libraries available with a free software license. As most of those

libraries provide similar functionalities, one would be enough to be used in the research

work.

50

Based on the survey of usage of common JavaScript libraries, jQuery is the most popular

JavaScript library used on the Internet. (BuiltWith, 2010) It was also chosen to be used for

the experimental part of the research.

Programming language

Based on the decision of using Google App Engine as hosting platform and webapp as the

web application framework, Python turns out to be the ideal choice of working language for

the programming part of the research. It is a remarkably powerful dynamic programming

language that is used in a wide variety of application domains and available for all major

operating systems. (Python Software Foundation, 1990-2010)

3.4.3. Capacity of measurement model

In order to enhance the accuracy of detected data of the page loading speed of a web

browser, in some productive environment of mobile device manufacturers it is common to

pre-define a large category of web pages as the measurement reference, which may consist

of hundreds of home pages of popular web sites worldwide. The overall content as

composition of these web pages might be too much to be stored or handled in the practical

application implemented in the experimental part of the study.

As the main purpose of the experimental work is to prove and verify the measurement

process summarized at the end of the research, it seems unnecessary to provide capacity

large enough for business-level data storage and manipulation. Instead, a small category of

web pages and their content should be enough to commit to the measurement process as

the reference of the page loading speed. These web pages should be collected from the

most popular web sites which have the highest web traffic from visitors on the Internet.

3.5. Verification

In the Waterfall model of software engineering process, [Figure 3-1] verification commonly

happens after the implementation work has finished according to the design. In agile style

programming, [Figure 3-2] the verification actually happens together with design and

implementation from time to time. It is quite difficult to specify in which time period the

work of verification separated from design or implementation.

As many tiny issues, for instance coding syntax errors, were found actually during

implementation and solved easily, they will not be mentioned here. Instead, the issues

found during integration testing which were so serious that the whole structure of the

51

research work had to be considered once again because of those are discussed in the next

sections.

3.5.1. Browser compatibility

Compatibility testing is a critical step for web application development processes because

of the different Rendering engines among various browser applications. [Section 2.1.2] As

browser applications are software products produced by different commercial companies,

each company implements web browser standards in an independent way. The browser’s

parser of CSS is one example of these conflicts.

CSS (Cascading Style Sheets) is commonly used on web sites as a basic standard to regulate

presenting styles of text and pictures in web pages. W3C (W3C, 2010) has published the CSS

standards from version 1 to 3, to reflect the demand of web design requirement. (W3C,

2010) However, all browsers do not follow these de facto standards. Some grammars were

replaced by their unique implementation out of standard. Some features were even not

implemented at all.

3.5.2. Category of mirrored web pages

In order to verify the implemented work in the experimental part of the study, the

collection of web sites duplicated locally as mirroring components in the experimental part

of the study are presented in a unified form. The rank orders of these web sites are as the

same as those of the Global Top Sites being presented on the website of Alexa.com, which

is freely available on the Internet. [Figure 3-12]

Because of the issues which are found out during the experimental part of the study, some

web sites listed in the form below could not be correctly mirrored in order to fetch correct

results during the measurement. Therefore these sites are marked here with different

background colors for classified reasons. Without counting in these problematic web sites,

the total number of available sites in the form is 20, which is the maximum number of

mirrored web sites being manipulated in the experimental part of the study. [Section 3.4.3]

52

Rank Site Name Web Address Brief Description

1 Google google.com Internet search engine

2 Facebook facebook.com Social networking service

3 YouTube youtube.com Worldwide video sharing service

4 Yahoo! yahoo.com Internet portal and service provider

5 Blogger blogspot.com Weblog publishing tool

6 Baidu (百度) baidu.com Search engine in Chinese language

7 Wikipedia wikipedia.org A free encyclopedia on wiki

8 Windows Live live.com Search engine from Microsoft

9 Twitter twitter.com Social networking and microblogging

10 QQ qq.com Internet service portal in China

11 MSN msn.com Internet service portal

12 Yahoo! Japan yahoo.co.jp Japanese version of Yahoo!

13 Sina (新浪) sina.com.cn Internet news in Chinese language

14 Google India google.co.in Indian version of Google

15 Taobao (淘宝) taobao.com Person to person transaction in China

16 Amazon amazon.com Customer-centric online purchase

17 LinkedIn linkedin.com Networking focusing on business

18 Google Hongkong google.com.hk Chinese version of Google

19 WordPress wordpress.com Free blog management

20 Google Germany google.de German version of Google

21 Bing bing.com Search engine from Microsoft

22 Google UK google.co.uk UK version of Google

23 Yandex (Яндекс) yandex.ru Search engine in Russian language

24 eBay ebay.com Person to persion auction

25 Google Japan google.co.jp Japanese version of Google

26 Microsoft microsoft.com Main site of Microsoft corporation

27 Google France google.fr French version of Google

28 NetEase (网易) 163.com Internet portal and networking in China

29 Google Brasil google.com.br Brazil ian version of Google

30 Google User Content (N/A) User content of Google

31 Flickr flickr.com Free picture galleries

32 FC2 fc2.com Video sharing service in Japan

33 Mail.ru mail.ru Email service provider in Russia

34 Google Italy google.it Italian version of Google

35 Craigslist craigslist.org Centralized community network

Explanation of the background colors to web sites in rows:

Normal Available in the experimental part

Green Duplicate site content

Red Fail to execute page loading for evaluation

Yellow Unable to mirror locally

Figure 3-12: Top 35 of Global Top Sites retrieved from Alexa.com

53

3.6. Deployment and Maintenance

The deployment step in software engineering means to deliver the finished coding results

into the real working environment. For web applications, this means setting up the server-

side services and getting those ready to serve client users. Maintenance is the last step of

the software engineering process. It commonly consists of fixing bugs found after

deployment, adding new features onto existing applications, and other code modification

to fit the user’s requirement changes.

3.6.1. Deployment

In web application development, deployment could be more difficult than local software

applications since web service has to be a combination of services by the HTTP server,

database server, language runtime, and other relative services. The configuration and

adjustment of all these interconnected services are time-consuming and error-prone.

Fortunately, Google App Engine provides a powerful SDK (Software Development Kit) for

web developers to deploy the tested application onto the remote server. The SDK is

responsible for detection of any file changes since the last time when new site content was

submitted, and uploads the changed files automatically for the user.

Google App Engine supports also debugging on the remote server directly. After the coding

work has been deployed onto the App Engine platform, App Engine will record all warnings

and errors happening during the serving time, which are easy to access by web developers.

This helps web developers to easily trace hidden issues happening only in the real

environment.

3.6.2. Maintenance

Because the experimental part of the study aimed to create an online measurement

application to measure the page loading speed of mobile browsers, maintenance was

certainly important for following the feedback after tool usage and upgrading the code and

functionalities.

In order to help other developers to become familiar with the code and the whole structure

of the experimental part of the study as quickly as possible so that they could continue the

maintenance work later after this study, all parts of the research work have been saved in

the source code and uploaded to a public online version control system. The usage of a

version control system helps several developers to share source code changes and prevent

the risk of data loss or undesired operations resulting from human mistakes.

54

4. Results

In this chapter, the results of the research are presented here which consist of the latest

user interface of the online measurement application and the software programming

practice during the experimental work. In order to prove the usability of the

implementation, several mobile devices and integrated mobile browsers were also used to

verify the generated measurement process and its actual operation practice. For the coding

presentation, the results of the research of conflicts among Google App Engine platform,

jQuery, and related coding guidelines are presented and discussed.

4.1. Decision of Design

This section described final decisions made during the design phrase of the measurement

process, which consist of the conclusion of the measurement model, the optimized

operational process, and adopted user interface of the measurement application.

4.1.1. Measurement model

During the design phrase of the research process, the fundamental modules necessary to

establish a workable measurement environment have been identified and discussed.

[Section 3.3.1] And then the possible locations of the web page server module are pointed

out and according measurement models are illustrated and discussed on the advantages

and disadvantages. [Section 3.3.3] Based on all these contexts and the output of the

requirement analysis phrase in the research process, [Section 3.2] the decision of the

measurement model has been made.

In the experimental part of the study the practical implementation of the measurement

model and the operational process has decided to adopt the measurement model which

located the web page server module in cloud. [Figure 3-11]

The three fundamental modular components of the measurement environment, which

consist of the access and control module, the web page server module and the database

server module, are all implemented into the cloud computing services provided by Google.

By serving the application access and control point online, the implementation of the

measurement environment ensures its availability worldwide all the time. The centralized

allocation of web pages which are categorized as reference of measurement results

decreased the difference of data transmission distance on network between the mobile

browser and the loading web page. And by using the database query APIs integrated in

55

cloud computing platform, the manipulation of measurement data gets much easier than

operating offline database system, which would cost money and more time to set up.

The access point which connecting mobile devices and the cloud can be any single wireless

access point reachable without access restriction. When the measurement rounds would be

executed on several different mobile devices, it is a good practice to keep these devices at

the same place when setting up the WLAN (Wireless Local Area Network) connection and

executing the measurement processes. The measurement should be executed in a

relatively closed location, such as a room without other people who might use wireless

devices, in order to mostly decrease interferences from other connection requests to the

access point.

4.1.2. Measurement process

The measurement practice for one mobile browser is as simple as looking through a web

site on the Internet. Using the mobile browser to visit the web address which will lead the

user to the home page of the online application hosting on the cloud computing platform,

which is also the entry and main control point of the measurement environment, the table

of pre-setting options for execution and the execution button will appear in the browser’s

window. After pressing the execution button, the browser will be redirected to the running

page which starts the execution automatically. The progress of the execution will be shown

and updated all the time during the execution. At the end of the execution, the running

page will redirect the browser back to the main page after the last web page fully loaded,

since the access links to review measurement results are located beneath the execution

button. The measurement results are reserved in the database in cloud which means they

are accessible from anywhere at any time by any network device.

4.1.3. User interface

During the design phrase there are three main views of the main entry and control point of

the measurement application being drafted out, which consist of view of new execution,

view of running execution and view of execution. [Section 3.3.2] Based on these drafts, the

final implementation of the application user interface is organized into three HTML pages,

the main page, the run page and the result page.

The final implementation of these pages are presented here by taking the screenshots on

Nokia N900 mobile device in order to verify the usability of the user interface on mobile

device.

56

Main page

The main page shows the configuration options which are helpful to recognize the

execution results after running a round of the page loading speed measurement. [Figure

4-1] As the design phrase pointed out, there are several options not able to be detected by

web application automatically so that the user has to manually input each of them to leave

correct information to identify the measurement results in the future. [Section 3.3.2]

In addition to the table of execution options, in this page a summary list of all executed

measurement rounds is presented also for user to review the measurement results

conveniently. At the most left side delete buttons are provided also in order to remove

useless results.

Figure 4-1: Screenshot of Main page, captured by using Nokia N900

Run page

The run page is responsible to automatically execute the actual measurement by loading

assigned web pages into the sub frame of the web page. [Figure 4-2] The automatic

behaviors are performed by the embedded scripts written in JavaScript language with help

from jQuery JavaScript library. A hint line above the sub frame indicates the page loading

progress in real time. After all assigned web pages have been loaded, the measuring

browser jumps back to the main page with the latest results showing on the result list.

57

Figure 4-2: Screenshot of Run page, captured by using Nokia N900

Result page

The result page shows the entire page loading speed detected in one measurement round.

The values are presented as integers with unit of millisecond, which is the smallest unit of

time able to manipulate in JavaScript language. [Figure 4-3]

The referenced web pages are listed in order of the global web traffic, which was collected

by Alexa.com service. [Section 3.5.2]

Figure 4-3: Screenshot of Result page, captured by using Nokia N900

58

4.2. Measurement practices

Verification on the online measurement application which is implemented in the

experimental part of the study is important to prove the usability of the generated results

from design. In order to simulate the evaluation process, several mobile browsers

integrated in separate devices from various device manufacturers participate in verification.

4.2.1. Measurement participants

Several mobile devices are selected to join the verification for the measurement on the

page loading speed of their integrated mobile browsers. Every mobile device has unique

hardware capacities and software stacks which essentially affect the measurement results

of the page loading speed of their mobile browsers. [Figure 4-4]

Browser Safari MicroB Grob Firefox

Device
Apple iPod touch

(1st generation)
Nokia N900 Nokia N950 Desktop PC

CPU power 400 MHz* 600 MHz 1 GHz 2.66 GHz

DRAM size 128 MB 256 MB 512 MB 4 GB

Connectivity** Wi-Fi 802.11g Wi-Fi 802.11g Wi-Fi 802.11g Ethernet

Release date Sep, 2007 Sep, 2009 Jun, 2011 N/A

OS iOS 3.1.3 Maemo 5 Meego Windows 7

Browser engine WebKit 528.18 Gecko 1.9.2.3 WebKit 531.4 Gecko 1.9.2.16

* The CPU power was under-locked from 620 MHz by the device manufacturer.

** 802.11b is supported by all but not in use. 802.11n is supported by Nokia N950 but not by the Wi-

Fi access point available in measurement.

Figure 4-4: Mobile browsers within devices in measurement

To provide a reference for the measurement results, a web browser application running on

a desktop computer is introduced into the verification process. Since the implementation of

the online measurement tool aims to be portable on various hardware and software

platforms, the measurement execution to the web browser application on the desktop

computer has no obvious difference against mobile browsers.

59

4.2.2. Verification across browsers

Before the execution of measurement on the page loading speed of mobile browsers, all of

the mobile devices have been upgraded to be ready with the latest version of official

firmware, which includes the latest version of mobile browsers as well. In order to get rid of

the influence coming from browser cache on device to the detected page loading speed,

[Section 2.1.2] the browser cache, browsing history records and saved cookies were all

cleaned up right before each time to start the execution. For every mobile browser and its

device, the measurement was executed for three times to provide convincing results in

purpose of verification. [Figure 4-5]

Result 1 Result 2 Result 3

Safari 354362 362378 356527

MicroB 145889 147379 136680

Grob 104253 108677 112321

Firefox 41753 39068 41122

0

50

100

150

200

250

300

350

400

Safari MicroB Grob Firefox

Se
co

nd
s

Result 1

Result 2

Result 3

Figure 4-5: Page loading speed across browsers

From the measurement results, it is obvious to notice the critical influence from the

hardware capacities to the page loading speed of mobile browsers. The more powerful CPU

and larger memory, the less time spent on loading the category of web pages [Section 3.5.2]

by the mobile browser.

60

Although detected values of all three measurement results are not equal for each mobile

device, they are close to the average, which was relatively stable to indicate the page load

performance of the mobile browser within its contexts. The stability of the measurement

results also verified the implementation of the measurement process.

4.2.3. Verification across web pages

For each web page mirrored in the web page server module as the reference for the

measurement, the page loading speed in a mobile browser may reflect the data size of the

content which is needed to be fetched and rendered by the browser. The results are

therefore beneficial for web site developers to find out reasons of latent delays and do

optimization on proper targets.

On the other hand, the detailed measurement results for each web page across mobile

browsers may be an evidence to prove the stability of the measurement environment and

operational process by looking through the consistency of the detected values across

measuring mobile browsers. [Figure 4-6]

In the table below, all presented values of the page loading speed of a mobile browser are

the average of results from three rounds of the measurement.

 Safari MicroB Grob Firefox

google 7215 3721 3210 1411

facebook 8302 4142 2412 819

youtube 19489 9058 4286 1324

yahoo 68066 13586 7652 2541

blogger 16647 6740 3688 2624

baidu 4712 4216 2724 2076

wikipedia 6256 4331 3190 724

twitter 21276 9793 5653 1638

yahoo_jp 20491 15509 4418 5355

amazon 32861 15861 4816 2781

linkedin 13712 5379 3194 1362

wordpress 15236 5490 4192 1834

bing 3420 2246 1886 1323

yandex 18017 7564 3021 1637

ebay 12226 5637 3857 1319

microsoft 28252 12296 7158 4741

flickr 7700 2885 3427 1656

fc2 13778 4637 3466 3252

mail_ru 31363 11575 7715 2270

craigslist 5343 2713 28712 435

61

 Safari MicroB Grob Firefox

google 7215 3721 3210 1411

facebook 8302 4142 2412 819

youtube 19489 9058 4286 1324

yahoo 68066 13586 7652 2541

blogger 16647 6740 3688 2624

baidu 4712 4216 2724 2076

wikipedia 6256 4331 3190 724

twitter 21276 9793 5653 1638

yahoo_jp 20491 15509 4418 5355

amazon 32861 15861 4816 2781

linkedin 13712 5379 3194 1362

wordpress 15236 5490 4192 1834

bing 3420 2246 1886 1323

yandex 18017 7564 3021 1637

ebay 12226 5637 3857 1319

microsoft 28252 12296 7158 4741

flickr 7700 2885 3427 1656

fc2 13778 4637 3466 3252

mail_ru 31363 11575 7715 2270

craigslist 5343 2713 2712 435

0

10

20

30

40

50

60

70

Se
co

n
d

s

Safari

MicroB

Grob

Firefox

Figure 4-6: Average page loading speed

From the graph, the consistency of the measurement results among different mobile

browsers looks good. For each mirrored web page as a part of reference, the relative

positions of the page loading speed across mobile browsers mostly keeps in order. A web

page loading faster in one browser was also faster in another browser. And a slower web

page kept slower no matter being loaded by which browser in the next round. Such a kind

of consistency verified the usability of the online measurement application implemented in

the experimental part of this study.

62

5. Discussion

In this chapter, an attempt will be made to answer the questions presented at the

beginning of the study [Section 1.2] based on the research work and results of the

experimental part of the study. And then the implemented online measurement application

is benchmarked among several alternative performance measurement solutions available

in public domain to specify its possible advantages and limitations, and suitable occasions

of usage.

5.1. Answering Research Questions

In the beginning of this study, there were three research questions defined in the

Introduction chapter [Section 1.2]. Based on the conducted research and the results

presented in the Research chapter [Section 3] and the Results chapter [Section 4], the

research questions will now be reviewed and discussed.

1st Question: How to evaluate page load performance of mobile browsers

accurately and efficiently?

The page load performance of mobile browsers is evaluated commonly based on the

measurement on the page loading speed, which depends on not only the hardware

capacities of the mobile device, but also the software design and implementation in the

browser application, the throughput and reliability of the wireless connection, and the

content of the web page or the set of web pages used in the measurement process.

In order to measure and compare the page loading speed amongst mobile browsers, a set

of web pages and their links are commonly prepared to be used as a reference, so that

these mobile browsers operated in the measurement have similar workload when being

requested to load the assigned suite of web pages.

In addition to avoid loading uncertain web content, such as the web contents randomly

generated by dynamic scripts embedded in web pages, to keep consistent workload on

page loading process of mobile browsers, there are also approaches to enhance the

reliability of mobile device’s network connection. A common solution used in the actual

production environment is to download and mirror all remote content of referenced online

web pages locally, which means storing and serving these web pages directly on the

measuring mobile device. This on-device simulation for the targets of page loading requests

eliminates all the possible uncertainty of network connection, but is relatively complicated

to deploy to alternative mobile devices because of various hardware modules, software

63

stacks and system configuration. And it is even not possible to be adopted by some devices

when the total data size of referenced web content exceeds the limited storage space

available on device.

In the experimental part of the study, the implemented measurement process on page

loading speed tries to solve this problem by downloading and serving the referenced web

pages remotely from the measuring device, while providing consistent network connection

for the mobile browser on the device to communicate with. This solution does not clean up

all concerns about the reliability of wireless connection, but significantly reduced the

uncertainty on time spent to access each web page by centralizing all web content together.

And most importantly, by adopting this solution the complexity on setting up mobile

devices is avoided, which increases the efficiency greatly.

Instead of gazing the screen of a mobile device with a stopwatch in hand, in the

experimental part of the study the implemented online application determines the page

loading speed of a mobile browser automatically with the help of Ajax techniques and

JavaScript libraries. By reallocating the page loading operation to a sub frame of a web page

and detecting a DOM event which occurs when all the content of the sub frame is finished

loading to the browser’s screen, the application is able to acknowledge the exact moment

of time, accurate to millisecond, when the page loading is finished, and thus the spending

time period after subtracting the initiating time recorded earlier. This software

implementation enhanced the accuracy greatly against other awkward approaches, and

reduced the amount of manual intervention.

2nd Question: What are the benefits and drawbacks of implementing the

measurement model on a cloud computing platform?

In the experimental part of the study the implemented measurement application is created

in the online environment with the help of several modern web technologies, such as Ajax,

JavaScript library, and a Web Application Framework, webapp (Google, 2008), which is

integrated in the chosen cloud computing platform, Google App Engine.

It eliminates the requirement to invest, set up and maintain a specific environment for the

execution process on the page loading speed measurement of mobile browsers. A

traditional measurement environment commonly consists of hardware computing units,

software operating systems and web serving applications, flexible wireless network

connections, and human resources for necessary configuration, adjustment and

maintenance. But by implementing and hosting the experimental work onto a cloud

64

computing platform, all these redundant physical and mental investment were avoided,

thus increased the efficiency of the evaluation.

Allocating the measurement application into a cloud computing platform also simplified the

process for mobile devices to access the entrance of the measurement environment. There

were not additional network gateway settings or proxy server settings necessary to be

preset up on the mobile device for using the mobile browser, since fetching data located on

a cloud computing platform is as exactly the same as surfing the Internet.

Furthermore, keeping the experimental work on a cloud computing platform ensured the

running instance of measurement application always up to date. Newly added features or

code patches to fix known software bugs would be committed and deployed to the working

environment at the first moment when available, which would then be accessible

immediately by all measuring mobile devices.

In addition to all advantages of cloud computing services above, as the experimental part of

the study selected Google App Engine as the cloud computing platform in the actual

implementation, the workload on programming was significantly decreased with the help

of comprehensive online programming APIs provided by App Engine and other

infrastructures from Google.

On the other hand, adopting a cloud computing platform into the measurement

environment as the hosting server for the referenced web pages for the page loading speed

determination introduced uncertainty into the measurement results. Instead of running the

web page server on mobile device which eliminates the affects from the reliability of

network connection totally, or on a workstation server in a closed network environment,

the wireless network connection between a measuring mobile device and the online server

on a cloud computing platform might be relatively unreliable and easy to be affected by

other possible network traffics running across. To decrease this kind of effects, a good

practice of the measurement process is to access the online measurement application at

the same physical location with the same Wi-Fi access point for different mobile browsers

in order to achieve similar wireless connection bandwidth and possible network delay. The

selection on Google App Engine which is running under Google’s Internet infrastructures

was also effectively helpful on decreasing this kind of negative effects as this Internet giant

keeps doing its best to improve the access speed to its online services worldwide.

65

3rd Question: How to improve the page load performance of a mobile browser?

As the research results pointed out during the study, the page load performance of a

mobile browser depends on not only the hardware capacities of the measuring mobile

device, but also execution performance and code optimization of software components of

the browser structure. Additionally, the content of referenced web pages which are loaded

by the mobile browser is also an important dependency if network connection maintains

steadily during the measurement process.

The hardware capacities can be improved through introducing more powerful CPU, faster

and more DRAM, and better production methods by mobile device manufacturers. The

prices of these frontier digital gadgets will get lower and lower as time goes by, which

would benefit the general performance of mobile browsers without more cost from users

eventually.

The execution performance of the structural components of a mobile browser can be

increased by browser developers. As the latest version number of a mobile browser gets

higher and higher, the source code of the browser application is updated frequently. Some

main components of a mobile browser, such as layout engine and JavaScript Interpreter,

are being developed and maintained separately in open source societies outside of mobile

device manufacturers. Such kinds of separation of functional duties and source sharing

activities help global browser developers to locate and fix issues much quickly than years

ago, and make it possible to do code refactoring and optimization much more frequently.

Another critical factor to decide the page loading speed of a mobile browser is the design of

the web page which is located on a web server from the other side of the Internet. The less

data needed to be transferred from a web server and a browser, the faster the page

loading speed of that page. A lot of web service providers have learnt that and started

optimizing the content contained in their home pages which are critical to access all the

services they provide.

Traditional optimization practices for desktop web browsers are not suitable for mobile

browsers, since the page load performance of mobile browser is related to not only the size

of web content but also the behaviors of dynamic scripts and other embedded content

which may initiate additional data requests. To balance the user experience on desktop

environment and the performance of mobile browsers, a great number of web sites provide

a second home page as the online entrance especially for mobile device users. Such a kind

of practice has been proved to be successful in the market.

66

However the workload on re-engineering the home page of an online application might be

huge with the expectation to make a unique web page layout comfortable to users of every

mobile browser available in the market.

5.2. Benchmarks

In this section we compare the implemented measurement application with some other

performance measurement tools which are freely available on the Internet for web

browser developers to perform the evaluation across browsers. The comparison helps to

find out the advantages and disadvantages of the design and implementation in the

experimental part of the study, and provides a reference for possible future work for fixing

issues and adding more features.

5.2.1. Comparison with SunSpider

SunSpider is a benchmark suite that aims to measure JavaScript performance on tasks

relevant to the current and near future use of JavaScript in the real world, such as

encryption and text manipulation. (SunSpider, 2011) There are a lot of browser developers

worldwide who use SunSpider to compare the JavaScript performance of different

browsers. The benchmark suite tries to focus on the kinds of actual problems developers

solve with JavaScript today, and the problems they may want to tackle in the future as the

language gets faster.

SunSpider is a JavaScript benchmark tool which tests the execution performance of a web

browser on core JavaScript language only. It does not work when trying to test the DOM

manipulation speed or other APIs of a browser. It is designed to compare different versions

of the same browser, and different browsers to each other.

Compared with SunSpider, the implementation in the experimental part of the study is a

measurement tool focusing on the page load performance of a browser, which related to

not only the JavaScript execution performance but also performance of other structural

components of a browser which affects the page loading speed.

However, the subsections of the benchmarks available to be measured by SunSpider are

quite many, which consist of 3d rendering, variable access, bitwise operations, control flow

constructs, code cryptography, date object operations, mathematical computations, regular

expressions, and string processing. (SunSpider, 2011) It is a great feature to have such many

specific measurement aspects for detailed evaluation, which the implementation in this

research lacks of.

67

5.2.2. Comparison with Speed-battle

Speed-battle is an online application which aims to measure the JavaScript speed of

visitor’s browser and shows other visitors' results with the same set of operating system

and browser. (Gürgens, 2011) The application has a fresh and cool user interface which will

show the measurement results immediately when a visitor tries to access the web site for

the first time.

The measurement results generated from Speed-battle depend on different parameters,

which include the performance of CPU, browser, browser plugins, operating system and

system memory, and the number and kind of processes running in parallel during the

measurement execution. According to the measurement results, the application will lead

the visitor to a reference value for the performance of the browsing environment, which

consists of both software and hardware.

Compared with Speed-battle, the implementation in the experimental part of the study is

similar on providing tidy and friendly user interface to users. Both measurement

applications are located on the Internet and provide convenient online entrance to launch

the measurement execution. And both measurement processes focus on the performance

in general performance of the platform instead of the browser only.

As the Speed-battle does not optimized specifically for mobile browsers, the user interface

of the measurement application looks awkward and difficult to operate on compact screen

areas. The conclusion of hardware performance from the measurement results heavily

depends on the visitor’s activity on the visiting device. In order to get consistent results, the

user of the application has to run the measurement while ensuring all other activity on the

device consume as less hardware resources as possible.

5.2.3. Comparison with Numion Stopwatch

Numion Stopwatch is an online application which aims to measure the time spent by a web

browser to load a web page. (Kessels, 2005) There is a small JavaScript script embedded in

its front page waiting to run on a visitor’s computer. A visitor to the front page of the

application will find an input field in the middle of the screen for the user to enter the web

address of the web page to be measured. After entering a web address and pressing the

execution button, the web page will start being loaded into a sub frame of a web page

which is a controller of the measurement process.

68

The controller page measures the time between the moments when a browser starts to

load the URL and when the browser dispatches a signal to indicate that it has finished. The

measurement therefore includes fetching and interpreting all HTML DOM elements, page

frames, images, and dynamic language scripts. It does not include content that is handled

by plugins. If the page is in the browser’s cache, the measurement results will be based on

the faster loading time.

The design of measurement process of Numion Stopwatch tool is quite similar with the

implementation of the experimental part of the study. Both of the applications try to do the

measurement of page loading time by allocating the measuring web page into a sub frame

of a scripted web page which controls the operational progress.

However the measurement tool of Numion Stopwatch can perform the measurement on

only one web page for each time. The user has to input the web addresses one by one if

there are a lot of web pages needs to be measured. Since Numion Stopwatch does not

provide a hosting server to centralize web pages for measurement, the page loading speed

is influenced heavily by the network connection quality. The usage of embedded frame to

load an arbitrary web page will definitely meet troubles brought by incompatible web sites,

which have been observed and handled carefully in the implemented application in the

experimental part of the study. [Section 3.5.2]

69

6. Conclusion

The objectives of this study were defined in research questions and one of them was to find

out consistent, efficient and reliable performance evaluation process for mobile browsers.

The possibility to apply this measurement process to the productive environment for

achievement on business was presented here in brief. At the end of this chapter, the

challenges of the study are discussed and the research process will be evaluated. The

possible future work is also discussed.

6.1. SWOT Analysis

Using SWOT to analysis the business outlook of a research project in development and its

generated products is a popular practice in the market. SWOT Analysis is a strategic

planning method used to evaluate the Strengths, Weaknesses, Opportunities, and Threats

involved in a project or in a business venture. It involves specifying the objective of the

business venture or project and identifying the internal and external factors that are

favorable and unfavorable to achieving that objective. SWOT is an ideal way to measure

business demand and identify the possibility of making profits from the market. By using

SWOT, the business opportunity is easier to be understood. Here is a paragraph which

describes the typical SWOT analysis results.

Figure 6-1: The SWOT model (CIPD, 2008)

70

Here the results of the experimental part of the study will be analyzed for the business

prospects by using the SWOT analysis methods. The purpose is to find out the potentials to

migrate the application structure to serve more users and to achieve commercial benefits if

possible. The listed concerns are copied directly from the SWOT analysis template,

(Chapman, 1995-2010) and the according analysis results are based on the implementation

in the experimental part of the study.

Strengths

Advantages of proposition:

The measurement environment is completely located

in the cloud so that no investment is required.

Capabilities:

Concise code structure. Ease of maintenance. Wide

scope of appliance for mobile devices.

Competitive advantages:

Free distribution of source code.

Hosting on cloud computing platform.

Unique selling points:

App engine services within Google's infrastructure.

Online access to source code for free.

Resources, assets, people:

Individual work-out. Software version control in use.

Development tools for free.

Experience, knowledge, data:

Distributed Version Control System (DVCS) in use.

Rich documentation available on the Internet.

Financial reserves, likely returns:

Online page advertising is possible. Possible to be

adopted for enterprise use.

Marketing - reach, distribution, awareness:

Online open access to the implementation and source

code. No budget on advertising yet.

Innovative aspects:

Performance evaluation with accuracy and efficiency.

Modular design and code implementation.

71

Location and geographical:

The measurement environment is located in cloud

and accessible worldwide.

Price, value, quality:

Free access. Use for free.

Ease for maintenance and redeployment.

Accreditations, qualifications, certifications:

Online application proves successful.

Processes, systems, IT, communications:

No need for extra care. Everything is in the cloud.

Ease for maintenance.

Cultural, attitudinal, behavioral:

Ease for localization.

Ease for extending user amount.

Management cover, succession:

Individual work.

Ease of knowledge transfer.

Weaknesses

Disadvantages of proposition:

Specific on page loading speed measurement.

Result presentation is too simple.

Gaps in capabilities:

Adding new feauture requires re-do of the software

engineering process.

Lack of competitive strength:

Measurement specifically on page loading speed.

Accuracy is possible to be increased.

Reputation, presence and reach:

There are seldom notices on its existence so far.

Financials:

No budget for the implementation at all.

No income source available in the near future.

72

Own known vulnerabilities:

The measurement results are presented awkward.

Too many similar measurement tool in market.

Timescales, deadlines and pressures:

Single person product relies on a personal schedule.

Cash flow, start-up cash-drain:

No budget at all.

Continuity, supply chain robustness:

Depends on the interests from users and developer.

Effects on core activities, distraction:

Incompatible but popular web sites are big trouble

to be measured.

Reliability of data, plan predictability:

As time goes by there will be better measurement

tools available.

Accreditations, qualifications, certifications:

The security concern has not been included in the

solution yet.

Morale, commitment, leadership:

Single person product.

Accreditations, etc:

Too many failure examples of Web 2.0 sites.

Processes and systems, etc:

Dependence on accessibility to Google servers.

Management cover, succession:

Knowledge was not shared in team.

Too much knowledge to learn for a newbie.

73

Opportunities

Market developments:

More functionality could be added.

Competitors’ vulnerabilities:

Higher budgets.

More payment for human resources.

Industry or lifestyle trends:

Mobile users would like to try this for free.

Technology development and innovation:

Users enjoy trying new things online.

Global influences:

Accessible from anywhere in the world.

New markets, vertical, horizontal:

Device manufacturers might be interested in adopt

the idea.

Geographical, export, import:

Accessible from anywhere in the world.

New unique selling points:

Google’s cloud computing platform. Zero

investment in the beginning.

Business and product development:

Sell idea to mobile device manufacturers.

Information and research:

Possible to add more functionality on App Engine.

Partnerships, agencies, distribution:

Combined with Google service.

Volumes, production, economies:

Free of charge for hosting and code upgrading.

74

Threats

Political effects:

Google services not accessible in specific locations.

Legislative effects:

Content filter might be necessary.

Environmental effects:

None.

IT developments:

Experienced web developer is necessary for

maintenance.

Competitor intentions –various:

There are already a lot of measurement tools

available on the Internet.

Market demand:

Mobile device manufacturers might be interested in

adopt this idea.

New technologies, services, ideas:

Maintenance work might be a lot to adopt to

business environment.

Vital contracts and partners:

Google App Engine might be not free any more on

some day.

Sustaining internal capabilities:

Another experienced web developer is needed.

Obstacles faced:

incompatible but popular web sites.

Insurmountable weaknesses:

lack of better presentation for measurement results.

Loss of key staff:

If there has no another experienced web developer

coming.

Sustainable financial backing:

Google Adsence might not work.

75

6.2. Challenge of the study

During the preparation period of this research, it took a very long time for grasping the

necessary concepts and knowledge for exerting development tools well enough. Since the

online application development and cloud computing technologies evolve rapidly, a

developer has to learn new concepts and coding skills in a short time which is relatively

difficult for an amateur who can only do the researches in spare time.

The measurement of the page load performance of mobile browsers is a new topic for web

browser performance evaluation. All mature evaluation solutions available in the market so

far are designed specifically for desktop computing environment. As a result, although the

page load performance of mobile browser is critical to end users, mobile device

manufacturers do not invest enough on specific performance measurement tools.

In the implementation the referenced web pages are mirrored from the front pages of most

popular web sites globally. However the category of these web pages might be different to

what a mobile user would like to visit.

For different locations in the world people may visit quite different web sites daily. For this

reason it would be better to define the categories of web pages based on the web surfing

customs of people from different geography areas, and execute the measurement to

simulate the page loading progress of their favorite web sites accordingly.

Another variety of web page content comes from the popularity on customized web sites

for specific mobile devices. A number of popular web sites re-designed and implemented a

second web interface based on their mobile users, removed some unimportant content

from the revised version of the page to increase the page loading speed. This study did not

take care of this situation since it is complicated to specify all customized versions of a web

page. And there will be more such a kind of customization happening for new released

mobile devices.

For those incompatible web pages which were failed to load in a sub frame embedded in a

web page, most of them contain quite many media data and flash content to fill every pixel

of a web page. Such a situation is quite common to see in some front pages from web sites

hosting in China. It seems that the popularity of web sites did not increase the responsibility

of their maintainers to follow good web site design principles.

76

6.3. Possible future work

As the experimental part of the study concentrated on implementing a practical work

model of the identified measurement process to evaluate the page load performance of

mobile browser, some advanced features which should be available in such a measurement

application are absent from the implemented work. This section listed some of these

features in order to provide a reference for possible future development of the tool.

Measurement results in graph

The measurement results stored in database server module after each round of

measurement are simply presented in form of tables so far, which do not give intuitive

answers to the users without downloading and re-processing these data.

The future work should focus on providing an option for user to check the measurement

results in a more intuitive way. For instance, the measurement results should be possible to

be shown as the curves presented in the Result chapter, which indicated the variety among

different mobile browsers clearly.

More web pages as reference

In the implemented application of the experimental part of the study, there are only 20

web pages available for reference. It is quite less than the amount of web pages referenced

in a productive measurement environment. In order to enlarge the user group of this

measurement tool, the web page server module of the application model should contain

more web pages mirrored from actual web sites.

Automatic detection of trouble pages

During a measurement process of current implemented measurement application, the

measurement progress will terminated with a zero value returned as the result if there is a

web page incompatible to the HTML embedded frame. The whole measurement round has

to be re-executed and the wrong result value has to be manually removed.

It should be possible for the measurement control point to monitor the error happened on

the page loading progress and store necessary information of the problematic web page.

The measurement process should not halt and the value of measurement results should be

accessible together with the stored error information available to the user.

77

Bibliography

Alan Grosskurth, M. W. (2006). Architecture and evolution of the modern web browser.

Elsevier Science.

Ambler, S. W. (2010). Mapping Objects to Relational Databases: O/R Mapping In Detail.

Retrieved April 30, 2010, from www.agiledata.org: Techniques for Successful Evolutionary /

Agile Database Development: http://www.agiledata.org/essays/mappingObjects.html

Apple. (2011). Apple. Retrieved May 2, 2011, from http://www.apple.com/

Ari Jaaksi, N. (2002, July/August). Developing Mobile Browsers in a Product Line. 0740-

7459/02 IEEE (pp. 73-80). IEEE Software.

Bennett, J. (2006, July 2). Django and Ajax. Retrieved April 26, 2010, from b-list.org:

http://www.b-list.org/weblog/2006/jul/02/django-and-ajax/

BuiltWith. (2010). JavaScript Usage Statistics. Retrieved May 1, 2010, from Web and

Internet Technology Usage Statistics: http://trends.builtwith.com/javascript

Chapman, A. (1995-2010). SWOT Analysis. Retrieved May 3, 2010, from businessballs.com:

http://www.businessballs.com/swotanalysisfreetemplate.htm

CIPD. (2008, March). SWOT analysis. Retrieved May 3, 2010, from cipd.co.uk:

http://www.cipd.co.uk/subjects/corpstrtgy/general/swot-analysis.htm

Django Software Foundation. (2005-2010). Django | The Web framework for perfectionists

with deadlines. Retrieved April 18, 2010, from http://www.djangoproject.com/

DocForge. (2010, April 18). Web application framework. Retrieved April 26, 2010, from

DocForge: http://docforge.com/wiki/Web_application_framework

Evans, C. C. (2004). The Official YAML Web Site. Retrieved April 18, 2010, from

http://www.yaml.org/

Facebook. (2010). Welcome to Facebook. Retrieved May 3, 2010, from Facebook:

http://www.facebook.com/

Fielding, R. T., & Taylor, R. N. (2002). Principled Design of the Modern Web Architecture. In

R. T. Fielding, & R. N. Taylor, Principled Design of the Modern Web Architecture (pp. 115-

150). ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

78

Gardner, R. (2010, July 9). Mobile Browser Usage on the Increase. Retrieved May 2, 2011,

from http://netprofitstoday.com/blog/mobile-browser-usage-on-the-increase/

Garrett, J. J. (2005, February 18). Ajax: A New Approach to Web Applications. Retrieved

April 26, 2010, from adaptive path:

http://www.adaptivepath.com/ideas/essays/archives/000385.php

Google. (2008). Google App Engine. Retrieved April 18, 2010, from Google Code:

http://code.google.com/appengine/

Google. (2008). The webapp Framework - Google App Engine. Retrieved April 18, 2010,

from Google Code: http://code.google.com/appengine/docs/python/tools/webapp/

Google. (2010). Project Hosting on Google Code. Retrieved May 3, 2010, from Google Code:

http://code.google.com/projecthosting/

Google. (2010). Quotas - Google App Engine. Retrieved May 1, 2010, from Google Code:

http://code.google.com/appengine/docs/quotas.html

Google. (2010). Using Templates - Google App Engine. Retrieved April 30, 2010, from

Google Code:

http://code.google.com/appengine/docs/python/gettingstarted/templates.html

Gürgens, F. (2011). Test online your browser speed and CPU performance. Retrieved May

25, 2011, from SPEED-BATTLE: http://www.speed-battle.com

Harvard Law. (2003, July 15). RSS 2.0 Specification (RSS 2.0 at Harvard Law). Retrieved May

3, 2010, from Berkman Center For Internet & Society at Harvard University:

http://cyber.law.harvard.edu/rss/rss.html

Hunt, A. (2010, 1 13). Dont Repeat Yourself. Retrieved April 18, 2010, from c2.com:

http://c2.com/cgi/wiki?DontRepeatYourself

iPhone. (2011). iPhone. Retrieved May 2, 2011, from http://www.apple.com/iphone/

jQuery. (2006). jQuery: The Write Less, Do More, JavaScript Library. Retrieved April 18,

2010, from http://jquery.com/

jQuery. (2010). Browser Compatibility. Retrieved April 26, 2010, from jQuery JavaScript

Library: http://docs.jquery.com/Browser_Compatibility

79

JSON. (1999). Introducing JSON. Retrieved April 25, 2010, from http://www.json.org/

Kessels, J. (2005). Numion Stopwatch. Retrieved May 25, 2011, from

http://www.numion.com/Stopwatch/index.html

Mazzetti, P., Nativi, S., & Bigagli, L. (2008). Integration of REST style and AJAX technologies

to build Web applications; an example of framework for Location-Based-Services.

Information and Communication Technologies: From Theory to Applications, 2008. ICTTA

2008. 3rd International Conference on (pp. 1 - 6). Univ. of Florence Prato, Florence: IEEE

Conferences .

Mell, P., & Grance, T. (2009, October 7). The NIST Definition of Cloud Computing. Retrieved

April 18, 2010, from NIST.gov - Computer Security Division - Computer Security Resource

Center: http://csrc.nist.gov/groups/SNS/cloud-computing/index.html

Miller, J. (2009, February). Design For Convention Over Configuration. (Microsoft) Retrieved

April 18, 2010, from MSDN Magazine: http://msdn.microsoft.com/en-

us/magazine/dd419655.aspx

Netscape Communications. (2008). The Netscape Archive. Retrieved May 24, 2011, from

http://browser.netscape.com

Prototype. (2006). Prototype JavaScript Framework: ease development of dynamic web

applications. Retrieved April 25, 2010, from http://www.prototypejs.org/

Python Software Foundation. (1990-2010). Python Programming Language -- Official

Website. Retrieved April 18, 2010, from http://www.python.org/

Rails. (2004-2010). Ruby on Rails. Retrieved April 18, 2010, from http://rubyonrails.org/

Selfa, D., Carrillo, M., & Del Rocio Boone, M. (2006). A Database and Web Application Based

on MVC Architecture. Electronics, Communications and Computers, 2006. CONIELECOMP

2006. 16th International Conference on (pp. 48 - 48). Benemerita Universidad Autónoma de

Puebla, Mexico: IEEE Conferences.

Shan, T. C., & Hua, W. W. (2006). Taxonomy of Java Web Application Frameworks. e-

Business Engineering, 2006. ICEBE '06. IEEE International Conference on (pp. 378 - 385).

Shanghai: IEEE Conferences.

80

SpringSource. (2004-2010). SpringSource.org. Retrieved April 18, 2010, from

http://www.springsource.org/

SunSpider. (2011). SunSpider JavaScript Benchmark. Retrieved May 25, 2011, from

http://www.webkit.org/perf/sunspider/sunspider.html

Thomas, D. (2003, March 10). Orthogonality and the DRY Principle. (i. b. Venners, Editor)

Retrieved April 18, 2010, from artima developer: http://www.artima.com/intv/dry.html

Twitter. (2010). Twitter - Discover what’s happening right now, anywhere in the world.

Retrieved May 3, 2010, from twitter.com: http://twitter.com/

W3C. (2010). Cascading Style Sheets. Retrieved May 3, 2010, from W3C.org:

http://www.w3.org/Style/CSS/

W3C. (2010). World Wide Web Consortium. Retrieved May 3, 2010, from

http://www.w3.org/

Ye, P. (2010). Research on Mobile Browser's Model and Evaluation. 978-1-4244-6359-6/10

IEEE (pp. 712-715). 2010 IEEE.

81

Appendices

Appendix A: Source Code of the Experimental Work

The source code of the experimental part of the study has been uploaded and managed by
the online version control service provided freely by Google. (Google, 2010) The code
resources and all pictures used on the user interface are located in the URL below. The
whole research work is released under GNU GPL v2.

http://code.google.com/p/meixi/source/browse/#hg/ptest

Here in the appendix all source code files are not listed. Only the important source files are
listed for providing reference to the research evidence. Other unlisted source code files can
be accessed from the URL above.

File: app.yaml

application: pageloadspeed

version: 1

runtime: python

api_version: 1

handlers:

- url: /sites

 static_dir: local_sites

- url: /static

 static_dir: static

- url: /favicon.ico

 static_files: static/favicon.ico

 upload: static/favicon.ico

- url: /.*

 script: view.py

http://code.google.com/p/meixi/source/browse/#hg/ptest

82

File: model.py

import yaml

from google.appengine.ext import db

PRESET = yaml.load(file('preset.yaml', 'r'))

class Case(db.Model):

 name = db.StringProperty()

 core = db.StringProperty()

 device = db.StringProperty()

 connection = db.StringProperty()

 scope = db.StringProperty()

 created = db.DateTimeProperty(auto_now_add=True)

 ip = db.StringProperty()

 def getOne(self):

 case = {}

 case['key'] = str(self.key())

 case['name'] = self.name

 case['result'] = Record().speedSum(self)

 case['core'] = self.core

 case['device'] = self.device.split()[-1]

 case['connection'] = self.connection.split()[-1]

 case['scope'] = self.scope.split()[-1]

 case['created'] = str(self.created).rsplit(':', 1)[0]

 ips = self.ip.split('.')

 ips[1] = ips[2] = '-'

 case['ip'] = '.'.join(ips)

 return case

 def getList(self):

 list = []

 query = self.all().order('-created')

 for x in query:

 list.append(x.getOne())

 return list

 def remove(self):

 Record().removeBy(self)

 self.delete()

 def removeAll(self):

 query = self.all()

 for x in query:

 x.remove()

class Record(db.Model):

 case = db.ReferenceProperty(Case)

 pagerank = db.IntegerProperty()

 speed = db.IntegerProperty()

 def getList(self, case):

 list = []

 query = self.all().filter('case = ', case).order('pagerank')

 for x in query:

 record = {}

 record['rank'] = x.pagerank

 record['site'] = PRESET['sites'][x.pagerank - 1]

 record['speed'] = x.speed

 list.append(record)

 return list

 def speedSum(self, case):

 sum = 0

 query = self.all().filter('case = ', case)

 for x in query:

 sum += x.speed

 return sum

 def removeBy(self, case):

 query = self.all().filter('case = ', case)

 for x in query:

 x.delete()

83

File: preset.yaml

devices:

- Nokia N900

- Nokia N950

- Nokia N97 Mini

- Apple iTouch

- PC

connections:

- WiFi 802.11g

- WiFi 802.11n

- 3G

- Ethernet

scopes:

- Small - 5

- Midium - 10

- Large - 20

sites:

- google

- facebook

- youtube

- yahoo

- blogger #5

- baidu

- wikipedia

live

- twitter

qq

msn

- yahoo_jp

sina

google_in

taobao

- amazon #10

- linkedin

google_hk

- wordpress

google_de

- bing

google_uk

- yandex

- ebay #15

google_jp

- microsoft

google_fr

netease

google_br

google_user

- flickr

- fc2

- mail_ru

google_it

- craigslist #20

84

File: view.py

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

from google.appengine.dist import use_library

use_library('django', '1.2')

from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi_app

from google.appengine.ext.webapp import template

from django.utils import simplejson

from model import *

class MainView(webapp.RequestHandler):

 def get(self):

 values = {

 'devices': PRESET['devices'],

 'connections': PRESET['connections'],

 'scopes': PRESET['scopes'],

 'cases': Case().getList(),

 }

 path = os.path.join(os.path.dirname(__file__), 'templates/main.html')

 self.response.out.write(template.render(path, values))

class CaseClean(webapp.RequestHandler):

 def get(self):

 Case().removeAll()

 self.redirect('/')

class CaseView(webapp.RequestHandler):

 def get(self):

 act, key = self.request.path.strip('/').split('/')

 try:

 case = db.get(db.Key(key))

 except db.Error:

 self.redirect('/')

 return

 if act == 'read':

 values = {

 'case': case.getOne(),

 'records': Record().getList(case),

 }

 path = os.path.join(os.path.dirname(__file__), 'templates/case.html')

 self.response.out.write(template.render(path, values))

 elif act == 'run':

 values = {

 'case': case.getOne(),

 }

 path = os.path.join(os.path.dirname(__file__), 'templates/run.html')

 self.response.out.write(template.render(path, values))

 elif act == 'delete':

 case.remove()

 self.redirect('/')

 def post(self):

 name = self.request.get('name')

 core = self.request.get('core')

 device = self.request.get('device')

 connection = self.request.get('connection')

 scope = self.request.get('scope')

 ip = self.request.remote_addr

 case = Case(

 name=name,

 core=core,

 device=device,

 connection=connection,

 scope=scope,

 ip=ip)

 case.put()

 self.response.headers['Content-Type'] = 'application/json'

 self.response.out.write(simplejson.dumps(str(case.key())))

class CreateRecord(webapp.RequestHandler):

 def post(self):

 key = self.request.get('key')

85

 results = self.request.get('results').split(',')

 try:

 case = db.get(db.Key(key))

 except db.Error:

 self.redirect('/')

 return

 for i, x in enumerate(results):

 record = Record(case=case, pagerank=i+1, speed=int(x))

 record.put()

class SiteList(webapp.RequestHandler):

 def get(self):

 self.response.headers['Content-Type'] = 'application/json'

 self.response.out.write(simplejson.dumps(PRESET['sites']))

class Redirect(webapp.RequestHandler):

 def get(self):

 self.redirect('/')

application = webapp.WSGIApplication(

 [

 ('/', MainView),

 ('/caseclean', CaseClean),

 ('/create', CaseView),

 ('/read/.+', CaseView),

 ('/run/.+', CaseView),

 ('/delete/.+', CaseView),

 ('/record', CreateRecord),

 ('/sitelist', SiteList),

 ('/.*', Redirect)],

 debug=False)

def main():

 run_wsgi_app(application)

if __name__ == "__main__":

 main()

86

File: static/main.js

$(function() {

 getCore();

 $('input#name').val('New Run');

 $('#submit').click(function() {

 var name = $('input#name').val();

 var core = $('input#core').val();

 var device = $('select#device option:selected').val();

 var connection = $('select#connection option:selected').val();

 var scope = $('select#scope option:selected').val();

 $.post('/create', {'name': name,

 'core': core,

 'device': device,

 'connection': connection,

 'scope': scope},

 function(key){ window.location='/run/' + key; }

);

 });

});

function getCore() {

 $.each($.browser, function(i, val) {

 if(val === true) {

 $('input#core').val(i + ' ' + $.browser.version);

 return false;

 }

 });

}

87

File: static/run.js

$(function() {

 $('div#hint').hide();

 $('iframe#subframe').load(function() { stopWatch(); });

 key = document.location.href.split('/').pop();

 rank = 0;

 scope = parseInt($('td#info_scope').text());

 sites = [];

 results = [];

 $.getJSON('/sitelist', function(list) {

 sites = list;

 if(scope > sites.length) scope = sites.length;

 $('div#hint').show();

 startWatch();

 });

});

function startWatch() {

 $('span#timer').text((rank + 1) + '/' + scope);

 start_time = new Date();

 $('iframe#subframe').attr('src', '/sites/' + sites[rank] + '.html');

}

function stopWatch() {

 stop_time = new Date();

 var speed = stop_time - start_time;

 $('iframe#subframe').attr('src', '');

 results.push(speed);

 if(++rank < scope) {

 startWatch();

 } else {

 $("iframe#subframe").unbind('load');

 $.post('/record', {'key': key, 'results': '' + results}, function() {

 $("div#hint").append(' .. Done.');

 window.location = "/";

 });

 }

}

88

File: templates/case.html

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

{% include "title_style.html" %}

</head>

<body>

{% include "info.html" %}

<table>

<tr>

<th>Rank</th>

<th>Website</th>

<th>Page load speed</th>

</tr>

{% for record in records %}

<tr>

<td>{{ record.rank }}</td>

<td>{{ record.site }}</td>

<td>{{ record.speed }}</td>

</tr>

{% endfor %}

</table>

</body>

</html>

89

File: templates/info.html

<h5>PLPE - Page Load Performance Evaluation(Experimental)</h5>

{% if case %}

<table>

<tr>

<th>Name</th>

<th>Core</th>

<th>Result</th>

<th>Device</th>

<th>Connection</th>

<th>Scope</th>

<th>IP</th>

</tr>

<tr>

<td>{{ case.name }}</td>

<td>{{ case.core }}</td>

{% if case.result %}

<td>{{ case.result }}</td>

{% else %}

<td> ... </td>

{% endif %}

<td>{{ case.device }}</td>

<td>{{ case.connection }}</td>

<td id="info_scope">{{ case.scope }}</td>

<td>{{ case.ip }}</td>

</tr>

</table>

<p />

{% endif %}

90

File: templates/main.html

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

{% include "title_style.html" %}

<script type="text/javascript" src="/static/jquery.min.js"></script>

<script type="text/javascript" src="/static/main.js"></script>

</head>

<body>

{% include "info.html" %}

<table>

<tr>

<td>Name:</td>

<td><input id="name" type="text" /></td>

</tr>

<tr>

<td>Browser Core:</td>

<td><input id="core" type="text" readonly="readonly" disabled="disabled" /></td>

</tr>

<tr>

<td>Device:</td>

<td>

<select id="device">

{% for device in devices %}

<option>{{ device }}</option>

{% endfor %}

</select>

</td>

</tr>

<tr>

<td>Connection:</td>

<td>

<select id="connection">

{% for connection in connections %}

<option>{{ connection }}</option>

{% endfor %}

</select>

</td>

</tr>

<tr>

<td>Scope:</td>

<td>

<select id="scope">

{% for scope in scopes %}

<option>{{ scope }}</option>

{% endfor %}

</select>

</td>

</tr>

</table>

<div><input type="submit" value="RUN" id="submit"/></div>

<p /><p />

{% if cases %}

<table id="case_list">

<tr>

<th>C</th>

<th>Name</th>

<th>Result</th>

<th>Device</th>

<th>Connection</th>

<th>Scope</th>

<th>Time</th>

<th>IP</th>

</tr>

{% for case in cases %}

<tr>

91

<td>x</td>

<td>{{ case.name }}</td>

<td>{{ case.result }}</td>

<td>{{ case.device }}</td>

<td>{{ case.connection }}</td>

<td>{{ case.scope }}</td>

<td>{{ case.created }}</td>

<td>{{ case.ip }}</td>

</tr>

{% endfor %}

</table>

<p />

{% else %}

<p>The list of cases is empty.</p>

{% endif %}

</body>

</html>

92

File: templates/run.html

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<meta http-equiv="expires" content="0" />

<meta http-equiv="Pragma" content="no-cache" />

<META HTTP-EQUIV="CACHE-CONTROL" CONTENT="NO-CACHE" />

{% include "title_style.html" %}

<script type="text/javascript" src="/static/jquery.min.js"></script>

<script type="text/javascript" src="/static/run.js"></script>

</head>

<body>

{% include "info.html" %}

<div id="hint">Page load running ... </div>

<iframe id="subframe" width="80%" height="80%" />

</body>

</html>

93

File: templates/title_style.html

<title>PLPE - Page Load Performance Evaluation(Experimental)</title>

<style type="text/css">

body {font-size: 1.2em;}

input, select {font-size: 1.1em;}

select {width: 10.5em;}

th {background-color: #66ff99;}

th, td {padding: 4px 16px 2px 16px;}

td {background-color: #ddd;

 text-align: right;}

tr:nth-child(odd) td {background-color: #ccc;}

</style>

