Guided policy search for a lightweight industrial robot arm

Jack White

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of Science in Technology
Espoo, 16™ October 2018

Thesis supervisor:

Prof. Ville Kyrki

Thesis adviser:

Jens Lundell

,, Aalto University AR Funded by the
M Erasmus+ Programme
* 5 x of the European Union



©2018 Jack White



www.aalto.fi

A’, Aalto University Aalto University, P.O. Box 11000, 00076 AALTO
Abstract of the master’s thesis

Author Jack White
Title Guided policy search for a lightweight industrial robot arm

Degree programme MSc Space Science and Technology (Spacemaster)

Supervisor Prof. Ville Kyrki

Advisor Jens Lundell

Date October 16,2018 Number of pages  viii + 56 Language English
Abstract

General autonomy is at the forefront of robotic research and practice. Earlier research has
enabled robots to learn movement and manipulation within the context of a specific in-
stance of a task and to learn from large quantities of empirical data and known dynamics.
Reinforcement learning (RL) tackles generalisation, whereby a robot may be relied upon to
perform its task with acceptable speed and fidelity in multiple—even arbitrary—task config-
urations. Recent research has advanced approximate policy search methods of RL, in which
a function approximator is used to represent an optimal policy while avoiding calculation
across the large dimensions of the state and action spaces of real robots. This thesis de-
tails the implementation and testing, on a lightweight industrial robot arm, of guided policy
search (GPS), an RL algorithm that seeks to avoid the typical need, in machine learning, for
lots of empirical behavioural samples, while maximising learning speed. GPS comprises a
local optimal policy generator, here based on a linear-quadratic regulator, and an approximate
general policy representation, here a feedforward neural network. A controller is written to
interface an existing back-end implementation of GPS and the robot itself. Experimental
results show that the GPS agent is able to perform basic reaching tasks across its configura-
tion space with approximately 15 minutes of training, but that the local policies generated
fail to be fully optimised within that timescale and that post-training operation suffers from
oscillatory actions under perturbed initial joint positions. Further work is discussed and
recommended for better training of GPS agents and making locally optimal policies more
robust to disturbance while in operation.

Keywords guided policy search, reinforcement learning, deep learning, machine learn-
ing, kuka, control engineering, optimal control, policy search, supervised learning, robotics,
artificial intelligence




Acknowledgements

Thank you to Professor Ville Kyrki and to Jens Lundell of the Intelligent Robotics group
at Aalto University, through whose tutelage this thesis has been accomplished, and also to
Annika Salama and the other departmental administrators at Aalto University.

‘Thanks also to Dr Victoria Barabash at Lulea University of Technology, Sweden, and
Professor Klaus Schilling at the University of Wiirzburg, Germany, for their academic or-
ganisation of the SpaceMaster degree, and also to the respective departmental administra-
tors.

Many, many thanks to all the lecturers and teaching assistants at the three universities,
especially for putting up with my often very demanding personality and for acceding to my
requests more often than not. They have made a difference to the whole class.

Credit unsuitable for the reference list must go to Jan Peters and Gerhard Neumann of
Technische Universitit Darmstadt for their excellent presentation on policy search, which
goes far beyond my needs and comprehension, but was nonetheless a much-needed intro-
duction to the subject space.

'Thank you to my parents, my uncle John White and my cousin Tom White for the
support, particularly the vital pecuniam dedisset.

Finally, thanks and regards to the European Union, the best non-party political project
going, and to the Eramus+/Erasmus Mundus Joint Masters programme.

'This project has been funded with support from the European Commission.

This publication, Guided policy search for a lightweight industrial robot arm, reflects the
views only of the author, and the Commission cannot be held responsible for any use which
may be made of the information contained therein.

v



Initialisms

Initialism Meaning

ACE Adaptive critic element

Al Artificial intelligence

ANN Artificial neural network

ASE Associative search element
BADMM Bregman Alternating Direction Method of Multipliers
DDP Differential dynamic programming
DP Dynamic programming

FRI Fast Research Interface

GMM Gaussian mixture model

GPS Guided policy search

GUI Graphical user interface

iLQR Iterative linear-quadratic regulator
LQR Linear-quadratic regulator

LQG Linear-quadratic Gaussian

LWR KUKA Lightweight Robot

LBR Leichtbauroboter (see LWR)

MC Monte Carlo (method)

MDP Markov decision process

ML Machine learning

NN Neural network

PID Proportional-integral-derivative
RL Reinforcement learning

ROS Robot Operating System

URDF Universal Robotic Description Language
XML Extensible Markup Language




Symbols

Symbol  Meaning

T Total number of time steps

t Current step

p(z|z,y) Probability of z given x and y
p(x/|x,u) Transition dynamics
r(x/,u,x) Reward function

b Robot state
u Robot action
m(x) Deterministic policy
7(ulx) Stochastic policy
v(x) Value function, aka state-value function
q(u,x) Action-value function
vk, @k Optimal value functions
E Expectation
R Return; sum of rewards along a trajectory; negation of cost
A Discount rate
o(x) Function approximator feature vector
w Function approximator feature weight vector
a Gradient descent step size
g(x) Deterministic local optimal policy
e Stochastic trajectory distribution
Neuron activation function
Step cost
Hadamard, or element-wise, product of vectors
wp Weight given to final position cost
e Vector of robot final position errors

vi



Contents

1 Introduction 1
1.1 'The automated world and artificial intelligence . . . . . . . ... ... ... 1
1.1.1  Supervisedlearning . . . . . .. ... Lo L L Lo 2
1.1.2  Reinforcementlearning . . . . . ... .. ... ... L 3
1.1.3 Neuralnetworks . . . ... ... ... .. ... ... .. ... .. 3
1.2 'The training dataproblem . . . . . . ... ... . L. L L L. 4
1.3 Thisthesis . . . . . . .. . . 5
131 Purpose . . . . ... 5
132 Scope . . ... 5
1.3.3 Structure of thisthesis . . . . . ... ... ... .. ... ... .. 5
2 Technology review 6
2.1 Reinforcementlearning . . . . . ... ... Lo L oL 6
2.1.1 Environment, agent and Markov decision processes . . . . . . . . . 7
2.1.2  'Tabular derivation of the value functions and policies . . . . . . .. 9
2.1.3  Policy improvement: Exploitation and exploration. . . . . . . . .. 11
2.1.4 Approximation and the value function . . . . ... ... ... ... 12
2.2 Direct search for approximate policies . . . . ... .. ... ... ... .. 13
2.2.1 Model-based and model-free policy search . . . . ... ... ... 13
2.2.2  Actor-critic reinforcement learning . . . .. ... 14
2.3 Guided policysearch . . . .. ... ... ... Lo o 15
2.3.1 Trajectory optimisation . . . . . . . ... ... ... 15

2.3.2  Local policy acquisition, training of general policies and neural net-
works . ... L 18
2.3.3  Criticisms and developmentsof GPS . . . . ... ... ... ... 20
24 Summary ... .. 21
3 Implementation 22
3.1 The KUKALWR4+robot . ... ... ... ... .. ... ...... 23
3.2 Robot Operating System . . . . . .. ... ... ... ... .. ... 23
3.3 KUKA LWR hardware interface . . . .. ... ... ............ 25
3.4 Guided policy search suite . . . . .. ... ... L L. 25
3.5 GPS controller for the LWR using ROS Control . . . .. ... ... ... 28
3.6 GPSagentforthe LWR . . ... ... ... .. ... ... .. ... ... 30
3.7 'Target position command utility . . . . .. ... .. L oL 30
3.8 Summary . . ... 30
4 Evaluation 32
4.1 Configuration of the GPSagent . . . ... ... ... .. ... ... .. 32
4.2 Experiment 1: LQG trajectory optimiser performance . . . . . . . .. ... 33
421 Tasks . . ... 33
42.2 Performancemetrics . . . ... ... L oL 34
423 Resultsand evaluation . . .. ... ... .. ... ... ... 34

vii



4.3 Experiment 2: Performance of local policies with regard to perturbed initial

configurations . . . . . .. ... 39
4.3.1 Tasks and expected behaviour . . . .. ... L L L. 39
43.2 Resultsand evaluation . ... ... ... ... ... ....... 41
5 Discussion 43
5.1 Difliculty in writing the ROS controller . . . . .. ... ... ... .... 43
5.2 Further work within the thesis mandate . . . . ... ... ......... 44
52.1 Generalpolicies . . . . . ... ... ... . o 44
5.2.2 Effects of human-demonstrated guiding distributions . . . . . . . . 45
5.2.3 Cost function improvement . . . . ... .. ... ... 45

5.2.4  Determination of the reason for low final position error for deviating
initial positions . . . . . ... L Lo L 45
6 Conclusion 46
References 48
Appendices 51
A Experiment 1 initial and final configurations 51
B Agent configuration 54

viil



Section 1

Introduction

1.1 The automated world and artificial intelligence

Machines—labour-saving devices—are a hallmark of human civilisation. Even the earliest
tool, such as a simple stone edge, is a machine that increases the pressure caused by the force
of a human hand-strike.

Since the late 18th century, humans have expended vast fortunes in pursuit of industrial
automation. Industrialisation resulted in rocketing productivity in, for example, England
during the Industrial Revolution (1760-1840), Japan (1870-1910) and Russia(1928-40).

'The mid-twentieth century brought cataclysmic war and bitter intercontinental rival-
ries. In this febrile and unsavoury atmosphere, the power of machines was given primary
importance by advanced and advancing economies alike. Mass factory production became
necessary to sustain both military and civilian needs.

Guided by the minds of futurists and fiction writers during the Golden Age of Science
Fiction (late 1930s and 1940s), and under Cold War economic pressures, engineers developed
the first robots—machines capable of performing sequences of task without regular human
intervention. Unimate became the first industrial robot in 1961[1]. Since that time, robots
have become common in industrial contexts (see Fig. 2).



Estimated annual worldwide supply of industrial robots
2008-2016 and 2017*-2020*

600
+15% on average peryear

500

400 +18%
+16% 378
. i =2 H

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017* 2018* 2019* 2020*

‘000 of units
[ w
=) <)
o o

=
o
o

*forecast Source: IFR World Robotics 2017

Figure 2: Robots are a growing concern in industrial contexts. In its 2017
industrial report World Robotics, the International Federation
of Robotics suggests that, while the automotive industry has led
in use of robots, the increasing human reliance on electronics
means that this industry is seeing rapid growth in the number

of robots.[2]

In recent decades, roboticists” attentions have, to some extent, turned away from the
essential mechanisation and computerisation required to build and operate automatons,
which rely upon a largely set programme of instructions, towards intelligent robots, able to
react to their operational environments and determine for themselves best courses of action.
'This paradigm springs from the general field of artificial intelligence (AI).

Artificial intelligence, a term coined in 1955 by one of its trailblazers John McCarthy,
broadly seeks to instil in machines an ability, similar to animals, to perform tasks based on
abstract thinking. Robotics, with its fundamental place in science fiction in which machines
can reason and act like a human being, has shared much history with Al Certain aspects of
Al have come to prominence in robotics in the last 20 years and it is informative to get an
overview of three areas of Al that will be used in this thesis.

1.1.1  Supervised learning

The first two aspects of Al covered here are two related areas of machine learning, itself a
major field of artificial intelligence. In supervised learning, a machine learns a hypothetic
function that maps an input to an output. It is a function of a set of internal parameters and
predictive features of the class of inputs[3].

During the learning process, the machine repeatedly is fed a series of training data, i.e.
input/output pairs. It passes the training input to its hypothetical function and then com-
pares the derived output with the example output and adjusts the set of internal parameters
to make the function more accurately map input to output. In this way, the training dataset
supervises the learning process, telling the learning agent when it is wrong, or when it right.



Supervised learning is commonly used as a machine pattern recognition tool in two im-
portant classes of task: classification and regression. For example, one might use supervised
learning to train a machine to assert whether a photograph was taken at night or in daylight.
This is classification because the output is that the input falls discretely in either the class of
daytime photos or the class of nighttime photos.

Regression on the other hand maps inputs to continuous outputs. An example of a
regressive supervised learner is an an agent learning to predict temperature from landscape
photographs. It is regression that is used in guided policy search, the topic of this thesis.

Although both classification and regression seek to give definitive answers, the reality
is that the answers will be given as correct, to a certain expected Bayesian probability. For
example, the daytime/nighttime classifier might give results that there is a 90% probability
that a particular photo was taken at night.

1.1.2 Reinforcement learning

Reinforcement learning (RL) grew out of supervised learning to cover a need for an ability for
a machine to learn to function in processes, rather than series of single cases. The functional
mapping in RL is between the situation the agent find itself in and an action that it should
take to further the process. Instead of having a supervisor to tell it when it is successful,
or how successful it is, the agent learns by being rewarded or paying a cost for its actions.
The learning process is then a matter of minimising the costs (maximising the rewards)
accumulated over the course of the process.

An important distinguishing feature of RL is that the feedback the agent receives during
the learning process is incomplete. This marks RL as seperate from supervised learning,
where the agent is told whether or not it is right. While in supervised learning the successful
agent learns to extrapolate from the correct examples it is given, the RL agent is only rewarded
on a step-by-step basis and may have only a limited view of the process—incomplete state
observations. Its actions may have far-reaching consequences for its long-term performance
in the process, of which the reward given now is unrepresentative [4].

1.1.3 Neural networks

From the early days of Al, efforts have been made to replicate the process of the animal
mind in computers. Nowhere more obviously has this idea appeared than in the neural
network, an attempted facsimile of animal nervous systems. In 1943, Warren McCulloch
and Walter Pitts made a seminal study of the nervous system[5] with regard to propositional
logic, in which a vast network of neuron cells passes signals from one neuron to another. The
connecting organ between neurons, the synapse, is like a two-state tap that may be on or off,
connected or disconnected, depending upon the truth of a proposition.

Artificial neural networks (ANN), which have grown from McCulloch and Pitts’ work
[6],[7],[8],are inspired by the nervous system, though some researchers note the glaring dif-
ferences between the artificial and organic neurons [9]. Al has made much use of functional
structures (that is, something which maps inputs to outputs) to represent decision-making.
ANN:Ss potentially represent an enormously complex function, mapping inputs (analogous to
the stimulation of the brain) to outputs (analogous to the mental and physical reactions of an
animal to stimuli) (see Fig. 3). The beauty of the ANN lies in its potential for extreme com-
plexity and nonlinearity and, like its simplest predecessor the linear combination, the ANN
can be adapted, based on past input-output pairs, to make better and better decisions over



time. These abilities make the ANN a powerful function approximator with applications in
complex knowledge representation and computer learning.

Artificial Artificial
neurones neurones

Inputs

(a) A feedforward (one-way) neural network (b) A neural network with cyclical links

Figure 3: Artificial neural networks define a learned function that map an input vector to
an output vector by means of a layered network of artificial neurons. Each neuron
encapsulates a trigger function that works upon a weighted input. If the output of
the trigger function passes a certain threshold, the neuron “fires”, sending a signal to
the next neuron in the chain. Many different trigger functions and many different
network topologies exist.

A look at the use of an ANN in guided policy search can be found in Section 2.3.2.

1.2 The training data problem

'The AI/ML techniques introduced in this section, supervised learning and reinforcement
learning especially, suffer from the same problem. They both require large amounts of train-
ing data. In order to represent highly abstract identification tasks in supervised learning, the
agent requires enough training examples to adequately describe all the features that might
affect decision to offer an output in any one class, or at any point along the continuum.

Consider the previously visited scenario where a classifier wants to tell us whether the
photo is taken at night, or during the day. How does one determine this? Is it a matter of
the brightness of the photo? 'This might be a factor, however, a photo taken in the desert
on a moonlit night might be almost as bright as photo taken on an overcast day. Could the
colours play a role? Certainly, but a hazy early evening photo of a sun-drench landscape
might look only as yellow as a night photo of a US American school bus.

Many examples must necessarily be fed to the supervised learning classifier in order for
it to learn how to tell apart a night photo and a day photo. Similarly, in reinforcement
learning, many trials of the process may be required before the agent adequately understands
the cost/reward landscape enough to minimise the return over the whole process.

'This thirst for trial data in reinforcement learning, where the environment may only be
partially observable and samples unrepresentative, means that reinforcement learning can be
complicated and complex. Guided policy search goes a long way to overcome these problems



by breaking down the reinforcement learning problem into a supervised learning component
and a mechanism to feed this component easily and swiftly generated training data.

1.3 This thesis

1.3.1 Purpose
'The aim of this thesis is to implement guided policy search on the KUKA LWR 4+ robotic

arm, which is in use in Aalto University’s Intelligent Robotics Group, and to demonstrate
its utility in reaching tasks while solving the training data problem.

'The main problems tackled during the preparatory work for this thesis are understanding
the operation of GPS and its most basic variants, the transfer of the existing abstract con-
troller for the PR2 robot to the newer robot-independent ROS Control software interface
and configuration of GPS experiments to work with the dynamics of the KUKA robot.

'The performance of GPS trajectory optimisation is evaluated using an experiment in-
vestigating the convergence of the learning agent on an optimal policy under a number of
experimental conditions of varying difficulties, and an experiment investigating the perfor-
mance of a single agent in post-learning operation under initial conditions perturbed from
the training condition.

The deliverables are a novel controller plugin using the ROS middleware suite to allow
easy modification for any similar robot, an agent to interface the GPS backend with the
controller and a number of demonstrative example experiments.

1.3.2 Scope

The agent and experiments detailed in this thesis are limited to the use of GPS compo-
nents implemented by Chelsea Finn in connection to her work with the discoverers of GPS.
Within that scope, only the original linear-quadratic regulator using Gaussian mixture mod-
els to model transition dynamics[10] is used for trajectory optimisation.

Due to time constraints the neural network component of GPS, which implements pol-
icy generalisation, has not been experimentally evaluated.

The novelty in this thesis comes from the implementation of a robot controller for GPS
using more up-to-date, flexible and widely used components of the ROS middleware than
Finn has used in her work, rather than replacement of the GPS trajectory optimiser, which
is a longer-term goal.

1.3.3 Structure of this thesis

Section 2 goes into more detail on the core Al topics introduced in this section, introduces
trajectory optimisation, a fourth non-Al component of the standard GPS used in this thesis,
and goes on to discuss the motivations and operation of guided policy search.

Section 3 describes the existing components used to implement GPS on the KUKA
LWR 4+ and then goes on to detail the development of the new components required.

Section 4 details the operation of the experiments on the new platform and their results,
with additional discussion on the limitations of these experiments and future tasks for the
author and/or others.



Section 2

Technology review

This section introduces the primary techniques used by guided policy search (GPS) in the
context of reinforcement learning (RL), of which GPS in an example. Section 2.1 gives
a broad overview of RL, including the common description and classes of RL problem.
Section 2.3 then introduces GPS in light of the problems with earlier RL techniques. The
novel aspects of GPS are then discussed with reference to their past uses outside GPS. Finally,
the specifics of GPS are discussed.

2.1 Reinforcement learning

(Successful) reinforcement learning enables a machine to take actions in an ongoing process
in order to achieve a desired goal. It is a form of learning by doing in that the machine agent
discovers how successful it is by going through the process, taking note of how well it did and
then using this feedback (reward) to improve its own performance next time. The agent’s
actions themselves affect the course of the process. Therefore, in order to gain a wide view
of the potential outcomes, the process must be undertaken again and again until the agent
has sufficient information. In some respects, this learning process is similar to how human
beings learn to control processes [11].



2.1.1 Environment, agent and Markov decision processes

Reinforcement learning emerged from the field of optimal control, a subfield of control
engineering in which process controllers are developed by minimising a cost or maximising
a reward function of a system’s state, the cost/reward being some abstract measure of success
in the control task. These concepts became key to reinforcement learning and resulted in a
common notation for definition of an RL problem.

A process for which we are to perform RL then consists of two entities: the environment
and the agent. The agent takes actions in its environment and then receives a new environ-
ment state and a reward. It is the maximisation of the sum of these rewards (termed the
return) that marks a successful learning agent.

A complication in some RL processes is that the state returned to the agent after each
action is incomplete; this is analogous to how, if we play the electric guitar loudly in our front
rooms, it is not immediately obvious that the neighbour is getting upset and may soon call
the police. The state returned to the agent are therefore termed observations. RL processes
with this complication are called partially observable. Furthermore, since you might receive
negative rewards due to the police being called, this example also introduces the concept of
the delayed reward. The action that really caused the negative reward (playing loud music)
may not be the action that immediately resulted in the negative reward, such as opening the
front door to the police long after you stopped playing loud music. Reinforcement learning
methods easily propagate later rewards back through a process, but assigning responsibility
for reward to particular actions is a more complicated topic.

We end up, therefore, with the description of the process shown in Fig. 4.

Figure 4: A visual description of a reinforcement learning process, in
which an agent acts in an environment and receives rewards and
observations afterwards

The breakthrough in optimal control came with Bellman’s 1957 book Dynamic Pro-
gramming [12], which described a recursive method of optimising the reward function by
expressing the return value of a system state in terms of the immediate reward by taking a
particular action now and the expected return value of the resultant state.

7



Later in the same year, Bellman formalised a discrete, stochastic variant of dynamic pro-
gramming [13], which made the technique suitable both for noisy, real-world stochastic pro-
cesses and computerised solution. The name Bellman gave these processes was the Marko-
vian or Markov decision process (MDP).

Basic Markov decision processes are defined by:
* State space X’

* Action space U

Probability distribution of a particular initial state p(x)
* Dynamics - probability of an action u in state x resulting in state x/, p(x/|x, u)
* Reward function r(x, u,x/)

At each step ¢ in the MDP, given an action u; € U from a state x; € X, there is a
probability that these will result in a:

* new state x;+1 ~ P(X¢4+1[x¢, uy)

* reward 7441 = (X, Uy, Xp41)

What formalises the MDP is that at each time step ¢, the probability distributions of new
rewards and states depend only on the prior state and reward—the history of the process
is encoded in the present state. Collectively, these probabilities are called the transition
probabilities, or dynamics.

The goal of the learning agent is to develop a deterministic policy 7(x;) or stochastic
policy 7 (u¢|x;) for traversing the MDP—a function mapping the current state x; to an action
w—which optimises the expected return Ry = > 35, vy, where 7 is a return discount
rate, i.e. a factor that places importance on the rewards in the next few steps. As the agent
moves through the MDP, a trajectory 7 = (x¢, ut);~, is generated.

It should be noted that not all MDPs are ongoing. Many, including the robot MDPs
on which GPS works, have an end—they are episodic. In this case, after the MDP passes
the end, there are considered for the purposes of maintaining the same return equation, that
there are an infinite number of zero-reward state transitions.

It is now possible to define a function known as the value function under the policy. The
value of a state is the expected return starting in that state and following the current policy:

Uz (x) = Ep(Re|xe = x)
= Ex(res1 + YRep1|x = x)

A secondary value function can also be defined, the action-value function ¢, (x¢, ut). The
action value is the expected return starting in state x;, enacting u; and then continuing in
the same way as with the state-value function v, (x¢):

g=(x,u) = E(RJxt = x,u; = u)

Bellman states that the optimal value functions are those value functions which maximise
the expected returns under the policy at hand, i.e. the value functions where the step-in-hand
reward is the reward for taking the action leading to the state with the optimal next value



function. The optimal policy 7, is the policy under which the value of each state is maximised
for each and every state in the state space.

The value functions have recursive definitions for their optima called the Bellman opti-
mality equations v, (x) and g, (x):

Vi (x) = X . (x,u))

= maaxEm (Rilxt = x,uy = u)

g«(x,u) = E(ryp1 + max g (X¢41,0/)|[x¢ = x,u; = u)

2.1.2 Tabular derivation of the value functions and policies

For MDPs with small, discrete state and action spaces, it is possible (because values/policies
for each state and action can fit in a computer’s memory) to derive piecewise optimal value
functions and policies by progressively constructing a lookup table for each state or state-
action pair. There are a number of these tabular methods, however, there are two (very) basic
methods which are illuminating later on in this thesis. They respectively utilise dynamic
programming (DP), in which a problem simplified by recursively biting off a chunk of the
problem and dealing with that before moving on to the rest, and Monte Carlo methods, in
which functions are constructed numerically from experimental data.

Using DP to tabularly solve MDPs is computationally expensive—prohibitively so in all
but quite small MDPs [4]. It is a brute-force approach. Using the above equation for the
value function, the value function may be found by the solution of simultaneous equations
for each state, however iterative evaluation of a policy is a more practical alternative. In
addition to its expense, the DP approach demands complete knowledge of the dynamics of
the process.

'The tabular value function is then derived by calculating interim values for each state
until convergence, using arbitrary initial values.

Uk +1(x) = Er(req1 + yok(Xe41) [xe = x)

= > w(up) Y plot, vl w)lr + 0 ()]

x/,r

Note that the update in the DP method of policy evaluation is based on the expected next
state.

Improvement of the policy relies on a simple operation. For each state, consider each
possible action. If a particular action-value is higher than the state-value, then the policy
should be changed to reflect that fact. In deterministic tabular policies, this is just a matter
of replacing the entry for the current state with the new action. In stochastic policies, it is up
to the programmer to determine how much to increase the probability of the new preferred
action (see Section 2.1.3 below.

The repeated application of policy evaluation and policy improvement is called poficy
iteration and can be shown to converge on the optimal policy, however, it is practical to cut
off the iteration once the changes to the value function grow smaller than a certain threshold.

A slightly different technique is value iteration, in which only one step of policy evalua-
tion is conducted before a new policy is found. Although this may take longer to converge



than purely the policy improvement stage of policy iteration, it avoids the multiple value-
function updates in the policy evaluation stage. Overall, therefore, value iteration tends to
be faster and still converges on the optimal policy.

Vg1 (x) = maaxE[rtH + Yor (x¢41) [x¢ = x, up = u

Monte Carlo methods (MC) are an alternative to the iterative DP approach. MC uses
a set of experimental data to derive a value function and perform the policy update.
The expected value of a random experimental variable is the mean of the values it takes in
an infinite number of trials. In simple MDPs, with a low number of states and a low number
of actions possible in each state, finding the value function is a matter of running the agent
through MDP a sufficiently large number of times that the mean return from each state in
the sampled trajectories has tended towards the expected value enough that deviations from
the true value function are so small that they make little or no practical difterence.
First,run the MDP using a given policy and collect trajectories 7; where 7; = X¢, W, X¢41, Ve 41-
For each trajectory, calculate the empirical return Ry, in each state x; - for each time

step ¢r. The MC value function is:

ch(x) = Rx V T

A popular and graphic simple MDP is the gridworld game (Fig. 5), in which the agent
starts in a particular box in a grid and learns to move towards the green goal states by max-
imising the return. If the agent reaches the target states, it receives either a +1 or +10 reward
and the process ends. If it reaches a red state, it receives a -10 reward and the process ends.

5 (&) 7

-1 reward for _
all other steps -3 -2 |1

<% D

MC mean return
0.5x(3-5) = - ‘

8

-10 -10 -10 -10 -10

Figure 5: The gridworld illustrates how value functions for simple MDPs
can be found by trial. The empirical returns for the highlighted

state are 3 and 5, making the average return (value) —1.

At the end of each trial, a return can be found for each state in the agent’s trajectory
simply by counting back and dividing out the discount rate. At the end of the series of trials,
the recorded return values for each state can be averaged.

Two variants exist of this simple Monte Carlo policy evaluation: first-visit MC and
every-visit MC. In first-visit, only the return at the first visit to any state is included in the

10



calculation of the mean return, while in every-visit, all empirical returns are used. Both forms
converge on the true value function, but every-visit MC is more suitable in some advanced
RL methods [4].

'The action-value function can be calculated using MC methods from the same data
as the value function, however, it should be noted that for deterministic policies, only the
greedy action (the action with the highest return) will be followed for each state. This may
also happen for stochastic policies where certain actions almost always result in a certain
successor state. The ignored action values will never, or rarely in the latter case, be improved
from their initial value.

For more complicated MDPs, where, for example, states and actions are drawn from
continuums, or where the sets of possible states and/or actions are otherwise so massive that
an exhaustive evaluation of the value functions is impractical, approximations of the value
functions must be made which are nonetheless good enough.

2.1.3 Policy improvement: Exploitation and exploration

In the gridworld example, an initial policy 7 in w; = 7(x¢) might merely be uniformly
random, i.e. the action is drawn randomly from a flat distribution across all possible actions.
This is not an optimal policy, because it lends no importance to actions that will produce
higher returns.

Having conducted the trials 10,000 times, or 100,000 times, we have now derived a
value function which shows us which states, or which state-action pairs can be expected to
lead to higher returns. This information can be used to improve on the existing policy. For
each action-value in a particular state, we can test to see if it is higher than the state-value
function for the current state. We can then increase the probability of actions with higher
action-values and reduce the probability of actions with lower action-values.

Iterating this process of value function evaluation and policy improvement leads ulti-
mately to the convergence of the policy on the optimal policy. As with the value function
evaluation, this is a feasible process for simple MDPs, but for higher-complexity state-spaces,
the exhaustive approach is infeasible.

Furthermore, how much should the probability of high-return actions be increased? The
limiting increase, of course, is complete determinism: the policy always returns the action
with the highest action-value. But this may lead to suboptimal, even bad policies. The
more deterministic the policy becomes during the policy update, the less likely the agent
is to explore apparently suboptimal states in the next round of value-function evaluation.
Since the value functions change with each policy update, this “greedy” behaviour can lead
to situations where high-return states are never explored by the agent because they were not
high-return states in previous iterations.

A real-life analogy is the rise in business of short-termism [14], whereby company di-
rectors are encouraged by shareholders’greed for dividends to maximise short-term profit by
slashing investment in research and development, infrastructure and jobs. The best than can
be said is that it might work, but it is likely that near-term reward, rather than long-term
return, is being maximised.

It is, therefore, important that the policy remain stochastic—that, even in the face of
mountain evidence of a certain action-value’s efficacy, lower-value actions still have a chance
of being taken.

11



2.1.4 Approximation and the value function

While faster algorithms exist for the kind of table-lookup reinforcement learning covered
above, the dimensionality of real-world MDPs can easily become so insurmountable that
much faster methods of learning are required. These much faster methods involve the ap-
proximation either of the value function or the policy, using known interactions of the learn-
ing agent with certain environmental states to extrapolate to unknown interactions with
states with similarities to the examples. This process is very similar to the kind of regression
performed in supervised learning and, in fact, supervised learning and this form of reinforce-
ment learning share many forms of function approximation.

In function approximation, we parameterise the function of interest with a limited set
of features ¢ of the state. For each feature, we assign a weight w. The approximate value
function 0(x,w) ~ v(x) is some combination of the weights and the state features, for
example, the linear combination:

o(x,w) = w- @(x)

This form entered machine learning in 1958 with Rosenblatt’s paper on the percep-
tron[6], an elementary neural network which used a biased linear combination to activate
an artificial neuron and perform binary classification. Although Rosenblatt’s ideas were de-
bunked and pushed to one side 11 years later [15], the perceptron eventually became the
progenitor of more flexible multilayer perceptrons, which can utilise various linear and non-
linear activation functions and which underlie today’s deep and wide neural networks used
in GPS and across machine learning.

'The power of approximation for reinforcement learning lies in the reduction of the vast-
ness of the state space to the minimalistic feature and weight vectors. This reduction in
fidelity works, despite the update of the weight vector affecting the value of multiple states,
because each state might share multiple features with many other states.

In value-function approximation, one attempts to approximate the true value function by
minimising the difference between approximate values and their true counterparts. Typically,
the measure to minimise will be the mean square value error.

Since the derivative of this error e(w) = E [(vr(x) — 0(x,w)?] will reach zero at a
minimum, a minimum may be found by applying gradient descent, i.e. repeatedly finding
the gradient of the error and changing the weight vector in small steps in the direction that
will reduce the error:

Aw = —%avwe(w)
= a(vr(x) —0(x,w)) Vo (z,w)

where « is the descent step size.

Since this method aims specifically to tackle large state-spaces, intermediate approxi-
mations of the true state-values (such as calculated in the tabular methods of Section 2.1.2)
are unavailable and another target value must be used in its place. According to the Monte
Carlo method, we can approximate the true value using the sampled return Ry, so that the
weight update becomes:

Aw = a (Ry — 0(x,w)) Vo (z,w)

However, other update targets are available. In an alternative to Monte Carlo called
temporal difference learning [16], the sum of the next sampled reward r; and the discounted

12



temporary value of the next sampled state y0(z¢11,w) can be used. This can further be
extended to include the more than one step in a sampled trajectory.

2.2 Direct search for approximate policies

There exist two connected (big) problems with approximate value function-based methods
of RL. While stochastic policies can be derived from the value function, the method of
doing so is very much in the hands of the implementer. Really, building a policy from a
value function lends itself most obviously to ultimately greedy, that is deterministic, policies.
Sutton et al [17] decried value function approximation for its erratic policy updates and
lack of convergence on optimal policies. They précised an emerging class of RL methods in
which, instead of deriving a stochastic policy from an approximate value function, the policy
itself becomes the parameterised function.

In their monograph on the topic (written, alas, before the announcement of guided policy
search), Deisenroth, Neumann and Peters [18] champion policy search methods for their
compact parametric representation in large state spaces, explorative properties and smooth
trajectory generation, but note that they tend to result in only locally optimal policies, i.e.
policies that work well around certain trajectories through state space.

'They also praise policy approximation over value approximation for “safe” parameter up-
dates, whereby only small policy updates are permitted. In value-function approximation,
small changes to the value function may result in large changes to the policy, making the
policy dangerous to use on real robots.

For a developing policy 7(x, w), the essential form of policy update is similar to value-
function update:

Thtr1(X, W) = T (x, W) + (A7) 11 (x, W)

As opposed to the tabular policies in Section 2.1, which use a piecewise probability mass
function, approximative policies in policy search may use any sort of probability density
function, since it the parameters of the function that are being updated. Policy representations

may be picked depending upon the type of MDP being controlled.

2.2.1 Model-based and model-free policy search

An important classification in policy-based RL methods is between model-based learning
and model-free learning. Both classes use experimental data, but at different stages of the
policy development and in often radically different quantities.

Model-based methods learn a dynamic model of the MDP p(z/|z, «) and then develop
policy updates based on these dynamics. The experimental data requirement comes during
the learning of the process dynamics.

Model-free methods are usually used when it is difficult or impossible to acquire the
process dynamics. For example, in scenarios where a robot is called upon to interact with
unknown, changing external objects, the process dynamics are not simply the dynamics of
moving the robot around. The robot dynamics are quite stable. However, introducing an
obstacle to prevent a robotic arm’s movement, or something that it must grip and move
around, means a complete change in the process dynamics in the region of the object. Hence,
the empirical data sample requirement for model-free methods comes at every iteration of
policy update.

13



The difference in data sample usage makes model-based methods more sample efficient
than model-free methods (on the whole). Nonetheless, model-free methods are popular in
real-world applications[4] due to the proliferation of MDPs with unexpected and/or com-
plex dynamics. Guided policy search, which in its original form is a hybrid of the model-free
and model-based approaches, specifically reduces the complexity of its dynamic models using
a model-based component, before feeding its results to a model-free general policy.

Whether one opts for a model-based or model-free RL method, there are a growing
number of choices of algorithm.

2.2.2 Actor-critic reinforcement learning

Policy search methods have a notable problem—that the variance of the policy can be very
high [4]. In real-world systems, this can result in frequent undesirable outcomes and unsafe
stresses on physical components. Actor-critic architectures have been designed to overcome
this problem.

The idea is that, similar to the idea of supervision in supervised learning, a process
controller—an actor—has a check on its behaviour—the critic. This idea goes back to a 1983
paper by Barto, Sutton and Anderson [19] which detailed a neural control system called the
associative search element (ASE), similar to the parameterised RL policy. A second neural
device termed the adaptive critic element (ACE) further focused the control policies of the
ASE by evaluating the worth of its current configuration.

In general policy-based RL, the actor is the parameterised policy system, such as the
Monte Carlo policy gradient learner, while the critic is a parameterised approximate value
function like the value function in Section 2.1.4. At each policy improvement step, the
current policy is evaluated—run through—and state-action-reward samples are used to fit
a value model of the policy. Once this model is sufficiently developed, instead of the policy
updating according to its own gradient, the policy updates according to expected return given

by the derived value function (see Fig. 6).

Model value
function to
estimate return

Evaluate policy
by running
in-process

Improve policy
based on
estimated return

Figure 6: Policy update cycle of actor-critic RL

Although GPS is not an actor-critic RL method, it does benefit from the important
features of this architecture. GPS specifically produces low-variance local policy examples
and conducts supervised learning using these examples as supervisor.

14



Policy-search RL complex dynamics  complex policy HARD
Supervised learning no dynamics complex policy EASY
Trajectory optimisation  complex dynamics  simple policy =~ EASY

Table 1: Levine’s simple précis of GPS reasoning

2.3 Guided policy search

Guided policy search [10] is an approxmative policy-search RL method developed by Levine
and Koltun to avoid a single problem common to many previous policy-search methods:
that they easily converge prematurely into only locally optimal policies. While policy-based
approximative RL methods are better than value-function methods at converging on locally
optimal policies, the caveat that these optimal policies may only be local is a feature that can
only be utilised in certain circumstances [20] where a more general policy is not required.

'The algorithm can be considered (in the broad sense) as a two-part process (see Fig. 7a).
'The first part deals with generating a collection of local control policies; the second deals with
training a general policy that interpolates between the local policies collectively to form a
general policy. This general policy can then be used to improve development of local policies.

'This structure allows reinforcement learning to be simplified, using only regressive super-
vised learning to train a general policy and as simple a reliable method as one wishes for the
generation of local policies. Although it was not initially formulated by Levine and Koltun
in such terms, looking at GPS in this way right from the start assists in understanding later
variants of the algorithm.

Discussing vanilla GPS, Levine describes the simplification of RL with GPS, which is
reproduced in Table 1. It shows how the two components of a model-based RL algorithm,
the dynamics and the policy, can each be built up piecemeal from specific local parts. This
turns the weakness of model-based methods—the need to build complex dynamic models—
into a strength.

Levine and Koltun’s original formulation of GPS is a model-based RL method, however,
the dynamic model is used only in the first half of the algorithm to generate the guiding
local policies which are then used to train the general policy. The general policy may be
improved independently of the dynamic model, allowing the general policy to be built up
from a number of dynamic models specific to subsets of the process statespace.

Figure 7b shows the full original GPS algorithm. The whole diagram belongs in the
first (left-hand) part of the abstract diagram in Fig. 7a except that component labeled “train
mp(ulx)”, which is the general policy training component.

'The algorithm begins with a default policy, which is run from a starting state to generate
a set of trajectories of known length. The state transitions are then used to formulate the
state-transition probability function p(x/|x, u).

The new local policy is then run to generate a new set of empirical trajectory samples.

2.3.1 Trajectory optimisation

Trajectory optimisation is used to create a controller that will attain the optimal path through
state space from a given initial state to a given target state. It is used by GPS to improve
local policies. In the first instance, local policies are run to generate a set of trajectories. But

15



Training of
Update general policy
» with local
policies as
supervisor

Development
of collection of
inflexible local
policies

Improve

(a) Guided policy search at its most general is a two-part iterative process of local-policy generation
and general-policy training

***********************************************************

1Local ™ generation

run policy
q(u|x,) on robot
collect D = {r;}

train mp(ug|x;)

next
iteration

add in as cost

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| iLQR solve
| for q(u|x;)
|

(b) The basic formulation of the GPS algorithm in which local policies are built up around guid-
ing samples using trajectory optimisation, before the general policy is trained using supervised
learning

Figure 7: Guided policy search

16



these trajectories are unlikely to be optimal for any suboptimal controller (local policy) and
in fact may be poor.

This is a common problem in control engineering for which the entire field of optimal
control was developed. How does one develop a controller that will attain that optimal
trajectory?

First, we need to understand how bad it is when the controller fails to achieve the optimal
path through statespace, how bad it is when the controller fails to attain the desired final state
in terms of the distance between the desired and actual final states. Optimal controllers solve
the optimisation problem by minimising a measure of this badness called the cost, just like
the maximisation of the reward in the usual RL formulation.

'The linear-quadratic regulator (LQR) is a form of controller that minimises a quadratic
cost function for a linear system and produces a gain matrix derived from the cost of past
state transitions, i.e. actions. The cost function is quadratic because this reduces the effects
of small noises in the state signal.

Given a trajectory through statespace, the cost function that is minimised in GPS is a
function of the actions and the state. These two terms correspond to the swiftness/smooth-
ness of the trajectory and the fidelity—the error—of the actual final state.

'The major problem with traditional LQRs is that they assume constant linear dynamics
that may not hold true once the trajectory begins to be optimised—certainly the case in GPS.
Tassa et al[21] developed a variant of the LQR called iterative LQR (iILQR), which applies
LQR over and again, updating linearised dynamics that it works with on the basis of the new
trajectory it generates and then reoptimising the trajectory using the new dynamics. If the
difference between the return on the new trajectory and the return on the original trajectory
is lower than a set threshold, then the trajectory has been fully optimised as is returned as
the new local GPS policy. Otherwise, if the cost of the new trajectory is lower than the cost
of the old trajectory, the new trajectory becomes the old trajectory and the process reiterates
until convergence. If the cost of the new trajectory is higher than that of the old, then the
trajectory has been changed too much and a more conservative attempt at optimisation is
made.

'The original GPS paper formulates iLQR thusly, the state and action subscripts meaning

partial differentiation with respect to those functions:

Given a trajectory (X1, u1), ..., (X7, ur), define:

X; =X — Xt

U= U — oy
'The dynamics and reward are:
X1 R forXe + furtly

1
oo T T . T A T A - =
r(x¢,ug) R Xy vy 40 Ty + ixt Ro.ix; + iut Ryt + 0y Rypxy + (X, 0y)

17



The derivatives of the Q-function and value function and linear policy terms are estimated:

Quat = Taat + 5 Vewt41 fat Qut = Tat + [ Vi1
Quut = Tuut + [ 5Vt 11 fut Qut = Tt + [E Vi1
Quat = Tuzt + fily Vowt1 fot

Vit = Qut — Quuat Qi Qut bt = = QuurQut
Veat = Quat — QthQ;Jtqut K; = *Q&}tqut

'The iLQR then gives a deterministic optimal policy for the optimised trajectory:
g(x) =g + ke + Ke(xe — )

However, for the purposes of GPS, a stochastic policy, a trajectory distribution, around the
optimised trajectory is required. It is from these distributions that the general policy is built.

g = Gu;g(x), ~Qpu)

2.3.2 Local policy acquisition, training of general policies and neural
networks

'The local policy improvement portion of GPS, which constitutes the bulk of the algorithmic
complexity, is only preliminary to the main goal: deriving a general policy. GPS trades for a
reduction in the computational difficulty of the full algorithm by building up a general pol-
icy from a number of specific local policies. In more elementary RL methods based on the
approximation of the policy function, notably the model-free Monte Carlo-based REIN-
FORCE algorithms, the general policy approximation must be explicitly trained across the
entire state and transition spaces. GPS avoids this by training its global policy approximation
to mimic highly region-specific local policies that would be utterly insufficient to describe
the entire state and transition spaces by themselves, and hoping that there are enough local
policies that the global policy can effectively interpolate between them.

For each set of local policy improvements between a set pair of initial and final states,
there is a long train of empirical trajectories emerging as each successive policy is run in the
first component of Fig. 7b. These trajectories are used to calculate new transition dynamics,
but they are also used to train the general policy approximator.

For each trajectory 7;, there is a sequence of overlapping state-action pairs (x¢, ut). These
are used as supervisor input-output pairs to the general policy approximator in a process that
is, quite simply, supervised learning.

In vanilla GPS, the general policy approximator is a deep feedforward neural network.
These networks are a much larger, nonlinear extension of the linear combination, in which
layers of singly parameterised artificial neurons are used to represent the policy function.
Each neuron is comprised by a activation function/weight pair, with the input being weighted.
These weights are the policy parameters. With an activating input, the neuron “fires” and
sends a signal to the next neuron. In the experiments conducted for the original GPS
paper, the activation function used was a soft rectifying nonlinearity, or softplus function
a = log (1 4 €”), which is used as an approximation of linear rectifier (see Fig. 8).

'The neural network learns by comparing the global network output to the actions given
in the supervisory samples—the actions generated in the running of the local policies—and
then modifying the input weights of each neuron in the network in accordance with whether

18



the global output state matched the supervisory output. Since Levine and Koltun required
a stochastic policy, but the plain neural network learns to produce a deterministic policy (i.e.
to always match the supervisor outputs), Gaussian noise was added to the output (see Fig 9).

This process is similar to the policy gradient or value-function gradient update in simpler
approximative RL methods.

IS

— Softplus
| — Linear rectifier

Figure 8: Comparison between the softplus function and a linear rectifier

Softplus
hidden
Input layer Output
layer WO layer

Figure 9: This simplified diagram of the neural network used to train the GPS general policy,
with softplus activation functions in the single hidden layer and Gaussian noise
added at the output to give a stochastic policy

19



2.3.3 Criticisms and developments of GPS

GMMs for better dynamics: Levine and Koltun have continued to contribute to the de-
velopment of GPS. A particularly helpful insight of Levine and Abbeel’s [22] was that the
derivation of the dynamics from newly sampled trajectories in the local policy generator re-
lied on a small number of samples and that it could be too easy for a linear regression to
these points to poorly represent the real dynamics (see Fig. 10a).

In an extension of GPS, the new trajectories are also used to train a Gaussian mixture
model (GMM). New trajectories are added to the GMM in addition to being used to calcu-
late the dynamics. After the first iterations of local policy development, the GMM becomes
a prior in the derivation of the new dynamic model. This leads to the fit of the dynamics to
the new samples being better (see Fig. 10b).

Adversaries for robustness: ~Although the GMM addition to GPS results in more robust
linear fits for the dynamics, GPS is not designed with disturbance of the environment in
mind and does not include a noise term in the model of the state update in the LQR. Ogun-
molu [23] adopts a trajectory optimisation process similar to the DDP process suggested
by Abbeel. GPS is augmented with an adversarial term in the optimisation cost function,
and instead of linearising the dynamics, a 2nd-order Taylor expansion of the Bellman up-
date is used. This was found to result in general GPS policies that were robust in the face of
disturbance of the environment.

GPS under unknown dynamics: Following the addition of the GMMs and work on
learning GPS policies without unknown dynamics [24], Levine, Wagener and Abbeel devel-
oped a GPS system for use on robots in contact-rich environments [25] such as assembling
toys and screwing on bottle caps. Using sampled trajectories, like normal GPS, the new al-
gorithm constrains the spatial divergence between the current trajectory and a new one and
then optimises the current trajectory by minimising the Kullback-Leibler divergence by dual
gradient descent. A dynamic model is then calculated. This process iterates a set number of
times.

T T
True dynamics

| —— Dynamics from linear regression

5

x,n X,

(a) In the original GPS, the small number (b) Using a Gaussian mixture to keep past
of samples may lead to erroneous regressions dynamic models as a prior to the dynamic
fit results in better dynamic models in later
local policy updates
Figure 10

20



Since standard GPS is unable to deal with the unknown dynamics inherent in contact
of the robot with other objects, these extensions could be key to much more complicated
contact-rich environments in future, such as assembly tasks on Earth and in space.

Model predictive control: Zhang et al. [26] exchange the LQR-based on-policy local
policy generation of standard GPS for local policies generated by off-policy model predictive
control. The motivation is that in training on MDPs such as their aerial drone tasks, poor
initial dynamic models and policies and lack of access to the full environmental state can
result in catastrophic failures of the hardware—the drone crashes. Model predictive control
uses carefully controlled environments and extensive computation across the full state to
generate policies. Once local policies have been generated, they can be used to train a general
GPS policy that accepts as input, during operation, partially observable states, such as only
the outputs on onboard sensors.

Guided policy search has received considerable attention since its publication in 2013
and the experiments on it and extensions of it are too numerable to be fully explored in
this thesis. Other contributions include the use of generative motor reflexes to improve the
performance of the general policy in areas of the state space that lie far from the local poli-
cies [27], the use of mirror-gradient GPS in the control of the highly non-linear tensegrity
robots which have limited sensory input [28], the excision of initial-position resets during
the local-policy generation in conditions of stochastic initial positions [29], further research
into contact-rich, highly non-linear environments where the LQR trajectory optimiser is
replaced with a model-free path integral stochastic optimiser [30] and collective, distributed
GPS using multiple robots to reduce learning time [31].

2.4 Summary

Guided policy search has, in five years, grown into a diverse research topic of its own. While
being far from the only algorithm of research in contemporary RL, GPS has overcome prob-
lems inherent in other RL methods, even those of considerable complexity, such as sample
inefhiciency and the local optimal policy trap. It is a robust and fast RL technique suited to
a range of tasks in software and on robotic hardware. However, particularly in the areas of
contact-rich environments and partially observable states, there is still work to be done.

21



Section 3

Implementation

This section introduces the existing technologies used in the implementation of guided policy
search on the KUKA Lightweight Robot 4+ (LWR), before going on to present the new work
done to update existing software to work not just on the LWR, but on similar hardware too.
Section 3.1 very briefly presents the LWR. Section 3.2 introduces the Robot Operating
System (ROS) middleware, used to control robots at an abstract level and specifically the
ros_control component. Section 3.3 gives an overview of a ROS hardware interface for
KUKA LWR robots. Section 3.4 describes a complex, but flexible implementation of the
GPS core algorithm [32]. Section 3.5 discusses the development of the ROS controller,
which interfaces GPS and ROS and which constituted the bulk of the work on this thesis.
Section 3.6 briefly describes the learning agent, which brings together the components of the
GPS backend and runs the experiments detailed in Section 4. Section 3.7 briefly describes
a utility written to send commands to the GPS position controller during the setup of the
experiments.

22



3.1 The KUKA LWR4+ robot

'The KUKA Lightweight Robot 4+, known in German-speaking countries as the Leichtbau-
roboter or LBR 4+, is a low-power, light industrial robot (see Fig. 11). It weighs about 16kg
and is therefore quite portable and suitable for lab research [33].

It has seven joints (degrees of freedom); six are required are to attain any end-effector
position and orientation within reach. The seventh joint is therefore redundant and allows
the robot to place its end-effector at any single point while changing its configuration.

'The LWR may directly operated by human via a portable control panel called a pen-
dant. In the context of extensions of this thesis, this allows human-directed trajectories to
be recorded and used in third-party software applications (see Section 5.2.2).

‘Third-party systems may directly interface with the LWR via the Fast Research Interface
[34] over Ethernet, which allows a programmer to control (using a C++ interface library)
the robot by direct joint-space position or torque command, Cartesian position command or
joint-space impedance command. The topology of command of the LWR is seen in Fig.12.

'The FRI is used by the ROS hardware interface detailed in Section 3.3. In the work of
this thesis, a simulation of the LWR was used, however, the hardware interface is intended
to allow seamless switching between the robot and the simulation.

3.2 Robot Operating System

Robot Operating System, commonly known as ROS, is a middleware designed to offer ab-
stract control of robots of all varieties, from arms like the LWR to mobile robots and drones.

'The primary responsibilities of ROS are package management, process management (in-
cluding launch), inter-process communication, logging and monitoring. Hundreds of ROS
packages exist, containing things ranging from support files for specific robots to highly ab-
stract trajectory generation and sensor visualisation tools. A package may contain any num-
ber of nodes—executable files, each intended to perform one specific purpose.

'The ros_core package contains three key zodes: master, parameter_server and ros_out.
Nodes are executables, usually performing very specific purposes. The key to getting things
done in ROS is to connect nodes and configurations from a number of different packages,
in order to maintain maximum portability across applications and robots.

'The master node registers and controls the execution of all the other nodes that a user
might load.

ROS topics and services are used for interprocess communication. Topics are simple one-
way communication channels. They are opened by a node that is a publisher, which outputs
data. Subscribers are used by other nodes to receive the information as it comes in. Service
nodes are an encapsulation of a publisher and a subscriber. Nodes may query the service by
sending data on a certain topic. The service will immediately pick up the data, process it and
send a response back on the output topic.

'The parameter server is a special part of the master node. It is an XIML-based dictionary
to which any node may upload data it shares with other nodes. All parametric data is visi-
ble to all nodes, but is separated into custom namespaces to avoid confusion and duplicate
handles.

When ROS was first written, the authors built a robot named the PR2 to demonstrate
ROS’s capabilities. The implementation of GPS used in this thesis comes with a ROS
demonstration using the original PR2 packages, however, this code is unusable for any other
robot.

23



In more recent versions of ROS, an abstractive package called ros_control has been in-
cluded, which aids in writing controllers. Programmers write a ROS controller, which loads
a robot-specific hardware interface, which in turn exposes one or more of a number of stan-
dard or bespoke joint control interfaces. For example, the controller written for this thesis
uses the LWR hardware interface and the effort joint interface—for direct torque control.
The abstract joint control interface sits between the controller and hardware interface.

'The experiments detailed in Section 4.3 utilise a simulated version of the KUKA robot.
'The simulator, Gazebo, was written for users of ROS and its development is tightly coupled
with that of ROS. The Gazebo server node may be communicated with via ROS topics and
models of robots (in URDF format) may be uploaded to the ROS parameter server for use
by ROS.

Figure 11: A promotional image of the KUKA LWR 4+ [33]

24



==

Figure 12: The Fast Research Interface means that the LWR 4+ is not limited to control by
KUKA’s
bespoke hardware and software

3.3 KUKA LWR hardware interface

An existing LWR hardware interface for ROS ! was used in this thesis. It was written by staff
at the Centro di Enrico Piaggio (Centro E. Piaggio), a bioengineering and robotics research
centre at the University of Pisa, Italy. The hardware interface comes as part of a metapackage
containing the hardware interface, a set of example controllers for ros_control, a URDF
description of the robot and an example control scenario.

'The hardware interface is built to control both the real LWR via the FRI and the Gazebo
simulation. Which interface is loaded should be specified in the controller launcher.

During the development of the GPS controller it was important, during the extensive
debugging phase, to be able to follow the torques being sent by the GPS backend all the
way to the robot. It was found that there were differences in the hardware interface code
between apparently intended behaviours and real behaviours. In particular, the Gazebo-
specific hardware interface confused joint effort control, when pre-calculated torques are
sent to the robot, with joint impedance control, when a desired torque is requested of the
hardware interface and an internal spring-mass control system is used to gradually bring the
torque to the desired level.

3.4 Guided policy search suite
'The enormous (around 20,000 lines of C++ and Python), but flexible GPS implementation

that was central to this thesis work was primarily written by Chelsea Finn, a student under
GPS coinventor Sergey Levine, and is hereafter referred to as Finn’s work. The component
diagram of Finn’s GPS can be seen in Fig. 13. To see the experimental configuration, refer
to Appendix B.

'The agent is the centrepiece of Finn's GPS. After loading up the experimental configu-
ration, it manages the running of the local policy generator/optimiser and the general policy
training. It also communicates with the controller. The choice of controller (and robot or

'https://github.com/CentroEPiaggio/kuka-lwr

25



other process) is entirely up to the user, but an agent class derived from Finn’s base class must
be written to communicate with the controller—to accept the transmission of state from the
controller and to transmit actions to the controller.

In the case of the KUKA, these quantities are transmitted and received via ROS topics.
'The agent therefore needs to register as a ROS node and set up publishers for the GPS
commands.

'The commands that GPS sends to the robot are:

* Get data: sends a request to the controller for the latest state and expects a response
* Relax arm: tells the controller to stop sending torques to the robot

* Reset arm: tells the controller to return the robot to the initial position specified for
this round of trajectory optimisations—does not expect a response

* Trial command: sends the controller a policy and expects the return of a trajectory

'The controller is the next item of interest. Although it is called a controller, really, for
the purposes of GPS, it simply acts as an interface between the agent and whatever robot or
abstract control layer one is using. Finn’s controller is a complex base class written in C++,
named RobotPlugin. Since this base class has no knowledge of the robot, or the hardware
abstraction, that will be used, separate classes which are instantiated in RobotPlugin, abstract
components in the following ways:

* Sensors:

— abstractions for physical state sensors, e.g. the joint states coming from the robot,

photographs

— abstractions for the method of communication with the GPS agent, e.g. ROS
topics

* Controllers:

— trial controller, for commanding the robot to conduct a series of trials and return
a set of trajectories

— position controller, an in-built PID controller for commanding the robot to reset

Despite the efforts in abstraction, Finn’s software is incomplete. Most notably, the
RobotPlugin class assumes two physical robots, due to her implementation of a derived
controller for the PR2 robot, which has two arms. On one arm, a true PID controller is run
and trial torques are sent, while on the other, a dummy PID controller is run and torques
are not sent. Use of both PID controllers and torque commands is required for any ROS
controller derived directly from RobotPlugin.

In the suite of examples that Finn provides is a derivative C++ class of RobotPlugin,
called PR2Plugin, specifically for the PR2 robot. Instead of managing two instances of a
one-arm RobotPlugin class, RobotPlugin contains the code for two arms and PR2Plugin
merely extends this with more PR2-specific code. Dealing with this was one of the problems

in implementing GPS for the LWR.

26



1
oo |

Programming
Data

Experimental
configuration

LQR

Path integral

Path int./LQR

Constant

representation

Local policy o
) representation | Optimiser(s)
General policy orior
format
|
Caffe NN
Tensorflow NN
Dynamics

GMM

Figure 13: The structure of Finn’s implementation of GPS
27



Derived

PR2 mechanism model (ROS)

Figure 14: The structure of a PR2 controller based on the RobotPlugin
class

3.5 GPS controller for the LWR using ROS Control

Writing a GPS controller for the LWR, based on the PR2Plugin class and derived from
the RobotPlugin class was the major pre-experimental work of this thesis. While similar
operations must be performed when setting up and updating a controller for PR2 as for the
LWR, the specific ways of doing so are quite different. The PR2-specific mechanisms used
by Finn’s PR2 controller were written as a demonstration of early versions of ROS. Although
the PR2 ROS packages have been kept up to date for the sake of backward compatibility,
the preferred method for writing ROS controllers (including for the PR2) is now to write
for the ROS Control package.

The structure of the ROS controller for interfacing GPS and the PR2 is found in Fig. 14.
'The PR2Plugin class inherits both from the RobotPlugin class, which abstracts the commu-
nication with GPS and the sensing of the state of the robot, and from the pr2_controller_in-
terface class, which is found in the pr2_mechanism_model ROS package.

ROS controllers, including for the old PR2 packages, are based around two functions:
the update function, which retrieves states from the robot, calculates everything needed for
control and sends actions back to the robot, and the initialisation function, which is of par-
ticular interest.

In the initialisation of the PR2Plugin, the names of the key points on the robot (root and
tip node names) are retrieved from the parameter server, having been uploaded at the launch
of the controller. The controller then tries to initialise solvers for the forward kinematics and
Jacobian, based on those parameters. Then, the controller manually iterates over the number
of joints in the robot, constructing strings corresponding to the names of all the joints and
checking them against the joint names on the parameter server. It does this for both the

28



i

Figure 15: The structure of an LWR controller based on the RobotPlugin class

active and passive arms, partly because the PR2 has two arms, but also because dealing with
both arms is a requirement of using the RobotPlugin base class.

Finally, the controller queries the PR2 model with the names of all the joints, and the
model returns pointers to the joint states. The active and passive arm torques are explicitly
set up as arrays.

ROS Control uses a very different system (see Fig. 15). In the initialisation of an instance
of the KUKALWRPlugin class (written for this thesis), the root and tip names are also
loaded from the parameter server, but then the XIML representation of the URDF model of
the robot is also loaded from the parameter server (having been uploaded during launch. The
URDF model is then explicitly reconstructed from the XML and stored in URDF model
object. The URDF model is then converted to a kinematic tree format. The tree object is then
converted to the kinematic chain used by the PR2 plugin. After the solvers are initialised,
joint handles, rather than joint states, are populated from the effort joint interface.

The documentation for the existing GPS code prescribes that new ROS controllers for
GPS should directly inherit the RobotPlugin class (as with the PR2Plugin class), however,
this is not, in fact, possible. Function appropriate to the PR2Plugin class has been included
in the RobotPlugin class, namely the use of two arm trial controllers, because the PR2 has
two arms. In order to handle this, an intermediate class, SingleArmPlugin, fits between
RobotPlugin and KUKALWRPIlugin. This third class initialises the member variables of
RobotPlugin which pertain to the passive trial arm, but ensures no further interaction with
those variables and generates errors if commands are sent to the passive arm, or if data is
requested of it.

29



A second intermediary class was used polymorphously to initialise the GPS PID con-
troller in the KUKALWRPlugin to combat recurring problems moving the end-effector
joint in the Gazebo simulation which crashed Gazebo or caused the model to explode.

Both intermediary classes are discussed in Section 5.

3.6 GPS agent for the LWR

The difference between one GPS agent and another is largely just in the method of com-
munication between the agent and the controller. In the case of the LWR agent, its only
difference from the PR2 controller was to cease sending commands to the passive arm and
expecting replies from the passive arm as part of general updates.

3.7 Target position command utility
Setting up experiments for ROS-based GPS systems demands the use of a GUI written by

Finn. Several trajectory optimisation conditions (initial and final state) can be set to run
sequentially, which is useful if the full GPS algorithm is being used to train neural network
general policies. The GUI allows the user to move the robot to the initial and final states for
each condition and allows the user to sez the initial and final states, but does not offer any
way of moving the robot to new states that could be set. For this purpose a small utility was
written to publish commands on the GPS reset command ROS topic—desired positions,
PID gains and a clamp for the integral term of the PID controller. Figure 16 shows the GPS
target-setting UI, the Gazebo front-end and the utility for of commanding the simulated
robot.

3.8 Summary

Implementing GPS on the KUKA LWR 4+ required the help of several third-party software

packages, including the GPS back-end. However, the development of the ROS controller
for GPS proved to be a difficult task.

30



prev_target_number
(left)
(rear_right_1,
cross_left)

next_target_number
(right)
(rear_right_1,

cross_right)

prev_actuator_type
(down)
(rear_right_1,
cross_down)

next_actuator_type
{up)
(rear_right_1,
cross_up)

(rear_right_1.
action_square)

set_target_position
()
(rear_right 1,
action_circle)

set_initial_image
(z)
(rear_right 1,
action_cross)

set_target image
x)
(rear_right_1,
action_triangle}

move_to_initial

move_to_target

relax_controller

mannequin_mode

(m) (n) (c) (q)
(rear_right_2. (rear_right 2, (rear_right 2, (rear_right_2,
cross_left) cross_right) cross_down) cross_upl

Press an action to begin.
035
x Alterr
Position C nd
int _unw_dcaﬁ_ 1.97650 _ 1.54793 —._.m&._MWw _ 1.956878
Eaum:_q:w_!se _wa _3 _5.5 _wn _Pa _Sae _w.. _m.. _E. _S_S

Figure 16: Configuring experiments with the position controller command publisher

31



Section 4

Evaluation

This section presents issues around the configuration of the GPS agent (see Section 3.6)
and two experiments conducted on the performance of GPS on the KUKA LWR 4+ and
analyses the experimental results with respect to expected behaviour. The first experiment
(Section 4.2) investigates the trajectory optimisation process detailed in Section 2.3.1 and
the derivation of local optimal stochastic policies detailed in Section 2.3.2. The second ex-
periment tests local policies of the type derived in experiment 1 under perturbed initial con-
ditions. Finally, possibilities for future work are discussed.

4.1 Configuration of the GPS agent

'The GPS agent (Section 3.6) is the core tool for connecting the components of GPS. Some-
times multiple implementations of a component are made available by Finn, each performing
similar or analogous tasks to the others. For example, instead of using the linear-quadratic-
Gaussian trajectory optimiser, one might use the Bregman Alternating Direction Method
of Multipliers (BADMM) [35] [36]. In the following experiments, only a limited subset of
these components is used and will be described in Appendix B. In the nomenclature of Finn’s
GPS code, these variables are called hyperparameters and are stored on a per-experiment ba-
sis. Unless otherwise specified, the following experiments use these hyperparameters.

32



run policy g(ug|x;)
on robot
collect D = {r;}

next data

iteration

fit dynamics
P(Xe41/x, 1)

LQR solve
for q(u|x;)

{ update p

Figure 17: Local policy improvement cycle

4.2 Experiment 1: LQG trajectory optimiser performance

This first experiment uses the “inner” section of GPS, i.e. the local policy optimisation por-
tion (Fig. 17). The experiment aims, first, to demonstrate that the controller and agent are
sufficient for the GPS backend to learn optimal policies local to these initial and final con-
figurations and, second, to examine the extent to which this experimental setup allows GPS
to find consistent optimised trajectories.

4.2.1 Tasks

Six tasks were set up using the GUI and the default hyperparameters specified in Section 4.1.
The tasks were intended to represent a variety of difficulties. In tasks 1 and 3, the initial
joint positions are all approximately zero, not all joints change between the initial and final
positions and there is a maximum movement of only half the joint range; in task 1, the range
movement ranges are rather less than that. In task 2, the movement from initial to final
position is little more than a single rotation of the base joint. In the other three tasks, some
joints were specifically set close to their limits in order to restrict the possible actions the
robot may take—to make areas of the trajectory distributions illegal. Images of the initial
and target positions can be found in Appendix A.

Each task has been trained five times from start to finish. Within each task, there are 10
iterations of the optimisation process and within each iteration, seven sample trajectories are
taken, from which the best optimised trajectory is chosen to form the optimal local policy.
There are 200 steps in each trajectory.

Within each iteration, a mean cost ¢; is found from the seven samples at each step and
across each of the 200 steps in the trajectory. The cost comprises an action term, half the
elemental sum of the three-way element-wise product of a weight vector w,, with the action
u twice, and a state (position) term of half the squared L2 norm of the final position error
in the trajectory, weighted with a scalar factor w, = 50. The value was kept from the PR2
experiment on which these experiments were based.

c= [;Z(wuoutow)} + B\/@HetTHg]

33



Mean cost

Iteration

Figure 18: The expected profile of average costs in experiment 1

4.2.2 Performance metrics

Due to the naturally differing lengths of the trajectories, there is expected to be significant
difference between the mean action-term costs. Therefore, the primary measures of perfor-
mance will be the trajectory of mean costs across fasks—the mean of means—but also the
standard deviation of costs at each iteration, taken across all trials of each task. For a task, a
cost-trajectory comprises mean-of-mean costs ;.

If the agent is learning, p will follow an overall downward trend, flattening out as the
policy becomes optimal (Fig. 18). However, it should be borne in mind that the illustrative
curve is ideal and not realistic. The tasks are stochastic processes and there is much room for
deviation from the ideal. Furthermore, the more difficult tasks are expected to take longer
to learn and p will not go down so fast. There may also be flattening at certain points in the
learning process, leading to false impressions of an optimal policy, when in fact, the agent
can learn to furthere reduce the cost.

The degree to which the absolute final value of y is representative of a optimal policy
depends on the action cost, which depends both on the distance between the initial and final
positions and on the difficulty of the task. However, since both the state and action costs rely
on squared variables, as the costs approach zero, the policy must be approaching optimality.

'The standard deviation of mean costs o; is a secondary measure. It is expected that it
will reduce as the learned policy approaches optimality.

4.2.3 Results and evaluation

This experiment aimed to ascertain whether the GPS algorithm could reliably produce qual-
ity local policies, based on the qualitative shape of the curve of mean costs in each task, the
mean costs itself as a measure of quality, and the variance/standard deviation of the actual
mean costs from the mean of means. Figure 20 shows the results for each task. Figure 19
is provided to more clearly show the curve of task 1 without the outlying mean costs of the
first trial.

While the graphs clearly demonstrate the agent is learning to move the robot in the right
direction, the efficacy of this GPS configuration is extremely variable. In this limited test,
tasks 1,2, 5 and 6 do appear to, generally, converge on an optimal policy (Figs. 20a, 20b, 20e
and 20f). 'This is pronounced in task 2. Nonetheless, the considerably lower-cost policies
found in tasks 5 and 6 should that the means across trials are not yet representative of the
optimal policy.

'The final standard deviations in tasks 3, 4, 5 and 6 indicate that, while the agent does
learn, it is not yet reliably able to optimise local policies. In particular, in task 6, the standard
deviation actually continues to rise until the end of the trajectories.

34



These high-deviation tasks were specifically chosen to include positions close to the joint
limits. This clamps the distribution of allowable trajectories to legal configurations and may,
therefore, account for the increased standard deviation from the mean of means.

It is likely that where the cost-trajectories converge, the derived local policy comes close
to the true optimal policy within the nine optimisation iterations. In the tasks where the
convergence is limited, or the apparent convergence is on a considerably higher mean cost
than the best case, the expectation is that further iterations would result in derivation of the
optimal policy.

Each trial took approximately 15-20 minutes to run on the available hardware and it was
impractical at that time to run further iterations over a variety of tasks.

Mean cost

- - Trial1 ~

20

Trial 2
Trial 3
Trial 4
Trial 5
One o;

— Mean of means

1

2

Iteration

35

Figure 19: Task 1 results, zoomed in to exclude the high freak costs




300

Mean cost

/AR - - Triall
fon - - Trial 2
- - Trial 3 i
/ \ - - Trial 4
- - Trial 5
/ \ One o;

— Mean of means

=50
0

90

4 5 6 7 8 9
Iteration

(a) Task 1 results

Mean cost

- - Triall
Trial 2
Trial 3 i
Trial 4
Trial 5
One o;
Mean of means

10
0

Iteration

(b) Task 2 results

36



Mean cost

Mean cost

60

50

40

30

20

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
One o;
Mean of means [/

10
0 L
0 1
Iteration
(c) Task 3 results
45 .
- - Triall
N T 7T - —-Tr!alz
~ - - Trial 3
\ o .
\\\\\ \ Trial 4
35 N \ - - Trial 5
\ _ One o;
30 N ~ 4 — Mean of means ||
25
20
15
10+
5 L
0 L
0 1

Iteration

(d) Task 4 results

37



Mean cost

Mean cost

40

30

140

60

a0

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
One o;
Mean of mean

S

1

2

Iteration

(e) Task 5 results

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
One o;

Mean of means

20

1 2

4 5
Iteration

(f) Task 6 results

Figure 20

38




4.3 Experiment2: Performance of local policies with regard
to perturbed initial configurations

'The purpose of this experiment is to evaluate a prior learned local policy in operation on
noisy tasks—where the initial position has been perturbed. Once again, the portion of GPS
being used can be seen in Fig. 17.

4.3.1 Tasks and expected behaviour

'The nature of GPS is to find optimal policies in a stochastic setting, i.e. that the trajectories
generated under the policy have a random element. The upshot of the stochastic policy
is that, instead of generating a single trajectory, the policy will generate trajectories from
a spatial distribution. The tasks in this experiment are intended to find how the policy is
able to track the target end-effector position given perturbations in the initial end-effector
position.

It is expected that the policy will perform well, that is, generally achieve a final position
error broadly in line with the final error at the end of training, for initial positions leading
to trajectories that fall within the trained trajectory distribution. Once the initial error rises
such that this is no longer the case, the absolute final error and standard deviation from the
final training error are expected to rapidly rise (see Fig. 21).

Caveat: In order to perturb the initial joint position, the GPS target setup GUI must
be used in conjunction with an external position command utility. The position command
utility (Section 3.7) sends desired positions to the ROS controller, which then uses GPS’s
internal PID controller to generate torques. The PID controller is stopped by a position
error test against a hard-coded value of 0.385 and a velocity test against a hard-coded value
of 0.03. The position figure could well be improved by use of better PID gains, however,
finding appropriate gains becomes a trial and error search due to the Gazebo simulation’s
propensity to crash or explode. The position controller works in joint space only. This made
perturbing the initial position exactly impossible. Additionally, the simulated Kuka had a
turther tendency to slowly fall over when the joints with horizontal axes were nonzero.

The agent configuration used in this experiment is based on task 2 in experiment 1, due
to its reliable convergence. A local policy was trained with the configurational changes in
Table 2 in order to maximise the quality of the policy.

'The training profile of the policy can be seen in Fig. 22. Interestingly, the mean cost can
be seen to achieve the same level approximated in experiment 1, task 2, collectively, by the
10th iteration, before improving further by the 20th, albeit at a slower learning rate.

Final error

Initial error

Figure 21: The expected profile of final error in experiment 2

39



Hyperparameter Original value New value

agent.T 200 300
algorithm.iterations 10 20
config.num_samples 7 10

Table 2: Modifications to experiment 1, task 2 for a high-

quality, convergent policy in experiment 2

For each perturbation, the experiment will be run five times, allowing for a graph of
mean final errors and standard deviations. The final errors are represented in the same way
as the learning position error, where e is the final error:

Mean cost

10
0

1 2
5V lell

5 10 15 20
Iteration

Figure 22: The training profile of the policy for experiment 2, showing the improvement
from the changed hyperparameters

40



4.3.2 Results and evaluation

This experiment aimed to show that the agent can learn using one set of trajectories and
still perform reasonably in oft-policy control within the boundaries of the training samples’
trajectory distributions. The results are seen in Fig. 23.

—— Initial position cost )
=== Final position cost P 4

T
0
o

6.7 1

T
@
o

6.6

T
~
o

T
(=)}
o

6.5 1

T
ul
]

Final position cost
Final total cost

6.4

T
N
o

T
w
o

6.3 1

20

6.2 1 L 10

0.0 0.1 0.2 0.3 0.4 0.5
Initial absolute end-effector position error

Figure 23: Experiment 2 shows that, contrary to expectations, the agent effectively guides
the robot to its target configuration regardless of the deviation in initial position
from the one used in training, however, when taking into account the full cost
function of the trajectory used to optimise the trajectories in training, we see the
expected performance profile in the final cost

'The results are contrary to expectations in that the optimiser can effectively learn the
dynamics of the robot and that the agent can guide the end-effector to its destination to
much the same degree as when the canonical initial positions are used. In fact, the position
cost is slightly reduced. The expected profile does emerge when the full final cosz is graphed
(Fig.23 right-hand axis). The difference in the full cost and the position error cost is the
action cost. This means that although the target position can be reached, the joint trajectories
get progressively worse with initial position deviation, i.e. the sum of the squared torques
sent to the robot is larger than it needs to be.

Watching the simulation in early trials of the KUKA controller would indicate that these
sub-optimal trajectories are noisy—that is, jerky, with vibration of the joints throughout. This
could have severe physical consequences if these policies were to be run in this manner on
areal LWR. A comparison between bad, jerky trajectories and good, smooth trajectories is
seen in Fig. 24.

It is interesting that the final position errors do not follow the expected profile. This may
mean that the trajectory distributions are large in comparison with the size of the robot. It
may be that better local policies are found with narrower distributions.

41



— Policy Samples — LG Controller Distributions

‘ — Trajectory Samples * ¥ LG Controller Means

Condition 0

(a) Jerky trajectories, taken from the first iteration of experiment 1 task 1

— Policy Samples — LG Controller Distributions

‘ — Trajectory Samples * ¥ LG Controller Means

Condition 0

(b) Smooth trajectories, taken from the tenth iteration of experiment 1 task 1

Figure 24: Poor policies and poor dynamics result in trajectories in which the LWR joints
chop backwards and forwards at high speed, possibly increasing wear and tear or
breaking the joints outright

42



Section 5

Discussion

5.1 Difficulty in writing the ROS controller

Neither ROS Control nor the existing GPS controller code is well documented and the
comments in the latter are often cryptic. Working out how to accomplish the relatively
simple task of setting up the LWR controller took weeks of poring over the code and the
ROS help files.

Three big problems also occurred. First, the controller continually crashed when the
LWR controller plugin was derived straight from the RobotPlugin class. This was even-
tually found to be because the passive arm PID controller was receiving commands at the
PR2Plugin level, but the KUKALWRPIlugin class was not passing them on to a trial con-
troller. Part of the attraction of using ROS Control is that it is abstract: what works for one
robot ought to work for another similar robot, just as long as the similar robot has a ROS
hardware interface. The use of two arms in the RobotPlugin class, which was not written
with ROS Control in mind, breaks that mechanism for any one-armed robot.

The solution was to insert an intermediate class between RobotPlugin and KUKALWR-
Plugin, which was derived from RobotPlugin. The sole purpose of the SingleArmPlugin
class is to feed the objects pertaining to the passive arm dummy data, or to force it to not ex-
pect updates. In theory, this means that any single-arm robot can now use the KUKALWR-

43



Plugin class as a GPS controller, so long as it has a ROS hardware interface that exposes an
effort joint interface.

'The second big problem was that upon testing the GPS internal PID controller on the
simulated LWR, the tip joint would barely turn. A large variety of different PID gains were
tried, but the integral and derivative gains had little effect and raising the proportional gain
above about 7 (in comparison with 500, or up to 1200, for the base joint) resulted in the
simulation either crashing, or the simulated model exploding, or both.

Third, sometimes the trajectory charted by the PID controller would simply not finish.
In initial tests with the position commander (see Section 3.7), this made it impossible to send
turther position commands to the robot, however, it was worse once experiments with the
trial controller began. At the end of each trajectory generation, the trial controller uses the
PID controller to return the robot to its initial state for that experiment. The agent expects
a report from the ROS controller on the state of the robot and when it does not receive one,
because the movement is not finished, the agent crashes.

In fact, the second problem was causing the third. The PID controller decides when it
has finished testing the norm of the joint position errors against a hard-coded threshold and
because the tip joint would not turn, the threshold was never reached, the PID control never
finished and the state of the robot was never sent to the agent.

'The cause of the sticky joint was not discovered. At first it was thought that, since this
was a simulation, the joint might be turning a zero-mass end-effector link, however, on
inspection of the Gazebo model, this was found to be incorrect.

Because the tip joint simply would not turn properly, a hack was introduced. A subclass
of the position controller was written where the test for completion of the movement used
the norm of only the first six joints. This is not satisfactory because both the position and
trial controller do attempt to control the sticky seventh joint. Sometimes it moves one way,
but not the other. This will introduce errors into the initial position when the trial controller
resets and will result in suboptimal local policies with higher final costs.

5.2 Further work within the thesis mandate

The pratical work of thesis has avoided two major features of GPS: the training of general
policies and the seeding of the local optimal policy generator with qualitatively better guid-
ing trajectory distributions, from human demonstration with a real LWR robot, for example.
Furthermore, the experiments detailed above have thrown up two things which should be
investigated: a cost function that takes into account non-final position errors, and the unex-
pected phenomenon that perturbing the initial state of the robot does not appear to affect
how close the agent can get to the desired final state.

5.2.1 General policies

First and foremost, the KUKA GPS controller needs to be tested in totality. In the exper-
iments conducted in this section, only the local policy optimisation has been tested. Full
GPS relies upon the local policies generated being used to train a more general policy. In
Finn’s implementation of GPS, the general policy may be a neural network maintained by the
Caffe or Tensorflow libraries, but it may in fact be any any sort of general policy. Due to the
length of time it has taken to develop the controller and agent, and to run the experiments
conducted so far, this has not been possible for this thesis.

44



It is expected that the neural network policy would perform well around the training
trajectories, merely quite well elsewhere in the configuration space covered by the training
trajectory distributions and poorly outside those distributions. As evidenced in experiment 2,
this may, in reality, result in jerky trajectories and high action costs outside the distributions.

It is recommended that future workers on this software experiment with different policy
representations, both outside neural networks (for example, one might ask, just how much
better is a deep NN than a simple linear combination) and in the use of different forms of
neural network. Particularly once the agent is in operation in changeable environments, it
would be interesting to see how its policy might be improved in-situ by use of long/short-
term memory networks to give weight to the emerging environment.

5.2.2 Effects of human-demonstrated guiding distributions

An aspect of GPS inherent to the local policy improvement is the ability to accept prior
guiding samples. This is exactly what happens when the accumulating dynamic Gaussian
mixture model is used as a prior to the determination of the transition dynamics. What this
thesis does not explore is the possibility for totally external priors to be used, for example
smooth trajectories generated by human movement of the real KUKA LWR 4+ robot. Much
research is being undertaken right now on learning from human demonstration and GPS
neatly encapsulates this. In Levine and Koltun’s original paper, external initial trajectories
were used for their walking and running demonstrations.

5.2.3 Cost function improvement

The experiments in this thesis pulled out both a logarithmic positional term of the cost
function used by Levine and Finn on the PR2 robot [36] (leaving only the L2 norm term)
and all the positional costs for non-final steps in the trajectory. Both aspects were removed
while experimenting to achieve something close to convergence of the final costs.

If these costs can be returned to the cost function, it is expected that learning rate would
increase because they encourage the policy to move more directly towards the target state.
'This may also iron out some of the joint vibration mentioned in Section 4.3.2.

5.2.4 Determination of the reason for low final position error for
deviating initial positions

That the policy in experiment 2 managed to consistently move the end-effector to its tar-
geted final position was a significant surpise. It is not clear exactly why that was the case
and the wide spatial representation of the local policy distributions alluded to above is some-
thing generated internally by the policy improvement process, rather than something that
is explicitly set. It was expected that errors in final position would be diverse within a large
interval. An informal test was undertaken of an initial-position deviation that was small in
Cartesian space, but very large in joint space, with the same results—the position cost term
was similar to all the other trials, while the action cost was understandably huge. This phe-
nomenon ought to be explored, because it calls into question the need for a neural-network

policy.

45



Section 6

Conclusion

'The purpose of this thesis was to demonstrate the effectiveness of the guided policy search
(GPS) method of reinforcement learning (RL) for learning reaching tasks with the KUKA
LWR 4+ robotic arm, both in qualitative (fidelity of the reaching movement) and quantitative
(sample efficiency) terms. To this end,a ROS controller was developed to transfer commands
from an existing implementation of GPS, via an existing hardware interface, to a simulation
of the robot, and to transfer position and velocity data from the robot back to the algorithm
back-end. Additionally, a protocol-specific agent was written for the GPS back-end and a
set of experiments was written to test the system (Section 3).

Guided policy search is an advanced RL algorithm comprising two main components:
an interchangeable locally optimal policy generator and general policy approximator (Sec-
tion 2). This thesis details the standard GPS algorithm, in which the local policy generator is
a linear-quadratic regulator (LQR) that iteratively optimises a collection of previously gen-
erated trajectories, arriving at a dynamic trajectory distribution in a local area of the robot’s
state-space, and in which the general policy approximator is a feedforward neural network.
This arrangement is seen to achieve sample efficiency, despite the need to ultimately train a
model-free general policy, by using a small number of samples drawn from nominally inefh-
cient trajectory distributions to feed the LQR and thereby derive better local policies without
recourse to running general policies on the robot.

46



Nevertheless, the extensions to GPS discussed in Section 2.3.3 clearly show that by re-
placing the LQR component with difterent locally optimal policy generators, GPS can be
improved not only in the sample efficiency which this thesis specifically aimed to demon-
strate, but also in combating issues not targeted by the original GPS formula, such as contact-
rich environments.

‘Two experiments were undertaken on the finished software system. First, local policies
were trained for six different reaching tasks (Section 4.2). 'These policies were shown to
improve in broadly the expected manner, thus confirming that GPS is suitable for basic
reaching tasks on the LWR 4+. However, the learning time was insufficient, particularly
for the more difficult tasks, for the policies to reach full optimisation. This was graphically
shown in the second experiment, where a policy was trained on one of the tasks in the first
experiment, and continued to improve for the increased number of optimisation iterations.

'The second experiment studied the performance of a trained policy under perturbed
initial conditions, where the expectation was, in the average, a final position error increasing
exponentially with the deviation from the initial position used in training. The agent defied
this expectation, however, in that the final position errors were similar regardless of the initial
position error. This phenomenon threw into question the need for training a general policy,
at least with the tasks the LWR 4+ is capable of performing. Nonetheless, the deviation in
the online initial position from the training initial position did aftect the smoothness of the
trajectory distributions.

This thesis shows that GPS is capable of training an agent to complete elementary reach-
ing tasks in a matter of 15 minutes on mid-range PC hardware using fewer than 100-150
sampled trajectories. The basic GPS configuration used in this thesis has been shown to pro-
duce slow trajectories under deviating initial conditions after training has finished. Nonethe-
less, the data gathered for this thesis is not yet adequate to fully assess GPS’s efficacy. The
speed with which the local policies were learned, even under these restricted conditions,
makes GPS an attractive research topic; deeper exploration of the experimental hyperpa-
rameters and additions to the algorithm may provide increased adherence to the desired tar-
get position, increased sample efliciency and smoother operational trajectories further away
from the central trajectory of the trained trajectory distribution.

In particular, the use of an adversarial component, as discussed in Section 2.3.3, has not
only been successful in increasing GPS’s robustness to disturbances, but also in generating
smoother, lower-energy trajectories in humanoid robot gaits [37]. Therefore, an adversary in
the local optimal policy generator may be able to iron out the non-smooth trajectories that
local policies generated in experiment 2, under perturbed initial conditions.

In summary, GPS is a powerful tool for the practitioner of intelligent robots, due to its
sample efficiency and extensibility. However, it may be that standard GPS is only appropriate
in test environments and that further research is required before it is ready for operation.

47



References

[1]

2]
[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Siciliano and O. Khatib, Springer Handbook of Robotics, 1st ed. Springer-Verlag
Berlin Heidelberg, 2008, 1sBN: 978-3-540-30301-5.

I. F. of Robotics, World Robotics 2017 (Executive Summary), Sep. 17,2017.

S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Tech-
niques,” in Proceedings of the 2007 Conference on Emerging Artificial Intelligence Appli-
cations in Computer Engineering: Real Word AI Systems with Applications in eHealth,
HCI, Information Retrieval and Pervasive Technologies, Amsterdam, The Netherlands,
'The Netherlands: IOS Press, 2007, pp. 3—24, 1sBN: 978-1-58603-780-2.

R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd (draft). MIT Press Cam-
bridge, MA.
W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, Dec. 1943,
1ssN: 1522-9602. por: 10.1007/BF02478259.

F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain,” Psychological Review, pp. 65-386, 1958.

E. R. Caianiello, “Outline of a theory of thought-processes and thinking machines,”
Journal of Theoretical Biology,vol. 1,no. 2, pp. 204-235, Apr. 1,1961, 1ssn: 0022-5193.
DOI: 10.1016/0022-5193(61)90046-7.

(). Rev. Mod. Phys. 34,123 (1962) - The Perceptron: A Model for Brain Functioning.
I, [Online]. Available: https:// journals.aps.org/rmp/abstract/10.1103/
RevModPhys.34.123 (visited on 09/26/2018).

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

S. Levine and V. Koltun, “Guided Policy Search,”in Proceedings of Machine Learning
Research, Feb. 13,2013, pp. 1-9.

C. J. C. H. Watkins, “Learning from Delayed Rewards,” King’s College, Oxford,
1989.

R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University Press,
2010, 1sBN: 978-0-691-14668-3.

——, “A Markovian Decision Process,” Journal of Mathematics and Mechanics, vol. 6,

no. 5, pp. 679-684, 1957, 1ssn: 0095-9057.

M. J. Roe, “Stock Market Short-Termism’s Impact,” Social Science Research Net-
work, Rochester, NY, SSRN Scholarly Paper ID 3171090, Aug. 13, 2018.

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry.’The
MIT Press, 1969, 1sBN: 978-0-262-63022-1.

R. S. Sutton, “Learning to Predict by the Methods of Temporal Differences,” Machine
Learning, vol. 3, no. 1, pp. 9-44, Aug. 1, 1988, 1ssn: 1573-0565. por: 10.1023/A:
1022633531479.

48



[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, ez a/., “Policy Gradient Meth-
ods for Reinforcement Learning with Function Approximation.,” in Proceedings of the

Neural Information Processing Systems Conference, vol. 99,1999, pp. 1057-1063.

M. P. Deisenroth, G. Neumann, and J. Peters, “A Survey on Policy Search for Robotics,”
Found. Trends Robot, vol. 2, no. 1-2, pp. 1-142, Aug. 2013, 1ssn: 1935-8253. por:
10.1561/2300000021.

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-13, no. 5, pp. 834-846, Sep. 1983, 1ssn: 0018-9472. por:
10.1109/TSMC.1983.6313077.

J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy gradients,”
Neural Networks, Robotics and Neuroscience, vol. 21, no. 4, pp. 682-697, May 1,2008,
1ssN: 0893-6080. po1: 10.1016/j.neunet.2008.02.003.

Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors
through online trajectory optimization,” in Proceedings of the ... IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems. IEEE/RS] International Conference
on Intelligent Robots and Systems, Oct. 1, 2012, pp. 49064913, 1sBN: 978-1-4673-
1737-5. po1: 160.1109/IR0S.2012.6386025.

S. Levine and P. Abbeel, “Learning Dynamic Manipulation Skills under Unknown

Dynamics with Guided Policy Search,” Advances in Neural Information Processing Sys-
tems,vol. 27, p. 1,2014.

O. Ogunmolu, “A dynamic game approach to training robust deep policies,” Feb. 15,
2018.

S. Levine and P. Abbeel, “Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics,” in Advances in Neural Information Processing Sys-
tems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, Eds., Curran Associates, Inc., 2014, pp. 1071-1079.

S. Levine, N. Wagener, and P. Abbeel, “Learning Contact-Rich Manipulation Skills
with Guided Policy Search,” in International Conference on Robotics and Automation
(ICRA), 2015.

T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies for
autonomous aerial vehicles with MPC-guided policy search,”in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Stockholm, Sweden: IEEE, May
2016, pp. 528-535, 1sBN: 978-1-4673-8026-3. pO1: 10.1109/ICRA.2016.7487175.

P. Ennen, P. Bresenitz, R. Vossen, and F. Hees, “Learning Robust Manipulation Skills
with Guided Policy Search via Generative Motor Reflexes,” Sep. 15, 2018.

J. Luo, R. Edmunds, F. Rice, and A. M. Agogino, “Tensegrity Robot Locomotion
Under Limited Sensory Inputs via Deep Reinforcement Learning,”in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), Brisbane, Australia: IEEE,
May 2018, pp. 6260-6267, 1sBN: 978-1-5386-3081-5. por: 10.1109/ICRA.2018.
8463144,

W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine, “Reset-Free Guided
Policy Search: Efficient Deep Reinforcement Learning with Stochastic Initial States,”
Oct. 4,2016.

49



[30]

[31]

[32]

[33]
[34]

[35]

[36]

(37]

Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine, “Path in-
tegral guided policy search,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 3381-3388. po1: 10.1109/ICRA.2017.7989384.

A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective robot re-
inforcement learning with distributed asynchronous guided policy search,” in 2017
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Vancou-
ver, BC:IEEE, Sep. 2017, pp. 79-86, 1sBN: 978-1-5386-2682-5. po1: 10.1109/IRO0S.
2017.8202141.

C. Finn, M. Zhang, J. Fu, X. Tan, Z. McCarthy, E. Scharff, and S. Levine, “Guided
Policy Search Code Implementation,”2016, Software available from rll.berkeley.edu/gps.

K. AG, KUKA LWR.

G. Schreiber, A. Stemmer, and R. Bischoff, “The Fast Research Interface for the
KUKA Lightweight Robot,” May 3, 2010.

H. Wang and A. Banerjee, “Bregman Alternating Direction Method of Multipliers,”
Jun. 13,2013.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of Deep Visuo-
motor Policies,” Apr. 2, 2015.

J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N.
Heess, “Learning human behaviors from motion capture by adversarial imitation,”

Jul. 7,2017.

50



Appendix A

Experiment 1 initial and final
configurations

(a) Task 1 initial (b) Task 1 target

(c) Task 2 initial (d) Task 2 target

51



.

(e) Task 3 initial (f) Task 3 target

(g) Task 4 initial (h) Task 4 target

52



(1) Task 5 initial (j) Task 5 target

(k) Task 6 initial (1) Task 6 target

53



Appendix B

Agent configuration

Component/ Description Default value(s)
Variable
0.02
EE_POINTS At least three point offsets are required —0.025 |,
by the GPS backend to ensure that the 0.05
end-effector not only reaches the cor- 0.02
rect position, but attains the correct ori- —0.025 |,
entation. The world-space end-effector —0.05
position is subtracted from the posi- 0.02
tions of these points at the end of local 0.005
policy training. 0.0
PR2_GAINS A 7-vector of scalar gains, one for (96,48, 20,
each torque/joint of the LWR. The 14,6,6,12)
GPS backend is extremely sensitive to
these gains; too high a gain causes the
Gazebo model to explode, while too
low a gain prevents the joint from mov-
ing at all. These were set by trial and er-
ror. The gains are subsequently updated
by GPS internally.
agent Details of which agent to use and top-
level configuration
type Name of the agent script—written for AgentROSContro-
this thesis IArm
dt Step size [s] 0.05
T Length of the trajectory [steps]. In 200

initial tests, considerably better re-
sults were achieved using 200 steps,
rather than the 100 used by Finn's PR2
demonstration, however, this does in-
crease the time required to run each it-
eration of the trajectory optimisation
stage and reduces the data efficiency of
the algorithm

54



Component/

Variable

Description

Default value(s)

state_include

A list of the internal variables compris-

ing the GPS state

Joint angles, joint

velocities, end-effector

points,

end-effector

point velocities

algorithm

Details of the policy-improvement al-
gorithm to be used by GPS

type

AlgorithmTrajOpt

iterations

'The number of full iterations of optimi-
sation

10

init_traj_distr

Set-up for the DDP initialisation of the

linear quadratic regulator

init_gains

The initial joint gains

1
PR2_GAINS

init_var

The variance of the initial trajectory
distribution. 'This is key to both get-
ting the LWR moving at the start of
the learning process and maintaining
enough stability that the Gazebo sim-
ulation does not explode. The default
value was found by experimentation.

30

stiffness

Initial stiffness of the joints. Important
to get the joints turning in the initial
distributions before the true dynamics
begin to be discovered.

60

stiffness_vel

Initial velocity stiffness. Unchanged
from the PR2 demonstration.

0.25

cost

'The weighted sum of the cost terms de-
fined below.

weights

'The external weights of each cost term.

[1,1]

dynamics

Specifies the type of dynamic model
prior used to optimise the trajectories.
Permanently set in this thesis.

Maximum
Gaussian
model.

20-cluster
mixture

torque_cost

A term of the LQR cost function in-
tended to minimise the L2 norm of the
action. This results in smoother trajec-
tories after optimisation.

'The internal vector weight of the action
per joint

5x10~*
PR2_GAINS

55



Component/

Variable

Description

Default value(s)

fk_cost2

A term of the LQR cost function in-
tended to minimise the .2 norm of the
final end-effector position error. This
term can be configured to minimise in-
termediate error costs too, however, in-
cluding those terms was experimentally
found to destabilise the learning pro-
cess.

wp

The internal vector (length T) of
weights per trajectory step.

11

The internal weight of the L1 norm
sub-term.

12

The internal weight of the L2 norm

sub-term.

wp_final_multiplier

'The internal weight of the norm on the
final step of the trajectory

50

ramp_option

Specifies additional weighting profile
across each time-step. May be a linear
ramp, placing more emphasis the later
steps in the trajectory, or a final-only

“ramp”, where only the final step is con-
sidered.

RAMP_FI-
NAL_ONLY

config

num_samples

Connects above options, the optimisa-
tion algorithm and the agent.

'The number of trajectory samples used
on each iteration to improve the dy-
namic model.

7 (changed from 5 ex-
perimentally)

56



