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1. Introduction

1.1 Motivation

One of the overarching goals of human-computer interaction (HCI) research is to
improve the ability of users and computer systems to interact productively. One
enabling technology in this respect is machine learning, or automated learning
algorithms. Through improving the ability of computer systems to learn the
interests and capabilities of the user – by being able to construct adequate user
models – it has been possible to construct systems with improved capabilities
for productive interaction [Fischer, 2001].

This thesis focuses on two specific issues related to the use of machine learning
in user modelling. The first issue relates to the ability of users to interact
efficiently with a computer system whose behavior is largely determined by a
user model. The second issue relates to the ability of computer systems to learn
even more accurate models of the interests and capabilities of the user based on
commonly available observation data.

Regarding the first issue, the behavior of an interactive system is ultimately
driven by the instructions given by the user. In order to give purposeful in-
structions, the user employs a mental model of the system for predicting the
consequences of her actions; however, the user only has limited cognitive capa-
bility for this kind of mental simulation [Helander et al., 1997]. With systems
whose behavior is largely determined by a user model, it may be difficult for
the user to predict the consequences of her actions; this is because the user
model may cause the relationship between user actions and consequences to be
complicated [Tsandilas and Schraefel, 2004]. As a consequence, the user might
make interaction errors, which may increase the amount of mistaken predictions
made by the user model, which may then erode the user’s trust to the system
[Muir, 1994]. Overall, these issues may lead to less than optimal performance
when performing a task with the system [Norman, 1983], reduced use of the
system [Dzindolet et al., 2003] and lower user satisfaction and confidence in
using the system [Kulesza et al., 2012]. Thus, it is important to provide the user
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adequate capabilities for comprehending how her actions affect the user model,
and the behavior of the system as a whole. This should both facilitate better
mental models and reduce the need for mental simulation. It is also important
to provide the user adequate capabilities for noticing possible interaction errors.
This should facilitate fixing those errors and also provide explanations for odd
system behavior.

The second issue is that the models currently employed for user modelling are
still far from perfect, and they are often based on multiple simplifying assump-
tions. A common example of such simplification is to treat the user simply as a
“static data distribution” [e.g. Marlin, 2004] without explicit cognitive capabilities
such as learning or memory. More sophisticated user models, which do explicitly
take such aspects of human cognition into account, are called cognitive models.
Examples of such modelling frameworks include ACT-R (Adaptive Control of
Thought – Rational) [Anderson, 1996] and computational rationality [Lewis
et al., 2014; Gershman et al., 2015]; the latter are often formulated using the
reinforcement learning formalism [Sutton and Barto, 1998]. The use of cognitive
models for user modelling should allow computer systems to make more accurate
predictions of user behavior and cognitive state, and thus facilitate more efficient
interaction. However, existing methods for learning such models either have
strict requirements for both the type of observations and underlying model struc-
ture [e.g. Ramachandran and Amir, 2007; Ziebart et al., 2008], are not efficient
(e.g. brute-force optimization), or are not able to evaluate the uncertainty of the
parameter estimates [e.g. Lagarias et al., 1998]. These limitations reduce the
applicability of cognitive models, which may lead to simpler and possibly less
accurate models to be used instead. Thus, it is important to advance our ability
to estimate the parameter values of cognitive models from observation data.
Optimally, efficient inference should be possible based on various different types
of observations, without strict limitations for the cognitive model structure, and
even from small amounts of observation data. Furthermore, as the observa-
tion data for learning these models may often be incomplete, it is important
to develop methods that are able to estimate the parameter uncertainty in a
principled manner.

1.2 Research Questions and Contributions

This thesis focuses on two specific research questions derived from the general
motivating factors outlined above.

RQ1 – Can the satisfaction and task performance of search engine users be
improved through improving the predictability of the interaction with the search
engine and through improving the capability of users to notice and correct possible
interaction errors?

Publications I and II provide contributions to RQ1. In both of these publica-
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tions, improvements are proposed to an existing search engine, where the user
is able to both visualize the user model and interact with it.

The effect of improved predictability when interacting with a user model was
studied in Publication I. The publication proposes two complementary methods
for improving the predictability of user interaction. The first method is to
forward-simulate the dynamics of the user model with various possible feedback
options available to the user, and visualize these predictions to the user. This
way the user is able to better predict the consequences of her actions before
committing to them. The second method is to explicitly optimize the effects
of user interaction to be as predictable as possible. This way the dynamics of
the user model are altered to improve the predictability of user actions. User
experiments indicated that these new methods improved user satisfaction and
ability to understand model behavior.

The effect of improved ability to notice and correct possible interaction er-
rors was studied in Publication II. The publication proposes both a method for
modelling errors in user feedback, and a user interface for visualizing these
estimated errors and enabling corrections to existing feedback. The model uses
a method called automatic relevance determination for estimating the reliability
of each feedback item when considering the entire feedback data set as a whole.
The user interface highlights feedback with low estimated reliability and allows
the user to make various modifications to existing feedback. Simulation experi-
ments indicate that the approach leads to improved information retrieval quality.
User experiments indicate improved usability of the system and improved ability
of users to notice and correct interaction errors.

RQ2 – Can the parameter values of cognitive models be learned efficiently from
observation data, together with principled uncertainty estimates, without strict
requirements for the type of the observations or for the structure of the cognitive
model?

Publications III, IV and V provide contributions to RQ2. The main issue
with inferring the parameter values of cognitive models is with the likelihood
function of the model, which explicates the relation between model parameters
and predictions. Especially if the model structure is complicated, or the type
of observations is not convenient, evaluating the likelihood function is difficult.
The proposed solution is to perform likelihood-free inference, which allows
considerable flexibility regarding both the type of observation data and the
underlying cognitive model. The chosen approach for likelihood-free inference is
approximate Bayesian computation (ABC) combined with Bayesian optimization
(BO), which allows both principled estimation of parameter uncertainty, due to
ABC, and efficient exploration of the parameter space, due to BO. Publication
III presents an initial proof-of-concept where point estimates are produced for
the parameters of a reinforcement learning (RL) model based on aggregate
observation data. Publication IV provides further technical justification for the
use of likelihood-free inference for RL models when the observations are not in
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the traditional format of state-action trajectories. Publication V provides further
case studies, which demonstrate that the method can be applied for the ACT-R
cognitive model family as well. These studies show that the proposed method is
applicable for cognitive model parameter inference, being flexible both regarding
the model structure and type of observations. The method also provides a good
trade-off between efficiency and interpretability of results.

Software development related to Publications III, IV and V has also con-
tributed to the open-source likelihood-free inference framework ELFI (Engine
for Likelihood-Free Inference), presented in Publication VI.

1.3 Organization of the Thesis

The second chapter gives a brief overview of relevant concepts in quantita-
tive modelling of human behavior, which constitutes the common theoretical
background. The third chapter gives further motivation and background to
interactive user modelling and discusses the contributions related to RQ1. The
fourth chapter gives further motivation and background to cognitive models
and discusses the contributions related to RQ2. The fifth chapter discusses the
answers to the research questions and directions for further research.
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2. Brief Background on User Modelling

User modelling, or fitting the parameters of quantitative models to observation
data collected from users, has multiple motivations. These models may be used,
for example, for estimating psychometric properties of the user, such as the level
of experience or personality traits [e.g. Aykin and Aykin, 1991]. User models may
also be used for estimating the interests or preferences of the user, which may
then be used, for example, to personalize the system to the particular user or to
perform a task according to these preferences [e.g. Anand and Mobasher, 2003];
one example of this is in information retrieval, where the displayed information
is filtered according to the search user model.

This chapter gives a brief theoretical outline of the modelling framework used
in this thesis. First, two common user modelling contexts are described. Second,
an outline of Bayesian statistical modelling is given. Third, evaluation of the
quality of user models is discussed.

2.1 Modelling Contexts in Human-Computer Interaction

In human-computer interaction (HCI), models can be constructed either offline
or online. Offline modelling is performed based on previously collected data, and
may be done for various purposes, while online modelling is performed based on
continuously arriving data, and is generally done for the purpose of helping the
user perform a task.

2.1.1 Offline User Modelling

The setting of offline user modelling is defined by two common features. First,
the observation data used for fitting the model are collected before the modelling
takes place. Second, if further data are collected, the results of the modelling
process do not affect this data collection process. This makes the process concep-
tually simple, as illustrated by Figure 2.1. There are just two consecutive steps
in the modelling process; first, the observation data is collected, and second, the
model is fit to this data.
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Offline user modelling is commonly used, for example, in scientific modelling,
where the purpose of the model is to discover new insights about human behavior
[e.g. Fitts and Peterson, 1964]. Another example is model-based user interface
(UI) design, where the model is used for designing the UI layout [e.g. Wilson
et al., 1993].

Figure 2.1. Information flow chart outlining the key aspects of the offline user modelling situa-
tion. The actions performed by the user are the source of the observation data. The
inference process uses these observations to estimate the user model parameters.
The learned user model is then used for some purpose, such as scientific research or
system design.

2.1.2 Online User Modelling in a Task Context

The setting of online user modelling is somewhat more complex than that of
offline modelling. In online user modelling, the model is constructed at the same
time as the data collection takes place, and the results of the modelling process
generally affect the data generating process as well. In HCI, online modelling is
commonly performed for the purpose of helping the user perform a task. The
situation is illustrated in Figure 2.2. Essentially, the situation is analogous to
closed-loop control, where the user acts as the controller, and the AI system and
task together form the system under control [cf. Doyle et al., 2013].

Figure 2.2. Information flow chart outlining the key aspects of the online user modelling situation
in a task context. The user has an objective in mind, which corresponds to a specific
task state. She uses an interactive AI system to perform the task. The interaction
with the system consists of instructions, which directly affect the task execution, and
feedback which affects the task execution through the user model. The user is able
to visualize the current state of the task, and compare it to the current objective.

Information retrieval is a concrete example of online user modelling in a task
context [Baeza-Yates and Ribeiro-Neto, 1999]. The objective of the user is to
fulfill an information need. The AI system is a search engine, and the task
is to retrieve a set of documents from a large collection. The feedback given
by the user are the search keywords. The instructions are to find documents
matching the keywords or to display the next page of results. The user model is
used to predict what documents match the search keywords typed by the user.
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Task execution consists of retrieving documents that the user model predicts
are relevant, with possible post-processing, such as diversification of the results.
The task visualization consists, for example, of a result page, displaying a set of
relevant documents. After viewing the results, the user generally adjusts the
feedback, or gives new instructions, until the objective is reached.

2.2 Bayesian Modelling

Introduction
Bayesian statistics is a formalism for quantifying the subjective uncertainty an
observer has of the state of the world. This formalism is especially attractive
when the amount of observation data is relatively small, but is compensated
by a reasonable amount of prior knowledge of the generative process which is
postulated to have caused the observations.

Incidentally, this is often the situation when modelling, for example, individual
users. For example, in online user modelling, the models are often made of
individual users, based on relatively small amount of observations made after
the task started [e.g. Głowacka et al., 2013].

Bayesian Statistical Concepts
The probability distribution is probably the most fundamental concept in Bayesian
statistics. A probability distribution P is a density function that precisely defines
the behavior of a random variable X . The domain of the function are the possible
realizations of X , denoted by x, and the range is all non-negative real numbers.
To indicate that the realizations x are assumed to be drawn independently
according to the distribution P the notation x ∼ P(x) is used.

The generative model is another core concept. A generative model M is a
procedure which is postulated to have generated the observation data D. In the
case of user modelling, M is often called the user model and D is the observation
data available of the user. Generally, M is a procedure that is defined in terms
of unknown model parameters θ, and defines a probability distribution over the
space of possible observations. Thus the modelling assumption is D ∼ P(D|θ; M),
although M is generally left out of notation for brevity when only one model is
considered.

The core idea in the Bayesian statistical formalism is that the knowledge an
observer has about the true values of θ can be precisely quantified by a posterior
P(θ|D), which can be computed based on Bayes’ formula

P(θ|D)= P(D|θ)P(θ)
P(D)

,

where P(D|θ) is the observation likelihood (often called the likelihood function),
P(θ) the prior, and P(D) the marginal likelihood. The prior answers the question
“Before observing the data D, how much more probable is it from the observer’s
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perspective that the true parameters are θ compared to θ′?” The observation
likelihood answers the question “Given that the model parameter values are θ,
how likely it is that data D is observed?”, while the marginal likelihood answers
the question “How likely it is that data D is observed in general?” The posterior
thus answers the question “Given both prior knowledge and evidence presented
by the data D, how much more probable is it from the observer’s perspective
that the true parameters are θ compared to θ′?” The process of computing the
posterior based on observation data is called inference, or more informally model
fitting or “learning a model”.

2.3 Evaluation of Model Quality

Evaluation of offline user models is often straight-forward, as standard measures
are applicable, such as prediction accuracy or likelihood of observation data
under model assumptions [cf. Friedman et al., 2001, ch. 7].

However, evaluating the quality of online user models generally differs from
other quantitative models, for two main reasons. The first reason is that the
main design goal is to help the user complete the task, not merely to make
accurate predictions. The second reason is that the dynamic behavior of the
system can often be reliably measured only with real users in a realistic task
setting. For these reasons, user studies are generally required.

Occasionally, user studies are replaced by proxy measures computed on pre-
viously collected data, but the performance of these proxies may not always be
reliable [Grotov et al., 2015]. The experiments may also be conducted using
simulated users [Ritter and Young, 2001], but in general, it is challenging to
capture the whole range of human behavior with a simulator.

One key benefit of user studies, compared to using some kind of a proxy
measure or simulator, is that they take into account all of the possible side-
effects that might occur. In general, human behavior depends on multiple factors
in non-linear ways, which can make extrapolation based on old data unreliable.
This is especially important if the model is used in an interactive setting, where
changes to the model affect the data collection process. For example, if an
information retrieval model is changed, this changes the search results that the
user is shown, which then affects the subsequent actions the user will perform
during the search session. Thus, data from old search sessions might not be a
good proxy for measuring the performance of a new search user model. Another
benefit of user studies is that they allow collection of various types of observation
data, including usage logs, questionnaire answers and interview recordings.
This rich set of both quantitative and qualitative observation data allows the
effects of new methods to be evaluated in a thorough manner, based on multiple
complementary data sources. Furthermore, qualitative data collection methods,
such as interviews, allow the users to express their opinions freely, which might
help in forming new hypotheses that did not exist when the experiment was
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designed.
User studies also have certain drawbacks. First, the experiments are often

expensive to perform, often requiring multiple hours of researcher time per
individual user. Second, the experiments often require naïve users, which
means that users who have taken place in previous experiments with a similar
system may not be recruited for new studies. These two drawbacks generally
result in user studies with relatively small number of participants, both due
to limited resources and the finite pool of easily available experiment subjects.
Third, individual users often exhibit large variation in their performance. This
may be due to individual differences, as the users may come from a rich set of
backgrounds, and the performance of the users may also vary over time. This
variability generally results in low signal-to-noise ratio, which makes it more
difficult to argue for statistical significance unless there are sufficiently many
subjects or the measured effect is notably large. Thus, in general, design of
user studies is a trade-off between the cost of the experiments and the ability to
detect small effects.
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3. New Methods for Interactive User
Modelling in Information Retrieval

This chapter gives an overview of the line of research related to RQ1 – Can the
satisfaction and task performance of search engine users be improved through
improving the predictability of the interaction with the search engine and through
improving the capability of users to notice and correct possible interaction errors?
First, the concept of interactive user modelling is defined. Then, the SciNet
search engine [Głowacka et al., 2013; Ruotsalo et al., 2013], which is used as
the research platform in this thesis, is described. Next, motivating factors for
the use of interactive user modelling are briefly discussed. Finally, two new
approaches to improve interactive user modelling are introduced, providing
improved interaction predictability and validation of the consistency of user
feedback.

3.1 Interactive User Modelling in a Task Context

Interactive user modelling is a special case of online user modelling where the
user is additionally able to explicitly visualize and interact with the user model.
The name interactive user modelling is derived from the fact that the user is
interactively participating in the adjustment of the user model, instead of being
just a passive subject of the modelling process. The term viewable user model
[Cook and Kay, 1994] has also been used when the main purpose has been to
give the user the ability to inspect the model, while the ability to adjust the
model has not been equally important. The term interactive machine learning
[Fails and Olsen Jr, 2003] has also been used for the more general setting, when
the model is not necessarily a user model.

In this thesis, interactive user modelling is studied in a task context, as
visualized in Figure 3.1. In comparison to the standard setting of online user
modelling in a task context, now the user is able to visualize both the user
model and the state of the task. Generally, this also means that the model
interaction is an integral part of the AI system [e.g. Głowacka et al., 2013],
instead of a separate mode of interaction [e.g. Cook and Kay, 1994]. Another
change, compared to the standard setting of online user modelling, is that the
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user can additionally provide feedback related directly to the user model, such
as the weights of different features [Bostandjiev et al., 2012].

Figure 3.1. Information flow chart outlining the key aspects of the interactive user modelling
situation. The setting is similar as in Figure 2.2, except that the user has the
additional ability to visualize the user model.

For example, in the case of information retrieval, the visualized user model
allows the user to answer the question “what does the search engine think I
am interested in finding”, while the visualized state of the task allows the user
to answer the question “which items appear to be most relevant based on my
instructions and the current user model”.

3.2 Case Example: The SciNet Search Interface

One recent example that demonstrates the benefit of interactive user modelling
in information retrieval is the SciNet seach interface [Głowacka et al., 2013;
Ruotsalo et al., 2013].

A central motivation for using interactive user modelling in information re-
trieval is the fact that when retrieving information, users often prefer to use
small local steps to navigate towards the objective [Teevan et al., 2004]. However,
it might be challenging for the user to make these small steps when they have
to be made through manually altering a textual keyword query.

To address this issue, the SciNet search interface is divided into two parts,
illustrated in Figure 3.2. On the left side of the user interface is an interactive
visualization of the user model, while on the right side of the user interface is a
visualization of the search results. Through the radar visualization, the interface
allows the user to both visualize a part of the user model and give relevance
feedback to keywords by moving them to new locations on the radar. The radar
displays a small number of the most relevant keywords as predicted by the user
model. Keywords that are close to the center of the radar are more relevant than
those that appear closer to the edge. Moving a keyword closer to center indicates
high relevance and vice versa. Thus, through keyword adjustments, the user
has an intuitive way to make small local adjustments to the search query.

The use of interactive user modelling leads to multiple improvements over
a system without the interactive visualization of the user model [Ruotsalo
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Figure 3.2. The SciNet search engine interface. Left: At the top left of the interface there is
a text field for inputting direct keyword queries. Below the text field is a large
radar visualization of the search user model. At the center of the radar, the 10 most
relevant keywords are visualized using gray boxes. The location of the box illustrates
both the relevance of the keyword and its similarity to other visualized keywords.
The closer to the center of the radar the box is, the more relevant the keyword. The
closer the keyword is to other keywords on the radar, on average the more similar
these keywords are. At the edge of the radar are numerous keyword suggestions,
visualized using colored boxes. The keyword suggestions are clustered based on
similarity, and each cluster is denoted by a color that is distinct from the neighboring
clusters. The user is able to give feedback to any of the visualized keywords through
dragging them to a new place on the radar. Right: A scrollable list of the most
relevant scientific articles retrieved by the search engine is on the right side of the
interface. For each article, various pieces of information are displayed, including the
title, authors, publication venue, publication time, related keywords and the abstract.
The articles can also be added to a bookmark list, by clicking at a checkbox next to
the article title. The user can access the list of bookmarked articles through a link at
the top of the result list.

et al., 2013]. The main result by Ruotsalo et al. [2013] was that the interactive
visualization improves users’ task performance, which could be attributed to both
the improved quality of information available to the user and to the improved
interaction capabilities offered to the user.

3.3 Motivation for Interactive User Modelling

In general, there are two main motivating factors for adding model visualization
to on-line modelling situations: improved trust and improved efficiency. A brief
discussion on possible pitfalls is also given.

3.3.1 Improved Trust

Trust in an AI system has a significant influence on how the user actually uses it;
poor trust may cause the user to abandon the system, even though using it would
lead to superior results [Dzindolet et al., 2003]. Trust is built upon multiple
factors, including the user’s ability to predict the system behavior, depend on the
correct functionality of the system and the user having faith in the continuing
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performance of the system [Muir, 1994].
With AI systems that rely on a user model, it is common for the model to make

incorrect predictions. These errors are due to multiple reasons, including sim-
plifying model assumptions, insufficient data and miscommunication between
the user and the system. These errors can possibly erode the trust the user has
towards the system, unless an explanation is provided as to why the error may
have occurred [Dzindolet et al., 2003].

As interactive user modelling provides the user with means to inspect the
user model, this will likely increase the trust in the system when poor per-
formance can be attributed to errors in the user model. This is supported by
multiple examples of model explanations leading to improved task performance
and higher confidence when using the system [Suermondt and Cooper, 1993],
allowing users to provide better feedback [Fiebrink et al., 2011], facilitating
better understanding of system behavior and allowing users to correct mistakes
in the model more efficiently [Kulesza et al., 2015].

3.3.2 Improved Efficiency

Interactive user modelling provides improved efficiency in two ways: through
improving the accuracy of the mental model the user has of the system and
through enabling new feedback options.

Mental Model Quality
A mental model is the user’s internal explanation for the behavior of the AI
system, and can be seen as an analogue of the user model that the system has of
the user [Helander et al., 1997]. If the mental model the user has of the system
behavior is less accurate, the user is then more likely to perform less efficiently
with the system [Norman, 1983]. In comparison, having a better mental model
has been shown to both facilitate learning to use a new system [Kieras and
Bovair, 1984] and lead to improved satisfaction and confidence in using the
system [Kulesza et al., 2012].

In the case of systems where the performance is largely defined by the quality
of the user model, such as information retrieval systems, the behavior of the
user model is naturally instrumental in explaining the behavior of the system.
If the user does not have any ability to get further insight into the behavior of
the user model, it is more difficult for the user to generate explanations for the
system behavior [Kieras and Polson, 1985], which corresponds to a less accurate
mental model. Thus, it is beneficial to make the model intelligible to the user,
thus helping the user build a better mental model of the system behavior [Lim
et al., 2009], and ultimately facilitating more adequate interaction with the
system.
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Adequate Feedback Options
In online user modelling, when the user is deciding on her next action, she
essentially has to make a selection between all available feedback actions, trying
to choose the one that most advances her objective. Thus, it is natural that
systems with adequate feedback options are preferable; in general, the options
should be effective, easy to understand, and suitable for the current task status
[Rogers et al., 2011]. For example, in the case of information retrieval, if the user
only has the ability to give feedback through modifying a keyword query, it might
be challenging for the user to come up with a good query, due to the necessity of
recalling the correct terms to use [Baeza-Yates et al., 2004]. In contrast, it has
been demonstrated that when the user has adequate interaction options, such
as the ability to adjust selected parts of the user model, both task performance
and user satisfaction have improved [Bostandjiev et al., 2012; Ruotsalo et al.,
2013].

3.3.3 Possible Pitfalls

There are of course also situations where interactive user modelling might not
bring any additional advantages, and implementation issues may diminish the
possible benefits.

First of all, the user will not use explanations provided by the system unless
they are easy to access and unless there is a salient reason to use them [Gregor
and Benbasat, 1999]. For this reason, any visualizations of the model should be
easily available, and interacting with them should propose a clear advantage to
the user.

Another possible pitfall is presented by poor design and interpretability of
the visualized model [Vellido et al., 2012]. Examples of possible issues include
too much or too little detail, misleading visualizations, and terminology that is
unfamiliar to the end-user [Ward et al., 2010, chapter 12]. In general, a large
amount of practical guidelines apply for the design of effective visualizations
[Ware, 2012, appendix D].

3.4 Improving Predictability in Interactive User Modelling

This section discusses the significance of predictability in interactive user mod-
elling, lists causes for poor predictability and proposes solutions for improving
the predictability of the SciNet search user interface.

3.4.1 Significance of Predictability

A predictable system is such that the user is able to predict how the system
will behave in reaction to user actions. The predictability of the system has a
significant effect on building trust, especially for novice users [Muir, 1994], and
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also helps to improve user satisfaction [Gajos et al., 2008].
Muir [1994] lists three factors that affect the apparent predictability of a

system:
1. The actual predictability of the system. This is defined by the fundamental

limitations to its predictability, derived from both the design of the system and
the physical limitations of the task environment.

2. The capability of the user to estimate the behavior of the system. This
is primarily defined by the transparency of the system, which depends on the
methods that are available for the user to observe and understand the system
behavior. However, the practical experience of the user also has an effect, as
more experienced users are generally more capable of comprehending the system
behavior.

3. The stability of the environment. The behavior of many systems depends on
the environment they operate in, so when the environment changes, the system
behavior changes as well. Thus, if the environment the system is used in is
subject to instability or unpredictability, this also has an effect on the apparent
predictability of the system.

3.4.2 Causes of Poor Predictability in Interactive User Modelling

As noted by Tsandilas and Schraefel [2004], user models are one of the main
sources of unpredictability with interactive AI systems. This is understandable,
as the apparent behavior of many mathematical models may differ greatly from
the intuition of the layman user. However, in a mathematical sense, the behavior
of many user models is strictly predictable as a function of the user feedback.
Thus, the actual predictability of the user model is not an issue with interactive
user modelling; the problem is with the capability of the user to predict the
behavior of the user model.

Regarding this issue, I see two main aspects that define the capability of the
user to understand the behavior of the user model.

The first aspect is comprehension of the model state. A user who is able to
comprehend the model state is able to answer questions such as “what does the
user model predict my interests are?”, or “what are the features of the current
model that have the largest effect on the predictions the model makes?”

The second aspect is comprehension of the model dynamics. A user who is able
to comprehend the model dynamics is able to answer questions such as “how
would the model predictions change if I would give this or that feedback?”, or
“how would the most important features of the model change if I would give this
or that feedback?”

In the context of interactive user modelling, the user is generally able to
inspect the user model, which facilitates the ability of the user to comprehend
the state of the model. However, just because the user is able to comprehend the
state of the model, there is no guarantee that the system facilitates the ability
of the user to comprehend or predict the model dynamics as well.
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To the best of my knowledge, the lack of support for comprehension and pre-
diction of model dynamics has not been explicitly discussed in previous research,
and no general design principles exist for facilitating the comprehension of
model dynamics in the context of interactive user modelling.

3.4.3 Proposed Solutions for Improving Predictability

To address the shortcomings outlined above, this thesis presents two complemen-
tary methods for improving the ability of the user to comprehend and predict
how her feedback affects the user model in interactive user modelling: predictive
visualization and intuitive control. I will first give a general explanation of the
proposed methods, followed by an analysis of their possible limitations.

For explicitness, I use the following notation, which describes the standard
setting of interactive user modelling in precise terms. Let the feedback of the
user up to time t be Xt = {x1, . . . , xt} and let the model at time t be Mt = M(Xt).
The visualization presented to the user at time t is denoted Vt =V (Mt) and the
interaction options are Ot = {ot1, . . . , otN }=O(Vt, Mt) (not to be confused with the
O-notation for computational complexity), such that there is an input mapping
I from each oti to a certain xt+1.

Predictive Visualization
The key insight of predictive visualization, presented in Publication I, is that
as a visualization V of the model state already exists in the interactive user
modelling setting, predicted changes to the model state can be communicated to
the user through this same visualization before the user commits to a feedback
action.

In precise terms, when the user is making the choice between interaction
options Ot, the search engine is able to construct, for each distinct option oti, a
one-step-ahead prediction of the next user model state Mt+1,i = M(Xt ∪ {I(oti)}),
which can then be visualized to the user as Vti = V (Mt+1,i). In this way, the
search engine will facilitate the ability of the user to comprehend how her
feedback will affect the search user model, using the full capability offered by
the visualization V .

Intuitive Control
The key insight of intuitive control, presented in Publication I, is that if the user
model dynamics1 are difficult for the user to understand, optimization can be
used to change the model dynamics so that they become easier to understand
from the user’s perspective. This is similar to the set-up of control engineering,
where a controller is used to change the dynamics of a system under control so
that it becomes better behaved [cf. Doyle et al., 2013]. An analogous example is
the power steering system used in cars, which keeps the effort needed to turn

1By model dynamics, I mean how the model changes in response to changes in the
training data, such as the addition of one more instance of user feedback.
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the steering wheel constant and predictable in various driving situations.
First, assume that for each interaction option oti, it is possible to define the

most predictable consequence from the user’s perspective. In precise terms,
assume these are defined using a requirement function r. Corresponding to each
oti, let rti be a mapping from future model states Mt+1 to R≤0 such that values
of rti(Mt+1) closer to zero indicate that Mt+1 better satisfies the requirement
rti. Thus, the interpretation of the interaction options can be changed, so that
instead of mapping each oti to a feedback x, they are mapped to requirements
Rt = {rt1, . . . , rtN } regarding the next state of the model Mt+1.

Now, instead of constructing the next feedback set Xt+1 by simply aggregating
the user’s latest feedback to the old data by Xt+1 = Xt ∪ {I(oti)}, the idea is to
construct Xt+1 using the solution for an optimization problem:

Xt+1 = Xt ∪ X ′
ti,

X ′
ti = argmax

X ′
rti(M(Xt ∪ X ′)),

where the option chosen by the user was oti and sensible limitations are made
for the search space of X ′ based on the application context. This approach will
then guarantee that the latest feedback given by the user will cause optimally
predictable consequences (as defined by Rt), regardless of the complexity of the
underlying model dynamics, with the limitation that the existing feedback Xt

should not be modified in the process.
The requirement that the existing feedback should not be modified by the

update is justified by the fact that Xt defines the current information about the
user, and thus if X ′

ti were to be optimized by argmaxX ′ rti(M(X ′)), there would
be no guarantee that this information would be preserved.

This way of mapping oti to feedback data X ′
ti is also fundamentally different

from having a static mapping between oti and feedback instances x. The reason
for this is path-dependency; X ′

ti is now a function of both rti and Xt, as the
requirements are always interpreted in the context of all the existing feedback.
This suggests that there is no trivial way to reduce this method to just a different
static mapping between oti and x.

As an alternative, the requirement function could also be constructed using V
instead of M. However, when there is a close correspondence between these two,
the results are likely similar.

And lastly, this approach can be combined with predictive visualization simply
by visualizing M(Xt ∪ X ′

ti) instead of M(Xt ∪ {I(oti)}) when the user is making a
choice between the interaction options.

Limitations
One limitation with these methods is with responsiveness of the interaction. In
general, humans have some tolerance for the responsiveness of an interactive
system but in many cases the response times are expected to be within a few
seconds [Shneiderman, 1984]. However, if updating the model, re-drawing the
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visualization or solving the optimization problem cannot be done in such a short
time, it is difficult to provide the user with a satisfactory user experience.

There are multiple ways to address this issue, depending on the situation.
If the delays are attributable to latency between the user interface and the
computer which performs the model update, which is not unusual in online
applications, the predictions might be computed in advance and transmitted
to the user interface together with the rest of the task related data. If the
optimization problem is challenging to solve precisely, an approximate solution
might be used instead. If there is a large number of similar feedback options,
say a continuous range of values, a smaller number of the possible options could
be sampled from the full set and the predictions only computed on these options,
while interpolation could be used for the rest. If re-drawing the visualization
is time-consuming, only the most salient parts of the visualization could be
updated on-line.

One possible pitfall with these methods is related to stochastic model updates.
If the state of the model is not a deterministic function of the user feedback,
but instead the state is drawn from a distribution Mt ∼ P(Mt|Xt), the predicted
state that is visualized to the user may not correspond to the resulting state
if the actual model update and the prediction are made separately. This issue
could be remedied either by storing the prediction and using it directly as the
resulting model, by making the model deterministic by storing the random
number generator seed, or by using, for example, an expectation E[Mt] as the
prediction visualized to the user.

3.4.4 Implementation

Both of the proposed methods were implemented using the existing SciNet
search engine developed by Głowacka et al. [2013] and Ruotsalo et al. [2013].

Predictive Visualization
Predictive visualization was implemented so that when the user starts dragging
a keyword on the radar, for the purpose of giving relevance feedback to that
keyword, the locations of the rest of the central keywords are changed to corre-
spond to their predicted new relevance scores, given that the user would drop
the dragged keyword to the current location. The new behavior is visualized in
Figure 3.3.

Intuitive Control
Intuitive control was implemented so that moving a keyword on the radar to a
certain location would optimize the resulting user model in such a way that the
predicted relevance of the latest moved keyword would be as close as possible to
the given feedback value.

To explain why this behavior is not guaranteed by the model by itself, consider
that it is standard for a model to treat all user feedback equally, as if each of the
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Figure 3.3. Illustration of the predictive visualization behavior. When the user starts dragging
a keyword over the radar, the original location of the keyword is highlighted with
a purple circle and the box of the dragged keyword is also highlighted with same
color. When the user drags the keyword over different locations on the radar, the
distances of other central keywords from the radar center change simultaneously
according to their predicted relevance scores. The user also has the opportunity to
drag the keyword back to its original location to cancel the initiated feedback action.
Reprinted from Publication I by permission, © 2015 ACM.

feedback values would have been generated in an independent fashion and carry
equal weight. Now, as the size of the feedback set Xt grows, it is clear that the
additional effect of each new feedback on average diminishes in proportion to
|Xt|−1. This fundamental property, common to a wide set of user models, makes
the model dynamics difficult to predict, as they are by design conditional not
only on the most recent feedback, but also on all past feedback. An example
of how this property can cause problems with predictability is illustrated in
Figure 3.4.

3.4.5 Evaluation

A user study was conducted in Publication I to evaluate the effects of these two
proposed improvements over the baseline SciNet search engine [Ruotsalo et al.,
2013]. A balanced study design was used, where 12 users each performed 2
search tasks, one with each variant of the search engine. One of the tasks was
a focused task that required the user to search for specific answers, while the
other one was broad, and had multiple possible answers.

The performance of the systems was measured in four dimensions. The task
performance was measured by an expert who scored the performance of the
users. The general usability of the system was measured with the SUS (System
Usability Scale) usability questionnaire [Brooke, 1996]. The user satisfaction on
information retrieval performance was measured with a modified version of the
ResQue recommender system performance questionnaire [Pu et al., 2011]. The
modifications were related to adapting the questionnaire from recommendations
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Figure 3.4. Illustration of the diminishing effect of feedback and apparent lack of control over
the user model, manifesting in the baseline system. In this example, the user
has previously given multiple instances of relevance feedback related to the topic
“human-computer interaction”, and now wants to direct the search towards the topic
“human-computer interaction in nuclear power plants”. In this situation, although
the user gave maximum relevance feedback to the keyword “nuclear power plants”,
shown in the left figure, this keyword was not predicted to be among the most
relevant keywords in the resulting model, shown on the right figure. Instead, the
user model appears to have remained largely the same, regardless of the additional
feedback given by the user. Reprinted from Publication I by permission, © 2015
ACM.

to information retrieval by removing unrelated questions and slightly re-wording
some of the existing questions. The user experiences were also measured using
structured interviews during and after the experiment.

3.4.6 Results

There are multiple conclusions that can be made based on the interviews. First,
based on the user comments, the proposed improvements did improve the pre-
dictability of the interaction. The largest contributor to improved predictability
in this case was the predictive visualization, which was mentioned most often
by the users as the reason for being able to predict the consequences of feedback
actions. Second, the improved predictability due to the predictive visualization
was reported by the users to be helpful in completing the search task. However,
the expert evaluations did not indicate a corresponding difference in task perfor-
mance. Thus, it is not clear whether this was only a subjective feeling or also led
to objectively improved task performance. Third, the predictive visualization
also contributed to the building of mental models, as the users stated that simul-
taneous movement of the keywords over the radar gave them further insight to
the behavior of the system. Fourth, the users preferred and were more satisfied
with the system with the improvements, which indicates that users are more
willing to use system variants which are more predictable.

There was also an indication that the proposed system resulted in better
performance in the focused search task, but surprisingly, worse performance in
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the broad search task.

3.4.7 Discussion

The fact that task performance effects appear to be opposite for the two task
types was not expected in advance. My post hoc hypothesis for this behavior is
as follows. In the focused search task, the users had very specific requirements
for the type of information they needed to find. This made it easier for the users
to determine how the user model should optimally be altered for the relevant
information to be found. In contrast, in the broad search task, the requirements
for the found information were broad, which made determining the optimal
changes more challenging. Thus, although interaction with the baseline system
may have caused unpredictable changes in the user model, these changes may
also have led to serendipitous information discovery. This means that the users
may have been propelled to directions that are objectively relevant but may have
felt irrelevant to the user a priori, due to the user being relatively unfamiliar
with the search topic.

Based on this post hoc analysis, I believe it is plausible that there are tasks
where serendipitous discoveries play a significant part in completing the task
successfully. One such example could be search tasks with broad information
requirements, as was the case in this experiment. In such situations, it is
possible that just maximizing predictability is not optimal, if it also leads to
fewer serendipitous discoveries.

3.5 Improving Feedback Consistency in Interactive User Modelling

This section discusses the significance of the quality of the observation data
in user modelling, lists causes for inconsistencies in the observation data and
proposes solutions for improving the quality of the observation data in interactive
user modelling, in the context of the SciNet search user interface.

3.5.1 Significance of Observation Quality in Modelling

From the perspective of modelling, it is vital that the observation data contains
correct information about the modelled behavior. Aberrations and inconsisten-
cies in the observation data have many names: noise, errors, misclassifications,
drift, among others. Although introducing small amounts of noise to the observa-
tions has been shown to sometimes improve the robustness of the model [Dwork
and Lei, 2009], the general rule is that when the amount of inconsistencies in
the observation data increases, the performance of the model decreases [Zhu
and Wu, 2004].
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3.5.2 Causes for Feedback Inconsistency in User Modelling

There are two general reasons why inconsistencies appear in observation data
collected from users. The first reason for inconsistencies is that the interests,
task or decision criteria of the user change over time. For example, if the user
starts by searching for vacations in a ski resort, but later decides that she
actually prefers beach resorts, there has been a drift in the interests of the user.
In modelling terms, this can be seen as concept drift [Widmer and Kubat, 1996;
Tsymbal, 2004] in the context of user modelling.

The second reason for inconsistencies are errors made by the user when
interacting with the system. Reason [1990] has presented a comprehensive
classification of different types of user errors. Regarding planned actions made
by the user, there are two main classes of errors that may happen. The first is
called unintentional errors. For example, if the user makes a manual error in
giving feedback, such as indicates that a keyword is relevant when the opposite
is true, this can be seen as an unintentional error. The second class of errors is
called mistaken actions. For example, when searching for healthy foods, if the
user gives high relevance feedback to the search term “Apple”, which the user
interprets as the name of a fruit, while it actually signifies the name of an IT
company, this can be seen as a mistaken action. The difference between these
two types of errors is that given the description of the performed action alone,
the user can spot unintentional errors but not mistaken actions. In order to spot
mistaken actions, the user has to also observe whether the consequences of the
action were as intended. From the perspective of the learning algorithm, both
types of user errors are generally treated similarly, as spurious random events
that occur randomly among the true feedback. Separating these errors from the
correct feedback can be seen as outlier detection [Hodge and Austin, 2004] in the
context of user modelling.

Out of these two reasons for feedback inconsistency in user modelling, concept
drift has generally been seen as the more critical issue [Webb et al., 2001]. One
reason for this is that a drift may cause large portions of the feedback data
to become invalid, while errors often only constitute a constant fraction of the
feedback. Another reason may be the similarity between modelling errors and
user errors. As the model is in every case an approximation, even if there were
no user errors it can be expected that part of the observation data will not
agree with the model predictions. Many models even make explicit assumptions
about the noisiness of the observation data, for example, by assuming that the
feedback given by the user is corrupted with Gaussian noise. As both random
modelling errors and user errors can be captured with this same noise model, a
distinction between these two is often not made in user modelling.
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3.5.3 Detecting Feedback Inconsistency

Traditional Approaches
Hodge and Austin [2004] list three fundamental approaches to identifying in-
consistencies in observation data. In unsupervised clustering the outliers are
determined without using any prior knowledge of the data, simply by the re-
moteness to other observations [Brito et al., 1997]. In supervised abnormality
detection the outliers are explicitly modelled as part of the data distribution,
which is generally more efficient than unsupervised clustering but requires
labelled data [Laskov et al., 2005]. Semi-supervised abnormality detection is
between these two approaches, meaning that some labelled data exists regard-
ing which points are outliers, but generally not enough to train an adequate
supervised classifier [Zhang et al., 2005].

Klinkenberg [2004] further divides the methods for dealing with inconsistent
observation data into two categories. In example selection the approach is to use
a selection rule for choosing the observations which are used for fitting the model.
Common example selection approaches include windowing [Widmer and Kubat,
1996] and data selection [Fan, 2004]. In example weighting the approach is to
use a weighting rule for altering the impact of different observations. Common
example weighting approaches include linear [Koychev, 2000] and exponential
weighting [Klinkenberg, 2004].

Shortcomings With Traditional Approaches
The existing methods for dealing with concept drift have mostly been studied in
the context of data streams [Muthukrishnan, 2005]. A data stream is a source of
observation data that provides new examples at such a high rate that there may
be sufficient resources to read each data item only once, after which it has to
be discarded. This is different from user modelling, and especially interactive
user modelling, where it is more often the case that only a relatively small
amount of data is available about the user’s interests [Webb et al., 2001]. In the
data stream setting it is often acceptable to be able to adapt to a new concept
within some hundreds of observations after the drift takes place [e.g. Gama
et al., 2004]. In contrast, in interactive user modelling the entire dataset might
only be some tens or hundreds of samples. Thus, in the context of interactive
user modelling, in order to be able to quickly adapt to changes in the learned
concept, the adaptation would need to take place almost instantly after the
concept changes, which is quite a tall order for many of the existing methods
developed for the data stream setting.

Unsupervised clustering approaches for outlier detection suffer mostly from
the same issue, which is the assumption of abundant observation data. These
methods naturally work best when there is ample data, as with small amount of
data it is challenging to distinguish between outliers and small clusters of data.

Supervised abnormality detection is challenging to apply in user modelling,
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as there generally is no labelled data available of outliers in user feedback.
Furthermore, due to the subjectivity of user feedback, it might even be impossible
to objectively determine what precisely is an outlier as the correct classification
might be user-dependent.

Conclusion: Feasible Approaches for Interactive User Modelling
Many of the traditional approaches for drift and outlier detection do not seem
to be applicable to user modelling with low amount of observation data. This
is due to the modelling assumptions which presume abundant data and often
emphasize fast model computation time over detection accuracy.

The only approach for outlier detection which seems to be applicable for user
modelling with low amount of observation data is semi-supervised abnormality
detection. This means that some part of the data needs to be labelled as inliers
or outliers, but it cannot be assumed that all of the data is labelled.

In the interactive user modelling setting, the low amount of available observa-
tion data is compensated by the relatively large amount of resources available
for performing inference, compared to the data stream setting. This means that
by using more sophisticated models that are computationally feasible in the
interactive user modelling setting, but not necessarily in the data stream setting,
it might be possible to adapt quickly enough to changes in user interests.

Another opportunity in the interactive user modelling setting is the ability
to ask for further clarification from the user, who is also the source of the
observation data. This would not be possible when the source of the data is not
available for interaction during the modelling process.

3.5.4 Interactive Detection of Data Inconsistency

As discussed earlier, the ability to ask for further clarification to the observation
data directly from the user is a special feature of the interactive user modelling
setting. However, there is little previous research of how this type of interaction
should be designed.

In general, multiple methods exist for on-line outlier and drift detection [Gupta
et al., 2014]. Some of these are even paired with interactive visual tools, de-
signed to help the user, for example, in detecting outliers from large [Chaudhary
et al., 2002] and high-dimensional datasets [Wilkinson et al., 2006] or for in-
teractive cleaning of data [Guyon et al., 1996]. However, the vast majority of
existing methods have been designed for situations where the user and the data
generating process are completely distinct.

The setting of interactive user modelling is fundamentally different from those
explored earlier, for three main reasons. First, the user is also the source of
the modelled data, so the system is presenting critique of user actions, rather
than the behavior of some external process. This means that the method of
giving critique should be designed so that it is not offensive or unpleasant to
the user. Second, the detection of outliers is a corrective process that should
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only be noticeable when something goes wrong. This means that the user is
primarily focusing on a separate main task, not on finding inconsistencies in her
own actions. Third, the user has also the option of altering her past feedback
data on-line. This means that the system should also support the user in this
task, for example, by giving suggestions for changes and explanations as to why
the system believes the data is inconsistent.

To the best of my knowledge, no published methods exist for interactive data
inconsistency detection in the context of interactive user modelling. Perhaps
the closest analogue is spell-checking, where the text written by the user is
checked for inconsistencies at the same time when the user is writing it [e.g.
Macdonald et al., 1982]. Possible issues are highlighted gently to the user for
further scrutiny and possible corrections to misspelled words may be presented.
However, as the text written by the user in a word processor does not constitute
data used for modelling, and as the approaches for spotting misspelled words
are different from those for spotting inconsistencies in observation data, the
setting is not quite the same.

3.5.5 Proposed Solutions for Improving Feedback Consistency

In Publication II, two methods were proposed to improve the capability of the
user to notice drift and errors in her feedback, and make corrections to it: a
model for estimating the accuracy of user feedback and a timeline visualization
of the past feedback. I will first give a general explanation of the proposed
methods, followed by an analysis of their possible limitations.

Modelling Accuracy of Feedback
In Bayesian modelling, automatic relevance determination (ARD) [Li et al.,
2002] is a traditional approach to feature selection [Guyon and Elisseeff, 2003].
The general idea is to introduce auxiliary variables wj which scale the impact of
each (normalized) observation data feature j. Thus when wj is small, the effect
of feature j is small, and vice-versa. Based on the assumed amount of significant
features, a prior distribution P(w) is chosen. The values wj are learned at the
same time with the model parameters, and their values are affected both by the
evidence presented by the data and the prior.

However, it is also possible to formulate a similar ARD approach for weight-
ing the individual observations themselves, as demonstrated by Tipping and
Lawrence [2003]. In technical terms, this constitutes an example weighting
approach to inconsistency detection, where the weights are learned based on the
mutual agreement between observation data points, conditional on the assumed
generative model. Further technical justification of this approach was presented
recently by Wang et al. [2017], who used the term reweighted probabilistic
models.

The proposed method, presented in Publication II, is based on a Bayesian
linear regression model for estimating the relevance of different keywords that
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occur in the searchable documents.2 Using a Bayesian linear model is justified by
the fact that there are more coefficients to be learned than user feedback to learn
them from. Thus, this is an under-determined inference problem, which requires
further regularization for the solution to be well-defined; this is provided by the
structured Bayesian prior distributions. A similar approach has been shown to
be applicable to outlier detection in robotics in the context of a large amount of
low-dimensional observation data [Ting et al., 2007]. The hypothesis was that
with the use of more restrictive priors, the same approach should in principle
also work with low amount of high-dimensional observation data.

In technical terms, let each keyword i have a feature vector xi. The user gives
relevance feedback yi to a subset of these keywords. The modelling assumption is
that there is a linear relation between yi and xi, corrupted with Gaussian noise.
However, the variance of the noise is dependent on i; specifically, it is assumed to
be σ2/wi, where σ2 is the overall variance and wi an keyword-dependent weight.
Altogether, this can be written as a generative model

yi ∼ Normal(yi|xT
i θ,

σ2

wi
),

where θ are the linear model coefficients. For the model parameters, common
prior distributions were used:

θ j ∼ Normal(θ j|μθ,λθ),

σ2 ∼ InverseGamma(σ2|ασ2 ,βσ2 ),

wi ∼Gamma(wi|αw,βw),

where μθ, λθ, ασ2 , βσ2 , αw and βw constitute the hyper-parameters of the model,
which are fixed to reasonable constant values based on initial tests.

In addition to this, a semi-supervised approach to outlier detection was used.
The assumption was that it is known with certainty that part of the feedback is
accurate, meaning non-outliers. For such feedback a different prior distribution
is used:

wi ∼ Delta(wi|1),

which forces the weights of those feedback items to be 1. The most recent feed-
back given by the user is always assumed to be accurate. This is a very reason-
able assumption in the context of concept drift [cf. Koychev, 2000; Klinkenberg,
2004]. In the case of a user error, this assumption will only delay the detection
of the error by one cycle of iterative feedback. In addition to the most recent
feedback being assumed to be accurate, the user can also explicitly inform the
model about other feedback which she insists is accurate. There is no special
prior for feedback that is certainly inaccurate, as it was assumed that upon
noticing such feedback, the user will remove or correct it.

2The feature vector of a keyword is constructed based on the documents where the
keyword appears in.
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It should be noted that in general, this approach would not be applicable for
outlier detection with data streams, as inferring the wi requires considering the
entire history of observation data. However, with small data sets the approach
is feasible.

Regarding inference, the unnormalized posterior does not belong to any stan-
dard family of distributions due to the observation likelihood being non-conjugate
with the prior distributions. This means that it is more difficult, for example,
to find the maximum of this distribution as no closed-form solution is known.
In general, an iterative solution approach has to be used for optimizing model
parameter values.

The chosen approach was mean-field variational Bayesian inference [Attias,
1999]. The idea of this approach is to approximate the complicated posterior
distribution with a set of simple distributions multiplied together, called the
variational distribution. Variational inference was chosen instead of, for ex-
ample, Markov Chain Monte-Carlo methods [cf. Gilks et al., 1995], as it is
computationally much faster in practice, which is crucial in interactive systems.

Interactive Visualization of Feedback Reliability
For allowing the user to interact with this new model, an interactive timeline
component to the SciNet user interface was proposed in Publication II. This
interface was used for visualizing the feedback given by the user so far, indicating
if some of the feedback was estimated to be inconsistent, and allowing the user
to alter the previously given feedback. The timeline component is illustrated in
detail in Figure 3.5 and shown in context of the full user interface in Figure 3.6.

The timeline consists of two parts: the upper part, displaying the feedback
given during the current search sessions, and the lower part, displaying key-
words used in previous search sessions.

The upper part contains one row per keyword that the user gave feedback to.
The rows are ordered such that most recent feedback appears at the top. Each
row has the name of the keyword on the left, and the relevance score given to
the keyword on the right. The relevance score is visualized as a green bar, with
larger width indicating higher relevance score. The names of keywords with
inconsistent feedback are highlighted with yellow color, such that the saturation
of the color is more intense when the value of wi is smaller. In other words, the
more confident the system is that the feedback is inconsistent, the more salient
it becomes in the interface. When the user hovers the mouse pointer on top of
the name of a keyword, the background color of the keyword changes to blue, and
two new interaction options are displayed to the user. By clicking the x-symbol
next to the keyword, the user removes the feedback item altogether. By clicking
the lock-symbol, the user indicates that she is confident that this feedback is
accurate. When the user hovers the mouse on top of the green bar, she can
change the relevance score given to the keyword by clicking at the location which
corresponds to the desired new relevance.

The lower part initially contains one row per previous search session per-
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Figure 3.5. Illustration of the layout of the timeline user interface component. Explanation in
main text. Reprinted from Publication II by permission, © 2016 ACM.

formed during the search task. The purpose of this part is to allow the user to
conveniently re-find keywords used previously, in case the user has recurring
interests. On each row, the initial keyword query for that search session is
displayed as the title for that session, on the right hand side of the timeline.
When the user clicks on the title, one row is added below it for each keyword
that was given feedback to in that session, with the keyword name displayed on
the left-hand side. When the keywords are visible, the user can give feedback to
any of the previously used keywords in the same manner as for the keywords
belonging to the current session. The user can also hide the keywords belonging
to a previous session by clicking on the session title again. In addition, if there
are irrelevant previous search sessions, the user can remove them by clicking
the x-symbol next to the session title.

Limitations
One limitation of both of these methods is that they are not practical if the
amount of feedback is very large. First of all, the timeline interface may become
cumbersome to use if it contains a large number of keywords, as the user will
need to manually scroll the timeline to find a keyword of interest. Also, inference
becomes more expensive as the number of past feedback grows, which might
slightly degrade the responsiveness of the interactive system. However, as the
amount of feedback given in this particular case example was relatively small
for each search session, these limitations did not appear to cause any issues.
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Figure 3.6. Illustration of the full user interface layout, with the timeline placed below the radar
visualization.

3.5.6 Evaluation

Simulation Study
The proposed approach was first evaluated in a simulation study, presented in
Publication II. In the study, a simulated user searched for relevant documents
among the 20 Newsgroups dataset [Rennie and Lang, 2008]. The study compared
the proposed method to a baseline approach with the difference that all feedback
was assumed to be equally accurate, so that wi = 1 for all i. In addition to
this, an oracle was used which knew precisely which of the user feedback was
correct and which was not. The performance of the methods was measured with
information retrieval F1-score, as a function of the amount of feedback.

At each round of the simulation, the user first gave relevance feedback to
two random documents3. With certain probability the feedback given by the
user would be significantly altered from the correct value. After this, one of
the previously given feedback items was highlighted to the user. The simulated
user operated in four modes, reacting differently to the highlighted feedback.
When the highlighted feedback was incorrect, the user either corrected or did
not correct the feedback. When the shown feedback item was correct, the user
either indicated or did not indicate that the feedback was accurate.

3For simplicity, the regression model was slightly altered to predict relevance of docu-
ments based on document feedback in this experiment.
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User Study
In Publication II, the performance of the proposed system was also compared
against a baseline system in a user study. The baseline system used a similar
baseline model as in the simulation study, and in addition, the timeline interface
was hidden. The study included 18 users who completed two search tasks, one
with each interface, using a balanced study design. Both of the tasks were
similar in format, asking the user to explore the subtopics of a certain larger
topic.

The prevalence of drift and errors was promoted in two ways. First, the search
tasks were formulated to promote moving across different subtopics during
search, which was hypothesized to cause drift. Second, the length of the viewable
results was limited, which forced the user to search for relevant documents
through giving more feedback, instead of just manually scrolling down a long
list of search results. This was hypothesized to cause more interactions with the
system, and thus more user errors as well.

The performance of the systems was measured in five dimensions. The task
performance was measured by an expert who scored the performance of the
users. The general usability of the system was measured with the SUS usability
questionnaire [Brooke, 1996] and the information retrieval performance with the
same ResQue recommender system performance questionnaire [Pu et al., 2011]
as used in Publication I, but with four additional questions related to usability
after the user had made an error. The user experiences were also measured
using semi-structured interviews after the experiment. The keywords seen and
manipulated by the users during the experiments were logged, together with
the documents found by the users; the quality of the keywords and documents
was rated by an expert.

3.5.7 Results

In the simulation experiment, the proposed model was able to achieve perfor-
mance comparable to the oracle with the help of further interaction with the
user. This demonstrates the advantage of asking additional clarification from
the user to her feedback. The simulation experiment also demonstrates that
highlighting feedback based on the estimated accuracy works much better than
selecting them randomly, as was done by the baseline system.

The user experiment partially confirms that the performance of the search
engine was improved thanks to the use of the proposed user model and the
interactive timeline. This is demonstrated by the 10 % higher ResQue score
received by the proposed system, compared to the baseline. However, the effect
in terms of objective quality of displayed information was small, as the expert
evaluation found no significant differences between the relevance of information
displayed to the users by the two systems.

The user experiment also demonstrated that the users performed more inter-
action with the proposed system. This demonstrates that the users found the
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new interaction options useful, with the ability to delete and revise feedback
being the most used options. Also, as the proportion of changes and deletions
of all the keyword interactions was notable, roughly 30 %, this indicates that
either there was drift in the search intents of the users, or that the users had
made errors in giving feedback.

Both the interview results and answers to individual questions in the two
questionnaires demonstrate that the proposed system made it easier for the
users to make corrections to previously given feedback and to form better mental
models of the system behavior. These improvements can mostly be attributed to
the presence of the timeline interface and the interaction options it offers.

3.5.8 Discussion

I have two post-hoc hypothesis for the lack of difference between the two systems,
regarding task performance, keyword quality and document quality.

The first hypothesis is that even though the significance of giving feedback was
emphasized for finding good results, through limiting the number of results avail-
able for viewing, this did not increase the amount of feedback enough. Based on
the logs of user activity, the users gave generally less than 10 instances of feed-
back per search query. However, when compared to the simulation experiment,
the effects of the proposed model seem to be more clearly noticeable only after
roughly 20 instances of feedback. Thus, as expected, no significant difference in
performance was found between the two systems when the users only gave this
low amount of feedback. To remedy this, a more efficient approach for promoting
the amount of feedback given should be used. However, just reducing the amount
of viewable results even further would likely have caused frustration among
users, as one user already commented that she would have wanted to scroll
through more results. This means that some other complementary approaches
would have to be used as well.

The second hypothesis is that as the users were both made explicitly aware of
the feedback they had given, and were notified by the system of the consistency
of their feedback, they were able to deal with the concept drift preemptively,
instead of relying on the system to alert them when drift happens. Support for
this hypothesis is given by the user who commented that she made the core
keywords stay accurate before exploring the various subtopics, which indicates
that the user was able to anticipate which keywords might be seen as outliers
by the search engine, before giving possibly conflicting feedback.
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4. Likelihood-Free Inference for
Cognitive Models

This chapter gives an overview of the line of research related to RQ2 – Can the
parameter values of cognitive models be learned efficiently from observation data,
together with principled uncertainty estimates, without strict requirements for
the type of the observations or for the structure of the cognitive model? First,
a definition of a cognitive model is given with examples, outlining both the
simpler traditional cognitive models and more complicated modern models. After
these, challenges related to inference of cognitive model parameter values are
discussed and existing methods for inference are described. Finally, approximate
Bayesian computation based on Bayesian optimization with a Gaussian process
surrogate model is introduced, and its applicability to inference of cognitive
model parameter values is evaluated.

4.1 Cognitive Models

Cognitive models are a subset of user models distinguished by the explicit
assumptions they make regarding the cognitive processes or capabilities of the
user. Examples include assumptions about the user’s capabilities to perform
manual operations [Card et al., 1980], visual perception [Lohse, 1993], working
memory capacity [Byrne and Bovair, 1997] and skill level [Desmarais and Baker,
2012]. One of the main reasons why cognitive models are used in HCI is their
ability to predict how users will interact with various proposed designs of the
interactive system [Olson and Olson, 1990]. Another reason is the possibility of
personalizing the user interface based on a model of the user [Langley, 1999;
Duric et al., 2002]. In addition, computational models of cognition are also used
in the field of cognitive science for explaining various cognitive behaviors [Lazer
et al., 2009].

One of the key features of a cognitive model is the behavioral policy of the user,
which describes what actions the user will perform in any given situation. Next,
I will briefly describe how the approaches for constructing these policies have
evolved over time.
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4.1.1 Traditional Cognitive Models

Many of the early cognitive models were formulated for situations where it was
assumed obvious what actions the user will perform in order to complete a task
[e.g. Card et al., 1980]. For example, in the GOMS formalism1, the modeller
explicitly lists all the actions the user will perform to achieve a certain goal [John
and Kieras, 1996]. Such models have been used, for example, for predicting how
long it will take a user to perform certain kinds of text editing task [John and
Kieras, 1996]. For example, the actions required for selecting a certain word
from a short body of text can be stated explicitly as: (1) look at the word on the
screen, (2) move the cursor on top of the word, (3) double-click the left mouse
button. More complex tasks can be described with the help of simpler sub-tasks;
for example, the text selection task can be used as a sub-task when describing a
copy-and-paste task.

However, this traditional approach to modelling the policy of the user is
generally only applicable for tasks that are rather trivial or easily decompose
into a sequence of trivial sub-tasks. There are two reasons why more complicated
tasks might require a different approach. The first reason is the bounded
rationality and cognitive capabilities of the user [Simon, 1990; Gigerenzer and
Goldstein, 1996]. In other words, when performing a complicated task, the
user is not able to precisely observe, consider or remember all the facts that
are relevant for performing the task. However, taking all this uncertainty into
account may make the policy complicated and laborious to describe manually.
The second reason is that certain tasks are inherently complex and require
policies that are difficult for humans to explicate. In general, many tasks
performed by humans require considerable expertise for good task performance
[Ericsson and Lehmann, 1996]. Regarding these kinds of tasks, it is unlikely
that a non-expert could describe the behavioral policy of an expert user, and
furthermore, it might be that even the expert user herself cannot explicate the
precise reasons for her behavior [e.g. Maxwell et al., 2000], for example, due to
unconscious adaptation. For example, in the case of word selection, if the size of
the document is large, the sequence of steps needed for determining the location
of the word is much more complicated compared to a small document. The user
might remember only approximately where the word is located, which requires
the policy to be formulated as a function of this probabilistic knowledge. The
policy may also be very sophisticated if the user is an experienced user of text
editors, as there are multiple alternative ways to perform this search operation,
each being suitable in certain contexts.

1Definition of the Goals of the agent, Operations to interact with the environment,
Methods for achieving goals, and Selection rules for choosing between alternative
methods.
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4.1.2 Modern Cognitive Models

Currently, there are two main approaches for modelling user behavior in sit-
uations where a complicated policy is necessary for adequately predicting the
behavior of the user. One approach is to make the language for describing the
policies more flexible. Perhaps the most widely used framework in this respect
is ACT-R [Anderson, 1996]. In ACT-R, the complicated policy emerges from
interaction between two model components: the procedural knowledge and the
declarative knowledge of the user. The procedural knowledge consists of a set
of production rules, which describe how various tasks are performed in terms
of the parameters of the task and the state of the declarative knowledge. The
declarative knowledge consists of a set of chunks, which describe various facts
related to the environment of the user in terms of ontological relations, and may
be altered by the production rules. The ACT-R model simulates the behavior of
the user by first initializing the declarative knowledge based on the initial state
of the environment, and then by repeatedly applying the production rules until
a terminal state is reached.

Another approach is to have a completely implicit definition of the policy, by
defining it to be a solution to an optimization problem. Perhaps the most widely
used approach in this respect is computational rationality [Lewis et al., 2014;
Gershman et al., 2015]. The idea of computational rationality is to model the
complex behavior of the user as an optimal adaptation to the present goals
and environmental limitations. One popular way to formulate this is by using
the reinforcement learning (RL) formalism [Sutton and Barto, 1998]. In this
formalism, the environment of the user is often assumed to be a Markov decision
process (MDP), consisting of a set of actions A, states S, state-transition proba-
bilities T, reward function R, temporal discount γ and initial state distribution
P(s0). The policy π is a distribution P(a|s), where a is an action and s is a state.
Performing an action a in state s results in the following state s′ being drawn
from P(s′|a, s) as defined by T. An optimal policy π∗ is defined to be such that it
maximizes the expected cumulative discounted sum of rewards,

π∗ := argmax
π

E
[ ∑

st∈ξπ
γtR(st)

]
,

where ξπ is a trajectory (s0,a1, s1, . . . ) generated by starting from an any initial
state s0 and acting according to π thereafter. Thus, given a description of the
environment, a RL model first solves the corresponding optimal policy and then
uses this policy for predicting the behavior of the user in any given situation.

4.2 Inference of Cognitive Model Parameter Values

Although in some special cases it might be feasible to manually tune the param-
eter values of cognitive models, in general, the applicability of these models is
greatly enhanced when they are paired with an efficient automated method for
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inferring the model parameters based on observation data. This section first
outlines reasons why this is not trivial with modern cognitive models, discusses
existing methods for performing inference and lists shortcomings of existing
methods, especially related to the situation where the type of the observations
varies.

4.2.1 Challenges in Cognitive Model Parameter Inference

There are two main challenges in inferring parameters values of modern cogni-
tive models, such as ACT-R or RL models, based on observation data. The first
challenge is with the complexity of the model structure, and the second with the
unavailability of sufficient observation data. Both of these ultimately lead to
difficulties with evaluating the observation likelihood P(D|θ).

Complexity of Model Structure
In general, the more faithfully a cognitive model attempts to mimic the structure
of a human cognitive system, the more complex the structure of the model be-
comes. This is especially salient with the ACT-R model family. For example, the
ACT-R 7.0 software library contains eight core modules, a variety of additional
modules and can be even extended by custom user-defined modules [Bothell,
2017]. Each of these modules contains functionality related to a particular
aspect of the cognitive system, such as auditory processing or motor control,
and the final cognitive model is constructed by composing functionality from
multiple modules. However, in practice, this means that there are no guarantees
that the observation likelihood P(D|θ) can be written in closed form. From a
practical perspective, this is because the model is essentially a software exe-
cutable, instead of an analytical mathematical model, which makes it difficult
to construct the likelihood function. Furthermore, the model structure may be
very complicated, which leads to a possibly intractable likelihood.

One method for dealing with this issue was proposed by Said et al. [2016],
who replaced the Lisp library traditionally used for defining ACT-R models with
an approximate analytic definition of the model structure which guaranteed
that the likelihood and its derivatives exist. While this approach was shown
to work for a very simple ACT-R model, this approach still has multiple issues.
First, existing ACT-R models cannot be used as such, but need to be re-written
in this analytic format from ground-up. Second, writing the model in purely
analytic form may be cumbersome for more complicated models. Third, there
are no guarantees to how the model predictions change when approximations
are introduced. Fourth, there are no guarantees as to how computationally
expensive the likelihood or its derivatives are to evaluate.

Unavailability of Sufficient Observation Data
The second challenge relates to the unavailability of sufficient observation data.
By sufficient observation data, I mean a large enough amount of observations of
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suitable type, measured with sufficient accuracy, such that the model parameter
values can be estimated reliably and conveniently based on this data.

With cognitive models, the main reason for the unavailability of sufficient
observation data is the difficulty of observing the states of the actual cognitive
processes that occur in the mind of the user. In many cases it is only possible to
make proxy measurements, or substitute observations, that somehow relate to
these processes; one example of such a proxy measurement is the time required
to complete a task. In some cases, it is also possible to make measurements
more closely related to cognitive processes, for example, by measuring the visual
fixations of the user with an eye-tracking camera. However, for example, it is
unlikely that one could conveniently measure the state of the user’s short- or
long-term memory, at least with modern equipment. Although some progress
has been made recently in using fMRI (functional magnetic resonance imaging)
measurements for validating cognitive models [Borst and Anderson, 2015], in
the vast majority of cases various proxy measurements have to be used instead.
There are of course other possible reasons for insufficient observation data
as well, such as physical occlusion, faulty measurement devices, censored or
missing observations, and so on.

Due to the fact that the modelled cognitive behavior and the observation
data are separated by one or multiple steps of transmutation and filtering,
the observation likelihood P(D|θ) is generally complicated. To give a concrete
example, with RL models the observation likelihood can be quite simple when
the observation data is available as state-action trajectories ξ:

P(ξ|θ)= P(s0)
T−1∏

t=0

[
π∗
θ (st,at)P(st+1|st,at)

]
,

and there are multiple existing inverse reinforcement learning (IRL) methods for
parameter inference in this case [e.g. Ramachandran and Amir, 2007; Ziebart
et al., 2008]. However, if one is only able to observe a proxy measure which can
be seen as the true trajectory being filtered through a function σ, the available
observation is ξσ =σ(ξ). In this case, the observation likelihood has the form

P(ξσ|θ)= ∑

ξ∈Ξap

[
P(ξσ|ξ)P(ξ|θ)

]
,

where Ξap is the set of all plausible trajectories that could have caused the
observation ξσ which may be arbitrarily large and thus make the likelihood
arbitrarily expensive to evaluate. Some steps have been taken to alleviate
this, for example, regarding probabilistic state observations [Kitani et al., 2012]
and observations missing from the trajectory [Bogert et al., 2016]. However,
to the best of my knowledge, no existing IRL method is able to deal with the
more general case where the observation data of the user’s behavior is given in
arbitrary format, such as in the form of durations between certain measurable
events.
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4.2.2 Current Methods for Likelihood-Free Parameter Inference

The key problem caused by a complicated observation likelihood is the difficulty
of applying many of the existing parameter inference methods, as they rely
on being able to repeatedly evaluate the likelihood function in order to find
parameter regions that correspond to large likelihood.

For example, if the derivatives of the likelihood function can be easily com-
puted or estimated, various gradient-based optimization methods [cf. Bertsekas,
1999] can be used for finding the maximum likelihood (ML) solution. If the
derivatives cannot be easily computed or estimated but the (unnormalized) like-
lihood function itself can be evaluated, Markov-Chain Monte Carlo methods
[cf. Gilks et al., 1995] can be applied. However, if the likelihood function is
computationally expensive or impossible to be evaluated, these likelihood-based
inference methods become impossible to apply. Unfortunately, the likelihood
functions of modern cognitive models often end in the latter class.

The most common approach has thus been to perform likelihood-free inference.
The core idea of likelihood-free inference is to estimate the likelihood values
empirically through simulating data from the model and comparing it to the
observed data. This way, it is possible to avoid evaluating the likelihood function
altogether but the trade-off is that multiple simulated datasets need to be
generated from the model instead.

The most rudimentary likelihood-free approach has been to set the parameter
values manually [e.g. Lewis and Vasishth, 2005; Chen et al., 2015], which might
be feasible in some special cases but is not a scalable or accurate method for
inference in general. Another approach has been to optimize the estimated
prediction error using a black-box optimization method. Examples of this in-
cludes brute-force optimization [e.g. Blouw et al., 2016; Lee et al., 2016] and
derivative-free local optimization methods [e.g. Vandekerckhove and Tuerlinckx,
2007; Logačev and Vasishth, 2016], such as Nelder-Mead simplex optimization
[Lagarias et al., 1998]. However, there are two problems with these commonly
used likelihood-free approaches.

The first problem relates to the inefficiency of brute-force optimization. In
general, brute-force optimization requires evaluating the optimized function a
large number of times. The number of evaluations usually grows exponentially
with the number of parameters. Thus, especially when the parameter space is
high-dimensional, brute-force optimization is no longer a practical approach.
Furthermore, brute-force optimization is not able to guide the sampling process
in an efficient manner, which may lead to a large amount of simulations with
parameter values that are almost certainly not optimal.

The second problem relates to the ability to estimate the uncertainty of the
parameter estimates. Such estimates are often not provided by point-estimation
methods, such as Nelder-Mead simplex optimization. However, especially due to
the fact that in general there is insufficient observation data as discussed in the
previous subsection, it is likely that there will remain considerable uncertainty
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regarding the true parameter values of the cognitive model. Intuitively, when
the posterior distribution of the model parameters is concentrated in a small
region of the parameter space, a point-estimate is a reasonable summarization
of the current knowledge regarding the true parameter values. However, when
the posterior distribution is wide or multi-modal, this is no longer the case. In
the case of wide distributions, it would be informative to estimate the region of
plausible parameter values instead of a single point, and in the case of multi-
modal distributions it would be informative to estimate the locations of each of
the modes and their relative plausibilities.

4.3 Proposed Solution for Inferring Cognitive Model Parameter
Values

In Publications III, IV and V, approximate Bayesian computation (ABC) [cf.
Sunnåker et al., 2013] combined with Bayesian optimization (BO) [cf. Snoek
et al., 2012] using Gaussian processes (GP) [Rasmussen and Williams, 2006] is
proposed for inferring the parameters of cognitive models. ABC is a likelihood-
free inference method based on the Bayesian statistical formalism, which allows
for principled estimation of parameter uncertainty. BO using GPs is a widely
used black-box optimization method that is able to estimate the global optimum
of a function with a low number of samples, which is important when simulations
from the model are expensive, which is often the case with modern cognitive
models. I will first give a general introduction to the proposed method, followed
by an analysis of its predicted benefits and possible limitations, and a discussion
of the implementation.

4.3.1 Introduction

The core idea of ABC is that given a discrepancy function δ for quantifying
the difference between model predictions and observation data, the posterior
distribution of the model parameters can be estimated without the use of the ob-
servation likelihood function. First, let δ(D,D′) be a deterministic non-negative
function that is zero if and only if D = D′, and with slight abuse of notation, let
M(θ) be a stochastic function that generates simulated observation data Dsim

from model M with parameters θ. Now the probability of generating observed
data Dobs from model M with parameters θ is

P(Dobs|θ)≡ P
(
Dobs = M(θ)|θ)

,

because M(θ) is the assumed generative process. This can also be stated as

P
(
δ(Dobs,Dsim)= 0|θ)

.

What this means is that the value of the observation likelihood function equals
the probability of simulating the observation data from the model given the pa-
rameter values. This probability can be estimated empirically using simulations
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from the generative model. However, this empirical estimate may have high
variance as the probability of precisely simulating Dobs from M(θ) is often very
small. This is the motivation for the ABC approximation, which is to relax this
requirement by defining an ε-approximate likelihood

P̃ε(Dobs|θ) := P
(
δ(Dobs,Dsim)< ε|θ)

,

which is easier to estimate empirically with a sufficiently large ε. A further
common relaxation is to allow δ to be zero also when the two datasets are
“sufficiently similar”, for example, when they have equal descriptive statistics.

One of the main limitations for performing ABC has been the need to perform
a large number of simulations using the generative model. For example, a naïve
approach would be to simulate in a brute-force manner multiple times with each
plausible θ for estimating the value of P̃ε near every point of the parameter
space. One way forward was presented recently by Gutmann and Corander
[2016], who proposed both to use a Gaussian process (GP) [Rasmussen and
Williams, 2006] surrogate model of the discrepancy function for approximating
the ABC likelihood and to use Bayesian optimization [cf. Snoek et al., 2012] for
choosing the locations to use for fitting the GP surrogate. This method resulted
in significant speedups in estimating the posterior of a bacterial infection model
[Gutmann and Corander, 2016], which was one of the core motivations for using
this approach for cognitive models as well.

Bayesian optimization is a family of optimization methods where the optimiza-
tion process is guided by a probability distribution over possible true underlying
functions. There are generally two parts to the BO algorithm: a surrogate model
and an acquisition function.

The surrogate model provides the probability distribution P( f |{(θ,δ)}), where
f is the underlying function to be optimized and {(θ,δ)} are realizations from
the function: δ∼ f (θ). In the current approach, a GP regression model is used
as the surrogate. The GP model assumes that a priori the function has mean
μ(θ) and that the covariance between any two locations θ and θ′ is given by the
kernel function k(θ,θ′). After observing actual realizations {(θ1,δ1), . . . , (θN ,δN )},
the mean and kernel estimates are updated to better approximate the actual
behavior of δ as a function of θ. An attractive property of the GP regression
model is that the posterior predictive distribution for the value of δ at any
individual θ is a Gaussian distribution with simple analytic expressions for both
mean and standard deviation. This means that after fitting the GP model, it is
simple to estimate the ε-approximate likelihood at any θ by using the cumulative
distribution for the Gaussian distribution.

The process of choosing the locations where δ is evaluated for fitting the
GP surrogate is directed by the acquisition function Acq. At each step of
the optimization process, the optimum of Acq is found as a function of θ and
these parameter values are then used for evaluating δ. As derivatives for
Acq often exist, it is generally straightforward to find a local optimum with
standard gradient-based optimization methods [e.g. Liu and Nocedal, 1989].
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The value of the acquisition function depends on both the current state of the
surrogate model and on the value of θ. The acquisition function is generally
formulated so that large values of Acq correspond to a preferred balance between
exploration and exploitation; exploration generally corresponds to sampling
regions of the parameter space with high uncertainty of the function value,
while exploitation corresponds to sampling regions with low estimated function
value. The acquisition function used in this thesis is the lower confidence bound
(LCB) acquisition rule [Srinivas et al., 2010], which can be written as

AcqLCB(θ) :=μ(θ)− cσ(θ),

where μ(θ) and σ(θ) are the GP posterior predictive mean and standard devia-
tion at θ, and c is an “exploration rate” parameter. Reasons for choosing this
acquisition function are the simplicity and speed of evaluation. For parallel
acquisition, two different approaches were used; either multiple stochastic draws
near the optimum based on the acquisition function curvature [cf. Gutmann and
Corander, 2016] or local penalization [González et al., 2016].

One additional feature of ABC is the ability to use prior distributions for the
parameter values. This allows the approximate posterior distribution to be a
balance between the prior knowledge and the evidence of model fit presented by
the approximate likelihood function.

4.3.2 Predicted Benefits

The use of efficient likelihood-free inference should provide multiple benefits
over alternative approaches to cognitive model parameter inference.

First, the only requirement for the cognitive model structure and for the type
of observations is that similar simulated data can be repeatedly generated from
the cognitive model using different parameter values. This is, in general, a
reasonable requirement for any predictive model, as the main purpose of these
models is precisely to predict the behavior of the user under varying assumptions.
This also means that it is guaranteed that the inference process can be executed,
as the bottleneck is with being able to repeatedly simulate observations from
the model, which is assumed to be feasible.

Second, the inference process is theoretically well-founded in Bayesian statis-
tics. This means that it provides principled estimates of parameter uncertainty.

Third, the method aims for optimal efficiency through the use of Bayesian
optimization. This means that the method is likely very sample-efficient, which
is important if simulations from the cognitive model are expensive.

4.3.3 Limitations

One limitation of the method is inherent to all likelihood-free inference; as
the inference is performed in model-agnostic manner, this also means that the
structure of the model is not explicitly used to make the inference process more
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efficient. For example, if it would be possible to also approximate the derivatives
of the likelihood surface, this could likely be used to improve the efficiency of
BO. However, to the best of my knowledge, the ABC formalism does not allow
these derivatives to be approximated efficiently.

Another limitation of the method is that a number of hyperparameter values
need to be decided before the method can be used. These hyperparameters
include, for example, the assumed lengthscale of the discrepancy function, and
the balance between exploration and exploitation in the acquisition rule. If no
information about reasonable values is known beforehand, initial tests may be
required to estimate suitable values for these parameters.

A third limitation is that the basic GP regression model does not scale well
in high dimensional parameter spaces. However, there are extensions that
alleviate this issue, such as the use of random embeddings [Wang et al., 2016].

One limitation of this line of research in general is that out of all possible
likelihood-free inference methods only ABC was considered. One example of
recently developed likelihood-free methods are generative adversarial networks
(GANs) [Goodfellow et al., 2014], where the idea is to train one artificial neural
network to reproduce the observation data distribution and another one for
classifying data sets as similar or different from the original observation data.
However, a major limitation of the GAN approach is that it effectively results
in black-box explanations of the studied behavior. In comparison, ABC infers a
posterior for the parameters of a model defined by the researchers, which can
be designed to be easily interpretable. Another example between the GAN and
traditional ABC approaches is the classifier ABC approach [Gutmann et al., 2014,
2018], which is otherwise similar to standard ABC, except that the discrepancy
function is replaced by a binary classifier, similarly as with GANs. This approach
could be beneficial in cases where designing the ABC discrepancy function by
hand is difficult.

4.3.4 Implementation

The applied method was implemented as part of a general software library for
likelihood-free inference, presented in Publication VI. The library was imple-
mented in Python and allowed the proposed method to be used for generative
models implemented either directly in Python or as external executable pro-
grams. In this thesis, both ACT-R and RL models were used. The RL models were
implemented in Python, while the ACT-R model was implemented in Common
Lisp and compiled to run as an independent executable program.

4.4 Evaluation

The performance of the proposed method was evaluated both with an ACT-R
model and with different reinforcement learning models.
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4.4.1 ACT-R Model

The proposed method was used for estimating the posterior distribution of four
parameters of an ACT-R model in Publication V. The model in question was
proposed by Tenison et al. [2016] and its purpose is to model the phases of skill
acquisition. The model was fit to aggregated observation data from 40 users
collected by Tenison et al. [2016].

Three baselines were used for comparison. The first baseline was grid search,
which evaluated the discrepancy function over a mesh of points in the parameter
space and used the best found point as the final estimate. The second baseline
was Nelder-Mead simplex optimization, which starts from a random position in
the parameter space and iteratively progresses to locally better positions. The
third baseline was Bayesian optimization of the discrepancy function without
the additional computation of the ABC posterior distribution.

The first measure for comparison was efficiency, measured by the prediction
accuracy with best found parameters, as a function of the used computational
resources. Efficiency is important for saving limited computational resources,
especially in online user modelling. The second measure was informativeness,
measured by the ability of the methods to visualize how the prediction accuracy
or posterior probability varies as a function of the parameter values. Infor-
mativeness is a relevant measure as it allows estimating the reliability of the
parameter estimates and reasonable regions for plausible parameter values
when the remaining uncertainty is high.

The performance of the proposed method versus manual tuning was also
compared in Publication V, by comparing the predictions made with the mean
value of the ABC posterior distribution to those made with parameters fit by
hand in Tenison et al. [2016].

4.4.2 Reinforcement Learning Models

The proposed method was used for estimating the maximum a-posteriori (MAP)
parameter values of an RL model in Publication III, and the full posterior in
Publication IV and Publication V. The model in question was proposed originally
by Chen et al. [2015] and its purpose is to model the visual search process of
an user in the context of a vertical list of items. Multiple minor changes to the
model were presented in Publication III to explore ways to improve the predictive
accuracy. A slightly simplified version of the model was used in Publication IV
and Publication V to reduce the duration of solving the optimal behavioral policy.
In all of the cases, the model was fit to task completion times from multiple users
collected by Bailly et al. [2014]. Both in Publication III and Publication V, models
were also fit to individual users to demonstrate that likelihood-free inference
is applicable also for small datasets collected, for example, from an individual
user. In Publication V, the proposed method was compared to two baselines
similar to the ACT-R model discussed above. The performance of the proposed
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method was compared to manual tuning in Publication III by comparing the
predictions made with the MAP estimate to those made with parameters fit by
hand in Chen et al. [2015].

In Publication IV, the proposed method was also used for estimating the
parameters of a toy RL model, where an agent navigated in a small grid world
environment. The method was compared to an exact solution and a Monte-Carlo
estimate of the exact solution.

4.5 Results

The proposed method was able to infer reasonable approximate posterior distri-
butions for parameters of two modern cognitive model families: ACT-R and RL.
This demonstrates that the method is applicable to various modern cognitive
models. The proposed method was able to perform inference based on realistic
aggregate observation data. In the case of the ACT-R model, the observations
were durations of various learning phases, while with the RL model, the ob-
servations were task completion times. This demonstrates that the method is
applicable to various types of observations.

Compared to Nelder-Mead optimization, the proposed method was significantly
more informative, somewhat less efficient but, on the other hand, demonstrated
less susceptibility to over-fitting. Compared to grid search, the proposed method
was more informative and significantly more efficient. The method also achieved
significantly better results compared to manual tuning. Compared to using
just Bayesian optimization, ABC allowed the use of prior distributions, which
improved the overall credibility of the results due to incorporation of prior
knowledge of reasonable parameter values. The ABC posterior was slightly
more informative about the parameter regions with high posterior probability,
compared to just the GP model of prediction error. Furthermore, as the output
of ABC inference is a distribution, it can be used in many ways that a plain GP
model cannot, for example, as a prior distribution for further inference.

Related to RL models, the proposed method also reached equally good inference
performance compared to an exact but computationally expensive solution and
an RL specific approximate method (Monte-Carlo approximation of the exact
solution).

4.6 Discussion

One explanation of the performance gap between Nelder-Mead optimization and
the proposed method is the fact that as a local optimization method, Nelder-
Mead makes the implicit assumption that the optimization surface is unimodal,
while the proposed method does not make this assumption. Because of this
assumption and the fact that in the two examples the posteriors indeed were
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unimodal, Nelder-Mead was able to make immediately efficient process towards
the optimum while the proposed method, due to the use of global Bayesian
optimization, needed to initially sample all across the parameter space to be
certain that there were no other better optima. However, if the posterior would
have had multiple local optima, it is likely that the proposed method would
have found the global optimum, while Nelder-Mead could have only found one
of the local optima. Through starting Nelder-Mead optimization from multiple
random locations in the parameter space similar guarantees could be given but
this would then close the performance gap between these two methods and the
proposed method would still be significantly more informative.
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5. Conclusions

5.1 Research Question 1

RQ1 was “Can the satisfaction and task performance of search engine users
be improved through improving the predictability of the interaction with the
search engine and through improving the capability of users to notice and correct
possible interaction errors?”

The ability of the proposed methods to improve user satisfaction was studied
in Publication I and Publication II through questionnaires and interviews. In
both cases, the users preferred the improved systems over the baselines, which
indicates higher satisfaction of the system as a whole. The users also mentioned
multiple reasons that explain this satisfaction of system performance; these in-
clude increased ability to understand system behavior, predict the consequences
of user actions, and availability of convenient interaction options.

The ability of the proposed methods to improve task performance was studied
in Publication I and Publication II through questionnaires, expert evaluations
and simulation experiments. In the experiments conducted in Publication II,
the proposed methods led to improved information retrieval performance in sim-
ulation experiments, and in questionnaires the users ranked the performance
of the proposed system higher than the baseline. However, the expert evalua-
tions conducted both in Publication I and Publication II remain inconclusive
regarding objective improvement in the quality of retrieved information or in
task performance.

Thus, I conclude that the satisfaction of search engine users of the system
performance can be increased through the interactive machine learning interface
methods presented in this thesis. I contribute this increase in satisfaction to
three factors.

1. The improved ability of users to comprehend and reason about system
behavior. In this thesis, this was improved through predictive visualization, the
timeline interface and the automatic relevance determination (ARD) model. Pre-
dictive visualization allowed the user to gain insight about how her incremental
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feedback causes changes to the user model. The timeline interface, together
with the feedback accuracy predictions made by the ARD model, allowed the
user to gain insight into how the complete set of user feedback affects the user
model.

2. The improved ability of users to predict the consequences of their actions.
In this thesis, this was improved through predictive visualization and intuitive
control. Predictive visualization gave the user explicit cues that indicated how
the model will change, allowing the user to adjust her feedback before committing
to it. Intuitive control was complementary to predictive visualization, making
the user model easier to control by adjusting its dynamic behavior.

3. The availability of convenient interaction options that match the needs of
the user. In this thesis, this was increased through the timeline interface. The
interface allowed the user to adjust previously given feedback, which was useful
when the search intent of the user was volatile.

Regarding task performance, I conclude that based on user interviews, there
is some indication that the proposed methods improve it. However, the size of
the effect is likely small, and thus further experiments with more users would
be required to reliably estimate the size of this effect.

These advances are important for improving the usability of interactive AI
systems whose behavior is directed by a user model. The proposed methods are
quite general, and can be applied for a variety of different systems.

5.2 Research Question 2

RQ2 was “Can the parameter values of cognitive models be learned efficiently
from observation data, together with principled uncertainty estimates, without
strict requirements for the type of the observations or for the structure of the
cognitive model?”

Approximate Bayesian computation based on Bayesian optimization with a
Gaussian process surrogate model was used to infer the parameters of modern
cognitive models in Publications III, IV and V. In Publication III, an initial
proof-of-concept was demonstrated. In Publication IV, it was demonstrated that
the proposed method yields inference results comparable to likelihood-based
methods for RL models but considerably faster. In Publication V, it was demon-
strated that the method is applicable equally to ACT-R and RL models, and
that it is efficient and informative regarding parameter uncertainty compared
to alternative ways of optimizing prediction accuracy. In Publications III and V
it was demonstrated that in case studies the method yields notable improve-
ment over manual tuning of parameters and that it can also be used with small
datasets from individual users.

I conclude that the proposed method is feasible for learning the parameter
values of modern cognitive models. The method does not place any unreasonable
requirements either on the cognitive model or the type of observations, which is
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attributable to the likelihood-free approach. The method is relatively efficient
in learning the parameter values, which is attributable to the use of Bayesian
optimization. The method is also able to provide principled estimates of parame-
ter uncertainty, also taking into account prior knowledge, which is attributable
to the use of approximate Bayesian computation. In addition, the method was
demonstrated to be usable also with small amounts of observation data, which
allows it to be used, for example, for modelling the behavior of individual users.

These advances are important in the scientific research of human cognition
and in the practical development of cognitive models. Efficiency makes the
modelling process faster, which allows the parameters of currently used mod-
els to be inferred reliably with fewer resources, and makes inference feasible
also for computationally expensive models. Informativeness gives researchers
more insight to the behavior of these models, by allowing the reliability of the
parameter estimates to be computed. This allows alternative hypotheses to be
compared and possible issues with parameter inference to be uncovered.

5.3 Discussion

The aim of this thesis has been to improve the capability of mutual under-
standing between users and AI systems. The first part of the thesis focused on
improving the ability of users to build mental models and interact efficiently
with AI systems, while the second part focused on enabling the inference of more
advanced user models. Overall, I see it important to keep on working towards
bridging this gap in mutual understanding from both directions, so that truly
“symbiotic interaction” [Jacucci et al., 2014] could be achieved one day.

One interesting avenue of research is to further improve the efficiency of meth-
ods for inferring cognitive model parameters. Although the proposed method
is applicable to a wide range of cognitive models and types of observation data,
it is generally not yet fast enough for real-time interaction or online modelling.
With reinforcement learning models, one possible way forward is to use transfer
learning to speed up the policy learning process [e.g. Ramachandran and Amir,
2007].

After cognitive model inference is fast enough, another interesting direction
of research is to use these models in interactive settings. In this situation, the
proposed methods for improving user interaction, discussed in the first part of
this thesis, could be applied to the cognitive models discussed in the second part
of this thesis.
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