Aalto University
School of Science

Master’s Programme in ICT Innovation

Marco Zugliani

Serverless data processing applied to big
mobility data

Leveraging activity recognition data from smart-
phones to estimate CO, emissions in everyday trans-
portation

Master’s Thesis

Espoo, September 17, 2018

Supervisor: Professor Petri Vuorimaa, Aalto University

Advisor: Julien Mineraud, Postdoc, University of Helsinki

Aalto University
School of Science

Aalto University

School of Science ABSTRACT OF
Master’s Programme in ICT Innovation MASTER’S THESIS
Author: Marco Zugliani
Title:

Serverless data processing applied to big mobility data.
Leveraging activity recognition data from smartphones to estimate CO, emis-

sions in everyday transportation.

Date: September 17, 2018 Pages: v + 61
Major: Digital Media Technology Code: SCI3023
Supervisor: Professor Petri Vuorimaa

Advisor: Julien Mineraud

Personal mobility has become a relevant aspect of daily life in the modern
society. The knowledge of how people move in the territory plays a central
role in how cities develop as an ecosystem. Citizens gain insight into their

everyday movements and can act in order to improve their lifestyle.

This thesis describes an automated system capable of discovering daily trips
and personal carbon footprint with the most common transport means, includ-

ing public transports.

Several studies have been performed on the topic of transport mode recogni-
tion. While agreeing on the use of smartphones to collect data, these studies

vary mainly in the number of modalities recognized and in the sensors used.

This work presents a novel approach that exploits an existing activity recogni-
tion technique and the serverless technology as a means to process and enrich
the data with more information. This approach greatly affects the accuracy of
the off-line recognition system by adding GPS and public transport informa-

tion.

Keywords: Mobility recognition, Serverless, MapReduce, Smartphone

sensors, Carbon footprint

Language: English

11

Acknowledgements

I would first like to thank my thesis supervisor professor Petri Vuorimaa
of the Department of Computer Science at Aalto University for his unob-

trusive yet fundamental support for my Master’s Thesis.

I would like to express my gratitude to my advisor Julien Mineraud for
the useful suggestions, guidance and engagement through the learning

process of this Master’s Thesis.

I would also like to thank Petri Martikainen, from Moprim, for giving me

the possibility to work on this project.

Special thanks to my family for giving me constant support and contin-
uous encouragement during my years of study. This accomplishment

would not have been possible without them.

Finally, I would like to thank my sweet Qiu Shuang for supporting and

bearing me during this time.

Thank you.

Espoo, September 17, 2018

1ii

Contents

Acknowledgements
1 Introduction
2 State-of-the-art

2.1 Accelerometer based techniques
2.2 Inertial measurementunits. L.
23 GPSbased oo oo
2.4 Hybrid techniques
2.5 Otherapproaches

2.6 Considerationsand remarks

Data Processing

3.1 Mobilecomputing

3.2 Server-based processing

3.3 Serverlessprocessing

3.4 Bigdataprocessing
341 MapReduce
3.4.2 Serverless MapReduce

Environment

Methods
51 Mobileapp

v

iii

10
11
12
14
16

5.2 Serverless data processing
6 Implementation
6.1 Systemoverviewo L.
6.2 Datagathering
6.2.1 Datatypes L.
6.2.2 Datachallenges
6.3 Data processing pipeline
6.3.1 On-demand processing
6.3.2 Data processing algorithm
6.4 Dataanalytics
7 Evaluation
7.1 Costanalysis.
72 Accuracy
8 Discussion
8.1 Transport mode recognition
8.2 C(Cloud implementation

9 Conclusions

52
52
53

55

Chapter 1

Introduction

Mobility data has gained value in the recent years, as smart cities are seek-
ing to improve and create new services through artificial intelligence and
digitization. The knowledge of this data enables several novel applica-
tions related to smart mobility, such as improving the efficiency of cities
and the quality of life of its citizens. People gain insight into their everyday
mobility; cities can understand how to improve their public transportation
network.

Recent studies show that 24% of the of global CO, emissions from
fuel combustion in 2015 derives from transportation [2]. Moreover, 61%
of the world transportation energy consumption in 2012 originates from
personal mobility-related fuel consumption [1].

Smart mobility services require reliable data sources. This thesis con-
tributes to Lahti’s CitiCAP project, an EU-funded project that aspires to
promote sustainable mobility as opposed to private transportation in or-
der to reduce transport-related emissions. The aim of this study is, there-
fore, to build a reliable solution that can harvest mobility data from cit-
izens at scale for big cities, allowing both users and administrations to
make conscious mobility choices and consequently reduce CO, emissions
related to personal mobility. Smartphones are utilized as an information

source, thanks to their ubiquity. Modern smartphones embed very sophis-

CHAPTER 1. INTRODUCTION 2

ticated sensors, such as accelerometers, gyroscopes, and Global Position-
ing System (GPS). Recent pieces of research show that these sensors can
achieve notable accuracy in activity recognition. Although they offer lim-
ited precision and sampling rate, they are capable of capturing effective
information about the movement patterns.

Recent papers present different approaches to activity recognition, us-
ing various combinations of the sensors available. The majority of the
works disregard GPS data and public transport information. Motion sen-
sors are generally the preferred method for activity recognition. They
achieve good discrimination accuracy, but suffer from noisy measurements
(e.g., mobile phones may be handled by users during a trip). GPS-based
solutions suffer from high power consumption, which limits the usability
of the solution. Users could decide to abandon such a solution because of
this reason. Moreover, GPS signal can be unavailable in certain conditions
(e.g., during metro rides), which limits the recognition ability. Hybrid so-
lutions promise to mitigate the accuracy problems of these two different
approaches, although still suffering from high power consumption. In our
case, GPS data is required for mapping the trips and for estimating the CO,
emissions.

Collection of mobility data at city scale required considerations on scal-
ability. The novel serverless technology is explored as a means to carry
out computations. This technology allows effortless and cost-effective de-
ployment of functionality in the cloud by providing an abstraction on the
infrastructure. It has gained the attention of many cloud developers due
to its flexibility and scalability and has proven as an effective environment
for rapid development.

Compatibly with Lahti’s CitiCAP project, the system requires high ac-
curacy, specifically in the discrimination of motorized modalities such as
car, bus, and metro.

The challenge considered in this thesis is to improve the reliability of

the recognized transport modes and to limit the fragmentation of the out-

CHAPTER 1. INTRODUCTION 3

put data, by combining negligible segments. Furthermore, the adoption
of a serverless architecture addresses the need for scalability.

This study builds upon an existing transport mode recognition system
[13] based on accelerometers sensors, by adding GPS and public transport
timetable information.

GPS data is required to extract a sound estimation of CO, emissions.
Furthermore, it allows a substantial improvement in recognition perfor-
mance and reliability. In addition, GPS information is used to limit the
fragmentation of the output, so that only relevant trips are detected and
reported.

Public transport information is retrieved from a Geographic Informa-
tion System (GIS) with information on the local transport lines. This data
enables verification of correct public transport trips, further improving the
system reliability.

The system described in this thesis takes advantage of these two in-
formation sources, as well as an existing activity recognition engine, to
produce a sound estimate of the carbon footprint related to personal mo-
bility.

This document answers the following questions:

e Can GPS and public transport information improve the classification

accuracy for transport mode recognition?

e How much do these two information sources affect such classifica-

tion?
e Is serverless suitable for large-scale data processing?

o What are its main benefits and drawbacks?

Chapter 2 introduces the problem of transport mode recognition and
discusses previous works and frameworks that aim to solve this problem.
Chapter 3 describes different architectures for data processing with em-
phasis on the novel serverless platform. Chapter 4 outlines the environ-

ment around the study including some broader considerations. Chapter

CHAPTER 1. INTRODUCTION 4

5 highlights the main components of the platform and their objectives.
Chapter 6 delves into the system components related to the novel contri-
bution of this work. It includes a thorough description of the data process-
ing algorithm, as well as considerations on the data limitations. Chapter 7
evaluates the performance of the system, particularly focusing on the ap-
plication for the outputinformation. Chapter 8 identifies future challenges
and possible improvements of this work. Finally, chapter 9 highlights the

most important findings of this work.

Chapter 2

State-of-the-art

Transport mode recognition is a problem that has been the focus of many
research papers in the last decade. The earlier methods used to collect
travel and commuting trips required manual work. Paper diaries, phone
interviews, and web questionnaires were the most prominent sources of
this information. These methods, however, showed large disadvantages,
such as low response-rate and under-report of the trips [18]. Automatic
methods were developed to contrast this trend. After 2000, GPS-based
techniques started to be the focus of research, although they required spe-
cialized hardware, often vehicle-mounted or difficult to carry around [8,
32]. This burden prevented automatic transport mode detection from be-
coming widespread and hindered research due to the need of costly, spe-
cialized hardware.

After 2010, with the popularization of mobile phones and then smart-
phones, an unprecedented number of people gained access to a wide va-
riety of sensors. These enable unobtrusive monitoring of human activities
since they are carried continuously by a person. As a result, the vast ma-
jority of smartphone currently includes an activity recognition framework.
Furthermore, a significant number of research papers has been produced
on the topic.

Research has shown great interest in activity and travel mode recog-

CHAPTER 2. STATE-OF-THE-ART 6

nition in the recent years. Many research directions have been explored.
Despite this, They agree on the use of smartphones as a means to collect
this information. Researchers proposed a wide range of implementations,
exploiting various combinations of sensors. They can be grouped into cat-
egories. The following sections explore such categories.

In their survey, Shoaib et al. [30] review some of the most relevant
works prior to 2015 that focus on online activity recognition, i.e., when the
classification takes place on the device that collects sensor data. They iden-
tify a total of 30 relevant studies that employ one or more machine learning
classifiers to discriminate among activities. They report that most of these
works utilize decision tree classifiers to categorize the data. Other pop-
ular classifiers include Support Vector Machines (SVM), K-nearest neigh-
bors (KNN) and Naive Bayes classifiers (NBC). Most works used an of-
fline training process in conjunction with the online classification. In these
works, the authors train a model offline using a dataset collected during
development. The model is subsequently deployed on mobile devices as
a general model for classification. The authors observe that such approach
proves to be less costly, but lacks personalization: the model may not fit
every user and perform poorly in particular situations. The most used
platform for the experimental development of these setups is Android,
thanks to its open source nature and ease of programming. Earlier works
use the Symbian platform as well. The vast majority of the works employ
accelerometer data only since it enables a reasonable accuracy for most ap-
plications while preserving a minimal power consumption. Other sensors
are used in some works and enable more sophisticated models and a gen-
eral improvement in accuracy. Despite the accuracy improvement, these
sensors are available only on a limited number of devices, while almost
all modern devices offer accelerometers. The authors note that the com-
parison of different approaches is a hard task, due to the lack of a consis-

tent benchmark framework for all of the studies. The recognized activities

CHAPTER 2. STATE-OF-THE-ART 7

Ref | [22] [13] [29] [10] [19] [17] [20] [16] This work
Accelerometer | vV v v v v v v v
§ Gyroscope v v v
g GPS v v v v
A GIS v v
Other v 2 3
wak | v v Vv v v v v
run v v v v v
bike| v v v Vv v v Y v
%3 car | v 0V v v v v v
S bus| v v v Y v v
"g road v v v
7 metro | vV oY %
= train | v v v v v
tram v v v
rail v v v
plane v

Table 2.1: A summary comparison of the reviewed approaches to transport mode clas-

sification.

range from basic movements (e.g., walking, standing, driving) to more so-
phisticated activities (e.g., using the elevator, vacuuming, brushing teeth
or ironing). While these works have been fundamental to the rise of ac-
tivity recognition techniques and implementations, they neglect specific
transport modalities. Recently, a number of research papers have been
produced on the topic of transportation identification using smartphone
sensors. Table 2.1 summarizes the main approaches reviewed, comparing
the sensors used for the classification and the number of classes that they

can discern.

'Rotation Vector Sensor
“Magnetometer
3Google Activity Recognition

CHAPTER 2. STATE-OF-THE-ART 8

2.1 Accelerometer based techniques

Accelerometers are sensors available in almost all modern mobile devices,
besides smartphones, tablets and recent laptops offer those sensors as well.
They sense acceleration forces, such as gravity or movements of the de-
vice. They have been incorporated primarily for the scope of rotating the
screen orientation in such a way that content is displayed upright. They
are usually tri-axial, i.e., they detect acceleration along three different axes.
Activities are recognized analyzing the different patterns recorded by the
Sensor.

Manzoni et al. [22] present one of the earliest works on transport mode
recognition using mobile phones. Their approach is based on a machine
learning classifier, namely decision trees. The classifier could discriminate
between 8 classes, including bus, metro, train, and car with 82% accuracy
using the accelerometer data exclusively. In order to account for orienta-
tion changes, they utilize Fast Fourier Transform (FFT) coefficients com-
puted on the total acceleration, which is orientation-invariant. This ap-
proach results in a good performance while preserving power consump-
tion thanks to the omission of GPS data. The authors note however that,
in order to estimate the CO, emissions, GPS data is necessary to estimate
the traveled distance. Furthermore, the paper omits the number of test
subjects and the duration of the data collection.

Ferrer and Ruiz [10] compare the performance of a number of machine
learning classifiers trained on accelerometer data. In particular, the recur-
rent neural network (RNN) model achieves over 93% of accuracy. They
rely on orientation-independent statistics for the classification, such as
mean, standard deviation and maximum of the magnitude of the accel-
eration. The model has been trained to classity different means of trans-
portation, however, they limit the motorized modalities to car and metro.

In order to exploit more advanced classifications features, orientation

estimation is fundamental. Some works have explored gyroscopes as a

CHAPTER 2. STATE-OF-THE-ART 9

data source for this information, which will be presented in section 2.2.

The work of Hemminki et al. [13], which is at the base of the system
described in this document, attempts to solve this estimation exclusively
with accelerometers. Their approach to smartphone sensor data process-
ing is composed of two main components: the estimation of the gravity
component for the reliable computation of the linear acceleration and the
definition of new features to accurately extract the mode of transportation
of the user.

Gravity is estimated over a short window (1.2s), so as to retain respon-
siveness to changes. The signal analysis identifies low variation periods,
which allow to accurately estimate the gravity component. The change
in orientation of the device is handled with a reinitialization of the grav-
ity estimation. A substantial change in acceleration direction triggers the
gravity reinitialization. The reinitialization ensures that the change in ori-
entation is not interpreted as a change in acceleration.

The reliable estimation of gravity enables to remove the gravity com-
ponent from the sensor data. This, in turn, allows isolating more reliable
features to estimate the transport modalities.

The authors focus on the recognition of different locomotion types,
including pedestrian modalities (e.g., walking, running), non-motorized
transportation (e.g., bicycle, roller skates) and motorized transportation

(e.g., car, metro, bus, train).

non-
motorized

[pedestrian] [bicycle] rail m

— —
Lo J U) (o) (o] (o] [[]

Figure 2.1: Hierarchy of classifications. Eight leaf modalities can be identified.

CHAPTER 2. STATE-OF-THE-ART 10

The classification scheme is hierarchical, as illustrated in Figure 2.1.
When the confidence of the algorithm is too low to discriminate between
leaf classes, the output contains one of the group classes. They report
an average of over 80% for precision and recall of their solution, which
is lower than the previously analyzed solutions, however, it considers a
larger number of classes. Furthermore, the reliable gravity estimation al-
lows for reliable classification in different scenarios related to the position

of the smartphone on the person, such as pocket or backpack.

2.2 Inertial measurement units

Inertial Measurement Units (IMU) include accelerometers and gyroscopes.
Gyroscopes represent another popular sensor used in activity recognition.
They sense the change in orientation of the device and are often used in
conjunction with accelerometers. Few smartphones, however, offer this
sensor: Only 34% of Android and iOS smartphones released after 2015
offer gyroscopes®.

Heydary et al. [16] developed a machine learning classification algo-
rithm based on a random forest to discriminate between car and bus trips
using sensor data from the smartphone. They employ accelerometer, gy-
roscope and gravity sensor (a composite sensor relying on accelerometer
and gyroscope). In order to minimize the amount of data analyzed, they
filter the data based on Google Activity Recognition framework to retain
only vehicular trips. They report an accuracy of 93% on over 15 hours
of data, evaluated with a custom Android app running on Google Pixel
smartphones. Although the discrimination of car and bus rides is intrin-
sically hard, due to the vehicle similarity, they are able to provide high
discrimination accuracy. However, their work is restricted to these two

classes and the evaluation data is limited.

4657 /1918 models offer a gyroscope. https://www.gsmarena.com/search.
php3.

CHAPTER 2. STATE-OF-THE-ART 11

Hemminki et al. [14] added gyroscope data to their previous gravity
estimation [13]. The introduction of gyroscope data allows an improved
estimation of the gravity component. The component is estimated based
on the stability score, which encodes the variability of the measurements
around a key-point. Accelerometer and gyroscope data are compared to
find inconsistencies and prune inaccurate estimations. The final algorithm
extracts vertical, lateral and longitudinal components of the motion. The
vertical component is computed by subtracting the gravity component
from the z-axis of the data. Lateral and longitudinal component are es-
timated through key periods corresponding to acceleration, braking, and
turning phases. This approach improves the state-of-the-art especially in
presence of high noise or sustained acceleration. Furthermore, the win-
dow size for the estimation is considerably shorter than previous solu-
tions. This allows for more reactive updates while maintaining a high es-
timation accuracy. The authors, however, omit the evaluation of transport

mode estimation.

2.3 GPS based

GPS is a very popular sensor used in activity recognition applications. It
is frequently used along with other sensors, however, it has been utilized
as the sole information source in certain works. It enables distance and
speed measurements but lacks lower level context awareness. Moreover, it
performs poorly in urban jungles or indoor settings where the GPS signal
can be lost. In addition, it suffers from power consumption issues, leading
to fast battery depletion. Many works tend to omit this sensor due to this
reason, however, specific applications, such as CO, emission calculation,
require an estimation of the traveled distance.

Kugler et al. [19] developed a system capable of estimating CO, emis-
sions related to personal mobility. They employ only the GPS sensor and

are able to discriminate among several mobility modes, including car, bus,

CHAPTER 2. STATE-OF-THE-ART 12

tram, metro, and train. They report almost 88% accuracy on their test set

that comprised over 50 participants.

2.4 Hybrid techniques

Hybrid solutions can be developed employing combinations of sensors.
The most used combination uses GPS in conjunction with accelerometers
or IMUs. Geographic Information Systems (GIS) are used as well to val-
idate public transport trips or to infer the semantic context of an activity
(e.g., to discriminate restaurant from work).

Shah et al. [29] describe a decision tree classifier to distinguish differ-
ent transportation modes. They consider both above-ground and under-
ground modalities. They, however, report the performance only of the dis-
crimination between car, bus, and train, which is slightly over 80%, using
accelerometers only and over 90% adding GPS information. Their classi-
fier employs accelerometer as well as GPS data. Furthermore, they exploit
GIS to validate the public transport routes.

Lorintiu and Vassilev [20] propose a system for the computation of CO,
emissions exploiting accelerometer, magnetometer and GPS data. They
report accuracy as high as 94% without GPS and 96% with GPS. They are
able to discern among seven classes, including road, rail, and plane, not
distinguishing further into these classes. Moreover, they employ magne-
tometers, which are available on a limited set of devices®.

The work from Rinne et al. [27] is in many ways similar to that of this
paper. They describe a system capable of discovering public transport
trips in the Helsinki area. They developed the system using Google Ac-
tivity Recognition APIs, GPS data and GIS information, including both
static timetables and live positions of the vehicles. In the analyzed area,

public transport GIS information is available through a web API from the

% 54% (1033/1918) of Android and iOS smartphone released after 2015 offer magne-
tometers. https://www.gsmarena.com/search.php3.

CHAPTER 2. STATE-OF-THE-ART 13

local transportation authority as a public API®, similarly to our implemen-
tation. They developed a mobile app that collects and sends to a server
activity recognition results and location data. The server then processes
those data, in conjunction with the GIS information.

Activity recognition data is filtered to remove outliers. Common prob-
lems observed include: trips on rails are periodically recognized as being
still periods triggering a transition to sleep. After sleep periods, the time
to resume an active state is as long as 200 seconds, causing low respon-
siveness to activity changes.

Location data is collected through Android fused location provider. As
in our case, the authors note that the retrieved location may occasionally
fluctuate between distant positions. This is due to the different underlying
positioning systems used by the provider.

Live GIS information is requested every 30 seconds from the API and
stored in a database. When the data from users’ devices is available, the
stored public transport information is analyzed and candidate matches
are selected. Although live locations provide benefits such as adaptation

to the traffic conditions, they suffer from some limitations, which include:

e Coverage: only a limited subset of transportation lines are available

through the live positioning system.

e Storage: despite the low number of lines available, the live API pro-
duces a large volume of data. Moreover, fresh data is required since

traffic varies continuously.

e Performance: the number of locations used to compute the matches
had to be limited in order to allow reasonable performance. How-
ever, reducing the location samples, the accuracy is reduced as well.
The authors claim good accuracy on slower vehicles, while higher

speeds produce false negatives.

®https://digitransit.fi/en/developers/apis/

CHAPTER 2. STATE-OF-THE-ART 14

e Location accuracy: both location systems in public transports and in

user devices may include inaccurate points.

¢ Clock differences: user devices and vehicles may have clock offsets.

Static timetables are used to match trips, which are absent in the live
GIS APIs. False negatives can arise with inaccurate location points and
activity labels, clock differences. False positives can be observed when a
user is driving close to a public transport vehicle. In order to achieve the
match, they allow some distance and time tolerance. This is done to take
into account the inaccuracies of the activity recognition and the location
service on the device. Furthermore, locations sequences are matched with
fixed position sampling. The matching requires a regular sampling rate
from the user device, which is sometimes unattainable, e.g., in metro trips.
Moreover, quick transfers between different vehicles may be disregarded
by the activity recognition service, leading to an incorrect false negative.

Overall, they report 60% of matches for buses and trams and 43-44%

for trains and subways.

2.5 Other approaches

Other sensor combinations have been explored. Although they produce
improved recognition performance, they are relatively limited in adop-
tion. This is due to the modest number of mobile devices offering these
sensors. It is, however, worth mentioning few notable pieces of research.

Jahangiri and Rakha [17] employ accelerometer, gyroscope, and Rota-
tion Vector Sensor (RVS) data in their classifier. They test various classifier
models, among which random forest, bagging, and SVM offer the best
performance. The models were trained to classify the basic transportation
modes including car and bus. These two classes, in particular, are the most
confused, given their intrinsic similarity. Nevertheless, the use of various
sensors as data source allows to achieve over 94% overall accuracy (for the
SVM model).

CHAPTER 2. STATE-OF-THE-ART 15

Read et al. [26] describe a system based on data fusion techniques.
They focus on data cleaning and pre-processing, rather than classifying.
They collect data from several sensors, including accelerometers, gyro-
scopes, and GPS. They note that each of these sensors produces observa-
tions with different rates and therefore need a considerable effort to align
them to a consistent series of observations. In addition, they consider the

case of multi-labeled trips (e.g., walking while on an escalator).

Mobile APIs

Activity recognition is a function that the major mobile operating systems
provide to the developers. Both Google and Apple have frameworks that
enable developers to gain easy access to the activity context of the smart-
phone. The two providers offer a comparable set of activities: they are able
to recognize basic activities, such as walking, cycling, on a vehicle and be-
ing stationary. Furthermore, both provide annotation of the recognized
activity with a confidence score.

Apple provides a single API: CMMotionActivity’. It is part of their
Core Motion framework. It provides updates when an activity transition
occurs (i.e., when an activity starts or ends), often sufficient for most ap-
plications.

Google provides two different APIs: ActivityRecognition® and Activ-
ityTransition’. Both are part of their location package and they employ
only low power sensors to reduce power consumption. The former has
been part of the Android ecosystem for a long time. It provides contin-
uous notifications about the current activity the smartphone recognizes

and offers some degree of battery optimization by reducing the sensing

"https://developer.apple.com/documentation/coremotion/

cmmotionactivity
8https://developers.google.com/android/reference/com/

google/android/gms/location/ActivityRecognition
‘https://developers.google.com/android/reference/com/

google/android/gms/location/ActivityTransition

CHAPTER 2. STATE-OF-THE-ART 16

interval when the motion is not significant. The latter has been recently
introduced! to ease the burden on the developer by preprocessing the ac-
tivity notifications. It works similarly to Apple’s CMMotionActivity API,
providing only the activity changes. The new API promises to reduce bat-
tery consumption and add new activities such as differentiating between
road and rail vehicles in the near future.

2.6 Considerations and remarks

Many different approaches have been examined to accomplish transport
mode recognition. The main reason being that different applications have
different requirements. In some contexts, GPS adds little relevant informa-
tion, whereas, in others, reliable distance and speed estimation is required.
The latter case holds for this research since CO, estimation is based on the
traveled distance. Furthermore, sensor availability is an essential factor
that influences the reach of the solution on the market. While accelerome-
ters and GPS sensors are available on the vast majority of the devices (98%
of device models!?), other sensors are less widespread. Thus, this thesis
focuses on the use of accelerometers and GPS (as well as public transport

GIS information) to achieve transport modality discovery.

Phttps://android-developers.googleblog.com/2018/03/

activity-recognitions—new—-transition.html
111876/1918 of Android and iOS smartphone released after 2015 offer accelerometer

and GPS. https://www.gsmarena.comn/search.php3.

Chapter 3

Data Processing

In order to produce meaningful results related to the personal mobility
and carbon footprint, the activities recognized by a framework have to be
processed and cleaned.

This chapter discusses three approaches to data processing: mobile
computing in Section 3.1, server-based processing in Section 3.2 and server-
less processing in Section 3.3. Section 3.4 introduces a recent programming

paradigm (MapReduce) tailored to big data processing.

3.1 Mobile computing

When the processing happens on the user device, the approach is cate-
gorized as mobile computing (also edge computing or edge processing).
It enables progressively more complex tasks thanks to the increasing com-
puting power embedded on these devices, smartphones in particular. This
approach offers a number of advantages, such as high security and scal-
ability. Local data processing enables increased security since the data
remains on the user device. Scalability comes naturally: each new user
comes with his/her dedicated resources. Limitations come from the mo-
bile nature of devices. Portability brings resource constraints, such as stor-

age, computational power, battery, and bandwidth. These constraints are

17

CHAPTER 3. DATA PROCESSING 18

nevertheless less pressing as technology advances.

The vast majority of activity recognition approaches reviewed in chap-
ter 2 fall into this category. Performing data analysis directly on the device
considerably reduces the bandwidth necessary due to the verbosity of sig-
nals. As an example, one day of accelerometer data sampled at 200Hz
leads to almost 300MB of data. Local processing of this data reduces net-

work traffic and server cost.

3.2 Server-based processing

Server-based approaches are on the other side of the spectrum. High-
performance devices allow executions with none of the constraints of mo-
bile computing. Servers allow complex computations to take place and
large quantities of data to be stored. They can effortlessly communicate
with different services to compose several sources together and produce
rich information. This approach has been implemented by Rinne et al.
[27] in their platform in order to combine activity recognition data, GPS
and public transport GIS information. Server-based processing suffers,

however, of limited scalability due to the inherent cost of infrastructure.

3.3 Serverless processing

The serverless paradigm has recently emerged as a novel approach to de-
ploy functions on the cloud. It is sometimes referred to as Function as a
Service (FaaS) due to its modular nature. Its name derives from the ab-
straction that it creates between developers and the underlying infrastruc-
ture. It does still require servers to run the code, however, the developers
lose the control over them. Cloud providers manage the infrastructure.
They have the task of maintaining, scaling, provisioning and patching the
infrastructure and its runtime. There is currently a wide range of archi-

tecture offered by the cloud providers. Figure 3.1 clarifies the differences

CHAPTER 3. DATA PROCESSING 19

On-Prem laaS PaaS FaaS SaaS
Traditional Infrastructure Platform Function Software
on-premises cloud as a Service as a Service as a Service as a Service

Data Data Data Data Data

Functions Functions Functions Functions Functions

Application Application Application Application Application

Runtime Runtime Runtime Runtime Runtime

Operating System Operating System Operating System

Virtualization Virtualization Virtualization Virtualization Virtualization

Server Machines Server Machines Server Machines Server Machines Server Machines

Storage Storage Storage Storage Storage

[) {) {) {) {)
[) {) {) {) }
[)))) |)
|) {)) |) |)
[Back-end Code } { Back-end Code } { Back-end Code } { Back-end Code } { Back-end Code }
[operating sysem | |)) | [opering sysom)
|)))))
|)) |) |) |)
|)) |) |) |)
[)))))

Networking Networking Networking Networking Networking

Figure 3.1: Comparison of different cloud service architectures. The grayed-out blocks
are those managed by the cloud provider. In serverless (Faa$S in the figure), developers

only provide the functionality and the data.

among the prevailing architectural paradigms offered. Serverless has been
introduced at the end of 2014 by Amazon in its annual re:Invent confer-
ence. It has constantly increased its popularity and user base. Currently,
all major vendors support the FaaS paradigm (AWS!, Google?, IBM?, Mi-
crosoft!). The OpenLambda [15, 23] project has been proposed as an open-
source platform capable of outperforming other commercial solutions.

Serverless is characterized by its functional nature: developers package
and deploy small code snippets that have limited functionality. Events
are at the base of the invocation model. Functions execute in response to
events.

Composability stands as a key element of the serverless paradigm. In

order to add rich functionality to an application, different, specialized ser-

Thttps://aws.amazon.com/lambda
https://cloud.google.com/functions
*https://www.ibm.com/cloud/functions
*https://azure.microsoft.com/en-us/services/functions

CHAPTER 3. DATA PROCESSING 20

vices, often offered by the same cloud provider, are composed together.
The rich ecosystems offered by cloud providers renders it very easy for
developers to link different services and achieve complex behaviors. Al-
though services by different providers are generally interoperable, each
provider encourages the use of its services, facilitating the integration among
these services. This ease of integration is seen by many as a possible threat
named as vendor lock-in. It indicates the dependency that is created be-
tween the customers and the vendors.

Cost modeling for serverless functions works differently than tradi-
tional on-demand compute instances. With serverless, customers pay only
for what they use, however, they pay for everything they use. As observed
by Eivy [9], the economics of serverless can be misleading. Therefore, care-
fully estimate the number of users of the platform becomes critical. Server-
less is suitable for functions performing rapid actions with low traffic that
may suffer sudden spikes in traffic and are compute-bound (as opposed to
I/O-bound). These qualities follows from the scalability property: server-
less functions can freely scale up and down to meet precisely the number
of requests needed. It may scale upwards, supporting traffic bursts, as it
scales downwards, supporting the “scale to zero”, where nothing is run
and paid for. However, for services that expect stable high load, serverless
may prove sub-optimal. Prices per executions are generally higher than a
similar PaaS solution.

Academic research has produced few publications on serverless. Most
of them aim at comparing commercial implementations [23, 31] or intro-
ducing its characteristics and use cases [4, 23].

Literature mostly includes practitioners guidelines [3, 28], targeting de-
velopers, rather than researchers. This reflects the highly practical nature
of serverless as well as the little information about the architecture used

by cloud vendors, that prefer to maintain these facts reserved.

CHAPTER 3. DATA PROCESSING 21

3.4 Big data processing

Large-scale data processing requires particular approaches to be imple-
mented efficiently. While platforms, such as serverless, allow a high de-
gree of scalability due to their distributed architecture, special program-

ming patterns are necessary to harness this quality.

3.4.1 MapReduce

MapReduce is a specialized programming model that aims at improving
the processing of large datasets. It has been developed by Google and
its model has been published in 2008 [5]. It exploits task parallelization
of small functions to achieve the processing of large quantities of data.
The main building blocks are map functions (or mappers) and reduce func-
tions (or reducers). Map functions take a series of input key-value pairs
and transform it to intermediate key-value pairs (e.g., a word counter
would take as input text documents and produce a word-count pair for
each word. A map function would analyze a single page or document).

The input of mappers is first split into small, more processable units
of information in order to maximize jobs parallelization. The intermediate
output of mappers is then reshuffled to simplify the job of reducers.

Reduce functions take the intermediate output of the map functions
and returns the final list of key-value pairs with the conclusive results(e.g.,
the word counter would take the intermediate word-count pairs and gen-
erate a single value for the whole series of documents).

Mappers and reducers are controlled by some coordinator functions.
They divide the input between mappers, partition the intermediate results
to reducers and aggregate the final results from reducers.

Figure 3.2 illustrates a MapReduce work-flow for a word counter ap-
plication.

MapReduce is used in multi-core clusters of machines to considerably

accelerate computations on large sets of data. Several libraries have been

CHAPTER 3. DATA PROCESSING 22

Input Splitting Mapping Shuffling Reducing Output
—B egg=1 egg=1
egg, Spam egg, Spam '—> Spam = 1 Spam =8
Spam =2 [\ N
sausage, Spam Spam, bacon, bgcon - gpam :i egg =2
sausage, Spam - pam =
Spam, egg S~ sausage = bacon =2
Spam, Spam, Spam, egg, Spam = sausage = 1
bacon, Spam Spam, Spam, egg =1
bacon, Spam bacon =1

Figure 3.3: Serverless MapReduce components architecture. Circles and ovals indicate

input
storage

serverless functions, cylinders represent storage.

developed implementing this programming model. The most prominent
are Apache Hadoop® and Apache Spark®. Both of them are available as
open-source implementations, as well as services offered by the major

cloud vendors.

3.4.2 Serverless MapReduce

Due to its inherent scalability, serverless is well suited to host this type of
architectural model. Amazon recently proposed a serverless architecture
for MapReduce’ jobs using S3 for data storage and Lambda for computa-
tion. The proposed architecture offers various benefits over the conven-

tional MapReduce libraries. It requires no operational effort to build the

*https://hadoop.apache.org/
®https://spark.apache.org/
"https://aws.amazon.com/blogs/compute/

ad-hoc-big-data-processing-made-simple-with—-serverless-mapreduce/

CHAPTER 3. DATA PROCESSING 23

architecture, thanks to the abstraction provided by the serverless platform.
It reduces the number of components, lowering the learning curve for de-
velopers. The serverless environment allows a reduction in costs as well
since the pricing is per execution rather than per instance. Figure 3.3 illus-

trates the architectural components of the serverless MapReduce model.

Chapter 4

Environment

The system described in this paper is developed within the context of
Lahti’s CitiCAP project (Citizens cap and trade co-created)!2. This project
has multiple goals: reduce transport-related emissions, collect and pub-
lish mobility data, and develop novel transport services for citizens. To
achieve this, the EUs Urban Innovative Actions initiative has granted 4.7
million euros to fund the project. The CitiCAP Project promotes the shift
to more sustainable, public transportations from private cars. The use of
private transportation is enhanced in the city of Lahti by the scarcity of
mass transit options. As Lahti, many other medium-size European cities
suffer from this problem. The CitiCAP project stands as a testing ground
for smart mobility solutions to reduce traffic CO, emissions.

The project intends to create a Personal Carbon Trading (PCT) scheme
for mobility in an attempt to reduce traffic emissions in the Lahti area. PCT
allows citizens to receive benefits, such as discounted public transport
tickets or bicycle repair services, in exchange for smart mobility choices.

The aim of the system under investigation is to generate a precise esti-
mation of the produced CO, relative to the mobility of a person.

Such application presents some challenges from the perspective of users

Thttps://www.smartlahti.fi/citicap/
http://www.uia-initiative.eu/en/uia-cities/lahti

24

CHAPTER 4. ENVIRONMENT 25

involvement.

As noted by Ganti et al. [12], users may be reluctant to participate in
such experiments due to the utilization of privacy-related information de-
tected from their devices. Motion sensors and location data are used to es-
timate the mode of transportations. Location data, however, could also be
used to deduce individuals” private information, such as home and work
locations. Although privacy is user specific (privacy perception differs
among individuals), appropriate measures have to be considered when
presenting the data to third parties. In order to build location-based statis-
tics, for example, anonymization techniques are required. Noise addition
can be used to masquerade real paths. Locations can be reported as a re-
gion instead of a latitude-longitude pair, in such a way that a single user
is unidentifiable as a person.

A second compelling problem is the significant resource utilization de-
manded to the device. The utilized sensors, GPS in particular, cause rapid
battery depletion. The network is also required to communicate with the
cloud infrastructure. Users might judge these limitations unacceptable
and abandon the platform. In order to overcome such drawbacks and
retain participants, projects need to devise appropriate incentives.

Recent works, such as that of Gabrielli et al. [11], describe possible so-
lutions and research directions to increase user adoption. They identify
the social component as a critical component in this sense. Users are more
willing to change and improve their behavior if they can compare them-
selves with other people in their social network. Furthermore, they re-
ceived positive feedback about challenges. Challenges encourage users
to improve their behavior by giving them a goal to achieve. They note,
however, that the success of persuasion goals differs among user groups,

therefore challenges need to be tailored to the user.

Chapter 5

Methods

The developed system contains two main components: a mobile app (de-
scribed in Section 5.1), which implements a transport mode recognition
engine; the data processing part (the novel contribution of this work, in-
troduced in Section 5.2 and thoroughly described in chapter 6), which inte-
grates GPS information to the transport modes in order extracting reliable

CO; emission estimation from the mobility data.

5.1 Mobile app

This Section briefly describes the mobile app and its transport mode recog-
nition engine.

The mobile app collects data from the smartphone sensors and presents
processed data to the users. It collects data from two sensors, accelerome-
ter, and GPS. Accelerometer data is processed locally on the device with an
implementation of the work by Hemminki et al. [13]. This approach offers
good performance and more importantly, allows to identify the principal
public transportation vehicles, which is required by the nature of our pur-
pose. This data is processed locally due to the high quantity of data com-
ing from the sensor, making it impractical to send over the network. The

utilized implementation transforms the sensor data to a series of labeled

26

CHAPTER 5. METHODS 27

periods with the most likely activity recognized. Activity recognition data

is then sent to the back-end along with GPS information.

5.2 Serverless data processing

Once the back-end receives the data, it is stored and processed.

The processing consists of a series of filters and refinements of the data,
implemented as a sequence of rule-based transformations. The primary
function of the data processing is to refine the sequence of trips and im-
prove their categorization. Section 6.3.2 explains in detail how this task is
accomplished.

Along with mobility data refinement, the back-end offers data analytics
functionality. Different kinds of statistics can be computed on the data,
such as the CO, emissions for a user and its variation in time, the average
CO; emissions of a user group, or the number of users who have utilized
public transport on a given day. Data analytics employ an approach that
takes inspiration from the MapReduce model introduced in Section 3.4.
This approach considerably accelerates the computation of statistics, even

in the case of complex operations.

Chapter 6

Implementation

This chapter discusses how the system has been implemented. First, the
overall architecture is explained in Section 6.1, it lists the components of
the systems and explains how they interact with each other. After this, the
following sections consider each component and describe them in detail.
Section 6.2 explains how the data collection is conducted, what informa-
tion is collected and the challenges that can arise from the data. Section 6.3
describes how the data is processed when a user requests it. It states the
steps used to process the data and discusses their purpose. Finally, Section

6.4 explains the architecture used for statistics generation.

6.1 System overview

The system contains three main components: the data gathering, the data
processing and the statistics generation.

Data gathering depends on the usage of a mobile application by the
users. The app collects various data from the phone sensors and sends
it to a cloud endpoint for data storage. The incoming data triggers the
processing algorithm, which will be explained in detail in Section 6.3. The
data can be used, for instance, to compute statistics per user or globally in

order to gain insight into their behavior.

28

CHAPTER 6. IMPLEMENTATION 29

APls Functions Storage

data

E— :
fdata gathering

data
processing

processed
data

data

/mobility fetcher

statistics
calculation

statistics

/statistics fetcher

Figure 6.1: A general view on the architecture. Square elements represent the APl end-
points, circle elements represent serverless functions and cylinder elements depict data

storage components.

Figure 6.1 provides a high-level view of the interactions of the compo-
nents. In the next sections, these will be explained more in detail.

The building blocks, which compose the architecture, are of three types:

e API endpoints: They are the interface that users employ to interact
with the system. They trigger the functions needed to accomplish
the desired operation and provide a safe environment isolated from

the rest of the components.

e Serverless functions: They provide the logic. There are two kind of

functionality they can provide: coordinators, which are triggered di-

CHAPTER 6. IMPLEMENTATION 30

rectly by the API endpoints, and processors, which are usually long-
lasting functions, which interact with the data storage and perform
data transformation. Certain functions can fall in both of these two

categories (e.g., data gathering).

¢ Data storage: This component provides durable storage of data. It is

logically decoupled from the functions.

6.2 Data gathering

As illustrated in Figure 6.2, when the data is sent to the API endpoint, the
data gathering function is triggered (step 1). The goal of this function is to
store the incoming data in the appropriate space (step 2). Before storing,
the data is validated according to some predefined format to avoid parsing
errors in subsequent phases of the processing. As a final step, the function
triggers the data processing (step 3), that will perform some analysis and

computations on the new data and store its output for later reuse (step 4).

Y

Me——]
e—]
Me—

data
gathering

--0---->

/data
raw data

Ne—

Y
—
- 'e' === processed

data

data
processing

Figure 6.2: The events/data flow of the data gathering part. Solid lines represent events,

while dashed lines symbolize data reads/writes.

6.2.1 Data types

The data collected from the device can be subdivided into two categories:

e Transport mode data: This is the core data used by the system. It

consists of a list of modes of transport discovered by the smartphone

CHAPTER 6. IMPLEMENTATION 31

application exploiting motion sensors embedded in the device (e.g.,
accelerometer). The raw sensor data is processed locally on the de-
vice through a lightweight implementation of the algorithm con-
ceived by Hemminki et al. [13]. One batch of transport mode data
includes many legs. Legs are units of transport, as recognized by the
algorithm. Each leg carries information about the discovered mode

and the temporal beginning and end.

¢ Location data: It provides a way to enrich the transport mode data. It
enables the computation of the distance traveled during each leg and
the visualization of the data on a map. Location data requires careful
handling since it contains sensitive user information. Location data
mainly includes the time of the observation, latitude, and longitude
of the device and the accuracy estimation of these values. It can also
include other information provided by the positioning system of the

smartphone, such as speed, altitude or position source.

The size of this data amounts to 35kB per user per day for transport
mode data and about 190kB for location data. This amount of data is neg-
ligible compared to the raw accelerometer data, which can reach 300MB

per user per day.

6.2.2 Data challenges

The raw data sent from the device does not always contain clean, correct
and continuous data as it would be desirable. This Section will explicate

the major challenges encountered during the data collection.

Phone operating system

The benchmark app has been build for the Android operating system. It
is composed of the transport mode detector and an interface that provides
some visualization of the data present in the system. Android phones pro-

vide a wide range of different behaviors in resource management. Vendors

CHAPTER 6. IMPLEMENTATION 32

can tweak their version of the operating system to prevent the application
from running long task in the background in order to save battery. This
limitation has proven a tough challenge for this application, which needs
to keep the phone awake for long periods to register transport activities.
Some effort has been put into minimizing the resource consumption of the

app and provide a decent user experience.

Location data

The data read by the smartphone application is sometimes unreliable. The
majority of smartphones employ some heuristics to fuse multiple sources
of location information and can sometimes result in incorrect readings.
The location sources commonly used include GPS, Cell-ID (i.e., position
of the surrounding cellular base-stations) and Wi-Fi. While GPS provides
high accuracy, at least for this application, it entails a number of disad-
vantages: it requires user permission since it includes sensible informa-
tion, it considerably increases the battery consumption of the device and,
perhaps more importantly for this application, it is unavailable in certain
environments, where the satellites are occluded. Cell-ID helps in certain
situations, where GPS is inaccessible but has reduced accuracy. Wi-Fi is
very limited in scope, but the spread of this network and the mapping
of these can help to substantially improve the location accuracy. We ob-
served, moreover, that the presence of mobile hot-spots can break this
scheme. While hot-spots are associated with a fixed location by the loca-
tion service, they can be moved by the owner, thus resulting in completely

erroneous observations.

6.3 Data processing pipeline

This Section describes the interaction of the cloud components and the
series of transformations that is used to process the raw data retrieved

from the device sensors.

CHAPTER 6. IMPLEMENTATION 33

6.3.1 On-demand processing

. n data
/mobility == '9‘ =~ 77 processed
- - o fetcher
'e data
7’ ‘ -

’ —_—
data

processing 0

Figure 6.3: The events/data flow of the data processing part. Solid lines represent events,

while dashed lines symbolize data reads /writes.

Figure 6.3 shows how the components communicate in case a user re-
quests some mobility data. After the request has been dispatched, the
data fetcher function is triggered (step I). This function tries to retrieve
pre-computed mobility data from the storage (step 2). In case the data is
present in the storage, the function will directly return it to the client (step
7). Conversely, if the data has never been previously computed, it will
trigger the data processing function (step 3). This function will read the
raw data (step 4), as saved by the data gathering function, and process it
as explained in Section 6.3.2. After the processing completes, the result is
cached for later reuse (step 5) and returned to the data fetcher (step 6) that
can finally return it to the client (step 7).

6.3.2 Data processing algorithm

The algorithm used to process the timeline can be decomposed into a se-
ries of semantically different steps, which will be explained in the follow-
ing. Each step refines the labeled data or adds information to the dataset.
The processing has been implemented as a rule-based algorithm in order

to retain transparency in the process.

CHAPTER 6. IMPLEMENTATION

34
Raw data retrieval

The source data employed by the algorithm must include both location
and transport mode data. The correct data points are retrieved according

to the requested time interval. After data retrieval, the available dataset
includes these two separate data types.

Location data filtering

oSt

Pasila

5
o
sy o1sina WO

Llaakso

Auroran
sairaala

Taka-Toolo

Alppiharju

Taka-Toolo

(a) Raw locations

(b) Cleaned Locations

Figure 6.4: Location sequence a) before and b) after the filtering procedure.

The location data is filtered based on an accuracy threshold and the

unlikely locations are trimmed from the dataset. The accuracy threshold

data.

ensures that the least accurate points are discarded. This filtering guar-
antees that distance and speed estimations are less prone to noise in the

As discusses in Section 6.2.2, the location data can be very inaccu-

rate when the satellite data is unavailable. Figure 6.4 shows an illustra-

CHAPTER 6. IMPLEMENTATION 35

tion of this problem. In 6.4(a) some false locations are present. The lo-
cation sequence is analyzed to remove jumps created by the source fu-
sion performed by the location service. Heuristics are used to accom-
plish this filtering. The metrics considered include estimated distance,
estimated speed, estimated acceleration, change in direction, number of
wrong points. These metrics can be used to identify single points dis-
tant from the real path and points close to each other, which occur after
a sudden location jump. The number of points is considered to avoid the
cancellation of long sequences (e.g., after a flight, where the location data
is lacking and the speed is considerable). This step only analyzes location
data.

Data fusion

The next step fuses together the location and the transport mode data.
Each location observation is associated with a leg if the leg start and stop
timestamps include the location timestamp. Furthermore, the observation
directly preceding (respectively, following) is included in the leg if it is
closer with respect to time than the first (last) location sample. A leg may
contain zero location samples in its time interval, in this case, the previous
and the following locations are included in the leg. After this step, the
locations and transport modes are fused into a single dataset. The data fu-
sion allows estimating some statistics on each leg, such as speed, distance

and the number of location points in the leg.

Legs relabeling

After the data fusion step, legs are relabeled according to some heuristics.
Figure 6.5 illustrates of the decision flow used to relabel the legs. The
thresholds used in this step of the algorithm have been chosen empirically.

Speed is calculated as sample average of the speed estimation coming

from the location data, if at least 90% of the samples include such estima-

CHAPTER 6. IMPLEMENTATION 36

stationary motorized
group?

non-motorized .
Considerable

range?

Considerable
range?
No

Speed > 1 km/h Speed > 2 km/h

Yes

keep stationary

stationa
Speed > 10 km/h i No—_Speed > 5 km/h
Yes
. e keep
motorized non-motorized non-motorize el il

Considerable
range?

Speed > 2 km/h
No

|

stationary

Speed > 6.5 km/h Speed > 20 km/h

Speed > 40 km/h
Yes

non-motorized /< l motorized

keep
original label

Figure 6.5: The decision graph used for relabeling.

CHAPTER 6. IMPLEMENTATION 37

input

range > 30

range > 100
No Yes

distance
range

>1.

Considerable range

Figure 6.6: Expansion of the "Considerable range?” decision. Distance and range are

computed respectively with the formulas in equations 6.3 and 6.2.

tion, otherwise the following formula is used:

tst - tstu,rt
PPl ;fiz@'st(z,., i) ©
where ¢ stands for the timestamp, N is the number of locations included in
the leg, [; is the i" location sample and dist(x) is the distance on the Earth
surface.
Range is calculated as the distance on the Earth surface between the
two furthest locations in the leg:

max (dist(l;,1;)) (6.2)

i,7€[1,2,...,N]

and distance, the total covered distance, is computed as sum of piece-wise

distances:

N-1

=1

with the same notation used in the speed equation.

CHAPTER 6. IMPLEMENTATION 38

The expression “considerable range?” is a composite expression that
is used for the sake of readability in Figure 6.5. Its decomposition is ex-
plained in the graph in Figure 6.6.

This step typically improves the classification of the legs, since fused

data has access to location data along with transport mode data.

Legs merging

In the merging step, each leg is evaluated together with the neighboring
legs and they are pooled based on their similarity. Similarity is calculated

as the cross-product between vectors including distance and duration.

deumtian]) y <Lj [duration])

(6.4)
L;|distance] Lj|distance]

sim(L;, Lj) = <

where L; is the i leg,

If the similarity is deemed too low (less than 0.15) the legs are not
merged.

In addition to the similarity, other two criteria are considered: time dif-
ference between the legs and duration of the resulting legs. The former is
needed because the data timeline can have holes and not provide contin-
uous coverage of time. Therefore, if there is a temporal jump between the
legs, they have to be considered separately. In this case, a connecting seg-
ment is added to the timeline. The latter is a way to cluster legs together
and yield a cleaner result. Legs during less than one minute are merged to
hide micro-movements and considerably reduce the number of legs.

After merging the legs, a common label for the group has to be chosen.
The candidate labels are those of the legs in the pool. They are ranked by
duration of the legs, and the label associated with the highest duration is
chosen to represent the pool. To reduce the probability of aggressive rela-
bels, a softer classification is considered. In the case that the most probable
label is associated to less than 55% of the total duration, the label is judged
too weak and the label is chosen from the group labels (recall that the clas-

sification scheme is hierarchical).

CHAPTER 6. IMPLEMENTATION 39

This step allows to considerably reduce the number of legs. The Trans-
port Mode Detection (TMD) algorithm utilized in the mobile application is
quite verbose and is able to extract transport modes with a high frequency.

The merging step is necessary to clean the timeline from short segments.

Legs cleaning

The cleaning of the legs aims to simplify the geometry of the legs. The
geometry is here intended as the sequence of location observations associ-
ated with the leg. Three main operations are performed in this step.

Duplicate locations are removed from the geometry. The device loca-
tion service may occasionally provide duplicate locations in an attempt to
fill periods in which no fresh data is available.

The geometry of stationary legs is reduced to a single point by averag-
ing the locations in the leg.

Subsequent legs are connected to each other by adding the first location
(respectively, the last location) to the end of the previous leg (respectively,
the beginning of the following leg). This connection ensures that no visi-
ble holes are present when rendering the geometry. The criterion used to
chose whether to connect the beginning or the end of the leg is the label of
the considered legs. The timeline is predominantly a sequence of mobility
legs (i.e., non-stationary trips) interleaved by stationary periods. Only the
mobility legs are considered when adding this kind of connecting points.
After this step, the geometry of the legs is substantially more concise. The
most substantial reduction occurs on long stationary periods, such as the
night period, when the phone is left still but keeps collecting location data.

Public transportations modes validation

Motorized legs are compared to public transportations routes to improve

the accuracy of the classification. Candidate matches are retrieved through

CHAPTER 6. IMPLEMENTATION 40

the Digitransit Routing API'. The Routing API returns multiple alternative
routes providing several details for each trip, including start and end loca-
tions and time of departure. When more than one match is returned, four
parameters are evaluated to choose the best match to the recognized trip:
distance between the recognized and the alternative start and stop stations
(paist), difference between the recognized and the alternative departure
times (pume), percentage difference between the recognized and the alter-
native trips durations (pq.r), and geometry similarity (ppam). Each of this
parameters is transformed into a probability (the mapping functions have
been chosen in the form of sigmoid functions), and their multiplication is
used to estimate the likelihood of the GIS alternative. The probability esti-
mate of the best alternative is compared to a threshold as in Equation 6.5;
if it is considered compatible, the original leg label is corrected to the new
one and the geometry is substituted with the path traveled by the public
transport.

Ddist * Ptime * Pdur * ppath > 0754 (65)

Geometry similarity is calculated with the Fréchet distance. This mea-
sure has already been used in research for measuring similarity of GPS
trajectories [6, 21, 24]. The Fréchet distance considers both location and
order of the points along the curves. To understand it the following anal-
ogy is commonly used: suppose a man is walking a dog. The first curve
represents the path followed by the man and the second the path followed
by the dog. The speeds of the two can be different and vary but they are
not allowed to move backward. The Fréchet distance between these two
curves is then the minimum length of leash necessary to connect the man
and the dog.

Metro and train trips benefit from this step because the location service

works intermittently along the routes, due to poor reception. The routes

'https://digitransit.fi/en/developers/apis/l-routing-api/
routes/

CHAPTER 6. IMPLEMENTATION 41

geometry is therefore improved. Bus trips, on the other hand, suffer more
from mislabeling, due to the intrinsic similarity to cars. Their benefit is
more related to relabeling and validation.

The Digitransit Routing API is used in this design due to its free and
open source software (FOSS) nature. However, its data covers the sole
Finnish territory, limiting the public transport validation to this region. In
case of expansion in other countries, a different GIS system would have to
be utilized. An alternative could be that of utilizing Google Transit API?,

which covers a long list of countries®.

Path smoothing

The final step of the legs processing consists of smoothing the geometry.
This reduces the noise in the data and to make the path more appealing
when rendered on a map.

First, the geometry is up-sampled by a factor of two interpolating exist-
ing data. Then, it is low-pass filtered with a sliding window of size three.

Finally, the number of locations is reduced through the Ramer-Douglas-
Peucker [7, 25] (RDP) algorithm. The RDP algorithm aims to fit a simpler
curve to the sequence of points by removing all points that fall within a
predefined distance interval to the simplified curve. This approach en-
sures a reasonable smoothing effect while retaining the unique character-

istics of the path and maintaining an acceptable number of points.

Output format conversion

The process concludes with the conversion of the data structures to a seri-
alized version, ready for storage or consumption by users. All the numeric
values are rounded to an appropriate precision (e.g., two decimal places

for distance and duration, five decimal places for location points).

*https:/ /developers.google.com/transit/
Shttps:/ /maps.google.com/landing/transit/cities/

CHAPTER 6. IMPLEMENTATION 42

g CO2/km
Transport Mode

Manufacture of
Manufacture Use of fuel Total

energy or fuels
bicycle 5.0 0.0 0.0 5.0
train 5.0 11.7 0.0 16.7
metro 5.0 32.6 0.0 376
bus 6.5 34 345 444
tram 5.0 43.4 0.0 484
car 15.0 36.0 159.0 210.0

Table 6.1: The factors used to compute the produced CO,. These values include the
carbon dioxide production during the entire life-cycle of the vehicle (i.e., vehicle manu-
facturing and fuel production and consumption.). Data has been aggregated from VTT
LIPASTO* and EU directive 2009/28 /EC5.

During this process, the carbon emissions are computed for each leg.
This is accomplished by multiplying the distance traveled during the leg
with the respective CO, production factor related to the mode of transport.

These values are listed in Table 6.1.

General considerations

The previous paragraphs describe at a high level the process that the raw
data undergoes. Besides to these steps, an additional filtering is used after
each of them: Subsequent legs with the same labels are merged to clean

the timeline from redundancy.

CHAPTER 6. IMPLEMENTATION 43

6.4 Data analytics

Data can be used to calculate statistics about the users. Each user can
gain insight into his/her mobility data and use this awareness to improve
his/her carbon footprint. Projects, as the Citicap one can use user statistics
to incentivize the use of green forms of transport, such as bicycles and
public transportations over private vehicles.

In order to generate this kind of data, the system has to analyze a large
quantity of data. The processing architecture used for this operation takes
inspiration from the MapReduce programming model. As discussed in
Section 3.4, it enables the elaboration of large quantities of data by paral-
lelizing the work into mappers and reducers.

In this case, the statistic generating function, assume the role of map-
pers. The statistic fetcher function assumes the role of driver and reducer.
The output of each of the statistics generating functions is fed into the op-

eration driver, which merges all the single outputs and return an aggregate

‘http://lipasto.vtt.fi/en/index.htm
*https://eur-lex.europa.eu/legal-content/en/ALL/?uri=

CELEX:32009L0028

data
fetcher

statistics
calculation

statistics | |
calculation

statistics

/statistics fetcher

Figure 6.7: The architecture used to perform the task parallelization of functions.

CHAPTER 6. IMPLEMENTATION 44

summary of the statistics.

The major difference with respect to the general MapReduce scheme is
that the request is synchronous and is consumed directly by the requester,
instead of being only stored. This is required since the functions are linked
to an API endpoint that returns data directly to the invoker. This syn-
chronous scheme implies that the function that the caller invokes is also
the one that returns the data. In place of a straight data flow, this involves
a backward scheme of function calls in order to achieve the desired result.
In a serverless environment, where each function is billed by the execution
time, this implies an increase in costs. This increase can be limited, how-
ever, by reducing the performance requirements of the driver, that spend
most of the time idle.

Figure 6.7 shows how the functions are communicating. When a user
requests statistics, the driver is run (step 1). It takes care of requesting
the needed data from the mappers (step 2), which recursively call the data
fetcher for data retrieval (step 3). They return the processed data as ex-
plained in Section 6.3 (step 4). The result is fed into the mappers, in the
Figure named “statistics calculation” functions (step 5). As soon as the
mappers terminate their computations and return their outputs, the driver
combines their output into a single dictionary and sends the final compu-

tations to the user (step 6).

Chapter 7

Evaluation

This chapter evaluates the service developed. Section 7.1 estimates the op-
erational costs of the platform, focusing specifically on the serverless func-
tions. Section 7.2 reports the results of the test conducted and compares

the results with the TrafficSense project.

7.1 Cost analysis

Operational cost for the service can be dissected into a set of costs for the
services used. This analysis is centered around the cost of executing the
functions. The data gathering function and the data processing function
are considered because they are available to the general users. The data
analysis function is currently limited to internal use and therefore omitted.

Costs for data storage are omitted since they would be the same in a
comparable service built in a traditional architecture. Furthermore, costs
related to the platform development, such as salaries, are omitted as well,
even though they are considerable for a large platform. Serverless abstrac-
tion of infrastructure allows to considerably reduce this cost in a real sce-
nario.

Figure 7.1 depicts the pricing models of the principal cloud providers.

The pricing strategies are rather similar: providers charge based on the

45

CHAPTER 7. EVALUATION 46

Price comparison of major serverless providers [$]

Microsoft Azure Google Functions
1M R 00 0.0 0.0 64 19.2 44.8 96.0 1M N 00 12 44 118 26.6 56.2 115.4
@ 2M U 02 0.2 6.6 194 450 96.2 198.6 o 2M O 1.2 44 11.8 26.6 56.2 115.4 233.8
EBAVE 06 0.6 7.0 19.8 454 96.6 199.0403:8 RV 20 52 126 274 57.0 116.21234.6471.4
g ELYl 1. 7.8 20.6 46.2 97.4 199.8404.6::] g IYl 6.8 14.2 29.0 58.6 117.8 236.2 473.01°L K]
ERRGIVE 9.4 222 47.8 99.0 201.4406.2%:4 RN G S 16M 32.2 61.8 121.0239.4 476.2 RN L:iers
ié 32M 51.0 102.2 204.6 409.4 tRIHUN IR VAL é 32M (S R Z SR VN1966.2 1903 3797
Z aum (LR 2] [1:1825.4 1644 3283 6559 3 6um (TIPS NG PR 3969.01 1916 3810 7599
128 M ARl 12icl 61 838.2 1657 3295 6572 13126 128 M [lseRel 2l el 57 1101994.6 1941 3836 7625 15202
100 200 400 800 1600 3200 6400 12800 100 200 400 800 1600 3200 6400 12800
Estimated Execution Time (ms) Estimated Execution Time (ms)
IBM Openwhisk AWS Lambda
1M A 0.0 0.0 0.0 6.8 204 47.6 102.0 1M O 0.0 0.0 0.0 6.7 20.0 46.7 100.0
o 2M [0.0 0.0 ' 6.8 20.4 47.6 102.0:210:8 @ 2M [0.2 0.2 6.9 20.2 46.9 100.2206.9
'553 4M R 0.0 6.8 20.4 47.6 102.0210.8428.4 '% 4M X 0.6 7.3 20.6 47.3 100.6 207.3 420.7
g 8M [NIH 6.8 20.4 47.6 102.0 210.8 428.4%:(-£)¢ E Y 1. 8.1 21.4 48.1 101.4 208.1 421.5%:%5: W
LSRRIV 6.8 20.4 47.6 102.0 210.8 4284k AL ISERGIVE 9.7 23.0 49.7 103.0 209.7 4231 LK A0K]
é 32M 47.6 102.0 210.8 428.4 IR RN &Z BT ¥ 23 é 32M 52.9 106.2 212.9 426.3 1NN IRz N K]
s 64 M (XA (ORI W 3863.61 1734 3474 6956 = 64 M ARPACIA RN P A859.4 1712 3419 6834
128 M U020 0R el i 868.6 1734 3474 6956 13919 128 M [il o1 872.2 1725 3432 6846 13674
100 200 400 800 1600 3200 6400 12800 100 200 400 800 1600 3200 6400 12800
Estimated Execution Time (ms) Estimated Execution Time (ms)

Figure 7.1: Cost comparison among the main cloud vendors. The prices shown are for

a fixed memory of 512 MB.

number of executions, the duration of each execution and resources al-
located for an execution. Price variation among providers is practically
negligible.

The pricing model of the cloud vendor is similar. They provide a con-
version from execution time given a resource setting. Typically, users
may only modify the memory metric. The memory setting also influences
other infrastructure specifications, such as the CPU; with the exception of
Google Cloud Functions where users are able to choose the CPU setting
explicitly. In all the other cases, as memory increases, CPU scales accord-
ingly.

Figure 7.2 illustrates how cost and execution time varies as a function
of the memory settings. For each of the two functions, a representative

request has been chosen to model the execution time. The cost has been

CHAPTER 7. EVALUATION 47

@512 MB

o
-
(=)

57.00| @1936 MB

) &

2 »

g 5

§ 4.50 @384 MB ?_;

5 s

S - § 47.00| 91280 MB

=370 @ S Ja00| 1024 M8

g S 42.00 ®e960 VB

8 3.20 .192 MB 8 20.00 .768 MB

= 3.00 256 MB e128MB £ " (8% MB® @535 \is @512 MB
o o o o o oo o =) o
o o o [=) (=) oo O (=] Q
© ~ o < N 0O o N (Yol

~ ~ N AN N o <
Execution time [ms] Execution time [ms]
(a) Data gathering cost analysis (b) Data processing cost analysis

Figure 7.2: Cost analysis for the two main functions of the platform: a) data gathering
and b) data processing. The better results minimize both the price and the execution

time, therefore are those closer to the bottom-left part of the plots.

calculated with the pricing conversion of the AWS platform. The optimal
memory setting for the data gathering function has been chosen as 256
MB, while for the data processing as 896 MB. The two values represent the
best compromise in terms of execution speed and projected cost.

) Estimated price Average Price per user
Function
per Million executions execution Time per month
Data Gathering 299% 700 ms 0.0024 %
Data Processing 39.57 % 2650 ms 0.0120%

Table 7.1: Optimized values for execution time and price for the functions.

Table 7.1 reports the estimated price per million executions and the rel-
ative average execution time. The estimated price per user per month has
been estimated in 0.014$. The price scales linearly for each new user. This
value has been calculated considering the estimated traffic of users having
deployed the platform on the public cloud. The data gathering function
is executed approximately once per hour. This invocation pattern follows
from the client application settings; it is set to upload new data with an

hourly pace. The data processing function has a more complex execution

CHAPTER 7. EVALUATION 48

pattern. The first tests show that its invocations occur with irregular in-
tervals, predominantly during the daytime. The average number of daily
invocations amounts to ten per user. The invocations are largely grouped
in multiple requests. In order to minimize the computations executed by
the system, it offers a simple caching mechanism. Multiple requests for
the same data are redirected to the cache. This simple tool considerably

reduces the computations and the response time.

7.2 Accuracy

The performance of the system has been measured on some significant
days of users. A total of 163 hours of data is evaluated based on the cor-
rectness of the classification. The data has been sampled considering a
reasonable coverage of the transport modalities. Figure 7.3 illustrates the
confusion matrices between the classes.

Figure 7.3(a) is the confusion matrix of the recognized modalities using
exclusively the activity recognition engine on the smartphone, which em-
ploys only the accelerometer. The actual classes have been identified with
annotations by the users. Due to the high responsiveness of the algorithm,
many stationary periods include small motions, which are recognized as
such. However, since they only account for small movements, they are
irrelevant to the mobility and therefore discarded.

Figure 7.3(b) shows the confusion matrix for the processed modalities
in the cloud. The number of trips is significantly reduced, retaining only
the relevant trips (i.e., considerable duration and distance covered). After
the processing, the confusion is also considerably reduced. Precision has
increased from 71.0% to 89.9%, while recall has improved from 36.2% to
89.0% and f-score has risen from 47.3% to 89.0%. The Figure shows that the
majority of the confusion arises among the motorized classes and between
‘stationary” and ‘walk’. The latter derives mainly from short movements

before or after the actual trip. These movements have not been marked in

CHAPTER 7. EVALUATION 49

unknown A
stationary { 13 [PV EN 5 1 6 5 11
non-motorized A
bicycle 1 17 3 9 1 1
pedestrian
P run -
4 walk 1 7 1 HE 2 1 10
% motorized A
g rail
= metro - 3 12 1 2 11 2 7
tram A 2 1 1
train 1 5 7 3 1 2 B
road
bus 1 1 2
car 2 6 2 7
S g 5 3 3% S €
S]] ° <)
W £ 2 =
c
g
Recognized classes
(a) Off-line activity recognition results
unknown 4
stationary 109 1 7 2
non-motorized A
bicycle 1 4
pedestrian
P run - m
a walk 4 5 2 1
% motorized 4
g rail
= metro - 1
tram 4 1 1
train 1 1 1 B 1
road -
bus -
car

unknown 4
stationary -
non-motorized
bicycle 4
pedestrian -
run
walk 4~
motorized
rail 4
metro -
tram -
train 4
road -
bus{nv w
car{u

Recognized classes

(b) Cloud activity recognition results

Figure 7.3: Confusion Matrices. a) Confusion matrix for the activity recognition run on
the smartphone (accelerometer only). b) Confusion matrix after the data processing done

in the cloud (enriched with GPS and public transport information.)

CHAPTER 7. EVALUATION 50

® vk

Bicycle
Stationary

Ground Truth

Discovered Activities

t t t t
10:00 10:30 11:00 11:30

Figure 7.4: Timeline excerpt comparison. Short movements have been identified by the

algorithm although they are absent in the ground truth.

the ground truth, but have been recognized by the algorithm. Figure 7.4
shows an example of a sequence containing such mistakes.

Table 7.2 show the results of the recognition limited to motorized trips.
Out of 29 motorized trips, 23 have been correctly labeled (79.3%); four are
partially correct (5, 11, 13, 16), but split into different modalities, two are
incorrect (17, 19). Sample 13 has been divided into a sequence of ‘car’,
‘walk’, “car’. The middle segment is probably due to a slow traffic period,
which has been relabeled to ‘walk” when comparing to speed thresholds.
Sample 5, 11 and 15 are split into multiple labels (‘train’, ‘stationary’, ‘bicy-
cle’, ‘car’ for Sample 5, ‘bicycle’, ‘tram’ for Sample 11, and ‘metro’, ‘bus’ for
Sample 15), although belonging to a single ride. The change of modality
probably originated from user interaction with the phone, walking inside
the vehicle or lack of GPS points. Samples 17 and 19 have been labeled as
‘bus’, despite belonging to the ‘car’ class. These two classes have proven
difficult to distinguish by the underlying activity recognition algorithm, so
as ‘train’, “tram” and ‘metro’ [13]. They have not, however, been validated
by the public transport API.

18 out of 23 (78.3%) public transport rides have been recognized cor-
rectly by the public transport API, yielding a correct line code. Samples 5,
11 and 15 has been partially recognized, as described above. Sample 6 has
not been recognized, while Sample 16 has been mislabeled; the errors are

due to anomalies in the public transport timetable.

CHAPTER 7. EVALUATION 51

Sample Correct Discovered Departure Arrival Distance

Modality Line | Modality Line Time Location Time Location covered [km]

1 metro M metro M2 18:06:46 Otaniemi 18:15:40 Ruoholahti 7.4
2 metro M metro M1 18:18:25 Ruoholahti 18:24:59 Kluuvi 2.18
3 metro M metro M2 22:29:00 Kluuvi 22:43:45 Otaniemi 9.53
4 metro M metro M1 19:13:38 Otaniemi 19:25:57 Kluuvi 9.06
5 train 1 train 1 19:32:37 Kluuvi 19:52:42 Koivukyla 19.56
5 train 1 stationary 19:52:42 Koivukyld 20:10:07 Koivukyla 0.0
5 train I bicycle 20:10:07 Koivukyla 20:12:36 Koivukyla 043
5 train I car 20:12:36 Koivukyla 20:14:52 Lentokentta 3.63
6 train P train 21:07:00 Lentokentta 21:24:37 Kluuvi 16.17
7 metro M metro M2 21:50:36 Kluuvi 22:02:30 Otaniemi 8.97
8 metro M metro M2 19:13:17 Otaniemi 19:25:33 Kluuvi 9.66
9 metro M metro M1 23:24:46 Kluuvi 23:37:50 Otaniemi 9.04
10 metro M metro M1 17:39:49 Otaniemi 17:51:25 Kluuvi 9.12
11 tram 1 bicycle 21:25:43 Taka-Too6lo 21:26:51 Taka-Toolo 0.38
11 tram 1 tram 1 21:26:51 Taka-T6616 21:35:01 Etu-Too61o 1.67
12 metro M metro M2 21:42:31 Kamppi 21:52:34 Otaniemi 8.63
13 car car 08:55:19 Vartioharju 08:57:16 Vartioharju 0.66
13 car walk 08:57:16 Vartioharju 09:00:10 Vartioharju 0.13
13 car car 09:00:10 Vartioharju 09:04:11 Puotila 1.04
14 metro M metro M1 09:08:40 Puotila 09:37:57 Otaniemi 20.63
15 metro M metro M2 16:16:46 Otaniemi 16:43:33 ltakeskus 19.43
15 metro M bus 841 16:43:33 ltakeskus 16:47:16 Puotila 1.42
16 car car 16:49:50 Puotila 16:54:19 Vartioharju 1.45
17 car bus 17:44:02 Vartioharju 17:53:36 Keski-Vuosaari 3.85
18 car car 19:55:11 Keski-Vuosaari | 20:00:55 Keski-Vuosaari 0.82
19 car bus 20:17:17 Keski-Vuosaari | 20:27:40 Vartioharju 4.05
20 car car 08:58:04 Kulosaari 09:02:50 Kulosaari 1.44
21 metro M metro M2 09:05:57 Kulosaari 09:17:07 Ruoholahti 7.16
22 metro M metro M2 10:28:04 Ruoholahti 10:37:18 Otaniemi 7.45
23 metro M metro M2 18:07:03 Otaniemi 18:28:19 Kulosaari 14.48
24 metro M metro M2 17:47:55 Otaniemi 17:57:08 Ruoholahti 741
25 bus 8X bus 8X 18:04:28 Ruoholahti 18:15:12 Taka-To616 241
26 bus 18 bus 14 20:19:59 Taka-T6616 20:25:38 Meilahti 1.6
27 bus 551 bus 551 20:41:20 Meilahti 20:51:47 Otaniemi 4.96
28 metro M metro M2 11:51:18 Otaniemi 12:00:25 Kluuvi 9.19
29 train 1 train 1 12:18:32 Kluuvi 12:43:57 Lentokentta 24.05

Table 7.2: Motorized trips. Comparison of recognized activities and ground truth for

motorized modalities.

Chapter 8

Discussion

The hybrid approach implemented represents a novel approach to trans-
port mode recognition. The following sections discuss challenges and pos-
sible further improvements to the transport mode recognition (section 8.1)

and the cloud implementation (section 8.2).

8.1 Transport mode recognition

The system described enhanced the transport mode discovery capability
of the accelerometer-only approach based on the work from Hemminki
et al. [13].

In order to improve the final accuracy, further improvements to the ac-
tivity recognition engine are planned. The data processing will undoubt-
edly benefit from improved raw data.

In addition, further studies on decreasing the power consumption are
necessary. Battery depletion stands as a compelling problem of activ-
ity recognition frameworks and represents a critical deterrent from broad
adoption, and therefore has to be addressed. The leading cause of this
problem is the necessity of continuously reading data from the sensors.
This continuous reading prevents the device to enter into a power sav-

ing mode. Possible improvements could be obtained by introducing an

52

CHAPTER 8. DISCUSSION 53

adaptive sampling rate of the sensors; stopping the data collection during
stationary periods, reducing the sampling rate of GPS on slow movements

and increasing it on high-speed trips.

8.2 Cloud implementation

Serverless is a novel approach for event-driven computation. It provides
numerous advantages over traditional architectures, such as built-in scal-
ability and enhanced simplicity of utilization. It, however, poses several
challenges for the developers:

o The integration of other services into the serverless functions require
a deeper understanding of the cloud ecosystem offered by the ven-
dors. Few services scale appropriately as serverless functions do,
therefore developers have to carefully select suitable services for all

the required functionalities.

e The system work-flow and the service and function composition is
not straightforward. Due to the infancy of the serverless ecosystem,

limited tools are available to ease the development.

e The testing and debugging process has proven laborious, mainly due
to the lack of proper tools. The abstraction of infrastructure provided
by serverless complicates the debugging phase. The reproducibil-
ity of functions behaviors has proven difficult to obtain in a differ-
ent environment. Although most programming languages strive to
abstract from the underlying infrastructure, in a cloud environment

functions can show different behaviors.

The proposed architecture can be further improved to address scalabil-

ity issues. Future work includes:

e Experimenting with different approaches for the data gathering. Its

behavior is barely suited to the serverless platform. It is I/O-bound,

CHAPTER 8. DISCUSSION 54

as opposed to the preferred CPU-bound and its invocation pattern
appears to be quite regular. Therefore, it could transform into a scal-

ability bottleneck with larger user pools.

e The data processing could be executed on the device itself. This
could bring some benefits such as reduced infrastructure costs for
the cloud system and more privacy for users data. A possible draw-
back is the increased battery consumption, due to the computations.

Future work could explore this trade-off.

e The stored data format can be improved and its storage footprint
minimized. This aspect has not been studied in depth during the
development of the platform, however, it stands as a critical point

for scalability.

e The public transport GIS data is currently limited to the Finnish ter-
ritory. In order for the system to express its full potential outside this
boundary, similar data sources, covering other territories, have to be

integrated into the system.

Chapter 9

Conclusions

This thesis describes a novel system for transport mode recognition. It
consists of a hybrid architecture both in terms of data source and in data
processing platform. The approach described exploits both smartphones
and the novel serverless technology to accomplish mobility trips discov-
ery. Data sources employed include accelerometer, GPS and public trans-
ports GIS (i.e., public transport timetables).

The data processing algorithm developed improves considerably the
accuracy of the off-line activity recognition engine run on the smartphone:
the precision improved from 71.0% to 89.9%. The main contribution of the
thesis is the data fusion of accelerometer-based activity recognition data
to GPS and public transports GIS data. The two data sources introduced
allow to validate the discovered modalities, find incongruities in the data
and add rich information to it, such as distance covered, average speed,
CO; produced, and a path geometry.

The serverless platform has proven worthy of attention due to its elas-
ticity and its simplicity of utilization, although with some caveats dis-
cussed in section 8.2. Despite being in its infancy, it has already seen a sig-
nificant amount of attention in particular from small-sized companies and
start-ups, which require agility and low development costs. Processing

of big-data is well suited to the serverless platform employing techniques

55

CHAPTER 9. CONCLUSIONS 56

such as MapReduce, which can exploit excellent parallelization capability.

The developed system is set to be a noteworthy component of Lahti’s
CitiCAP project, promoting cleaner transit in spite of private transporta-
tions. We hope that this project will not remain as a vain effort and that the
town, as well as other municipalities, embrace its philosophy to decrease

transport-related emissions.

Bibliography

[1] 2016. International Energy Outlook. U.S. Energy Information Adminis-

tration.

[2] 2017. CO2 emissions from fuel combustion. International Energy

Agency.

[3] Andrew Baird, George Huang, Chris Munns, and Orr Weinstein.
2017. Serverless Reference Architectures with AWS Lambda;

Overview and Best Practices. (2017).

[4] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, and Philippe Suter. 2017. Serverless Computing:

Current Trends and Open Problems. Springer Singapore.

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1 (2008), 107-
113.

[6] Thomas Devogele, Laurent Etienne, Maxence Esnault, and Florian
Lardy. 2017. Optimized Discrete FrEChet Distance Between Trajecto-
ries. In Proceedings of the 6th ACM SIGSPATIAL Workshop on Analytics
for Big Geospatial Data (BigSpatial’17). ACM, 11-19.

[7] David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the

reduction of the number of points required to represent a digitized

57

BIBLIOGRAPHY 58

[8]

[9]

[10]

[11]

[12]

[14]

line or its caricature. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization 10, 2 (1973), 112-122.

Geert Draijer, Nelly Kalfs, and Jan Perdok. 2000. Global positioning
system as data collection method for travel research. Transportation
Research Record: Journal of the Transportation Research Board 1719 (2000),
147-153.

Adam Eivy. 2017. Be Wary of the Economics of ”Serverless” Cloud
Computing. IEEE Cloud Computing 4, 2 (March 2017), 6-12.

Sheila Ferrer and Tomés Ruiz. 2014. Travel behavior characterization
using raw accelerometer data collected from smartphones. Procedia-
Social and Behavioral Sciences 160 (2014), 140-149.

Silvia Gabrielli, Paula Forbes, Antti Jylhd, Simon Wells, Miika Sirén,
Samuli Hemminki, Petteri Nurmi, Rosa Maimone, Judith Masthoff,
and Giulio Jacucci. 2014. Design challenges in motivating change for
sustainable urban mobility. Computers in Human Behavior 41 (2014),
416-423.

Raghu K. Ganti, Fan Ye, and Hui Lei. 2011. Mobile crowdsensing:
current state and future challenges. IEEE Communications Magazine
49, 11 (2011).

Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. 2013.
Accelerometer-based Transportation Mode Detection on Smart-
phones. In Proceedings of the 11th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ‘13). ACM, Article 13, 14 pages.

Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. 2014. Gravity
and Linear Acceleration Estimation on Mobile Devices. In Proceedings
of the 11th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MOBIQUITOUS "14). 50-59.

BIBLIOGRAPHY 59

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Serverless computation with openlambda.
Elastic 60 (2016).

Mohammadreza H. Heydary, Pritesh Pimpale, and Anand Panan-
gadan. 2018. Automatic Identification of Use of Public Transportation
from Mobile Sensor Data. In 2018 IEEE Green Technologies Conference
(GreenTech). 189-196.

Arash Jahangiri and Hesham A Rakha. 2015. Applying Machine
Learning Techniques to Transportation Mode Recognition Using Mo-
bile Phone Sensor Data. IEEE Trans. Intelligent Transportation Systems
16, 5 (2015), 2406-2417.

Jerald Jariyasunant, Andre Carrel, Venkatesan Ekambaram, D] Gaker,
Thejovardhana Kote, Raja Sengupta, and Joan L Walker. 2011. The
Quantified Traveler: Using personal travel data to promote sustain-
able transport behavior. (2011).

Maria Kugler, Sebastian Osswald, Christopher Frank, and Markus
Lienkamp. 2014. Mobility tracking system for CO2 footprint determi-
nation. In Proceedings of the 6th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications. ACM.

Oana Lorintiu and Andrea Vassilev. 2016. Transportation mode
recognition based on smartphone embedded sensors for carbon foot-
print estimation. In Intelligent Transportation Systems (ITSC), 2016 IEEE
19th International Conference on. IEEE, 1976-1981.

Nehal Magdy, Mahmoud A. Sakr, Tamer Mostafa, and Khaled El-
Bahnasy. 2015. Review on trajectory similarity measures. In 2015 [EEE

Seventh International Conference on Intelligent Computing and Informa-
tion Systems (ICICIS). 613-619.

BIBLIOGRAPHY 60

[22] Vincenzo Manzoni, Diego Maniloff, Kristian Kloeckl, and Carlo Ratti.
2010. Transportation mode identification and real-time CO2 emission
estimation using smartphones. SENSEable City Lab, Massachusetts In-
stitute of Technology, nd (2010).

[23] Garrett McGrath and Paul R. Brenner. 2017. Serverless computing:
Design, implementation, and performance. In Distributed Computing
Systems Workshops (ICDCSW), 2017 IEEE 37th International Conference
on. IEEE, 405-410.

[24] Jinkwan Park, Taeyong Kim, Bokuk Park, and Hwan-Gue Cho. 2016.
Fast Heuristic Algorithm for Similarity of Trajectories Using Discrete

Fréchet Distance Measure. KIISE Transactions on Computing Practices
22,4 (2016), 189-194.

[25] Urs Ramer. 1972. An iterative procedure for the polygonal approx-
imation of plane curves. Computer graphics and image processing 1, 3
(1972), 244-256.

[26] Jesse Read, Indré Zliobaité, and Jaakko Hollmén. 2016. Labeling sens-
ing data for mobility modeling. Information Systems 57 (2016), 207-
222.

[27] Mikko Rinne, Mehrdad Bagheri, Tuukka Tolvanen, and Jaakko
Hollmén. 2017. Automatic Recognition of Public Transport Trips from
Mobile Device Sensor Data and Transport Infrastructure Information.
In Personal Analytics and Privacy. An Individual and Collective Perspec-
tive, Riccardo Guidotti, Anna Monreale, Dino Pedreschi, and Serge
Abiteboul (Eds.). Springer International Publishing, Cham, 76-97.

[28] Peter Sbarski and S Kroonenburg. 2017. Serverless Architectures on
AWS: With examples using AWS Lambda. Manning Publications Com-

pany.

BIBLIOGRAPHY 61

[29] Rahul C. Shah, Chieh-yih Wan, Hong Lu, and Lama Nachman. 2014.
Classifying the mode of transportation on mobile phones using GIS
information. In Proceedings of the 2014 ACM international joint confer-

ence on pervasive and ubiquitous computing. ACM, 225-229.

[30] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans
Scholten, and Paul JM Havinga. 2015. A survey of online activity
recognition using mobile phones. Sensors 15, 1 (2015), 2059-2085.

[31] Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, 133-146.

[32] Jean Louise Wolf. 2000. Using GPS data loggers to replace travel diaries

in the collection of travel data. Ph.D. Dissertation. Citeseer.

