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Abstract

Widespread availability of electricity is a hallmark of civilization. A reliable electricity supply is
fundamental for the social and technological development of the world. To cope with the growing
electricity demand and other challenges associated with energy delivery today, technological
advancements towards a modern updated power grid are needed. The development of a smart grid
is a solution to enable a more stable, reliable, efficient, economical and sustainable energy
generation, transmission, distribution and usage. One drawback of the traditional power grid is
the mismatch between energy supply and demand. The solution to this problem is the deployment
of a more flexible energy generation system, together with a balanced electricity consumption. This
could be achieved by means of demand side management (DSM).

The focus of this thesis is to model efficient DSM methods for optimizing electricity consumption.
In particular, price-based demand response (DR) methods that require the active participation of
electricity users are developed. Price-based DR methods allow for energy users to optimize their
energy consumption and reduce their costs. This occurs if they adjust and change their electricity
consumption patterns in response to dynamic prices applied by utility companies. One problem
tackled in this thesis is that of optimizing the charging of electric vehicles (EVs). More and more
people are interested in purchasing EVs. The EVs however, will significantly increase their
electricity consumption and cost. Using machine learning techniques, efficient methods that
optimize the home charging of an EV and reduce the long term cost of charging for the owner are
developed. The EV charging is scheduled by taking advantage of the time-varying electricity prices
within a day, but also of the dynamic nature of prices on different days.

In the traditional power grid, the role of the energy consumers was that of price takers with no
other involvement in the energy sector. The smart grid however, will support consumers also in
owning renewable energy sources (RESs) and energy storing systems (ESSs). Local energy
generation and ownership of ESSs opens opportunities for new energy strategies and markets. By
enabling cooperation among energy producers and consumers, they would be able to manage and
use their renewable energy resources and storage spaces more efficiently and reduce their
electricity consumption costs even more. In this thesis, collaborative models for exchange and trade
of energy within communities of households owning RESs and ESSs are developed. Using a
mathematical model from cooperative game theory, the community energy portfolio optimization
problem is formulated as a coalitional game for the households to minimize their costs, individually
and collectively. Moreover, using a concept from microeconomics, a DSM method is also developed
from the perspective of the utility company to balance the community's grid energy consumption.

Keywords Smart grids, demand side management, demand response, machine learning, game
theory, electric vehicles, smart community

ISBN (printed) 978-952-60-8121-2 ISBN (pdf) 978-952-60-8122-9

ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2018
Pages 163 urn http://urn.fi/URN:ISBN:978-952-60-8122-9







Preface

The research work included in this doctoral dissertation has been carried out
at the Department of Signal Processing and Acoustics from Aalto University,
Finland. The completion of this work was possible due to the diligent supervision
of Prof. Visa Koivunen to whom I would like to express my deepest gratitude for
his trust and high quality research guidance.

I would like to express my recognition to Prof. Yih-Fang Huang and Dr. Iiro
Harjunkoski for accepting to serve as opponents at my defense. I would like
to thank Dr. Iiro Harjunkoski and Assistant Prof. Vassilis Kekatos, the pre-
examiners of this dissertation, for their appreciative words, but also relevant
comments that helped me improve the quality of this work.

A special appreciation I have for Dr. Jarmo Lundén for his valuable advises and
research discussions that had an important role in my growth as a researcher.
At the same time I would like to thank Dr. Jayaprakash Rajasekharan, with
whom I co-authored one conference article. My recognition goes also to Prof.
Corneliu Rusu for his support, in particular for his recommendation letter that
started my PhD journey.

I would like to thank GETA and Aalto ELEC doctoral schools, but also HPY
Research Foundation and KAUTE Foundation for funding this research work.
I'm also thankful towards the Aalto Elec. doctoral studies office, in particular
towards Marja Leppaharju, for always helping with practical issues.

Throughout my stay at the Department of Signal Processing and Acoustics
I have met wonderful people. I am grateful and honored to have met all of
them. I'm particularly grateful to Marian Bicd, Dr. Hassan Naseri and Dr.
Mario Costa for being awesome colleagues, but also good friends outside of the
office. I'm thankful also to Henri Hentil4, Robin Rajaméki, Emadaldin Mozafari,
Elias Raninen, Dr. Yongzhe Li, Karthik Upadhya, Dr. Shahab Basiri, Dr. Jan
Oksanen, Dr. Maarit Melvasalo, Dr. Tuomas Aittoméiki, Dr. Jari Miettinen, Dr.
Pramod Mathecken, Neelabh Kashyap, Prof. Esa Ollila, Prof. Sergiy Vorobyov
and Prof. Stefan Werner.

Since good experiences couldn’t have been truly meaningful without the com-
pany of good friends, I want to say special thanks to Martta, Andrey, Delia,
Fahimeh, Susana, Bruno, Athul, Dristy and Ali for the fun moments together,



Preface

but also for their support at tougher times. I want to express my recognition also
to my long time friends back in my home country Bogdan, Ana, Ionut, Felicia,
Corina, Ioana, Laura and Rux. Thanks for always being amazing friends!

Last, but not least, I want to thank my wonderful parents Livia and Corneliu
Chis for the love and care that they have always shown to me. I couldn’t have
reached here without their support.

Espoo, August 12, 2018,

Adriana Chig

ii



Contents

Preface i
Contents iii
List of Publications v
List of Symbols vii
List of Abbreviations ix
1. Introduction 1
1.1 Motivation . . . . ... ... .. ... 1
1.2 Scopeofthethesis . ... ...... .. ... ... .. ....... 2
1.3  Contributions of thethesis . . .. ... .. ... ... ....... 3
14  Structureofthethesis. . ... ... ................. 5
2. Smart power systems 7
2.1 Smart grid definition . . .. ... ... ... ... ... .. ... 7
2.2 Smart grid components . . . ... ... ... ... ... ... ... 8
23 DSMmethods. ... ...... ... ... .. . .. . . ... .. 11
2.3.1 Electricity pricing methods . . . . ... ... ...... 13
2.3.2 DRprograms . ....................... 14
3. Optimization of electric vehicle charging using DSM 17
3.1  DSM methods for optimizing aggregate charging of EVs . ... 19
3.1.1 Methods for ensuring power system reliability . ... 20
3.1.2 Methods for improving renewable energy integration 21

3.1.3 Methods for optimizing charging at stations and
parkinglots . . ... ... ... .. .. ... .. ..... 22
3.14 Methods that model energy market strategies . ... 23
3.2 DSM methods for optimizing the charging of an individual EV = 27

3.2.1 Optimizing the home charging of an EV using fore-
casted electricity prices . . . .. ... ... ....... 29

iii



Contents

3.3 Discussion . . . ... .. ... ... e 37
4. Energy cost and portfolio optimization in smart grid 41
4.1 Competitive methods for energy cost minimization . ... ... 44
4.2 Collaborative methods for cost minimization . .. ... ... .. 49
4.2.1 Model free methods for collaboration . . .. ... ... 49

4.2.2 Developed collaborative methods for optimizing en-
ergy portfolio within a smart grid community . . . . . 52

4.2.3 Collaborative methods based on cooperative game
theory .. ... ... ... . . ... . . 55
4.3 Methods for load balancing . . . . ... ............... 61
4.4 Discussion . . ... ... .. .. 66
5. Summary 71
References 75
Errata 85
Publications 87

iv



List of Publications

This thesis consists of an overview and of the following publications which are
referred to in the text by their Roman numerals.

I A. Chis, J. Lundén and V. Koivunen. Scheduling of Plug-in Electric Vehicle
Battery Charging with Price Prediction. In Proc. of the 4th IEEE PES Innova-
tive Smart Grid Technologies Europe (ISGT Europe) conference, Copenhagen,
Denmark, pp. 1-5, 6-9, Oct. 2013.

IT A. Chis, J. Lundén and V. Koivunen. Optimization of plug-in electric vehicle
charging with forecasted price. In Proc. of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD,
Australia, pp. 2086 - 2089, 19 - 24, Apr. 2015.

IIT A. Chis, J. Lundén and V. Koivunen. Reinforcement Learning-Based Plug-
in Electric Vehicle Charging With Forecasted Price. IEEE Transactions on
Vehicular Technology, vol 66, no. 5, pp. 3674 - 3684, May 2017.

IV A. Chis and V. Koivunen. Collaborative Approach for Energy Cost Minimiza-
tion in Smart Grid Communities. In Proc. of the IEEE Global Conference On
Signal And Information Processing (GlobalSIP), Montreal, Quebec, Canada,
pp. 1115-1119, 14 - 16, Nov. 2017.

V A. Chis, J. Lundén and V. Koivunen. Coalitional Game Theoretic Optimization
of Electricity Cost for Communities of Smart Households. In Proc. of the
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New-Orleans, LA, USA, pp. 4726 - 4729, 5 - 9, Mar. 2017.

VI A. Chis and V. Koivunen. Coalitional game based cost optimization of energy
portfolio in smart grid communities. IEEE Transactions on Smart Grid, to
appear.



List of Publications

VII A. Chis, J. Rajasekharan, J. Lundén and V. Koivunen. Demand Response for
Renewable Energy Integration and Load Balancing in Smart Grid Communi-
ties. In Proc. of the 24th European Signal Processing Conference (EUSIPCO),
Budapest, Hungary, pp. 1423 - 1427, 29 Aug.-2 Sept., 2016.

vi



List of Symbols

An/m ()
b(t)
bn/m(t)

pinit
d
ed
‘/—.'
g(t)

&m(t)

_

9 S = 3

rm(t)
sm(t)

Swdyed

Amount of energy exchanged by a household n or m with other
households from the community in time-slot ¢

Total amount of energy purchased by the community from the
utility company/main power grid in time-slot ¢

Amount of energy purchased by a household n or m from the
utility company/main power grid in time-slot ¢

Initial state of charge of the EV’s battery in day d

Daily time steps

MDP action in day d

Set of transition samples

Total amount of energy required by the community from the
utility company/main power grid in time-slot ¢

Amount of energy required by a household m from the utility
company/main power grid in time-slot ¢

Index of a sample from a set

Set of households owning RESs and/or ESSs and forming a
coalition

Index of a household owning RESs and/or ESSs
Set of all households in the community

Index of a household from the community

Set of pure energy consuming households
Index of a pure energy consuming household

Amount of energy charged/discharged to/from the ESS of house-
hold m in time-slot ¢

Total amount of energy stored in the ESS of household m at
the end of time-slot #

Subset of transition samples

Optimization time frame

vii



List of Symbols

T Number of time slots in the optimization time frame
t Discrete time steps
u(t) Total energy demand of the community in time-slot ¢

Un/m(t) Energy demand of a household n or m in time-slot ¢
X4 MDP state in day d

Bandwidth of the kernel function
Y Discount factor

Ag Difference between the minimum hourly costs of charging the
EV’s battery of two consecutive days

€4 Amount of energy consumed by the EV in day d

At) Price for electricity sold by RESs and/or ESSs owning house-
holds to pure consuming households in time-slot ¢

v(M) Characteristic function of the coalitional game

¢ Kernel function

D(v) Shapley value

®,,(v)  Amount of payoff assigned by the Shapley value to household

m
T Index of an algorithm iteration
&(t) Electricity price per unit of energy applied by the utility com-

pany in time-slot ¢
wq Index of a weekday
- Distance norm

-1l L1 norm

viii



List of Abbreviations

ADMM
AMI
BNN
CVXP
DES
DP
DR
DSM
EV
ESS
GP

kWh
LP
MDP
MILP
MIQP
MPC
NBS
PAR
PHEV
QO
RES
RL
RTP
SARSA

Alternating direction method of multipliers
Advanced metering infrastructure
Bayesian neural network

Convex programming

Distributed energy systems
Dynamic programming

Demand response

Demand side management
Electric vehicle

Energy storing system

Geometric programming

Home area network

Kilowatt hour

Linear programming

Markov decision process

Mixed integer linear program
Mixed integer quadratic programming
Model predictive control

Nash bargaining solution
Peak-to-average ratio

Plug-in electric vehicle

Quadratic optimization
Renewable energy source
Reinforcement learning

Real time pricing

State—action—reward—state—action algorithm

ix



List of Abbreviations

SDP
SLP
SP
ToUP
V2G

Stochastic dynamic programming
Stochastic linear program
Stochastic programming

Time of use pricing

Vehicle-to-grid



1. Introduction

1.1 Motivation

Widespread availability of electricity is a hallmark of civilization today. The
traditional paradigm of electricity consumption involves large power stations
that generate electricity and an electric grid to distribute the electricity to
private, commercial and industrial customers. The current electricity grid is
facing important challenges that must be addressed in the near future. One
major concern is the growth of demand and the inadequacy of the current grid
infrastructure to sustain this growth. The International Energy Outlook 2016
[1] estimates a world energy demand growth from 21.6 trillion kilowatt hour
(kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh by 2040. The
aging of the power grid also represents a big concern. A major part of the
power grid infrastructure existing today in the developed world dates back to
the middle of the 20" century. Therefore, it needs to be replaced by a modern
and updated power grid that would be able to sustain the continuously growing
energy requirements. Other potentially more important challenges are pollution
and climate change caused by fossil fuel-based energy production. All these
challenges call for a rapid renewal and upgrade process towards an advanced
smart power grid.

The smart power grid may be characterized as a cyber-physical system [2]
that is able to combine large and small-scale power system infrastructure ele-
ments together with cyber systems. These cyber systems would be composed of
networked sensing, processing, optimization and control components connected
by communications and information processing units. The main purpose of
the smart grid is to enable a more stable, reliable, efficient, economical and
sustainable energy generation, transmission, distribution and usage. The smart
power grid has the aim to achieve other major goals, too. One is to ensure a
balanced supply and demand. Electricity demand is typically fluctuating accord-
ing to daily industrial, commercial and private consumer activities or due to
emergency events. In the traditional power grid, extra power capacity needs to
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be built in order to deal with fluctuations in demand. In the smart power grid,
however, a more flexible energy generation system will be deployed to satisfy
the demand of electricity in real time. Another major goal of the smart grid
is to allow energy consumers to have active participation in the power system.
Automated and easy-to-access energy efficiency programs, in which customers
may make own decisions on their energy consumption based on economical or
other reasons, will also be deployed. Balancing supply and demand and enabling
active customer participation in the power sector may be achieved by means
of demand side management (DSM) [3]. DSM would give network operators
greater flexibility in managing and controlling the power system. At the same
time, it would also allow for end consumers to optimize their energy consump-
tion and costs. Electricity consumers may significantly reduce their costs by
adopting DSM methods that make use of dynamic pricing tariffs, also called
price-based demand response (DR) methods [4]. The dynamic prices typically
reflect the demand of electricity in the power network, i.e. they are low during
the hours of the day with low electricity demand and high during peak hours.
This pricing strategy, or other types of financial incentives, are applied by the
utility companies and give consumers the opportunity to reduce their electricity
bills if they adjust and change their electricity consumption patterns in response
to these prices. For example, they may shift part of their electricity consumption
from periods in which prices are high to periods in which the prices are low
[4]. Hence, active participation of end energy consumers is required in order
for these DR methods to be efficient. DR methods can be applied automatically
at end consumers premises through installation of smart sensing and control
devices. However, the consumers can also choose to individually follow the vari-
ation of electricity prices and manually turn on and off their home appliances
based on current price.

Through deployment of DSM programs, the smart power grid will be able to
integrate new emerging energy resources and solutions such as distributed en-
ergy sources (DESs), energy storage systems (ESSs), smart homes and buildings,
automated real-time energy management programs. In addition to allowing
customers to optimize their energy consumption, the smart grid will also support
them in owning DESs such as renewable energy sources (RESs). Consequently,
in addition to consuming energy, they would also produce their own energy. This
will further encourage the development of local energy markets in which end
energy consumers and producers can interact in order to find an optimal usage
of their local energy generation.

1.2 Scope of the thesis

The main scope of this thesis is to develop new DSM methods, in particular
price-based DR methods for optimizing the electricity consumption of end con-
sumers with the purpose of reducing their electricity consumption costs. The
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developed methods stem from signal processing, optimization, machine learning
and game theory. First, DR methods for optimizing the home charging of electric
vehicles (EVs) are proposed. The EVs are an ecologically friendly alternative to
conventional vehicles powered by internal combustion engines. However, the
adoption of EVs would increase the electricity consumption on the power grid.
The cost of energy consumption for the EVs’ owners would increase significantly
as well. One of the objectives of this thesis is to propose DR methods for opti-
mizing the home EV charging. The methods facilitate saving energy costs and
help in avoiding problems caused by plugging in more EVs to the power system.
The proposed methods schedule the charging in response to the dynamic prices
incurred by the utility company and reduce the long terms cost of electricity
consumption for the owner.

Another objective of this thesis is to develop novel collaborative methods for
optimizing energy portfolios within communities of smart households owning
RESs and/or ESSs. The methods operate under DSM programs. Cooperative
frameworks for optimizing energy portfolios may be employed at distribution
level in order to optimize the electricity consumption, usage of energy storage
space and usage of locally produced renewable energy. Households owning
RESs and/or ESSs could individually optimize their electricity consumption and
reduce their electricity consumption costs through DR methods. However, by
cooperating and interacting with each other they would be able to manage and
use their renewable energy resources and storage spaces even more efficiently
and reduce their electricity consumption costs even more. Interactions among
electricity end users owning RESs and/or ESSs may take place through exchange,
transfer or share of electricity and also of information. Two-way energy flow
and communications systems are needed to facilitate such interactions [5].
Enabling such interactions may also open opportunities for development of
local energy markets [6]. Interactions among energy users may be classified as
competitive or collaborative. In this thesis, collaborative models and methods
for improving the efficiency of electricity usage and resource allocation within
smart grid communities of households are proposed. These households equipped
with renewable generation and storage facilities collaborate by exchanging
and trading energy and sharing storage spaces with the goal of reducing the
aggregate costs, or balance the load of the community on the power grid.

1.3 Contributions of the thesis

The main results of this doctoral dissertation have been published in seven
peer-reviewed articles, out of which two are journal articles (Publications III and
VI) and the remaining five are conference papers (Publications I, I, IV, VI and
VII). The author of this dissertation was responsible for the theoretical studies,
development of methods, computer simulation, and numerical results in all the
publications (Publication I-Publication VII) included in this dissertation. The
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author of this dissertation was also mainly responsible for writing the articles.
The co-authors provided important help in planning the research, steering the
work through technical discussions, as well as revising the publications. A brief
overview of the contributions of this thesis is given below.

* DR methods for optimizing the home charging of an EV with the purpose
of reducing the long term cost of charging are proposed in Publications I,
II and III. The local utility company uses a dynamic pricing scheme for
charging their customers. The EV’s charging is being optimized from the
owner’s perspective in order to reduce the charging cost. The proposed meth-
ods take advantage of the day to day and hour to hour variations of the
dynamic prices. Using reinforcement learning (RL) techniques, in particu-
lar the state—action—reward—state—action algorithm (SARSA) with eligibility
traces [7] in Publications I and a fitted-Q iteration-based [8] batch RL al-
gorithm in Publications II and III, the EV’s charging is scheduled based on
daily charging decisions. These charging decisions are taken such that the
charging costs are reduced while ensuring that the driving needs of the owner
are satisfied. Heuristic methods are used in Publications I and II for defining
the rewards employed in the proposed RL methods. These methods reward
actions that charge the EV’s battery at low costs while fulfilling the owner’s
driving needs. An optimal linear programming (LP) model is formulated and
solved with the purpose of defining the reward values in Publication III. A
Bayesian neural network (BNN)-based method for predicting electricity prices
over a one day period is also proposed in Publication III. The obtained results
show that the proposed methods may reduce the charging costs by 7-10% in
comparison to a daily optimal charging method and by 40-50% in comparison
to the conventional charging method.

Collaborative models for exchanging or trading energy and sharing energy
storage space in a community of residential households are proposed in Pub-
lications IV, V and VI. The community consists of households owning RESs
and/or ESSs in Publication V. In Publications IV and VI, pure energy consum-
ing households are included in the community model, too. The collaborative
models work under DSM programs. The main goal is to minimize energy
consumption and operational costs for the community of households. The
collaboration is formulated using a coalitional game model in Publications V
and VI. The coalitional games belong to the class of cooperative games. In a
cooperative game theoretic model [9], players form coalitions with the purpose
of jointly achieving payoffs. Providing a fair division of the cost savings among
the participants in the coalition is another property of cooperative game the-
ory. The households from the community owning RESs and/or ESSs form a
coalition to exchange energy among themselves in Publication V and they
also sell energy to pure consumers in Publications IV and VI. DR methods
are formulated in Publications V and VI as constrained linear programs with
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the purpose of reducing the energy consumption cost (Publication V) and also
operational costs (Publication VI) of the formed coalitions. The cost savings
obtained by the coalition are divided among the participating households ac-
cording to the Shapley value [10, 11]. Shapley value is a one-point payoff
solution through which the overall cost savings obtained by the coalition are
fairly divided among its members according to their individual contribution
in achieving these cost savings. A DR method is formulated as a constrained
linear program to optimize energy consumption, renewable energy allocation,
storage usage, energy exchange and trade under different amounts of renew-
able energy production within the community in Publication IV. It is shown
that in the considered scenarios the proposed methods reduce the cost for the
households owning RESs and/or ESSs by 18% in comparison to optimizing
their electricity consumption individually, hence, not collaborating. The pure
consumers also obtain a 3% reduction in cost in comparison to buying all their
needed energy from the utility company.

A DSM method for households in a community to reduce the costs of consuming
energy from main power grid and balance the load of the community on the
grid is proposed in Publication VII. A local energy trading model is first
formulated from the perspective of the households owning RESs. Renewable
energy surplus may be sold to neighboring households in need of energy. The
cost of energy bought by the community from the main power grid is reduced.
A DSM problem is also formulated from the perspective of the utility company
for balancing the community’s energy consumption from the power grid. This
problem is formulated as a geometric programming (GP)-based optimization
using the Cobb-Douglas production function from microeconomics [12, 13]. The
obtained results show that in the considered scenarios the proposed method
reduces the community’s costs for purchasing electricity from the main power
grid by 10%. It also balances the profile of the energy consumed by the
community from the power grid during a day, obtaining a peak-to-average
ratio (PAR) close to unity.

1.4 Structure of the thesis

This thesis consists of five chapters and seven original publications. Chapter 2
introduces basic concepts of the smart grid and the related enabling technologies.
Chapter 3 provides a survey on DSM methods for optimizing charging of EVs.
The contributions of this thesis regarding DR methods for optimization of home
charging of an EV are described. The goal is to reduce the long term charging
cost for the EV’s owner. A complete description of these methods is given in
Publications I, IT and III. DSM methods for exchange and trade of energy among
energy consumers and producers at distribution level of the power grid are
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considered in Chapter 4. First, a survey on interactive methods for trading and
exchanging energy that have the goal of reducing the costs related to energy
consumption is given. The contributions of this thesis on collaborative methods
for minimizing costs of a community of households are described. A complete
description of the proposed methods is given in Publications IV, V and VI. The
contributions of this thesis related to interactive DSM methods for reducing the
consumption cost and balancing the load on the grid are presented in subsection
4.3. The method proposed in this thesis for reducing the cost and balancing
the energy consumption of a community of households from the power grid is
fully described in Publication VII. Finally, a summary of this work, concluding
remarks and possible future work are discussed in Chapter 5. Publications I-VII
containing detailed technical description and results of the developed methods
are attached at the end of this dissertation.



2. Smart power systems

The deployment of a smart power grid implies a gradual upgrade process in the
traditional power system. The upcoming changes towards a smart electric grid
are expected to affect all energy sectors and all parties involved in the energy
industry including generation, transmission, distribution, consumers, retailers,
aggregators, utilities, municipalities and end consumers.

2.1 Smart grid definition

There is no single widely accepted definition of a smart grid. The development
of the smart grid is an evolutionary process and its components and services
will be slowly standardized over time. For example, the Smart Grids European
Technology Platform gives the following definition [14]: "A smart grid is an elec-
tricity network that can intelligently integrate the actions of all users connected
to it - generators, consumers and those that do both - in order to efficiently deliver
sustainable, economic and secure electricity supplies”. In [15], the smart grid is
defined as: "The smart grid is an advanced digital, two-way power flow, power
system capable of self-healing, and adaptive, resilient, and sustainable, with
foresight for prediction under different uncertainties. It is equipped for interoper-
ability with present and future standards of components, devices, and systems
that are cyber - secured against malicious attack.” Regardless of the definitions
of a smart grid given by various entities, it is commonly agreed that the future
smart grid must comprise the following, but not only, key characteristics and
features [14, 16]:

* It must accommodate different types of energy generation and storage facili-
ties;

¢ It must accommodate active customer participation;
* It must enable new products, services and markets;
¢ It must enable bidirectional flow of information and power;

¢ It must provide energy efficiency, quality and reliability;
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Figure 2.1. Smart grid architecture and main components. The smart power grid fuses tradi-
tional power grid components with innovative technologies and system facilities.

¢ It must present automatic self-healing properties, i.e. the ability to prevent,
detect and repair system faults;

* It must be versatile and resilient to cyber attacks and natural disasters.

2.2 Smart grid components

The smart power grid will fuse components of the traditional power grid archi-
tecture with new system facilities and technologies, as shown in Figure 2.1. The
most important innovative technologies that will enable the existence of smart
electricity grid are the following:

Distributed energy sources (DES) and renewable energy sources (RESs):
Conventional power plants will co-exist with distributed generators deployed
at residential, commercial and industrial locations [17]. DES may refer to lo-
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cal dispatchable energy sources such as gas turbines, or internal combustion
engines and non-dispatchable energy sources such as solar panels and wind
turbines that produce electricity on site. The renewable energy is a free, clean
and non-depletable source of energy. Therefore, RESs have become more and
more popular in recent years. Installation of RESs provides an important and
sustainable alternative to the conventional coal-based power generation. How-
ever, one major drawback of RESs is the highly intermittent nature of their
power generation which depends on the weather and its continuous changes.

Energy storage systems (ESSs): ESSs represent a key component of the
future smart grid. In order to compensate for the variability of the renewable
energy generation, ESSs may be used in conjunction with RESs to store the
renewable energy surplus at times when the renewable energy production is
higher than the energy demand [18]. ESSs could be also used to facilitate
the control, optimization, management and operation of energy flows within
the power system, for example by storing energy at times of low demand and
use that energy at times of high demand. This will ensure the reliability and
stability of the grid and facilitate the optimization of energy consumption.

Microgrids: Microgrids are standalone systems composed of networks of
small loads, DES and ESSs. They could be seen as miniature versions of the
main power system. A microgrid is envisioned to be able to operate in an isolated
mode, i.e. it could operate as an independent, self-sustainable system that fulfills
its internal electricity requirements and also ensures self reliability and security.
However, in most of the cases, the microgrids would operate in connection to the
main power system to be able to fulfill their demands at times of insufficient
renewable resources [19]. Due to their capability of disconnecting from the main
power system and operate in islanded mode, the deployment of microgrids next
to business centers, data centers, or hospitals would confer a high degree of
reliability to these facilities, allowing them to function even in the most critical
situations [20].

Bi-directional communications and flow of power: The operation of the
power system would be controlled by the power system operators in close co-
operation with the distributed facilities such as distributed independent RESs
and ESSs, microgrids, or residences and business centers. In order to enable
this joint operation of the power grid, the future smart grid must incorporate
two-way communications and a bidirectional power flow systems. The communi-
cations system will support bidirectional flow of information between the entities
operating the power grid, making it more secure and reliable. In order to ensure
a resilient bidirectional flow of power within the power network, efficient grid
monitoring and control over the network operation is also needed [21].

Active consumer participation: In the conventional power grid, the con-
sumers are passive receivers of electricity and prices, without having active
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participation in controlling electricity in the power network. However, in the
future, the consumers will represent an active component of the smart energy
system [22]. By taking part in programs such as those for DSM and DR energy
consumers may participate in the energy industry not only as energy buyers,
but also as RESs and ESSs owners, as energy traders, or as control agents.

DSM programs: DSM programs include energy efficiency programs, load
management [23] and DR methods [23, 24] which are implemented through
modifying, modelling and predicting the electricity customers’ demand patterns.
One of the main goals of these programs is to reduce the PAR of the electricity
demand on the grid. By using DSM programs [25] the end users may obtain
benefits reflected in reduced costs and reliable electricity supply, while for the
energy providers the benefits are accrued in a more efficient use of the supply
capacity. Hence, unnecessary investments determined by the peak load periods
which require extra generation capacity may be avoided.

Advanced metering infrastructure (AMI): The AMI is another key com-
ponent of the smart grid. It is a system comprised of smart meters, sensors [26]
and other monitoring devices, electric and electronic control equipment, smart
communications equipment, real-time computational platforms, information
processing units, etc. This system will be deployed at all levels of the power grid,
facilitating the energy management and control operations that will make the
grid more reliable, secure and efficient. It will also facilitate the implementation
of real-time DSM programs [27]. The AMI together with the two-way communi-
cations system would enable data recording and information exchange among
customers and utility companies or other grid operating entities. This will also
enable the participation of customers in DR programs.

Home area network (HAN): A HAN represents an advanced metering sys-
tem located inside electricity customers’ homes. It is composed of smart home
appliances, smart meters, sensors, energy management and control devices [28].
The HAN allows for efficient management of the home’s electricity supply and
demand through controlling smart appliances inside the house. The HAN may
be connected to the utility company through the two-way communications link
for exchanging information such as pricing data or customers’ demand. However,
the utility company would typically not have control over it.

Smart appliances: Smart appliances are appliances equipped with grid
friendly controllers and have delayable loads. An appliance has a delayable load
if its operation is flexible and can be scheduled to work over different periods of
time [29]. Such appliances include, for example, washing machines, heaters, air
conditioning systems, dryers. The grid friendly controller of a smart appliance
would be an integral part of the HAN. This controller is able to control the load
of the appliance by turning it on or off according to a pre-defined schedule, or in
case of critical situations to avoid eventual power grid faults such as frequency
fluctuations and abnormal levels of current and voltage, for example.
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Electric vehicles (EVs): EVs can be considered a special category of smart
appliances. But, their role in the deployment of a smart power grid may be
much more significant than that. Integrating a large number of EVs into the
power grid can be challenging. An EV would significantly increase the average
energy consumption of a household and the penetration of high numbers of
EVs in the power system can dramatically increase the load on the grid [30].
However, by exploiting their high potential for supporting DSM programs [31],
the EVs can have important positive impacts over the power system. For
example, the charging of the EVs’s batteries can be easily maneuvered through
intelligent programs that aim at flattening peak loads on the grid. Moreover, by
enabling vehicle-to-grid (V2G) technologies [32], the discharge of batteries may
also be controlled, and hence, EVs can be used as distributed storage units to
store energy, or for providing ancillary services to the grid. Ancillary services
represent services that support the continuous and secure flow of electricity
within the power network such that the electricity demand over the grid is
always satisfied [33]. In order to be able to obtain all these benefits, smart
programs for integrating the EVs into the electric grid are needed.

Energy markets: Smart grid deployment is coupled with the liberalization of
the electricity markets. Market competition, fair market rules, dynamic pricing
and customer incentives are factors that will allow the smart grid to achieve
maximum efficiency. Energy consumers may directly participate in the whole-
sale market by taking part in DSM programs, in particular in price-based DR
programs that give financial incentives to energy consumers to change their en-
ergy usage patterns [34]. The need for integration of renewable energy resources
may determine the formation of zonal energy markets, i.e. trade of electricity
among power networks belonging to neighbouring geographical regions [35].
Moreover, the smart grid also involves active interactions among industrial,
commercial or residential consumers equipped with renewable generation and
energy storage systems. Such energy producers and consumers, i.e. prosumers,
would be able to exchange and trade energy among themselves, thus forming
local trading markets [36].

2.3 DSM methods

DSM methods refer to demand related policies that modify the energy usage
patterns and amount of energy consumed by end consumers. DSM methods
are designed to be applied to the general end electricity consumers such as
commercial and industrial consumers, as well as residential energy users. In this
thesis, the attention will be focused on DSM methods applied to end consumers
at residential level. Due to the rigid and uncontrollable aspect of the residential
demand, the residential sector is currently a major contributor to the volatility
of the load on the power grid. In order to overcome this, DSM programs should
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be adopted by residential energy consumers.
A DSM program may have a variety of objectives. The most important ones
are the following:

* Reducing the peak demand on the grid;
¢ Balancing generation and demand;

* Reducing the overall electricity consumption in the time of insufficient elec-
tricity capacity caused by high demand growth or high fuel cost.

Achieving the above objectives would result in many different benefits such as:

* Increasing the system reliability;

* Improving the efficiency of energy production and distribution;
¢ Mitigating electrical system emergencies;

* Reducing the number of blackouts;

* Reducing the dependency on expensive imports of fuel;

* Reducing the release of harmful emissions in the environment.

Although these positive effects enumerated above may affect more the produc-
tion, generation and transmission side of the grid, end consumers would also
benefit by receiving good quality electricity. However, the main reason that may
drive consumers to participate in DSM programs is the opportunity of achiev-
ing significant reductions in the energy consumption cost. There are several
categories of DSM programs. Some appeal to the rational behavior of energy con-
sumers and try to educate energy consumers into reducing and modifying their
energy consumption. However, the majority of DSM programs give financial
incentives to energy consumers to change their energy consumption patterns.
Hence, in this way the customers may get significant cost reductions for their
energy consumption.

DSM methods include energy efficiency, peak load management methods
and DR methods. These methods are closely related and dependent on each
other. Hence, a clear distinction between them does not exist. Energy efficiency
methods refer to any method for controlling, planning and scheduling of energy
use that improves the efficiency of energy utilization by matching electricity
supply with demand while maintaining a high quality of service. The most
common methods for optimizing the energy use are the peak load management
methods [37]. The main goal of load management techniques is reducing the
peak loads on the power grid. This is mostly done by shifting part of the loads
that are creating the peaks to periods of time with lower demand while trying
also to avoid causing discomfort to the consumers. Load management methods
can be broadly classified into two categories: direct load control and indirect load
control methods [38]. Both types of load control techniques may use financial
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incentives to motivate customer participation.

Direct load control methods include techniques in which electricity con-
sumers agree that, against a certain discount in their electricity bills, the utility
companies, or grid operators may have direct control over the smart appliances
located in their homes. The control is done through remote controllers installed
on these devices within their HAN [39]. The utility companies may then inter-
rupt the electricity supply to these appliances during peak demand periods. If
adopted by many electricity consumers, these methods may reduce the periods of
high demand and the need for investing on extra electricity production capacity
to satisfy the high demand during the peak periods. This would save money for
both utility companies and customers.

Indirect load control methods refer mostly to DR programs. DR programs
give to the end customers, such as industrial, commercial and residential energy
users, but also load aggregators, the possibility of actively participating in the
operation of the smart power grid. DR provides techniques through which
electricity consumers control their energy usage in response to dynamic pricing
or other forms of financial incentives offered by the utility company [40]. These
are called price-based DR methods. The benefits of the electricity consumers for
using such programs are reflected in reductions in the electricity consumption
cost, while the utility companies may have better control over the load dispatch
and again avoid investing in extra electricity capacity. Some electricity pricing
methods used for price-based DR methods are discussed next.

2.3.1 Electricity pricing methods

So far, electricity utility companies have had a monopoly status in providing
energy in many regions. The mass-market end customers were charged with
bulk costs for their electricity usage. Conventional electricity meters installed
at residential or small business locations would register and accumulate the
electricity usage over a certain period of time, for example during one month.
These end customers are then charged with a constant price for each unit of
consumed electricity. The most common electricity pricing methods used by
utility companies in the traditional power grid are the following two:

Flat rates: All electricity consumed within a period of time, usually one
month, is charged using same price per unit of energy.

Tiered rates: Tiered rating refers to users being charged with different prices
per unit of consumed electricity, for example, depending on the season. The
electricity consumed during winter would have a different price than that con-
sumed in summer. Another way of applying tiered rating is based on different
thresholds of consumption. The amount of electricity consumed up to one thresh-
old would generally be charged at small rates, while the amount of consumed
electricity exceeding the threshold would be charged at a high rate.
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The smart power grid enables time-varying pricing [41]. Through an AMI and
smart meters installed at residential locations, the utility companies are able to
record the electricity usage of end users for short periods of time, for example on
hourly basis, but sometimes even shorter time-steps. Then, a pricing method
that reflects the real-time demand and market situation could be adopted. A few
common types of time-varying pricing mechanisms are listed below.

Time of use pricing (ToUP): Different prices are applied during different
periods of a day. The day is divided in several periods according to the demand
of electricity in the system. As an example, electricity prices in a day may be
divided according to a three-period time program: off-peak hours, when the
demand is low, mid-peak hours, when the demand is moderate, and peak hours,
when the demand is the highest within a day. This pricing mechanism can also
be applied through simple day and night periods.

Real-time pricing (RTP): Is a pricing method in which the rates are applied
on very short time intervals, for example, on hourly basis. In this case the prices
vary the most within one day and reflect the real-time demand of electricity in
the power system.

Critical peak pricing: High electricity prices may be applied by utility
companies during some periods, for example over few hours, when a critical
event may occur in the power system, or when very high wholesale market prices
are expected. Such peak pricing periods may be caused by extreme weather
conditions requiring lot of heating or air conditioning, or during a holiday such
as Christmas, for example. In some cases the event may be anticipated and the
time and duration of the price increase may be known in advance.

Variable peak pricing: Is a hybrid pricing scheme between time of use and
real-time pricing. On-peak and off-peak periods may be established. The on-peak
rates may follow, for example, the real-time pricing scheme in which the prices
depend on the real-time market and grid conditions. The off-peak periods may
have flat rates.

The time-varying pricing mechanisms described above may be classified as
dynamic pricing methods. These techniques may be exploited by utility compa-
nies to give incentives for adoption of DR programs by mass energy consumers.
However, in many cases ToUP is also considered in DR programs.

2.3.2 DR programs

As already mentioned earlier in this chapter, DR programs can be used by electric
grid operators as a tool for balancing supply and demand. These programs
enable efficient usage of the available electricity capacity and make the grid
operation more sustainable and reliable. Important changes in the operation of
the power network will occur together with the deployment of DR programs. One
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remarkable change is that energy consumers will have an active participation in
the activity of the electric grid. However, this would not take place in a random
manner, but controlled by the grid operators. In price-based DR programs,
the utility companies can apply time-varying electricity prices which will be
announced in advance to the consumers. Hence, the energy consumers will be
given the possibility to modify their typical energy consumption patterns in
response to time-varying prices [42]. Other types of financial incentives can
also be offered by the utility companies and grid operators in order to persuade
energy consumers to adopt DR programs. Such new pricing mechanisms aim at
lowering electricity usage at time of high demand or when the reliability of the
power system is jeopardized. As a consequence, the adoption of DR programs
may have various beneficial outcomes for the end customers, utility companies
and grid operators. The benefits for the consumers stand in lower energy
prices and improved reliability of energy supply. The utility companies and grid
operators could benefit, for example, by achievement of a flat demand profile. DR
programs can provide a more efficient use of the energy generation capacity of
power plants. DR programs can also partly facilitate the integration of renewable
energy generation. At the transmission side, these programs may reduce the
need for heavy investments in the transmission infrastructure. By expanding
their services through innovative programs, the utility companies may increase
customer satisfaction which may help in maintaining customers’ loyalty. DR
programs can be adopted and implemented by different energy consuming, or
energy management entities in the power system including aggregators, retailers
and end consumers. When participating in DR programs, end customers can
change their electricity usage patterns using different approaches. Few examples
are given below.

Load curtailment: Residential end customers may reduce their electricity
usage by reducing the run time of some appliances such air conditioners and
electric heaters, or by lowering the lighting levels at their homes [43]. This may,
however, cause some discomfort for the customers.

Electricity consumption shifting: The electricity usage can be optimized
and shifted from periods of high demand, and hence, high electricity prices to
periods of low demand and electricity prices [44]. For example, the run time
of smart appliances with interruptible and delayable loads may be delayed to
periods of low electricity price rates.

Installation of ESSs: In order to avoid the discomfort of changing their
regular consumption patterns or modifying the time of use of certain appliances,
the energy consumers may also install ESSs [45]. Electricity may be drawn from
the power grid at times when price is low, stored and then used at later times,
without worrying about changing the actual consumption patterns.

Installation of DES: In order to reduce their dependence on electricity pro-
vided by the power grid, energy consumers may install own RESs [46], or
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dispatchable energy sources.

Energy sharing, exchange and trading: Installation of RESs and ESSs
give the end consumers the benefit of being both energy producers and con-
sumers, i.e. prosumers. Enabling energy exchange among prosumers opens
the possibility for new appealing demand response solutions through energy
interactions. Energy consumers and prosumers may interact by exchanging and
sharing, in an optimized manner, the renewable energy production or storage
spaces in order to obtain an improved utilization of electrical energy. Another
form of interaction could be enabled through energy trading. Prosumers may
form local markets in which they trade their renewable energy production or
even their storage space with other prosumers, or with simple energy consumers
against a price, with the aim of obtaining financial benefits. Energy sharing or
trading may take place in a competitive manner, or in a collaborative manner.
Energy interaction may reduce and balance the demand on the grid, bring higher
electricity cost reductions for individuals or groups and improve the renewable
energy integration as compared to DR programs individually applied by single
prosumers. DR programs enabling energy sharing, exchange and trading may
be applied at a microgrid level, over multiple microgrids, or over communities of
households.

Successful deployment of DSM and DR programs relies on the development
of robust and secure transmission, distribution and communications infras-
tructures that support smooth and reliable two-way power flow and two-way
information flow within the power network. It also relies on the development of
advanced control and market models for optimized operation of the power grid.
Such highly efficient and reliable models could be developed if accurate knowl-
edge of daily, hourly, or even minute wise consumption of electricity, electricity
prices, weather information, renewable electricity production, etc., would be
available in advance. In Chapters 3 and 4 of this thesis various DSM methods
are proposed. In particular, the problem of smart charging of EVs with the goal
of minimizing the charging cost for the owner is addressed in Chapter 3. Fur-
thermore, methods for improving efficiency of energy consumption, minimizing
costs and balancing the demand within smart grid communities of households
through collaborative interactions are provided in Chapter 4.
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3. Optimization of electric vehicle
charging using DSM

Transportation sector is a major contributor to the increased amount of green
house gas emissions in the atmosphere. A large proportion of the energy used
in the transportation sector is produced using fossil fuel. In the fight against
pollution, considerable efforts are put into the development of EVs and plug-in
hybrid electric vehicles (PHEV). The EV industry has experienced significant
progresses in recent years. Innovative research and development technologies
have allowed not only for larger and larger battery pack sizes, which implicitly
allow for longer driving ranges, but also for rapid cost declines. In some countries,
also regulations on fossil fuel economy and other local measures such as limiting
access of conventional vehicles to certain urban regions are stimulating the
adoption of EVs. EVs and PHEVs provide and environmentally friendly and
cost effective alternative to the conventional vehicles with internal combustion
engines powered by fossil fuel. The EVs are powered entirely by electrical energy
and incorporate rechargeable batteries. In the case of PHEVSs, the driving power
is split between an internal combustion engine and an electric engine. The EVs’
and PHEVS’ batteries can be charged externally with energy from the power grid,
or even with green energy generated by RESs. The amount of carbon emissions
produced by the EVs is marginal in comparison to conventional vehicles.

A massive adoption of EVs may bring a variety of benefits and new business
opportunities in the power sector. However, integrating these vehicles into the
power grid may also be challenging. Uncontrolled EV charging can significantly
increase the load on the power system. This may further lead to faulty system
operation and may jeopardize the reliability of the power grid [30]. Uncontrolled
charging can also significantly increase the electricity cost for the EVs’ owners.
Controlled charging instead, could represent a tool for performing DSM and yield
benefits to system operators and for the EVs’ owners as well. EVs can be used
as flexible loads for balancing the load on the grid. Some EVs may also support
V2G technology, i.e. they may allow bidirectional charging and discharging of
their batteries. In this case, the EVs could be used as mobile storage systems to
store energy and also to provide ancillary services to the power grid. Through
controlled charging enabled by DSM programs the electricity cost may also be
significantly reduced for the owners.
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Main objectives Focus Beneficiaries
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Figure 3.1. A broad classification of DSM techniques for optimizing EVs’ charging.

In order to mitigate the negative effects of EVs’ integration, a multitude of
DSM methods, algorithms and techniques have been developed in recent years.
The methods may have different objectives such as:

* Reducing the electricity consumption costs and other costs related to EVs’
charging;

¢ Ensuring reliability of the power system: providing ancillary services and
power regulation services;

¢ Balancing the load on the power grid;

* Improving integration of renewable energy;

¢ Optimizing charging at parking lots and charging stations: minimizing the
charging time, maximizing the number of charged EVs, etc.;

* Satisfying the charging needs of the EV owners.

In this chapter, a short overview on state-of-the-art DSM methods that employ
minimizing the cost of EVs’ charging is provided. The methods optimize the EVs’
charging, but also the discharging, when V2G technology is used. Some policies
focus only on minimizing the charging costs. However, besides cost reduction,
many of the proposed methods aim at satisfying different constraints or achieve
some other goals, too.

A broad classification of the methods existing in the literature for optimizing
EVs’ charging is shown in Figure 3.1. As already mentioned, one criterion for
classification is the objective of the methods. The classification also divides the
approaches into:

e DSM methods focused on optimizing the aggregate battery charging of a large
number of vehicles;

* DSM methods dedicated for optimizing the charging of a single EV.
The methods may be designed to bring benefits for different entities such as:

* EVs’ owners;

* Grid operators and utility companies;
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* System aggregators;

* Parking lot or charging stations owners.

Besides the criteria for classification shown in Figure 3.1, there are other
criteria and aspects which may influence the outcome of the proposed methods.
These are:

* The electricity pricing scheme applied in the proposed methods;

* Electricity prices, demands, renewable energy production: known (determinis-
tic), or known with uncertainty (stochastic);

* The period of operation: real-time, or finite time horizon ahead, such as
day-ahead,;

¢ Implementation mode: centralized, or distributed.

In the smart grid, the EVs’ owners may reduce their cost or receive financial
incentives by adopting price-based DR methods. Hence, the pricing mechanism
employed in the proposed methods is very relevant. Price-based DR methods may
employ different electricity pricing mechanisms: conventional dynamic pricing
schemes such as RTP and ToUP, or pricing schemes individually customized
by utility companies which depend, for example, on some events occurring in
the power system. The EV charging may take place in real-time, or it can
be scheduled in advance over a finite time period ahead. The optimization
techniques may assume that the electricity prices and charging demands are
fully known, or known with some uncertainty for the considered optimization
time frame. If the knowledge of data such as electricity prices, or EVs’ charging
load is random then the data is considered stochastic.

An overview on relevant DSM methods employed for optimization of EVs’
charging is presented further in this chapter. The methods are classified ac-
cording to criteria given in Figure 3.1. However, the focus is on methods that
employ cost reduction, or maximizing financial benefits. The overview is not
complete and only the newest and most relevant problems and techniques have
been considered. A survey on older methods and approaches for optimization of
EVs’ charging may be found in [47].

3.1 DSM methods for optimizing aggregate charging of EVs

A significant body of literature that addresses the problem of EV charging is
focused on methods for controlling charging of large numbers of vehicles. The
charging may occur at charging stations and parking lots, or at EV owners’ home
sites. These methods have the goal of maximizing financial benefits, or reducing
the costs for the system operators, EV aggregators, charging stations or parking
lot owners, but also for the EVs’ owners. Many of the methods may also employ
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the EVs for providing ancillary services to the power grid and hence contribute
to improving the reliability of the system, or use EVs in conjunction with RESs
for improving integration of renewable energy into the power system. Since
renewable energy is a free source of energy, charging the EVs’ batteries with
renewable energy can also reduce the cost of charging. Large penetration of EVs
into the power system can also open various business opportunities such as the
appearance of charging stations and parking lots that provide charging facilities.
Moreover, the EVs could also be active components of energy markets. A survey
on methods for aggregate EV charging is provided next.

3.1.1 Methods for ensuring power system reliability

A large penetration of EVs is expected to significantly increase the load on the
grid, while random charging could also endanger the reliability of the power
system through inducing frequency fluctuations, power network bus congestions,
or voltage drops. By regulating their charging, EVs can however contribute
to mitigating these power grid faults and actually help the power system to
maintain its stability. Control centers could monitor the status of the power grid
and send control signals towards the distribution level where the charging of
EVs would be scheduled according to the received information [48]. EV service
providers may make decisions upon pricing and electricity procurement in
order to achieve multiple objectives such as securing their own profit, maximize
satisfaction of customers and minimize the negative impact of EVs’ penetration
in the power system [49].

A method for optimizing the charging of EVs at residential locations is pro-
posed in [50]. The goal is to shape the load on the grid to avoid distribution
system overloading and to reduce the EVs owners’ charging cost. The method
simultaneously performs valley filling and minimization of the the charging
cost. A constrained, double objective, quadratic optimization (QO) problem is
formulated for coordinating the charging of the EVs. The first term of the objec-
tive function defines a valley filling problem that minimizes the gap between
instantaneous system load and the average load of the households in the sys-
tem. The second term minimizes the cost of electricity consumption over a fixed
charging period. Two methods for solving the formulated problem are proposed.
One method employs a static day-ahead scheduling of the charging. The second
method employs a dynamic sliding window optimization. Standard LP and QO
methods are employed to find the solutions to the proposed methods.

The ancillary services provided by the EVs can have even greater impact in
maintaining the reliability of the grid when the vehicles are equipped with V2G
technology. In order to avoid grid frequency fluctuations, EV aggregators could
coordinate the charging and discharging of these vehicles directly at customer’s
residences or at charging stations [51]. When the EVs themselves are equipped
with sensors that monitor the frequency status of the grid, frequency control
schemes may be employed to control the individual charging of each EV, in a
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distributed fashion [52].

3.1.2 Methods for improving renewable energy integration

The problem of integrating renewable energy into the power grid is also a highly
challenging problem. The benefits of green energy are indisputable, however,
just as in the case of EVs, the penetration of renewable resources into the power
system may jeopardize the stability of the grid. A large imbalance between
generation and demand, frequency fluctuations, and other system faults may
be induced. In this situation the EVs may again play an important role. The
intermittent aspect of the RESs’ output may be balanced by coordinating and
synchronizing the charging of EVs with the renewable energy production [53, 54].
V2G technology may be used to provide ancillary services in a system with high
penetration of renewable energy and overcome frequency fluctuations caused by
intermittent feeding of renewable energy into the grid. For example, the electric
grid frequency deviation may be used as a dynamic control signal for dictating
the charging and discharging of EVs equipped with V2G technology [55]. EVs
may be charged with renewable energy in order to reduce emissions of carbon
into the atmosphere. Associating EVs with RESs may result also in electricity
charging cost reduction as compared to fully charging the EVs with electricity
from the main power grid. In [56], the problem of installing RESs and ESSs at
parking lots offering EV charging services is studied. The goal of the problem is
to optimize the charging of the EVs using the produced renewable energy such
that the profits of the parking lots owners are maximized.

Optimization of EVs’ charging may aim at maximizing the profit of buildings
owning RESs. In [57], buildings own RESs and offer charging services for EVs.
The EVs’ owners receive financial incentives for buying green electricity from
these buildings and not from the utility company. The renewable energy gener-
ation is considered to be free of cost, while the electricity purchased from the
power grid is charged at ToUP tariffs. The EV charging problem is modeled as a
stochastic finite-stage Markov decision process (MDP) with unknown transition
probabilities. At each hourly time-step within a day, the system state of the MDP
problem is described by the wind power generation amount of the building, the
required charging load of the EVs, the remaining parking time or trip duration
of the EVs and the EVs’ location. The state variables are defined individually for
each EV and building. The proposed method derives a charging policy according
to a binary variable that indicates at every time-step if an EV will be selected
for charge or not. The objective function of the optimization problem is modeled
such that the expected profit of each building is maximized. The method also
takes into account the random wind generation and the daily random travelling
requirements of the EVs’ owners. A method called distributed simulation-based
policy improvement method is proposed to solve the stochastic MDP problem in
a decentralized fashion.

Other methods that tackle the problem of using renewable energy for charging
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EVs are proposed also in [568] and [59]. In [58], the employed model assumes a
certain variance in the renewable energy generation and in the EVs’ charging
loads. A stochastic EV charging problem is formulated using a queuing model
with the goal to efficiently integrate the renewable energy and reduce the cost
of charging the EVs. A Lyapunov optimization-based method is used to solve
for the optimal charging schedule. A method for integration of residential
EVs in a power system with intermittent renewable energy is proposed in [59].
The EVs may act as storage systems and sell back electricity to the power
grid. An optimization problem for minimizing the total cost of the customers is
proposed and the solution is obtained through a distributed algorithm using the
alternating direction method of multipliers (ADMM).

3.1.3 Methods for optimizing charging at stations and parking lots

Optimizing and scheduling the charging of PHEVs and EVs at charging stations
equipped with RESs and ESSs is investigated in [60, 61]. A scheduling policy
for charging PHEVS’ batteries is modeled as a MDP in [60]. The goal is to
minimize the charging cost under RTP, but also to allow the charging stations
to serve as many vehicles as possible. Here, a battery replacement strategy is
assumed, i.e. the PHEVs are equipped with standardized batteries which can
be replaced at the charging station in order to reduce the waiting time of the
customers. The MDP charging model for a single charging station is described
using the following state variables: price level, number of batteries waiting for
charging and number of active chargers. A charging policy must be found for a
finite discretized period ahead. Two actions may be performed for each battery,
namely charge the battery, or defer the charging. The state transitions at each
time-step are dictated by a pre-defined transition probability matrix. A schedule
for charging the batteries is found through a value iteration algorithm, such
that the cost of charging and the number of batteries deferred from charging
is minimized. Moreover, in [60] it is also considered that the public utility
purchases power in a day-ahead market. Based on the MDP charging model for
a single charging station, an algorithm is proposed to determine the distribution
of power for multiple charging stations. The method takes into account the
uncertainty of power demand and RESs generation. A multi-stage stochastic
programming (SP) method is employed to solve the power supply problem and
minimize the cost of the public utility.

In [61], a problem based on an infinite horizon MDP with unknown transition
probabilities is formulated to determine the number of EVs to be served per-time-
slot at a charging station equipped with RESs and an ESS. The main objective
is to minimize the average waiting time of the EVs. However, reducing the long
term cost of charging is also considered in the problem. The method assumes
random renewable energy generation, random charging demands, time-varying
electricity prices for electricity acquired from the power grid and uncertain
arrival times of the EVs at the charging station. At any time-step, the MDP

22



Optimization of electric vehicle charging using DSM

state of the system is described by the following variables: the length of the
queue formed by the EVs’ charging demands, the number of new charging
demands, the renewable energy level in the storage, the electricity price. The
optimal charging policy determines the number of charging demands to be
served and the amount of renewable energy allocated from storage such that
the length of the EVs’ charging queue is minimized. A stochastic optimization
problem is formulated to find the optimal charging policy. The problem is first
written as a constrained MDP problem. Then, the problem is converted into an
unconstrained MDP problem and solved by applying Lagrangian relaxation.

A real-time method for coordinating the EV charging at a parking station is
proposed also in [62]. The arrival time of the EVs is again not known in advance.
Differently from the method in [61], the goal here is to maximize the number
of EVs being charged simultaneously while minimizing the cost of charging
under dynamic pricing. An LP-based binary optimization method is proposed
for solving the formulated problem. Other cost optimal methods for charging
EVs at charging stations and parking lots assume stochastic arrival and also
departure times of the EVs in [63], or assume random charging prices in [64].

In [65], a global optimization problem is proposed for scheduling the charging
of a large number of EVs at distributed charging points. Uncertain arrival time
of the EVs is again assumed. Some EVs in the system have V2G technology and
may sell back stored energy to the grid. Electricity prices are modeled as a linear
function of the system load. The objective function is formulated to minimize
the total charging and discharging cost of the EVs in the system. A method
for charging small groups of EVs in a distributed fashion is also proposed. The
proposed optimization problems are convex and can solved through standard
convex programming (CVXP) methods [66, 67].

Smart charging strategies can take advantage of RTP schemes in order to
maximize the welfare of the whole system, electricity suppliers on one side and
energy consumers on the other side [68]. However, in a system with multiple
electricity suppliers, mechanisms for price regulation [68] may represent a key
factor for maintaining a balance between supply and demand and maximizing
the overall welfare of the system. Price regulation strategies may also be applied
to control the V2G discharging activities [69]. The financial incentives offered
for the V2G discharging services are controlled such that these services do not
become an unfair competition for energy retailers.

3.1.4 Methods that model energy market strategies

DSM encourages the development of different strategies for energy markets. A
market framework for direct load control is formulated in [70]. A pricing scheme
is proposed to give incentives to the EV owners to allow the grid operator to
control and postpone the charging of their EVs beyond their required charging
deadline. Aggregators may also apply indirect load control [71]. For this, they
need to take optimal decisions in determining the retail prices. The EVs owners
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react to the offered electricity prices and charge their vehicles in such a way that
their cost savings are maximized.

A system aggregator buys electricity at RTP rates and sells it to EVs’ owners
by adding a markup price in [72]. A method that maximizes the revenues of
the system aggregator is formulated. The method also considers satisfying
customers’ demands and lowering their costs. The revenue of the aggregator
is defined by the difference between the retail price and the market wholesale
price. In order to balance the load of the charged vehicles, the aggregators may
adjust the charging amounts of the EVs or may temporarily adjust the charging
prices. Two charging schemes are proposed. The first scheme is a static LP-based
scheme that assumes that the EV charging task is known before the EVs are
connected to the grid. The second is a dynamic, heuristic scheme in which the
the charging task is assumed to be unknown beforehand. The charging tasks
are individually planned for each EV when connected to the grid.

In the attempt to maximize their profits and minimize EVs’ charging costs, the
EV aggregators also have the possibility of participating in day-ahead electricity
markets. In these markets, the aggregators are bidding for buying the amounts
of energy to be consumed at each time-step of next day. Their goal is to buy
energy at lowest possible price. The challenge for the aggregator is then to
match the amounts of procured energy with the actual energy dispatch during
the following day. An optimized distributed coordination scheme is proposed in
[73] for an EV aggregator which participates in the day-ahead market. The goal
of the aggregator is to coordinate the charging and discharging of a fleet of EVs
which also offers V2G regulation services to the power grid.

An EV aggregator participates in a day-ahead market also in [74]. Based
on forecasted day-ahead electricity prices and statistics regarding the driving
activities of the EVs’ owners, the aggregator decides the amount of energy to
be purchased in each time-slot of the following day. A risk-aware day-ahead
optimization method for charging of EVs in a residential area is proposed. The
method schedules the EV charging to minimize the charging cost as well as
the risk of load mismatch between the scheduled load and the actual driving
activities. To model the random driving of the EVs, the charging loads are
assumed to be discrete random variables. The day-ahead EV charging problem
is formulated as a two-stage stochastic linear program (SLP) and it is solved by
applying the L-shaped method [75] and importance sampling. Furthermore, a
distributed real-time algorithm is proposed with the same goal of minimizing
the charging cost and load mismatch. In the distributed method, each EV may
optimize its own charging strategy using shadow prices computed and received
from the aggregator.

A problem for coordinating the charging of a fleet of EVs by an aggregator
participating in a day-ahead market is again formulated in [76]. A finite-time
MDP is used to model the charging dynamics of each EV during a day. The day
is discretized in time-slots. The arrival time of the EVs at the charging unit
is not known in advance. Each EV stays connected to the charger for a period
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of time known only at arrival. The MDP states are defined by the amounts of
energy already stored in each individual EV battery. The MDP actions choose
the amounts of energy to be charged in each EV in each time-step. A batch
RL approach is proposed to learn the daily collective charging behavior of the
fleet of EVs. Based on this, a fitted Q-iteration algorithm is used to select
discrete energy amounts be purchased in the day-ahead market. The goal is to
minimize the expected cost of the purchase. The purchase is done according to
the day-ahead prices which are assumed to be known. A heuristic online control
algorithm is proposed to control the energy dispatch such that the amount of
energy purchased by the aggregator in the day-ahead market is met in every
time-step. This heuristic algorithm calculates the charging priority and the
charging power of each EV.

Competitive market frameworks may be modeled for consumers who compete
for allocation of cheap energy to charge their EVs [77]. Market strategies may
also be developed for energy retailers and EV owners using hierarchical game
theoretic frameworks [78]. In such frameworks, the retailers set the electricity
prices with the goal of maximizing their profits. Then, the home consumers
adjust their EVs charging schedule in response to the price announced by the
retailers. Such approach is proposed in [79] to control the charging of a large
number of EVs at a charging station. The EVs are considered flexible loads. The
charging demands of the EVs are assumed known. A first proposed strategy
employs a local controller to schedule the charging of EVs on behalf of their
owners. A quadratic cost function is employed to define the aggregate cost of
charging. Hence, the problem is modeled as a mixed integer quadratic program-
ming (MIQP) that minimizes the total cost of charging during the scheduling
horizon. Furthermore, a second control strategy is proposed for decentralized
charging, such that each EV owner controls the charging individually. The de-
centralized problem is modeled as a leader-follower non-cooperative Stackelberg
game in which the system controller decides the electricity prices and the total
amount of energy capacity provided to the EVs. The EVs’ owners choose their
charging strategy in response to these values.

The charging strategies discussed so far include day-ahead, or real-time charg-
ing strategies. Typically these strategies have hourly or 15 minutes decision
making time-steps. However, in a real-time communications environment this
long time-slots may not be discretized densely enough to cope with the real-time
market operations. More realistic operation schemes must be constructed for
coordinating EV charging in real-time [80]. For an efficient integration of the
EVs into to the power network the EV charging strategies must also be scalable
to large number of vehicles. A scalable and computationally efficient EV charg-
ing protocol is proposed in [81]. The protocol coordinates the EV charging in a
distributed fashion in order to obtain electricity cost reductions and ensure the
reliability of the power network trough applying operational constrains on the
distribution power network.

Table 3.1 presents a comparison of the features involved in the reviewed DSM
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Table 3.1. A comparison regarding various features involved in DSM methods for optimizing
aggregate charging of multiple EVs. The following notations are used: no.- number,
dyn.- dynamic, optimiz.- optimization, time-var.- time-varying, DSBPI- distributed
simulation-based policy improvement method, QuM- queuing model, SKB- Stackelberg,
C- centralized, D- distributed. The column Data refers to knowledge of electricity
prices, EV loads and driving patterns.

. L Time Pricing . |Implemen-
Method| Beneficiary | Objective . Data Solution ] va2G
horizon | method tation
system load day-ahead,
. . fixed, Qo,
[50] operator, balancing, rolling known C X
ToUP LP
EV owners min cost  horizon
building . stochastic MDP,
[57] min cost  day-ahead ToUP D X
aggregators EVloads DSBPI
min cost, uM,
stochastic
[58] aggregator renewable real-time RTP Lyapunov C X
. . EV loads o
integration optimiz.
base+
[59] EVowners mincost day-ahead known ADMM D v’
time-var.
min cost,
parking fixed stochastic ~ MDP,
[60] maxno. day-ahead C N
operator levels demand SP
EVs
parking min stochastic ~ MDP,
[61] operator, waittime, real-time time-var. EV loads, Lagrange C X
EV owners min cost arrival  relaxation
parking min cost, LP,
[62] operator, max no. real-time RTP known convex C X
EV owners EVs relaxation
[65] EVowners mincost day-ahead fixed known CVXP C v’
stochastic
aggregator, RTP+
[72] min cost  day-ahead . EVloads, CVXP C X
EV owners retail .
arrival
min cost, SLP,
aggregator, day-ahead, stochastic C,
[74] min load . RTP L-shaped X
EV owners real-time EV loads D
mismatch method
min cost, Heuristic
. day-ahead, .
[76] aggregator min load RTP known algorithm, C X
real-time
mismatch Fitted Q
station
. day-ahead, quadratic MIQP, C,
[79] operator, min cost nown X
real-time function SKB D
EV owners

methods for optimizing the aggregate charging of EVs. These methods may have
different complex objectives. All methods however, have as one objective the
reduction of the EVs’ charging costs. The methods have individual features,
specific to the approached problem. For example, some methods imply real-time
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operation. Other methods imply day-ahead scheduling. Some methods assume
known electricity prices, EV charging loads and driving patterns, while some
other methods assume stochastic EV charging loads and driving patterns. Ex-
cept for [59] that optimizes the EVs’ charging from the EV owners’ perspective
only, the remaining methods involve also the perspective of the system operator
or aggregator when optimizing the charging. It can be observed that besides
minimization of cost, other objectives are also included in the problem formula-
tion such as: reducing the waiting time for charging, maximizing the number
of vehicles charged simultaneously, minimizing the mismatch between the load
scheduled in a day ahead market and actual load dispatch. Due to the lack
of standardization, a clear and fair comparison of the performances of these
methods is difficult to be made.

3.2 DSM methods for optimizing the charging of an individual EV

Coordinated charging over large numbe of EVs distributed across the power
network could be quite a challenging task. DSM methods for optimizing the
charging of individual EVs may have similar beneficial effects over the power
network.

A dynamic programming (DP) technique is proposed in [82] to determine a
day-ahead charging policy for minimizing the charging cost of a PHEV which
provides regulatory services to the grid. The policy determines the amount of
energy to be purchased from the power grid and charged into the PHEV’s battery
while taking into account the power regulation requirements. The proposed
method needs to ensure full charge of the battery before the next day’s trip.
Day-ahead spot market pricing and the power required for a driving cycle are
considered to be known in advance. The proposed method is modeled as a
dynamic program and is solved using standard DP techniques. The method
provides a daily cost reduction from 0.43$ to 0.2$, i.e. a 46% reduction over a
charging strategy in which the electricity is charged at flat price.

Similarly to the method above, a grid-to-vehicle method for optimizing home
charging of an EV is proposed in [83]. The EV provides ancillary services to
the power grid. An hourly-based decision making policy is derived with the
goal of minimizing the expected cost over the charging horizon. Fulfilling a
regulation service commitment to the power grid is also required. The decision
making policy is derived by modeling the charging problem as an MDP over a
fixed horizon determined by the EV’s pug-in duration. At the beginning of each
hour, the electricity price, the regulation service price and the regulation signal
provided by the system operator are assumed to be not known. The charging
controller needs to choose the charging rate and the capacity for regulation before
fully knowing these values. The hourly MDP state vector is composed by the
following variables: the control signal for regulation, the price of the regulation
capacity and the electricity price. The optimal charging policy minimizes the
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expected charging cost and charges the EV’s battery as much as possible before
the disconnection from the charger, while also satisfying the regulation service
commitment. To cope with the uncertainty of the electricity prices and regulation
signal, a backwards recursion-based stochastic dynamic programming (SDP)
is proposed to solve the charging problem over a discrete set of possible states.
Multiple charging trials are simulated. The reported results show that the
proposed SDP method reduces the mean charging cost by 22% in comparison to
a model predictive control (MPC) policy.

Another decision making algorithm for optimizing the home charging of an
EV is proposed in [84]. The proposed algorithm chooses the amount of energy
to be charged in the EV’s battery with the purpose of minimizing the charging
cost and satisfying the driving needs of the owner. The problem assumes that
the daily driving patterns of the EV’s owner are stochastic. An inhomogeneous
Markov model is employed to characterize the stochastic driving habits of the
owner within a day. The time horizon is discretized in time-steps of one minute.
The state of the MDP model describes the use of the vehicle in every time-step
as driving or not driving. The transition probabilities of the MDP model are
determined by fitting data resulted from previous driving experiences to the
model. An optimal EV charging problem is then formulated as an SDP problem
in which minute wise charging decisions are taken over a 48-hours time horizon.
The electricity prices over 48 hours are assumed known. The formulated problem
maximizes the revenue at the end of the optimization horizon. This revenue
is defined by the negative cost of charging the vehicle. A penalty is incurred
when the driving needs of the owner are not respected. The optimal charging
solution is obtained using a backward induction-based SDP method. Simulations
are performed using true pricing data for 65 days. Depending on the incurred
penalty for not respecting the charging needs, the proposed method reduces the
average daily cost by 12-24% in comparison to a heuristic method called low
price charging method. In the low price charging method the EV is charged
either when the price is in the lowest 20%-quantile of the price distribution
within 24-hours, or when the state-of-charge of the battery goes below 50%.

Smart home EV charging for households owning photovoltaic renewable gen-
eration systems is investigated in [85]. A two stage algorithm for scheduling
the EV charging is proposed. A time series model first predicts the generation
output of the photovoltaic system and the EV’s electricity consumption based
on historical data. Using the predicted data and known electricity prices an
optimization problem is proposed to schedule the EV charging. The schedule
implies choosing the optimal energy amount per-time-slot to be consumed under
ToUP such that the cost of charging is minimized over a fixed period ahead. The
optimization problem is casted as a mixed integer linear program (MILP). The
proposed method achieves cost savings of 6% in comparison to the case when
the EV is charged immediately after being parked. Cost savings of 15.2% are
achieved in comparison to the case when the EV is charged immediately after
lunchtime.
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Controlled charging of EVs found at different locations within the distribution
level of the grid can be considered for balancing the load on the grid too [86].
Different perspectives on PHEV charging are considered in [87] and [88]. In [87],
an online energy management framework has been developed for controlling
the power of a PHEV with the purpose of minimizing the total fuel consumption.
A method based on an evolutionary algorithm is proposed to predict the power
demand of the vehicle at each time-step. The method optimizes the control of
the power split between the internal combustion engine and the electric engine.
A Q-learning-based RL method is employed in [88] to find an optimal energy
control scheme for a hybrid electric tracked vehicle (HETV) while driving. The
control problem proposed here chooses the split of power between the battery
pack and the engine generator set which represent the power sources of a HETV.
The objective is to minimize the real-time fuel consumption under different
driving patterns.

3.2.1 Optimizing the home charging of an EV using forecasted
electricity prices

The contribution of this thesis on smart charging methods for scheduling the
charging of an EV have the goal of reducing the long term cost of charging an EV
at home and are presented in Publications I, IT and III. The proposed methods
fall in the category of price-based DR methods. The formulated problems are
modeled as an infinite horizon MDP with unknown transition probabilities. Plug-
in and plug-out times of the EV as well as the day-ahead prices of electricity are
assumed to be known. These electricity prices follow a RTP scheme. An estimate
of the daily consumption of the vehicle is also considered known. However,
in a real scenario the driver will not travel a fixed distance on daily basis.
Therefore, in order to make the charging more robust to fluctuations in true
consumption, an additional uniform random variation between 0 and + 20 %
of the estimated consumption is added to this consumption value. The daily
consumption, including this additional random component, is denoted by ¢4.
The related state-of-the-art methods for optimizing EV charging optimize the
EV charging either by scheduling the charging based on hourly time-steps,
or the scheduling time-step is discretized even further. The MDP models in
Publications I, IT and III are defined differently, based on discrete daily time-
steps: d =1.... The proposed methods explore the day-to-day fluctuations of
electricity prices and make daily charging decisions to reduce the long term cost
of charging for the EV owner. One day is discretized in time slots ¢ =1,...,T.
The methods assume known day-ahead electricity prices, §; =[{g(¢),t=1,...,T],
while electricity prices for the second day ahead, &;,1 = [£4+1(8),t =1,...,T],
are predicted using a BNN-based method. The proposed methods make use of
historical electricity prices and explore possible past charging experiences in
order to learn an optimized charging policy that reduces the long term cost of
charging for the EV owner. The best charging policy is obtained by optimizing
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for the infinite-horizon expected discounted reward:

J(xq) = E{Zyd‘1r<xd,ed>|m}, 3.1

d=1
where v is the discount factor, 0 <y <1, and (x4, e4) is the immediate reward
for taking action e; when the system is in state x4. x; is the initial state of the
system when the optimization begins.

It is difficult to analytically determine the optimal charging policy since elec-
tricity prices are not know for long term period in advance. In order to determine
an optimized charging policy, the state-action-value function, @(x4,e4), or Q-
function, is found by learning state-action pairs that maximize the expected
reward, or minimize and expected penalty. These are learned by iteratively
updating the Q-function through exploring possible charging situations using
available historical data and employing a RL technique. The best action for each
new, unseen state, Xpew, is the one that minimizes, or maximizes the Q-function
value for that particular state:

enew = Min/max @ Xpew,eq), (3.2)
eqd eq

In Publication I, the battery capacity is discretized into equally sized levels.
The states of the MDP problem are composed of three discrete variables: x; =
[wg, bg‘it, Agl, where wg is the index corresponding to the day of the week and
bgﬁt is a discrete variable associated with a battery level showing the state-of-
charge of the EV battery at the beginning of the day. A, is a variable indicating
the difference between the minimum hourly costs of charging during day d
and d + 1, respectively, while the EV is parked at home. This value is also
discretized into several levels of costs. The action ey is defined by an operation
that chooses the number of battery levels to be charged within day d. Hence,
the action space is discrete, too. In Publication I a penalty term r(xg4,eq) is
defined instead of a reward. Hence, in this problem, the optimal charging policy
is the one that minimizes the expected penalty value in the state-action-value
function, Q(x4,e4). Fixed penalty values r(x4,e,) are heuristically defined for
each possible action given the value of the discrete variable A; and the value of
the consumption ¢4. These values penalize charging high amounts of energy in
day d if the price of electricity during the current day d is higher than the price
in the following day d + 1. The proposed method makes sure that the driving
constraints of the EV owner are satisfied. In each state, an action is chosen
using an e-greedy method. Then, the state-action-value function is found using
the offline SARSA RL algorithm with eligibility traces. The employed algorithm
is described in detail in Publication I. The optimum charging action for new
states is the one that minimizes state-action-value function (3.2). The chosen
amount of energy is optimally charged at minimum price during the hours when
the EV is parked at home. The proposed charging method reduces the cost of
charging by 7% in comparison to a smart strategy that optimally charges daily at
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minimum price. It also reduces costs by 40% in comparison to the conventional,
non-optimized charging strategy.

In Publications II and III, the MDP actions still represent discrete values
indicating the amount of energy to be charged in the battery, however, the state
space of the MDP includes continuous variables. A fitted Q-iteration batch RL
algorithm is employed to solve the EV charging problem.

In Publication II, the states of the MDP are composed of same three variables
as in Publication I, x4 =[wg, bg‘it,Ad]. The difference is that the variable show-
ing the initial state-of-charge of the EV battery, bg‘it, and the variable showing
the difference between the minimum hourly charging costs in two consecutive
days, defined as:

Ag =minéy(¢)crate — min &g q(Hcrate, 3.3
tehg tehgi1

are continuous variables. In (3.3), cyate represents the hourly charging rate,
h; and hy, 1 are sets showing the hours of days d and d + 1 when the vehicle
is connected to the charger at home, while ¢ is the hourly time index. In this
problem, the reward values, r(x4,e4), are heuristically designed based on the
value of variables Az and bg‘it and the value of the daily charging demand €4
defined by the driving needs of the EV owner. These values are designed such
that they reward the actions of charging high amounts of energy when the prices
are low and also ensure that the battery is sufficiently charged such that the
driving consumption needs are satisfied.

The state space of the MDP problem in Publication III includes a fourth

continuous variable: {g_ . =minsp, {;(¢), which represents the minimum hourly

min

price of electricity during the interval of hours when the EV is parked at home.
Also, Ay is defined as:

Ag =03 eq) - OF S (ea), (3.4)

where O(Ci"St(ed) denotes the optimal cost for charging the amount of energy
€4 during day d and Ofi"fg(ed) is the optimal cost for charging the amount of
energy €4 during day d + 1. The state space of the MDP problem is: x; =
[wg, bg‘it, Ag,¢q,;,]- The action space is discretized in levels of 1kWh. Again, the
action ey chooses a number of battery levels indicating the amount of energy to
be charged.

In Publication III, the reward values r(x4,e4) are found using a rolling horizon
LP-based optimization method. The proposed LP optimization method deter-
mines the optimal charging amount in possible charging situations simulated
using a known set of historical data. This historical data contains the electricity
prices over the past 182 days and the estimated charging loads €4 of the EV for
every day of the week. The LP optimization is applied over a time frame of 14
consecutive days, but only the optimal charging value for the first day, e/ t s
recorded. Hence, the update of the rolling horizon optimization occurs in time

steps of one day. The reward corresponding to the optimal action ey = e(:ip " is set
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to be equal to the value of the optimal cost for charging the amount of energy
defined by e?ipt within day d, Og"“(e?ipt). The reward for the remaining possible
actions is a penalized cost value:

OCOSt(eOPt), ife; = eopt’
r(xgeq)=q ¢ "4 : . ©9
O%5'(eF") + Penalty, otherwise.

A method for predicting the electricity prices &4, for the second day ahead
employing a Bayesian neural network (BNN) [89] is proposed and presented in
Publication III. The input vector fed to the BNN consists of 9 relevant features
used for the predictive Bayesian inference. These features are:

e A value {1, ...,7} indicating the index of the day of the week for which the
electricity price is being predicted;

¢ A flag {0,1} indicating whether the day of the week is a working day or
weekend;

* A value {1, ...,24} showing the corresponding hour of the day;
® The hourly local marginal electricity prices from one day before;

® The hourly local marginal electricity prices from the same day of the week
before;

* The hourly system load from one day before;
® The hourly system load from the same day of the week before;
* The average hourly local marginal electricity price from the day before;

* The average hourly system load from the day before.

Price forecasting is a highly explored research topic. Important scientific
progresses are made and advanced methods for accurate prediction of electricity
prices are proposed [90, 91, 92]. For a detailed description of the proposed meth-
ods for price prediction and definition of reward values, please check Publications
I, IT and III.

In Publications II and III, for learning the Q-function, a batch of transition
samples are collected by simulating possible charging scenarios and the available
set of historical data. This batch of transition samples is of form:

F={aW,e? x| rxa,e))l =1,...,|F1}, (3.6)

where | F| is the cardinality of the set F and [ is used to denote the index of
a sample. Each sample is composed by a four touple: the state xg), an action
e(é) taken in that state, the next state xgl 1 in which the system reaches after
taking the action and the corresponding reward r(xg4,e4)". In order to learn the
state-action-value function Q(x4,eq) the set of transition samples F is divided
into equally sized subsets of samples according the day of the week wy and

action q: Sy e, = {(xg),eg),r(xd,ed)(l),xfilll)ll = 1,...,m|}. Hence, each subset
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Swy,eq TEPresents a collection of m state transition samples in which action eg
was taken.

The state-action-value function is found using the fitted Q-iteration batch
RL algorithm presented in Algorithm 1. In order to run the fitted-Q iteration
algorithm for the cost of charging to be minimized, the reward values are all
inversed as follows: r(xg,eq) = —7(Xq,e4) + MaXy(x, ¢ ) F +Milyx, o) F, i.€. the
new reward value is the negative value of the initial reward to which the
minimum and maximum reward values from the set 7 was added.

Algorithm 1 Fitted Q-iteration algorithm with kernel approximation of the
state-action-value

Input: Subsets of samples S, ¢, discount factor y
Initialize Q function: Qz}g(xgll,ed) =0;l=1,....m
repeat at every iteration7=1,2,...
for every action ey do
for [=1,...,mdo
Qg;l)(xglped) = > K(ijl’),xfil)ﬂ)[r(xd,ed)(l’) +y123xQ33(x(dl)+1,ed)]

@
X €Suyeq

end for
end for
until |37, 3770 @0,V 1, ea) ~ Q) (xg) 1, ea)) =0

Output: de(xgll,ed)

In the proposed batch fitted-Q iteration algorithm, the Q-function update
employs a kernel averaging regression operator to fit the Q state-action-value
function to the data:

b (uxd—gduu)

lxg—%qs1ll )’
ZxdESwdyed(I)( B - >

where ¢ represents the kernel function, § is a bandwidth parameter that controls

K(Xg,Xg+1) = 3.7

the smoothness of the kernel function and || - || can be any suitable distance norm.
In Publication III, the chosen distance norm is the L1 norm, |- |;, while the
kernel function is the Gaussian kernel:

Ixg —Xg1ll 1 Hw+g+1ﬂ%
= o 3.8
o) = e .9

When the learning stage is terminated, the state-action values Qw . (Xnew,ed)
for every possible action ez in new, unseen charging states x; = Xpew can be
obtained using the following formulation:
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QuyXnewsed) = ¥ kXD Xnew)r(xg,eq)? +ymaxQDxD el (3.9)
d eq 7 rd+1

o
X, €Suy.eq

The optimum charging action is the one that maximizes Qw (Xnew,eq). In Algo-
rithm 1, the notation ! is used to refer to indexes of state components Xy in a
data subset S, ¢,. Also Qo . (xgll,ed) denotes the Q-function computed using
the proposed method. The daily charging is scheduled using a LP method to
occur during the hours with minimum price while the EV is parked at home.

In Publication III, the construction of the sample set F used in simulation
for training the proposed fitted Q-iteration algorithm had a duration of 1 h
8 minutes and 43 seconds. The simulation was performed in Matlab [93] on
a conventional desktop computer. The construction process of the sample set
can be performed offline using the historical set of data samples. The fitted
Q-iteration algorithm was trained separately for each week day. The overall
training time of the algorithm was 22 minutes and 30 seconds.
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Figure 3.2. An example of charging pattern obtained by the proposed method over 11 consecutive
days showing: the hourly price of electricity (a), the amount of energy chosen to be
charged during each hour of these days (b) and the charge level of the battery (c).
The highlighted regions in each sub-figure indicate the hours of the day when the
car is not at home. The method chooses to charge a high amount of energy during
the days when the price is low and not to charge at all when the prices are high.
Copyright 2017 IEEE.

Figure 3.2 shows an example of a charging pattern obtained by using the
proposed method over 11 consecutive days. It can be observed that the charging
occurs during those days and hours when the prices are lowest. A comparison
between the cumulative charging costs over 110 consecutive days of the proposed
charging strategy and other three charging strategies is shown in Figure 3.3.
The conventional method simulates the traditional charging behavior in which
drivers charge the EV’s battery when it is almost empty without considering
the cost. Also the charged amount is a random value between the amount of
energy needed for the next trip and full capacity of the battery. The daily optimal
charging method is a smart deterministic charging method in which the exact
daily consumption is considered to be known at the beginning of the day and
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Figure 3.3. Comparison between cumulative charging costs of the proposed fitted-Q iteration-
based charging strategy and other three charging strategies. The average cost
values and the variance bounds on randomized consumption are presented. The
proposed method reduces the costs of charging by roughly 50% when compared to
the conventional charging method and by roughly 10% when compared to a daily
optimal charging strategy. To reach the global optimal solution the cost should be
further reduced by 8%. Copyright 2017 IEEE.

the battery is charged with that amount of energy such that the electricity cost
is minimized. Finally, the optimal charging method is a fully deterministic
method in which the price of electricity and the exact daily consumption of the
EV are known in advance for the whole time frame of 110 days. Figure 3.3 shows
the average cost values and the variance intervals for 50 different car usage
realizations. This variance is caused by the random component added to the EV
consumption €4, as explained in the beginning of this section. In Publication
I11, in the considered scenarios, the fitted-Q RL-based method proposed for EV
charging reduces the cost of charging by 10% in comparison to daily optimal
charging and by 50% in comparison to the conventional charging strategy.

A comparison regarding various features involved in DSM methods for opti-
mizing single EV charging is presented in Table 3.2. Some of the features are
specific to a single method. Hence, a clear one to one comparison among these
methods cannot be made. These methods optimize the EV charging for the bene-
fit of the EV owners only. The optimization method proposed in [87] optimizes
the battery charging of a hybrid vehicle with the purpose or reducing the fuel
consumption. A quantitative comparison on the performance of the reviewed
DSM methods is presented in Table 3.3. Again, it is difficult to compare these
methods due to the lack of standardization and different benchmarks used in
each method. The time period over which the results are computed is important
for the reported results, too. In [83] for example, simulations are performed over
a time span of 12 hours and the reported results show a 22% improvement in
terms of charging costs in comparison to a MPC approach. In [82, 85] results
are reported for simulations performed over 24 hours. These results may be,
however, specific to the particular set of prices and the charging load for the
considered day and do not guarantee that the value of the cost reduction will
stay the same if the methods are applied for longer time periods. In [84], costs
are calculated over 65 days and the daily average cost reduction is of 12-24%
in comparison to a heuristic low price charging scheme which is not an optimal
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Table 3.2. A comparison regarding various features involved in DSM methods for optimizing
the charging of an EV. The following notation is used: time-var.- time-varying, P-
Publication. The column Data refers to knowledge of electricity prices, EV loads and
driving patterns.

. o Time Pricing .
Method | Beneficiary | Objective . Data Solution V2G
horizon method
day-ahead,
[82] PHEV owner min cost rolling RTP known DP X
horizon
min cost, RTP stochastic MDP,
[83] EVowner . real-time ] X
regulation based price SDP
stochastic
MDP,
[84] EV owner min cost real-time  time-var. EV arrival, SDP v’
departure
predicted
[85] EV owner min cost day-ahead ToUP MILP X
EV loads
min fuel rolling Evolutionary
[871 EV owner known X
use horizon algorithm
known+
MDP,
PI EV owner min cost day-ahead RTP predicted X
. SARSA
price
known+
PII, MDP,
EV owner min cost day-ahead RTP predicted X
PIII . Fitted-Q
price

Table 3.3. A comparison regarding performance of DSM methods for optimized charging of an
EV. The following notations are used: LPC-low price charging method, P-Publication.

Method [82] [83] [84] [85] PI PII PIII
12-24%
Cost . 6%, 7%, 8%, 10%,
. 46% 22% daily
reduction 15.2% 40% 40% 50%
average
. charge after . .
. flat price K daily daily daily
Comparison . parking, . . |
charging MPC LPC optimal, optimal, optimal,
benchmark charge after . . .
method conventional conventional conventional
lunch
Measurement 12 65 224 224 110
. 1 day 1 day
period hours days days days days

charging method. An observation that must be made is that in the reviewed
articles the word stochastic is used in different ways. In some cases, the word
stochastic is used for totally random processes, for example, the EV’s charging
load is considered a random variable. In some other cases instead, the term
stochastic is used to refer to a deterministic value to which a random component
is added. This is also the case of the methods proposed in Publications I, II
and III, where the EV’s daily consumption is considered known and a random
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component is added to this value. However, in Table 3.2 the proposed methods
were not classified as stochastic.

In Publications I, IT and III the results are reported for very long time spans,
224 days in Publications I and IT and 110 days in Publication III. The comparison
benchmarks are the daily optimal and conventional charging methods. The
methods proposed in this thesis for optimizing the EV charging reduce the long
term cost of charging. The results in Publications I, II and III show that the
proposed DSM methods reduce the cost of charging at the end of the 224-days
and 110-days periods. The cost is reduced by 7-10% in comparison to the daily
optimal charging method and by 40-50% in comparison to the conventional,
non-optimized method for charging the battery.

3.3 Discussion

A massive penetration of EVs into the transportation systems and consequently
into the power network could cause a multitude of negative effects on the electric
grid which must not be neglected. It is obvious that the penetration of EVs
into the power system must be accompanied by methods for optimizing their
charging. These methods help in maintaining control over the load levels on
the grid, and hence improve the reliability of the power system and reduce
unnecessary investments in energy production. The EVs’ charging can be
controlled in various of ways. DSM methods combine the efforts of power system
operators with the active participation of EV owners for jointly reducing and
optimizing the electricity consumption and cost for charging these vehicles.
Among the existing DSM methods, the price-based DR methods are the most
appealing to the consumers. Cost reduction drives consumers to participate
in energy efficiency programs. In these methods, the utility companies design
the electricity tariffs with the goal of balancing the demand and matching the
demand with the supply. These tariffs are typically defined using time-varying
dynamic pricing schemes with the intention to influence the energy consumption
patterns of the consumers.

In this chapter, DR methods for EV charging optimization were reviewed and
discussed. In the first part of this chapter, an overview on methods involving
coordinated charging of large numbers of EVs is presented. The negative effects
of the EVs’ incursion into the power system could be avoided by simultaneously
optimizing and coordinating the charging of large numbers of EVs. Moreover,
the benefits of using the EVs’ batteries as flexible loads or as dynamic energy
storage systems, enabled through V2G technology, could be maximized through
DR methods. State-of-the-art methods on aggregate EVs’ charging propose
programs that bring benefits for parking lot and charging station owners, system
operators, EV aggregators and EVs’ owners as well.

In the second part of this chapter a review on state-of-the-art methods designed
for single EV charging is presented. In this case, the EV owners are the price
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takers and the proposed methods are focused mostly on minimizing the their
charging cost only. The reviewed methods consider different strategies and
assumptions in the proposed charging scenarios. Hence, a fair one to one
comparison on the performances of these methods may not be feasible. The state-
of-the-art methods for single EV charging optimize and schedule the charging
based on hourly or even minute wise control actions. In Publications I, IT and III,
however, decisions made on daily basis are combined with hourly scheduling of
an EV’s charging in order to reduce the long term cost of charging for the owner.
The EV’s daily plug-in and plug-out times to the charger are assumed known
in the proposed methods. The daily EV consumption values are also assumed
known, but a random component that accounts for eventual fluctuations in
consumption is included. Modeling the daily charging patterns and consumption
of EVs is a different research topic that is already tackled in literature [94]. The
contributions of this thesis on optimizing the EV charging focuses on choosing
the amount of energy to be charged daily, based on the variations in electricity
prices between consecutive days, and optimally schedules the charging within
a day. Taking in consideration the variability of electricity prices over periods
longer than 24 hours may result in significant cost reductions as demonstrated
in Publications I, IT and III. The proposed methods do not only consider the hour
to hour fluctuations of electricity prices, but also the day to day fluctuations of
electricity prices. In [84], the charging is scheduled at one minute time-steps
considering perfect knowledge of electricity prices over 48-hours. The methods
proposed in Publications I, IT and III consider known day-ahead electricity prices
and predicted electricity prices for the second day-ahead. The hour to hour, day to
day, or season to season fluctuations of electricity prices are strongly dependent
on the fluctuations of the demand of electricity on the power grid. This demand
is further influenced by diverse external factors such as season, temperature
and weather, day of the week, holiday periods etc. Some of these external factors
and past electricity pricing data are taken in consideration in Publication III
and a BNN-based method is proposed for price prediction. The method is used
to predict prices for the second day ahead. Depending on the variations between
known day-ahead electricity prices and predicted priced for the following day
ahead, the proposed EV charging methods choose the amount of energy to be
charged within a day. The methods may choose to charge the EV’s battery, if in
the present day the price of electricity is lower than the price in the following
day. Otherwise, if the state-of-charge of the battery is sufficient and the driving
needs do not require immediate charging, the methods may choose not to charge
energy into the battery in the present day and wait until the following day to
take another decision. Once a charging decision is taken, the charging takes
place during the hours with minimum price when the EV is connected to the
smart charger. The RL-based decision making methods take optimized decisions
on the daily EV charging amounts, the methods employing discrete actions.
However, in order to take optimal decisions, a method employing continuous
action values would be needed. This may be studied in future work. By using
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the proposed EV charging methods the cost of charging may be reduced by
10% in comparison to the optimal daily charging strategy and by 50% over the
conventional method, in the considered scenarios.

The methods developed in this thesis assume day-ahead knowledge of driving
patterns for scheduling the EV’s energy consumption and also an accurate
estimation of the EV’s consumption. Predicting with high accuracy an EV’s daily
driving patters and consumption remains a challenging task and can represent a
another challenging topic for future work. Another fact that must be considered
when using price based DR methods, like the ones proposed in this thesis, is that
when used by a large number of EV users, combined shifting of electricity usage
may result in formation of other peaks and fluctuations in electricity demand.
Consequently, methods for preventing such effects and intelligently coordinating
the home charging of very large numbers of EVs are further needed.
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4. Energy cost and portfolio
optimization in smart grid

Since the birth of commercial electricity, fossil fuel has been used as power re-
source to supply our electricity demand. Continuous exploitation and utilization
of fossil fuel is not only leading towards an early shortage of this resource, but
it is also partly causing one of the biggest world crisis, that of pollution and
global warming. In the attempt to make our electricity system more sustainable,
alternative energy sources together with efficient methods for utilization of this
energy are being explored. Among the alternative energy sources, the RESs
seem to be the most prevalent, particularly due to their significantly reduced
carbon emissions in comparison to conventional energy sources. In order to
ensure a reliable and greener energy supply, the new, modernized power grid
has to have the ability of combining conventional methods for power generation
together with alternative methods such those based on renewable power genera-
tion. Together with the widespread adoption of the RESs, the modernized power
grid will also be forced to adopt innovative technologies and programs like those
for DSM to enable optimal utilization of these renewable resources.

Small scale installation of RESs encourages also the appearance of a new type
of end customer, namely the prosumer. In the traditional power grid, the role
of the end customer is that of price taker, with no involvement in the energy
sector. The flow of power is occurring only one way, from generation towards
load. However, in the modernized power grid, the prosumer will be a new
type of end consumer, one that not only consumes energy, but one that also
owns RESs and/or ESSs and is able to feed power back into the power network.
End energy consumers may choose to install RESs due to various reasons: to
protect the environment and reduce pollution, make their homes go off-grid
and hence secure themselves from eventual power cuts or from unpredicted
increases in prices on behalf of the utility company. The perpetual reduction
in the cost of electricity is an important reason for installation of RESs, too.
Renewable energy is a free source of energy, but installation of RESs comes
with a significant capital cost. There is also a cost associated with maintaining
them. However, these investment costs are expected to be paid back in time.
There are numerous benefits resulting from installation of renewable sources,
but their intermittent nature and dependence on weather patterns can make a
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complete reliance on the renewable resources a difficult task. Energy consumers
may still need to rely on energy delivered by the power grid in times when their
renewable energy production is insufficient to fulfill their energy demands. Not
only deficit of renewable energy production can be a problem, but also, in times
of abundant production, the energy surplus may be wasted. Installation of ESSs
may accommodate the surplus of renewable energy production such that it may
be used later, during times of deficit. The ESSs may be also used to perform DR
and hence enable ESSs owners to participate in DSM programs.

Local energy generation and ownership of ESSs opens opportunities for new
energy strategies and markets. Active interactions among energy entities at
the distribution level of the power grid are steered by the desire of achieving
minimal costs and having a sustainable local energy supply. Such entities may
be consumers, prosumers, microgrids, independent RESs, or ESSs, etc. In the
context of the smart power grid, interactions among energy entities may refer to
a variety of actions, such as exchange, share and trade of energy, information and
of other resources. For example, in order to make their renewable energy supply
more reliable and minimize their operational costs, entities at the distribution
level of the grid may decide to share or trade their resources by creating local
energy markets. Bidirectional power flow and information flow establish the
basis for interactions in the energy sector. What is yet not clear, is how these
interactions should be operated. Proper frameworks should be designed to define
infrastructure requirements, operational rules and pricing schemes related to
energy interactions. Interactions at distribution level should also be included in
DSM programs to ensure optimal energy consumption and smart allocation of
resources and costs.

A brief overview of state-of-the-art DSM methods and frameworks that enable
interactions among distribution system entities is given in this chapter. There
are several criteria according to which these interactions can be classified. One
of these criteria is the objective of the methods. According to their objective, the
methods may be broadly classified in:

® Methods driven by cost reduction or monetary revenue maximization;
* Methods for load balancing;
* Methods that ensure the sustainability of the electricity supply;

® Methods that minimize the discomfort of energy users, etc.

Reduction in consumption cost can be achieved through price based DR pro-
grams. These programs are mainly adopted by end consumers. Utility companies
and load aggregators however, may as well aim at increasing their financial
profits, but also at balancing the load on the grid. Some of the methods proposed
in the literature focus on achieving only one of these objectives. However, other
methods may have mixed objective. Another criterion for classification is the
manner through which these interactions occur. Hence, state-of-the-art methods
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may be classified in:

* Competitive methods for energy trading and sharing;

* Collaborative methods for energy trading and sharing.

Objective Type of interaction
Ceri rEEEEm Competitive Collaborative
Load balancil
Ty [ Game Other Game Other
l Theory | |Framework||| Theory [ |Framework|
Other

Figure 4.1. Criteria for classifying DSM methods employing interactions at distribution level of
the smart power grid.

Besides the above mentioned criteria for classification, there are other criteria
and aspects that must be taken into consideration:

* The pricing scheme applied in the proposed methods;

* Electricity prices, demands, renewable energy production: known (determinis-
tic), or known with uncertainty (stochastic);

¢ The period of operation: real-time, or finite time horizon ahead, such as
day-ahead,;

¢ Implementation mode: centralized, or distributed.

A survey on DSM methods employed for enabling interactions among smart
grid entities at the distribution level of the smart power grid is provided in this
chapter. The survey is not complete and only the newest and most relevant prob-
lems and techniques have been considered. The survey is structured according
to the objectives driving the interactions and the type of interaction employed
by the method, as shown in Figure 4.1. Competitive and collaborative types
of interactions may be further divided according to the mathematical model
of the interactive process. Thus, the methods may be classified as model free
methods, following an own set of rules for modeling the interactions, and game
theory-based methods. The system setup, the employed strategies and other
factors influencing the interactions are discussed. Note that this survey is not
complete, but focuses on the most relevant methods complying to the criteria of
classification given in Figure 4.1. The other criteria for classification mentioned
above shall also be considered. The pricing scheme applied in the proposed
methods is very relevant. The methods may adopt a pricing method derived
from, or identical to that applied by the utility company in the region. Internal
pricing methods for the local energy trade can also be used. The electricity
prices are in many cases assumed to be given in advance for the operational
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time frame. In a similar way, the electricity load may be assumed to be known in
advance for the considered time frame of operation. The proposed methods may
be working in real-time, or they may schedule the control operations in advance
over a finite time period. Also the proposed methods may be implemented in a
centralized fashion, i.e. controlled by an operator or system controller, or in a
distributed fashion. Most of the reviewed state-of-the-art methods imply finan-
cially driven interactions. The main focus in these methods is achieving cost
savings in consuming, storing, trading energy and also in exchanging informa-
tion. The interacting entities can be competitors or collaborators. Consequently,
the employed methods may be further divided into competitive or collaborative
methods for achieving financial revenues.

4.1 Competitive methods for energy cost minimization

Interactions among power grid entities become competitive when each partici-
pant in such competition desires to buy energy at lowest price possible, or sell
energy at high price. Both cases lead to gaining financial revenues. In order to
obtain these gains, a participant continuously tries to improve his strategy over
the ones of his competitors. Hence, the approach is selfish since the participants
are focused on maximizing their personal financial gains. Energy retailers and
sellers are competing not only against each other, but also with the energy
consumers buying energy from them. Many of the state-of-art-methods modeling
competitive situations among players in the energy sector are non-cooperative
game-theoretical methods [95, 96, 97].

Non-cooperative game theory [98] models competitive structures that focus on
individual players, their strategies and how these strategies may influence their
revenues or payoffs. These strategic non-cooperative games aim at maximizing
the utilities of each participant given the actions of all the other participants
in the game. To learn more about non-cooperative game theoretic methods in
smart grids we refer the reader to the survey in [99].

In the traditional energy industry, competition occurs among the big market
players such as energy producers, transmission system operators, distribution
system operators and utility companies. In smart grid, however, competition may
occur also among smaller players such as end consumers, prosumers, microgrids,
etc. Interactions and energy trading among energy users at distribution level are
studied in [100]. The energy users are divided in two categories: passive energy
consumers and active energy users. The passive energy users only consume
energy and do not have the means to actively participate in DSM. The active
energy users on the other hand, own dispatchable energy sources and/or ESSs.
Hence, they are able to participate in DSM programs. A DSM method employing
a non-cooperative game model among the active energy users is proposed with
the goal of minimizing costs within the system. The costs to be minimized
include: the cost of energy purchased from the main power grid and the energy
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production cost. The central operator coordinating the day-ahead optimization
process aims at minimizing the cumulative costs of all energy users, both active
and traditional users. Under this objective, the active users are competing among
themselves to minimize their individual costs by finding optimal dispathcable
energy generation and storage scheduling strategies. A proximal decomposition
algorithm (PDA) is proposed to solve the non-cooperative game in a distributed
manner such that the game reaches Nash equilibrium [100].

Distributed storage units may compete against each other for selling stored
energy to other energy consumers in the power system. In [101], such interac-
tions and trading decisions among storage units are studied. These interactions
among the storage units, representing the sellers, and consumers, representing
the buyers, are modeled by means of a non-cooperative game. In this game,
the storage units strategically decide the amounts of energy to sell in order to
maximize their financial benefits. A bidding occurs between buyers and sellers.
Based on the bidded amounts of energy, a double auction mechanism is employed
to determine the actual buyers and sellers that will participate in the trading
process. The trading price and amounts of energy to be traded between sellers
and buyers are also decided. An algorithm based on the double auction market
mechanism is proposed to solve the non-cooperative game [101]. It is shown that
the proposed non-cooperative game always reaches Nash equilibrium.

Allocation of renewable energy may also be a reason for competition. Residen-
tial households are competing against each other for allocation of renewable
energy and to reduce their costs in [102]. The households belong to a microgrid
which owns RESs. The microgrid serves the residential energy consumers who
own smart home appliances and EVs. A real-time renewable electricity allo-
cation framework is modeled using a non-cooperative game model among the
households. The home consumers determine strategies to optimally schedule
their smart home appliances. These strategies also include the charging and
discharging of their EVs which are used as electricity storage systems. The
stored energy can be also sold back to the microgrid. The proposed game is
controlled by the microgrid and allows consumers to compete and minimize their
costs under the constraint that the overall social welfare of the microgrid is
maximized. The renewable electricity allocation game is played over discrete
time-steps and a distributed real-time allocation method is proposed for solving
it. The game converges to Nash equilibrium.

In other scenarios, households own RESs but do not have sufficient energy
storage space to store the surplus of energy. Such problem is considered in
[103] where a competitive model for energy trading and DR in a neighbourhood
of households is proposed. The participating households own RESs but not
storage systems. Instead, they may exchange energy with a community storage
controlled by an operator. At each time-step, both the energy users and the
storage system exchange energy with the main power grid too. In order to
increase its own financial profit, the storage operator purchases energy from
the main power grid and sells it later, at a different price, to those households
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with shortage of renewable energy or back to the power grid. The residential
energy users also aim at reducing their costs, so they also trade energy either
with the community storage or with the main power grid. A competitive model is
framed as a Stackelberg game between the community storage operator and the
energy consumers in the neighbourhood. The storage operator is the leader of
the game while the households are the followers. In the first stage of the game,
the storage operator optimizes the energy portfolio within the neighbourhood.
The optimal aggregate energy amount to be traded in each time-step among the
storage and residential energy users is found. In the second stage, the energy
users compete for the allocation of the energy scheduled by the storage. A two
step iterative algorithm is proposed to solve the Stackelberg game such that
the solution reaches Stackelberg equilibrium. By participating in the proposed
Stackelberg game, the energy users obtain an average cost reduction of 29.4%
in comparison with trading energy with the main power grid only [103]. In a
similar framework, microgrids participate in a competitive market controlled
by a distributor that collects the surplus of energy from different providers and
allocates the energy to consumers in [104].

When participating in a competitive market, the subjectivity of the market
players has an important role. Their feeling and fears about taking the right
decision might considerably change the outcome of the competition. The subjec-
tivity of microgrids when taking decisions related to energy trading is analyzed
through prospect theory in [105]. The energy exchange among microgrids is
formulated as a prospect theory-based non-cooperative static game. The micro-
grids trade energy among themselves at a predefined local price with the scope
of maximizing their utilities. They can also trade energy with a power plant to
which they are connected via the main power grid. The utility of a microgrid
depends on the cost of traded energy and the amount of stored energy. In order
to encourage the energy exchange among the microgrids, the local selling price
is designed to be lower than the price of energy sold by the power plant. The
local buying price is higher than the price at which the power plant buys energy.
Nash equilibrium is derived for each pair of microgrids exchanging energy in
the proposed static game.

Similarly to [105], the subjectivity of participants in an energy market is
studied using prospect theory also in [106]. An electricity company trades
energy with energy prosumers by employing a single-leader multi-follower
Stackelberg game. The electricity company aims at maximizing its utility and
first announces the buying/selling price. Prosumers also want to maximize their
utilities. Hence, in response to the prices announced by the utility company, they
play a non-cooperative game through which each prosumer strategically decides
his bidding amount of electricity. The utility of the prosumers consists of the
financial profit of the trade plus a possible future financial benefit associated
with the unsold electricity. The utiltiy of the electricity company is represented
by the money earned through selling electricity. The future price of electricity
is considered not known so it is modeled as a random variable. The solution of
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the proposed game is obtained using a distributed learning algorithm. A similar
approach that involves a game among multiple leaders and multiple followers is
proposed also in [107].

Another type of market formulation is proposed in [108] where the energy is
traded between a group of customers and a group of microgrids. This is modeled
as a multi-leader multi-follower Stackelberg game. Differently from the methods
in [106] and [107], here the customers are the leaders of the game, while the
microgrids are the followers. At each time-step, each customer first chooses a
microgrid from which he intends to buy electricity and announces the amount of
electricity to be bought from that microgrid. In response to the total amount of
energy requested from each microgrid by the customers, the microgrids establish
Table 4.1. A comparison regarding various features involved in DSM methods for competitive in-

teractions at distribution level. The following notations are used: A-users - active users,
P-users - passive consumers, S-hous - smart households, uGs- microgrids, Pros- pro-
sumers, S-cons - smart consumers, ITER- iterative algorithm, NONC- non-cooperative,
SKB- Stackelberg, DAMA- double action market-based algorithm, DEMANDS- dis-
tributed energy management algorithm, DLA- distributed learning algorithm, DRTA-
distributed real time allocation method, NE- Nash equilibrium, PDA- proximal de-

composition algorithm C- centralized, D- distributed. The row Known data refers to
knowledge of electricity prices and demands.

Method [100] [101] [102] [103] [105] [106] [108]
A-users ESS P-comp S-cons
Entities ESSs  S-hous uGs
P-users S-cons Pros uGs
Local shared
dispatchable X RESs RESs RESs RESs
generation RESs
Grid buy+ buy+ buy+ buy+
buy X Y Y Y Y X
interaction sell sell sell sell
shared
ESSs v’ N EVs v’ N N
ESS
Load
X NG X X X X
shifting
Time day- single real- day- real- real- day-
horizon ahead time time ahead time time ahead
Known stochastic
v’ N v’ v’ v’ v’
data prices
fairness
Grid price  RTP X ToUP RTP X pricing X
method
Internal
) N N v’ N X v’
price
Prospect
Prospect
Game NONC NONC NONC SKB NONC SKB SKB
static
NE
Solution PDA DAMA DRTA ITER DLA DEMANDS
derivation
Perspective D C D C C D D
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the selling price. This is done according to a dynamic pricing model. The game
is played in iterative stages until it reaches equilibrium. In [108], both the
customers and the microgrids have the intention to maximize their individual
utilities. The utilities of the customers are represented by the fulfillment of
consuming the desired amount of energy while paying as little money as possible.
The utilities of the microgrids are defined by the amounts of money earned by
selling energy. A distributed energy management algorithm (DEMANDS) is
proposed to solve the proposed game.

Table 4.1 gives an overview on the characteristics and features employed in
the reviewed competitive DSM methods. It can be observed that the employed
methods possess many similarities. For example, besides the method in [101]
where a competitive method is proposed among independent storage units, all
other methods employ some form or local energy production and ESSs. Another
observation is that competitive methods for energy interactions are modeled
using either non-cooperative games, or using leader-follower Stackelberg games.
The methods have many differences and some features are specific to single
methods. Consequently, it is difficult to compare them. This can be observed also
in Table 4.2 where the performances of the methods are presented. In [105, 106]
the performance is discussed from prospect theoretic point of view with respect
to subjectivity of the players. Hence, these methods were not included in Table
4.2. The methods not only employ different features, but also their performances
are compared to different benchmarks. Hence, once again it can be stated that a
fair comparison cannot be made. However, it can be observed that all methods
report results for simulations performed over maximum 1 day period. These
results may be specific to that 24-hours set of prices and load profile considered
in that particular simulation. It is not certified that the reported cost reductions
will remain the same if the methods are applied for longer time periods.

Table 4.2. A comparison regarding performance of DSM methods for competitive interactions at
distribution level.

Method [100] [101] [102] [103] [108]
cost profit cost cost profit
Performance
reduction increase reduction reduction increase
14.6%
Value 20.7% 73-234.4% 29.4-81% 29.4%
average/uG
Comparison  no conventional unregulated grid optimal RTP
benchmark optimization solution scheduling  trade algorithm
Measurement
. 1 day 1 day 1 day 1 day 1 day
period
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4.2 Collaborative methods for cost minimization

The energy consumers and producers in a smart grid may collaborate instead of
competing. While competition means improving yourself in order to win over
others, collaboration implies joining forces with others for achieving a common
goal. In this case, the goal is that of minimizing costs, or achieving financial
revenues. In this section, the collaborative methods for cost minimization within
smart power grid are divided into two sub-categories: model free methods,
using own model for the collaboration, or methods employing cooperative game
theoretic models.

4.2.1 Model free methods for collaboration

Microgrids are local energy systems operating over limited geographical areas,
or sometimes over single buildings. These mini power systems comprise own
renewable power generation, storage and loads and aim at having sustainable,
cheap, secure and efficient energy delivery. The microgrids may be equipped
with different types of RESs and their operators may decide upon the capacity of
renewable energy equipment to be installed. Collaborative planning of renewable
energy equipment and generation in a system of interconnected microgrids is
proposed in [109]. The installation of the renewable energy equipment comes
against a cost. A collaborative problem formulation is proposed for minimization
of the microgrids’ aggregate cost consisting of the cost for renewable energy
installation and the system operation cost. The investment costs for the installed
renewable generation is shared among the microgrids using the Nash bargaining
solution (NBS) such that each microgrid obtains a cost reduction as compared to
an individual, non-cooperative optimization scheme.

Microgrids that serve multiple energy consumers cooperate by trading energy
to jointly minimize their energy consumption cost in [110]. The problem for-
mulation takes into account the discomfort of the energy consumers for using
their smart appliances at different times than the desired ones. The goal is to
schedule the elastic loads and storage and optimize the amounts of generated
renewable energy, energy consumed from or sold to the main power grid and
energy traded among the microgrids. The cost to be minimized consists of the
cost of energy exchanged with the main power grid, the cost of storage operation
and a cost associated with the users’ discomfort. The cost for the energy traded
among the microgrids is calculated using NBS. An algorithm based on ADMM
is designed to find the solution in a distributed fashion. The results show that
through the proposed method the microgids obtain an overall cost reduction of
13.2% in comparison to the non-cooperative optimization solution in which the
microgrids optimize their energy consumption individually.

The methods proposed in [109, 110] assume that the microgrids can adjust
their local renewable power generation, whereas many other DSM methods
assume that the renewable power generation is completely known or it presents
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a certain variability. In order to minimize the aggregate cost of consuming
electricity from the main power grid, two microgrids equipped with RESs and
ESSs cooperate by exchanging energy among themselves in [111]. A convex
optimization problem is derived considering that electricity prices, loads and
renewable energy production are known ahead for the optimization period. An
off-line Lagrange duality-based method is employed to solve this problem in a
distributed fashion. In addition, the same problem is proposed to be solved in
real-time by two online algorithms, assuming stochastic loads and stochastic
renewable energy production for the two microgrids.

An MPC-based method is proposed in [112] for energy management in urban
districts with multiple microgrids. A distributed three-step MPC method is
formulated. In the first step, the microgrids individually compute their optimal
energy plans. Based on these plans, a global optimization method that minimizes
even further the system cost is formulated in the second steps. Then in the
third step, an iterative power re-distribution optimization is formulated for
coordinating the microgrids according to the global solution. The method controls
the flexible loads, heating systems, local energy generation and the energy
exchange among the microgrids and with the main power grid in order to
minimize the cost. Constraints on the thermal comfort of the buildings are also
considered. Each optimization problem, at each of the three steps, is formulated
as a MILP. The proposed MPC-based problem is solved over a rolling time
horizon that considers at each new step updated forecasts of electricity prices,
weather and heating requirements. Depending on the number of microgrids
in the network, the performed experimental results show that the MPC-based
method may obtain overall cost reductions between 13.8% and 51% for the
network of microgrids. The comparison benchmark is the individual energy
management solution.

Cooperation for supporting sustainability of electricity supply is even more
essential when the participants are not connected to a permanent source of
electricity. In [113], cooperation among islanded microgrids is studied. The
micgrogrids are equipped with local energy generators and are not connected
to the main power network, hence they depend only on own energy sources. It
is assumed that the microgrids are not equipped with ESSs. The microgrids
decide to cooperate by trading energy among themselves in order to optimize
the utilization of their energy resources and reduce their costs. Each microgrid
has a cost associated with its own energy generation. The distribution network
operator applies a price per each unit of energy transferred among the microgrids,
price which is common for all microgrids. A method for calculating the optimal
amounts of energy to be transferred from one microgrid to another is proposed
such that the their energy production and transfer costs are minimized. A
two-step iterative algorithm based on the Lagrange dual decomposition method
is proposed for solving the optimization problem in a distributed manner.

Cooperation between one macrogrid and multiple microgrids is investigated
in [114]. The macrogrid is supported by conventional power sources, while the

50



Energy cost and portfolio optimization in smart grid

microgrids own DES and ESSs. The macrogrid and microgrids exchange energy
such that the macrogrid transfers energy to and from the microgrids, while the
microgrids may also transfer energy among themselves.

Similar DSM collaborative frameworks as those for employed for microgrids
may be applied also in case of collaborative DSM programs for residential house-
holds. Households may also be equipped with small scale RESs, ESSs and smart
control meters and can actually function as minigrids for optimizing their own
consumption individually. A dynamic model for determining internal trading
prices is proposed in [115] for peer-to-peer energy trading among neighbouring
prosumers. The prosumers can buy and sell electricity from and to their peers
and trade with the utility company. The purpose is to reduce their cost and their
inconvenience for shifting their loads. The energy traded with the utility com-
pany is charged at fixed rates. The approach proposed for determining internal
pricing takes into account the ratio between the amount of energy supplied by
the prosumers and their energy demand. It also takes into account the electricity
prices offered by the utility company. Based on this internal pricing mechanism,
a distributed iterative algorithm is proposed to minimize the electricity cost of
each prosumer. The cost consists of the electricity consumption cost and a cost
measuring the inconvenience of the prosumers for load shifting. The proposed
method optimizes the power consumption profile of each prosumer.

An energy management strategy using a shared ESS is proposed to control
the energy operations within a microgrid of households in [116]. The households
are individually equipped with RESs. Their energy consumption relies on their
own renewable energy production and on the main power grid with which the
microgrid interacts through buying and selling energy. The prices for purchasing
energy from the main power grid are higher than the prices for selling back
energy to the grid. The proposed energy management approach optimizes the
energy stored in the shared ESS and the energy purchased or sold to the main
power grid by the microgrid of households. The goal is to minimize the cost
of purchasing electricity, maximize the cost of selling electricity from and to
the main power grid and extend the lifetime of the ESS. An MPC algorithm is
employed to solve the proposed problem.

A framework for a coordinated energy control in a neighbourhood of house-
holds is proposed also in [117]. The households individually own RESs, ESSs
and EVs with V2G technology. The households can trade energy with the power
grid and also with the neighbouring houses. Within the neighbourhood, the cost
of buying electricity is assumed to be equal to the cost of selling electricity. An
optimization problem is formulated for minimizing the total energy procure-
ment cost of the households. The energy exchange among the households and
between the households and power grid is optimized. Moreover, the approach
optimizes the charging and discharging of the ESSs and of the EVs such that the
electricity demand of each household is satisfied. The method also ensures that
the neighbourhood transformer is equally used by all households. A two-step
coordination strategy is proposed for solving the cost minimization problem.
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A similar method for energy sharing among cooperative households in a com-
munity is proposed in [118]. The households are all equipped with RESs and
ESSs, but they can also draw energy from the main power grid if necessary. The
difference here is that randomized hourly statistics for the renewable energy
generation, energy demand and electricity prices are assumed. A stochastic
optimization problem is formulated for the households to share their surplus
of energy with the purpose of minimizing the overall cost of the community for
purchasing energy from the grid and for charging and discharging the ESSs.
An online algorithm based on Lyapunov optimization is proposed to solve the
cooperative energy sharing problem and minimize the time averaged cost. Again
a Nash bargaining theory-based method is applied to divide the revenues of the
cooperation among the residential households. The proposed method achieves a
12% reduction is cost in comparison to a non-cooperative benchmark solution.

A cooperative DSM method for minimizing the aggregate costs of all energy
users, active and passive ones is proposed [100]. The costs to be minimized
includes the cost for the energy procurement from the main power grid and
the distributed energy production cost. The cost is minimized by adjusting the
amount of dispatchable energy generation and by scheduling the storage in a
day-ahead optimization process. A distributed dynamic pricing algorithm is
employed to solve the cooperative problem in a distributed fashion.

4.2.2 Developed collaborative methods for optimizing energy
portfolio within a smart grid community

The contributions of this thesis on cooperative DSM methods for smart grids
are described in Publications IV, V and investigated in detail in Publication VI.
Collaborative DR methods for aggregate optimization of energy consumption
within a smart community of residential households are proposed with the goal
of minimizing electricity cost. In Publication V, the collaborative optimization
includes only households that own RESs and/or ESSs and share energy among
each other in order to minimize their cost of consuming energy from the power
grid. In Publications IV and VI, pure energy consuming households are also
included in the DSM model for energy consumption optimization. Moreover,
operational costs are also considered in the formulated problems. The set of
households in the community is denoted by A/. This set is divided in a subset of
households owning RESs and/or ESSs, M, and a subset of pure energy consum-
ing households, P, A" = M UP, that do not own such facilities. It is assumed that
the households in this smart community are equipped with smart energy man-
agement meters that can predict with accuracy their energy demand profiles,
u, =[u,(®),t=1,...,T],n € N, and their renewable energy production profiles,
W = [wn,(2),t=1,...,T], m € M, for a finite period ahead, 7. A collaborative
model through which these residential households reduce their costs is proposed.
The RESs and /or ESSs owning households also have the possibility to optimize
their costs individually using DR methods, by using their available storage

52



Energy cost and portfolio optimization in smart grid

spaces and renewable energy production. However, in these frameworks, the
RESs and/or ESSs owning households may minimize their costs even more by
sharing their renewable energy production and storage spaces. Moreover, they
may sell excess renewable energy and demand response services to pure energy
consumers at a price lower than that offered by the utility company. It is shown
in Publication VI that by including pure consumers in the collaborative frame-
work, the RESs and ESSs owners may further reduce their costs in comparison to
only exchanging energy and sharing storage space among themselves. The pure
consumers can also achieve cost reductions. In case of insufficient renewable
energy production within the smart grid community, the households may buy
energy from the utility company: b, = [b,(¢),£=1,...,T], n € N. The electricity
prices offered by the utility company: & =[£(¢),t =1,...,T], follow the day-ahead
hourly market pricing scheme. Let a,, = [a,(¢),t =1,...,T], n € A/ be the amounts
of energy exchanged by the households at each time-slot. This energy is shared
among the RESs and/or ESSs owning households free of charge. No internal
prices are considered for the energy exchanged among the RESs and/or ESSs
owners. Instead, internal pricing tariffs, denoted by A = [A(¢),¢=1,...,T1], are
assumed for the energy sold by these RESs and/or ESSs owners to the pure
consumers. These prices are lower than the hourly prices per unit of energy ap-
plied by the local utility company. Consequently, the pure consuming households
also reduce their costs by simply buying a part of the electricity needed to fulfill
their demand at a cheaper price than that offered by the utility company. The
collaborative method for energy optimization is modeled as a cost minimization
problem with the following objective:

M T
min Y 10) Y Ot wnO-unO-an®-rm®), 4.1)
by, Tm,Sm-An b _1m=-1 m=1i=1

where
M M M P
community _ grid storage operation purchase
i = E Cce +§ C, +§ Ccr —g cy 4.2)
m=1 m=1 m=1 p=1

is the aggregate cost of electricity consumption for the community consist-
ing of the following therms: C'fn“d = Zthlf(t)bm(t), V¥ m € M- cost of buying

storage _

electricity from the power grid by the RESs and/or ESSs owners; C;,
nthzl [rm(8)], ¥ m € M- cost that accounts for storage degradation when charg-
ing and discharging an ESS; Cgferation =7 Zthl lam ()|, ¥ m € M- cost of energy
transfer operation; C}’;““’ha“ = Zthl/l(t)[—ap(t)], Y p € P- cost of energy sold
by the RESs and/or ESSs owning households to pure consumers. |-| denotes

the absolute value. Moreover, the objective function of the proposed problem
M T

includes also the following term: 0 >, > [0, (8) + Wi (t) — um(t) — @y () — rm ()]
m=1t=1

representing a penalty term which forces the amount of surplus renewable en-

ergy that exceeds the demand of the community users within period 7, i.e. the
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amount of renewable energy that is not consumed, to be stored in the ESSs for it
to be consumed during following period. In expression (4.1), r,,(¢) represents the
amount of energy charged or discharged in time-slot ¢ from the ESS belonging
to household m, while s, = [s,,(¢),£ =1,...,T],m € M is the set of total energy
amounts stored in the ESS at the end of each time-slot. The collaborative cost
minimization problem is modeled as a constrained optimization problem that
may be solved through standard LP methods. A 24-h example of prices, electric-
ity demands, storage, electricity exchange and grid consumption profiles of the
proposed DSM collaborative method for a smart grid community is shown in
Figure 4.2.
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Figure 4.2. (a) 24-hours utility company electricity price. (b) 24-hours electricity demand of the
households. (c) 24-hours renewable energy production of households owning RESs.
(d) 24-hours ESSs profiles. (e) 24-hours amounts of electricity exchange among all
households in the community. The positive blocks show amounts of energy provided
by some households, whereas the negative blocks show amounts of energy received
by the other households. (f) Electricity purchased from the utility company by the
households. RES and ESS owning households buy energy from the utility during the
hours when the price is low. Copyright 2017 IEEE

In Figure 4.3 it is shown that, at the end of a 31-days period, the proposed
method may reduce the cumulative consumption cost for the RESs and/or ESSs
owners by 18% in comparison to the individual cost optimization, while the
consumption cost for the sole energy consumers may be reduced by 3%. The
pure consumers buy part of their needed electricity from the RESs and/or ESSs
owners for a 10% discount in price in comparison to the price offered by the
utility company.

Publication IV investigates possible cost reductions obtained by the community
for different amounts of renewable energy production. Depending on the amount
of produced renewable energy, cost reductions of 12-50% are obtained for the
smart collaborative households owning RESs and/or ESSs, while 7-8% reduction
in cost is obtained for pure energy consumers. For a detailed description of the
proposed methods please see Publications IV, V and VI.
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Figure 4.3. (a) 31-days cumulative percentage of cost reduction obtained by RESs and/or ESSs
owners in comparison to individual cost minimization. Their cost reduction varies
between 6% and 37% in the case when only RESs and ESSs owners participate in
the proposed DSM program and between 7.5% and 41% in the case when sole energy
consumers are included in the DSM program. At the end of 31-days period their cost
reduction is of 12% and 18%, respectively. (b) 31-days cumulative percentage of cost
reduction obtained by the sole consumers when they participate in the DSM program
in comparison to buying all needed electricity from the power grid. Their daily cost
reduction varies between 1.8% and 4.5%. At the end of the 31-days period their cost
reduction is of 3%

In Publications V and VI, the interactions among residential households from
a smart grid community are modeled through a coalitional game theory-based
framework. A short overview and the contributions of this thesis on cooperative
interactions among smart grid entities, framed by means of cooperative game
theory, are presented further.

4.2.3 Collaborative methods based on cooperative game theory

Cooperative games [9] focus on coalitions that players may form in order to
jointly achieve payoffs. In cooperative game-based frameworks it is not nec-
essary to define precise structures for forming strategies for bargaining and
negotiation, as non-cooperative games require. Instead, it is sufficient to specify
what can the formed coalitions achieve as an overall profit. Coalitional games
[119] are typically described in terms of the characteristic function of the game
specifying the outcome resulted from the formation of the coalitional group.
Compared to the model free collaborative methods described earlier in this
chapter, the cooperative game-based frameworks provide, on one hand, means
for the cooperative members to form coalitions, and on the other hand describe
also ways through which the resulted profit may be divided among the members
of the coalition in a fair manner. An extended introduction to coalitional game
theory can be found in [11]. Also a survey on game theory-based methods for
smart grid may be found in [120].

Cooperation between microgrids is modeled as a coalition formation game in
[121]. The microgrids are equipped with RESs and ESSs. Each microgrid is
serving a group of customers. The microgrids are connected to the main power
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grid with which they can exchange energy. The proposed coalition formation
game implies that multiple coalitions may be formed among the whole set of
microgrids, such that those microgrids that have an energy surplus can transfer
or sell energy to those microgrids in need of additional energy. Within each
coalition, a coalitional game with transferable utility is played. The value
function of a coalition is defined by the total cost incurred for the power losses
occurring over the distribution lines within the network of microgrids in the
coalition. The aim of the coalitional game is to minimize this cost. A two stage
distributed algorithm is proposed for solving the coalitional formation game.
The first stage represents the coalition formation stage in which the microgrids
are grouped into coalitions. Then, in the second stage, the power transfer occurs
among the members of the same coalition such that the value function of the
coalition, reflected by the power losses, is minimized. The revenues resulted
from the coalitional game are distributed among the members of each coalition
using a proportional payoff division method.

Energy cooperation among a group of nanogrids and a shared facility controller
is studied in [122]. The nanogrids, which can be some households, are equipped
with RESs and ESSs for serving their own demands. They may also buy elec-
tricity from the main power grid. The group of nanogrids have an agreement
with a shared facility controller to transfer to it a certain amount of energy
surplus at every time-step. The functionality of the shared facility controller
depends on energy provided by the main power grid and the nanogrids. The
nanogrids receive a financial reward for the amount of energy transferred to the
facility controller, but also a financial penalty if they are not able to provide the
entire contracted amount. A canonical coalitional game is formulated among
the group of nanogrids. The nanogrids form a coalition to provide the contracted
amount of energy to the facility controller. The value of the coalition is defined
by the reward received for the power transfer which has to be maximized. The
distribution of the overall reward among the coalition members is done according
to a proportional payoff division scheme. According to this scheme, the reward
of each member of the coalition is proportional to their contributions to the
aggregate energy amount provided to the facility controller.

A system composed of a macrogrid, an aggregator, several renewable energy
prosumers and conventional electricity consumers is considered in [123]. The
aggregator trades electricity with the prosumers and with the main power grid
and sells electricity to the conventional consumers. A contract-based framework
is proposed to establish the trading rules and prices for the energy trade among
aggregator, prosumers and consumers, respectively. The amounts of electricity
sold and traded by the aggregator are optimized such that the aggregator is
maximizing its contract-based profit. In order to satisfy their demands, the
prosumers also trade energy among themselves against a price determined by a
smart agent. The prosumers play a coalitional game through which they want
to achieve profits by trading energy with the aggregator. All prosumers in the
system participate in the coalitional game by forming a grand coalition. The

56



Energy cost and portfolio optimization in smart grid

achieved profit is distributed in a fair manner among the members of the grand
coalition using a method based on asymptotic Shapley value. An optimal energy
allocation algorithm to schedule the power allocation in case of the contract-
based method is proposed. The method proposed in [123] is lacking of a clear
description. The method has many adjustable parameters and requires multiple
intermediate steps which may make it impractical. Moreover, quantitative
results on the performance of the method are not given.

In Publication V and Publication VI, the interactions among residential house-
holds from a smart grid community are modeled using coalitional game theory.
The coalition is formed by smart households owning RESs and/or ESSs, denoted
by set M, that collaborate by sharing their renewable energy resources and
storage spaces. In Publication VI these households may also sell energy to pure
energy consumers. The coalition is formed at all times by all the residences in the
set M, hence by the grand coalition. It is shown, by means of coalitional game
theory, that these households may reduce their costs of electricity consumption
both jointly and individually as compared to the individual cost optimization.
Let ci,}lldiv be the cost incurred by the households m € M through the individual
optimization. The characteristic function of the proposed coalitional game, v(M),
describes the aggregate cost savings achieved by the coalition. This function is
defined as the amount of cost savings obtained by the coalitional group in the
collaborative scenarios with respect to the total electricity cost that the members
of the coalitional group would pay in the case of performing individual cost

optimization:
M .
VM) =) ppdiv prmunty, (4.3)
m=1
Here cj\o/lmmumty is the joint electricity consumption cost of the coalition of house-

holds computed using the formulation in (4.2). A method to distribute the
revenue of the coalition of households among its members has to be defined.
There are a variety of approaches for achieving fairness such as nucleolus, egal-
itarian, NBS and Shapley value [119, 11]. In this work, the amount of cost
savings obtained by the coalition is divided among its members using the Shap-
ley value [10, 11]. The Shapley value is a one-point payoff solution through
which the worth of the coalition is distributed among the players according to
the average marginal contribution that each player is bringing to the coalitional
game and hence, to the cost savings. The Shapley value, ®(v), assigns to each
player m € M a payoff ®,,(v) given by the following expression:

Op(v)= Y W[u(g Utmh) - (@), (4.4)

GeM\{m} )
where G denotes any non-empty subset of households from the set M that may
form a coalitional group, G € M. The cardinalities of the sets M and G are
denoted by M and G, respectively. Shapley value leads to a fair solution since the
payoff earned by each player is calculated based his contribution to the overall
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Figure 4.4. (a) The daily amount of cost savings achieved by the RESs and ESSs owning house-
holds in the collaborative DSM program which includes also the sole energy con-
sumers. The blocks composing a bar show the payoffs received the households from
the coalition as distributed by the Shapley value method. (b) The daily cost savings
achieved by the sole energy consumming households through participating in the
DSM program. Copyright 2017 IEEE

obtained savings. The cost savings obtained by the coalition and the distribution
of these savings among its members can be observed in Figure 4.4. In few
days, the collaborative method may not work as good as the individual cost
optimization solution used as benchmark for comparison. However, over longer
time periods, such as 31 days, the collaborative method achieves significant cost
reductions. It can also be observed that the households owning RESs receive
much higher payoffs than the rest.

Table 4.3 gives characteristics and features of DSM methods employing collab-
oration at distribution level. Only the most relevant methods on collaborative
energy interactions are included in this table. The methods have some similari-
ties. For example, all methods employ RESs and ESSs. The methods however,
have some differences in their problem formulation and their respective system
setup. Different types of entities are employed in the collaboration: microgrids
[110, 111, 112], prosumers [115], smart residential households [116, 117]. In
Publication V, only smart residential households are included in the community
model, whereas pure consumers are also included in the methods proposed in
Publications IV and VI. A collaborative optimization approach considering active
and passive energy users is introduced in [100]. Except for the objective function
which minimizes the aggregate cost of energy users, the system model of the
collaborative method in [100] is the same as the one for the non-cooperative
method already presented in Table 4.1. Hence, it was not included again here.
Also, unlike the methods proposed in this thesis, the methods in [100] involve
controlling dispatchable energy sources for satisfying the demand. The methods
reviewed in Table 4.3 employ different kind of interactions with the main power
grid. Some only buy electricity from the power grid, but other methods also sell
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Table 4.3. A comparison regarding various features involved in DSM methods for collaborative
interactions at distribution level. The following notations are used: S-cons - smart
consumers, P-cons - pure consumers, S-hous - smart households, uGs- microgrids,
Pros- prosumers, Aggr- aggregator, time-var.- time-varying, COAL- coalitional, ASV-
asymptotic Shapley value, CS- coordination strategy, DIS-IT- distributed iterative
algorithm, OEA- optimal energy allocation algorithm, ONL- online algorithm, NBS-
Nash bargaining solution, S-logic- heuristic supervision logic, SV- Shapley value, C-
centralized, D- distributed, P- Publication. The row Data refers to knowledge of
electricity prices and demands.

Method [1101 [111] [112] [115] [116] [117] PIV [123] PV PVI
S-hous Aggr S-hous
Entities uGs uGs uGs Pros  S-hous S-hous S-hous
P-cons Pros P-cons
RESs v’ N v’ v’ N N v’ S-hous v~ S-hous
Grid buy+ buy+ buy+ buy+ buy+ buy+
. buy buy buy  buy
interaction sell sell sell sell sell sell
ESSs v’ v’ v’ X common v~ S-hous X N S-hous
Load
X X NG X X X X X X
shifting
Time day- real- rolling day- rolling real- day- real- day- day-
horizon ahead time horizon ahead horizon time ahead time ahead ahead

Grid pricc RTP  RTP RTP  fixed time-var. ToUP RTP RTP RTP RTP

Internal

i X X v’ X v v v X v’
price
stochastic
Data v’ v’ v’ v’ v’ v’ v’ N N
demands
Pros
Game X X X X X X X COAL COAL
COAL
ADMM OEA LP LP
Solution ONL MPC DIS-IT MPC CS LP
NBS ASV SV SV
Perspective D D D D C C C C C C

back electricity to the power grid. Different pricing schemes are considered for
energy purchased from the power grid. Moreover, some methods also consider
internal pricing for energy traded among the collaborative entities. Real-time
optimization is considered in some cases. Other methods employ day-ahead
optimization and hence, scheduling the energy related events for this entire
period. Once again it can be seen that a clear distinction and classification of
the methods cannot be made. This can be observed also from the performances
reported by the reviewed methods which are summarized in Table 4.4. Quantita-
tive results on cost reduction are not reported in [117] and [123]. Consequently,
these methods could not be included in the table. The best performance on
cost reduction is reported in [112]. Differently from the methods proposed in
Publications IV, V and VI, the method in [112] proposes an MPC-based method
for energy management within systems of networked microgrids. MPC is fre-
quently used in various DR methods such as those for microgrid energy planning
[124], or controlling industrial loads [125]. The MPC-based techniques provide
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Table 4.4. A comparison regarding cost reduction of DSM methods for collaborative interactions
at distribution level. The following notations are used optimiz.- optimization, NONC-
non-cooperative, P- Publication.

Method [1101  [111] [112] [115] [116] PIV PV PVI
12-50%
Cost 4.7-6.1%
25%  S-hous, 18% S-hous,
reduction  13.2%  cost 13.8-51% 5% 18%
. /kWh  7-8% 3% P-cons
value increase
P-cons
individual individual
Comparison NONC offline individual grid . optimiz., individual optimiz.,
-logic
benchmark optimiz. algorithm optimiz  trade grid optimiz.  grid
consumption consumption
Simulation
. 1week 1day 1 day 1year 31 days 31days 31days
period

frameworks for constrained dynamic optimization and typically involve a rolling
horizon optimization time frames. One advantage of such techniques is that
they may capture more accurately the changes in time of the renewable energy
production or demand, for example. This may be due to the fact that in each
new optimization, or control step, updated forecasts of the employed data are
considered. Due to this re-computation of the optimization or control process
the MPC-based methods are, however, computationally more heavy. Thus, they
may not be applicable for very complex problems that require long computation
time. Single day cost reductions between 13.8% and 51% for the cooperating,
networked microgrids are reported in [112]. For the considered day, the cost
savings of 13.8% are obtained in case of a network of five microgrids, while
the 51% cost savings are obtained in case of a network of fifteen microgrids. It
results that the cost savings increase with the number of cooperating microgrids.
In [116] the system cost is analyzed with respect to the number of wind turbines
installed in the system. Also, the benchmark method used for comparison is a
heuristic supervision logic method (S-logic) which is a not an optimal method.
For a high number of turbines installed in the system the method provides an
annual average cost reduction of 25% per 1kWh of consumed energy in compar-
ison to S-logic. In [111], the proposed method presents an increase in costs in
comparison to the offline benchmark solution, in a simulation performed over a
one week period. The method in [110] achieves an aggregate cost reduction of
13.2% over a single day, in comparison to the non-cooperative, individual opti-
mization benchmark method. In Publications IV, V and VI cost reductions are
reported over a 31-days period. The non-collaborative, individual optimization is
used as benchmark. In the scenarios considered in Publications V and VI, cost
reductions of 18% are reported at the end of the 31-days period for the smart
households owning RESs and/or ESSs. Note that even though Publications V
and VI report same results for the smart household’s cost reduction, the prob-
lems have different formulations. A 3% cost reduction is obtained by the pure
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consumers in Publication VI. Cost reduction values are reported for different
amounts of renewable energy production in the community in Publication IV.
Cost reductions of 12-50% and 7-8% are obtained for the smart collaborative
households and pure energy consumers, respectively. The higher is the amount
of produced renewable energy, the bigger is the reduction in cost also.

4.3 Methods for load balancing

Besides reducing costs, or achieving financial gains, another objective that drives
interactions at distribution level is that of load balancing. Load balancing is
usually sought by system operators, load aggregators, or utility companies that
have the goal of matching supply and demand and cut the peaks in electricity
consumption. These peaks are causing increases in electricity prices and require
extra energy generation capacity. Load balancing does not imply discarding
utilization of certain electricity consumables, but shifting part of the load from
hours of high demand to hours of lower demand and hence, obtain a more flat
profile of energy consumption. Methods for load balancing may also be identified
with methods for peak shaving, valley filling, or load flattening, all basically
having the same purpose. An extended overview on cooperative methods for
energy consumption balancing and cost minimization can be found in [13]. In
this thesis, this overview is updated by adding more recent methods considering
interactive methods for load balancing and cost minimization.

One way of achieving load balancing is through price-based DR. All the price-
based DR problems implicitly perform load balancing as well [100, 103], even
though many of the state-of-the-art price-based DR methods are focusing on
reporting only the cost reductions obtained by the consumers, i.e. the price
takers. A price-based DR method that takes in consideration also load balancing
is presented in [126]. The interactions among community energy aggregators
and smart community households are studied through a two-level market model
in order to minimize costs and balance the demand. The energy aggregators
compete for buying energy from utility companies at low prices in order to
satisfy the electricity demands of their respective communities. The smart
households in the communities own smart appliances and they also compete
against each other to schedule their smart appliances to work when the price
is low. The interactions among aggregators and those among households are
modeled as competitive games. It is shown that through proper dynamic pricing,
the proposed framework not only reduces the electricity costs of the consumers
but also balances the overall demand.

Other methods for load balancing may combine price-based DR with utilization
of ESSs by varying the demand through charging and discharging the storage.
Load balancing is achieved through interactions among utility company and
residential consumers also in [127]. The utility company aims at reducing the
mismatch between supply and demand, i.e. balance the electricity demand, by
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setting the price of sold energy as an increasing function of the demand. The
residential electricity users own ESSs and want to minimize their cost. They
can schedule the usage of their appliances either by using electricity directly
from the power grid, or by using stored energy. A competition among residential
energy users arises for consuming energy at the lowest price offered by the utility.
The interactions among utility company and electricity users are modeled as
a leader-follower Stackelberg game in which the utility company is the leader
that establishes the prices, while the residential users are the followers that
schedule their appliances such that the cost of energy purchased from the utility
company is minimized. A distributed iterative entropic algorithm is proposed to
solve the leader-follower game. This is a two step algorithm. In the first step,
the electricity users receive prices from the utility company and optimize their
electricity consumption. In the second step, the utility company receives the
demand requests from the consumers and uses these demands to recalculate
prices. These two steps are repeated until Stackelberg equilibrium is reached.
The performance of the proposed game is discussed also in terms of achieved
energy consumption balance. It is shown that the proposed game balances the
consumption of electricity, achieving a pear-to-average ratio (PAR) of 1.3.

Battery storage is used also in [128] for providing peak shaving, frequency
regulation and cost reduction for commercial energy users. The optimization
of battery usage is done according to a price-based method. The electricity bill
for the consumers consist of the cost of actual energy charged and a penalty for
causing a peak in demand. The battery owners could also benefit financially by
providing frequency regulation services to the grid against a certain incentive
price. A joint optimization problem is formulated for minimizing the next day’s
cost which includes the energy consumption cost, peak demand penalties, battery
degradation and operation costs as well as frequency regulation incentives. A
multiple linear regression model is employed in order to predict the system’s
load for the day ahead. Similarly to the method in [128], another method that
uses ESSs to achieve peak demand shaving while taking in consideration ESSs’
constrains is proposed also in [129].

Energy consumption must be shaped for balancing supply and demand also in
case of energy systems where renewable energy is utilized. Methods through
which residential households owning RESs and ESSs can optimize their electric-
ity usage and cooperate with the purpose to reduce the instability produced on
the distribution grid by the renewable energy integration and balance the energy
consumption are studied in [130]. First, a simple rule-based control approach
is proposed for the households to independently decide their batteries’ charge
and discharge profiles. A distributed method is also proposed for the households,
using own microcontrollers, to optimize and balance their renewable energy pro-
duction profiles. A distributed hierarchical control method is proposed to allow
the households to cooperate by buying and selling electricity among themselves,
but also with the the main power grid. The purpose is of minimizing their costs
and balance the electricity usage of the system. An iterative negotiation strategy
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controlled by a central market controller is proposed to determine the buying
and selling prices within the system.

A method for load balancing in a residential area with EVs, ESSs and RESs is
studied also in [131]. Residential energy users interact among themselves and
with the system operator in a day-ahead market framework. The residences
first predict and individually flatten their day-ahead demand profiles through
a non-cooperative mixed strategy game. The system operator then plans the
day-ahead purchase of electricity according to the aggregate demand profile of
the residential electricity users.

Optimal energy consumption models using storage systems are proposed in
[132] and [133] for minimizing electricity costs of residential energy users and
balance the load on the power grid in the benefit of the utility company. In
[132], an energy optimization model for a single household is provided. Two
different energy optimization problems are tackled here. The first problem takes
advantage of the time-varying market energy price and optimizes the household’s
electricity consumption and battery storage usage such that the household’s
energy consumption cost is minimized while fulfilling the energy demand. In
this approach, the ESS of the household is used to store energy during hours
when the prices are low and consume it when the price is high. Hence, the
grid consumption profile is not uniform. In the second problem formulation,
energy consumption balance and cost reduction are considered. For balancing
the grid energy consumption while also reducing the cost, the objective function
is modeled using the Cobb-Douglas production function from microeconomics
[12]. Simulation results show that the cost minimization problem may achieve
a 12% reduction in cost, while the second problem provides a balanced energy
consumption while also reducing cost by about 8%.

The same principle for load balancing and cost reduction is proposed also in
[133]. A cooperative model is proposed in which households from a community
are served by same utility company and share a common community energy
storage. The goal is again load balancing and cost reduction. A method to fairly
allocate the stored energy among the cooperative households is proposed based
on Shapley value. The stored energy is allocated to the community households
in a proportion equal to the contribution of each household to the uniformity of
the community’s load profile.

In this thesis, the contribution related to collaborative methods for energy
balancing using ESSs extends the work in [132, 133]. In Publication VII, a
method for efficient integration of renewable energy resources and balancing
the energy purchased from the power grid by a community of households is
proposed. The community model is very similar to that in Publications IV, V
and VI. In the smart grid community, some of the households, M, produce
renewable energy and own ESSs as well, while the remaining households are
pure consumers. It is assumed that the households in the community are
equipped with smart energy-management meters that can accurately predict
their energy demand profiles and their renewable energy production profiles for a
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finite time period, 7, ahead. The aggregate energy demand of the community is:
u=[u(),t=1,...,T], while the renewable energy production profiles are again
denoted by w,,, = [w,,(¢),£=1,...,T],m € M. Each renewable energy producing
household stores in its ESS in each time-slot total amounts of renewable energy:
sm =I[sn(t),t=1,...,T]l,m € M. These amounts are delimited by the capacity
of the storage, C,,. Day-ahead hourly market prices are considered for energy
purchased from the utility company: & =[é(¢),¢=1,...,T]. The proposed method
is divided in two stages: one for renewable energy allocation within community
and one for balancing the energy purchased from the power grid.

An off-line algorithm for scheduling the integration and allocation of the
renewable resources produced within the smart grid community is proposed
in the first stage. The algorithm calculates for each time-slot the amount of
own produced renewable energy that should be consumed by each RES owning
household to satisfy its current demand and the amount of renewable energy that
must be saved in each household’s ESS for meeting the demand of that household
later within period 7. The remaining per-time-slot surplus of renewable energy,
not needed for the household’s own consumption in period 7, may be sold
away to other households from the community which are in need of energy. In
Publication VII, internal prices related to the amounts of energy exchanged
among households are not considered. The method proposed in Publication VII
focuses strictly on cost reductions achieved by the community with respect to
the energy consumed from the power grid. However, in order to have a trade
which is fair to all the RESs owning households, it is considered that each RES
owner can give away to others only a limited amount of his surplus of renewable
energy in each time-slot. The amount of renewable energy that one household
may give away in a time-slot should be proportional to the overall renewable
energy available within the community in that time-slot. This will make sure
that in case of a financial trade in which a renewable energy producer may sell
his energy surplus at a certain price, the possible financial benefit obtained in
each time-slot by the producer is proportional to the ratio between his renewable
energy production and the renewable energy produced by the other households
in the community. Hence, for obtaining a fair allocation of the renewable energy
within the community, the total energy demand of the community at every
time-slot is first reallocated to each RES owners only as:

W (t)+ 8, (t—1)
> mem@Wm @) + 8m(t—1))

where i, (¢) is the energy demand of household m € M after the reallocation of

Hm(t) = u(®), (4.5)

the community demand and s, (¢ — 1) is the renewable energy amount existing
in the storage m at the end of previous time-slot. The difference between the
available renewable energy supplies of a household m € M and the energy
demand at time-slot ¢ is:

Q@) =wm @) +sp(t-1)—pup),t=1,...,T. (4.6)
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The energy required by a RES owner m from the main power grid, at each
time-slot, g,,(¢), in order to fulfill the new demand is:

gm(t) =min{Q,,#),0}[,t=1,...,T, 4.7)

where |- | denoted the absolute value. The total amount of renewable energy
stored at the end of a time-slot in an ESS is given by:

S$m(t) = min{max{Q,,(#),0},C,},t=1,...,T. (4.8)

A heuristic algorithm is proposed for computing the allocation and trade of
renewable energy. The amount of energy needed by the community from the
main power grid is also computed using this algorithm. The detailed description
of the proposed algorithm for renewable energy integration and allocation can
be found in Publication VII.

After the allocation of renewable energy, the set of aggregate amounts of
energy that the community still requires from the power grid for fulfilling the
demand in period 7 is: g =1[g(¢),t =1,...,T]. This energy demand may be
highly variable in time. In order to obtain balanced grid consumption over
time period 7 for the community, in the second stage of the proposed method, a
GP-based optimization method is used. This optimization is formulated using
the Cobb-Douglas production function [134] for modeling the objective function:

T
g
mfob ), (4.9)
t=1
where b =[b(¢),t = 1,...,T] is the balanced energy consumed from the power
DENRIOLN

T-DYL, &0e@)’
the elasticity parameter of the Cobb-Douglas production function. This method

grid for the community and a; = with Z?:l a; = 1, represents
makes use of the available ESSs in order to control the consumption and have a
constant energy consumption level from the power grid, achieving a very low
PAR. Moreover, it will also reduce the cost of electricity consumption from the
power grid. It can be seen in Figure 4.5 that the GP-based method balances the
load by reducing the PAR values by 52% and may provide a also a cost reduction
of 4%. In the considered scenarios, the overall reduction in cost resulted through
the method proposed in Publication VII for the energy consumed from the power
grid by the community is about 10.5%.

Local interactions at distribution level may not only occur with the goal of min-
imizing costs or balance the supply and demand. There may be other reasons for
the cooperation. For example in [135], households own RESs and ESSs and oper-
ate in an isolated mode, disconnected from the main power grid. The households
decide to cooperate in order to minimize their energy delivery interruptions and
maximize the usage of the available energy generation. Self sustainability in
a community of energy prosumers may be achieved by establishing a market
within the community network in which individual actions and interactions
among the network’s members are driven by the individual comfort and benefits
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Figure 4.5. Renewable energy integration, load balancing and cost reduction. (a): the commu-
nity’s 24-hour wind energy production profile. (b): the total energy demand of the
community. (c): the profile of the required grid energy. (d): the total amount of
renewable energy sold per time-slot. (e): the community’s total ESS profile including
wind energy and grid energy stored for load balancing purpose. (f): the balanced
grid consumption profile. (g): the variation of the PAR as a function of total capacity
C . For capacity above 22kWh the PAR values are 1.04. (h): the PAR values of the
grid demand and of the balanced consumption for 31 days. (i): the cumulative cost
savings over 31 days. Copyright 2016 IEEE.

of the members [136]. A communications network between the smart meters of
agents (prosumers and distributors) is employed in [137] to directly exchange
control signals. Based on this communications network, a control method for
energy transfers between microgrids of prosumers and distributors is proposed.
In order to integrate small scale energy markets into the power system, such
as those formed within communities of households or microgrids, coordination
between big market players and and the small scale energy markets at the
distribution level is needed. Along with this, complex market strategies among
players at different energy system levels need to be conceived [138, 139].

4.4 Discussion

In order to protect the environment and reduce pollution, prevent interruptions
in power delivery and reduce costs, more and more RESs and ESSs are being
locally installed at distribution level. Local interactions in terms of exchanging
and transferring energy among the entities owning RESs and ESSs are required
for a better usage of resources. The energy transfer may take place free of charge
or may occur through trading energy for a price. Moreover, the entities can
share information, storage space and other resources. Facilitated by modern
two-way communications and power flow network, and functioning under control
of DSM programs, energy sharing and trading among end energy users may
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bring various benefits to those who adopt them. Trading and sharing energy
and storage space may provide a more sustainable and reliable local power
delivery through a better integration of renewable resources, reduce the need
of individually owned ESSs with large capacities and have a more balanced
energy consumption from the power grid. These may also result in significant
cost reductions as demonstrated in Publications IV, V, VI and VII.

In this chapter, state-of-the-art DSM methods that enable trading and sharing
of energy and storage space among power grid entities at distribution level
have been presented and discussed. First, methods driven by financial benefits
were reviewed. These methods were further divided into two main categories:
competitive methods and collaborative methods. The competitive methods focus
on selfishly increasing financial benefits for each compeating entity. This occurs
for example if the entity sells its surplus of renewable energy production at
higher price than the others, buys larger amounts of electricity at cheaper
price, or receives a larger share of renewable energy or storage space if these
resources are commonly owned with others. Most state-of-the-art DSM methods
for competitive settings are formulated using non-cooperative or Stackelberg
game models.

Energy consumers or producers may also achieve financial and other benefits
by collaborating, instead of competing. In collaborative settings, the participat-
ing entities are non-selfish and work together to achieve a common goal such as
reducing energy cost. DSM methods for collaborative interactions are formulated
either by establishing own set of rules defining the grounds for collaboration, or
are modeled through cooperative game theory. The cooperation may take place
in terms of exchanging and sharing energy, energy storage space and sometimes
information too.

Collaborative frameworks for energy trading and sharing within a smart grid
community have been proposed in Publications IV, V and VI with the purpose of
minimizing electricity consumption costs. The community may include different
types of households: households owning ESSs only, RESs and ESSs owners
and pure consumers too, unlike other methods in literature. It is assumed that
households are equipped with smart meters that can record their electricity
demands and renewable energy production over time and accurately predict
these values for the day ahead. Renewable energy is considered a free source
of energy. Hence, energy sharing among households owning RESs and/or ESSs
was assumed in Publication V with the aim of minimizing cost of purchasing
electricity from the main power grid. In Publications IV and VI, smart house-
holds owning RESs and ESSs also sell energy to pure consumers at a lower
price than that offered by the utility company. The focus in Publications IV
and VI is on optimizing consumption and operational costs for RESs and ESSs
owners. However, the pure energy consuming households also reduce their cost.
Compared to state-of-the-art methods reporting single day simulation results,
the studies in Publications IV, V and VI report simulation results for 31 con-
secutive days. It is shown that in few days the collaborative method does not
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work as good as the individual cost optimization solution used as benchmark for
comparison. However, over longer time periods such as 31 days, the collaborative
method achieves significant cost reductions. The smart households owning RESs
and ESSs may achieve a cost reduction of 18% in comparison to individually
optimizing their costs. By buying a part of their needed electricity from the
renewable energy producing households at a cheaper price than that offered by
the utility company, the pure consumers also reduced their cost by 3%, in the
considered scenarios. This occurs when RESs and ESSs owners sell energy to
pure consumers for a 10% discount in price compared to the utility company’s
price. The proposed methods may be improved if optimal local prices for energy
traded among energy producers and consumers are determined. Finding such
optimal pricing methods may be a topic for future research. The collaborative
methods in Publications V and VI are modeled using coalitional game theory. In
the proposed coalitional game models, all households owning RESs and/or ESSs
participate in the game at all times. In this way, no discrimination may occur by
excluding any community members. This coalitional model was considered to
be the most suitable for modeling collaboration within residential communities.
The obtained cost savings are distributed among the members of the grand
coalition using the Shapley value. Shapley value is a method for fair revenue
division. It allocates the savings among coalitional members according to the
contribution of each member in obtaining these savings. In this way every partic-
ipant receives a share of the benefit and have an incentive to participate in the
coalitional game. The Shapley value method may be, however, a computationally
heavy method for very large communities of households. The computational
time for calculating the Shapley value increases exponentially with the number
of players participating in the coalition. For example, when calculating the
Shapley value for a group of M players, the LP optimization is computed a
number of 2™ — 1 times. Hence, the computational time may become very large
on a conventional desktop computer. However, distributed computing systems,
or cloud computing platforms shall be employed in the smart grid architecture.
Thus, the computational time of such methods should be reduced considerably
using such technologies. The proposed methods are solved in a centralized
fashion by a control unit managing the flow of power and information within
the community and between the community and utility company. Developing
methods for ensuring security and privacy of public utilities could be a topic for
future work.

In the second part of this chapter, methods that aim at balancing the energy
consumption are reviewed. Price-based DR methods that shift the loads from
times when the price is high to times of low price, not only reduce the costs
of consumption, but inherently also balance the profile of the electricity con-
sumption. Another way to balance the load is through scheduling the charging
and discharging of ESSs. Local energy trading in a smart grid community is
studied in Publication VII for allocating renewable energy. Also a method for
balancing the profile of energy consumed by the community from the power
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grid is proposed. Internal prices for the energy trade are not considered here.
The proposed method achieves balanced energy consumption profiles with PARs
close to unity.

The methods proposed in this thesis for collaborative sharing and trading of
energy require full knowledge of the renewable energy production and electricity
demand over the considered optimization time frame. Achieving this knowledge
may be a challenging task. Smart meters installed at home sites may record
data on energy demand and renewable energy production and machine learning,
signal processing, or advanced time series analysis methods may be employed to
predict these values for a finite period ahead. Advanced methods for accurate
prediction of residential electricity demand and renewable generation already
exist [140, 141, 142, 143]. However, this is still an active topic for research
and may represent a challenging topic for future work. Designing local energy
market models is also in early stage of studies and development. Thorough
research and development of regulations, standards and protocols are yet needed
for a successful deployment of energy markets.
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5. Summary

The smart power grid is envisioned as a complex cyber-physical system of
distributed, but cooperating components. The physical system of the smart grid
combines conventional power network infrastructure components such as power
plants, transmission and distribution networks with modern power network
components such as RESs, ESSs, smart controllable appliances and EVs. The
physical system would be coupled with a cyber system consisting of sensing,
optimization and control elements dispersed at different levels of the physical
power network. This cyber system measures and monitors the status of the
power network, controls it’s operation and ensures a high quality power delivery
to the end consumers. The operation of the cyber system relies on the existence
of two-way communications and power flow network and smart data processing
and optimization technologies. DSM will also be a fundamental component of
the smart power grid. It facilitates achieving energy efficiency and smart use
of power system resources and assets. DSM provides flexibility and resiliency
to the power system and ensures efficient power delivery while minimizing
costs. In order to obtain these benefits, DSM methods combine participation
of end consumers and demand management policies to flatten the peaks in
energy consumption, match generation and demand and overall provide a more
balanced load on the grid.

The focus of this thesis is to develop DR methods that involve the active
participation of end consumers. Price-based DR methods, a category of DSM
methods that use dynamic prices to give consumers the possibility to reduce their
electricity consumption cost, are proposed. This happens provided that they
modify their consumption patters in response to these dynamic prices. Methods
that schedule the home charging of EVs in order to minimize the charging
costs are developed. The EVs are an environmentally friendly alternative to
conventional vehicles powered by fossil fuel, hence more and more people are
considering to purchase EVs. The EVs however, will significantly increase their
electricity consumption and cost. The proposed EV charging methods take
advantage of the time-varying electricity prices within a day, but also of the
dynamic nature of prices on consecutive days. Day-ahead electricity prices are
commonly known while a method using a BNN is employed to predict electricity
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prices for the second day ahead. Given known day-ahead electricity prices
and predicted electricity prices for the second day ahead, the proposed methods
schedule the charging of the EV’s battery such that the long term cost of charging
is reduced for the owner, while the owner’s driving needs are also fulfilled. Using
an infinite horizon MDP model with unknown state transition probabilities the
EV charging problem is formulated to take daily decisions on the amounts of
energy to be charged in the EV’s battery. The EV charging problem is solved
using SARSA and batch fitted-Q iteration RL algorithms. Optimal schedule for
the charging of the EV within a day is found by using standard LP methods.
The proposed approach on EV charging may reduce the owner’s long term cost
of charging by 10% in comparison to the optimal daily charging method and by
50% in comparison to the conventional, not optimized charging method.

Enabling local interactions such as energy exchange and trade, share of energy
storage capacity and information among energy producers and consumers at
the distribution level of the grid may also bring important benefits to the power
system. The power system becomes more flexible and the need for power plants
to generate extra power capacity during consumption peaks may be reduced.
Through energy exchange and trade, on site energy supplies such as those from
RESs would become more sustainable. The interacting participants may benefit
by reducing their costs related to energy consumption too. DSM methods that
exploit the bidirectional power flow are developed in this thesis. They facilitate
exchanging energy within communities of households owning RESs and/or ESSs.
A price-based DR method is proposed to minimize cost of consumed energy and
other energy related operational costs in a community of households owning
RESs and/or ESSs. In order to minimize their costs, the households owning
RESs and/or ESSs exchange energy among themselves and share their energy
storage spaces. They also sell energy to pure consumers. The cost minimization
problem is formulated as a linear program solved in a centralized fashion. Using
a mathematical model from cooperative game theory, the problem of exchanging
and trading energy in the community is formulated as a coalitional game such
that each participating household may reduce their costs. The payoff that each
household receives is proportional to the households’ contribution to the overall
cost savings obtained by the community. In the considered scenarios, the house-
holds forming the coalition may reduce their overall cost by 18% in comparison
to not collaborating and optimizing their energy consumption individually. The
pure energy consuming households also reduce their costs by buying part of
their needed energy from the RESs and ESSs owning households at a discounted
price (10% in our studies) in comparison to electricity prices offered by utility
company. By finding methods to define and compute optimal trading prices,
the developed methods may reduce the costs even further. Developing optimal
pricing methods in also very important in designing efficient energy market
models. Investigating optimal and regularized trading prices in local energy
markets may represent a challenging topic for future work.

Besides reducing costs related to energy consumption, balancing load on the
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grid is another important goal of DSM. A DSM method to minimize electricity
cost and balance the energy consumed by a community of households from the
main power grid is proposed. The method facilitates integration of renewable
energy produced by households owning RESs. For the energy required from
the main power grid, the method uses the ESSs within the community to
charge them with energy drawn from the grid during hours of the day with
low electricity prices and use that energy during peak price hours. By using
mathematical formulation stemming from microeconomy, the load balancing
problem is written in the form of a GP-based optimization method. The method
schedules the community’s energy consumption from the power grid and provides
an energy consumption profile with a PAR close to unity.

The DSM methods developed in this thesis are designed to work in an auto-
matic manner, controlled by smart meters and central control units, without the
need of end consumers to manually control their appliances. Hence, the devel-
oped methods are applicable in smart grids where an AMI is deployed and in case
of households equipped with HANs. The methods proposed for optimizing the
EV’s home charging may be implemented at end customers’ homes. The methods
proposed for collaborative energy exchange and trade within communities of
households are designed to be controlled by a central control unit. It remains to
be studied whether centralized or decentralized control over residential loads is
more effective and secure. Decentralized DSM methods are generally believed to
make the power system more resilient to cyber attacks. In distributed methods,
the end consumers do not need to share private information on their electricity
consumption with a central operator either. Centralized control on the other
hand, provides optimal results on aggregate load management and requires less
infrastructure development. Moreover, a central operating system may be, in
some cases, better at following the best practices in security than individual
home owners.

The DSM methods developed in this thesis assume day-ahead knowledge
of information for scheduling the energy consumption. While daily electricity
prices are generally announced one day ahead by the utility companies, achieving
full knowledge of renewable energy production and electricity demands over
24-hours period, or predicting EV’s daily driving patters with high accuracy
remains a challenging task. Developing methods that can reliably predict the
renewable energy generation, driving patterns of EVs, electricity demands and
prices over long time periods is an active topic of research and can represent
a challenging topic for future work. Furthermore, the DSM methods proposed
in this thesis may be improved by taking into account the variability of the
electricity demand, renewable energy generation and of EV’s driving patterns.
Finding efficient solutions that solve the resulting DSM problems can also be a
challenging task for future work. Designing local energy market models is also
in early stage of studies and development. Deployment of such energy markets
rely on the development of a complex power grid architecture and infrastructure,
but also of regulations, standards and protocols.
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