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Previous work on residential load monitoring has attempted to address different 

requirements including the systematic collection of information about electric 

power consumption for load research purpose, the provision of a detailed 

consumption report to facilitate energy conservation practices and the 

monitoring of critical loads for fault diagnostics.  

This work focuses on developing methods for appliance fingerprinting that is 

foreseen to be an integral part of an automatic residential load monitoring 

system. Various approaches outlined in previous research form the basis for the 

concepts developed in this thesis. In addition, an extensive series of 

measurement work was performed on several household appliances in order to 

acquire the necessary operation data for building the technique and also to 

explore the extent up to which residential loads can be categorized into distinct 

groups.  

The fingerprinting process proposed in this work employs three main phases: 

feature extraction of electrical attributes, event detection and pattern 

recognition. Test results obtained at different stages of the work using the 

measurement data are also discussed in detail.  

Such studies are necessary to enable utilities to manage their networks reliably 

and efficiently, and also to encourage the active participation of consumers in 

energy conservation programs.  

KEYWORDS:   load monitoring, appliance fingerprinting, NIALMS, load 

signature, load classification, energy awareness 
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1.   INTRODUCTION 

The demand for electricity is growing faster than any other form of energy in all 

parts of the world [1]. This increasing need, coupled with the fact that coal fuels 

more than 40% of global electric supply, is making electricity generation the 

single largest and fastest rising contributor to CO2 emissions [2]. Hence, in order 

to cope with growing societal and industrial needs whilst contributing less to 

greenhouse gas emissions, it is of paramount importance to actualize an efficient 

electric energy supply chain that addresses challenges in the key areas of 

generation, transmission, distribution and utilization. In fact, projections by the 

International Energy Agency show that using energy efficiently has a greater 

potential to curb CO2 emissions over the next 20 years than all other options put 

together [1][3]. 

Efforts in the drive towards achieving this goal include improving the efficiency 

of fuel combustion in power stations, reducing transmission line losses and 

optimizing motor-driven systems in industries. However, often excluded from 

this process are end-users at household level who have traditionally held a 

passive role in issues related with energy conservation despite the fact that the 

final influence always rests with them as they decide the amount of energy to 

consume and in which way to utilize it. In view of this fact, it is quite evident 

that consumers also need to be active players in this process and research 

suggests that users are willing and capable to adapt their behavior to energy-

saving practices if given the necessary feedback, support and incentives [4][62].  

The increasing concern about the impact of energy usage on the environment as 

well as the rise in energy costs are arguably the main factors that encourage 

customers to look for ways of consuming less. Nevertheless, the major difficulty 

is the lack of information about day-to-day activities; for instance, energy bills 

are usually received at the end of each month from which it is difficult to 

distinguish the effects of individual actions or obtain meaningful feedback as to 

the effectiveness of changes [1][65]. Such problems necessitate the creation of 

innovative feedback mechanisms with greater transparency about the 
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consumption at any moment of time and the associated cost that can potentially 

lead to improved energy conservation practices. Current trends in the 

development and convergence of ICT and energy networks are ushering a range 

of possibilities in areas such as residential energy monitoring (measuring, 

processing and providing feedback in near-real-time), context-aware application 

and activity detection [4][5]. 

A highly informative aspect of such a monitoring system is the possibility to 

track the state of operation and corresponding energy consumption of individual 

household appliances. The availability of appliance operation data at this level 

of granularity allows utilities to provide detailed information to their customers 

whenever required as well as in the form of itemized billing. This in turn opens 

the possibility for consumers to perceive the effects of their individual day-to-

day actions, which paves the way for meeting energy efficiency targets through 

their active participation. 

In this regard, the motivation for this work was the requirement to develop a 

technical solution that shall enable the reliable and accurate tracking of the 

operation of common end-use appliances in a typical household. The term 

‘appliance fingerprinting’ was conceived to express this solution due to the fact 

that it needs to make use of electrical characteristics (or ‘load signatures’) that 

each appliance uniquely possesses. With the advent of high-precision sensing 

devices that are capable of accurately measuring different electrical attributes of 

appliances [6], it is envisioned to create an innovative system that allows 

consumers to learn and share energy conservation strategies [4]. 

While contributing to the creation of such a ‘demand-response’ relationship, 

through which better options are provided to customers for properly managing 

their energy expenditures and also to utilities for assuring reliable supply at 

reasonable costs [7], the appliance monitoring solution can also be applied in 

power quality monitoring, analysis and mitigation programs. The detailed 

information collected regarding the electrical attributes of various residential 

loads, such as harmonics contents, is presumably a key input in devising ways to 
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tackle power quality issues, which are on a steady rise due to the increasing use 

of power electronic devices and other non-linear loads in industrial, commercial 

and domestic applications [52].  

In addition to its relevance in energy consumption tracking and power quality 

control, appliance fingerprinting also helps to realize the following scenarios:  

1. Utilities can improve planning and operation; for example, one way is to 

re-schedule larger loads by offering time-dependent rates to consumers 

so that they will be encouraged to utilize high-energy appliances at low-

rate times [1][8].  

2. Equipment manufacturers can improve quality and compliance, thus 

providing more energy efficient products to the market [9]. 

3. Aging and abnormally-operating appliances that consume higher 

amounts of energy can be spotted and remedial action can be taken [8]. 

4. Monitoring of individuals or systems with specific needs based on their 

detailed electricity usage patterns; for example, seniors living alone or 

remotely-operated mission-critical equipments [10]. 

5. Switching off non-essential loads such as air conditioners in case of 

emergencies if the power system is in danger of collapse [10]. 

In order to propose the appliance fingerprinting application, the approach taken 

in this thesis is as follows:  

I. Review of related works in residential load monitoring techniques.  

II. Conducting an extensive series of measurements on typical household 

appliances to attain a taxonomy of residential loads and also to 

determine relevant electrical attributes for the purpose of fingerprinting 

(such as phase shifts between harmonic currents and fundamental 

frequency supply voltage). 

III. Development of a methodology for appliance fingerprinting (based on 

ideas drawn from current methods in load monitoring) within the 



 

framework of the 

‘Boosting Energy Awareness with Adaptive Real

IV. Validation of the proposed solution using the available measurement 
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1. Sensing Platform
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academia and industry are jointly working towards the vision of creating an 
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gure 1.1, the Energy Life architecture comprises three separate 

Figure 1.1: BeAware Layers [11]  
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equipment, the system is designed to be capable of interfacing with third 

party products as well [4][11].  

2. Service Layer – provides an open and distributed web service 

infrastructure oriented towards consumers and detailed analysis of 

consumption in households [4]. 

3. User Application Layer – provides information to the consumers and 

makes them an active stakeholder in the energy conservation chain [4]. 

The appliance fingerprinting application resides in the Sensing Platform. The 

basis of its operation is measurement data received from the BeAware sensor, 

which is presented in more detail in Chapter 4. 

It is hoped that the solution proposed in this work will assist in the actual 

implementation of the fingerprinting application within the BeAware system 

and hence contribute its own share in the development of energy conservation 

services. 
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2.   RELATED WORKS IN LOAD MONITORING 

Pioneering works in load monitoring were mainly driven by the need to collect 

information about electric energy consumption patterns of different groups of 

consumers so that utilities would be able to manage their network more 

efficiently. Analysis of such gathered data allows the prediction of possible 

future scenarios and their effect on the network, which in turn creates the 

opportunity to enhance system reliability and security. There were also other 

areas of interest such as providing a detailed consumption report to facilitate 

efforts to reduce energy consumption and monitoring of the state of appliances 

for fault diagnostics [12][13].  

 

2.1    TYPES OF LOAD MONITORING TECHNIQUES 

Load monitoring techniques at the household level can be broadly classified as 

Intrusive Appliance Load Monitoring (IALM) and Non-intrusive Appliance 

Load Monitoring (NIALM) systems [14]. IALM refers to standard sub-metering 

techniques, which are able to track the operation of appliances more precisely 

and thus provide highly accurate data by employing a network of sensors or 

meters attached to individual appliances. However, the precision of sub-metered 

data is achieved at the expense of high installation cost, complexity and 

customer discomfort [14][15][56][58][62][64]. 

The lowest layer of the present BeAware system can be perceived as a semi-

intrusive monitoring scheme for two reasons:  

1. Its intrusiveness lies in the fact that the Sensing Platform comprises a set 

of wireless sensors and meters to monitor a typical household.  

2. On the other hand, in contrast to conventional sub-metering techniques, 

it does not involve significant sensor wirings, which simplifies the 

installation process. A sample conventional sub-metering circuit is 

shown in Figure 2.1. 
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Figure 2.1: Schematic circuit of multi-channel sub-metering [16] 

 

The future plan for the BeAware Sensing Platform is to migrate towards a 

whole-house sensing system that monitors the total consumption at the power 

entry point, which will be similar to a NIALMS operation. For this reason, the 

concept behind NIALMS and a number of research works related to this system 

were studied that are presented in the following sections. 

 

2.2    THE NIALMS CONCEPT 

Non-intrusive methods are intended to offer installation simplicity and the 

ability to distinguish important load changes via measurement at a central 

monitoring point [15]. Researchers at MIT were the early users of this 

technology to monitor residential and commercial end-use loads [17][18]. 

By analyzing measured current and voltage waveforms, NIALMS disaggregates 

the total load and estimates the operational states of individual loads and their 

energy consumption. In general, factors that affect NIALMS performance are its 

power measuring range, sampling rate, resolution of A/D conversion, electrical 
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2.2.1    STEADY-STATE SIGNATURE 

A.  Fundamental frequency analysis 

In this method, the operating states of an individual appliance are determined by 

identifying moments at which its active and/or reactive power consumption 

measurements change from one nearly constant or steady-state value to    

another [21]. These steady-state changes normally correspond to the appliance 

either turning on or turning off and are characterized by the magnitude and sign 

of changes in active and/or reactive power (±∆P, ±∆Q). 

Figure 2.3 shows an example of steady-state changes of a composite load 

consisting of two individual appliances A and B [21]. Load identification starts 

with the detection of steady-state transitions of each load, which are called 

events. Previously recorded switch-on and switch-off events belonging to 

different appliances are stored in a load register and are used for matching 

purposes when the operation of a certain load is detected on the power line. 

 

 
 

Figure 2.3: Active power changes during appliances operation [21] 

 

The exactness of this matching technique depends on the measured system 

voltage. Usually, standards allow supply voltage to vary within ±10% of the 

nominal value [22], which in turn can cause the current to vary by ±10%. 

Because power (P or Q) is defined as the product of current and voltage, it can 

possibly vary by a further ±20%.  
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To overcome this variation, power is normalized according to Eq. 2.1 and 2.2:  

 �������� = [���/����]�. ����      (2.1) �������� = [���/����]�. ����      (2.2) 

 

Where ����, ���� and ���� are system voltage, active power and reactive power 

values measured during appliance operation and  ��� is the nominal value of 

supply voltage [13]. In fact, the normalized values �������� and �������� are 

products of admittance components and the fixed voltage  ��� (note that 

conductance is ����/����� and susceptance is ����/�����). Hence, power 

normalization allows the tracking of changes in admittance values, which are 

more independent of voltage variations as compared to power and current 

measurements [23]. 

The main limitations of this method are its inability to cope with rapid 

sequences of events generated by continuously-varying loads and lack of 

preciseness to distinguish between appliances with similar power consumption 

profiles (overlapping ±∆P, ±∆Q) [62]. 

 

B.  Harmonic analysis 

The number of appliances containing power electronic components is rising 

considerably in domestic applications due to the additional energy efficiency 

and flexibility they offer [24]. Power electronic devices are the main sources of 

harmonic currents [25], and this makes harmonic current signatures quite useful 

to identify appliances that are too similar to distinguish looking only at the 

fundamental frequency active and/or reactive power signatures [23].  

Harmonic content is calculated by using the Fast Fourier Transform (FFT) of the 

input current [21][24][26][27]. A sample harmonic pattern from one of the 

power electronic-based appliances measured in this work is shown in Figure 2.4. 

As can be seen, odd-numbered harmonics at the lower end of the pattern 

constitute a significant share of the total harmonic current.    
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By combining harmonic current and fundamental frequency signatures, better 

identification can be achieved specially for appliances with large harmonic 

contents. However, harmonic analysis is less effective for highly resistive loads 

because their harmonic content is very small and thus difficult to discriminate. 

Besides, it requires steady-state measurement which means it also cannot deal 

with rapid sequences of events generated by continuously-varying loads. 

 

 
 

Figure 2.4: Harmonic pattern up to 50
th

 order (15 W compact fluorescent lamp) 

 

2.2.2    TRANSIENT SIGNATURE 

Transient signatures are useful to identify appliances that exhibit similar steady-

state signatures (but with unique transient turn-on characteristics) and also in 

situations where rapid activation of loads is common such as in commercial and 

industrial facilities [20]. Figure 2.5 shows the simultaneous activation of            

4 loads, within 1.2 seconds of each other, and how these loads can be discerned 

by detecting their switch-on transients [21]. 

Transient profiles tend not to be eliminated even in loads which employ active 

wave-shaping or power factor correction [30]; in contrast, steady-state 

signatures are affected by harmonic mitigation and power factor correction 
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circuits, which homogenize steady-state behaviors, thus masking the nature of 

the load [31]. 

One way to implement transient analysis is demonstrated in [28], in which each 

detected transient is compared to a database of known transients using least 

squares criterion. In [30] it is stated that transients belonging to loads in a 

specific group can be detected using a single prototype transient shape as a 

reference and by applying appropriate scaling in amplitude and duration in 

order to find the best fit.  

Major limitations of transient analysis are the need for high sampling frequency 

to handle the transient state, which in turn leads to the processing of large 

amount of data, and the need for relatively unique and reasonably repeatable 

transient patterns that may not be attainable in all cases [21]. One reason given 

is that transient measurement often depends on the exact point in the voltage 

cycle at which the turn-on or turn-off occurs and this causes transients to exhibit 

variability in parameters like duration, shape and size [34]. 

 

 
 

Figure 2.5: Simultaneous activation of appliances (A, B, C and D) – transient 

demarcation on active power consumption [21] 
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2.3    EARLY NIALMS WORKS 

One of the earliest approaches to NIALMS was developed in the 1980s at MIT 

by George Hart for two-state appliances [21]. A collar-mounted recorder was 

designed that was installed between the existing utility meter and existing 

socket, with the NIALMS recorder providing a new socket into which the 

existing meter was plugged in [29]. An upper level system consisting of 

processing units and the NIALMS software suite was also designed to process 

the data collected by the NIALMS recorders. The work was mainly driven by 

the need to simplify the process of data collection of energy consumption 

required for load research by utilities [21]. 

Following this invention [32], the NIALMS prototype was further developed 

and put into a beta-test program supervised by the Electric Power Research 

Institute (EPRI) [12]. The NIALMS product available at that time consisted of 

the following three components:  

 

I.  Recorder 

The NIALMS recorder uses current and voltage sensors and it records step 

changes in active and reactive power. This is achieved by periodic 

measurement of voltage and current from which RMS values of voltage and 

current as well as active and reactive power are calculated. The sampling 

rate is set at 2 kHz, and computation of active and reactive power is done 

three times per second [33].  

The recorded data contain interval data (whole-house measurement) as well 

as event data consisting of the time and magnitude of specific load changes. 

Either on automatic user-defined schedule or on demand, the recorder 

transmits the data to the Master Station over public telephone network [12]. 

 

II.  Master Station 

The Master Station is a personal computer running the NIALMS Master 

Station software. Using the time-stamped data received from recorders and 

a database of known loads as reference, it generates the respective 
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appliance-specific consumption data. The NIALMS database contains a 

library of load models that are used for semi-automatic identification 

whereby the operator first selects the appliances in a specific building from 

the library list and then the NIALMS algorithm processes the event data and 

tries to identify loads with matching profiles [12]. 

The Master Station also handles the configuration of each recorder and 

information related to recorder physical location. 

 

III.  Analysis Station 

The Analysis Station software is a relational database application that 

performs processed data query and presentation functions [33]. Upon user 

request, it retrieves the specified information from the Master Station 

database and presents it in the form of reports and graphs for review and 

further analysis [12]. 

 

Load disaggregation process 

Load disaggregation starts with the detection of events (edges) in the recorder. 

A power transition will be recorded as an event if it exceeds a threshold for 

longer than a predefined time. Typical setting used during the EPRI beta test 

program was an increment or decrement of 150 W or 150 VAr [12].  

The recorded events are then transmitted to the Master Station and cluster 

analysis is performed. In this step, similar sets of events are grouped together 

based on their magnitudes giving positive clusters (turn-on) and negative 

clusters (turn-off). For instance, if there are five operations of a single toaster in 

the batch of data being analyzed, then the five switch-on events will most likely 

be grouped into a single positive cluster and similarly the five switch-off events 

will be grouped into a single negative cluster. 

The next step is cluster matching, in which each positive cluster is matched 

with a possible negative cluster as shown in Figure 2.6, thus making it ready for 

appliance identification. The anomaly resolution part of the NIALMS software 
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handles any cluster matching problems that may arise from situations such as 

missed events or simultaneous activation of loads. 

 

 

Figure 2.6: ∆P/∆Q plane - cluster matching of turn-on and turn-off events [12] 

 

In the appliance identification step, the matched clusters are associated with 

known load profiles; the comparison is based on fundamental frequency 

signatures (∆P/∆Q changes). In addition, the time-stamped clusters are useful to 

derive information such as total energy consumption, operating power and 

usage duration of a specific appliance and its frequency of use, all of which are 

calculated in the interval data computation step. It also monitors the balance 

(residue) between the measured aggregate premises power and the computed 

total power of all identified appliances at a specific instance. This residual 

power, if found to be significant, triggers a repeat of the anomaly resolution step 

to verify if any events were missed or were happening at the same instance. 

Table A-1 in Appendix A summarizes overall performance of the system at the 

end of the beta test period as published in [12]. In addition to encountering the 

main limitations of fundamental frequency analysis, it is also reported that this 

NIALMS did not detect small loads due to the higher setting of event threshold 

and also it was not able to track appliances which are in continuous operation all 

the time. In the case of multi-state appliances, which possess a number of 

distinct switch-on states, NIALMS was able to detect some or all of the 

individual transitions but it did not aggregate them into a single appliance [12]. 
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While this EPRI project was in progress in the mid 1990s, other researchers 

were also working on different NIALMS approaches to monitor residential and 

industrial loads. Some of these works include NIALMS actualized by means of 

neural networks for pattern identification [34], prototype implementation of a 

transient event detector [30][37], novel NIALMS algorithms based on 

fundamental frequency analysis as illustrated in [35][36] and NIALMS 

developed at VTT (Finland) using a 3-phase integrated power-quality and 

energy meter for recording events [13].  

 

2.4   IMPROVEMENTS USING HARMONIC AND TRANSIENT 

ANALYSIS  

An improved NIALMS that addresses the limitations of fundamental frequency 

signature by employing harmonic and transient analysis is presented in [20].     

It computes harmonic contents up to 7
th

 harmonic by using phase-locked short-

time Fourier Transform of current waveforms collected at a sampling rate of      

8 kHz.  

 

 
 

Figure 2.7: Identification using ∆P, ∆ 3
rd

 harmonic and ∆Q signatures [20]  
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The advantage of harmonic analysis is elaborated via the disaggregation of a 

sample load composed of personal computer and incandescent lamp as shown in                 

Figure 2.7. In this example, both appliances consume nearly identical active and 

reactive power (refer to the first ∆P/∆Q plane in the figure). However, the 

analysis of higher harmonics reveals that the computer power supply draws 3
rd

 

harmonic current, which distinguishes it from the linear incandescent lamp load 

(refer to the 2
nd

 and 3
rd

 planes in the figure). If required, the monitoring system 

proposed in [20] is customizable to examine higher harmonic contents beyond 

the 7
th

 harmonic.  

In addition to the implementation of harmonic contents method, [20] also offers 

a transient event detection system with the assumption that transient 

characteristics are closely related to the physical task a particular load performs, 

which leads to distinct transient load shapes. In contrast to the limitations 

mentioned in [21] and [34] regarding the applicability of transient analysis, it is 

stated in [20] that most appliances observed during its test period possessed 

repeatable transient profiles (or at least sections of their transient profiles were 

found to be repeatable).  

Besides its application in improving load disaggregation, the work identifies 

transient analysis to be suitable also for near-real-time identification via the 

recognition of transients that occur during switch-on events. Another benefit 

obtained from transient detection, as explained in detail in [20], is the ability to 

monitor continuously variable loads such as Variable Speed Drives (VSDs) by 

tracking transient behaviors that are repeatable during their operation. 

 

2.5   NOVEL APPROACHES TO LOAD DISAGGREGATION 

Various research works continue to propose novel approaches to NIALMS [53], 

mainly focusing on improving its identification accuracy and increasing its 

scope of application in residential as well as industrial load monitoring.             

A summary of some of these works is presented next.   

 



23 

 

2.5.1   FUZZY LOGIC-BASED PATTERN RECOGNITION 

A method based on fuzzy logic theory for pattern recognition that attempts to 

identify the type of connected individual appliances from an aggregate load is 

presented in [38]. The proposed algorithm makes use of operations from fuzzy 

logic theory (inner product and outer product of vectors) to build relationships 

between a database of known transients and a newly recorded transient.  

Its output yields the pattern that closely resembles the unknown load transient. 

Tests were limited to a few sample waveforms and the work claims that 

satisfactory results were obtained.  

 

2.5.2   DYNAMIC TIME WARPING FOR NIALMS  

A load recognition technique based on Dynamic Time Warping (DTW) is 

proposed in [40]. DTW is an algorithm used for pattern matching of any two 

time series, mainly in automatic speech recognition.   

The approach starts with measuring electric power consumption of selected 

appliances. These measurements are then processed to extract feature vectors 

and thus create a set of templates for identification; two attributes, namely 

energy consumption and rising edge count (from switch-on transitions), are 

extracted from the measurement data. After forming the templates, subsequent 

actual measurements are matched to the reference set in order to find out the 

identity of connected loads; DTW is applied here for matching purpose.  

The basic concept of the DTW algorithm is to eliminate the timing difference 

between two vectors by warping the time axis of a new sample in such a way 

that maximum coincidence with a stored template is achieved. It starts with the 

calculation of local distances between elements of these two vectors. Distance 

calculation can be performed using different metrics such as Euclidean or 

Manhattan distance (Euclidean distance was used in [40]). The result of this 

operation is a local distance matrix from which a minimal distance matrix is 

then derived by applying dynamic programming algorithm. 
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The warping path or optimal path is finally determined by identifying the 

minimal distance path from the start element up to the end element of the 

minimal distance matrix. This computation is repeated for all stored templates; 

i.e., feature vector of the new sample is compared with feature vectors of the 

stored templates using the DTW algorithm to find their optimal paths and thus 

their respective overall distances. Finally, the algorithm selects the template 

vector that closely matches with the new sample. In [40], this step is 

accomplished by using the nearest neighbor rule. 

Tests were performed on feature vectors collected over several days from           

a small group of household appliances (refrigerator, computer, microwave oven,              

dish washer, coffee machine and printer). The identification of a sample 

refrigerator using rising edge count and energy consumption attributes is 

elaborated in [40].  

 

2.5.3   SVM & RBFN-BASED INFERENCE MODELS FOR NIALMS 

A research conducted in Japan proposed a NIALMS solution using harmonic 

pattern recognition from the total load current measured at the entrance of a 

residence [39]. The developed system consists of measuring terminals installed 

at households (‘slave stations’), a communication system and a master station. 

The measuring terminal at the power entry point measures odd-numbered 

current harmonics up to 13
th

 order. The respective phase shift of each harmonic 

current from the fundamental frequency voltage is also extracted from the 

measurement. The communication between the two stations is handled either by 

a Personal Handy-phone System (PHS) or the Internet. 

At first, harmonic characteristics of individual appliances are separately 

recorded. The obtained training data are then used to build inference models that 

allow the monitoring of individual appliances’ actual operation. Since NIALMS 

cannot single out permanently-connected loads through event detection, it was 

necessary for the inference models to take into account this condition, which 

was attained by attaching measuring devices to this group of loads.  
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Support Vector Machine (SVM) is used in [39] for inferring whether the 

appliance is switched-on or switched-off and Radial Basis Function Networks 

(RBFN) for inferring power consumption. The individual harmonic 

measurements (magnitudes and respective phase shifts) and power consumption 

are provided as inputs to SVM and RBFN to build a set of inference models. 

The next step is to evaluate these inference models and select the optimal model 

for field operation. In the actual implementation phase, the operating conditions 

of appliances are inferred by applying aggregate harmonic and power 

consumption measurements (received from measuring terminals at households) 

to the selected optimal model.  

The performance of this model was evaluated by comparing its outputs with the 

values individually measured for training purposes. The results obtained from 

tests conducted at four households are provided in [39]. 

 

2.5.4   NIALMS BASED ON INTEGER PROGRAMMING 

This work introduces a new NIALMS technique by treating the estimation of 

operating conditions of electrical loads as an integer programming problem [41]. 

 The electrical attribute used as an input to this optimization approach is current 

waveform, which is recorded for a length of one cycle from each appliance of 

interest. The estimation of operating conditions is proposed for two groups of 

loads: two-state appliances, discussed in detail next, and multi-state appliances. 

 

Procedure outlined for two-state appliances identification [41]:  

− Assume that N kinds of appliances L1, L2…LN are connected to the 

power line in a household. 

− For each appliance type Ln (n from 1… N), Cn number of appliances are 

also assumed to be connected to the power line, i.e., Cn is the quantity of 

a specific appliance Ln. 

− One cycle of current waveform, in(t), is measured independently at a 

sampling rate of 40 kHz and stored in a database (t from 0…T−1).     
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The total number of samples, T, obtained in one cycle is 666 (60 Hz 

power line in [41]) and t=0 is the time when the voltage switches from 

negative to positive (voltage is also measured simultaneously to serve as 

reference when extracting one cycle of the current waveform).  

− Next the overall load current is represented by using integer variable cn 

(cn  from 0…Cn) as: 

      (2.3) 

Where m is the number of distinct operating states of an appliance 

(useful in the analysis of multi-state appliances) and ε represents the 

disturbance due to noise or unknown appliances.  

− The proposed NIALMS is realized by estimating the number of 

operating appliances {c1…cn} from the overall load current waveform. 

This is achieved by formulating the above scenario as an integer 

quadratic programming problem, which can be solved with the help of 

commercially available optimization software: 

 

 

 

                                (2.4) 

 

 

 

 

 

− Hence, NIALMS is actualized by finding the most probable operating 

conditions, c*, that minimize the square error between the measured 

aggregate load current and the estimated sum of individual currents. 

ILOG CPLEX 10.2 optimization software was used in [41]. 

This procedure is extended to cover a second group of loads comprising multi-

state appliances. Experiments performed at a single household, which receives 

power supply from two lines L1 and L2, are explained in detail in [41].  
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A partial list of appliances used for the tests in [41] (those appliances connected 

to line L1) and the derived constraint conditions are provided in Appendix A of 

this thesis (refer to Table A-2 and Equation A-1). The average identification 

success rates achieved after 6 days of testing were 79.0% and 96.8% for L1 and 

L2 respectively. It is mentioned that these tests did not include continuously-

varying loads [41]. 

The paper suggests that this NIALMS technique is suitable for application in 

real-time load monitoring thanks to the high-speed processing of data that are 

extracted from a single-cycle current measurement [41]. 

 

Types of load monitoring techniques, the concept behind NIALMS and different 

research works conducted on NIALMS were discussed in this chapter. Based on 

the ideas derived from this review, an appliance fingerprinting solution was 

outlined for the BeAware project. The first activity in this process, which was to 

perform a series of measurements on typical household appliances, is discussed 

in detail in the next chapter. 
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3.   MEASUREMENT WORK ON COMMON HOUSEHOLD 

APPLIANCES 

The measurement work was carried out on different household appliances with 

the following main objectives –    

− To explore the extent to which household appliances can be categorized 

based on their electrical attributes 

− To select the electrical attributes that will be used for the fingerprinting 

application 

− To study the contribution of individual appliances towards harmonic 

production, which is a major power quality concern nowadays 

 

3.1   MEASURING EQUIPMENT  

TOPAS 1000 Power Quality Analyzer (Figure 3.1), a product of LEM NORMA 

GmbH, was used for performing the measurement work in this thesis. The 

equipment has several fields of application including power quality analysis as 

per EN 50160 standard and is also capable of measuring harmonics up to 50
th

 

order [43]. It has 8 electrically isolated analog input channels for current and 

voltage measurement. Each channel is equipped with a 16-bit analog-to-digital 

converter. The sampling rate is synchronized with the line frequency and is 

typically 6400 Hz on a 50 Hz line. Specifications of its voltage and current 

sensors are given in Appendix B. 

TOPAS measurement data mainly used for analysis were:   

− RMS values computed every second – important for studying switch-on 

and switch-off behaviors and detecting events (state transitions of 

appliances). 

−  Average values from 3-second and 10-minute measuring intervals – 

required for extracting steady-state operating values (such as harmonic 

content and power factor) that will be used for building load signatures. 



 

− Digital oscilloscope

current waveforms 

crest factor

 

 Figure 3.1: TOPAS

 

3.2   MEASUREMENT PROCEDURE

The actual measurement work was carried out for a period of 

mainly at Aalto University Power System Laboratory and 

During this period, the

1. TOPAS is i

(for example, 

mode and 

power rating of the 

2. The appliance to be measured is d

inserted between the appliance and 

3. If applicable, the desired mode of operation is selected (for instance

a microwave oven operating at ‘keep warm’ mode) and 

appliance is switched

of the appliance. 

oscilloscope measurement – sampled values of voltage and 

current waveforms that will be applied in harmonic phase angles

crest factor calculation.  

TOPAS 1000 Power Quality Analyzer (adapted from [43])

EMENT PROCEDURE  

The actual measurement work was carried out for a period of 

at Aalto University Power System Laboratory and a few other premises

During this period, the following general measurement procedure was adopted

is initialized with an appliance-specific configuration file

for example, appliance001.vdf) – this step ensures that the recording 

mode and types of measuring sensors used are compatible with the 

power rating of the appliance and its duration of operation. 

The appliance to be measured is disconnected and TOPAS is electrically 

inserted between the appliance and supply point as shown in Fig

applicable, the desired mode of operation is selected (for instance

a microwave oven operating at ‘keep warm’ mode) and 

appliance is switched-on; TOPAS starts to record the electrical operation 

of the appliance.  

Analog inputs 
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of voltage and 

harmonic phase angles and 

 

(adapted from [43]) 

The actual measurement work was carried out for a period of eight weeks 

other premises. 

following general measurement procedure was adopted:  

configuration file           

this step ensures that the recording 

measuring sensors used are compatible with the 

its duration of operation.  

and TOPAS is electrically 

as shown in Figure 3.2. 

applicable, the desired mode of operation is selected (for instance,       

a microwave oven operating at ‘keep warm’ mode) and then the 

electrical operation 



 

Figure 3.2

4. Every measurement 

switch-off 

measurement 

− A minimum of 10

operati

− In the case of appliances that perform sequential operation to 

complete a given task (such as washing machine), the entire cycle of 

operation is recorded.

− For appliances with 

a minimum of two

the switched

5. At the end of each measurement activity, 

from TOPAS 

form of a TOPAS 

6. If available, m

documentation with the corresponding measurement file.

Note that transient measurement is not included in 

BeAware sensor version

measurement work.

 

Figure 3.2: Measurement set up (adapted from [43])

 

Every measurement is aimed at recording switch-on, steady

 characteristics of the appliance. Hence, the duration of 

measurement is determined by the function of the appliance

minimum of 10-minute data are recorded for c

operating appliances (such as television).  

In the case of appliances that perform sequential operation to 

complete a given task (such as washing machine), the entire cycle of 

operation is recorded. 

ppliances with long-cyclic operation (such as refrigerator)

a minimum of two-hour data are recorded in order to capture 

switched-on cycles (e.g. compressor operation cycles)

At the end of each measurement activity, the recorded data are retrieved 

from TOPAS and documented for later analysis (data are 

TOPAS definition file – for example, appliance001.def

If available, manufacturer’s nameplate information is 

documentation with the corresponding measurement file. 

transient measurement is not included in the design of the

version. Hence, load transients are not recorded as part of this 

measurement work. 

30 

 

(adapted from [43]) 

steady-state and 

he duration of 

function of the appliance:  

for continuously 

In the case of appliances that perform sequential operation to 

complete a given task (such as washing machine), the entire cycle of 

(such as refrigerator),        

recorded in order to capture some of 

(e.g. compressor operation cycles).  

the recorded data are retrieved 

data are fetched in the 

appliance001.def). 

anufacturer’s nameplate information is recorded for 

design of the current 

. Hence, load transients are not recorded as part of this 
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3.3   ANALYSIS OF MEASUREMENT DATA  

Measurement reports were prepared per appliance after analyzing the 

corresponding data retrieved from TOPAS. The types of appliances and number 

of samples covered in this measurement work are provided in Appendix B.  

Each measurement report consists of:  

1. Appliance rating data (from name plate information). 

2. Average steady-state operating data (for instance, Table 3.1 shows 

average operating values of a refrigerator). The contents are briefly 

explained next.   

 

 
 

     Table 3.1: Average operating values (from refrigerator                

measurement report) 

 

11 
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Active power, reactive power and current values are normalized to get 

rid of the effect of system voltage variation (normalization was discussed 

in Subsection 2.2.1). 

FPF is fundamental frequency (displacement) power factor given by:  ��� = cos �tan�� ���        (3.1) 

Total PF is true power factor given by:  

�� = ��!         (3.2) 

Where, P, Q and S are active, reactive and apparent power values 

respectively. The relationship between these quantities is given by:  

" = #�� + �� + %�       (3.3) 
 

D is the distortion power, which is linked to the presence of current 

harmonics [44][57]. The operation of appliances with higher harmonic 

content causes significant distortion power to prevail in the system.  

THDI is total current harmonic distortion – a frequently used measure of 

harmonic levels in power system given by the ratio of RMS value of 

harmonics (above fundamental) to RMS value of the fundamental [45]:  

&'%( = )* (+,-."2∞+=2(1,-."        (3.4) 
 

Where, Ik,RMS (k>1) are harmonic currents existing at frequencies that are 

integral multiples of the fundamental frequency. 

TIDI is total current inter-harmonic distortion, which is similar to THDI 

but deals with frequencies that are non-integral multiples of the 

fundamental frequency. 

ON-cycle duration is the width of switched-on cycle (in this example it 

is the length of compressor operation). 

Crest factor is the ratio of peak amplitude of current waveform to its 

RMS value. It is equal to √2 in a pure sinusoidal waveform [57]. 



33 

 

3. Current harmonic data up to 25
th

 order (actual values and also values 

relative to the fundamental frequency current, I1,RMS). Table 3.2 shows 

average current harmonic data of the refrigerator from the previous 

example.   

 

      Table 3.2: Average current harmonic data of the two cycles                          

(from refrigerator measurement report) 
 

H01 refers to the fundamental frequency current, I1,RMS. The distortion 

up to the 25
th

 order is also computed, which is comparable to the THDI     

(up to the 50
th

 order) directly obtained from TOPAS. 

 

Some of the values in the measurement reports such as TIDI are not directly 

applicable in this thesis. However, the belief is that the availability of such 
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detailed measurement reports will benefit other research works, especially in the 

areas of load monitoring and power quality studies. 

 

3.3.1   LOAD TAXONOMY  

At the start of this work, it was presumed that a given type of load, for example 

desktop computer, may exhibit a set of electrical characteristics that makes it 

distinctly identifiable from a larger group of appliances. Load identification 

based on this assumption, i.e., by merely observing operating values without 

prior knowledge about the particular load, can potentially lead to erroneous 

results. This is attributable to variations in design philosophy among 

manufacturers producing the same type of appliance, the impact of power factor 

correction [46] and harmonic mitigation techniques, and specific operating 

mode of the appliance due to user selection or automatic process (for instance,   

a cloth washing machine exhibits markedly different load signatures when 

operating first in water heating mode and then washing/spinning mode).  

Such variations within a given class of appliances have led to the categorization 

of loads in a more generalized manner. Based on field tests, [47] classifies 

household appliances into six groups: resistive, pump-operated, motor-driven, 

electronically-fed, electronic power control and fluorescent lighting. Another 

study focusing on harmonic analysis [48], identifies three types of residential 

loads: resistive, motive (inductive) and nonlinear. In [49], appliances are broadly 

divided into linear loads, which, if supplied by a sinusoidal source at 

fundamental frequency, produce only pure sinusoidal current and nonlinear 

loads, which produce nonlinear current that is rich in harmonic content. The 

study further classifies appliances into the same six categories as in [47]. 

A similar NIALMS study [50], makes reference to the proposed categories in 

[47] and discusses a methodology for constructing load taxonomy based on 

shape features extracted from V-I trajectories as shown in the example of      

Figure 3.3. The study discusses the formation of 13 groups of loads using these 

shape features as classifiers. Appliance examples and elaboration on the 
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characteristics pertaining to each category can be referred to further                  

in [47]–[50].    

 

 

Figure 3.3: (a) V-I trajectories of a window-type air conditioner,                     

and (b) a microwave oven [50] 

 

Based on the findings of the measurement work, the load classification proposed 

in this thesis is similar to the preceding works. Some of the classes in [47] can 

be merged and a classification equivalent to that of [48] and [54] can be 

attained. Motor-driven, pump-operated and fluorescent lighting fall under 

motive (inductive) loads whereas electronically-fed and electronic power control 

can be grouped into electronic loads. Hence, it is possible to categorize the 

majority of household appliances into the following three main classes: 

 

A.   Resistive load 

This category encompasses appliances that are mainly used for heating and 

lighting purposes such as panel heaters and incandescent lamps. Heating 

elements of other appliances like washing machines and dishwashers also 

belong to this category [47]. Their reactive power consumption is comparatively 

quite small, which means they regularly operate close to unity power factor 

(both FPF and total PF). Their harmonic content is usually negligible and in 

general THDI does not exceed 5%. Results of the measurement work also show 

that the crest factor of appliances in this group normally falls in the range 1.38 

to 1.44, which is close to the crest factor value of a pure sinusoidal current. 
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Figure 3.4 depicts total PF and FPF values during a coffee maker operation 

(both values are almost equal to unity) and Figure 3.5 shows the level of 

harmonic distortion up to 50
th

 order of the same appliance.  

 
 

Figure 3.4: Total PF and FPF (Cosphi) during coffee maker operation         

 

 

Figure 3.5: Current harmonic pattern during coffee maker operation  

(from coffee maker measurement report) 
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In this example, the magnitudes of all harmonic orders are below 0.5% of the 

fundamental frequency current and THDI is only 1.4%.  

 

B.   Power electronic load 

Majority of modern electronic equipments use switched-mode power supplies 

(SMPS). These differ from older units in that the traditional combination of a 

step-down transformer and rectifier is replaced by direct-controlled rectification 

[51][52]. The benefits are improved load efficiency, better controllability, and 

reduced size, weight and cost [51][25]. However, the undesirable effect is an 

increase in the propagation of harmonic currents back to the utility grid [53], 

with amplitudes at times exceeding that of the fundamental frequency       

current [27]. Appliances such as computers, television sets and compact 

fluorescent lamps belong to this category. 

As can be seen in Figure 3.6, these appliances contain significant levels of 

harmonic distortion. For instance, THDI values of 230% (laptops) and 175% 

(next generation LEDs) were recorded during the measurement work. Due to the 

high level of harmonic content and hence the existence of distortion power, total 

PF is notably smaller than FPF (Figure 3.7).  

 

 

Figure 3.6: Current harmonic pattern of laptop  
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Figure 3.7: Total PF and FPF (Cosphi) during laptop operation                   

(from laptop measurement report) 

 

Results of the measurement work indicate that electronic loads possess high 

crest factors; for the appliances included in this work, the range above 1.65 is 

assigned to electronic loads, i.e., a crest factor value greater than 1.65 shall 

signify the nature of the load to be electronic. The highest crest factor measured 

was that of a sample LED lamp (CF=4.96), with CFLs and laptops also 

exhibiting high crest factors. 

 

C.   Motive (inductive) load 

This class consists of motor-driven, pump-operated and other inductive loads 

such as refrigerators, microwave ovens and fluorescent lamps (without PFC). 

The operation of these loads results in the production of substantial reactive 

power and it also causes harmonic distortion but at a lesser level as compared to 

electronic appliances. Figure 3.8 shows total PF and FPF values during the 

operation of a freezer. Due to significant reactive power consumption, such 

loads do not operate close to unity power factor. However, the addition of a PFC 

circuit, as observed in the case of fluorescent lamps, improves the condition.  
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Figure 3.8: Total PF and FPF (Cosphi) during freezer operation  

 

Figure 3.9 shows the level of harmonic distortion of the freezer sample. In this 

group of loads, the 3
rd

 harmonic current is dominant over the other harmonic 

orders. Regarding crest factor values of appliances in the scope of this work, it 

was noted that most of the loads in this category fall in the range 1.45 to 1.65. 

 

 

Figure 3.9: Current harmonic pattern of freezer                                             

(from freezer measurement report) 
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In addition to the load classification discussed above, it is also possible to 

categorize household appliances according to their operational nature:    

− Depending on the duration of ON-cycle:  

continuous (e.g. television), long-cyclic (e.g. refrigerator) or short-

cyclic (e.g. microwave oven).  

− Depending on the sequence of tasks performed:  

multi-mode (e.g. dish washing machine) or single-mode (e.g. toaster).  

− Depending on the number of distinct switch-ON states: 

multi-state (e.g. table fan) or two-state (e.g. coffee maker).  

This approach can be utilized to create conditions for appliance idetification in 

the fingerprinting process, which will be discussed in the next chapter.   

 

3.3.2   OBSERVATIONS ON MEASUREMENT RESULTS 

I.   Odd-order harmonic content 

Total current harmonic distortion is virtually composed of odd-order harmonics 

as the levels of even-order harmonics are negligible (even-order harmonics are 

nowadays relatively rare but were common when half wave rectification was 

widely used [52]).  In particular, the contribution of odd-order harmonics at the 

lower end of the frequency spectrum is significant. It was observed among the 

measured appliances that the first three odd-order harmonics (3
rd

, 5
th

 and 7
th

 

harmonics) are the most dominant and they provide distinction between 

electronic loads and motive (inductive) loads – in the case of electronic loads, 

although the 3
rd

 harmonic is higher in magnitude, the 5
th

 and 7
th

 harmonics are 

also significant whereas in the case of motive (inductive) loads, the 5
th

 and 7
th

 

harmonics do not have significant contributions comparable to that of electronic 

loads, which means the 3
rd

 harmonic is responsible for most of the total 

harmonic distortion.  
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II.   Active and reactive power at higher frequencies 

Measurement results show that almost all the active and reactive power 

consumptions occur at the fundamental frequency. Figure 3.10 depicts the active 

power harmonic pattern of a CRT television set. As can be seen, the power flow 

at higher frequencies is in the order of mW. Hence, measurement of active and 

reactive power flows at higher frequencies does not yield detectable load 

signatures. 

 

 

Figure 3.10: Active power harmonic pattern of CRT TV  

 

III.   Harmonics and power factor 

Current harmonics and power factor are closely related; as indicated earlier, the 

presence of distortion power due to harmonic current sources reduces power 

factor. In other words, the harmonic distortion of load current decreases the 

average power transferred to the load. This relationship helps to impose 

limitations on current harmonics by using the widely-accepted concept of power 

factor (TPF), as highlighted in [45] with some examples:   
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Each THDI corresponds to a maximum TPF; thus, a limit on TPF automatically 

invokes a limitation on THDI.  

 

In addition to the above points, other observations include – the masking effect 

of PFC and harmonic filters on load signatures, the directly-proportional 

relationship between THDI and crest factor and the effect of consumer 

interaction on the ON cycle length of cyclic appliances such as refrigerators. 

 

3.4   CURRENT HARMONICS PHASE SHIFT  

At the start of this work, it was intended to investigate the possible application 

of current harmonic phase shifts as a load signature in the fingerprinting 

process. Since TOPAS does not record the phase shifts of harmonic currents 

(with reference to the fundamental frequency voltage), it was necessary to make 

use of its digital oscilloscope measurement that furnishes sampled values of 

voltage and current waveforms for calculating the phase shifts. 

The instrument was set to record 8 cycles (total 160 ms length) at an interval of 

60 seconds, i.e., 8 cycles every minute. Figure 3.11 shows the voltage and 

current waveforms of a sample CFL that were recorded during its steady-state 

operation. The sampling rate of the instrument is 6400 Hz [43], which means the 

digital oscilloscope measurement is capable of supplying 128 samples per cycle 

for each wave form.  

After extracting a total of 1024 samples for the 8 cycles (from the respective 

TOPAS *.def file per appliance), the data series was fed to a MATLAB code to 

compute current harmonic phase shifts from the fundamental frequency voltage 

up to the 25
th

 order for every cycle.  The results are then averaged over the eight 

cycles to give the mean phase shift of each harmonic order during a single 

measuring instance.  
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Figure 3.11: Instantaneous voltage and current waveforms of a CFL (8 cycles)                         

(--- voltage [V], --- current [mA] and time [ms])  

 

Since the instrument records the 8 cycles every 60 second, a set of new samples 

is obtained every minute. For the purpose of comparison, ten consecutive 

measuring instances were extracted from the steady-state operation region and 

harmonic phase shifts were computed.  

The flow chart in Appendix C outlines the steps followed to compute the phase 

shifts. It uses Eq. 3.5 and Eq. 3.6 below to calculate the Fourier series 

coefficients, from which phase angles are calculated according to Eq. 3.7.  

 

23 = 4256 7* 8[+] cos 43 29+5 65
+=1 :                                                                                 �3.5� 

                                             

 

=3 = 4256 7* 8[+] sin 43 29+5 65
+=1 :                                                                                 �3.6� 
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Where an and bn are the Fourier series coefficients, i[k] is the current sample 

series, N is the total number of samples in a cycle (N=128) and n is the 

harmonic order. Similar equations are applied for voltage sample series v[k]. 

 @ = Atan�� =�2�B A1809 B                                                                                           �3.7� 

         

Where Ө is the phase angle expressed in degrees. 

Results obtained for vacuum cleaner and LCD television samples are partially 

shown in Figure 3.11 and Figure 3.12  (phase shifts of fundamental frequency, 

3
rd

 and 5
th

 harmonic currents from the fundamental frequency voltage over        

a 10-minute interval are shown). The full lists of results of the 25 harmonic 

orders are given in Appendix C (for the same appliance samples).  

 

 

Figure 3.12:  Phase shift variations (sample vacuum cleaner) 
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Figure 3.13:  Phase shift variations (sample LCD television) 

 

As can be seen, the phase shifts at fundamental frequency exhibit better level of 

stability. While keeping in mind the two specific conditions under which the 

above results were obtained, i.e., the selected TOPAS measurement setting and 

the method applied for phase angle computation, it can be deduced that as the 

measuring instances change, the phase shift of the respective harmonic 

current from the fundamental frequency voltage also changes.   In [55] it is 

mentioned that waveform distortion varies widely in practice and is dependent 

on both load level and system conditions. It is typical to assume that a steady-

state condition exists at the instant at which the measurement is taken, but the 

next measurement at the next time could be markedly different. 

Nevertheless, as mentioned earlier in Subsection 2.5.3, other works such as [39] 

have applied harmonic current phase shifts as load signatures for appliance 

identification. Hence, it will be interesting to investigate the approach used in 

this thesis further and also examine alternatives to verify if indeed there is the 

possibility to make use of this attribute in the fingerprinting process.    

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Recording instances (10 minutes)

P
h
a

s
e
 s

h
if

t 
[d

e
g

re
e
s

]

H01

H03

H05



46 

 

4.   PROPOSED METHODOLOGY FOR APPLIANCE 

FINGERPRINTING 

Based on the outputs of the measurement work and the methods studied in the 

literature, a first phase fingerprinting technique is proposed in this thesis for the 

BeAware project; the steps involved in this process are discussed in subsequent 

sections of this chapter.  

The fingerprinting process illustrated in Figure 4.1, for application in a next-to-

real-time processing environment, shall consist of the following three main 

steps: 

I. Feature extraction – different attributes such as active power and 

current harmonics are extracted from voltage and current waveforms. 

The feature extraction is performed by the BeAware sensor [6]. 

II. Event detection – changes in the extracted features are detected and 

classified as events based on static or dynamic thresholds [56]. 

III. Appliance type identification – a set of attributes, captured after the 

occurrence of a corresponding event, is processed to find its match from 

a load library consisting of known appliance signatures by using pattern 

recognition [34][50][56] or optimization [41][42] techniques. 

 

 

 

  

 

 

 

Figure 4.1: Proposed fingerprinting process 
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The solution proposed in this work is different from several conventional 

appliance identification systems in two areas: 

− As being a first phase implementation in the BeAware project, it utilizes 

measurement data received from a sensing device that monitors a single 

appliance. In contrast, previous and contemporary works in this field 

operate by disaggregating the total load current that is measured at the 

main power entry point.  

− Such works usually analyze measurement data accumulated over            

a longer duration; for instance, a 24-hour period or in certain cases up to 

several days. On the contrary, the fingerprinting system in this project 

attempts to furnish the desired information, i.e., appliance identification, 

duration of operation and amount of energy consumption, using the 

constant stream of data available from the sensing device in near real-

time intervals. 

 

4.1   BEAWARE SENSOR FOR FEATURE EXTRACTION 

The BeAware sensor measures an appliance’s energy consumption and sends 

measurement data wirelessly [6]. Line voltage and current drawn by the 

connected appliance are continuously measured and sampled at a rate of 900 Hz 

and accuracy of 16 bits (this is the specification of the latest model at the time of 

writing this report). This sampling rate allows measurement up to the 7
th

 

harmonic current, which has a frequency of 350 Hz on a 50 Hz line. The sensor 

consists of three functional parts:  

− Analog measurement connection and analog-to-digital conversion. 

− Sensor program running on main micro-controller.  

− Radio communication (wireless link) [6]. 

The sensor transmits two types of Binary Coded Decimal (BCD-coded) 

messages to the base station: average power message, which is sent every          

2 seconds and cumulative energy message that is sent every 15 seconds.  



 

The average power message

total power factor, crest factor, total harmonic 

factor and 3
rd

 harmonic, 5

attributes were included in the power message following 

measurement results in this work

message contains two values 

(Etot) and the other for energy consumed in the last 24 hours (E

Energy consumption

purposes whereas

appliance fingerprinting.

measuring and its nominal consumption is 0.3 W

Figure 4.2: BeAware sensor

 

4.2   EVENT DETECTION

The information obtained from the event detection stage is required for:

– Triggering the 

– Computing the appliance’s 

– Estimating  the 

There are several ways in which events can be defined. For example, events 

can be changes in average 

power message is composed of 8 average values –

power factor, crest factor, total harmonic distortion, fundamental power 

harmonic, 5
th

 harmonic and 7
th

 harmonic currents. 

attributes were included in the power message following the observations o

easurement results in this work as discussed in Subsection 3.3.2. 

contains two values – one for the total duration the sensor is connected 

) and the other for energy consumed in the last 24 hours (E24h).

consumption and active power measurements are used for EnergyLife 

whereas the other more specialized measurements 

fingerprinting. The sensor takes its power supply from the line it

and its nominal consumption is 0.3 W. 

 

Figure 4.2: BeAware sensor (plugged into a wall socket

DETECTION 

The information obtained from the event detection stage is required for:

Triggering the appliance identification phase in the fingerprinting process

Computing the appliance’s duration of operation and frequency of use

Estimating  the energy consumed in that period 

There are several ways in which events can be defined. For example, events 

changes in average active power exceeding a certain threshold, 

48 

– active power, 

distortion, fundamental power 

harmonic currents. The last three 

observations on 

ection 3.3.2. The energy 

one for the total duration the sensor is connected 

). 

are used for EnergyLife 

 are meant for 

its power supply from the line it is 

a wall socket) 

The information obtained from the event detection stage is required for: 

in the fingerprinting process  

frequency of use 

There are several ways in which events can be defined. For example, events   

power exceeding a certain threshold,             
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the appearance of a known start up transient shape or any other suitable 

criterion.   It is possible to select a single method or to have a combination of 

different methods for detecting events [56]. After selecting a suitable method, it 

is necessary to define an appropriate threshold. Previous works such as 

[12][13][17][19] and [35] utilized changes in average active and/or reactive 

power for defining events based on static thresholds. For instance, changes were 

classified as events if they exceeded 100 W in [19] and 200 W in [35]. 

Opting for a static threshold presents its own challenges: choosing a large 

setting means it will not be able detect the operation of small appliances and on 

the contrary, a small setting means it becomes too sensitive for appliances with 

large power consumptions. The event detection method proposed in this work is 

based on dynamic threshold, which allows the detection of events of different 

appliances over a wide range of active power consumption. The advantage is 

that the threshold adjusts itself according to the power consumption level of the 

appliance connected to the sensor, thus avoiding the need to define equipment-

specific settings.  

Figure 4.3 shows the power consumption curve of a sample desktop computer 

during 30 minutes of operation. In this particular example, only the switch-on 

and switch-off transitions (marked with arrows) shall be classified as events 

whereas the fluctuations shall be rejected to prevent inadvertent activation of 

subsequent functions in the fingerprinting process. Hence, event detection 

involves searching for stable transition points (edges) that correspond to an 

appliance turning on or turning off and filtering out the noise created due to 

operational nature of the appliance or disturbances in the electrical network. 

The method used here is based on event detection techniques discussed in [58]. 

The difference between each pair of adjacent points in a fixed time interval is 

calculated and then the standard deviation of all the differences is used as the 

dynamic threshold. Next, the changes between adjacent points are classified as 

events if they fulfill a set of criteria based on the calculated threshold. 
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Figure 4.3: Active power consumption during half-hour operation               

(from desktop computer measurement report) 
  

The change in active power shown in the example of Figure 4.4 will be 

classified as an event if both the following conditions are fulfilled:  

1. The differences [(i+1)-i] AND [(i+2)-i] are greater than twice the 

standard deviation. 

2. The differences [(i+3)-(i+2)] AND [(i+4)-(i+2)] are smaller than twice 

the standard deviation. 
 

 
 

Figure 4.4: Active power change during switch-on transition                                           

(from coffee maker measurement report) 

Fluctuations cause false triggering 

Events 

Sample (i) 

Change in P 

Samples (i+1), (i+2), (i+3) and (i+4) 
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Hence, by considering the sample points i+2, i+3 and i+4, in addition to the first 

two adjacent points i and i+1, it is possible to reduce sensitivity to fluctuations, 

which are further filtered by using a hard-defined threshold. The flowchart in 

Appendix D provides the details of the proposed method. 

This flowchart was coded in MATLAB and its performance was checked using 

active power data extracted from the measurement files. The test done on the 

available two-state, single-mode appliances resulted in the correct detection of 

87.50% of the total possible switch-on events and 90.63% of the total switch-off 

events. However, the event detector did not work reliably on multi-state 

appliances. Table D-1 in Appendix D gives detailed results obtained from this 

test [actual (observed) vs. detected values for both switch-on and switch-off 

transitions are provided].  

The following points were observed during the event detection test:  

− Switch-on events belonging to appliances with large starting current 

(such as refrigerators) were not detected. Besides, the falling edge of 

such initial spike (the instant just before settling into steady-state 

operation) can be wrongly detected as a switch-off event. Hence, an 

improvement is needed to search for the first stable transition point. 

− In the case of multi-state appliances (such as a table fan operating at 

different speeds), improvement is needed to detect intermediate state 

transitions. Note that it is possible to have in-between state changes 

other than the initial switch-on and final switch-off events. 

− By tracking the number of switch-on and switch-off event pairs 

(especially if they occur within a short period of time as in the case of 

microwave oven), it is possible to substantiate the output of the pattern 

recognition algorithm.  
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Improved event detector 

Following this initial attempt to trace state changes of appliances, a signal 

smoothing scheme was added to the event detector, as illustrated in Figure 4.5, 

in order to attenuate the frequent fluctuations and switch-on spikes. 

 

 

 

 

 

 
 

 

Figure 4.5: Additional signal smoothing to improve event detection 
 

Multiple-point-averaging is mentioned in [15] as a means to remove much of 

the noise from a power signal and also to smooth the signal so that significant 

events are easier to identify. An array of raw data, for instance [y1, y2… yN] 

from active power measurement, can be converted to a new array of smoothed 

data in which the ‘smoothed point’ (yk)
sm

 is the average of consecutive 2n+1 

(n=1, 2, 3, ..) points of the raw data y(k-n), y(k-n+1), …, y(k-1), yk, y(k+1), …, y(k+n-1), 

y(k+n).  

   �FG�HI =  * � FGJK23 + 1 KL�
KL��                                                                                        �4.1� 

         

The odd number (2n+1) is the filter width; the greater the filter width, the more 

intense the smoothing effect becomes [59].  

The MATLAB code in [60] was directly used to execute the signal smoothing 

function shown in the above block diagram. Figures 4.6 and 4.7 illustrate the 

signal smoothing that can be achieved when active power data from sample 

appliances are passed through the filter provided in [60]. 
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Figure 4.6: Reducing fluctuations allows easier identification of events       

(from laptop measurement report) 

 

 

Figure 4.7: After the reduction of the level of switch-on spike, significant events 

tend to be dominant and detectable (from freezer measurement report) 

 

Another round of testing with the improved event detector was then performed 

on the appliances whose events were not properly detected during the previous 

test (refer to Table D-1 in Appendix D for the previous test results).  

The results from the second test are summarized next in Table 4.1.  
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1 Desktop PC #2 
Both switch-on and switch-off events detected within 7 seconds deviation 

from actual events 

2 CRT PC monitor #2 

Both switch-on and switch-off events detected within 8 seconds deviation 

from actual events; 

Additional switch-off event wrongly detected 

3 Refrigerator (cycle 1) 
Switch-on event  not detected again;  

Switch-off event detected within 9 seconds deviation from actual event 

4 Laptop #2 

Both switch-on and switch-off events detected within 8 seconds deviation 

from actual events; 

Additional switch-off event wrongly detected 

5 Freezer (cycle 3) 
Both switch-on and switch-off events detected within 8 seconds deviation 

from actual events 

 

Table 4.1: Additional test results for events that were not correctly detected  

 

The application of signal smoothing improved the detectability of events that 

were missed in the previous test. On the other hand, the unwanted detection of 

additional switch-off events and more importantly the failure to detect the 

switch-on event of the refrigerator are the shortcomings of the improved 

detector. The filter width used was N = O; by increasing this width, it is possible 

to further reduce the level of spike and thus permit the recognition of the missed 

switch-on event.  However, as already mentioned above, larger filter widths tend 

to ‘flatten’ the signal curve and may result in the masking of other significant 

events, especially for multi-state appliances with intermediate transitions.  

 

The BeAware project team at HIIT also developed an event detection technique 

using median filter and gradient edge detection [61]. It uses time-stamped active 

power data series as input and constitutes the following three main steps –  

1. Data preprocessing – this step employs median filter to remove 

noise from the input data.  

2. Detection of stable states – the stability of the transition between 

two filtered adjacent samples is checked in this step; this allows to 

further reduce noise level by removing fluctuations that are 
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momentary in nature (and hence do not represent actual state 

changes). 

3. Classification of events – changes between adjacent stable states 

are classified as events if their difference satisfies a set of criteria. 

 

 

Figure 4.8: State transitions and stable states of a multi-state table fan [61] 

 

In Figure 4.8, the bold parts of the curve represent clusters of stable states and 

the red markings indicate the beginning of a stable state after the occurrence of 

an event [61]. In this particular example, even though the user-selectable 

sequences varied during the entire operation, the algorithm was able to properly 

detect the four different states of the appliance (three different operation 

sequences: 0-1-2-3-0, 0-1-3-0 and 0-2-0, as can be observed from the figure). 

The algorithm was tested on 7 appliances to validate its performance [61]. 

Although the overall detection success rate was not quantified, it is evident from 

the individual test results published in the report that it performed reasonably 

well for two-state as well as cyclic appliances within the test domain.  



 

It also worked correctly for 

and dishwasher in this case

detection tests. 

Figure 4.9: Detected switch

 

The missing switch

Table 4.1) was tested

correctly detected as are the 

subsequent cycles. Although this algorithm worked well for appliances with 

large switch-on spikes and also for complex multi

observed from the test results in [61] that the presence of noise even after 

filtering still affects the accuracy of the event detector due to the generation of 

false events. 

 

worked correctly for the more complex multi-state appliances

washer in this case), which were not included in the previous 

 

Detected switch-on and switch-off events (shown in red markings) 

of refrigerator sample  

switch-on event of the refrigerator sample (‘Refrigerator

tested using this algorithm. As shown in Figure 4.9,

correctly detected as are the other switch-on and switch-off events 

subsequent cycles. Although this algorithm worked well for appliances with 

on spikes and also for complex multi-state appliances, it was 

observed from the test results in [61] that the presence of noise even after 

affects the accuracy of the event detector due to the generation of 
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state appliances (table fan 

which were not included in the previous two event-

 

off events (shown in red markings) 

gerator-cycle 1’ in 

using this algorithm. As shown in Figure 4.9, it is 

off events belonging to 

subsequent cycles. Although this algorithm worked well for appliances with 

state appliances, it was 

observed from the test results in [61] that the presence of noise even after 

affects the accuracy of the event detector due to the generation of 
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4.3   APPLIANCE TYPE IDENTIFICATION 

The experiments in the previous section demonstrated different methods for 

detecting the occurrence of events, which are the inputs for the next step in the 

fingerprinting process, namely appliance type identification.  

Referring back to Figure 4.1, the appliance type identification step can be 

actualized by using pattern recognition (which is used in this work) or 

optimization techniques. Irrespective of the method applied, the basis for this 

step is the creation of a load library (database) that consists of known appliance 

signatures [50]. 

Taking into account the parameters being measured and transmitted by the 

BeAware sensor and based on observations from the measurement work, a given 

appliance can be characterized by the following 8 selected features, which were 

discussed in detail in Section 3.3:  

 

Active power (P) | Fundamental power factor (FPF)   

Total power factor (TPF) | Total harmonic distortion (THDI) | Crest factor (CF) 

3
rd

 harmonic current | 5
th

 harmonic current | 7
th

 harmonic current 

 

After forming the load library, the detected events from the previous step are 

classified by a pattern recognition algorithm as belonging to one appliance type 

or another [56]. 
 

APPLIANCE NAME ID P [W] FPF TPF THDI CF 3
RD 

H 5
TH 

H 7
TH 

H 

Space heater 709 1196.09 0.999 0.999 0.9 1.41 0.2 0.4 0.5 

PC LCD monitor 711 33.93 0.937 0.500 156.9 3.51 90.5 80.9 68.9 

Freezer 723 334.27 0.684 0.681 10.2 1.54 8.7 1.7 1.4 
 

Table 4.2: Appliance samples characterized by the selected attribute values 

 

The above table shows three sample entries in the load library; each appliance 

sample is tagged with an identification number (ID) and then characterized by 

the 8 steady-state attributes that were recorded during the measurement period. 

Note that THDI and the odd harmonics are percentage values. 
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4.3.1   PATTERN RECOGNITION USING k-NN ALGORITHM 

A study conducted at Carnegie Mellon University in relation to residential load 

monitoring compared the performances of four different training classifiers in 

noise free (laboratory) as well as real world situations [63][65]. The tested 

training classifiers were Gaussian Naïve Bias, 1-Nearest Neighbor (1-NN), 

Multiclass AdaBoost (MultiBoost) and Decision Tree by using 449 recorded 

events as training dataset that formed a signature database.  

According to experimental results in [65], each algorithm performed differently 

and the best results were obtained using 1-NN. During laboratory testing on       

8 appliances, the average accuracy of this classifier using Fourier regression 

coefficients was 79%; in a real world test, conducted at an occupied residential 

building on 17 appliances, the classifier performed with 80% accuracy [63].   

For the sake of its simplicity and adequate performance, the k-NN algorithm 

was studied in further detail so as to explore its applicability in the BeAware 

fingerprinting process.     

The algorithm was originally suggested by Cover and Hart [66] and nowadays it 

is the most widely applied classification method [74]. Its operation is based on 

comparing a new record with a set of training records in order to find the ones 

that are similar to it [67]. The training phase of this algorithm consists of storing 

the training records and their class labels. 

Each record with n attributes represents a point in an n-dimensional space. 

When given a new record, the k-NN algorithm searches the space for the            

k training records that are nearest to the new record and then predicts the class 

label of the new record using the class labels of these nearest neighbors [67].  

In this algorithm, nearness is defined in terms of a distance metric such as 

Euclidean distance [68]. For any two records consisting of n continuous 

attributes or two points in an n-dimensional space, p = (p1, p2... pn) and 

q = (q1, q2... qn), the Euclidean distance is defined as: 

 



59 

 

P�Q, R� = S*�TK − VK���
KL�                                                                                                      �4.2� 

         

On the other hand, if the records are composed of discrete attributes, then 

hamming or edit distance is applied to define nearness [75]. After calculating 

the distances between the new record and the respective training records, the 

resulting values are then sorted and k nearest neighbors are selected. A training 

record will qualify as nearest neighbor if its distance from the new record is less 

than or equal to the k
th

 smallest distance.  

The next step is to provide a classification decision for the new record based on 

the class labels of the selected k nearest neighbors. Generally, two methods 

exist: unweighted voting, in which the class label most frequent among the 

neighbors is simply selected as the class label of the new record without 

considering the preference of the neighbors, and  weighted voting, in which 

more weight is given to the neighbors that are closer to the new record [67]. 

A common weighting scheme is to give each neighbor a weight of 1/d, 

where d is the distance to the neighbor. Thus, the nearer neighbors will have 

more influence on determining the class label than the more distant ones [68]. 

After weighting the neighbors, the sum of weights of neighbors with the same 

class label is calculated. Finally, the class label corresponding to the neighbors 

with the largest sum of weights is selected as the class label of the new record. 

If the features of records, for instance, x1, x2... xn of x are on different scales, 

then it is necessary to remove scale effects [69]. A common way to do this is to 

transform the records by applying Z-score standardization. A raw feature value 

xij is transformed using the mean and standard deviation of all feature values, 

given by the relationship [70]: WKX − YXZX                                                                                                                       �4.3� 
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Where xij is the j
th

 feature/attribute (e.g., total power factor) of the i
th

 record 

(e.g., desktop PC sample #3), µj is the arithmetic mean and σj is the standard 

deviation of the entire values under the j
th

 feature. The distance calculated using 

these transformed values is called Standardized Euclidean Distance.  

For the i
th

 record xi and new record y, the standardized Euclidean distance can 

be written as: 

P�[\, ]� = S* 4 1ZX�6 ^WKX − FX_��
XL�                                                                                     �4.4� 

      

Since the j
th

 mean cancels out when computing the differences between the 

corresponding feature values, the standardized Euclidean distance is in effect the 

ordinary Euclidean distance with a weight attached to the respective squared 

differences, which is the inverse of the j
th

 variance (1/σj
2
) [69]. 

Unlike other classification algorithms such as Decision Tree that use only one 

subset of attributes for classification, the k-NN algorithm utilizes all attributes 

equally. However, all attributes may not have the same effect on the 

classification process, a phenomenon commonly known as ‘the curse of 

dimensionality’. One approach to overcome this problem is to weight attributes 

differently and compute the distances accordingly [67]. In this way, similarity 

with respect to important attributes becomes more critical than similarity with 

respect to irrelevant attributes [69]. Attribute weighting techniques include 

dynamic k-nearest neighbor algorithm (DKNN) [67] and quadratic 

programming [72] [73]. 

Another important aspect is validation of classification accuracy of the 

algorithm, which is usually performed by using leave-one-out cross validation 

(LOOCV) or k-fold cross validation (k is often equal to 5 or 10). The result 

obtained is indicative of the classification accuracy for that particular dataset, 

which is characterized by:  
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− The number of attributes – e.g., 8 attributes used in this work,  

− The number of records – i.e., the total number of sample entries in the 

load library,  

− The number of class label types – e.g., how many different types of 

household appliances in the dataset 

 

4.3.2   APPLIANCE TYPE IDENTIFICATION TESTS 

A procedure developed in this work for predicting the class label of a new 

record using the k-NN algorithm that employs distance-weighted voting is given 

in Appendix E (Figure E.1). Another procedure for validating classification 

accuracy based on LOOCV is also provided in Appendix E (Figure E.2). In the 

LOOCV procedure, one of the n training records is temporarily removed and is 

used as a validating record on the remaining n-1 records. This process is 

repeated for all training records and finally the percentage of classification 

accuracy is calculated. 

The load library created for testing purpose consists of only those appliances 

with a minimum of two measured samples from the same appliance family so 

that at least the accuracy of classification at k=1 can be checked. Besides, ID 

number is given to each appliance sample in the library so as to simplify the 

computation process. Thus, appliances in the same family will have identical ID 

numbers. Table E.1 in Appendix E gives the classification results obtained using 

1-NN (k=1) approach. The 8 steady-state attributes are also shown in the table 

for each appliance (or for each operating state, in the case of appliances that 

perform sequence of tasks and multi-state appliances). 

It should be noted that the 62.30% overall identification accuracy obtained is in 

effect the result of a first-time classification because the temporary removal of a 

specific record means that there is no stored information about the 

corresponding appliance at the time of class prediction. It is expected that 

subsequent re-classifications of the same set of appliances using data acquired 

from new measurements will have a much improved accuracy owing to the fact 
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that the data obtained from these new measurements will closely match with the 

respective steady-state features already available in the load library. This is 

assuming that newer measurements are conducted while the appliance is 

operating under normal condition and also assuming that there is no significant 

degradation in the performance of the appliance through time. 

Regarding the relevance of each attribute, it was observed for the dataset 

considered here that all attributes have comparable contribution towards 

accuracy of class prediction. This was validated by applying backward 

elimination [76] to check whether improvement in accuracy can be achieved or 

not by discarding one attribute at a time (for example, removing THDI values 

from the library) and then running the classification algorithm using the 

remaining n-1 attributes. 

 

A second round of measurement
1
 was done on a selected group of appliances to 

test the performance of the algorithm in the situation when the information 

about a particular appliance is already available in the load library from              

a previous measurement.  

The steady-state values extracted from the new measurement and the obtained 

result are given in the table below.   

 

APPLIANCE 

NAME ID P [W] FPF TPF THDI CF 3
RD 

H 5
TH 

H 7
TH 

H 

RESULT 

(k=3) 

Microwave oven 1 

(at 500W) 727 781.77 0.989 0.722 28.1 1.65 23.8 12.5 5.2 

 

 

727 

Vacuum cleaner 1 721 825.53 0.896 0.774 56.4 2.03 53.1 17.9 6.8 

 

721 

Desktop PC 1 718 64.90 0.831 0.821 15.1 1.61 13.1 1.4 3.05 

 

718 

Coffee maker 1 708 825.21 0.998 0.910 1.4 1.41 0.2 0.4 0.7 

 

709 

Refrigerator 1 723 94.32 0.724 0.691 7.7 1.49 7.2 1.9 1.5 

 

723 
 

Table 4.3: Steady-state values of appliances from the second measurement  

                                                 
1
 First measurement period was January - February 2010. The second round of measurement   

(on a few selected appliances) was done in June 2010; it was also done using TOPAS power 

quality analyzer. 
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As can be observed from Table 4.3, the pattern recognition algorithm identifies 

appliances
2
 with better precision when the information about the particular 

appliance is already available in the load library.  

 

4.3.3   BUILDING THE FINGERPRINTING PROCESS 

One possible scheme for assembling the different steps discussed in the 

preceding sections is proposed next. It should be noted that the approach needs 

to be modular in order to facilitate necessary modifications for the present 

scenario and also to allow possible migration to fingerprinting at aggregate 

current measurement level.  

The steps are explained next (with reference to the flowchart in Figure 4.14):  

− The sensor monitors the consumption at a specific socket point and 

transmits measurement data periodically. 

− Received Power Messages are temporarily accumulated, say ∆T=300 sec, 

for event detection (NOTE - length of accumulation time can be adjusted). 

For instance, in [77] the appliance recognition program tries to recognize an 

appliance one minute after it is turned on. 

− The event detection system then searches for events related to appliances 

switching-on, switching-off or changing their operating states. 

− The detected events are classified as switch-on or switch-off events and 

temporarily stored with their respective time-stamps. 

− Events analysis starts with switch-on events. Even if both types of events 

are detected during a single search (∆T=300 sec), as shown in Figure 4.10, 

events analysis shall start with switch-on events. For the purpose of 

analysis, an 8-element vector ‘switch-on profile’ is created using attributes 

from the (n+3)
th

 Power Message (i.e., assuming the first switch-on event 

was detected in the n
th

 Power Message). 

                                                 
2
 The numbered appliance samples in the first column of Table 4.3 refer to the corresponding 

appliance samples in the test results of the previous measurement (Table E.1 in Appendix E). 
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operation.

− The switch-on

(e.g. a pattern recognition algorithm) to find its match from a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: 

− If no match is found, 

and accordingly the load library will be updated with the new information 

(i.e., a new entry will be created using

profile, which is equivalent to its steady

− The quantity of detected switch

appliance’s nature from an operation point

discussed earlier in 

� continuous 

Appliances with 

events within a single accumulation time as shown in Figure

A delay of 3 Power Message steps (equivalent to 

introduced here in order to allow the appliance enter its steady

operation. 

on profile is then fed to an appliance identification system 

(e.g. a pattern recognition algorithm) to find its match from a 

: Switch-on profile and switch-off profile occurring within 

a single accumulation time 

 

is found, then the user will be prompted to name the appliance 

and accordingly the load library will be updated with the new information 

w entry will be created using the appliance name and its switch

hich is equivalent to its steady-state profile).  

The quantity of detected switch-on events can be used as an indicator of the 

appliance’s nature from an operation point-of-view; this approach was 

discussed earlier in Subsection 3.3.1. The possible cases are:  

continuous / long-cyclic / short-cyclic  

Appliances with short-cyclic operation generate a number of switch

events within a single accumulation time as shown in Figure

64 

(equivalent to 6 seconds) is 

introduced here in order to allow the appliance enter its steady-state 

is then fed to an appliance identification system    

(e.g. a pattern recognition algorithm) to find its match from a load library. 

occurring within                 

be prompted to name the appliance 

and accordingly the load library will be updated with the new information 

and its switch-on 

events can be used as an indicator of the 

; this approach was 

 

operation generate a number of switch-on 

events within a single accumulation time as shown in Figure 4.11, 
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whereas for those appliances with continuous (Figure 4.12) or long-

cyclic (refer back to Figure 4.9) operations, there will be at most one 

switch-on event. 

� multi-mode / single-mode  

Appliances such as dishwashers switch from one operating state to 

another as their operation transits between sequences of tasks. It is 

probable that multiple transitions can take place within a single 

accumulation time. However, for appliances with a single task, there 

will be at most one switch-on event (exceptions are single-task 

appliances with short-cyclic operations). 

�  multi-state / two-state   

Multi-state appliances can possibly operate in short succession at two 

different switch-on states, for instance, due to user interaction as in the 

case of a cooking plate or a table fan (Figure 4.13). On the other hand, 

two-state appliances have only one switch-on state such as the toaster in 

Figure 4.12, which means they usually generate at most one switch-on 

event within a single accumulation time (exceptions are two-state 

appliances with short-cyclic operations).     

 

 

 

Figure 4.11: Microwave oven operation – several changes of states in a short 

interval (from measurement report) 
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Figure 4.12: Toaster operation – continuous, single-mode, two-state operation 

(from measurement report) 

 

 
 

Figure 4.13: Table fan operation – multi-state changes          

(from measurement report) 

 

− After appliance identification, the switch-on profile (with its appliance ID) 

is entered into a list of “active” switch-on profiles until a corresponding 

switch-off profile is found. 

Level 3 

Level 2 

Level 1 
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− Next, the analysis of switch-off events is carried out. In a similar way, an   

8-element vector ‘switch-off profile’ (Figure 4.10) is created using attributes 

from the (n-1)
th

 Power Message (i.e., assuming the first switch-off event 

was detected in the n
th

 Power Message). 

− The quantity of detected switch-off events can also be used as an indicator 

of the appliance’s nature, particularly to provide a distinction between 

short-cyclic operations and long-cyclic/continuous operations. As can be 

seen in Figure 4.11, appliances with short-cyclic operations generate a 

number of switch-off events within a single accumulation time. 

− The switch-off profile is then compared with an “active” switch-ON profile 

(“active” refers to a profile for which a matching switch-off profile is yet to 

be found): 

� If there is no stored “active” switch-on profile, it means an appliance 

was in operation without its switch-on event being detected. In this 

case, the ‘appliance ID recovery’ function will be run to identify the 

appliance type using its switch-off profile. This information can also be 

passed for investigation to check why the switch-on event was missed 

and to estimate the length of operation and energy consumption. 

� If there is only a single “active” switch-on profile, then it is directly 

compared with the switch-off profile. 

� On the other hand, if there are a number of active switch-on profiles 

belonging to the same appliance (e.g., multi-state appliance), then the 

most likely combination of the stored profiles needs to be formed    

(i.e., in terms of active power consumption, which is the only addable 

attribute) and then compared with the switch-off profile. However, if 

these multiple active switch-on profiles belong to different appliances, 

it indicates that the older ones had their switch-off events missed      

(not detected) and hence they also need to be investigated further. 
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− If a match is found in one of these scenarios, the last step is to compute the 

length of operation time and also the corresponding energy consumption, 

which concludes the switch-off events analysis. 

The scheme discussed above is one possible way of actualizing the appliance 

fingerprinting process. A project-wide design and implementation of this 

process for a real world application will involve a number of complexities 

including:  

− Handling the different varities of household appliances that keep on getting 

operationally sophisticated due to continuous technological  innovations. 

− Consumer interference and its impact on events generation (note that all the 

experiments done in this work were performed in a controlled manner for 

testing purposes). 

− Presence of aging and abnormally operating appliances. 

− The need for systematic collection of load signatures to form a 

comprehensive load library. 
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Figure 4.14: Flow chart for the proposed automatic appliance              

recognition process 

 

 
4.4   APPLICATION IN ULTRA SMART ADVICES   

With the present set up, the BeAware sensor is expected to monitor the 

operation of individual appliances precisely. This allows the creation of a 

feedback system to inform consumers about energy-saving methods in the form 

of advice tips. Ultra smart advices are one category of such feedback 

mechanisms and require accurate measurement and analysis [78]. 

Among the different ultra smart advices planned for implementation in the 

project, the monitoring of ‘refrigerator door opening action’ was studied in 
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connection with advice tips for managing refrigerator/freezer energy 

consumption. Refrigerators are major energy consumers and in many 

households that do not have air conditioning, they use as much and sometimes 

even more electric energy than all other consumptions put together [79]. This 

consumption is further incremented by user actions, such as frequent door 

openings [80] and storage of warm meals [79][80], which temporarily alter the 

appliance’s steady-state cycle of operation. 

A specific test was done to investigate the attributes that allow the detection of 

the door opening actions. It was observed that the small change in active power 

recording, due to the compartment light turning on when the door is opened, can 

be used as an indicator. Figure 4.15 below illustrates the changes in active 

power consumption at four different instances during the test. 

 

 
 

Figure 4.15: Refrigerator door opening detection test 

 

The change in active power reading at the moment of door opening is 

approximately 12 W in this example. Figure 4.16 shows the detected events 

(related to the door openings) using the event detector in [61].  
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Figure 4.16: Detected events during refrigerator door opening test [61] 

 

By tracking these changes
3
 in active power, it shall be possible to associate the 

number of events with refrigerator door opening actions and then generate the 

intended advice tips.  

 

 

 

 

 

 

 

 

 

 

                                                 
3
 The magnitude of change is ideally in the range 12-15 W; most online retailers sell 15 W small 

Edison screw (SES) type fridge bulbs. 
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5.   CONCLUSION 

This thesis studied previous works done in Non-intrusive Appliance Load 

Monitoring System (NIALMS), analyzed measurement data that were collected 

during the operation of different household appliances and proposed a generic 

classifaction for residential loads as well as technique for appliance 

fingerprinting.  

The fingerprinting technique fundamentally differs from previous works in two 

key areas:  

1. Appliance operation measurement is performed at socket outlet level as 

opposed to most NIALMS techniques, which usually disaggregate the 

total load measured at the power entry point, and  

2. The detection of events and appliance types is done within a short delay 

after the occurence of the actual events, in contrast to the operation of 

most NIALMS techniques, which work on data accumulated over a 

longer period of time.  

The measurement work was performed on common household appliances to 

record their operational behavior during turning on, steady-state operation and 

turning off. The proposed load classification categorizes appliances into one of 

three generic classes – resistive loads, power electronic loads or motive 

(inductive) loads.  

The proposed appliance fingerprinting consists of three main stages – feature 

extraction, event detection and appliance type identification. The feature 

extraction stage is carried out by the BeAware sensor and it involves the 

extraction of electrical attributes related to the operation of the appliance such as 

active power consumption and harmonics content. In the event detection stage, 

changes in the extracted features are detected and classified as events. Finally in 

the appliance identification stage, a set of attributes (captured after the 

occurence of a corresponding event) is processed to find its match from a load 

library that consists of known appliance signatures. The load library is formed 
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using 8 selected electrical attributes that are extracted from the respective 

steady-state operating region of every appliance in the test domain.  

Necessary improvements to the proposed system and related further works are 

discussed below: 

− Explore other electrical attributes that can be used for enhancing the 

pattern recognition stage – for instance, an alternative approach can be 

sought for the experiment that was done in this work on current 

harmonics phase shift from the fundamental frequency voltage. 

− Verify with tests if the event detection system in [61] can be applied to 

aggregate loads and, if required, make necessary modifications – this is 

in anticipation that the current BeAware sensor version will be scaled up 

to measure the consumption at the main power entry point.  

− Improve the reliability of the pattern recognition system with regard to 

the operation of more complex appliances that go through different 

cycles (states) to complete a certain task. Hidden Markov Model is 

introduced in [61] as one possible techinque to model such types of 

appliances. Besides, more samples per appliance type need be collected 

during the project trial phase so as to enhance the load library and thus 

improve classification accuracy. 

− Work on the integration of appliance fingerprinting and balance sheet
4
 

applications to arrive at a unified solution. 

− Develop additional applications to take advantage of the readily 

available data – possible applications include power quality monitoring 

using harmonics measurement data, load scheduling (for utilities) based 

on historical data and tracking of appliance performance through the 

course of its lifetime (normally, degradation of efficiency is expected to 

occur with time). 

 

                                                 
4
 In parallel to this work, a ‘balance sheet’ application is being developed in the project in order 

to keep track of the consumption that is not directly monitored by the BeAware sensor (mainly 

the consumption of larger loads that are directly connected to the electric supply system). 
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APPENDIX  A 
 

NIALMS performance during the EPRI beta test program –  
 

 
 

Table A-1: Results published at the end of the EPRI beta test period [12] 

 

Average Performance Ratio – sum of the energy estimated by NIALMS during 

the test period divided by sum of parallel-metered (reference) energy during the 

same period 

Minimum, Maximum Performance Ratios – the monthly minimum and 

maximum performance ratios during the test period 

Average Percentage Difference of NIALMS to Parallel –  

 `��2a2bbcb dc�cacP c3caeF� −  �5(fg." c3caeF� ��2a2bbcb dc�cacP c3caeF� h ∙ �100%� 
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APPENDIX  A (contd.) 
 

 

Table A-2: Appliances used for NIALMS based on integer programming [41] 

 

 
 

Eq. A-1: Constraint conditions derived from the appliance operating states 

shown in Table A-2 above (input to optimization tool) [41] 
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APPENDIX  B  
 

Specifications of voltage and current sensors of TOPAS 1000 Power Quality 

Analyzer:  

 

Voltage sensor 400 V  

Measuring range                  4...680 V 

Accuracy / phase angle        0.11% / 0.005
0 

(45 Hz…65 Hz) 

         0.15% / 0.034° (65 Hz ...1 kHz)         

         0.2% / 0.125° (1 kHz…3 kHz)         

Frequency range 
                         

45 Hz ...3 kHz 

 

Clip-on current sensor 100/10 A  

Measuring range                 100 mA...120 A / 100 mA...12 A 

Accuracy / phase angle       0.5% / 3.50 

Frequency range                 45 Hz ...10 kHz 

 

Clip-on current sensor 5/1 A  

Measuring range                 50 mA…14 A / 50 mA...2.8 A 

Accuracy / phase angle        0.5% / 3
0
 

Frequency range 
                         

40 Hz ...5 kHz 
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APPENDIX  B (contd.) 
 

  Appliance name 

No. of 

samples  

1 Desktop PC (processor) 4 

2 CRT PC monitor 2 

3 LCD PC monitor 2 

4 Laptop 3 

5 Printer 1 

6 Scanner 1 

7 Energy-saving/CFL lamp 4 

8 Fluorescent lamp with conventional ballast 4 

9 Fluorescent lamp with electronic ballast 2 

10 LED lamp 4 

11 Incandescent lamp 2 

12 Halogen lamp 2 

13 Microwave oven 2 

14 Toaster 1 

15 Freezer 1 

16 Dishwasher 2 

17 Refrigerator 1 

18 Coffee maker 2 

19 CRT television 2 

20 LCD television 2 

21 Plasma television 1 

22 Electric space heater  2 

23 Table fan 2 

24 Washing machine 1 

25 Vacuum cleaner 2 

 

Table B-1: Types of appliances and number of samples used                              

in the measurement work  
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APPENDIX  C  
 

Flow chart for computing: 
 

− Phase shift between fundamental voltage and current harmonics,  

− Phase shift betweeen corresponding harmonic voltage and current, 

− Crest factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Y 

N 

N 

Y 

Start 

Compute Fourier series coefficients 

(for both current and voltage) 

Get V & I samples 

from one measuring 

instance (8 cycles) 

Begin with the    

1st cycle and        

1st harmonic 

Compute V & I phase angles using 

the Fourier coefficients 

Compute phase shift between 

fundamental voltage & harmonic 
current and also between 

corresponding harmonic voltage & 

harmonic current 

Last harmonic 

order? 

 (Max 25) 

Compute also crest factor (CF) for 

the cycle (using I samples) 

Last cycle in 

the 

measurement? 

(Max 8) 

Compute average phase 

shifts over the 8 cycles 
for each harmonic order 

Compute also average 

crest factor over the 8 

cycles  

End 



 

APPENDIX  C 
 

Harmonic currents phase shift calculation

Results obtained for 

of harmonic currents 

over a 10-minute interval

 

Table C-1: Harmonic currents phase shift

C (contd.)  

Harmonic currents phase shift calculation 

Results obtained for vacuum cleaner and LCD television samples

of harmonic currents up to 25
th

 order from the fundamental frequency voltage 

minute interval).  

 

1: Harmonic currents phase shift (in degrees) – vacuum cleaner sample
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samples  (phase shifts 

from the fundamental frequency voltage 

 

cleaner sample 



 

APPENDIX  C
 

 

Table C-2: Harmonic currents phase shift (in degrees) 

 

 

 

 

 

 

 

 

 

 

 

C (contd.) 
 

2: Harmonic currents phase shift (in degrees) – LCD television sample
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LCD television sample 
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APPENDIX  D 
 

Flow chart for event detection system based on dynamic threshold: 
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N

o 

Y

Segregate the [(i+1)-1] 

changes into ON and OFF 

transitions 

Start 

Compute changes in real power 

[(i+1)-i] and [(i+2)-i] for the 

samples in the series 

Compute the standard deviation 

of all [(i+1)-i] (the changes 

between adjacent values)  

Are there pairs of 

[(i+1)-i] and [(i+2)-i] 

changes greater than 

twice the standard 

deviation? 

 

Are the pairs after 

two steps less than 

twice the standard 

deviation? 

Get series of active 

power samples with 

their time-stamps  

 

Add consecutive ON 

transitions and also do for 

OFF transitions 

Discard ON and OFF 

transitions less than 40% of 

the largest ON real power 

Compare ON and OFF 

sequences and discard extra 

ON transitions occurring 

between corresponding ON 

and OFF transitions  

ON and OFF 

events with time-

stamp 

Y

e

End 
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APPENDIX  D (contd.) 

 

 
 

 

Table D-1: Event detection test results obtained for the appliances monitored 

during the measurement period.                                                                            
(1)

 Accurate within ±2 sec. 
(2)

 and 
(3)

 undetected events. 
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APPENDIX  E 
 

E.1 – Flow chart for appliance type identification using distance-weighted                  

k-NN classifier: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Start 

Define k (set the number of nearest 

neighbors to be searched) 

Create a unified dataset by 

combining the training records and 

the new record 

Get the training 

records and the 

new record to be 

labeled 

Compute the standardizing 

factors (inverse of variances) per 

attribute for the unified dataset 

Compute the standardized 

Euclidean distances (between the 

new record and each training 

record) 

Select k records with minimum 

distances as neighbors of the new 

record 

Get the IDs of these neighbors 

from the load library 

Compute inverse distances of 

these neighbors for weighted 

voting  

Calculate sum of weights (sum of 

inverse distances) of neighbors 

with the same ID 

Select ID of the 

largest sum as class 

label of the new 

record 

End 
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APPENDIX  E (contd.) 
  

E.2 – Flow chart for LEAVE-ONE-OUT-CROSS-VALIDATION (LOOCV)  
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Start 

Define k (set the number of nearest 

neighbors to be searched) 

Get the load library 

(whole data) 

Compute the standardizing factors 

(inverse of variances) per attribute 

for the whole library 

Compute the standardized 

Euclidean distances (between 

the validation record and each 

training record) 

Select k records with minimum 

distances as neighbors of the 

validation record 

Get the IDs of these neighbors 

from the load library 

Compute inverse distances of 

these neighbors for weighted 

voting  

Calculate sum of weights (sum 

of inverse distances) of 

neighbors with the same ID 

Declare vote results 

for all validation 
records and compute 

accuracy of classifier 

Select one of the 

records as validation 

data & form the other 

records into training 

data 

Select ID of largest sum as class 

label of the validation record 

 

All records 

used as 

validation 

record? 

End 
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APPENDIX  E (contd.) 

 

 
 

Table E-1: Classification result using k-NN at k=1                                      

(Legend: kaala = m – correct classification; kaala = n – misclassification) 
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APPENDIX  F 

Electronic copies of the followng documents are available on CDROM at the 

Power Systems Laboratory:  

� Measurement data for each appliance in the test domain (in TOPAS file 

format) 

� Appliance-wise measurement reports (in MS-Excel format) 


