
Aalto University
School of Science and Technology
Faculty of Information and Natural Sciences
Degree Programme of Computer Science and Engineering

Mika Suvanto

A Monitoring System for Authentication and

Authorisation Infrastructure

Master’s Thesis

Espoo, April 26, 2010

Supervisor: Professor Tuomas Aura

Instructor: Dr. Mikael Linden

Aalto University
School of Science and Technology ABSTRACT OF THE
Faculty of Information and Natural Sciences MASTER’S THESIS
Degree Programme of Computer Science and Engineering

Author: Mika Suvanto

Name of the thesis: A Monitoring System for Authentication and Authorisation

Infrastructure

Date: April 26, 2010 Number of pages: 54 + 1

Language: English

Professorship: Data Communications Software Code: T-110

Supervisor: Prof. Tuomas Aura

Instructor: Dr. Mikael Linden

Federated authentication and authorisation infrastructure enables Single Sign On with

the user’s home organisation account to services provided by other organisations. Finnish

universities, polytechnics and CSC – IT Center for Science have established the Haka

federation, which is used for user authentication in many WWW services offered for stu-

dents and faculty. The availability and reliability of authentication and authorisation

infrastructure is critical to the services that rely on it.

This thesis introduces the problem of monitoring an authentication and authorisation in-

frastructure. A monitoring application called AAIEye is introduced. The application is

used for monitoring availability and usage statistics of the authentication and authorisa-

tion infrastructure. It is available as open source and can be used for monitoring other

federations that use the same kind of technology as Haka, i.e. SAML 2.0 or Shibboleth.

The distributed nature of a federation makes it demanding to operate it and diagnosing

problems can be difficult between different organisations. Monitoring the service avail-

ability is hard, because monitoring a single component does not say much about the

availability of the federation. In this thesis, an end user approach is used to address this

problem, and availability monitoring is implemented by simulating a WWW browser.

Another challenge for a federation is collecting the usage statistics. The services of the

federation create logs, but getting the whole picture of how much the services are used

would help when planning new services or federation operator’s work. For this purpose, a

service for collecting and presenting the usage statistics of a federation is introduced.

Keywords: monitoring, Haka, federation, authentication, authorisation, SAML

ii

Aalto-yliopisto
Teknillinen korkeakoulu DIPLOMITYÖN
Informaatio- ja luonnontieteiden tiedekunta TIIVISTELMÄ
Tietotekniikan tutkinto-/koulutusohjelma

Tekijä: Mika Suvanto

Työn nimi: Luottamusverkoston valvontajärjestelmä

Päivämäärä: 26.4.2010 Sivuja: 54 + 1

Kieli: Englanti

Professuuri: Tietoliikenneohjelmistot Professuurikoodi: T-110

Työn valvoja: Prof. Tuomas Aura

Työn ohjaaja: Tekn. tri Mikael Linden

Luottamusverkosto mahdollistaa käyttäjille kertakirjautumisen toisen organisaation pal-

veluihin oman organisaationsa käyttäjätunnuksella. Suomen korkeakoulut yhdessä tie-

teen tietotekniikan keskus CSC:n kanssa muodostavat Haka-luottamusverkoston, jota

käytetään laajalti opiskelijoille ja henkilökunnalle tarjottavissa WWW-pohjaisissa pal-

veluissa käyttäjien autentikointiin. Luottamusverkoston luotettava toiminta ja saatavuus

ovat olennaisia siitä riippuville palveluille.

Tässä työssä tutustutaan luottamusverkoston valvonnan erityispiirteisiin ja haasteisiin.

Työssä esitellään valvontaa varten kehitetty AAIEye-ohjelmisto, jota käytetään Haka-

luottamusverkoston valvontaan ja käyttötilastointiin. Ohjelmisto on julkaistu avoimen

lähdekoodin periaatteella ja sovellettavissa myös muiden SAML 2.0 tai Shibboleth -

tekniikkaa käytettävien luottamusverkostojen valvontaan.

Luottamusverkoston hajautettu rakenne tuo sen ylläpitoon haasteensa, ja vikaselvittely

monen organisaation välisissä palveluissa voi olla työlästä. Myös palveluiden saatavuuden

valvonta on vaikeaa, koska yhden komponentin valvonta ei vielä kerro koko luottamusver-

koston toiminnasta. Tämän vuoksi työssä kehitetyssä ratkaisussa palveluiden saatavuuden

valvonta on toteutettu loppukäyttäjän näkökulmasta WWW-selainta simuloimalla.

Hajautetussa palvelussa haasteena on myös käyttötilastojen kerääminen. Luottamusver-

koston palvelut muodostavat kukin oman lokinsa, mutta käytön kokonaiskuvan saaminen

auttaa luottamusverkoston operoinnin ja uusien palveluiden suunnittelussa. Työssä esi-

tellään ratkaisu käyttötilastojen keskitetystä tallennus- ja esityspalvelusta.

Avainsanat: valvonta, Haka, luottamusverkosto, autentikointi, auktorisointi, SAML

iii

Acknowledgements

This thesis has been written along my work at CSC – IT Center for Science, and I

want to thank my employer for providing me such interesting topic and possibility

to do this work. My colleagues at CSC have given their impact on this work as the

ideas were discussed during the project, and I want to thank them for it. I have

learned a lot during this project.

I want to thank Professor Tuomas Aura for supervising this thesis, Professor Sasu

Tarkoma and my instructor, Dr. Mikael Linden for their comments and feedback.

Also I would like to thank Dr. Jürgen Rauschenbach and other members of Geant2

JRA5 project. Their interest and feedback during the project has given me a lot of

ideas to think about.

Finally, a big thanks goes to my friends and family for their support. It has been a

long way.

Tapiola, April 01, 2010

Mika Suvanto

iv

Contents

Abbreviations viii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.3 Evaluation Criteria . 3

1.4 Scope . 4

1.5 Structure . 4

2 Authentication and Authorisation 5

2.1 Authentication . 5

2.2 Authorisation . 6

2.3 Authentication and Authorisation Infrastructure 7

2.4 Federated Identity . 7

2.4.1 Attributes . 9

2.4.2 Managing Trust . 10

2.4.3 Single Sign On and Single Logout 10

2.5 Security Assertions Markup Language (SAML) 12

2.5.1 Liberty Alliance and WS-* Protocols 13

2.5.2 SAML protocol versions 1.1 and 2.0 14

2.5.3 Profiles . 14

2.5.4 XML Digital Signatures . 15

2.5.5 SAML Metadata . 15

2.5.6 Identity Provider Discovery 16

2.6 Shibboleth . 17

v

2.6.1 Identity Provider . 19

2.6.2 Service Provider . 20

2.7 Haka federation . 20

2.8 The eduroam . 21

3 Beyond federations 24

3.1 Building interoperability between federations 24

3.1.1 Technical and practical challenges 25

3.2 eduGAIN . 26

3.3 Kalmar Union . 28

3.4 Monitoring a Confederation . 28

4 Requirements for AAI Monitoring System 30

4.1 Motivation . 30

4.2 Requirements Specification . 30

4.2.1 Interfaces . 31

4.2.2 Performance . 32

4.3 Privacy and Security . 32

4.4 Related Work . 33

4.4.1 EDDY . 33

4.4.2 eduroam monitoring . 34

4.4.3 Nagios . 34

4.4.4 Summary . 34

5 Design and Implementation 36

5.1 Design Goals . 36

5.2 Architecture . 36

5.2.1 Monitoring Server . 37

5.2.2 Probes . 40

5.2.3 Communication between Probes and the Server 43

5.2.4 User Interfaces . 44

5.3 Deployment . 47

6 Results 48

6.1 Status of the Work . 48

vi

6.1.1 Functionality . 50

6.1.2 Security and Privacy . 50

6.1.3 Performance . 51

6.2 Future Work . 51

7 Conclusions 53

A List of Illustrations 55

Bibliography 56

vii

Abbreviations

AAI Authentication and Authorisation Infrastructure

ADFS Active Directory Federation Services

BE Bridging Element

CA Certificate Authority

DS Discovery Service

DSA Digital Signature Algorithm

FPP Federation Peering Point

GPL GNU Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

URI Uniform Resource Identifier

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IdP Identity Provider

IEEE Institute of Electrical and Electronics Engineers

IIS Internet Information Services

IP Internet Protocol

MDS Metadata Service

viii

OASIS Organization for the Advancement of Structured Information

Standards

OID Object Identifier

PKI Public Key Infrastructure

RADIUS Remote Authentication Dial In User Service

RSA Rivest, Shamir and Adleman algorithm

SAML Security Assertions Markup Language

SCHAC Schema for Academica

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

SSO Single Sign On

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

URN Uniform Resource Name

UTF Unicode Transformation Format

WAYF Where Are You From

WFAYF Which Federation Are You From

WLAN Wireless Local Area Network

WS Web Services

WWW World Wide Web

XML Extensible Markup Language

ix

Chapter 1

Introduction

1.1 Background

Wide range of applications today share a common need for authentication – that is,

determining whether someone or something is, in fact, who or what it is declared to

be. Closely related to the problem of authentication is authorisation – determining

whether someone or something has a permission to do something. For example, an

ATM requires that the user authenticates herself using her credit card and a PIN

code – a successful authentication authorises her to withdraw money from her bank

account. The problem is common for many different applications within organisation

and also inter-organisationally – the organisation barriers have to be crossed today

in many ways.

Inter-organisational authentication and authorisation has been a problem of many

applications which have to identify their users reliably. There is a need for secure

user authentication and an up-to-date database of users personal data, which can

be used in authorisation decisions. These tasks are common for a wide range of

applications. Currently, the authentication is commonly done with a separate user-

name and password to each service accessed. The users have several usernames and

passwords to remember, and this causes more administrative work on user man-

agement and possibly weakened security as the password quality tends to decrease

when there are many separate passwords needed. Authorisation is also problematic

as the up-to-date user data has to be stored in every service, but many applications

have little means to make sure that this data is updated.

An Authentication and Authorisation Infrastructure(AAI) offers a solution to many

1

CHAPTER 1. INTRODUCTION 2

of these requirements. The idea is to provide a single digital identity and to store the

identity data about the user in one location – which is then handled by an Identity

Provider (IdP). Identity Provider is responsible for authenticating the users and

providing the identity data, which can be queried by the services. The services

must then rely on the information provided by the Identity Provider, meaning that

there must be trust between the services offering authentication and the services

using that information. This trust network is called a federation.

This thesis concentrates on AAI solutions for web applications. We will introduce the

Security Assertions Markup Language (SAML) which has become a popular solution

in building AAI between organisations. We will also have a look on Shibboleth

software developed by Internet2 as an implementation of SAML protocol and see

how it is used.

In higher education there are many applications that can benefit from AAI, library

and e-learning systems like Moodle as an example. In 2002, CSC – IT Center for

Science and several Finnish universities started a project to support the development

of user management processes. This project, Haka, resulted in establishing a Finnish

higher education federation which also got the name Haka. The technical solution for

Haka federation was Shibboleth. Haka has been in production use in Finnish higher

education since August 2005. It is currently used in most of the Finnish universities

and in many polytechnics, and in various service providers such as library portals,

including service providers outside Finnish borders. Shibboleth is being used in

several other countries as well, like France, Switzerland and the United States.

Some work is also being done to enable co-operation of the national federations.

The Géant2/Joint Research Activity 5 (GN2/JRA5) project tries to establish an

European confederation using eduGAIN AAI, a software currently being developed

across the Europe aiming to enable interoperability between different AAIs. Other

work in this are is Kalmar Union which started in September 2009. Kalmar Union

connects educational federations of the Nordic countries, including Finland, Sweden,

Norway, Denmark and Iceland.

As the federations are gaining more members and more critical services, their oper-

ationality becomes more important, and to measure this some statistics are needed.

This means that the need for service monitoring and usage statistics is growing.

There are wide range of monitoring systems suitable for network and service moni-

toring, but it turns out that the existing solutions do not fit well for the needs of AAI

monitoring. The distributed nature of AAI adds complexity, since the AAI crosses

organisational borders and there is no centralised entity in charge. The distributed

CHAPTER 1. INTRODUCTION 3

management, the handling of sensitive personal information and the complex and

varied deployment environment makes it challenging to maintain the federation, and

it also makes it challenging to build a monitoring and a reporting system for them.

To overcome these, this thesis describes the design and implementation of a moni-

toring and reporting system suitable for web-based authentication and authorisation

infrastructures.

1.2 Problem Statement

The objectives of this thesis are to design and implement a monitoring and reporting

system for federations. The main functional requirements are that the solution:

• Can monitor the availability of the federation providers. This means, that the

system must be able to determinate whether the components are working and

configured correctly - so the users can actually access the resources.

• Can produce usage statistics, that can be used in monitoring and developing

the federation. This includes the number of login events in the federations

services.

• Does not compromise the security of the federation.

• Does not compromise the privacy of the end users.

• Does not notably affect the performance of the federation.

These requirements are discussed in more detail in Chapter 4.

1.3 Evaluation Criteria

The main purpose of the work is to produce a practical and useful solution for

monitoring and reporting in AAI. One way to measure successfulness is how the

requirements are met.

The other way of measurement is to look how quickly and comprehensively the

solution is deployed. Due to nature of distributed environment and organisations

there are however lots of other dependencies slowing down the deployment. These

are not purely technical or can be affected by this work – the workload of the system

CHAPTER 1. INTRODUCTION 4

administrators, their technical competence, data security policies in universities are

examples of factors that will have effect on the speed of deployment.

The monitoring and reporting system will collect status data on how the federation

works. This data can be used in defining an evaluation criteria - the number of

false alarms versus real cases, the required maintenance work, the detection and

problem solving time in failure cases can be used when estimating the success of

this work. However, as there is no historical data, the real value of the work can

not be calculated just by numbers.

1.4 Scope

The architecture is designed to fit for the monitoring and reporting needs of Haka

federation, and tries to make it possible to use it even in upcoming eduGAIN con-

federation.

The implementation is focused on the Shibboleth software and protocol, and in

particular its usage in Finnish higher education federation Haka.

1.5 Structure

This thesis is structured as follows:

Chapter 2 describes the main concepts of AAI and architecture of Shibboleth and

eduGAIN authentication and authorisation infrastructures.

Chapter 4 explains the requirements of monitoring and reporting that were defined

in the beginning of this work, and introduces some existing applications that are used

for network systems monitoring and reporting and how they meet the requirements.

In Chapter 5, the architecture, design and implementation choices of the work is

described.

The results of the work are then summarised in Chapter 6.

Chapter 2

Authentication and

Authorisation

This chapter introduces Authentication and Authorisation Infrastructure, its main

ideas, protocols and components and how they work together. The protocols and

their interoperability is discussed and two examples of identity federations – Haka

federation and eduroam – are introduced.

2.1 Authentication

There is a need to distinguish users in many applications to provide personalised

service for the users, for example when using e-mail. A computer system needs to

find out who the user is and link the user to her personal data. E-mail address

and social security number are examples of identity attributes, which form the users

digital identity.

Authentication is a procedure where user’s identity is verified. There are numerous

different authentication mechanisms, which can be categorised in several ways. The

authentication mechanism can depend on

• Something that the user knows (username and password, for example).

• Something that the user has (an ID card, private key).

• Something that the user is (biometrics [10]).

5

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 6

or some combination of these. For example, an ATM requires a valid card (which

the user has) and a correct password (which the user should know).

A problem when authenticating users is confidence in authentication strength. By

relying on username and password there is always a possibility that they are used

by someone else than the person they belong to. Relying on something that the

user has, like car keys, has similar weakness. On the other hand, using more secure

authentication methods may be too expensive considering the risks. With authen-

tication strength we can sort authentication mechanism based on the confidence we

have on them.

The strength of authentication and level of assurance depends on the authentication

mechanism, but a strong authentication mechanism is not sufficient alone. The

identity of the user must be ensured properly when opening a user account, and

every time when the identity data is altered. Changing a password is one example

– the request for password change must also be authenticated properly.

2.2 Authorisation

An authorisation decision is done after authentication. Positive access control deci-

sion means that the authenticated user has access to the service. There are several

ways to do authorisation decisions, depending on their authorisation policy. One

simple way is that all authenticated users are also authorised, but things can go far

beyond that. An authorisation decision can be based, for example, on:

• The roles that the identity has (A professor has an access to student’s grading

system, while a student has not).

• Time; the authorisation may be dependent on some time interval (the doors

of the campus are open only daytime).

• The strength of the authentication.

• Delegation; rights may be delegated to other user.

• The requested data or service.

• A (physical) location; an IP address range (Intranet is only accessible inside

the company’s own network).

• Access control list or attributes of the requested data or service.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 7

2.3 Authentication and Authorisation Infrastructure

The idea behind Authentication and Authorisation Infrastructure (AAI) is to offer

authentication and authorisation as a service which applications may rely on. Mid-

dleware software (see Figure 2.1) is defined “as a layer of software whose purpose

is to mask heterogeneity and to provide a convenient programming model to ap-

plication programmers” [14]. AAI software can be categorised as middleware as it

removes the need for every application to define its own mechanism for authentica-

tion and authorisation. An Authentication Service is a service which authenticates

the user and produces authentication statements.

Figure 2.1: Software and hardware layers in distributed systems [14]

An Identity Provider guards the identity information of its users. Identity Provider

offers authentication service, and it may offer attribute service, releasing the identity

attributes to the Service Providers that are requesting the information.

A Service Provider protects the service that requires authentication. It’s role is to

request authentication from the Identity Provider, if the user has no valid session.

The Service Provider consumes Authentication and Attribute assertions, and it may

make authorisation decision based on them or let the application handle it.

2.4 Federated Identity

Traditionally, a user has multiple identities – an information about the user is stored

in every service she is using. For example, in academic world, user’s e-mail, name

and student id number are common examples of personal information which can be

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 8

stored in dozens of services she is using. For every service, she has to register and

supply the information needed, if the services are not connected to some centralised

directory. Since the services can be offered by various organisations and companies,

this is not often possible. The services need usually some kind of authentication,

so the user has to login every time she wants to access the service, and for security

reasons, several passwords are required.

Another problem comes from the service providers point of view. Every service has

to handle and store information about the user and that data must be up-to-date,

which is practically impossible to guarantee, when the only source of information

relies on users activity.

Federated identity simplifies both end users and service providers task. A single

identity is created and hosted in the users home organisation, and that identity is

used throughout the federation.

User directory / IdM

Protected resource

Identity Provider

User Request

protected

resource

Authentication

User Attributes

Authentication &

Attribute

Assertions

User’s Home Organisation

Other organisation

Figure 2.2: Federated Identity

A federation is a trust network – federation’s member trust each other on identity

management. This poses high requirements for home organisation’s identity man-

agement, since all the Service Providers will trust the information that they share.

If there is only one place where user’s attributes are stored, it is enough to keep

that source updated. For example, when a user’s address changes, it is enough to

inform the home organisation about the new address, not all of the services where

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 9

the user has an account. In practice, most services will still need some data that is

related to the specific service and the specific user. Using federated identity means

that the question of where the data should be stored needs to be answered when

designing a new service. A service may get all of its user identity data from the

identity provider, it may store some data locally or it may only use the identity

provider for authentication.

Federated identity has some benefits for the end user also, apart from reducing the

work for updating her identity information in different places. It enables a single

authentication mechanism to be used for every service in federation – a single pass-

word, biometrics, etc. – whatever authentication mechanism that is implemented

in her home organisation’s identity provider. Using this identity provider, a sin-

gle sing-on solution may be offered even between different organisations and their

services. The service providers can benefit by saving human work, as the need for

credential provisioning and helpdesk work for recovering lost passwords is reduced,

when the identity is stored in a single place.

The number and quality of passwords is one of the biggest risks in traditional ser-

vices. The users may use passwords that are easy to guess, and the same password

can be used in many services. Federated identity management changes the situation

– the risks are even bigger, since one password is enough to access whole federation’s

services. But since the number of passwords is reduced, stronger passwords can be

forced to use. Stronger authentication mechanisms can replace the passwords, and

only the home organisations have to implement them – not every service. It is not

needed to store sensitive passwords and personal information on every service, which

will reduce the risk of identity theft in case of services get compromised.

2.4.1 Attributes

One main benefit of federated identity management is possibility to store user infor-

mation only in her own home organisation, and this information can be queried from

the home organisation’s Identity Provider by Service Providers. The information

transferred is called attributes, which syntax and semantics must be agreed between

the service requesting the information and the Identity Provider. Typical examples

of attributes are e.g. an e-mail address or a person’s name, and some identifier

which uniquely identifies the person within a federation.

If the Service Provider and the Identity Provider are part of larger federation, the

attributes may be defined for the whole federation. This removes the need to agree

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 10

on attributes between every Identity and Service Provider. In Haka federation for

example, funetEduPersonSchema [17] is a schema defining the syntax and semantics

of attributes exchanged within Haka federation. There are other schemas, like Schac

or eduPerson, which are used in other federations around the world.

2.4.2 Managing Trust

The idea of federated identity requires trust between participating parties. The

Service Provider must rely on Identity Provider to implement proper authentication

and to provide valid and up-to-date attributes about the end user. On the other

hand the Identity Provider must trust that the Service Provider handles the possibly

sensitive identity information in a proper way. Establishing trust is not a technical

question that AAI software can solve – it is a question that must be solved offline.

The level of trust requirement varies, some federations may require very high level

of trust while some others can work with lower level trust. This depends on the

federations services and the trust requirements must be thought when adding a new

Service Provider to a new federation.

A federation is basically a trust network. The trust relationship is born by joining

a federation. Depending on the federation model, this relationship may be bilateral

between every federation member, or it may be transferred to some degree.

The end user needs a trust relationship too. She should be concerned on how her

digital identity is stored, transferred and used within a federation. In European

Union there are strong laws and directives helping to protect the privacy. For

a Service Provider this means that only those attributes that are necessary for

providing the service may be used. The user must also be informed what personal

information is transferred and how it is used and released to third parties.

2.4.3 Single Sign On and Single Logout

Single Sign On solutions are a way to simplify the login procedure. The user needs

to authenticate herself only once – this authentication information is then available

for other SSO aware applications too.

While it is possible to build a web-based SSO systems, the question of single logout

is perhaps harder. A logout button can be presented in the Service Provider after

the user has logged in, and it can log out the users session on that Service Provider.

But the session still exists in the user’s Identity Provider and in the other Service

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 11

Providers she has used in this session. The difficulty comes from knowing all the

providers involved - and even if they can be known, the stateless nature of HTTP

makes it hard to build a reliable logout functionality. Using HTTP redirects, the

user’s browser could be sent to all the providers necessary, but what would happen

if some site does not respond? The redirect chain would be incomplete, leaving the

session valid in part of the providers.

Figure 2.3 represents a situation where user is accessing several applications. There

are multiple sessions – the Identity Provider has a session, each Service Provider

have a session, and the applications often have their own session handling too. A

traditional logout would end only the session with each application, but leave session

still valid with Service Provider and Identity Provider. A Single Logout, as specified

in SAML specification, would have to clear the session in each Service Provider the

user has accessed, and in the Identity Provider. A cooperation is then needed to

clear the sessions from accessed applications too.

Figure 2.3: Single Logout Problem

However, it is not clear what kind of functionality the user is expecting when she

clicks on the logout button. Traditionally, this would log her out of the applica-

tion where she requested logout without affecting other applications. The Single

Logout behaviour might be unpleasant for her – the applications may be completely

unrelated to each other and single logout can be unexpected and unwanted result.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 12

2.5 Security Assertions Markup Language (SAML)

The Security Assertion Markup Language (SAML)[26][12] is a framework for ex-

changing security information between partners. It is based on XML, SOAP and

HTTP - authentication and authorisation information transferred in a common XML

format between applications. This authorisation information – attributes – makes

it possible to apply complex authorisation policies in service provider, possibly com-

bining attributes and deciding authorisation on the combined values.

<samlp:AuthnRequest

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

AssertionConsumerServiceURL=

"https://aitta2.funet.fi/Shibboleth.sso/SAML2/POST"

Destination=

"https://aitta2.funet.fi:8443/idp/profile/SAML2/Redirect/SSO"

ID="_3f0bbf72ad491c03452c139b58c811a4"

IssueInstant="2010-01-18T05:35:02Z"

ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Version="2.0">

<saml:Issuer

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

https://aitta2.funet.fi/shibboleth

</saml:Issuer>

<samlp:NameIDPolicy AllowCreate="1"/>

<samlp:RequestedAuthnContext>

<saml:AuthnContextClassRef

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>

</samlp:RequestedAuthnContext>

</samlp:AuthnRequest>

Listing 2.4: SAML Authentication Request

SAML assertions can be transferred using front-channel or back-channel. The

back-channel is a connection between Service Provider and Identity Provider us-

ing HTTP/SOAP protocol for transferring the assertions. The front-channel uses

no direct communication between Service Provider and Identity Provider, instead,

the user’s web browser using normal HTTP protocol with GET or POST method

is used.

To ensure the message integrity and confidentiality, SAML recommends using HTTP

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 13

over SSL 3.0 or TLS 1.0, and authentication should be done for both server

and the client. XML signatures must be used when transferring assertions using

Browser/POST profile, which is described later in this section. XML Encryption

may be used to assure message-level security when SSL/TLS is not used or addi-

tional protection is wanted.

Today there exists numerous SAML implementations, both as commercial products

as well as open-source. Some examples are listed in Table 2.1, but the list is not

comprehensive.

Supported Protocol

Lasso ID-FF 1.2, ID-WSF, SAML 2.0

Microsoft ADFS WS-Federation

OAuth OAuth protocol

OpenID OpenID protocol

OpenSSO SAML 1.1, 2.0

Ping Identity SAML 2.0

simpleSAMLphp SAML 2.0

Shibboleth SAML 1.1, 2.0

ZXID SAML 2.0

Table 2.1: Examples of AAI software

2.5.1 Liberty Alliance and WS-* Protocols

The Liberty Alliance is a consortium formed in 2001 for developing common speci-

fications for federated identity management. They have developed the Liberty Fed-

eration, including ID-FF 1.1, ID-FF 1.2 and SAML 2.0 specifications. To help the

interoperability between different products and vendors, Liberty Alliance organises

SAML 2.0 interoperability testing.

Microsoft and IBM have developed their own specifications for federated identity,

including WS-Security, WS-Federation, WS-Trust and WS-Policy and several other

specifications. These specifications describe different security tokens, infrastructures

and trust topologies. Though WS-* can be configured to accept SAML tokens, the

interoperability is limited. However, Microsoft’s ADFS 2.0 (Geneva) services, which

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 14

are currently at beta stage, do support SAML 2.0.

2.5.2 SAML protocol versions 1.1 and 2.0

The SAML protocol specification converged from Liberty Alliance’s work and OASIS

SAML 1.1 version to SAML version 2.0. This version brings in major changes, and

it is incompatible with previous versions. Main new features are support for W3C

XML Encryption for encrypting SAML assertions, merging the Browser/Artifact

and Browser/POST into a single Web Browser Single Sign-On (SSO) Profile and a

new Identity Provider Discovery Profile.

Though SAML 2.0 is not compatible with previous versions, the main benefit is

better compatibility between SAML 2.0 implementations. The full protocol speci-

fication is however large and complex, and most implementations implement only

a small subset of it. This in turn may cause incompatibility, which is handled by

defining SAML deployment profiles and running interoperability tests. The Liberty

Alliance project does this kind of interoperability testing, and one example of defin-

ing SAML deployment profile is saml2int[32] – a simple, but useful SAML profile

for Web SSO that defines the mandatory features of SAML that must be imple-

mented to be saml2int compatible. Figure 2.5 shows relationships between Oasis

standards, Microsoft WS-* and Liberty Alliance.

WS-Federation

WS-PolicyWS-Trust

WS-Security SAML 1.0

SAML 1.1

WSS

SAML 2.0

IDEF 1.0

IDEF 1.1

WSF 1.2IDEF 1.2

Liberty Phase 3

Microsoft /

IBM

Oasis Liberty Alliance

Dependency

Relation

Figure 2.5: The interrelationship among federation standards [30]

2.5.3 Profiles

A SAML profile is an exact description how a supported use case of SAML is im-

plemented, the most important use case for this thesis being Web Browser Single

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 15

Sign-On (SSO).

SAML 1.1 defines two profiles. Browser/POST profile, like its name suggests, relies

on HTTP POST method as a way to transfer assertions to the Service Provider.

Once the user has authenticated herself, a HTML POST form is presented. This

form contains the assertion, which is then (perhaps automatically using Javascript)

sent to the Service Provider. The SAML response containing the assertion must be

digitally signed using XML digital signature which is described later in this chapter.

Browser/Artifact is another profile; it uses pull model for assertions instead of push.

The user has an artifact, which is an identifier containing information about the

source site and a reference to the assertion. Using this reference, the Service Provider

can request the assertion from Identity Provider using back-channel. The back-

channel is implemented by HTTP/SOAP connection between the Service Provider

and Identity Provider.

In SAML 2.0, these two profiles have been merged into single Web SSO profile.

2.5.4 XML Digital Signatures

The SAML assertions can be transferred in unencrypted format which would make

them vulnerable for alternation attacks. For example, using Browser/POST pro-

file means that SAML assertions are transferred via users web browser, making it

possible to alter the content for the user. It is also possible to use HTTP as a

transfer protocol instead of HTTPS, where assertions are transferred unencrypted

all the way. To deal with these risks XML digital signatures[19] are mandatory

in SAML assertions when using unencrypted transfer methods. XML signature is

W3C Recommendation, and it can be used to guarantee the integrity of any XML

document.

2.5.5 SAML Metadata

In SAML the trust is largely based on SAML metadata [11]. SAML metadata defines

the providers that are trusted and their technical contact details, like addresses and

protocols and profiles that are supported. The Identity Provider needs to have valid

SAML metadata about the Service Provider in order to provide authentication and

attribute statements to Service Provider. Vice versa, the Service Provider needs the

metadata about the Identity Provider, otherwise it can not trust received assertions.

The metadata is provided in XML file, which can be distributed bilaterally, or if

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 16

provider is part of a federation, a federation may distribute a common metadata.

A federation metadata includes the metadata of all participants of the federation

- the Identity Providers and Service Providers. Its integrity and availability are

important, since all providers will trust its contents.

Federation metadata needs to be updated when federations participants change

their deployment, new Providers are added to the federation or existing providers

are removed. When all trust is build on the metadata, removing a compromised

service from federation requires a metadata update. Thus the Providers need to

update that file regularly.

2.5.6 Identity Provider Discovery

When a Service Provider decides that the user who is accessing its resources must

authenticate herself, it should redirect the user to her Identity Provider’s authen-

tication service. The problem is that if there are multiple Identity Providers, in

general the Service Provider has no knowledge of the user and what her Identity

Provider might be. In some cases it is possible to send all users to the very same

IdP, if that is the only one whose users are authorisated to access, but if there are

several Identity Providers providing access, this is not possible.

Instead of redirecting the user to the IdP, it is possible to use a Discovery Service

(DS) [29] or Where Are You From (WAYF) service and redirect the user to it. A

DS/WAYF service is an independent component that decides the user’s Identity

Provider with or without user interaction. A typical DS/WAYF service displays a

list of Identity Providers and asks for the user to select which one she wants to use.

This selection can be remembered or pre-selected by guessing based on the end users

IP address for example.

It is also possible to integrate the Identity Provider selection functionality directly

into the Service Provider. The Service Provider then has a user interface for se-

lecting the Identity Provider where it will redirect the user. This removes a single

point of failure, which centralised WAYF service introduces, and simplifies the user

experience, since the service can only provide links to those IdP’s whose users can

actually access the resource. On the other hand, it requires some programming logic

on the Service Provider instead of simply redirecting users to an external service.

Identity Provider discovery is a simple question technically. Instead, it has signifi-

cant usability problems. The federation may have hundreds or thousands Identity

Providers, and it is hard task to find the correct one. When existing federations are

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 17

combined as a confederation this will make Identity Provider selection even harder.

The end user may not even know what Identity Provider to use – some users have

account on several Identity Providers, and authorisation may be possible only when

using some of them. The user must also use the Identity Provider consistently –

otherwise, using different Identity Provider may result in using different identity,

since those two accounts may not be linked within a service.

2.6 Shibboleth

Name Shibboleth is used here in two meanings - it is the name of the software [21]

developed by Internet2, and it is the name of the protocol that the software uses.

In this section, an overview of both Shibboleth software and protocol is given.

Shibboleth 1.x as a protocol is an extension to OASIS SAML 1.1 profile. Most

importantly, it adds the Service Provider first -approach as the SAML 1.1 specifies

only Identity Provider first -approach which is simpler. In the IdP first -scenario, the

login sequence starts when user authenticates herself on the IdP, which then redirects

the user to the service. In a federation with only one IdP this approach can work

pretty well. The SP first -approach makes it possible to begin the login sequence

by accessing a protected resource, and then be redirected to the Identity Provider

for authentication as the Service Provider sends an authentication request to the

IdP. This scenario requires that the IdP discovery problem is somehow addressed;

for example by using a WAYF service described earlier. The downside of using

Shibboleth 1.x as a protocol is incompatibility with other implementations, since

the SP first -approach and some other differences are not part of SAML 1.1.

Shibboleth versions 2.0 and above support SAML 2.0 protocol as well as previous

Shibboleth protocol. The default settings support quite well saml2int profile men-

tioned earlier. A major change when moving to Shibboleth 2.0 is that attribute

queries are left out by default, encouraging that the attributes are transferred via

user’s web browser. This change makes deployment of Shibboleth easier, as there is

no need to configure back-channel support.

Both versions of Shibboleth use a subset of SAML metadata. The trust management

can be done in two ways. The currently recommended way is to define Service and

Identity Provider credentials directly in the SAML metadata, either by using X.509

certificates or plain RSA/DSA public keys in the metadata. The other option is to

use PKI approach, and define a Certificate Authority (CA) certificate. The Identity

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 18

and Service Provider certificates are then validated against this common CA.

User Service Provider Identity Provider

1. Access protected resource

Authentication Request

3. Authentication Assertion

6. Access protected resource

4. Attribute Request

5. Attribute Assertion

7. Requested content / Error message

2. Authentication Request

Authentication Assertion

Figure 2.6: Shibboleth Login

Figure 2.6 shows the login procedure using Shibboleth with Browser/POST profile.

1. User requests some resource that is protected by Shibboleth.

2. Service Provider requests an authentication. It checks if the user has a handle

describing her session - if not, a Authentication Request is issued. The user

may need to use a separate WAYF service to proceed to her Identity Provider.

3. After authenticating herself in her Identity Provider, the Identity Provider

assigns a handle describing this session. The handle is implemented as a

cookie or it may be attached to the URLs used.

4. The Service Provider will then ask for attributes from the Identity Provider

the user has used to authenticate herself. This is done by Attribute Request,

which contains the handle of the user.

5. The Identity Provider releases requested attributes about the user to the Ser-

vice Provider.

6. If using Browser/POST profile, the attributes are transmitted to the Service

Provider using a HTML form.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 19

7. Based on the attributes, the Service Provider does an authorisation decision

and returns the requested resource, or an error message.

2.6.1 Identity Provider

An Shibboleth Identity Provider is responsible for user’s attributes. A Authenti-

cation Authority component issues authentication statements to other Shibboleth

components.

When a user is accessing a resource and gets redirected to the Identity Provider,

first component that is connected is Single Sign-On service (SSO). A Single Sign-On

component is a Shibboleth specific - SAML 1.1 does not define it. SSO component

enables Service Provider first -approach, while SAML 1.1 supports only Identity

Provider first -solution.

Figure 2.7: Generating Attributes

Artifact Resolution Service is needed if Browser/Artifact -profile is used. It will

listen to Service Providers, which will send artifacts to Artifact Resolution Service

in order to get authentication assertion.

Attribute Authority answers to attribute requests send by Service Provider’s At-

tribute Requester component. The attribute requests and assertions are transmitted

using back channel without web browser.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 20

2.6.2 Service Provider

Shibboleth Service Provider is responsible for protecting the resources hosted by

a HTTP server. It is implemented as a module for HTTP server, like Apache

or Microsoft IIS, so it is limited to WWW applications. The authorisation decision

can be done by requiring specific attributes and specific attribute values. Shibboleth

Service Provider’s main components are Assertion Consumer Service and Attribute

Requester.

Assertion Consumer Service handles the authentication assertion. If attributes are

needed, Assertion Consumer Service will initiate an attribute request using Attribute

Requester component. If all goes well, the Assertion Consumer Service will finally

redirect the user to the requested resource.

Attribute Requester is responsible for sending attribute requests to the selected

Identity Provider.

2.7 Haka federation

The Haka federation [22] is a identity federation for higher education in Finland.

It was formed in May 2005 and it became operational in August 2005. Haka is

open for Finnish universities, polytechnics and research institutions to join as a

federation member. Federation member may bring its Identity Provider and Service

Provider(s) to Haka. Commercial companies may join Haka as partners if they are

providing services serving education or research. Haka federation partners may not

register Identity Provider to Haka, but only Service Providers. Joining Haka as

an Identity Provider requires that the organisations identity management passes

a self-audit, which requires some good practices are used when user accounts are

created, how they are updated and how identity management process works in the

organisation.

CSC – IT Center for Science acts as a Haka operator. Joining Haka means signing

a service agreement with CSC. In this hub-and-spoke federation model [30] a single

contract is enough, there is no need to sign contract with every member of Haka

– the trust and agreement is transferred via the federation operator. Federation

operators other main tasks include maintaining federation metadata, the Identity

Provider Discovery Service, test services and technical support for members and

partners.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 21

The end users of Haka are higher education students, teachers and faculty. At the

moment there are 39 Identity Providers and 78 Service Providers in Haka. Twelve

commercial companies have joined Haka as a partner, providing their services for

Haka community. Most heavily used services in Haka are library and learning man-

agement systems, e.g. Moodle systems.

Technically Haka started with SAML 1.1 protocol implemented by Shibboleth soft-

ware. When Shibboleth 2.0 release added support for SAML 2.0, Haka started the

migration process to SAML 2.0. This process is still ongoing and should be com-

pleted by the end of 2010, when all services must be SAML 2.0 compliant. The

main motivation for migrating the federation’s protocol is to enable interoperabil-

ity between various products, and first non-Shibboleth implementations using only

SAML 2.0 have been in use since the end of 2009.

For attributes Haka federation uses funetEduPerson [17] attribute schema which is

based on SCHema for ACademia (SCHAC) [9] and eduPerson schemas. The fu-

netEduPerson schema adds common attributes for Finnish higher education and

defines syntax and semantics for them. An example of such attribute is funet-

EduPersonStudyStart attribute, which describes the date when a student started

his/her studies. Technically, the schema defines the name of the attributes in three

format – a human readable format, an URN, which is used when using Shibboleth

1.x software, and OID format which is used with SAML 2.0. An example of this

attribute definition is in Table 2.2.

OID 1.3.6.1.4.1.16161.1.1.14

URN urn:mace:funet.fi:attribute-def:funetEduPersonStudyStart

Format: YYYYMMDD

Example: 20050826

Table 2.2: funetEduPersonStudyStart attribute definition

2.8 The eduroam

The eduroam [1] is a service for secure roaming network access for education net-

works around the world. It is based on RADIUS servers and IEEE 802.1X standard.

Authentication in eduroam is done by forwarding users login credentials to her home

organisation. For organisation to join eduroam, setting up a RADIUS server is re-

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 22

quired. This server authenticates organisation’s eduroam users. Also the WLAN

hotspots must be configured to support eduroam requirements, for example they

must be IEEE 802.1X capable, and capable of forwarding credentials to the RA-

DIUS server. Technically, the eduroam RADIUS servers are used hierarchically (see

Figure 2.9). The top-level RADIUS server forwards the authentication requests

to national level server, which in turn knows the organisational level servers and

sends the authentication request there. The eduroam does only authentication, but

in [13] it is presented how authorisation can also be added to eduroam.

Figure 2.8: eduroam infrastructure [13]

Though eduroam uses different technology than SAML and is a bit out of scope of

this thesis, it is useful to have a closer look on it since the problems are similar.

Both eduroam and web-based AAI are distributed infrastructures and suffer from

same kind of difficulties in maintenance and diagnostics. The monitoring solution

for both infrastructures can well have similarities.

The eduroam is an example of confederation; national federations have joined to-

gether to form the eduroam confederation. This enables the end users of one feder-

ation to get network access even outside her own federation and country. There is

no accounting, so no money is directly involved. The reasoning is that “if you let

my users to use the network, I will let your users to do the same”, and in eduroam,

this works between organisations around the world. The idea of confederations is

discussed in more detail in the next chapter.

CHAPTER 2. AUTHENTICATION AND AUTHORISATION 23

Figure 2.9: eduroam RADIUS hierarchy [31]

Chapter 3

Beyond federations

This chapter takes a closer look on how existing federations can be joined to a single

confederation. The term “confederation” refers to “a federation of federations” and

that’s how federations can work together to offer their services for other federation’s

users too. The problems of confederations are discussed, and the Kalmar Union and

the eduGAIN confederations are introduced in this chapter.

3.1 Building interoperability between federations

As discussed in the previous chapter, federated identity has become a reality and sees

production use today. Many federations have been established around the world. In

the higher education field, federations are mostly within national borders, available

only to members from their home country. But there are potential use cases where

it is feasible to use federated identity even across these borders, like the example of

eduroam shows.

In the federated world there exists many different federations which are not com-

patible, either in technical means or by policy differences, or, most likely, both of

them. For example, in Finland there is a federation for higher education (Haka),

and in Norway there is operating Feide federation [4] for their universities, but if

Finnish students want to access Norwegian resources it is not possible, since the

user’s identity is in different federation than the service. Such scenarios may arise

also inside national borders – there might be several commercial federations, an

educational or state federations, so there is a need for interoperability between fed-

erations. Confederations, or interfederation, aims in making this kind of use cases

24

CHAPTER 3. BEYOND FEDERATIONS 25

possible.

Protected resource

Identity Provider

User

Request

protected

resource

Authentication

User’s Home Federation

Remote Federation

Authentication &

Attribute

Assertions

Figure 3.1: Confederation

3.1.1 Technical and practical challenges

There are however problems when building a confederation. From the technical point

of view, the variety of AAI systems is an issue - generally they are not compatible

with each other, each using different protocols. In the future the compatibility

is likely to increase, as many AAI’s are moving towards or already using SAML

2.0. Unfortunately SAML 2.0 can be implemented and used in many ways that

interoperability is not clear even when having a common protocol, as was discussed

earlier.

Federation bridges[20] may be implemented when the AAI software is not compat-

ible. The idea is to do protocol conversion at some bridge, which acts as gateway

between federations. A federation sees the bridge as an Identity Provider while the

other federation sees it as a Service Provider. Attributes can also be transformed in

the bridge. The bridging solution has some drawbacks however. It is a single point

of failure. It will break the confidentiality of the traffic, since it needs to be able to

decrypt the messages in order to do any transforming, so end-to-end confidentiality

is lost. And quite likely some functionality is lost when using bridging, since not all

features may be supported by both federations and by the bridge.

A common protocol and technology is not enough. A federation is basically a trust

network, and establishing trust is mostly non-technical issue. Different federations

typically have different requirements for joining the federation and different levels

CHAPTER 3. BEYOND FEDERATIONS 26

and requirements for security and privacy. For example, in Haka federation it is

required, that the end users identity is verified using an official document such

as passport. Not all federations have such requirement, and when this kind of

federations are interconnected this may become a problem for the services.

Not only the technical part has challenges, but the policies become important issue

when connecting different federations. For example, a term “student” can have quite

different interpretations between universities – even inside on country, but especially

between countries. To effectively use AAI’s as an authorisation mechanism, there

must be some sort of agreement on the syntax and semantics of transferred identity

data. A schema harmonisation work tries to find commonly agreeable interpretations

on the attributes. Also the privacy and data protection laws have to be considered

when building confederations.

Knowing Your Federation

The question of knowing user’s Identity Provider is harder with multiple federa-

tions. Like WAYF, a WFAYF (Which Federation Are You From) service could be

implemented to offer a way to determinate to which federation’s WAYF the user

is to be redirected. The idea is however as cumbersome as the acronym - perhaps

more intelligent solutions will appear as a Service Provider component or even as a

web browser add-ons.

3.2 eduGAIN

The eduGAIN [24] is an AAI that has been developed by Géant 2’s JRA5 project

with interoperability of the federations as a main focus. It will bridge different AAI

implementations and thus allows connecting federations that are using different AAI

that are not directly compatible. eduGAIN is SAML 1.1 compatible, however, it

has been planned to move to SAML 2.0 as open source implementations stabilise –

this work is being done in Géant 3 project.

The eduGAIN defines new components to enable interoperability. Bridging Element

(BE) is responsible for transferring eduGAIN assertions and queries to local feder-

ations format and vice versa, for example, there is an implementation for bridging

Shibboleth for federations using it. For a federation to join eduGAIN it is required

that it will install a bridging element which supports the software used within a

federation, if the federation’s software is not directly eduGAIN compatible.

CHAPTER 3. BEYOND FEDERATIONS 27

Metadata Service (MDS) answers metadata queries. It will contain the necessary

SAML metadata of the eduGAIN Service and Identity Providers. MDS is queried

by BE’s, and it acts as a common trusted source for eduGAIN metadata. The

Federation Peering Point (FPP) is responsible for publishing metadata to Metadata

Service. There is exactly one FPP per federation. The metadata is never signed

by MDS, its function is only to forward the metadata. Thus there are no high

requirements for trusting MDS, since the federations will sign their own metadata

by themselves.

Protected resource

Identity Provider

User

Request

protected

resource

Authentication

Authentication &

Attribute

Assertions

User’s Home Federation

Remote Federation

Home Bridging ElementRemote Bridging Element

Authentication &

Attribute

Assertions

Authentication &

Attribute

Assertions

Remote Federation

Peering Point

Home Federation

Peering Point

Metadata Service

(MDS)

Metadata

query

Metadata

update

Metadata

update

Metadata

update
Metadata

update

Figure 3.2: eduGAIN login procedure

Trust in eduGAIN is managed with public-key infrastructure (PKI). The eduGAIN

CHAPTER 3. BEYOND FEDERATIONS 28

has a common Certificate Authority (eduGAINCA), which is used to create

eduGAIN X.509 certificates. The XML signatures used in SAML assertions must

be validated against this certificate authority.

3.3 Kalmar Union

Kalmar Union [7], [28], [23] is a Nordic confederation which joins national higher ed-

ucation federations of Finland, Sweden, Norway, Denmark and Iceland. A contract

has been signed between national federation operators and Kalmar Union went into

production use in September 2009. For Service/Identity Provider to join Kalmar

Union it is required to join some national federation first.

The architecture of Kalmar Union is significantly simpler than eduGAIN. All partic-

ipating federations are using SAML 2.0 compatible protocol, so no protocol bridging

is required. There is still need agree on how exactly SAML 2.0 protocol is to be

used since the protocol offers multiple choices for implementation, implementing

and supporting all of them would be impractical for all confederation members.

The interoperability in Kalmar Union is based on saml2int profile[32] which de-

fines mandatory profiles. In addition, the attribute semantics differ slightly within

federations, so an agreement on common attributes was needed.

The Kalmar Union offers WFAYF server for selecting the home federation and then

a home Identity Provider. It also offers a metadata aggregate containing metadata

of all participating services. These are the only centralised services that are needed.

For a service already in some national federation, joining Kalmar Union is usually

straightforward, the Kalmar Union metadata must be used and service’s own meta-

data must be aggregated to confederation metadata. Since the Kalmar Union is a

federation of federations, it is needed that services are part of a national federation

first – joining straight to Kalmar Union is not possible for a single service.

3.4 Monitoring a Confederation

When there are challenges to set up and operate a single federation, working with

multiple federations is even more complex. Even when each federation is functioning

properly, there are components and settings that are needed for interfederation

support, like WFAYF service or metadata aggregate service that are used in Kalmar

Union, or the various bridging elements used in eduGAIN. A problem with one of

CHAPTER 3. BEYOND FEDERATIONS 29

them is enough to cause the system to fail. Many of those service are configured

dynamically, as new members are joining national federations or their configuration

is changed, and there is always a risk that something goes wrong when doing such

updates.

Testing login from different federations is one problem unique in confederation op-

erations. The login may work just fine from one federation, but not from the others.

The service administrator may have a user account on one Identity Provider, but

this does not help much; it would require multiple user accounts from different

federations to be reasonably sure that the service is accessible within whole confed-

eration, which is quite impractical. The number of required test cases also starts to

climb, and involves manual work from the administrators. So as the confederations

grow and are being used, the need for their availability and availability monitoring

is likely to rise.

Chapter 4

Requirements for AAI

Monitoring System

4.1 Motivation

The Haka federation steering committee expressed that getting usage statistics and

developing a monitoring system is important. CSC as Haka federation operator

started to study the problem. Since no off-the-self solution was found during the

preliminary study a software for monitoring was to be developed. CSC also partici-

pated in Geant2 project where JRA5 activity was focusing on AAI. As the problem

of monitoring and interest is common for all federations, part of the funding was pro-

vided within Geant2 project. This had an impact for the requirements specification

as the needs of eduGAIN had to be taken into account.

4.2 Requirements Specification

The work on monitoring and reporting system started with requirement specifica-

tion, where the requirements and constrains were identified and defined. These

include several functional requirements which define the functionality of the moni-

toring and reporting system, as well as non-functional requirements, which include

usability, stability and scalability for example.

The main functional requirement for the system is that it should be able to reliably

monitor the state of the AAI. Since the AAI is complex and distributed system,

monitoring just single components of it would not tell the whole truth – the compo-

30

CHAPTER 4. REQUIREMENTS FOR AAI MONITORING SYSTEM 31

nents might be working just right, but the end user is still not experiencing what she

should. Several settings of the AAI are constantly changing and must be regularly

updated to keep the service running – the federation metadata and the attribute

release policies as an example. Monitoring all these settings individually would be

difficult or even impossible, so at the requirement phase it was clear that monitoring

must be done from the end user’s point of view. This approach would give the most

realistic results too.

Another important functional requirement was that the monitoring system must

be able to collect usage reports in Shibboleth-based AAI. There are no tools for

this provided within the Shibboleth software, so the administrators of Shibboleth

servers have a little idea on how much their services are used and who are the end

users. It is possible to collect this information from the log files that the Shibboleth

application generates, but there were no tools for this, so some automatised way

had to be developed. The usage report collecting system must also be designed in

a way that support for eduGAIN AAI can later be added.

It turned out that there would probably be different kinds of deployments of the

monitoring system. Not all organisations will create a test account, which is required

for the active monitoring, and not all of the organisations are willing to install and

maintain any kind of additional software - the probes - in their Identity or Service

provider host. These limitations mean, that the monitoring and reporting tool

should support various deployment strategies, and allow also partial use. At least

the monitoring and the reporting functions should be separate.

4.2.1 Interfaces

Many institutions using AAI are also doing some kind of network/service monitoring

already. For example, Nagios [8] is one popular tool for monitoring purposes. To

take advantage of this, the system developed should be integrateable to the existing

monitoring and reporting applications. As a demonstration of this, a plug-in for

Nagios is to be developed during the project. The existence of such applications

like Nagios means also that they can be used to perform many common tasks for

monitoring and reporting systems. An example would be e-mail notifications of the

problems - Nagios has a feature for this, so to take advantage of it, the monitoring

tool does not need to implement it. Other commonly needed feature is scheduled

service breaks – there has to be a way to temporarily disable the monitoring when

doing service maintenance work.

CHAPTER 4. REQUIREMENTS FOR AAI MONITORING SYSTEM 32

Support for different AAI implementations is also useful. At least Shibboleth ver-

sions 1.3 and 2.0 and eduGAIN AAI’s should be supported for active monitoring.

Since there are many other AAI software in use, it has to be simple to add the

monitoring and reporting functions for other applications as well.

4.2.2 Performance

The performance requirements define that the system may not significantly affect

the performance of AAI. It is also required, that the parameters that can have

performance effects are customisable, to allow modifications depending on the needs

of local administrators. Allowing distributed configuration is not a requirement,

but an idea to consider in the future. The system administrators of the Identity

and Service Providers are the right persons to know how their services should be

monitored.

The active monitoring of AAI has some scalability issues if the tests are comprehen-

sive as they should be. To cover all connections, m x n tests are required, where m

means number of IdP’s in federation and n number of SP’s in federation. On the

other hand, it may not be necessary to test all connections very frequently, and prob-

ably not all IdP’s and SP’s will ever want to take part in monitoring - at least some

commercial service providers might not want to publish their availability statistics.

Still, scalability can be an issue when federations grow very large and comprehensive

monitoring is wanted. Deciding how often a connection is to be monitored affects

heavily on the load and performance of the monitoring.

4.3 Privacy and Security

Both Identity Providers and Service Providers may handle sensitive information,

like personal information about the end users - names, social security numbers etc.

Identity Providers store this information for all of their users, which usually means

hundreds or thousands users. Some Service Providers protect valuable resources -

super computers, personal databases, payment systems etc. This all imposes serious

requirements for the privacy and security of AAI system and components directly

involved with it, like the monitoring and reporting system developed here.

The active monitoring component is a potential security threat, since monitoring

requires a test user account and a password, which must be stored on the monitoring

host. These user accounts must be protected, since they will give an access to the

CHAPTER 4. REQUIREMENTS FOR AAI MONITORING SYSTEM 33

protected resources that are monitored. Not all service providers are comfortable

with the idea of having such accounts that can be used to access their services. A

possible approach to this problem could be to define an attribute, which identifies the

user as a test user. The service provider could then decide how it wants to handle

these users - it could release enough information for determining that the login

procedure was successful, but denying access to any real resource. The downside

of this is that customisation is needed to the service’s software to handle these

restricted users.

Collecting the usage statistics is another problematic area. The log files of Identity

and Service Provider may contain lots of personal information about the users. But

since this personal data is not required for statistical reasons, a requirement can be

that the tool may not handle and store personal information.

4.4 Related Work

At the start of the work, information was gathered about similar monitoring and

reporting solutions and about possibly useful technologies for implementation. A few

AAI federations are using some kind of monitoring system, and at least within Swiss

higher education federation SWITCHaai there has been interest in usage statistics

as they have studied adding accounting to AAI [27].

Though it seemed that no easily adoptable solution can be found, the solutions and

tools found helped to collect the requirements and gave hint when selecting suitable

technologies for the implementation. There is some promising activity in this area,

like End-to-end Diagnostics System (EDDY) [3],[18] developed by Internet2, which

may offer similar functionalities in the near future. As more and more federations

evolve to production use, the need for monitoring and reporting solutions is likely

to rise and result in new applications in this area.

4.4.1 EDDY

EDDY project [3] aims on helping diagnosing problems that are hard and complex

due to their distributed nature. Many services are dependent from may lower-level

services and one of them misbehaving can cause errors that are difficult to diagnose.

EDDY tries to unify this diagnostic data by defining a common event format (CER)

and sharing diagnostic data between domains. A log from single application may

CHAPTER 4. REQUIREMENTS FOR AAI MONITORING SYSTEM 34

not be enough to find out the real culprit of the problem. Combining logs of different

services to get the full picture may be helpful.

It was considered if the monitoring tool should support EDDY format. At the time

of the requirement specification and design, EDDY was in quite early stage but

seemed reasonably complex system. It was decided not to go this way, but if EDDY

becomes popular adding support for it might be considered.

4.4.2 eduroam monitoring

The eduroam infrastructure suffers from similar difficulties what comes to monitor-

ing. Eduroam architecture is equally distributed across organisations and countries,

making diagnostics hard. The monitoring solution discussed in [25] is pretty much

similar than the one described in this paper. The work for both projects has been

done under GEANT2/JRA5 project so the ideas could be shared and tested for

both monitoring purpose. The eduroam monitoring has been in production use

since August 2008 and is found from [2].

4.4.3 Nagios

Nagios is an open-source monitoring framework that can be used to monitor systems

in different levels. Often it is used to run simple tests, like probing the connection

to some host, or asking how much disk space is left on the server. This works by

using plug-ins, which are run by the Nagios process to report their status.

Nagios also offers a simple interface for application developers to write their own

plug-ins to satisfy their monitoring needs. This interface makes it possible to add

support for new monitoring targets, AAI monitoring as one example.

4.4.4 Summary

Although many approaches were reviewed for this monitoring purpose, none of them

seemed exactly match the requirements. This means that some new code had to

be written. A general monitoring application like Nagios or OpenNMS or their

commercial alternatives is probably used in most of the bigger organisations, so it

is important that the monitoring solution to developed would work together with

them rather than being a separated application. Since Nagios is being widely used

in organisations using Shibboleth at least within Haka, it was a requirement that

CHAPTER 4. REQUIREMENTS FOR AAI MONITORING SYSTEM 35

the monitoring part has to be implemented as a Nagios plug-in. Support other

monitoring applications should be easy to implement later if needed.

Chapter 5

Design and Implementation

5.1 Design Goals

A design principle was to keep the functionality separated in different components,

to make it possible to change one component without much effort. This will make it

easier to add support for different AAI implementations and develop new function-

ality for the application. The application to be developed was named as AAIEye.

5.2 Architecture

Figure 5.1 shows the main components of the monitoring and reporting system, the

arrows showing the dependencies between components. The heart of the system is

monitoring server. Its responsibilities are:

• Perform the active monitoring test cases.

• Receive and store the usage statistics data.

• Respond to the queries about monitoring status.

The usage statistics and monitoring test results can be browsed with AAIEye Statis-

tics Viewer application. It is a PHP script that reads its input data from SQL

database, where it gets filled by AAIEye monitoring server.

To offer support for Nagios, a plug-in is implemented. The plug-in is a small Perl

application that Nagios calls periodically to provide status information about active

monitoring test cases. The plug-in uses a generic interface for Nagios plug-ins.

36

CHAPTER 5. DESIGN AND IMPLEMENTATION 37

Figure 5.1: AAIEye Component Diagram

Other important components are probes, which are small applications designed to

run on the Service/Identity Provider host. They communicate with monitoring

server, sending status data about the Service/Identity Provider, which is described

later in this chapter.

5.2.1 Monitoring Server

The AAIEye monitoring server is centralised data collection point in the monitoring

system. It is responsible for running the active monitoring login tests, collecting the

test results and receiving and storing the data that is obtained from the probes. A

monitoring server may monitor the whole federation, a part of it or even multiple

federations depending on configuration. It is possible to run multiple monitoring

servers - for example, an organisation might run a monitoring server for its internal

federation, and the other federations it is part of might run their own monitoring

servers.

The monitoring server is implemented in Java, to allow support for multiple plat-

forms and to have benefit from Java’s extensive libraries for XML and unit testing.

Using Unit Testing For Monitoring

The distributed nature of the AAI makes it challenging to get reliable information

about the availability of the services. Typically, an Identity Provider installation will

depend on many other services - the Identity Provider application, a HTTP server,

a directory or a database server are the most common ones. A Service Provider has

CHAPTER 5. DESIGN AND IMPLEMENTATION 38

likewise dependencies.

One approach would be to monitor the availability of individual services, like the

response codes from HTTP server or from the database. Many organisations actually

do already this. From the experiences as the Haka federation operator it can be seen,

that this is not enough – the problems are often related to configuration mistakes

or changes, or the federation metadata update process – problems that currently

can not be easily detected. The providers of the federation are hosted by many

different organisations so monitoring them is more complex due to firewalls and

security policies. Knowing the exact point of failure is sometimes hard because of

these organisation borders – the diagnostics takes time and requires an experienced

administrator.

AAIEye

Monitoring Server

Identity Providers

Service Providers

WAYF

Nagios
WWW -

interface

SP/IdP Administartor

Figure 5.2: Monitoring Architecture

Because of these limitations, the AAI monitoring is designed to be done from the

end user point of view. A unit testing approach was chosen, using JUnit [5]- and

HtmlUnit -based JWebUnit [6] -framework. For monitoring the availability of a

Service Provider, a test case is to be created. The test case should describe the

required steps for an end user to log in to the Service. The success or failure is

detected by searching for a text string that should appear on the HTML page that

the end user sees after successful login.

The JWebUnit is a testing framework for web application development. It has a

high level application programming interface (API) to support easy testing for web

CHAPTER 5. DESIGN AND IMPLEMENTATION 39

site correctness. It is used by defining a test case, which describes the initial setup,

the test procedure and the expected result. This approach fits well for monitoring

the federated login – the user credentials and service URL are set on the initial

setup, the login phase is described as the test procedure and the expected result

is successful login on the target web site. The JWebUnit framework handles many

details of this invisibly for the monitoring application, for example, HTML parsing

and HTTP redirects. This means that using JWebUnit for monitoring is possible

without writing much new code.

Configuring the test cases is done with XML based configuration files, as seen on

Listing 5.3. This example shows a simple case of federated login. What needs to

be configured is the details for Identity Provider – the user name, password and the

Identity Provider to be used, the actual login flow and the expected result. In this

example, a Shibboleth Identity Provider ”aitta2.funet.fi” is used with test account

”username”. The Service Provider is using simpleSAMLphp software, and we expect

to find string ”Welcome username” in case of successful login.

<IdentityProvider id="aitta2IdP" name="aitta2.funet.fi">

<Attribute name="j_username" type="text" value="username"/>

<Attribute name="j_password" type="text" value="password"/>

</IdentityProvider>

<ServiceProvider id="maneesiSP"

name="SimpleSAMLPHP test server"

startURL="http://maneesi.funet.fi/saml2-example.php">

<Page submit="" />

<Page type="IdP" />

<Page submit="" />

</ServiceProvider>

<Test federation="Haka" name="maneesiSP/Aitta2IdP">

<ServiceProvider ref="maneesiSP" />

<IdentityProvider ref="aitta2IdP" />

<AssertResult type="text" value="Welcome username"/>

<Period>

<Minutes>15</Minutes>

</Period>

</Test>

Listing 5.3: Example of configuring active monitoring

CHAPTER 5. DESIGN AND IMPLEMENTATION 40

5.2.2 Probes

The probes are small applications that are constantly running on the AAI com-

ponents, the Identity Provider host or the Service Provider host. Three probes

are implemented; a usage statistics probe for both Shibboleth Service Provider and

Shibboleth Identity Provider, and the metadata checking probe, which can be run

on either Service Provider or Identity Provider.

The interface for the probes has to be designed with extensibility in mind. Adding

support for different AAI software will require writing a custom probe for them

that complies with the probe interface. For this reason, the interfaces is kept small

and simple as possible. The configuration of the probes will include support for

dynamic class loading, to support implementation of the probes more easily and

independently from other components.

Service Providers

Identity Providers

AAIEye

Monitoring Server

SQL

Database

Statistics Viewer

AAIEye

Probe

AAIEye

Probe

Figure 5.4: Probe Architecture

The Java code example in Listing 5.5 describes the Probe interface.

Usage statistics

During their normal operation the Service Providers keep a log about the most im-

portant events. In case of Shibboleth, this includes at least new sessions, when users

that have authenticated themselves connect to the resources. The Usage statistics

probe works by periodically scanning the log files of Service Provider, and it looks

CHAPTER 5. DESIGN AND IMPLEMENTATION 41

public interface Probe {

/** Sends the results of the Probe to the Monitor Server */

public void sendResults();

/** Runs the Probe. */

public String run();

/** Initialises the probe.

* @param p

* @param runner */

public void init(ProbeRunner runner, ProbeType p);

}

Listing 5.5: AAIEye Interface Probe

for the details of user logins. Shibboleth keeps track of the IP address, session id,

the Identity Provider that was used and the application that was accessed. The

probe then sends this usage data to the monitoring server.

For persistent storing of probe data, a data storage has to be implemented. A

relational SQL database is a common solution, and it is used for storing the log

events. A support for MySQL database is implemented, but it is relatively easy to

add support for other database engines as well.

Though it is the monitoring server’s responsibility to check the timestamps of the log

events, the usage statistics probe will also keep track of the latest successful event

transmission, to reduce unnecessary network traffic. The XML format is rather

verbose, and the much data will be transferred if there are lots of login attempts on

a provider.

The log files on Service Provider may contain personal information, as Shibboleth

logs the values of the attributes when logging level is high. To comply with data

protection principle, no personal information is transferred – all the processing will

be done on the Service Provider and the resulting data will not contain anything

sensitive. The following data is transferred:

• Entity ID of the Service Provider Probe.

• Identity Provider that performed the authentication.

• Time of the event.

• Event type; successful login or error.

An example of typical data sent by Service Provider Probe is shown in Listing 5.6.

CHAPTER 5. DESIGN AND IMPLEMENTATION 42

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<AAIEyeProbeData>

<Sender entityId="https://aitta.funet.fi/" />

<IdP entityId="urn:mace:funet.fi:haka:csc.fi:idp">

<Application applicationId="default">

<Event type="login">

<Time>2007-01-17T14:42:31.000</Time>

</Event>

</Application>

</IdP>

<IdP entityId="aitta.funet.fi:8443">

<Application applicationId="default">

<Event type="login">

<Time>2007-01-16T05:15:34.000</Time>

</Event>

<Event type="login">

<Time>2007-01-16T05:21:34.000</Time>

</Event>

</IdP>

</AAIEyeProbeData>

Listing 5.6: AAIEye Probe Data Example

There is also a probe for parsing the Identity Provider logs. This probe does the

similar task than the Service Provider probe described using the Identity Provider’s

audit logs. Naturally, it would be unnecessary to deploy probes both on Identity

and Service Providers, choosing either is enough for complete statistics. But it was

expected that not every organisation is willing to participate by installing a probe,

so both versions are implemented.

Metadata checking

As specified in the requirements specification, a probe for analysing the freshness of

metadata files was to be developed. The probe is to be installed on the Provider to

be monitored, where it polls the metadata file the provider is using. Using Adler32

algorithm, the probe calculates a checksum of the file’s contents. The checksum is

then sent to the monitoring host.

The monitoring server receives the checksums from various probes. It has a reference

metadata file URL configured, which it polls regularly and compares the checksum to

those sent by the probes. From this information, the monitoring server determinates

CHAPTER 5. DESIGN AND IMPLEMENTATION 43

if the providers are using a current version of the metadata or not.

Metadata checking probe is so general functionality, that it is no way limited to any

particular AAI implementation. In fact, it could be used for completely different

purposes than AAI monitoring.

5.2.3 Communication between Probes and the Server

The probes will communicate with the server using XML over HTTPS. For this pur-

pose, a limited HTTP server functionality has to be implemented for the monitoring

server. It will listen to probe connections, do authentication and authorisation de-

cisions, data validation and pass the data to the storage component.

Authentication is based on server certificates. Since both Shibboleth Identity and

Service Providers will use server certificates, they are easy to use for other pur-

poses also. The monitoring server is configured with access control list, defining the

hostname and the entity IDs for the probes that are allowed to connect. A Java

keystore is used for storing certificates both on server and on probes. The keystore

must contain the certificates of the probes/server. For each incoming connection,

the certificate is checked. If it is valid, the server will check that the probe is using

a entity ID that is allowed for its hostname. This prevents accidental and misuse

cases, where usage data would be stored for wrong service.

Figure 5.7 describes the communication protocol between Probes and the monitor-

ing server. A Probe is configured to send its results periodically. It will open a

HTTPS connection to the monitoring server. In case of communication failure, it

will remember its state and will try to send the data again when next connection is

scheduled:

• A TLS connection is opened by the Probe. In this phase, the authorisation is

done using SSL certificates with client authentication.

• The server validates the probe data. If everything goes well and the data is

processed normally, it will return a HTTP 200 OK -response code. In other

cases, it will return a HTTP error code. If the server does not respond at all,

the connection will terminate on timeout.

• In case of error response, the probe will try to resend its results when the next

transmission is scheduled.

CHAPTER 5. DESIGN AND IMPLEMENTATION 44

• If the server can now successfully handle the data, it will now return a HTTP

200 OK response. In other cases, steps 3 and 4 are repeated.

Probe Server

1. Probe Data

2. HTTP Negative Response

3. Probe Data (retransmission)

4. HTTP 200 OK

Figure 5.7: Probe Data protocol

5.2.4 User Interfaces

A user interface for viewing monitoring results and use statistics is needed – there

are various use cases for both of them. Potential users for such information could

be:

• Service Provider administrators.

• Identity Provider administrators

• Federation operator

• End users of the federation’s services

• Management of the Providers

The requirements for the user interface is different between these user groups. The

user interfaces are designed to be modular, so that the different user groups can get

relevant information in an easy and secure way.

CHAPTER 5. DESIGN AND IMPLEMENTATION 45

Monitoring UI

For viewing the monitoring data two use cases can be found. First, the administra-

tors need to find out if their services are healthy and manage the way their systems

are monitored. Secondly, a simple UI is provided for the end users to quickly see if

there is some problems with the services they are trying to use.

To serve the system administrators, a Nagios plug-in for monitoring data is imple-

mented. The plug-in is designed to be run on the same host running the monitoring

server, and communicates with it using TCP socket. The Nagios then connects to

the plug-in using NRPE. The exchanged data between the plug-in and Nagios in-

cludes the status of the service, the execution time of the latest test case and the

time when the test case was last run. Using Nagios with AAIEye makes it possi-

ble to use advanced alert functionality, service break notifications and management

functions that Nagios offers.

Figure 5.8 gives an example of Nagios’s web interface when using AAIEye and Nagios

plug-in for AAIEye.

Figure 5.8: Nagios with AAIEye plug-in

For the end users and the administrators not using Nagios integration there is a sim-

ple PHP-based web user interface. This UI offers only the status information of the

single monitoring test cases. The information is retrieved from AAIEye Monitoring

server’s SQL database.

CHAPTER 5. DESIGN AND IMPLEMENTATION 46

Usage Statistics UI

The usage statistics collected by the monitoring server are visualised with a WWW

application showing the statistics graphically. The application will get its data from

the database of the monitoring server. The user interface has options for showing the

usage of Service Providers and Identity Providers which are sending their statistics.

This data can be shown in several ways – for example, monthly statistics of which

Identity Providers were used with a specific Service Provider, or login counts per

day, or error counts per day can be seen. This information can be used to predict

how much the services are used, and even to detect some problems. If the usage

of a busy service suddenly drops to zero this may indicate some problem with the

service.

Figure 5.9 shows how statistics look like. The services are identified by their SAML

entity ID, which in turn is mapped to more human-friendly name. The number of

failed logins is shown in this graph as red.

Figure 5.9: AAIEye Statistics

CHAPTER 5. DESIGN AND IMPLEMENTATION 47

5.3 Deployment

During the development process, the testing was done using two hosts which were

both running Shibboleth Service Provider and a Shibboleth Identity Provider soft-

ware. This test and development setup was quite limited for simulating the behavior

when used in whole federation.

Soon after some initial tests the probe was installed on one production level Service

Provider. This was needed to get more experience on the performance and reliability

of the code, since the usage of the test systems was very low. And to get even more

real-world experience, a testing phase was extended to include two production level

Identity Providers soon after this phase. Separate test accounts were created on

Identity Providers which were used in active monitoring. These Identity Providers

did not install Probes, but participated only in active monitoring.

The monitoring software and service were introduced to Haka federation system

administrators in annual meetings. At this point, the source code was also released to

general public for anyone interested to give it a try. During the Shibboleth training

sessions which were arranged by CSC, a brief introduction and encouragement for

deploying AAIEye was also given.

For installing the probe software a little Java and XML experience is beneficial.

The probe software is distributed as a source code format including an Ant build

script which does the actual compiling and also some preconfiguration. The probe

must then be configured to match the Service/Identity Provider where it is to be

used. This includes setting up the paths to the log files, the entity ID / name of the

Provider and the expected attributes.

Chapter 6

Results

6.1 Status of the Work

The requirements were turned into implementation and this work produced a work-

ing software which got the name AAIEye. The software is licensed under GPL and

available as source code at [15] for free. AAIEye monitoring has been offered as a

free service for Haka federation members and partners since 2007. The work was

also presented in Terena Networking Conference (TNC) in May 2008 and has gained

some interest from other federations too, most importantly within Kalmar Union,

as some of its Providers are monitored with CSC’s AAIEye service too.

CSC has promoted the monitoring solution for Haka system administrators. They

are encouraged to join the monitoring and statistics collection, but it is completely

voluntary. Table 6.1 gives a summary of how much AAIEye is currently used in

Haka. The numbers of Identity/Service Providers is from 22 January 2010. [16]

Active Monitoring Statistics Collection

Identity Providers 5 / 39 (13 %) 4 / 39 (10 %)

Service Providers 5 / 78 (6 %) 18 / 78 (23 %)

Table 6.1: AAIEye usage in Haka

As the table shows, most of the services have not adapted into using monitoring

or statistics collection yet. Some Identity/Service Providers provide their usage

statistics manually to CSC, by parsing the log files manually, but for some reason

have not installed AAIEye Probe for this.

48

CHAPTER 6. RESULTS 49

There are various reasons that delay the deployment process. Not all services are

considered that important that monitoring is needed – an end user complaining on

service failures might be enough for them. Many service administrators are also too

busy to install and maintain anything else than absolutely necessary. Other reasons

may include:

• It is not possible to create a test user account on IdP just for monitoring

purpose.

• The service is so rarely used that monitoring and statistics are not interesting.

• The administrator does not have enough knowledge or interest in installing

AAIEye Probe.

• The Probe implementation in Java is not suitable for the server environment.

• The availability data and/or usage statistics are considered as classified infor-

mation.

Getting complete usage statistics would be useful for marketing and developing the

federation, but for single IdP or SP administrator the benefits are not very clear.

Some kind of reward or requirement is probably needed to increase the number

of participants. For example, the federation contract could include a statement

requiring that members submit usage statistics in a way or another.

IdP and SP administrators and federation operator are the main users of the moni-

toring service. In this service, it is not so important to get all connections monitored

– the system administrators probably know which services should be monitored. The

federation operator can benefit from the monitoring service as it generates alerts if

the operator has made a mistake, the metadata is incorrect or the WAYF service is

unavailable. For this purpose having just a few test cases is enough.

Other options to increase the monitoring and statistics service usage have been

considered. The AAIEye software is introduced in the training sessions that CSC

organises for the Haka federation administrators. In those sessions it is possible to

get personal help on installing and configuring the software. When new services are

registered to Haka federation, the registration process asks also if the administrator

wants to take part of the monitoring.

CHAPTER 6. RESULTS 50

6.1.1 Functionality

The two primary functional requirement were ability to monitor the state of AAI

and gather usage statistics from Shibboleth Identity/Service Providers. In this work,

the software can fulfill these requirements. The monitoring does not produce much

false alarms either. An active monitoring setup is also highly independent on AAI

components used in a federation – a demonstration of this is monitoring Kalmar

Union connectivity with AAIEye which does not require code changes. In this

particular monitoring test, a Norwegian Service Provider using simpleSAMLphp

software is monitored from Finnish Identity Provider using Shibboleth software.

The architecture of Probes is extensible enough so it is straightforward to add sup-

port for gathering statistics from different AAI software too. The Probes include

instructions for doing this and since they are available as source code, administra-

tors can even do this by themselves. The support for Shibboleth Identity Provider

version 2.0 was added during the implementation process as a demonstration of this.

The requirement of partial use and easy separation of monitoring and statistics

functionality is met. At CSC there are currently two instances of monitoring server

running, one for active monitoring and the other for collecting statistics. Nagios

support is also in use and there is also an option to integrate AAIEye to customer’s

own Nagios installation. This option is currently used in one organisation.

Monitoring the metadata freshness is working, but has not seen much use. The

active monitoring test cases already check more reliably that the services are up

and running. The Shibboleth software starting from version 2.0 supports load-

ing the federation metadata dynamically using HTTP/HTTPS. Using this feature

is recommended and it has probably decreased the problems with using outdated

metadata.

6.1.2 Security and Privacy

An authentication and authorisation infrastructure is all about security, and by

monitoring it we wanted to improve it, not decrease. A monitoring solution must

offer high enough security, otherwise it is of little use. The security requirements

that were previously defined are however met in this work. By using an end-user

point of view, the monitoring application uses the infrastructure in a way it was

designed – no additional back doors were opened and no new features to the core

AAI software was implemented.

CHAPTER 6. RESULTS 51

The main security weakness in this solution is probably same as in federated identity

management in general – the username/password combination. For active monitor-

ing, the usernames and passwords must be stored in the monitoring service where

they are protected, but obviously storing those is always a risk. This risk is further

reduced by creating such monitoring accounts that have no access to other services

than those needed for monitoring purpose. Deploying other authentication mech-

anisms like X.509 certificate authentication on the Identity Providers can also be

used to reduce this risk.

The privacy requirements were high for this kind of tool, so it limited the detail of

information that this software processes. The Probes are designed in a way that no

personal information is ever sent outside. The statistics details stored in the central

server are not sensitive. Access to the availability information and to monitoring

statistics can be easily restricted to the level find necessary.

6.1.3 Performance

The active monitoring has generally proved itself a light-weight operation and has

not caused any notable performance problem. This depends on how often the mon-

itoring is performed – the Haka federation monitoring is done in 15-120 minute

interval at the moment. What comes into monitoring server performance this in-

terval could easily shortened significantly, but the load to the Identity Provider

and Service Provider must also be considered if doing this. Still, a busy Identity

Provider in Haka currently handles hundreds of authentication events per hour so

even intensive monitoring should not cause much harm for them.

Generating the XML data that the Probe sends to the server is memory intensive

operation. If the log files are big, this operation may use more memory than is

available for Java virtual machine by default. This problem can be handled by

increasing the memory settings. Other option is to alter the logging configuration

so that generated log files are smaller.

6.2 Future Work

The software developed is functional and usable in a way it was designed, however,

there has naturally appeared new use cases and improvement ideas as the software

has been used. Some of them have already been implemented, but there are still

many which are just ideas. This section discuss some of those areas of future work.

CHAPTER 6. RESULTS 52

Many www-sites are using functionality that depends on the user’s browser,

Javascript being one of the most common technology used. These kind of sites

turned out to be challenging to monitor by automated client – the Javascript sup-

port of the underlying library was not always complete enough. This made it im-

possible to monitor all of the services. Another major problem with the Javascript

support was that the library was leaking memory, which rapidly caused problems

as the tests were being run time after time.

The HTML code used in web is not always perfect, in fact, most of the sites have

pages that are broken or use non-standard HTML. This makes the life of the auto-

mated tests harder. Writing a monitoring configuration for this kind of web appli-

cations is also difficult. Generally improving and easing the configuration for active

monitoring would be useful, perhaps even some kind of tool or GUI for doing this

could be considered.

The statistics are currently transferred with perhaps too much detail. To reduce

network traffic and monitoring server load, more processing could be done in the

Probes to calculate some aggregated sums of login events and sending those instead

of details of every single event. This would naturally lose some information, but for

busy services this option would be useful.

It is worthwhile to follow closely what happens on the field of monitoring. The

Nagios integration has been very useful feature for AAIEye and there could be

other similar systems that would benefit from integration. For presenting the usage

statistics a common library and user interface could be developed or integrated, since

there are probably many similar statistics producing tools, the eduroam monitor as

one example.

There are now many federations and they are growing. The existing federations are

being connected together, and this creates more difficulties and failure points. These

confederations could benefit from monitoring solution, and a system described here

would adapt quite easily to different AAI software since it is dependent only on

external WWW user interface. More options for confederation monitoring would

useful to be able to fully separate confederation problems and helping to diagnose

them, and presenting the results in a proper way.

Chapter 7

Conclusions

The project of developing monitoring and reporting system has now reached its goals

as described in previous chapter. Main requirements were fulfilled and the software

has now been in real-life use for some time. Deploying the new service into wider

use has been a slow process, like it was expected at the start of the project. The

nature of the tool is challenging as many busy system administrators may see this

kind of tool purely optional, and more urgent projects are priorised over deploying

it.

The monitoring part of the system is not yet widely used in Haka. It monitors

some connections in Haka, but majority of Identity and Service Providers are not

monitored at the moment. However, on systems where there are constantly changes,

the monitoring application has proved its value. For example, CSC internal test

services have been monitored for a long time now and automated alerts when a

system administrator makes a mistake and services are down has been a real benefit.

The statistics are probably considered more important by the system administrators;

the statistics probe has seen more real-life action than the monitoring part of the

application. The operator of the Haka federation has been asking for usage statistics

to be parsed manually from the log files which involves manual work. Avoiding this

work has probably been motivation for the administrators to install our automated

solution. There has not been such driving force on the monitoring tool which may

explain the difference in their deployment numbers.

The support for different AAI systems and even confederations was considered im-

portant. The eduGAIN infrastructure is not in use in Finland at least yet. Thus,

the monitoring of eduGAIN has not been tested. Instead, as Kalmar Union went

53

CHAPTER 7. CONCLUSIONS 54

into production, the monitoring has been tested with some of its providers. This

example demonstrates how the monitoring tool can adapt easily enough to changes

in the underlying software.

Overall, the project has produced a working solution that quite accurately meets

its requirements. The limitations and problems of the solution were found out early

while gathering the requirements and designing the software. As the result, no

real surprises were seen. The software has been producing information to justify

the needs of AAI systems and this way it has helped operating and marketing the

Haka federation. Many new improvement ideas have been found, especially when

considering the confederation monitoring which is something new in this area. The

monitoring and statistics are perhaps even more valuable when system complexity

increases which means that further study and development in this area is likely to

be seen.

Appendix A

List of Illustrations

2.1 Software and hardware layers in distributed systems.

2.2 Federated Identity.

2.3 Single Logout Problem.

2.5 The interrelationship among federation standards.

2.6 Shibboleth login sequence diagram.

2.7 Generating attributes.

2.9 The eduroam infrastructure.

2.8 The eduroam RADIUS hierarchy.

3.1 A confederation.

3.2 The eduGAIN login procedure.

5.1 AAIEye Component Diagram.

5.2 Active monitoring architecture.

5.4 Probe architecture.

5.7 Probe data protocol.

5.8 Nagios with AAIEye plug-in.

5.9 AAIEye statistics.

55

Bibliography

[1] eduroam. http://eduroam.org, referenced 22 January 2010.

[2] eduroam monitoring. http://monitor.eduroam.org/, referenced 22 January

2010.

[3] End-to-end Diagnostic Discovery. http://www.cmu.edu/eddy, referenced 22

January 2010.

[4] FEIDE. http://www.feide.no, referenced 22 January 2010.

[5] JUnit. http://www.junit.org, referenced 22 January 2010.

[6] Jwebunit. http://jwebunit.sourceforge.net, referenced at 22 January

2010.

[7] Kalmar Union. http://www.kalmar2.org, referenced 22 January 2010.

[8] Nagios. http://nagios.org, referenced at 22 January 2010.

[9] SCHAC schema. Available at http://www.terena.org/activities/

tf-emc2/schac.html, referenced 22 January 2010.

[10] Ross Anderson. Security Engineering. John Wiley & Sons, Inc., 2001.

[11] Scott Cantor. Metadata for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS, 2005.

[12] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler (editors). Assertions

and Protocols for the OASIS Security Assertion Markup Language (SAML)

V2.0, 2008. At http://www.oasis-open.org/committees/download.php/

11898/saml-core-2.0-os.pdf.

[13] David Chadwick, George Beitis, and Gareth Owen. Adding authorisation to

eduroam. In TERENA Networking Conference, Brugge, Belgium, May 2008.

56

http://eduroam.org
http://monitor.eduroam.org/
http://www.cmu.edu/eddy
http://www.feide.no
http://www.junit.org
http://jwebunit.sourceforge.net
http://www.kalmar2.org
http://nagios.org
http://www.terena.org/activities/tf-emc2/ schac.html
http://www.terena.org/activities/tf-emc2/ schac.html
http://www.oasis-open.org/committees/download.php/11898/ saml-core-2.0-os.pdf
http://www.oasis-open.org/committees/download.php/11898/ saml-core-2.0-os.pdf

BIBLIOGRAPHY 57

[14] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems –

concepts and design. Addison Wesley, 2004.

[15] CSC – IT Center for Science. AAIEye monitoring system. http://www.csc.

fi/english/institutions/haka/technology/aaieye, referenced 22 January

2010.

[16] CSC – IT Center for Science. Haka federation metadata. http://haka.funet.

fi/fed/haka-metadata.xml, referenced 22 January 2010.

[17] Haka federation CSC IT Center for Science. funetEduPersonSchema version

2.1, August 2008.

[18] Chas DiFatta and Mark Poepping. The case for comprehensive diagnostics.

Technical report, Carnegie Mellon University, 2005. http://www.cmu.edu/

eddy/docs/Diagnostics%20Motivation%20Whitepaper0.93.pdf.

[19] Donald Eastlake, Joseph Reagle, David Solo, Frederick Hirsch,

Thomas Roessler (editors), Mark Bartel, John Boyer, Barb Fox, Brian LaMac-

chia, and Ed Simon. XML Signature Syntax and Processing (Second Edition),

June 2008. At http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/.

[20] Makoto Hatakeyama. Federation proxy for cross domain identity federation. In

Conference on Computer and Communications Security Proceedings of the 5th

ACM workshop on Digital identity management, pages 53–62, 2009.

[21] Internet2. Shibboleth. http://shibboleth.internet2.edu, referenced 22

April 2010.

[22] Mikael Linden. Organising federated identity in Finnish higher education. Com-

putational Methods in Science and Technology, 11(2):109–117, 2005.

[23] Mikael Linden, David Simonsen, Andreas Åkre Solberg, Ingrid Melve, and Wal-

ter M. Tveter. Kalmar union, a confederation of Nordic identity federations.

In TERENA Networking Conference, Malaga, Spain, June 2009.

[24] Diego Lopez, R. Castro, B. Kerver, T. Lenggenhager, M. Linden,

I. Melve, M. Milinovic, J. Rauschenbach, M. Stanica, K. Wierenga,

S. Winter, and H. Ziemek. GEANT2 Authorisation and Authentica-

tion Infrastructure (AAI) Architecture – second edition, 2007. Available

at http://www.geant2.net/upload/pdf/GN2-07-024-DJ5-2-2-2-GEANT2_

AAI_Architecture_And_Design.pdf.

http://www.csc.fi/english/institutions/haka/technology/aaieye
http://www.csc.fi/english/institutions/haka/technology/aaieye
http://haka.funet.fi/fed/haka-metadata.xml
http://haka.funet.fi/fed/haka-metadata.xml
http://www.cmu.edu/eddy/docs/ Diagnostics%20Motivation%20Whitepaper0.93.pdf
http://www.cmu.edu/eddy/docs/ Diagnostics%20Motivation%20Whitepaper0.93.pdf
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://shibboleth.internet2.edu
http://www.geant2.net/upload/pdf/ GN2-07-024-DJ5-2-2-2-GEANT2_AAI_Architecture_And_Design.pdf
http://www.geant2.net/upload/pdf/ GN2-07-024-DJ5-2-2-2-GEANT2_AAI_Architecture_And_Design.pdf

BIBLIOGRAPHY 58

[25] Miroslav Milinovic, Dubravko Penezic, and Ian Thomson. Re-

port on Introduction of Monitoring System and Diagnostics Tools,

2009. Available at http://www.eduroam.org/downloads/docs/

GN2-09-008v2-DS5-3-1-Report-on-Introduction-of-Monitoring_

System_and_Diagnostics_Tools_Final.pdf.

[26] Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and

Tom Scavo (editors). Security Assertion Markup Language (SAML) V2.0 Tech-

nical Overview. OASIS, 2008.

[27] Patrik Schnellmann, Patrick Chénais, and André Redard. Enhancing

SWITCHaai with micropayment functionality for Swiss universities, 2006.

[28] Walter M. Tveter, Ingrid Melve, and Mikael Linden. Towards interconnecting

the Nordic identity federations. Campus-Wide Information Systems, 24:252–

259, 2007.

[29] Rod Widdowson and Scott Cantor (editors). Identity Provider Discovery Ser-

vice Protocol and Profile, 2008. Committee Specification 01.

[30] Philip J. Windley. Digital Identity. O’Reilly, 2005.

[31] S. Winter, T. Kersting, P. Dekkers, L. Guido, S. Papageorgiou, J. Mo-

hacsi, R. Papez, M. Milinovic, D. Penevic, J. Rauschenbach, J. Tomasek,

K. Wierenga, T. Wolniewicz, José-Manuel Macias-Luna, and I. Thomson.

Inter-NREN Roaming Infrastructure and Service Support Cookbook - Third

Edition, 2008. Available at http://www.eduroam.org/downloads/docs/

GN2-08-230-DJ5.1.5.3-eduroamCookbook.pdf.

[32] Andreas Åkre Solberg, Scott Cantor, Eve Maler, and Leif Johansson. Interop-

erable SAML 2.0 Web Browser SSO Deployment Profile version 0.1, November

2009. At http://saml2int.org/profile/0.1.

http://www.eduroam.org/downloads/docs/ GN2-09-008v2-DS5-3-1-Report-on-Introduction-of- Monitoring_System_and_Diagnostics_Tools_Final.pdf
http://www.eduroam.org/downloads/docs/ GN2-09-008v2-DS5-3-1-Report-on-Introduction-of- Monitoring_System_and_Diagnostics_Tools_Final.pdf
http://www.eduroam.org/downloads/docs/ GN2-09-008v2-DS5-3-1-Report-on-Introduction-of- Monitoring_System_and_Diagnostics_Tools_Final.pdf
http://www.eduroam.org/downloads/docs/ GN2-08-230-DJ5.1.5.3-eduroamCookbook.pdf
http://www.eduroam.org/downloads/docs/ GN2-08-230-DJ5.1.5.3-eduroamCookbook.pdf
http://saml2int.org/profile/0.1

	Abbreviations
	Introduction
	Background
	Problem Statement
	Evaluation Criteria
	Scope
	Structure

	Authentication and Authorisation
	Authentication
	Authorisation
	Authentication and Authorisation Infrastructure
	Federated Identity
	Attributes
	Managing Trust
	Single Sign On and Single Logout

	Security Assertions Markup Language (SAML)
	Liberty Alliance and WS-* Protocols
	SAML protocol versions 1.1 and 2.0
	Profiles
	XML Digital Signatures
	SAML Metadata
	Identity Provider Discovery

	Shibboleth
	Identity Provider
	Service Provider

	Haka federation
	The eduroam

	Beyond federations
	Building interoperability between federations
	Technical and practical challenges

	eduGAIN
	Kalmar Union
	Monitoring a Confederation

	Requirements for AAI Monitoring System
	Motivation
	Requirements Specification
	Interfaces
	Performance

	Privacy and Security
	Related Work
	EDDY
	eduroam monitoring
	Nagios
	Summary

	Design and Implementation
	Design Goals
	Architecture
	Monitoring Server
	Probes
	Communication between Probes and the Server
	User Interfaces

	Deployment

	Results
	Status of the Work
	Functionality
	Security and Privacy
	Performance

	Future Work

	Conclusions
	List of Illustrations
	Bibliography

