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Physically Unclonable Functions (PUF) carry promise for solving some of the current 

problems in current embedded device security. Devices are often deployed in 

unmonitored areas accessed over the untrusted public internet. Confidential 

communications require secrets on the device, but simple persistent memory can 

easily be read during transit from a factory to the deployment by untrusted personnel. 

 

A PUF can be thought of as a mechanism for extracting deterministic randomness 

from something that cannot be copied or cloned. In this thesis, we design, implement 

and evaluate an FPGA PUF that can produce an estimated 250 bits of physically 

unclonable, reliable entropy from measuring slight variations in ring oscillator 

frequencies deployed on the FPGA fabric. The frequency variations result from 

submicroscopic silicon chip manufacturing variations that lie below manufacturing 

tolerances and cannot thus be copied. 

 

The PUF can be used as a device trust anchor, providing a stable basis for various 

cryptosystems, in turn making it possible to authenticate devices and initiate encrypted 

channels without any “leaps of faith” in trusting unknown key fingerprints at first sight. 
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Acronyms 

ASIC   Application-Specific Integrated Circuit 

CLB   Configurable Logic Block 

CPU   Central Processing Unit 

CRP   Challenge-Response Pair 

FPGA   Field-Programmable Gate Array 

LISA   Longest Increasing Subsequence Algorithm 

LUT   Look-Up Table 

MUX  (De)Multiplexer 

PL   Programmable Logic 

PRNG   Pseudo-Random Number Generator 

PS   Processing System 

PUF   Physically Unclonable Function 

RO  Ring Oscillator 

SoC   System on a Chip 

RRAM  Resistive Random Access Memory 

SRAM   Static Random Access Memory 

TRNG   True Random Number Generator 

Glossary 

Basic Element  FPGA primitive; most commonly a LUT, a Register or a MUX. 

Bitstream  FPGA configuration data 

Challenge   The input of a PUF evaluation; see CRP 

CLB    Modular FPGA component. Contains two Slices and one routing matrix. 

CRP    A PUF input and its associated expected output. 

FPGA    An integrated circuit containing configurable logic components. 

Inverter   A NOT logic gate; inverts its input 

LISA    A sequencing algorithm presented by Yin & Qu (2010). 

LUT    A Basic Element that can be configured to act as any logic  

    gate. 

MUX    A multiplexer has a signal input, selector input and many alternative  

    outputs. The value of the selector input decides to which output the signal  

    input is routed to. Demultiplexers have many inputs and one output. 

PL    Name for an FPGA on an embedded device 

PS    Name for a CPU on an embedded device 

Register   on-chip memory; single-bit registers are also Basic Elements. 

Response   The output of a a PUF evaluation; see CRP 

RO   A combination of logic gates that outputs an oscillating signal 

Routing matrix  FPGA component controlling the connections between Basic Element pins. 

Slice    A modular FPGA component. Contains a small number of Basic Elements. 

SoC    A name for a chip that integrates several components, allowing it to act as a  

   complete system. 
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1 Introduction 

 

The purpose of this Master's thesis is to determine the feasibility of implementing a 

practically viable Physically Unclonable Function (PUF) in a field-programmable gate array 

(FPGA), by attempting to do so. Our use case is to use the PUF as a trust anchor, the 

source of trust for cryptographic operations performed on the device. The requirements for 

PUF performance will be defined in more detail in relation to our use case. 

 

PUFs are based on exploiting physical random variations that are often intrinsic to the 

device. A silicon PUF is a circuit designed for amplifying these unpredictable sub-

microscopic manufacturing variations on a silicon chip. Our PUF design uses frequency 

differences of ring oscillators (ROs), caused by this variation in FPGA silicon chips, to 

calculate physically unclonable output bits. 

 

Our target device is the Avnet MiniZed board (Avnet n.d.), which carries a Zynq7000 system-

on-a-chip (SoC). The Zynq has, among other things, both a programmable logic (PL) block 

containing the FPGA and a processing system (PS) containing a normal microprocessor 

(CPU), making it possible to build complicated systems without leaving the chip. Our PUF 

was deployed on five MiniZed boards in order to evaluate our PUF’s behavior on different 

chips.  Analysis has been performed to evaluate the quality of our PUF using measures 

presented in academic literature. 

 

Given an input challenge, a PUF calculates a deterministic but hard-to-guess response. In 

other words, the PUF’s behavior should be reliable but unpredictable. It should not be 

possible to predict the behavior of the same function on any other device, and it should not 

even be possible to manufacture such a device, due to the variations existing on a scale 

below manufacturing tolerances. The PUF will use challenge-response pairs (CRPs) 

generating responses with at least enough combined entropy to be suitable for use as 

unique device fingerprint or trust anchor.  

 

 

 

 

 

  



 

6 

2 Background 

What is a PUF? 

A PUF is a function that turns an input (called a challenge) into an output (called a 

response), usually with some uncertainty. A PUF extracts randomness from something 

physical: in our case, this source will be sub-microscopic manufacturing variations in an 

FPGA silicon chip. The extracted randomness can be measured using the concept of 

entropy (Maes & Verbauwhede 2010). A PUF can also be thought of as a “device 

fingerprint”, as it can be used to uniquely identify a device. The concept of PUF was first 

introduced by Pappu et al. (2002) under the name physical one-way function. 

 

A trust anchor is an entity in a cryptographic system that is assumed to be trusted, rather 

than have its trust derived from some other entity (IETF 2016). In the context of public-key 

cryptography, a trust anchor is defined as “[...] an authoritative entity represented by a public 

key and associated data” (IETF 2010). In the context of trusted platform modules, where a 

co-processor continuously records the software state of a system, the first measurement 

during a boot uses a trust anchor, that often is the system firmware (Abera et al. 2016). 

Trusted platform modules in turn often act as trust anchors for larger systems (Schmidt et al. 

2008). PUFs are well suited for use as trust anchors due to being unclonable, unpredictable 

and hardware-based. 

 

The physical variations that PUFs are based on are often made visible by slight but 

deterministic differences in objects that have been designed to be identical. For example, on 

integrated circuits the small variations caused by manufacturing processes cause behavioral 

effects such as different signal speeds or varying memory cell settling behavior across 

design-identical components. Different PUF designs extract the variations from physical 

objects in different ways. Our PUF will be based on differences between the speeds of 

design-identical ring oscillators placed on an FPGA.  

 

The concept of a challenge-response pair (CRP) is central in the theory of PUFs. A PUF can 

support a varying number of challenge-response pairs. The challenge and response can be 

single bits, or arbitrarily long. A PUF should always produce as close to the same output as 

possible on the same device, and an unpredictably different output on any other device.  

 

The CRP behavior of a PUF can be formulated as (Maes & Verbauwhede 2010): 

PUF(Challenge) -> Response + random_variation  

Due to the possibility of bit flips, a random variable should be added to the equation to depict 

the fact that bits in the response may get flipped from the expected value. The challenge can 

affect the response generation in various ways, depending on the design of the PUF. In our 

case, the challenge will consist of two values used to select ring oscillators. 

 

A PUF that is based on the physical properties of something is called an intrinsic PUF, and 

PUFs based on chip variations are called silicon PUFs. While there are PUFs that are not 

based on silicon chip variations, including optical PUFs, coating PUFs and even “paper 

PUFs” , we will limit our scope to intrinsic silicon PUFs (Maes & Verbauwhede 2010).  
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Enrolling procedure 

In order to know what the correct response to a challenge is, the PUF should be enrolled. In 

the enrolling procedure, all the CRPs that are planned to be used when the device is 

deployed should be evaluated and stored. Depending on the method used, unreliable bits 

might be filtered out in this phase by simply excluding them from being used as challenges. 

After enrolling all CRPs we want to use, a PUF can be used for for simple authentication of 

deployed devices as is shown in figure 1. 

 
Figure 1: An example of a simple PUF-based device authentication scheme with single-use 

CRPs (Suh & Devadas 2007). 

 

Properties of a PUF 

According to Maes and Verbauwhede (2010), an ideal PUF has seven properties presented 

in table 1. On the other hand, Zhang et al. (2014) recognize only three more coarse-grained 

properties: Persistent and Unpredictable, Unclonable and Tamper Evident. The first covers 

Maes and Verbauwhede’s properties 3 and 5. Unclonable and Tamper Evident are exact 

matches. Zhang et al. do not include One-way in their properties, while property 1 is 

assumed given. Their view on property number 2 is unclear. 

 

Of these seven properties, tamper evidence is particularly hard to achieve on general-

purpose FPGAs, as current physical attacks (Lohrke et al. 2016, Zhang et al. 2014) can read 

and measure FPGA elements without physical contact. Here unclonability means 

unclonability in the physical sense, but attackers can bypass physical cloning by either 

characterization or modeling attacks, which we discuss later. 

 

 Property Explanation 

1 Evaluable A PUF should be able to produce responses to challenges. 
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2 Unique It should be always possible to identify a PUF instance by its 

CRP behavior.  

3 Reproducible The same challenge on the same PUF should always produce 

the same, or very similar, response. 

4 Unclonable It should be very hard to move or copy the function from its 

physical environment. On silicon PUFs, this is achieved by using 

small, uncontrollable chip irregularities. 

5 Unpredictable It should not be possible to predict the response to a CRP from 

observing other CRPs on the same PUF or some other instance 

of the PUF. 

6 One-way It is not possible to reproduce the original challenge from an 

observed response. 

7 Tamper evident (Physical) attack attempts should leave traces, possibly altering 

the behavior of the PUF. 

Table 1: Properties of an ideal PUF 

Benefits of using a PUF 

The motivation to use a PUF is usually device authentication or key material generation, to 

be used for either protecting data or intellectual property. Since the source of entropy is the 

physical chip, a PUF can be used both as-is to uniquely identify a chip, and also as a part of 

a cryptographic system to provide device-specific secrets. Key material from a PUF can be 

used in a wide variety of cryptographic applications, including symmetric and public-key 

cryptography. Combining these mechanisms can allow for ensuring both the confidentiality 

and integrity of the device contents and communications, and integrity of its identity.  

 

Physical security is a challenge for embedded devices. While the complex data centers 

where much of today's cloud computing happens are usually under strict physical security, 

an embedded device might be deployed in any vehicle, building or public space, where 

access to it might not be controlled, or controlled by a third party.  

 

For the use case of establishing a secret on a deployed embedded device, using a PUF has 

a number of benefits as compared to either using a stored secret, a true random number 

generator or a pseudo-random number generator. 

 

Benefits over a stored secret 

A secret or key held in non-volatile memory can potentially be read either programmatically 

or physically. In case a remote software-based attack can be developed, for example by 

exploiting a software vulnerability, it is often easily scalable to all devices of the same type. 

Supplier security should also be taken into account, as malicious contractors or suppliers 

can read hard-coded device serial numbers or keys stored in flash memory during transit 

and deployment. Specialized physically protected chips might be explored as a solution. 
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Benefits over a TRNG 

It is possible to implement a True Random Number Generator (TRNG) in an embedded 

device, using for example analog noise measurements from a temperature sensor. This true 

randomness could be used to generate unpredictable keys. However, unless we compute 

and store the key on the device before deployment, we have no way of knowing what key 

the deployed device will have. Furthermore, there is no way of generating the same key 

twice, so the generated key would have to be stored. 

 

When we don’t know what key the device has, our only option is to trust the connection 

claiming to be the device on the first use (Trust On First Use; TOFU). After a TOFU 

connection has been established, it is secure, but if an attacker intercepts or spoofs the first 

request, all future traffic can be compromised. Using a PUF allows us to know beforehand 

what the key, trust anchor or identifier will be, thus allowing us to establish a trusted channel 

from the start. 

 

Benefits over a PRNG 

A Pseudo-Random Number Generator (PRNG) produces random-looking but predictable 

numbers given a seed value (Maes et al. 2012). A PRNG takes a seed value as input and 

outputs statistically random but deterministic output. Using PUFs on a set of devices can be 

thought to bear some resemblance to using PRNGs with a unique seed value on each 

device. However, the usefulness of PRNG-backed cryptography is severely restricted by the 

need of keeping the seed secret, thus providing little benefit over a stored key (Maes et al. 

2012). A PUF does not require us to rely on such a brittle secret, as the randomness is 

embedded in the chip itself. 

 

As such, using a PUF for cryptography has benefits in that (Maes et al. 2012): 

1. We do not need to store sensitive keys in memory, as the PUF can regenerate the 

secret at any time. 

2. The PUF is bound to a single physical chip, so it cannot be stolen except by full 

characterization or modeling of the PUF. 

 

Attacking a PUF 

A good PUF should remarkably improve the situation compared to any of the methods 

discussed above. While a PUF is very hard or impossible to clone, attacking a PUF is 

possible by other means. Attacks against PUFs include modeling attacks and 

characterization attacks (Rührmair et al. 2013; Maes & Verbauwhede 2010).  

 

Modeling attacks are based on building a software model of the behavior of the PUF, with 

the help of tools like machine learning. Performing this kind of attack requires visibility into 

unobfuscated CRPs, but will compromise also other CRPs before they have been used.  

 

Characterization attacks are based on collecting CRP behavior or physical measurements 

that can be directly used in attacking later CRPs. Characterization does not lead to the ability 

to predict unseen CRPs, but being able to run and store all CRPs might lead to the ability to 

masquerade as the PUF, even if the CRPs are obfuscated. 

 

Zhang et al. (2014) separate non-modeling attacks further into side channel attacks and 

physical cloning attacks. They consider the SRAM attack by Helfmeier et al. (2013) the only 
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successful physical cloning up to that date, while other methods based on measuring, timing 

or power manipulation they consider side-channel attacks. 

Common PUF designs 

Arbiter PUF 

 

 
Figure 2: An Arbiter PUF. Blue lines represent signal routing. Challenge bits determine the 

routing within each element.  

 

The first delay-based silicon PUF design is the Arbiter PUF proposed by Lim et al (2005). It 

is based on configurable delay lines, producing 1 if the line "1" was faster and 0 otherwise. 

Figure 2 demonstrates the signal routing behavior on a block level. Cross-coupled NAND 

gates are often used in the arbiter block to determine the faster signal. 

 

The main weakness of the Arbiter PUF is its susceptibility to model-building attacks using 

machine learning. Due to the simple design’s vulnerability more complex combinations of 

delay lines and logic gates have been proposed. These more complex combinations are 

more resilient but even these have been shown to be learnable (Rührmair et al. 2013). 

 

The large sensitivity of the Arbiter PUF to routing differences makes it unsuitable for our 

target FPGA device. Arbiters require additional configurable delay lines to calibrate them 

correctly on an FPGA; on an ASIC, accurate controlling of the route design length is 

possible, so that any variance is caused by random process variation. 

 

Butterfly PUF 

 

The Butterfly PUF first proposed by Kumar et al. (2008) is based on two cross-coupled 

latches or flip-flops. Figure 2 presents a gate-level representation of the design. The 

excitement signal sets the other latch to logic-1 and resets the other to logic-0. Due to 

manufacturing variations, the state of both latches will settle on either value.  
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Figure 2 (left): the Butterfly PUF (Morozov et al. 2010)  

Figure 3 (right): the Ultra-Compact Identification Generator (Chongyan & O’Neill 2015) 

 

The Ultra-Compact Identification Generator 

 

A design by Chongyan & O’Neill (2015) called the “ultra-compact identification generator” 

(figure 3) is also based on two flip-flops, the output of which is passed to two cross-coupled 

NAND gates. The NAND gate to first receive the signal from the flip-flop will determine the 

output of the bit unit. The proposing article places emphasis on the feasibility of FPGA 

deployment and compact footprint. Generating a single bit unit on an FPGA requires two 

registers and two Look-Up Tables (LUTs) configured as NAND gates. Selection logic can be 

added after the registers to make different pairings, allowing different challenges to be used. 

 

SRAM PUF 

 

Static Random-Access Memory (SRAM) PUFs are based on the settling behavior of SRAM 

memory bits (Kumar et al. 2008; Aysu et al. 2015; Herder et al. 2014). An SRAM cell (figure 

5) is based on cross-coupled inverters that use positive feedback to maintain their state. 

Without a write operation, bits in SRAM tend to settle as either 0 or 1, and this tendency is 

determined by random process variations. SRAM PUFs are not viable on many modern 

devices, including the MiniZed board, due to the device resetting all memory to zero at 

power-up. SRAM PUFs have been demonstrated to be vulnerable to cloning (Helfmeier et al. 

2013).  
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Figure 4 (left): Anderson’s glitch PUF (Anderson 2010) 

Figure 5 (right): an SRAM cell  

 

Glitch PUF 

 

Glitch PUFs are based on a signal spike (called a glitch), usually generated by signal speed 

variation caused by random process variation on a design-identical route. Anderson’s (2010) 

FPGA-friendly PUF is an example of this concept. Many PUFs are very sensitive to routing 

asymmetries, and it is hard to guarantee symmetrical routing on FPGAs. To that end, this 

PUF is based on the binary arithmetic carry chains present in Xilinx FPGAs (see figure 4). 

Each of his PUF's bit units operate within two adjacent Slices, where there is a dedicated 

wire between the carry chains; the connection between them does not go through the routing 

matrix. The glitch is generated by the difference in the speeds of LUTs A and B when 

transitioning to the other logic state. Distance between the LUTs determines the length of the 

glitch pulse. Anderson saw the lack of cross-device portability of designs as a problem, and 

thus he openly provides the source code of his design, to help in the evaluation of PUF 

designs in literature. 
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Ring oscillator PUF 

 
Figure 6: A ring oscillator PUF (Suh & Devadas 2007). 

 

The ring oscillator PUF (RO-PUF) is based on the fact that random manufacturing variations 

have an unpredictable and measurable effect on the frequencies of ring oscillators, usually 

enough to overcome random noise and environmental effects. As the effect is random but 

deterministic, PUFs can be built using this behavior. The earliest version of a RO-PUF was 

proposed by Gassend et al (2002); in their concept, the challenge alters the signal routing 

(similarly to the Arbiter PUF) within each of a pair of ring oscillators, and oscillator pair 

frequencies were then compared to determine the faster oscillator and thus the output bit. As 

their design shares the additive delay characteristics with the Arbiter PUF, it is vulnerable to 

the same modeling attacks (Maes & Verbauwhede 2010). 

 

The design that has since become the baseline RO-PUF design in the literature was 

proposed by Suh & Devadas (2007), shown in figure 6. Their design differs from Gassend et 

al. in that all oscillator routings are designed identical, and the challenge selects which RO 

units are to be compared. The RO frequencies are again compared with each other, and the 

output bit is again decided based on which oscillator was measured to be faster. N ring 

oscillators are deployed on the FPGA, each connected to a pair of demultiplexers. The 

challenge is used as the selector input for the demultiplexers, thus selecting which oscillators 

are connected with the edge counters. When the PUF is powered, the edge counters count 

the number of rising signal edges that are output by the two ring oscillators selected by the 

challenge. After either a specified oscillation count is reached or certain period of time has 

elapsed, the PUF is powered off and the counts are compared to determine the output bit. 

RO-PUFs have achieved good measurement results in the literature (Maiti & Schaumont 

2010; Maes et al. 2012).  



 

14 

3 Problem definition 

Use case 

Our use case is to calculate an adequate number of unpredictable, unique, physically 

unclonable bits to build a device-specific secret that is suitable to use as a device trust 

anchor. This secret trust anchor allows us to setup confidential communications with the 

device while being certain of its identity. A PUF enrolling procedure will be performed in a 

trusted environment before deployment. 

 

In the conceptual use case scenario for the purposes of this thesis, the device is to be 

deployed in the field in an environment that is relatively safe (e.g. a normal locked room) but 

not controlled by us (e.g. on someone else’s premises). We are connected to the device 

over the public internet, which is untrusted. We will not have physical access to it most of the 

time, but we can arrange visits with advance notice to maintain or replace the device.  

 

It is a fact of cybersecurity is that there can never be perfect protection against an attacker 

who has physical access, time and money. With a PUF, we can aim to make these kinds of 

attacks as hard to perform and scale as possible. It should be possible to make the attack 

require similar physical access to each new attacked device, possibly requiring removal from 

deployed site and leaving tamper evidence in the process.  

Threat model 

There are three assets we are trying to protect: 

- Cryptographic identity of the device 

- Confidentiality of device data and communications 

- Cryptographic identities of other similar deployed devices 

 

Furthermore, the threats our device is facing can be divided into three categories: 

 

Network threats. Relevant network attacks include for example spoofing and man-in-the-

middle (MITM) attacks. In a spoofing attack, someone might pretend to be our device in 

order to receive legitimate communications. In a MITM attack an attacker intercepts and 

possibly manipulates communication packages to and from the device. 

 

Malicious software. An attacker might get software to run on the device using e.g. a 

vulnerability in 3rd party software on the device, or through physical access. Malicious 

software insertion should be mitigated using standard best practices in hardening and 

software updating. This attack can be quite cost-effective compared to a true physical attack. 

 

Physical attacks. An attacker might steal a device, take it into a laboratory test bench, and 

start probing it with physical sensors. Physical attacks can e.g. read and manipulate secrets 

on the chip and board memory.  
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Requirements 

R1: Adequate entropy with no fundamental weaknesses  

The length of the bit string should be long and unpredictable enough to provide adequate 

entropy for robust cryptography. While 128 bits of entropy should be safe for the foreseeable 

future, 256 bits of entropy is guaranteed to be enough against any brute-force attack due to 

fundamental limitations arising from physics (Schneier 1999, 2013).  

 

The design should not have any inherent remotely exploitable vulnerabilities or other 

fundamental weaknesses, such as being susceptible to modeling attacks, and should be as 

resistant to physical attack as is reasonably possible. The design concept’s potential for 

further hardening should be included in this consideration. 

 

R2: Maximum reliability and longevity within the expected operating environment 

PUF reliability means the response from a PUF instance is always the same. We are aiming 

for 100% reliability, which means that the PUF evaluated on the same device should always 

return the same identical response, and never flip any of its bits under the expected 

operating conditions.  

 

In our case, reliability of the response is prioritized over the number of usable bits, 

challenge-response pairs and even entropy. If each PUF instance returns exactly the correct 

response, we can avoid implementing error-correction methods. The PUF should remain 

usable for as long as possible, preferably 10 years, and give advance warning of aging 

deterioration.  

 

The PUF should remain reliable under temperatures varying within the predicted operating 

temperature range. The effect of altered voltages on reliability will not be considered in our 

evaluation, as voltage is non-trivial to alter on our test device, and this effect not central to 

our use case. 

 

R3: Reasonable efficiency 

It is possible that some bits in the PUF output are predictable, and thus contribute less than 

a full bit of entropy to the response. A perfectly efficient PUF would have only response bits 

that produce close to one bit’s worth of entropy each. We can estimate efficiency using 

entropy density, calculated as the ratio of produced bits and the entropy carried by them 

(Maes et al. 2012). It is possible to achieve an adequate amount of entropy (R1) using either 

a smaller number of high-quality bits or a larger number of lower-quality bits. We shall later 

estimate the entropy for an attacker with full knowledge of bit-specific biases.  

 

R4: Scalability and portability of design 

All parts of the system should be designed so that it is as widely applicable to different 

devices as possible, including near-future ones. The design should be easy to increase in 

size. The PUF should be as agnostic of underlying hardware specifics as possible, and it 

should be cheap and easy to deploy on new devices.  

 

R5: Understanding the sources of error 

We will research the sources and effects of error in the behavior of our PUF. While this is not 

strictly a requirement on the PUF implementation, since the implementation is unlikely to be 
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perfect, it is important to measure and understand the different sources of error that prevent 

our PUF from performing ideally. This builds trust in the implementation and lays the 

groundwork for future improvements on the PUF design. 

Selected concept 

The concept we have selected for our implementation is a controlled ring oscillator PUF with 

software-readable oscillation counter registers. Using software running on a CPU in 

conjunction with a PUF is known as a Controlled PUF or CPUF (Maes & Verbauwhede 

2010). This “RO-CPUF” concept was selected for its following good qualities that help us 

achieve our requirements: 

 

- Relative resilience against attacks (R1). Arbiter PUFs have been shown to be very 

vulnerable to model-building attacks due to the fact that every observed CRP evaluation 

reveals information that is also used in the generation of other CRPs (Rührmair et al. 2013, 

Maes 2013: 110). SRAM PUFs have been attacked using a Focused Ion Beam (FIB) and 

measuring leaking Near Infrared photonic emissions, leading to a complete characterization 

(Helfmeier et al. 2013). Meanwhile, Herder et al. (2014) report only two RO-PUF attacks, 

one manipulating the frequency of the oscillator by driving a signal on the ground plate, and 

another physically measuring the oscillations. The first is a non-issue for us because the 

attack would have to happen in the enrolling phase; the second is defeated by multiple 

oscillators running simultaneously in close proximity, which will happen in our design. More 

recently, however, RO-PUFs have been successfully attacked using Laser Voltage Probing 

(Lohrke et al. 2016), making it relevant to consider mitigations against direct frequency 

measurements. 

 

- Good measurement results in literature (R1, R3). In literature, RO-PUFs have reported 

the best reliability and unpredictability measurement results when compared to 

implementations of the other basic designs (Maes 2013: 115, 125). Reliability measures 

have been good, which is a priority to us. 

 

- Modularity and scalability (R4). On an FPGA we do not have precise control over the 

physical routing of signals in the chip, as we might have when designing an ASIC. For 

example, Arbiter PUFs are very sensitive to routing error, making them unsuitable for 

FPGAs. As each oscillator unit is modular and has an identical internal component layout, 

we can assume that the internal connections are also identical in design. Implementing a 

ring oscillator requires only an odd number of NOT gates, one AND gate and in our case one 

OR gate. These can easily be implemented using the configurable look-up tables (LUTs) that 

normally make up the bulk of elements on any FPGA. This is in contrast to e.g. the exotic 

memristor PUF (Mazady et al. 2015). The RO units are also reasonably compact, each 

occupying 7 of the 8 LUTs present in a single CLB. Increasing the number of oscillators is 

simply a matter of adding them and making the selection logic accommodate larger 

selectors. 

 

- On-chip controllability (R3, R2). Our design can be controlled from the on-chip 

processor. We can choose from the software which RO units to run, in which order, and for 

how long. When we have an established a trusted channel, we can even remotely configure 
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the processor to use new challenges for the PUF, or run diagnostic runs to detect PUF 

aging. We can also potentially perform pre-processing and post-processing on the PS while 

remaining on the same chip, increasing the security performance. 

 

- Scalar output (R2, R5). While for example a Glitch PUF or Butterfly PUF is based on 

simple units producing just 0 or 1, we have the benefit of collecting absolute measurements 

from our oscillators. Acquiring raw speed data about the oscillators instead of only the final 

output bits allows us to make our enrolling method robust and predictable with greater 

confidence and fewer measurements. Scalar data combined with controllability also adds the 

option of adjusting the run length, while containing more information about the underlying 

chip variation. However, while easing development and enrollment, on a deployed device 

this feature increases the attack surface, leading to considerations if the enrollment and 

deployment should use different FPGA configurations. 
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4 Methodology 

Technical methods & design 

Device 

Our target device is the Avnet MiniZed containing a Xilinx Zynq-7000 SoC chip. The chip 

contains both a programmable logic (PL) and a processing system (PS) section. The PS 

contains a single ARM Cortex CPU. The board was chosen due to it containing a 

widespread, established and modern chip and its affordable pricing, making it possible to 

acquire several devices for the purposes of the project. The board has been designed as an 

evaluation board, containing a variety of features at a low price. As a major objective of this 

study is researching the feasibility of implementing a good PUF, it also makes sense to use 

the smallest device possible for developing the proof-of-concept solution.  

Our PUF design 

As mentioned, our design is based on the RO-PUF concept with a CPU-based controller 

program. The controller program has access to four 32-bit registers through an AXI-Lite 

interface. All the registers are readable and two of the registers are writable by the controller. 

Registers 1 and 2 are for input; the first ten bits (bits 0-9) of these registers are used as 

selection bits (RO address). Figure 7 provides a block level visualization of our design, also 

demonstrating the selection logic. The selection values control which two oscillators are 

powered up when the power bits are set, and they also control the routing from the same 

oscillators to the output counters. 

 

The last bits (bit 31) of the input registers control the power to the PUF. They go through an 

AND gate before connecting to the signal pin on the input de-multiplexers (inmux1 and 

inmux2). The purpose of the AND gate is to ensure the oscillation does not start before both 

registers are written, and power can be turned off with only one register write. Figure 8 

demonstrates a ring oscillator. We use an OR gate in front of each oscillator to 

accommodate two alternative sources for the power signal. 

 

The input registers have 21 unused bits, and these can be used to expand the number of 

ROs that can be selected. Our design has 1000 ROs, and currently we could select among 

210 = 1024 units. 231 is so large that it does not impose limits on the practical oscillator count 

for the design. Registers 3 & 4 are connected to an edge-counting addition block. Each new 

rising edge of an oscillation arriving to either of the counters increments the connected 

register by one.  

 

Thus our PUF takes two 10-bit addresses as input and produces two oscillation counts of up 

to 32 bits as output. However, if we consider the design at a higher level, including the CPU 

as a part of the PUF, and use the controlling program to perform simple frequency 

comparisons, the relationship between response and challenge bitstring lengths is 

Challenge: (K * L * 2) bits 

Response: K bits 

Where  0 < K <= N/2 and L = ceil(log2(N)) 
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The length of the challenge required is the length of a single address L, multiplied by the 

number of bits K we want to be in the response, multiplied by 2 because we need to select 

two oscillators. If we use simple pairwise comparison, K is bounded by N/2. L is the base-2 

logarithm of N rounded up. For example, if we have 1000 oscillators, we need 10 address 

bits: 

L = ceil(log2(1000)) = ceil(9.97) = 10 

With 1000 oscillators, the formula results in a 20 bit-challenge for each response bit, 

meaning 10000 challenge bits are required for the maximum length response of 500 

independent bits. The challenge might be procedurally generated to avoid storing it verbatim. 

 

 
Figure 7: Block design of our RO-PUF 

 

 

 
Figure 8: Logic-level schematic of our ring oscillator. Each oscillator has an input from each 

inmux and an output to both outmuxes. A maintained signal on either input makes the output 

signal oscillate. Frequency has a unique component from manufacturing process variations. 
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Figure 9: Sequence diagram of a single RO pair measurement. 

 

The order of operations in a pair measurement is shown in figure 9. The measurement is 

initiated by the CPU by writing to the input registers (reg1 and reg2). While the measurement 

is running, the rising signal edge (oscillation) counts of the selected oscillators accumulate in 

the output registers (reg3 and reg4). Meanwhile the controller is continuously sampling the 

global timer available in the CPU, terminating the run when the elapsed time is longer than 

the num_ticks parameter by writing the power bits to zero. Temperature and voltage are 

read from the system monitor on both sides of the timed block and averaged. Controller 

program source code is included in the appendix. 

 

Resource  # used  # available  % used 

Look-up table (LUT) 11388 14400 79.1 

LUTRAM 72  6000  1.2 

Flip-flop (FF) 1558 28800 5.4 

Table 3: Total resource utilization, including selection and interface logic. 

 

Table 3 presents the FPGA resource utilization of our placed and routed design. The most 

prevalent components are Look-up tables, which are elements that can be programmed to 

act as any logical gate: they can map any logic input to any logic output. Flip-flops are 

essentially single-bit registers that hold any state assigned to them until they are reset. We 

can see that we have used almost all of the limiting resource (LUTs) on this chip. Further 

study would be required to achieve an accurate understanding of the scaling behavior of the 

selection logic (the inmuxes and outmuxes). The counters, the system monitor and the AXI 

interface do not need to scale and have constant resource requirements. 
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Modules 

The RO units are divided into modules in order to reduce the effect of systemic variation on 

the oscillator comparisons (Maiti & Schaumont 2010). As the routing and placing is 

performed automatically by the Vivado software, we do not know (without performing manual 

examination after each placing) where exactly each oscillator is placed. The modules allow 

us, within a certain degree of accuracy depending on module size, to always know where on 

the chip an oscillator with a certain index (selector address) is located. See Figure 10 to see 

how the modules were placed on the FPGA. 

 

 
Figure 10: Routing and placement of the design on the Zynq-7000 as represented by the 

Vivado hardware design suite. The red lines represent “bundle nets” between pblocks. Note 

the oscillators divided into modules on the right hand side. 

Oscillator selection  

We have implemented three strategies for selecting which oscillators to include in the CRP: 

the naive strategy, the filtered naive strategy, and the Longest Increasing Subsequence 

Algorithm (LISA) of Yin & Qu (2010). 
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Naive selection 

In the naive selection scheme, we always select oscillators n and n+1, and encode their 

relative speed into a single response bit. If oscillation count of n is larger than the oscillation 

count of n+1, the bit is 1, otherwise 0. 

 

 

Pseudocode: 

 

for n from 0 until count_of_oscillators-1; n=n+2 

oscs[n], oscs[n+1] = run_oscillators(n,n+1) 

if oscs[n] > oscs[n+1]  

return 1 

else  

return 0 

 

Strengths: 

In naive selection each bit will be independent, i.e. no oscillator is included in generating 

more than one response bit, and the relative order of two oscillators can not be inferred from 

other response bits. As the challenge bitstring is trivial, it reveals no information about the 

enrolling process. The naive method also avoids systemic chip variation, by 24/25 of the 

time selecting a pair within the same module and 1/25 of the time from a neighboring module 

(due to each module containing 25 ROs). If we would e.g. pair the oscillators with lowest 

absolute values with the largest absolute values, on a biased chip the winning oscillators 

would all be on one side of the chip, and the response would be biased and predictable. 

 

Weaknesses: 

The naive method is likely not an optimal way of selecting oscillators. We do not make any 

effort here to pick particularly good matches from the available population of oscillators, and 

as such some of the oscillators we select have frequencies inside the random error 

threshold, and have unstable response bits.  

 

Filtered naive selection 

The filtered naive selection scheme works on the same base idea as naive selection, but we 

filter out all potentially unstable pairs in the enrolling phase. 

 

Pseudocode: 

 

// do K measurement runs (e.g. with K from 5 to 10), ideally  

// slightly outside the extremes of the desired operating  

// temperature range; this should guarantee reliability within that  

// range while keeping as many bits as possible. 

for k from 0 until K; k=k+1 
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 For n from 0 until count_of_oscillators-1; n=n+2 

oscs[n][k], oscs[n+1][k] = run_oscillators(n,n+1) 

 

// detect overlapping pairs in the enrolling data 

if min oscs[n] < max oscs[n+1] or max oscs[n] > min oscs[n+1] 

// reject this pair 

else if oscs[n] > oscs[n+1] 

return 1 

else 

return 0 

 

Strengths: 

Filtered selection should be completely error-free within the environmental parameters of the 

data used for calibration, and thus achieve perfect reliability within those conditions. 

 

Weaknesses: 

Filtering eliminates bits from the CRP, likely losing entropy in the process. Filtering is also 

unpredictable, as we do not know beforehand how many pairs will survive the filter; there 

might be as many as 95% of bits remaining after the filter, or only 50%. 

 

The result of the filtering is dependent on the calibration data used in the enrolling 

procedure. Temperature variation during the calibration run is the main factor affecting 

speed of oscillators in the enrolling data. A large temperature variation within the set of data 

implies larger variations and more bits will be filtered out, while a too small temperature 

variation will reduce the reliable operating temperature range of the PUF. Using a dataset 

with a somewhat larger temperature range than the expected operating temperatures should 

be used to produce a reliable PUF within the operating range. 

 

As filtering eliminates pairs with the smallest differences, it likely to make the bits of the PUF 

more predictable, i.e. reduce the inter-distance across devices. This is likely detrimental to 

the average entropy gained per bit, as intuitively the surviving bits would be more likely to 

have across-devices bias. 

 

LISA 

LISA stands for Longest Increasing Subsequence Algorithm, presented by Yin & Qu (2010). 

Yin and Qu reported extracting a maximum of 480 reliable bits from 288 oscillators, thus 

having an efficiency of n*1.67. This is much more than the n/2 ratio of bits from normal RO 

pairing (like our naive selection), of which all bits might not be reliable. 

 

The idea of LISA is to group the RO population into subsequences and encode the 

information embedded in their mutual order as bits. LISA uses a frequency threshold to 

define the minimum difference required between two oscillators for them to be permitted in 

the same subsequence. We use here a Lehmer encoding for denoting order within the 

subsequences as utilized by Maes et al (2012). 
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LISA requires the PUF to be controlled. The CRP challenge will also be more complicated, 

as the controller needs to know precisely which ROs were grouped in which subsequences 

in the enrollment phase. The mutual order within those subsequences is the secret included 

in the response. All oscillators will be run and their order evaluated and encoded by the 

controller. 

 

LISA pseudocode (adapted from Yin & Qu 2010): 

 

// “sorted” contains the ROs sorted by their oscillation minima;  

// “f_th” is the threshold frequency, used as a safety margin 

findReliableLIS(List sorted, Int f_th) 

n = sorted.length 

create stack ST_0, push sorted[0] to it 

h <- 0 

for j <- 1 to n 

top <- the top ring osc on stack ST_h; 

  if ((sorted[j].fmin - top.fmin > f_th)  

&& (sorted[j]. fmax - top.fmax > f_th) ) 

 

   h++ 

   push sorted[j] to new stack ST_h 

  else 

 

   find the stack ST_p with the largest index p that has its 

top element's fmax smaller than sorted[j].fmax - f_th 

and fmin smaller than sorted[j].fmin - f_th. 

 

   if p ! = null 

    push sorted[j] to ST_p+1 

 

return sequence <sorted[j_1], sorted[j_2] ... sorted[j_h]> where 

sorted[j_h] is the top element of ST_h 

 

Strengths: 

The response bitstring will no longer be of fixed length, but will vary based on the 

sequencing performed by LISA. It is also much harder to deconstruct the bit string as after 

joining the bit-encoded orders together, there is no obvious way of distinguishing which 

specific oscillator was used to derive which bit. 

 

LISA allows us to extract many more bits from the oscillator frequencies, which likely but not 

necessarily improves the entropy strength of the response. To estimate the entropy carried, 

we sum over the set of subsequences 

H(Y) = sum(log2(b!)) 

where b is the length of each subsequence in turn. This provides an entropy upper bound for 

a bit string built from combining the binary encodings of the relative order of each ring 

oscillator within its subsequence (Maes et al. 2012). However, this estimate has pitfalls. 
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Weaknesses: 

As a single RO pair no longer produces a single bit, the amount of entropy carried by each 

bit is harder to estimate. Some bits in the binary encodings might be biased; also, while 

previously a pair yielded a single bit, every RO will produce at least one bit, no matter how 

biased. In a 2-RO sequence, encoding the order will now yield 1 for the faster RO and 0 for 

the slower RO. The information carried by a 2-RO sequence is thus exactly the same as 

previously carried by one pair; however, it is now encoded in two bits. A single-RO sequence 

always yields 0, and trivially carries no entropy if the attacker knows the sequence lengths, 

which would be contained as plain text in the challenge. 

 

There are n! possible ways to order a sequence (Maes et al. 2012). For this to yield the 

estimated amount of entropy, the distribution of orderings should be uniformly distributed, 

which is not the case in reality, as the relative frequencies (at least in our implementation) 

have bit-specific bias across devices. As such, the formula used by Maes et al. (2012) will 

only estimate LISA’s entropy against an attacker who knows we use LISA, but is ignorant of 

these biases. 

 

The sequencing process is very sensitive to changes. Minuscule changes in the calibration 

data can alter the entire sequencing in ways that do not suggest any relation to the old one. 

This sensitivity will not be a problem in evaluations after the enrolling, as the threshold 

between frequencies will not be enforced when evaluating the order within the 

subsequences. 

 

Choice of the threshold frequency will affect both the result of the sequencing and the 

reliability of the bits. A larger threshold frequency will lead to better reliability, but shorter 

subsequences and thus fewer bits, and vice versa. A too large threshold will prevent any 

subsequences from forming, thus collapsing the PUF’s entropy output to zero. 

Data collection 

The main dataset was collected from 5 sequential “runs” on each of the 5 devices, with each 

“run” going through each (n,n+1) RO pair 4 times, for a total of 20 measurements for every 

oscillator in the dataset. The devices were kept in room temperature before powering on. 

The chips heated to the starting temperature during powering up and the programming of the 

FPGA. During the run the increasing chip temperatures in the main dataset are caused by 

the running PUF. Run length was configured at 10 million CPU cycles per pair, which 

translates to 15 milliseconds per pair with a CPU clock frequency of approximately 667 MHz 

(reported as 666 666 687 Hz). Temperature variation within this dataset is presented in 

figure 11; temperatures ranged from about 40°C to 58°C. 

 

A secondary dataset with high temperature variations was also collected, with a single run 

performed at each of “cold” (boards pre-cooled in a freezer), “mild” (room temperature) and 

“hot” (heated with a 90°C hot air blower) environments. Results on this dataset are reported 

separately when evaluating the error from temperature. In addition, a shorter “jitter dataset” 

was collected for exploring gaussian random error. Many other runs were performed for 

controller program testing and other exploratory purposes, but not included in computing the 

reported statistics. Our controller program output the measurement data in a CSV format, 

the structure of which is presented in tables 4 and 5. 
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Header Data type Description 

DEVICE integer ID of the test device, manually entered in the terminal 
before the test run 

COUNTER unsigned long Indicates when in the run this RO pair was run 

POSITION unsigned Indicates the position of this oscillator within the RO pair 

RO_INDEX unsigned long The index (address) of the oscillator 

INCREASE unsigned long The increase in the oscillation counter for this oscillator, 
read from the output registers 

CPU_TICKS unsigned long Increase of the CPU clock during the run 

TIME_DELTA float CPU_TICKS divided by the reported CPU clock frequency  

TEMPERATURE float On-chip (XADC) temperature measurement  

VCC_INT float On-chip (XADC) VCC_INT voltage measurement 

VCC_AUX float On-chip (XADC) VCC_AUX voltage measurement 

 

Table 4: CSV output format produced by our controlling program. 
 

DEVICE; COUNTER; POSITION; RO_INDEX; INCREASE; CPU_TICKS; TIME_DELTA; TEMPERATURE; VCC_INT; 

VCC_AUX; 

0; 0; 1; 0; 3598563; 10001302; 0.015002; 46.645935; 1.799675; 0.993324; 

0; 0; 2; 1; 3668059; 10001302; 0.015002; 46.645935; 1.799675; 0.993324; 

0; 1; 1; 2; 3695296; 10001232; 0.015002; 46.680542; 1.799583; 0.993164; 

0; 1; 2; 3; 3542482; 10001232; 0.015002; 46.680542; 1.799583; 0.993164; 

0; 2; 1; 4; 3556774; 10001224; 0.015002; 46.649780; 1.799698; 0.993118; 

0; 2; 2; 5; 3569668; 10001224; 0.015002; 46.649780; 1.799698; 0.993118; 

0; 3; 1; 6; 3580311; 10001252; 0.015002; 46.661316; 1.799721; 0.992981; 

0; 3; 2; 7; 3568520; 10001252; 0.015002; 46.661316; 1.799721; 0.992981; 

0; 4; 1; 8; 3603311; 10001252; 0.015002; 46.669006; 1.800064; 0.993050; 

0; 4; 2; 9; 3591443; 10001252; 0.015002; 46.669006; 1.800064; 0.993050; 

0; 5; 1; 10; 3586012; 10001236; 0.015002; 46.695923; 1.799812; 0.993050; 

0; 5; 2; 11; 3760374; 10001236; 0.015002; 46.695923; 1.799812; 0.993050; 

0; 6; 1; 12; 3601267; 10001212; 0.015002; 46.576721; 1.799240; 0.992569; 

 

Table 5: Example CSV output from the beginning of a run, including the header row. 
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Figure 11: Average temperatures for each device during the main dataset runs. 

Running order 

As we aim to understand our error sources, we have reasons to vary the parameters for 

running each RO pair. In addition to position within the run (as temperature tends to rise 

towards the end), position within the pair might affect the oscillator frequency. For singling 

out different error sources, each RO was run four times in each test run, differently ordered: 

 

For N from 0 to 999, run (N, N+1) 

For N from 999 to 0, run (N, N+1) 

For N from 0 to 999, run (N+1, N) 

For N from 999 to 0, run (N+1, N) 

 

As can be seen, the main dataset always has the ROs paired (n, n+1). To detect if the index 

of the other RO affects the result, we ran some separate measurements with the 

configuration  

 

For N from 0 to 499, run (N, N+500) 

 

As any such effect was not found based on this run, we could stop considering this error. 

Tools and languages 

 

Free versions of Xilinx SDK and Vivado software were used for design and development. 

Verilog was used as the hardware definition language and C was used as the controller 

software language. Software was developed using a “standalone” hardware definition, i.e. 

without any operating system on the board, to minimize dependencies and complexity. 

Bitstreams (FPGA configuration data) and the PS programs were deployed on the board 

using Xilinx SDK’s “run using system debugger” mode. 

 

The basic elements within each oscillator were placed using “hard macro“ constraints. 

Grouping the oscillators within physically restricted areas on the PL was done using the 
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pblock functionality in Vivado. The pblock areas were manually designated on the chip, and 

the design tool placed each oscillator unit within the pblock indicated by its index. Our 

implemented bitstream contains 40 pblocks containing 25 ring oscillators each for a total of 

1000. The modules are as symmetrical as possible, with 5*5 configurable logic blocks each. 

We thus know the approximate physical location of each oscillator. 

 

We communicated with the device using a serial connection over USB. The development 

machine was a Windows 7 PC, with a PuTTY serial communications terminal. Running the 

PUF was achieved by sending input to the controller program over the serial terminal. Output 

was collected from the controller program by printing CSV to the terminal, and logging the 

terminal sessions to file. 

 

Data analysis was performed using Microsoft Excel. LISA was implemented in Python. 

Analysis methods 

There are two sides of analysing our PUF: determining how good our PUF is by performing 

measurements, and analysing the effect of the various sources of undesirable error.  

Measurements 

 

Intra-distance and inter-distance 

Intra-distance represents what can be called reliability, reproducibility or stability (Suh & 

Devadas 2007, Maes & Verbauwhede 2010). Intra-distance is the difference within the same 

device using the same challenge, so it measures bit flips between different runs on the same 

PUF instances. The ideal intra-distance is 0%. This means no two runs of the same PUF 

instance with the same challenge flip any of the bits. Thus it is always possible to reproduce 

the expected response. 

 

Inter-distance represents what has been called uniqueness or unpredictability (Suh & 

Devadas 2007, Maes & Verbauwhede 2010). Inter-distance is the difference between two 

PUF instances using the same challenge, so it measures bit flips between devices. The ideal 

inter-distance is 50%. This means that on average, any two runs on different PUF instances 

with the same challenge have half of their bits flipped. This indicates perfect unpredictability, 

on average. The distribution should be inspected to detect outliers. 

 

Both distances are measured as the relative Hamming distance for pairs of responses to 

same challenge. The relative Hamming distance is simply the number of flipped bits divided 

by the total number of bits in the bit string. 

 

To achieve better results, both measures are calculated between as many runs and devices 

as possible. Minimum, maximum and standard deviation are also to be reported (Maes 

2013: 97). To estimate the efficiency of the PUF, we report both the raw number of bits, and 

the estimated entropy carried by those bits as extracted by the various methods. 
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Entropy 

Shannon’s entropy can be used to measure the “surprise” i.e. amount of randomness 

contained in random variables. Cryptography relies heavily on entropy as a measure of the 

strength of secrets. Entropy is a central measure also in PUF evaluation, as it takes into 

account the estimated quality of bits in addition to their quantity.  

 

Estimating entropy comes with a number of pitfalls. Most importantly, it should be 

remembered that entropy calculations are always upper bounds. There might be predictable 

behavior that is not covered by our estimates, and knowing more about the PUF’s behavior 

will lower the bound for a certain attacker. For an ignorant attacker, the entropy of a PUF 

response is always trivially equal to the length of the response bitstring (Maes 2013: 109). 

However, if an attacker can gain more information about the PUF’s behavior, the responses 

can be better predicted and no longer contain as much effective entropy. As such, it is best 

to consider our entropy calculations to be optimistic estimates. 

 

We will estimate the response entropy for an attacker who has information about bit-specific 

bias (i.e. measured expected value) across several devices (Maes 2013: 109). This 

knowledge could realistically be obtained by stealing and analysing a number of instances of 

our PUF. The entropy carried by a biased bit Y is estimated using the Bernoulli distribution 

(“unfair coin”) formula  

H(Y) = -log2(p)-log2(1-p) 

where p is the probability of the bit being “0”, as estimated from the observed expected value 

(Maes 2013: 109). Sample size affects the accuracy of the estimate. 

Sources of error 

Temperature 

A higher temperature lowers the average frequency of an oscillator. Different RO units react 

differently and in an unpredictable way, and this might cause bits to flip (illustrated in figure 

12). Temperature and voltage were sampled using the on-chip Xilinx Analog-Digital 

Converter (XADC), a built-in feature of the chip.  

 
Figure 12: Temperature changes can cause bit flips when the oscillator frequencies are 

close, due to the different amplitude of the temperature effect (Suh & Devadas 2007). 

 

The effect of temperature on the stability of our PUF was estimated by collecting a separate 

dataset, which contains from each device a “cold” measurement taken after cooling the 

devices in a freezer (on-chip temperatures starting from 6°C and reaching 20°C during the 

run), a “mild” measurement taken in room temperature (chip temperatures about 50°C), and 

a “hot” measurement taken with a 90°C a surface-mounted device (SMD) rework tool’s hot-
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air blower directed at the chip (chip temperatures reaching 90-92°C). The design 

temperature range of our device is 0-85°C, so extending this range further might cause 

damage to the device or artefacts resulting from device malfunction. 

 

Voltage 

We did not measure changes in voltage, due to resource constraints. We assume that 

voltage changes reasonably expected in a normal operating environment have a similar 

effect as temperature changes, and thus stability can be protected using the same 

mechanisms, such as filtering. We consider behavior under voltage changes a reliability 

issue, and not an attack vector. 

 

Aging 

Truly evaluating the effects of long-term operation and aging would require a long timeline 

and longitudinal study. Additionally, the FPGA fabric in our use-case might spend most of its 

lifetime in other than PUF use, so the components used for RO units might see wildly 

differing usage, and thus wear differently than in a lab experiment. We aim to cover our 

requirements related to aging by considering PUF control mechanisms aimed at early 

detection of aging deterioration. 

 

Placing & routing differences 

We will not be able to eliminate all routing differences from the design. Rather, we have 

designed the RO units to be small and modular, each fitting inside a single CLB, where we 

can reasonably trust that the routings are reasonably design-identical for most of the units. 

Every CLB has its own routing matrix where the signals of basic elements are connected 

according to the bitstream. While there is no reason for the synthesis step to make different 

routings within different CLBs, there are no guarantees with the current design. 

 

The selection logic before the ring oscillators will have significantly varying routing delays. 

However, if it takes longer for a signal to reach the RO, the shutdown of power should take 

equally long. Routing of the counters and outmuxes should not be an issue, as these are 

completely combinatorial (asynchronous) components, and any signal sent by the oscillator 

will reach the counter register before the PS will be able to read the register. 

 

Positional difference 

Being selected as the "first" or "second" oscillator within the pair might cause effects on the 

oscillation average. Such effect might be caused by routing delays in the input selectors, and 

will be investigated. 

 

Delays in the CPU 

The PUF is controlled from the CPU via the input registers. According to the output of the 

controlling program, there is a non-zero, non-constant delay associated with reading and 

writing the PUF registers. This is expected to lead to small deviations in run lengths and thus 

oscillation counts. 

 

Systemic manufacturing error 

As suggested by Maiti & Schaumont (2010) and Zhang et al. (2014), there might exist 

significant systemic variations in RO speeds both within and between devices. To detect and 

counter this effect, we have placed the ROs in modules, making their indices to indicate their 
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approximate physical location on the chip. This allows us to validate the existence of any 

systemic effects and mitigate their detrimental effects. 

 

Gaussian jitter 

The output of ring oscillators contains a random component called Gaussian jitter 

(Valtchanov et al. 2008). Due to the existence of this jitter, there will always be unexplained 

noise in the RO frequencies, even if we account for all factors that we can influence with our 

design. A separate dataset was collected to evaluate this error source. 
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5 Evaluation 

Measurements 

The measurement results of the naive selection methods are presented in table 6. Results 

from LISA are not included in this table, as they are not meaningfully comparable. The 

number of bits and challenge structure in a LISA evaluation are dependent both on the 

device and the threshold frequency used in the enrolling procedure, making it difficult to 

compare behavior across devices using these same metrics. 

 

 Unfiltered naive Filtered naive 

Relative intra-distance   

Average 1.97 %  0.00 %  

Min (best case) 0.60 %  0.00 %  

Max (worst case) 3.40 %  0.00 %  

Relative inter-distance   

Average 34.79 %  32.60 %  

Min (worst case) 31.80 %  26.69 %  

Max (best case) 38.20 %  38.02 %  

Average output bits n/2 = 500 bits n/2*85.76 % 
~= 429 bits 

Average entropy when attacker knows 
bit-specific bias  

295 bits 295*85.76%  
~= 253 bits (1 

Average bits of entropy per output bit 
(entropy density) 

0.59 0.51 

(1: assumes all bits filtered out are non-zero-entropy bits, that provide the expected entropy of a non-zero-entropy bit; in other 

words, a reasonable worst case assumption. 

Table 6: Measures from our enrolling methods. 

 

We can consider our results quite good. Even with the most simplistic and naive method, 

where we simply compare each oscillator with the next, we have achieved a low figure of 2% 

average relative intra-distance, i.e. 98% reliability. In the worst case, where the attacker 

knows the average CRP bit behavior of the rest of the PUF population, our single CRP of 

500 bits carries an estimated 295 bits of entropy. This inefficiency reflects the fact that our 

CRPs are somewhat predictable across devices, as represented by the inter-distance 

measure. With the filtered method, the worst-case inter-distance between two PUF instances 

is as low as 26.69%, meaning that 73.31% of bits did not flip in the comparison between 

those instances. An attacker can benefit from this by assuming that more than half of bits will 

remain the same. This will not cause a collapse of our PUF as this effect is accounted for in 

our entropy estimates, but reducing this effect would definitely have a positive impact. The 
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distributions of the distance measures and the effect of filtering can be seen in figures 13 

and 14. 

 
Figure 13: Distribution of run intra- and inter-distances in the unfiltered case.  

 
Figure 14: Distribution of run intra- and inter-distances in the filtered case. Intra-distance is 

now ideal at 0%, but inter-distance has deteriorated. 

 

A “bit flip” is defined as a changed output bit value within a set of 5 measurements. Thus 

each intra-distance data point is calculated from 5 measurements of the same pair, instead 

of all 20. The reason for this is that each different run ordering (explained in the methodology 

section) is considered separately, resulting in 4 intra-distance values per device. 

 

Inter-distance “flips” are calculated between comparable bits across devices. Each data 

point is a pairwise comparison. As there are 5 devices, each of the 20 intra-distance data 

points can be compared to 4 other devices, and so there are 80 inter-distance data points. 
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Figure 15: The relative number of bits filtered out per device.  

 

As can be seen figure 15, the number of bits filtered out is very variable. While this means 

most of the devices are actually affected less than the average of about 15%, some devices 

can have their response length unexpectedly restricted.  

 

 

Figure 16: Expected values per naively selected bit and their distribution of expected values.  

 

The clustering at 0.2 intervals in figure 16 is a result of the small number of tested devices, 

as any bit is likely to always be the same in the same device (low intra-distance). Bits with an 

expected value not one of these values has flipped within some device. Bits that have 

always been observed to return either 0 or 1 have that as their respective expected value, 

and these bits are useless from an entropy point of view. It is likely that evaluating more 

devices would reduce the number of these edge cases. In the absence of significant bias, 

with more data the distribution would start converging on the average. Figure 17 shows the 

effect of the Bernoulli distribution entropy formula. The same clustering is visible, with 

expected values close to 0.5 producing the highest entropy values. 
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Figure 17: Shannon entropy H(pi) for each naive bit estimated using observed bit-specific 

Bernoulli distributions.  

LISA 

Evaluating LISA is not straightforward, as was already explained in the methodology section. 

We have implemented LISA and used it to sequence the ROs separately within each RO 

module (the module split is discussed in the Methodology section). This is done in order to 

not fall for systemic bias. Without restricting LISA to only perform sequencing separately 

within each module, device #2 produces an almost trivial result due to systemic bias 

(behavior of device #2 is visible in figure 27, where systemic bias is explored). All the 

oscillators on the slower half of the device had their response bits zero due to being the 

slowest ones in their subsequence. LISA is particularly vulnerable to bias, as the challenge 

reveals how the oscillators are split into sequences; this information may reveal systemic 

bias to an attacker.  
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Figure 18: Raw number of bits and the nominal Shannon entropy extracted from the main 

dataset using per-module LISA with different threshold frequencies and devices. Possible 

“raw bit” range is 1000 to 3800 bits, possible entropy range is 0 to 3347 bits. 

 

Figure 18 presents output lengths and nominal entropy estimates from LISA using different 

threshold frequencies. The entropy contained in a single sequence in calculated as log2(b!) 

where b is the length of the sequence (Yin & Qu 2010, Maes et al. 2012). As log2(1!) = 0, 

these calculations take trivial sequences into account. However, as discussed in the 

methodology section, this calculation only applies if we would have a perfectly uniform 

probability for each ordering within subsequences, or against an attacker who assumes 

uniform distribution for lack of better information. We are not confident in this estimate of the 

entropy generated by LISA, and more robust methods have not been found in the literature. 

Sources of undesirable error 

 

Temperature 

Temperature variations and aging are the main threats to the reliability of our PUF. Since 

both of them manifest similarly, as a creep of the oscillator speeds, we pay special attention 

to temperature effect. Figure 19 compares the speeds of a set of oscillators across a 60-

degree temperature range. The general trend in the oscillation counts is similar, but 

individual oscillators react in slightly different ways, causing bit flips. Note the flip of 

oscillators 5 and 7, when their relative order changes. Gaussian jitter (random noise) might 

also cause flips; it is discussed later in this section. 

 

Figure 20 shows averages from the separate high temperature variation dataset (discussed 

in the Methodology section). Runs were performed at the extremes and middle of the 

operating temperature range, and these were classified into categories “cold”, “mild” and 

“hot” as shown in figure 21. 
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Figure 19: The effect of temperature on the oscillation counts of a set of eight oscillators on 

device #0, across a 60°C chip temperature range. 

 

 
Figure 20 (left): Run average temperatures in the high temperature variation dataset.  

Figure 21 (right): Run averages temperatures grouped by category. 
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Figure 22 (left): Raw intra-distances. 

Figure 23 (right): Intra-distances when using the main dataset filter. 

 

In figures 22 and 23 we can see the effect of filtering on intra-distance at temperature 

extremes. Unfiltered, the bit flip rate is generally 4-5%, while the filtered error rates are 

generally very low. Notably, filtered device #4 has no bit flips at all in the entire 5 - 92°C 

range. The number of bits filtered thus seems to correlate with better stability, but we cannot 

draw robust conclusions from so small a sample. 

 

Position 

Positioning within the pair has been measured to have no effect, or at least the effect is 

irrelevant. Table 7 contains measures of the effect in the main dataset. 

 

Average oscillation count difference between positions 1 and 2, 

across all devices 

3.29 

Largest difference between device averages between positions 

1 and 2 

14.42 

 

Median oscillation count difference between oscillators n and 

n+1 

25 425 

 

Average oscillation count 3 567 454 

Table 7: Effect of position within the pair on RO speed. 

 

With each RO having been run equally many times in both positions, the difference was 

found to be 3.29 oscillations in favor of position 2 on average. The median difference 

between consecutive oscillators being 25 thousand oscillations and the absolute oscillation 

average being 3.5 million oscillations, we can dismiss the positioning within a pair as a non-

significant source of error. 
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Routing error 

Routing has the potential to be a major source of error. Figures 24 and 25 show hardware 

design tool screenshots of the implemented routing. However, it is unclear how accurately 

the design tool represents the exact physical details of the routing, as simplifications and 

approximations of normally irrelevant details might have been necessary to present the 

routing in a human-friendly way. 

 
Figure 24: Most oscillators have identical or very similar internal routings, at least within the 

same columns (routing matrix components are on the extreme left and right). 

 
Figure 25: On some rows, e.g. near the chip edges, the internal routing is no longer 

identical; compare the matrices. 

 



 

40 

Delays in the PS 

There is a small, varying delay in toggling power to the PUF circuit. In the main dataset, this 

delay varies from 1032 to 1114 CPU clock cycles. The variation (less than 100 cycles) within 

the delay is quite small as we have used 10M CPU cycles as the standard run length. The 

clock was sampled using the XTime_GetTime function, which samples the global timer 

register of the PS; the act of sampling the time also consumes CPU cycles. However, this 

delay should not have any effect, regardless of its size, whenever we compare the same 

oscillator pairs we run (as opposed to if we e.g. ran pairs as (n,n+500) and then compared 

pairs (n,n+1)). The units run simultaneously are powered by the same wire and any delay 

difference in powering up will compensate as a similar delay when powering down. Noise 

could be introduced to results if we ran and compared oscillators in different pairings.  

 

Systemic error 

The devices have three significant systemic characteristics. 

 

● Fast oscillators at the edges: The most prominent systemic feature in the data is 

that there are much faster oscillators clustered at the extreme RO indices on all five 

devices (visible in figure 27). The cause for this effect is not clear as it might be an 

artefact introduced in the silicon chip manufacturing process, or caused by different 

routing within some oscillator units caused by the proximity of the chip edge. As the 

behavior of these oscillators seems to be dominated rather by predictable systemic 

variation rather than the desirable kind of random variation, they are likely to produce 

predictable bits that provide little entropy. 

 
Figure 26: Per-device oscillation averages across all measurements in the main dataset. 

Significant device-specific bias is visible even on absolute scale. 

 

● Different average frequencies: The second feature is the highly varying frequency 

averages between devices (figure 26). This does not affect our PUF, since all 

comparisons are relative comparisons within each device, but it reminds us of the 

fact that the devices are unique and their raw speeds are not comparable. The 

differences are not explained by temperature or voltage differences, so systemic 

manufacturing variation seems to be the only explanation. 
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Figure 27: Per-unit oscillation count charts on each device, based on a single measurement 

lasting 10M ticks. X-axis denotes oscillator index. On lower right are the device on-chip 

temperatures at each oscillator measurement. The temperature drop in the middle is caused 

by the use of the experimental oscillator pairing (n, n+500) in this run instead of the usual (n, 

n+1). 

 

● Slopes: The third interesting feature is the spatial bias in the frequency distributions 

of devices #2 and #3. Device #2 has a very uneven distribution of frequencies (see 

figure 27), with the average oscillator speed increasing with the oscillator index. 

Device #3 has a similar bias, but smaller and along a different axis, appearing as a 

sawtooth pattern in the chart. We believe these biases are caused by chip 

manufacturing irregularities. Finding these effects justifies the misgivings of Maiti & 

Schaumont (2010) about pairing oscillators that are not physically close to each other 

on the chip. Curiously, devices #2 and #3 also have lower average frequencies than 

the others, but we can’t draw any conclusions from so few devices. 
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Grouping the oscillators in modules allows us to work around the problems caused by all of 

these three types of irregularities. 

 

Gaussian jitter 

A separate dataset was collected to detect and measure the amplitude of Gaussian jitter in 

the data. The set contains 250 measurements for each of the included 52 oscillators from 

device 0. Each RO measurement was only 1M CPU ticks long to allow more measurements 

be taken in shorter time. To eliminate the effect of the CPU tick variation, we used frequency 

instead of raw oscillation counts in these calculations. 

 

 
Figure 28: A plot of measurement temperatures and frequency from the jitter dataset. 

Measurements from a single oscillator form a single “stripe” pattern. 

 

Stable temperature was maintained during the dataset measurements; variation between 

extremes is 1.32°C. As can be seen from figure 28, there is significant variation that is not 

explained by temperature. The effect of temperature would appear in figure 28 as a 

counterclockwise tilt of the “stripes”. No such tilt is discernible when compared to the stripe 

widths; as the effect of run length variation has been normalized away, we can thus 

determine the frequency variations in this dataset to be predominantly caused by random 

Gaussian jitter. The information in table 9 and figure 29 can be used for optimizing filtering 

thresholds in later iterations. 
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Figure 29: Frequency distributions of some oscillators from the jitter dataset. Bin width is 

0.02 MHz. 

 

 RO #0 RO #1 RO #50 RO #51 

Max frequency 239.74 MHz 244.44 MHz 237.04 MHz 236.43 MHz 

Min frequency 239.53 MHz 244.18 MHz 236.78 MHz 236.17 MHz 

Variation 0.210 MHz 0.263 MHz 0.257 MHz 0.252 MHz 

Sample standard 
deviation 

0.041  0.051  0.044  0.043  

Table 9: Attributes of the selected RO distributions. 
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Fulfillment of requirements 

R1: Adequate entropy with no fundamental weaknesses 

With the filtered naive selection method we have achieved an estimated upper bound of 253 

bits of entropy. This is much more than 128 bits and very close to the ideal 256 bits. We 

consider it enough for a single very strong challenge-response pair, and this fulfills our 

requirement. 

 

We are basing our calculations on the use of a single CRP using all the reliable RO pairs. 

There are security benefits in having many possible CRPs, most importantly the possibility to 

use a different challenge for each PUF evaluation. However, since we are on a SoC, we can 

use the PS to increase the effective number of CRPs by e.g. hashing the output in the PS 

immediately after acquiring a response bit, compensating for the reduction in the number of 

CRPs. We will discuss the possibilities of gaining more CRPs by using post-processing in 

the discussion section.  

 

As a RO-PUF that produces only independent bits (no oscillator contributes to more than 

one bit), we avoid many fundamental risks. While our PUF deployed on a general-purpose 

FPGA is not proofed against physical attacks, any other design will be comparably 

vulnerable. Work remains in mitigating physical frequency measurement attacks. 

 

R2: Maximum reliability and longevity within the expected operating environment 

With the filtered naive selection method, accounting for temperature variation, we have 

achieved 0% intra-distance for the selected temperature range. We thus consider the 

maximum reliability requirement fulfilled, within these environmental conditions. The 

operating temperature range can be altered by using a dataset with larger temperature 

variations to perform the filtering in the enrolling phase. 

 

We assume that aging deterioration is similar in nature to temperature variation, the effect 

being always of the same sign but different amplitude in different RO units. Threshold-based 

filtering should thus effectively mitigate both. It is naturally not possible to measure the real 

effect of aging in a short-term thesis project. Literature has usually ignored the effects of 

aging, with the exception of Rahman et al. (2014) who designed an aging-resistant “ARO-

PUF”, but even they used simulated aging to evaluate their design. 

 

While the work currently done does not decisively solve the aging issue, various methods 

could easily be developed to detect and control aging deterioration. The PUF could be 

enrolled using several overlapping CRPs with different filtering thresholds; if the lenient 

filtering fails, there would be more stringently filtered, more reliable CRPs to fall back to. 

Another option would be to enroll a variety of smaller CRPs that use only some regions of 

the chip, to allow working around deteriorated oscillators. Thus the PUF could be kept in use 

until the device can be replaced or re-enrolled, at the cost of some response entropy.  

 

R3: Reasonable efficiency 

According to the best estimate possible based on our data, our entropy density is about 0.5. 

We consider that efficiency reasonable, but far from perfect. However, the small sample size 

reduces our ability to generalize this result.  
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R4: Scalability and portability of design 

The PUF is implemented using only basic configurable elements that should be available on 

any FPGA. It should be possible to adapt this design to some other device without altering 

the operating principles of the PUF. Deploying the PUF on a new device is only a matter of 

deploying the bitstream and performing the enrolling procedure. The number of oscillators 

can be increased without fundamentally altering the structure of the design. We consider this 

requirement fulfilled.  

 

R5: Understanding the sources of error 

We have measured and evaluated various sources of error, providing us with valuable 

understanding of their effects allowing us to concentrate further efforts on mitigating the ones 

that matter. 

 

Voltage changes and aging were not evaluated in this study due to resource constraints, 

however, as these manifest as progressive frequency changes, they can be mitigated using 

adaptive CRPs or more aggressive filtering. 

 

When estimating the entropy of naive RO pairings we have revealed significant bit-specific 

bias in our PUF. Since all of the devices were programmed using the same bitstream, they 

have identical placing and routing. As each unit is contained in a single CLB, each of which 

has its own routing matrix, the units were assumed to have identical routing of signals within 

each unit. Closer examination of the implemented routing later proved this to not necessarily 

be the case in all units. To prevent the implementation from placing non-identical routing, the 

routes within an oscillator unit should be specified manually. Since manually placing and 

routing at least a thousand oscillators is not a meaningful task, mechanisms like Fixed 

Routing constraints should be investigated to solve the problem (Xilinx 2014, 2015). Redoing 

the routing and placement would allow us to learn the exact effect, and evaluating a larger 

population of devices would lead to a more realistic estimate of this bias. 
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6 Discussion 

Relevance and applicability of results 

We have demonstrated that it is feasible to design and implement an adequate PUF even 

with limited resources. The results achieved are good enough to fulfill the original objective. 

We have a PUF that can produce approximately 256 reliable, physically unclonable bits of 

entropy. 

 

There is obviously room for improvement. While our PUF can be declared good enough for 

our starting use-case, its performance is still short of the RO-PUF state-of-the-art in the 

literature (e.g. Maes et al. 2012; Yin & Qu 2010). Maes (2013: 95-98) achieved 1.53% intra-

distance and 49.60% inter-distance on a 2048-bit RO-PUF using a simple pairwise 

comparison scheme. Using the Lehmer-Gray sequence encoding, the same PUF produced 

12544 bits with 3.56% intra-distance and 46.86% inter-distance. Error-correcting post-

processing (as in Maes et al. 2012) might allow us to tolerate smaller filter thresholds, or use 

no filtering at all. However, some forms of error correction might make us accept near-

misses as correct, possibly lowering the effective entropy. 

 

The central flaw of our design is predictability between devices, and a major reason for that 

is believed to be non-uniform routing within CLBs. Also, a form of bias that we have not 

evaluated is the effect of exact position on the chip on the oscillator frequency. Given the low 

average inter-distances, we might find RO speed bias based on fine-grained physical 

position or orientation. This would require manual or tightly constrained placing, in addition to 

routing. Maes (2013: 95-98) performs his measurements on 16 oscillators located in same 

position in different blocks at once, maybe making it more likely to pick a similarly routed and 

placed oscillator. Yin & Qu (2010) routed and placed their oscillators manually to achieve 

identical layout. 

 

It is clear that our sample of 5 devices is too small for drawing statistically robust conclusions 

about the quality of our PUF. In particular, using more devices would make the entropy 

estimates more accurate and likely higher (as the number of bits with an expected value of 0 

or 1 diminishes), while exposing worse worst-case distance measures. With a bigger sample 

we could also perform hypothesis testing on our claim of having a working PUF. Even with 

these shortcomings, we have a strong indication that our PUF has potential for future 

development. 

 

Currently the most fundamental threat to our RO-PUF is considered to be the Lohrke et al. 

(2016) laser voltage measurement attack, which requires running each oscillator of the PUF 

in a laboratory with specialized equipment. In addition to taking the device to a laboratory, 

this either requires the original bitstream, or the attacker’s version developed with detailed 

knowledge of how the original was built, to achieve the same frequency results. The attack 

presented in the paper was performed on a bitstream developed by the attackers. Having a 

non-optimal implementation could be formed into an another line of defense; With an 

imperfect implementation, it would be harder for an attacker to emulate the biased behavior 

of the original. While everything on the device, including encryption keys, is ultimately 

susceptible to physical attacks, measures like encrypting the bitstream can be used to place 

additional obstacles in the way of revealing design details to the attacker. 
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It should be noted that our entropy measures are estimated with harsh preconditions: in 

addition to the full-knowledge assumption, we are not reusing any oscillators in other CRPs, 

meaning that we can assume our bits to be independent and uncorrelated. Suh & Devadas 

(2007) originally estimated their entropy of a RO-PUF using the assumption that changing 

the order of RO evaluations in the challenge constitutes a new CRP. We consider a different 

ordering to count as a separate CRP only if the raw response is immediately obfuscated by 

hashing; this is discussed below in more detail. 

 

Improving the simple CRP authentication scheme 

While the raw response should be hashed to avoid revealing our CRPs, we can also hash 

each response bit as they come. Hashing in general will obfuscate the response by hiding 

the raw information about the relative speeds of the oscillators and making the order of bit 

evaluations matter; hashing in parts has the additional benefit of reducing the time any part 

of the response is kept as plaintext. Ideally, the hash function should be implemented in the 

FPGA, as in Maes et al (2012). They use a hash function as an entropy accumulator, where 

each partial response from the PUF is fed. 

 

Example pseudocode: 

ByteArray processed_response = [] 

For(pair in challenge) 

 Bit bit = evaluate(pair) 

 processed_response = Hash(append(processed_response, bit)) 

Return processed_response 

 

Different ordering of the same pairs will now produce completely different output. Without 

hashing, the position of a pair evaluation in the CRP would not matter, allowing us only n/2 

ways of producing independent bits. Using response hashing and so not revealing the raw 

bitstring, we can reuse pairs in multiple CRPs, which will increase the number of potential 

pairs from n/2 to n(n-1)/2. What is more, we can flip the positions within each pair, producing 

two versions of each pair, for n(n-1) different post-hash outputs. For our 1000 RO design this 

means 999 000 different CRPs up from the original single CRP. Taking this further, we can 

include non-secret salt values to increase the number of possible post-processed responses 

and use a standardized, slow function in the hash calculation, resulting in additional work. 

Performing this kind of post-processing will make the processed responses very 

unpredictable and potentially expendable, while also increasing the cost of brute-forcing the 

raw response from the processed response.  

 

For the production version, different bitstreams could be used for enrolling and deployment. 

In the deployment bitstream the entire response processing could be performed in the PL, to 

make it impossible for malicious software on the PS to read raw responses and thus infer 

PUF behavior details.  

 

A protocol could be devised in which the previous hashed response is also used as the next 

challenge, stored either in PL registers, or in persistent flash which would survive power 

cycling. This would leave proof of unauthorized evaluations by malicious software, but would 

not defend against theft and physical analysis. A related concept can be found in trusted 

platform modules (TPMs) that have Platform Configuration Registers (PCR). The PCRs 
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contain hashes of the platform software state that are kept updated by hashing the new state 

together with the previous hash (Abera et al. 2016). 

 

Defending against LVP and FIB physical attacks on general-purpose FPGAs is hard, as any 

secrets on the FPGA will be vulnerable. Using tamper-resistant hardware or cases might be 

used with the PUF to provide defense in depth in high-risk deployments, but it still remains 

an open question. A specific solution might be to overlap several oscillators in the same CLB 

or physical area, or route random oscillating signals around the chip to distract readings. 

 

PKI-based device authentication  

Taken as-is, the original Suh & Devadas (2007) challenge-response authentication scheme 

has shortcomings. In addition to unobfuscated responses being transmitted over the wire, 

the stored CRP table presents a single point of failure, making the entire system brittle as a 

mechanism will be required to access the correct CRPs from the software authenticating the 

device. For this reason, the CRP table must be readable by internet-facing software. Various 

authentication protocols replacing the simple challenge-response protocol have been 

proposed in literature, including the BPV generator based protocol presented in 

Wallrabenstein (2015) and the PKI system in Afghah et al (2017). In figure 30 we present a 

simple example of how the plain challenge-response protocol can be replaced with a public-

key infrastructure (PKI) based system. 

 

 
Figure 30: a simple PUF-backed PKI device authentication scheme. 

 

By using the PUF to generate an asymmetric keypair and then storing only the public key, 

we can avoid the trouble of protecting a centralized CRP database. With the help of a 

carefully selected key-derivation function, the device will use the PUF-backed unclonable 
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randomness to regenerate the private key on the device every time it is needed. The public 

key can be used to verify the authenticity of messages sent from the device, while the 

private key never leaves the device, and is kept in memory only when actively used.  

 

Most importantly, compromising a private key would compromise only that device, and not 

the entire fleet of deployed devices, as breaching a centralized database would. Symmetric 

cryptography could also be used, but would not remove the need for a centralized database. 

The private keys now become sensitive data, but as they are never transmitted or stored for 

longer than needed, they are protected to a reasonable degree. 

 

PUF-based protocols can be built on to provide message encryption and other guarantees, 

e.g. timestamps and nonces to prevent replay attacks by a man-in-the-middle.  

 

Lessons learned 

It is determined to be possible and feasible to construct a good enough FPGA PUF even 

with constrained resources, a small target device and no previous hardware design 

experience. Work nevertheless remains if state-of-the-art results are to be achieved. Further, 

a larger set of devices needs to be evaluated before this or any other PUF implementation 

can be trusted for real-world use. 
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7 Related Work 

In this section, we describe and compare three RO-PUF designs based on the original of 

Suh & Devadas (2007) that provide various improvements. 

RO-PUF designs 

Configurable RO-PUF  

The main contributions of Maiti & Schaumont’s (2009, 2010) Configurable RO-PUF (“CRO-

PUF”) design are considering systemic chip variation, the addition of an assisting CPU to 

perform reliable enrolling by analysing the raw oscillation data, and an increase in bit 

generation efficiency by making challenges configure RO internal routing. Using their design 

(figure 31), they can produce 8 reliable response bits using 2 ROs of 4 Slices each, thus 

producing n bits using n Slices. A straightforward pairwise RO comparison, where one 

oscillator takes 2 Slices (like in our design) needs 4 Slices to produce 1 bit, for a ratio of n/4. 

Thus, their design seems to provide a fourfold increase in resource efficiency, while also 

providing best possible reliability that can be achieved by comparing the paths within each 

oscillator pair. However, those 8 bits will not be independent of each other, as all of them will 

partly depend on the same physical variations (Xin et al. 2011). They claim about 40-45 % 

inter-distance, and 0% intra-distance within a 40-degree temperature range. Entropy yield is 

not discussed, and cannot be estimated using our previous entropy formulae due to 

dependent bits. 

 

 
Figure 31 (left): CRO-PUF (Maiti and Schaumont (2009); figure from Xin et al. (2011)). 

Figure 32 (right): Improved CRO-PUF (Xin et al. 2011) 

 

Improved CRO-PUF 

The unnamed design of Xin et al. (2011) is explicitly stated to improve on top of Maiti and 

Schaumont’s CRO-PUF. They control the internal routing of oscillators in greater detail; see 

figure 32. Each oscillator now has 256 possible internal configurations. This way, the same 

oscillator pair can be used for an even larger number of comparisons. Their idea is to use 

the same configuration (challenge) in both oscillators being compared. Figure 33 presents 
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results from comparing the two ROs in all the 256 possible states. It can also be seen that 

some changes cause large changes in frequency, highlighting the fact that it would not bring 

benefits to configure the pair differently; the result would be predictable, and not bring much 

benefit. They claim about 1% intra-distance and about 40% inter-distance. Entropy is not 

discussed in their paper. 

 

Figure 33: Changing the configurable internal routing causes minuscule changes in the 

relative frequencies of a pair of ROs (Xin et al. 2011). Absolute frequency displayed on the 

left, frequency difference on the right. 

 

PUFKY 

Perhaps the most advanced PUF-based solution published in the literature is the PUFKY of 

Maes et al (2012), some aspects of which have already been discussed in this thesis. Based 

on a sequence encoding idea like LISA (Yin & Qu 2010), it encodes the subsequence orders 

in Gray code to reduce the effect of changing order on the sequence response bitstring. 

Then it performs error-correcting postprocessing based on repetition code and BCH code. 

The corrected results are fed into a hash function. The error correction uses public 

syndromes that do not reveal information about the data to be corrected (Maes et al. 2012).  

  

 
Figure 34: Block design of PUFKY, showing the error correction blocks (Maes et al. 2012).   
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Figure 35: Block design of the RO-PUF used in PUFKY (Maes et al. 2012). The challenge 

selects the same oscillator from each block to feed that block’s counter. “Entropy 

Compression” consists of a XOR operation. 

 

Figure 34 contains a block-level schematic of PUFKY, while figure 35 expands the “ROPUF” 

block. While PUFKY does compare multiple oscillators, it does not contain any sequencing 

algorithm. Rather, the same fixed oscillators are always compared and reliability against bit 

flips is provided by the postprocessing. They claim 2.0% intra-distance and 48.4% inter-

distance, and pay much attention to entropy generation. 90% entropy density is claimed after 

post-processing without entropy compression. With compression, the density can be further 

increased, but at the cost of a greater error rate (intra-distance).  

 

The distance metrics reported by these related designs have been summarised in Table 10. 

While our intra-distance is not bad even when not filtered, our inter-distance is lagging 

behind, giving us reason to suspect fine-grained positional bias, possibly caused by routing 

asymmetries.  

 

 Avg. intra-distance Avg. inter-distance Entropy density 

CRO-PUF 0% 41.3%-45.5% N/A 

Improved CRO-PUF 1% 40% N/A 

PUFKY 2.0% 48.4% 90 % 

Our PUF, naive 2.0 %  34.8 %  59 % 

Our PUF, filtered 0.0%  32.6 %  51 % 

Table 10: Comparison of our results to those reported by related work. Intra-distances do 

not include extreme temperature tests. Values closest to the ideal are emphasized. 
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Appendix 

1. LISA 

The LISA pseudocode was hard to discern. The first attempt did not work as expected, and 

so some edits were included. In particular, some counters were omitted and an error-

correcting check was added at the end. Numbered lines refer to lines of pseudocode in Yin & 

Qu (2010). 

 

lisa.py: 
 

def LIS(sorted, n, f_threshold): 

    # 1. create a stack ST_1, and push the first  

    # ring oscillator sorted[1] to it 

    stacks = [] 

    stack_0 = [] 

    stacks.append(stack_0) 

     

    stacks[0].append(sorted[0]) 

 

    # 2. h <- 1 

    # commented out as unused 

    #h = 0 

 

    # 3. for j <- 2 to n 

    for j in range(1, n-1): 

 

     # 4. top <- the top ring osc on stack ST_h; 

     top = stacks[-1][-1] 

 

     # 5. if ((sorted[j]. fmin - top. fmin > fth) && (sorted[j]. fmax - top. fmax > fth) ) 

     if(sorted[j]["fmin"] - top["fmin"] > f_threshold and  

            sorted[j]["fmax"] - top["fmax"] > f_threshold): 

        

      # 6. h++ 

                # commented out as unused 

      #h = h+1 

       

      # 7. new a stack ST_h (sic), push sorted[j] to it. 

      stack_h = [] 

      stacks.append(stack_h) 

      stacks[-1].append(sorted[j]) 

       

      # 8. sorted[j].PRE <- top 

      #sorted[j]["PRE"] = top 

       

     # 9. else 

     else: 

       

      # 10. find the stack ST_p with the largest index p that 

      # has its top element's fmax smaller than sorted[j].fmax - fth 

      # and fmin smaller than sorted[j].fmin - fth. 

      p = False       

      for i in range(0,len(stacks)): 

       if sorted[j]["fmin"] - stacks[i][-1]["fmin"] > f_threshold and 

                           sorted[j]["fmax"] - stacks[i][-1]["fmax"] > f_threshold: 

     p = i 

       

      # 11. if p ! = null 

      if not p == False: 

       # 12. push sorted[j] to ST_p+1 

    

       stacks[p+1].append(sorted[j]) 
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       # 13. sorted[j].PRE <- top element of ST_p 

       #sorted[j]["PRE"] = stacks[p][-1] 

 

      # 14. end if 

     # 15. end if 

    # 16. end for 

 

    # 17. return sequence <sorted[j_1], sorted[j_2] ... sorted[j_h]> where sorted[j_h] 

    # is the top element of ST_h and sorted[j_q-1] = sorted[j_q].PRE, q from 2 to h     

     

    output = [] 

     

    # We encountered occasional errors where sometimes the sequences would not be in order.  

    # Below is a stopgap solution. 

 

    prevelem = False 

    for stack in stacks: 

     elem = stack[-1] 

     # if we're about to hit an error, chop the sequence here 

     if prevelem:      

      if elem["fmin"] - prevelem["fmin"] <  

                   f_threshold or elem["fmax"] - prevelem["fmax"] < f_threshold: 

       print("ERROR: chopped the sequence") 

       return output 

     prevelem = elem     

     output.append(elem) 

     

    return output 
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2. Controlling program 

This is the program that was run on the Zynq CPU, with obsolete parts and non-essential 

system monitor code removed. 

 

controller.c: 
 

#include "stdio.h" 

#include "platform.h" 

#include "xil_printf.h" 

#include "xparameters.h" 

#include "xil_io.h" 

#include "xtime_l.h" 

#include <time.h> 

#include <limits.h> 

#include <inttypes.h> 

 

#include "xsysmon.h" 

#include "xstatus.h" 

 

<verbose system monitor code retracted from here> 

 

u32 reg1_address = XPAR_PUF_5_V1_0_0_BASEADDR; 

u32 reg2_address = XPAR_PUF_5_V1_0_0_BASEADDR + 4; 

u32 reg3_address = XPAR_PUF_5_V1_0_0_BASEADDR + 8; 

u32 reg4_address = XPAR_PUF_5_V1_0_0_BASEADDR + 12; 

 

// how many ROs the hardware has. 

const u32 NUMBER_OF_OSCILLATORS = 1000; 

 

static inline void turn_on_puf(u32 reg1, u32 reg2){ 

 

    // ORs the words with 100000[...] 

    reg1 |= 1UL << 31; 

Xil_Out32(reg1_address, reg1); 

 

     reg2 |= 1UL << 31; 

 Xil_Out32(reg2_address, reg2); 

 

} 

 

static inline void turn_off_puf(u32 reg1, u32 reg2){ 

 

  // ANDs the words with 011111[...] 

     reg1 &= ~(1UL << 31); 

     Xil_Out32(reg1_address, reg1); 

 

     reg2 &= ~(1UL << 31); 

 Xil_Out32(reg2_address, reg2); 

 

} 

 

static inline void sleep_ticks(u32 ticks){ 

 

     // XTime is u64 

     XTime start; 

     XTime end; 

     XTime_GetTime(&start); 

     XTime_GetTime(&end); 

 

 while(end - start < ticks) 

 { 

      XTime_GetTime(&end); 

 } 

} 
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void run_pair(u32* oscillator_1, u32* oscillator_2, u32* reg3_last_read, u32* reg4_last_read, 

u32* reg3_increase, u32* reg4_increase, u32* cpu_ticks_target, u32* cpu_ticks_actual, int 

debug){ 

 

    if(*oscillator_1 == *oscillator_2){ 

     printf("#ABORT; TRYING TO RUN SAME OSCILLATOR\n\r"); 

     return; 

    } 

 

    else if(*oscillator_1 >= NUMBER_OF_OSCILLATORS || *oscillator_2 >= NUMBER_OF_OSCILLATORS){ 

     printf("#ABORT; OSCILLATOR INDEX OUT OF RANGE (%lu)\n\r", NUMBER_OF_OSCILLATORS); 

     return; 

    } 

 

    Xil_Out32(reg1_address, *oscillator_1); 

    Xil_Out32(reg2_address, *oscillator_2); 

 

 

    // "Global timer is clocked at half the CPU frequency" -xtime_l.h 

    // ie. the number of real CPU ticks is double the number of these timer ticks. 

    // cpu_ticks should ideally be an even number. 

    u32 timer_ticks = (*cpu_ticks_target)/2; 

 

    XTime start; 

    XTime end; 

 

    // this is the measurement loop; need as few distractions as possible here 

    XTime_GetTime(&start); 

    turn_on_puf(*oscillator_1, *oscillator_2); 

    sleep_ticks(timer_ticks); 

    turn_off_puf(*oscillator_1, *oscillator_2); 

    XTime_GetTime(&end); 

 

    *cpu_ticks_actual = (end-start)*2; 

 

    u32 reg3_now_read = Xil_In32(reg3_address); 

    u32 reg4_now_read = Xil_In32(reg4_address); 

 

    //if smaller: overflow happened 

    if(reg3_now_read < *reg3_last_read){ 

     *reg3_increase = reg3_now_read + (UINT32_MAX - *reg3_last_read); 

      

    }else{ 

     *reg3_increase = reg3_now_read - *reg3_last_read; 

    } 

    if(reg4_now_read < *reg4_last_read){ 

     *reg4_increase = reg4_now_read + (UINT32_MAX - *reg4_last_read);      

 

    }else{ 

     *reg4_increase = reg4_now_read - *reg4_last_read; 

    } 

 

    *reg3_last_read = reg3_now_read; 

    *reg4_last_read = reg4_now_read; 

} 

 

int main() 

{ 

    init_platform(); 

 

    int keeprunning = 1; 

    u8 input; 

 

    int number_input_buffer_index = 0; 

    u8 number_input_buffer[32]; 

 

    int interpret_as_binary = 0; 
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    int multirun = 0; 

    int which_device = -1; 

 

    u8 which_oscillator = 0; 

    u32 oscillator_1 = 0; 

    u32 oscillator_2 = 0; 

    u32 reg3_last_read = 0; 

    u32 reg4_last_read = 0; 

 

    u32 cpu_ticks_target = 10000000; // default: 10M 

 

    int status = conf_sysmon(); 

    if (status != XST_SUCCESS) { 

     print("SYSMON CONF FAILED; QUIT\n\r"); 

     cleanup_platform(); 

     return XST_FAILURE; 

    } 

 

 print("#Listening...\n\r"); 

 while(keeprunning) 

 { 

     // read the serial connection 

     input = XUartPs_RecvByte(XPAR_PS7_UART_1_BASEADDR); 

 

     printf("#Input char was %c\n\r", input); 

 

     // covers (most) non-printable ascii chars; we ignore them 

     if(input < 32){ 

      continue; 

     } 

 

    // set device id 

    if(input == 'C'){  

which_device = 0;  

printf("#INFO: DEVICE ID SET TO %d \n\r",which_device);  

} 

if(input == 'V'){  

which_device = 1;  

printf("#INFO: DEVICE ID SET TO %d \n\r",which_device); 

} 

if(input == 'B'){  

which_device = 2;  

printf("#INFO: DEVICE ID SET TO %d \n\r",which_device);  

} 

if(input == 'N'){  

which_device = 3;  

printf("#INFO: DEVICE ID SET TO %d \n\r",which_device);  

} 

if(input == 'M'){ 

 which_device = 4; 

 printf("#INFO: DEVICE ID SET TO %d \n\r",which_device);  

} 

   

    // toggle varying run orders 

    if(input == 'I'){  

if(multirun){multirun = 0; } else { multirun = 1; } 

 printf("#INFO: multirun SET TO %d \n\r",multirun);  

} 

 

    // automated full run 

 

    if(input == 'G') 

    { 

     printf("#INFO: START FULL RUN\n\r"); 

     printf("#INFO: CPU FREQUENCY IS %d HZ\n\r", 

XPAR_CPU_CORTEXA9_CORE_CLOCK_FREQ_HZ); 
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     if(which_device == -1){ 

printf("#ABORT: NO DEVICE NUMBER SET (use C-M)\n\r"); continue; 

} 

 

     // ro indices 

     oscillator_1 = 0; 

     oscillator_2 = 1; 

 

     u32 counter = 0; 

     u32 counter_exclusive_upper_limit = NUMBER_OF_OSCILLATORS/2; 

 

     if(multirun){ 

      printf("#INFO: DOING A MULTI-RUN\n\r"); 

     } 

 

     u32 reg3_increase = 0; 

     u32 reg4_increase = 0; 

 

     u32 cpu_ticks_actual; 

     double real_time_delta; 

         int debug = 0; 

 

         float temp1, vcc_int1, vcc_aux1, temp2, vcc_int2, vcc_aux2; 

 

        printf("DEVICE; COUNTER; POSITION; RO_INDEX; INCREASE; CPU_TICKS; TIME_DELTA; 

TEMPERATURE; VCC_INT; VCC_AUX;\n\r"); 

 

        int keep_running = 1; 

        while(keep_running) 

     { 

      poll_sysmon(&temp1, &vcc_int1, &vcc_aux1); 

      run_pair(&oscillator_1, &oscillator_2, &reg3_last_read,  

&reg4_last_read, &reg3_increase, &reg4_increase,  

&cpu_ticks_target, &cpu_ticks_actual, debug); 

 

      poll_sysmon(&temp2, &vcc_int2, &vcc_aux2); 

 

      // sampling does averaging already but we do once more 

      float temp_avg = (temp1+temp2)/2; 

      float vcc_int_avg = (vcc_int1+vcc_int2)/2; 

      float vcc_aux_avg = (vcc_aux1+vcc_aux2)/2; 

 

      real_time_delta   = 

(1.0*cpu_ticks_actual)/XPAR_CPU_CORTEXA9_CORE_CLOCK_FREQ_HZ; 

 

      printf("%d; %lu; %u; %lu; %lu; %lu; %f; %f; %f; %f;\n\r", 

which_device, counter, 1, oscillator_1, reg3_increase,

 cpu_ticks_actual, real_time_delta, temp_avg,  

vcc_int_avg, vcc_aux_avg); 

 

      printf("%d; %lu; %u; %lu; %lu; %lu; %f; %f; %f; %f;\n\r", 

which_device, counter, 2, oscillator_2, 

reg4_increase, cpu_ticks_actual, real_time_delta, 

temp_avg, vcc_int_avg, vcc_aux_avg); 

      counter++; 

 

      if(multirun) 

      { 

       // 1st->2nd 

       if(counter == counter_exclusive_upper_limit) 

       { 

        oscillator_1 = NUMBER_OF_OSCILLATORS-1; 

        oscillator_2 = NUMBER_OF_OSCILLATORS-2; 

        printf("#Sub run done\n\r"); 

       } 

       // 2nd->3rd 
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       else if(counter == 2*counter_exclusive_upper_limit) 

       { 

        oscillator_1 = 1; 

        oscillator_2 = 0; 

        printf("#Sub run done\n\r"); 

       } 

       // 3rd->4th 

       else if(counter == 3*counter_exclusive_upper_limit) 

       { 

        oscillator_1 = NUMBER_OF_OSCILLATORS-2; 

        oscillator_2 = NUMBER_OF_OSCILLATORS-1; 

        printf("#Sub run done\n\r"); 

       } 

       // 4th->stop 

       else if(counter == 4*counter_exclusive_upper_limit) 

       { 

        keep_running = 0; 

       } 

       // 4th 

       else if(counter >= 3*counter_exclusive_upper_limit) 

       { 

        oscillator_1 = oscillator_1 - 2; 

        oscillator_2 = oscillator_2 - 2; 

       } 

       // 3rd 

       else if(counter >= 2*counter_exclusive_upper_limit) 

       { 

        oscillator_1 = oscillator_1 + 2; 

        oscillator_2 = oscillator_2 + 2; 

       } 

       // 2nd 

       else if(counter >= counter_exclusive_upper_limit) 

       { 

        oscillator_1 = oscillator_1 - 2; 

        oscillator_2 = oscillator_2 - 2; 

       } 

       // 1st 

       else 

       { 

        oscillator_1 = oscillator_1 + 2; 

        oscillator_2 = oscillator_2 + 2; 

       } 

      } 

      else 

      { 

       oscillator_1 = oscillator_1 + 2; 

       oscillator_2 = oscillator_2 + 2; 

 

       if(counter >= counter_exclusive_upper_limit) 

       { 

        keep_running = 0; 

       } 

      } 

     } 

     printf("#INFO: Done\n\r"); 

    } 

    if(input == 'Q') 

    { 

      printf("Quit!"); 

      keeprunning = 0; 

    } 

} // end of the main while loop  

 cleanup_platform(); 

 return 0; 

} 

 


