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Abstract We propose a principled approach for the problem of aligning multiple
partially overlapping networks. The objective is to map multiple graphs into a sin-
gle graph while preserving vertex and edge similarities. The problem is inspired by
the task of integrating partial views of a family tree (genealogical network) into one
unified network, but it also has applications, for example, in social and biological
networks. Our approach, called Flan, introduces the idea of generalizing the facil-
ity location problem by adding a non-linear term to capture edge similarities and to
infer the underlying entity network. The problem is solved using an alternating opti-
mization procedure with a Lagrangian relaxation. Flan has the advantage of being
able to leverage prior information on the number of entities, so that when this infor-
mation is available, Flan is shown to work robustly without the need to use any
ground truth data for fine-tuning method parameters. Additionally, we present three
multiple-network extensions to an existing state-of-the-art pairwise alignment method
called Natalie. Extensive experiments on synthetic, as well as real-world datasets on
social networks and genealogical networks, attest to the effectiveness of the proposed
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1332 E. Malmi et al.

approaches which clearly outperform a popular multiple network alignment method
called IsoRankN.

Keywords Multiple network alignment · Facility location · Lagrangian relaxation ·
Genealogical trees · Social networks

1 Introduction

The multiple network alignment problem encodes the task of de-duplicating vertices in
a collection of graphs while preserving similarity between vertices and edges. Vertex
similarity is typically modeled by comparing vertex attributes or feature vectors. Edge
similarity encodes structural dependencies among the input graphs, in particular, a
desirable network alignment should preserve the edges of the input graphs to the
largest extent.

A need for data de-duplication often arises when interrelated datasets from different
sources have to be integrated. Many datasets naturally have a network structure which
is why the potential application areas of network alignment methods are plentiful.
These methods have attracted a significant amount of attention in the area of biological
networks (Clark and Kalita 2014), in particular for the problem of aligning protein–
protein interaction networks in order to identify functional orthologs across different
species (Elmsallati et al. 2015). Other applications include social network alignment
(Goga et al. 2015; Zhang and Yu 2015), ontology alignment (Bayati et al. 2013), and
image matching in computer vision (Conte et al. 2004).

However, our initial motivation to study this problem arises from the application
of merging family trees (genealogical networks) which is a common problem for
genealogists. Services like Ancestry.com and MyHeritage attract millions of paying
subscribers who upload their own family tree to the service, trying to find new relatives
to add to their network. Automatic alignment of individual family trees can help people
to find new relatives and trace their ancestry further back in time. Consider for example
the top half of Fig. 1, which shows three individuals, A, B and C , and the partial views
they have on their ancestry. The bottom half shows the underlying family tree which
is hidden and unknown. The trees contain two types of information: vertex attributes
(not shown in the figure) and relationships between vertices. Due to the difficulty
of interpreting historical documents and errors in these documents, the vertices and
edges of individual trees may contain errors. Furthermore, family trees are not trees in
the graph-theoretic sense as they contain cycles such as Mother–FirstChild–Father–
SecondChild–Mother. Note that we draw an edge between every parent-child pair,
whereas Fig. 1 follows the layout commonly used by genealogists. In conclusion, the
problem of merging family trees is an instance of the multiple network alignment
problem.

To address the multiple network alignment problem, we introduce a novel extension
of the facility location problem (Vazirani 2001) to account for both vertex and edge
similarity. In particular, we present a non-linear extension of facility location to specif-
ically favor mappings where neighboring vertices are mapped to other neighbors. To
the best of our knowledge, this extension is a novel problem in its own right and of
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Fig. 1 The bottom half of the figure shows an underlying but unknown family tree, indicating the location
of three individuals A, B and C . The square vertices represent males and the round vertices females. Each
individual has a partial view of the tree. The objective is to reconstruct the underlying and hidden tree from
the partial views shown in the top half

independent interest. We refer to the extension as the facility location formulation for
aligning multiple networks (Flan). Since Flan is NP-hard, we provide an approxi-
mate solution using a Lagrangian relaxation approach. A practical benefit of Flan is
that it allows the user to fix the number of entities (i.e., vertices in the hidden graph)
in cases when prior information on that is available. This can help with parameter
selection which is a common problem when applying network alignment methods in
practice.

Natalie, proposed by Klau (2009), El-Kebir et al. (2015), is one of the best per-
forming existing network alignment methods (Clark and Kalita 2014). Similar to our
approach, Natalie formulates the pairwise problem as a non-linear integer program and
provides an approximate solution using a Lagrangian relaxation approach. However,
Natalie only supports pairwise alignments. Therefore, we investigate three approaches
to extending Natalie to multiple networks.

Finally, we present an experimental comparison between Flan and the extensions
of Natalie on synthetic data, social network data, and family tree data. We demonstrate
that Flan performs well in all of these experiments, especially in terms of precision,
whereas the proposed Natalie extensions typically yield the highest recall. Further-
more, if prior information on the number of entities is available, Flan works robustly
without any ground truth data which is typically needed for fine-tuning method param-
eters.

To summarize, our main contributions are:

– We formalize the multiple network alignment problem using a novel non-linear
extension of the facility location problem. This extension captures both the problem
of inferring the vertices referring to the same entity and the problem of inferring
the underlying entity network. We refer to the extension as the facility location
formulation for aligning multiple networks (Flan).

– We propose an alternating optimization approach to obtain an approximate solu-
tion of Flan, using the technique Lagrangian relaxation. The advantage of the
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Lagrangian relaxation is that we automatically obtain instance-level approxima-
tion bounds on the quality of the solution.

– If prior information on the number of entities is available, Flan is shown to work
robustly without the need to use any ground truth data for fine-tuning method
parameters.

– We present three multiple-network extensions to Natalie, which is a state-of-the-art
pairwise network alignment method. A progressive extension with edge updates
(progNatalie++) is shown to provide a good experimental performance.

– The code and the data for reproducing the experiments are publicly available at:
https://github.com/ekQ/flan

The rest of the paper is structured as follows. In Sect. 2, we present the facility
location formulation for the multiple network alignment problem, and in Sect. 3, we
describe the Lagrangian relaxation approach for solving it, as well as the extensions
of Natalie to multiple networks. In Sect. 4, we discuss the related work, and in Sect. 5,
provide an experimental evaluation of the different methods. Finally, we draw conclu-
sions in Sect. 6.

2 Problem formulation

The input to the network-alignment problem consists of k graphs G1 = (V1, E1), . . . ,

Gk = (Vk, Ek). We define V = ⋃k
i=1 Vi to be the set of all vertices in the k input graphs

and we set n = |V |. As the correspondence between the graph vertices is unknown
initially, we assume that all vertex sets are pairwise disjoint. The case that some
correspondences among vertices of input graphs are known can be easily incorporated
in our framework.

We assume that the input graphs are manifestations of an underlying entity graph
Ge = (U, Ee), where the vertex set U denotes the underlying entities and Ee the edges
between them. The objective of the network-alignment problem is to infer the entity
graph and find an assignment X : V → U so that each vertex in the input graphs
can be mapped to its underlying entity vertex. We further assume that the entities are
represented by a subset of the vertices in the input graphs, that is, U ⊆ V .

The alignment of the input graphs is driven by the graph structure, so that to the
largest extent possible, neighbors in the input graphs should map to neighbors in
the entity graph, as well as by the similarity between vertices in different graphs.
In particular, we assume that each vertex has a set of attributes. A distance function
(dissimilarity) d(i, j) is then defined between each pair of vertices i and j . The distance
d(i, j) is derived by comparing the attributes of i and j .

For the relationship between the input graphs and the underlying graph we consider
the following characteristics:

– The attributes of a vertex of an input graph may have been distorted from the
attributes of the corresponding entity of the underlying graph.

– The vertices of an input graph may correspond to only a subset of the entities
(Vi ⊆ U ).

– The edges between entities are preserved with probability p < 1 (not necessarily
fixed for all edges) so the edges of an input graph may correspond to only a
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Lagrangian relaxations for multiple network alignment 1335

subset of the edges in the underlying entity graph. In other words, the entity graph
contains the edges of the input graphs and potentially some missing edges, that is,

Ee =
(⋃k

i=1 Ei

)
∪ Em , where Em is a set of potentially missing edges.

From the above considerations it follows that the assignment X : V → U we are
searching for should satisfy the following properties:

(P1) Vertices are mapped to entities with as similar attributes as possible.
(P2) Adjacent vertices are assigned to adjacent entities.

To find a set of entities U , the edges between them Ee, and an assignment X :
V → U that respects properties (P1) and (P2) we formulate a non-linear integer
programming (IP) problem. The IP formulation is an optimization problem over binary
variables yi and xi j and an adjacency matrix B. The first two variables encode a
solution in terms of the sought set U and the assignment X , respectively. In particular,
yi indicates whether there is some vertex j ∈ V that has been assigned to entity i ,
and xi j indicates whether vertex i is assigned to entity j . The binary adjacency matrix
B encodes the missing edges Em to be optimized and the edges of the input graphs
EI = ⋃k

i=1 Ei . The integer program is the following

min
x,y,B

∑
j

f y j +
∑
i, j

d(i, j)xi j − g
∑

i, j,k,�

Aik B j�xi j xk�

+ γ
∑

(i, j)/∈EI

B2
i j , (1)

such that xi j ≤ y j , i, j = 1, . . . n, (2)∑
j

xi j = 1, i = 1, . . . , n, (3)

∑
i∈Vm

xi j ≤ 1, j = 1, . . . , n and m = 1, . . . , k, (4)

xi j , y j ∈ {0, 1}, i, j = 1, . . . , n. (5)

In the above formulation, f , g, and γ are scalar parameters, while A and B are adja-
cency matrices representing the graph structure of the problem instance. In particular,
entry Aik indicates whether the vertices i and k of the input graphs are neighbors,
while entry B j� indicates whether entities j and � are neighbors.

The integer program presented above can be seen as a non-linear extension of the
uncapacitated facility-location problem (Hochbaum 1982). Selecting vertex i ∈ V to
be an entity so that other vertices can be mapped to it corresponds to setting yi = 1,
which can be seen as opening vertex i as a facility. The parameter f represents the
cost of opening a facility, so the first term in the objective function (1) penalizes for
every opened entity. Note that one extreme solution is to consider every vertex as an
entity; setting f = 0 would make such a solution optimal.

The second term in the objective function (1) penalizes for assigning vertices to
dissimilar entities. Recall that d(i, j) is the distance between vertex i and entity j ,
computed using the attributes of i and j , and note that the cost is paid only when vertex
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1336 E. Malmi et al.

i is assigned to entity j , expressed by xi j = 1. The third term uses the adjacency
matrices A and B and gives a discount of g for each pair of adjacent vertices that are
assigned to adjacent entities.

The fourth term adds L2 regularization to the adjacency matrix B by introducing
cost γ for every added missing edge. Parameter γ controls the amount of evidence
needed for introducing new edges to the entity graph; if γ = 0, the complete graph
becomes the optimal solution for B, whereas if γ = g

2 , a new edge is added when at
least one pair of adjacent vertices has been assigned to the corresponding entity pair,
as shown later in Sect. 3.3.5.

Next we discuss the constraints of the integer program given in (2)–(4). The first
set of constraints (2) ensures that vertices are only assigned to opened entities. The
second set of constraints (3) ensures that each vertex is assigned to exactly one entity.
Finally, the third set of constraints (4) prevents two vertices in the same input graph
from being assigned to the same entity.

An alternative formulation results by having prior knowledge about the total number
of entities Ne. In this case we can set a constraint for the number of opened entities,
so the objective function (1) is replaced by

min
x,y,B

∑
i, j

d(i, j)xi j − g
∑

i, j,k,�

Aik B j�xi j xk� + γ
∑

(i, j)/∈EI

B2
i j , (6)

and we need to include constraint

∑
i

yi ≤ Ne, (7)

on top of constraints (2)–(5). Both problem formulations require three parameters as
input: the first formulation requires f , g, and γ , while the second formulation requires
Ne, g, and γ .

For both of these formulations we have the following result.

Proposition 1 Multiple network alignment, as defined by optimizing objective func-
tion (1) subject to constraints (2)–(5), or optimizing objective function (6), subject to
constraints (2)–(5) and (7), is NP-hard.

Proof Following the proof for the NP-hardness of pairwise network alignment by El-
Kebir et al. (2015), we show a reduction from the Clique decision problem, which asks
to determine whether a k-vertex clique Gc = (Vc, Ec) exists in graph G = (V, E). We
consider an instance of the multiple network alignment problem with two networks,
i.e., k = 2, which are set to G1 = G (the input graph for the Clique problem) and
G2 = Gc (the k-clique). Let f = 0 (or Ne = ∞ if we consider the problem with the
fixed number of entities) and

d(u, v) =
{

0, if (u = v and u ∈ V ) or (u ∈ Vc and v ∈ V )

∞, otherwise,
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Lagrangian relaxations for multiple network alignment 1337

so that the vertices of G are encouraged to be assigned to themselves, whereas the
vertices in Gc are encouraged to be assigned to any vertices in V .

A k-vertex clique exists in G if and only if the cost of the optimal multiple network
alignment for input graphs G and Gc is −g (|E | + |Ec|). This cost corresponds to the
sum of the discounts we get from aligning each neighbor pair in G to itself and being
able to align each neighbor pair in Gc to another neighbor pair in G. Note that the same
pairwise cost could be achieved by aligning the neighbor pairs in Gc to non-neighbor
pairs in G and adding edges between the corresponding entities. However, this would
result in a higher overall cost due to the regularization term γ

∑
(i, j)/∈EI

B2
i j when

γ > 0. ��

3 Methods

We now discuss our methods for solving the integer programs introduced in the previ-
ous section. Our algorithms (Sect. 3.3) use the Lagrangian relaxation framework, so
we first give a brief overview of the framework (Sect. 3.1). The Lagrangian relaxation
framework is also used by Natalie by Klau (2009), El-Kebir et al. (2015) for aligning
two networks. We present Natalie and propose an extension of it to multiple networks
in Sect. 3.2.

3.1 Background: Lagrangian relaxation framework

The Lagrangian relaxation approach (Fisher 1981) aims to obtain approximate solu-
tions to constrained optimization problems, like the ones presented in the previous
section. The method dualizes/relaxes some constraint(s) by adding them to the objec-
tive with multipliers λ. In practice, the constraint(s) to be relaxed are chosen so that
the relaxed problem ZL D(λ) can be solved in polynomial time.

Next, the problem ZL D(λ∗) = maxλ ZL D(λ) is solved using the subgradient
method (Shor 2012). Since the value of ZL D(λ) is a lower bound for the original
problem for any λ, the value of ZL D(λ∗) yields a lower bound (�∗) for the optimal
solution. Every relaxed solution computed during the subgradient optimization is mod-
ified using some heuristics to construct feasible solutions for the original non-relaxed
problem. The feasible solution with the lowest cost provides an upper bound (u∗) for
the optimal solution. If �∗ = u∗, then the optimal solution for the original problem
has been found. Even for many NP-hard problems, the optimal solution is often found
in a reasonable time with this approach (Fisher 1981).

3.2 Natalie

Natalie is a state-of-the-art pairwise (i.e., k = 2) network-alignment method intro-
duced by Klau (2009). It formulates the two-network alignment problem as the
following integer program
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1338 E. Malmi et al.

max
x

∑
(i, j)∈V1×V2

σ(i, j)xi j +
∑

(i, j)∈V1×V2

∑
(k,�)∈V1×V2

τ(i, j, k, l)xi j xk�,

such that
∑
j∈V2

xi j ≤ 1, for all i ∈ V1,

∑
i∈V1

xi j ≤ 1, for all j ∈ V2,

xi j ∈ {0, 1}, for all (i, j) ∈ V1 × V2,

where σ(i, j) is a similarity score between vertices i and j . The parameter τ(i, j, k, �)

is a similarity score between pairs of vertices (i, k) and ( j, �) which is typically set to

τ(i, j, k, �) =
{

g, if (i, k) ∈ E1 and ( j, �) ∈ E2

0, otherwise,

where g is a positive constant.
This formulation is equivalent to the formulation presented in Sect. 2 applied to two

networks. The main difference is that we have introduced an entity-opening cost f
(or alternatively a budget Ne) to control the number of entities when aligning partially
overlapping networks. Natalie also supports partial alignment since a vertex is not
required to be matched to another vertex. Instead it can get mapped to a gap if some
of the scores σ(i, j) are negative. The number of aligned vertices can be controlled by
shifting the scores towards more negative or more positive values. In our implementa-
tion of Natalie,1 which is used for the experiments of this paper, we set a threshold
score for mapping a vertex to a gap instead of shifting the scores. In our experiments,
this threshold is also denoted by f for consistency.

To solve the integer program, Natalie first linearizes it and then employs a
Lagrangian relaxation approach. The derivation is similar to the one presented in
Sect. 3.3.2 but due to the additional term in the objective (or alternatively an addi-
tional constraint) in our formulation, we need to relax two constraints instead of one
and develop feasibility heuristics (Sect. 3.3.3) whereas Natalie’s formulation allows
to directly extract a feasible solution from a relaxed one.

Natalie 2.0 (El-Kebir et al. 2015) is an extension of the original algorithm (Klau
2009). The original method adopts a subgradient method for updating the Lagrangian
multipliers, whereas Natalie 2.0 employs both the subgradient method and a dual
descent method to obtain stronger upper and lower bounds. Nevertheless, in this paper
we only consider the subgradient approach for updating the multipliers.

In summary, the main differences between our method and Natalie are the fol-
lowing: Our method directly supports multiple network alignment (as well as pairwise
alignment) and it also optimizes the underlying entity graph, but these improvements
come with the cost of having to solve a more complex optimization problem. Both
methods require parameters f and g, but our method also supports specifying the num-

1 The code is available at: https://github.com/ekQ/flan.
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Lagrangian relaxations for multiple network alignment 1339

ber of vertices Ne instead of specifying f . In addition, our method requires parameter
γ which is set to g

2 as discussed later in Sect. 3.3.5.

3.2.1 Adaptation to multiple networks

Klau (2009) suggests that Natalie can be extended to multiple networks or alter-
natively it can be used to progressively align multiple networks. In this section, we
present one possible extension to multiple networks and propose an improvement for
the straightforward progressive version of Natalie.

To find a multiple network alignment, we assume an ordering of graphs and consider
aligning vertex i with any vertex from graphs g′ = 1, . . . , g − 1. Thus we obtain the
following problem.

max
x

∑
1≤g′<g≤k

∑
(i, j)∈Vg×Vg′

σ(i, j)xi j

+
∑

1≤g′<g≤k

∑
(i, j)∈V1×V2

∑
(k,�)∈V1×V2

τ(i, j, k, �)xi j xk�,

such that
∑
j∈Vg′

xi j ≤ 1, for all 1 ≤ g′ < g ≤ k, i ∈ Vg,

∑
i∈Vg

xi j ≤ 1, for all 1 ≤ g′ < g ≤ k, j ∈ Vg′ ,

xi j ∈ {0, 1}, for all 1 ≤ g′ < g ≤ k, (i, j) ∈ Vg × Vg′ ,

Natalie can be used to solve this problem with the following modifications: (i) if a
vertex is mapped to a gap, we define it to be mapped to itself, and (ii) the last bipartite
matching step (for details, see Klau 2009) must be done for each input graph separately
since two vertices from different graphs can be mapped to the same vertex even though
two vertices from the same graph cannot.

To avoid obtaining too many entities, we assume transitivity and define that if xab =
xbc = 1, then vertices a, b, and c should all belong to the same entity. Hence, entities
can be extracted by finding connected components of the alignment graph. However,
the transitivity assumption comes with the drawback that we cannot guarantee anymore
that vertices a and a′ from the same input graph are mapped to a distinct entity since
we might have that xab = 1 and xa′c = xcb = 1. Avoiding such injectivity violations
does not seem trivial, so in the experiments, we simply ignore the injectivity constraint
in case the aforementioned situation occurs.

This method is called Natalie in the experiments.
To solve the multiple networks alignment problem progressively, we pick a target

graph and solve k − 1 pairwise network alignment problems using Natalie to align
other graphs to it. For every vertex mapped to a gap, we create a new vertex in the
target graph so that the vertices of subsequent graphs can be mapped to it. This method
is called progNatalie.
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One limitation of progNatalie is that the edges between the original vertices and
the newly created vertices in the target graph are entirely absent. Furthermore, since
the edge sets are noisy, it would be useful to be able to aggregate edge information
across the graphs. Therefore, we propose progNatalie++ which updates target graph
edges after every aligned input graph: for each pair of neighboring input graph vertices
mapped to vertices j and l in the target graph, we create an edge ( j, �) if it is not already
present.

3.3 Our approach: Flan

Before discussing our method in detail, we present a high-level overview. We adopt an
alternating optimization procedure (Bezdek and Hathaway 2003) which splits the vari-
ables into two subsets {x, y} and {B}, and iteratively solves the alternating restricted
minimization problems over the two subsets. The method consists of the following
steps.

1. Initialize the entity graph B = A.
2. Keeping B fixed, solve the optimal alignment x , y as follows

– Linearize the problem to obtain an integer linear programming (ILP) problem
(Sect. 3.3.1).

– Solve the integer linear program using a Lagrangian relaxation approach
(Sects. 3.3.2, 3.3.3, and 3.3.4).

3. Optimize the adjacency matrix B of the entity graph, keeping x and y fixed
(Sect. 3.3.5).

4. Go back to step 2 unless the iteration has converged.

3.3.1 Linearizing the problem

The first step is to eliminate quadratic terms, and turn the quadratic integer program
into an integer linear program. This is achieved by introducing new variables wi jk� =
xi j xk�. Note that we only need to create a variable wi jk� for index quadruplets that
“form a square” in the input graphs and the entity graph (i.e., vertices i and k are
neighbors and entities j and � are neighbors) since in all other cases Aik B j� = 0 and
wi jk� does not play a role. We denote by S the set of quadruplet indices for which a
variable wi jk� is introduced.

To ensure that the definition of variables wi jk� is consistent, we introduce the
following constraints

∑
�:(i, j,k,�)∈S

wi jk� =
∑

�:(i, j,k,�)∈S
xi j xk� ≤

∑
�

xi j xk� = xi j , for all i, j, k (8)

∑
k:(i, j,k,�)∈S

wi jk� =
∑

k:(i, j,k,�)∈S
xi j xk� ≤

∑
k∈V (i)

xi j xk� ≤ xi j , for all i, j, � (9)

wi jk� = wk�i j , for all i, j, k, � (10)
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Lagrangian relaxations for multiple network alignment 1341

where V (i) = {
v : i ∈ Vj and v ∈ Vj

}
, that is, the vertices of the input graph to which

vertex i belongs.
After the linearization step and dropping the regularization term which does not

affect the minimum when B is fixed, we obtain the following integer linear program,
where B is fixed

min
x,y,w

∑
i

f yi +
∑
i, j

d(i, j)xi j − g
∑

(i, j,k,�)∈S
wi jk� (11)

such that xi j ≤ y j , i, j = 1, . . . n (12)∑
j

xi j = 1, i = 1, . . . , n (13)

∑
i∈Vm

xi j ≤ 1, j = 1, . . . , n and m = 1, . . . , k (14)

∑
�:(i, j,k,�)∈S

wi jk� ≤ xi j , for all i, j, k (15)

∑
k:(i, j,k,�)∈S

wi jk� ≤ xi j , for all i, j, � (16)

wi jk� = wk�i j , for all i, j, k, � (17)

xi j , yi , wi jk� ∈ {0, 1}, for all i, j, k, �. (18)

Note that the number variables in (11) is potentially very high, which could prevent
us from solving problem instances of a realistic size. However, this shortcoming can be
overcome by a technique known as blocking in the entity-resolution literature (Christen
2012). The idea is to consider that each vertex can be mapped not to every other vertex
but only to a set of candidate entities. These candidates are typically determined by
selecting entities above a similarity threshold or by taking the c most similar entities.2

This is also known as sparse network alignment (El-Kebir et al. 2015; Bayati et al.
2013).

3.3.2 Solving an instance of the relaxed problem

To solve the integer linear program (11)–(18), we adopt the Lagrangian relaxation
approach. We start by dualizing constraints (13) and (17), which yields the following
problem

ZL D(λ) = min
x,y,w

∑
i

f yi +
∑
i, j

d(i, j)xi j − g
∑

(i, j,k,�)∈S
wi jk�

+
∑

i

λi

⎛
⎝1 −

∑
j

xi j

⎞
⎠ +

∑
(i, j,k,�)∈S

λi jk�

(
wi jk� − wk�i j

)

2 Like in the case of Natalie, we assume an ordering of graphs and consider aligning vertex i with itself
or any vertex from graphs g′ = 1, . . . , g − 1. In other words, we avoid considering simultaneously vertex
i as an entity for vertex j and j as an entity for i , which we have observed to result in larger duality gaps.
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= min
x,y,w

∑
i

λi +
∑

i

f yi +
∑
i, j

(d(i, j) − λi )xi j (19)

+
∑

(i, j,k,�)∈S
(2λi jk� − g)wi jk�

subject to constraints (12), (14)–(16), and (18).

Despite the fact that the relaxed problem has integral variables (as we have not
relaxed constraint (18)), as we show next, the problem can be solved in polynomial
time for any given λ.

Theorem 1 The relaxed problem (19) can be solved in polynomial time.

Proof The relaxed problem can be decomposed into two problems, so that the first
one is over variables x and y, and the second one is over variables w. In particular,
the relaxed problem can be written as

ZL D(λ) = min
x,y

∑
i

λi +
∑

i

f yi +
∑
i, j

[d(i, j) − λi + vi j (λ)]xi j (20)

such that xi j ≤ y j , i, j = 1, . . . n

xi j , yi ∈ {0, 1} i, j = 1, . . . n,

where

vi j (λ) = min
w

∑
k,�:(i, j,k,�)∈S

(2λi jk� − g)wi jk� (21)

such that
∑

�:(i, j,k,�)∈S
wi jk� ≤ 1, for all k

∑
k:(i, j,k,�)∈S

wi jk� ≤ xi j , for all �

wi jk� ∈ {0, 1}, for all k, �.

Notice that problems (20) and (21) are equivalent to the relaxed problem (19) despite
the fact that in (20) the terms vi j (λ) are multiplied by xi j . The reason is that all variables
xi j and wi jk� are either 0 and 1, and whenever a xi j is 0, then wi jk� are also 0, for all
k and �.

Observe that a variable vi j is defined for each xi j , and the value of vi j is given as a
solution to the minimization problem (21). Given that the variables xi j in the second
constraint are either 0 and 1, it is not hard to see that the minimization problem (21),
together with the corresponding constraints, is a minimum-cost matching problem.
Thus the value of each vi j can be computed using the Hungarian algorithm. Further-
more, given λ and x , all these minimization problems are independent, and thus, the
value of each vi j can be computed separately.
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Once we have computed vi j , we can solve ZL D easily after observing that the
optimal value of xi j is given by

xi j =
{

y j , if d(i, j) − λi + vi j (λ) ≤ 0

0, otherwise,

enabling us to write

ZL D(λ) = min
y

∑
i

λi +
∑

i

f yi +
∑

j

(∑
i

min{0, d(i, j) − λi + vi j (λ)}
)

y j

= min
y

∑
i

λi +
∑

i

( f + Ci )yi

such that yi ∈ {0, 1},

where Ci = ∑
i min{0, d(i, j) − λi + vi j (λ)}. Hence we get

yi =
{

1, if f + ∑
j min{0, d( j, i) − λ j + v j i (λ)} < 0

0, otherwise.
(22)

If instead of setting cost f for opening an entity we want to set a constraint for the
number of opened entities, the final minimization problem would take the form

ZL D(λ) = min
y

∑
i

Ci yi

such that
∑

i

yi = Ne and yi ∈ {0, 1}.

This problem can be solved by sorting yi based on the coefficients Ci and setting
yi = 1 for the Ne smallest coefficients. ��

In Sect. 3.3.4 we discuss how a solution to the problem ZL D(λ), for a given vector λ,
is used within the Lagrangian relaxation method. Before that, we present our methods
for finding a feasible solution to the multiple network-alignment problem from a
solution to the relaxed problem (Sect. 3.3.3).

3.3.3 Finding a feasible network alignment

Once we have obtained the optimal solution x∗, y∗, w∗ for the relaxed problem, we still
need to obtain a feasible solution for the original network-alignment problem. Note
that although the solution x∗, y∗ of the relaxed problem is integral, it is not necessarily
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feasible, since we have relaxed the constraint
∑

j xi j = 1 and hence, some vertices
may be mapped to zero or more than one entities.

We will next show that transforming the optimal solution x∗, y∗ of the relaxed
problem to a feasible solution for the original non-relaxed and non-linearized network-
alignment problem with minimal additional cost in ZL D(λ) is an NP-hard problem.
In fact, the problem is related to set cover, and thus, we propose an algorithm that is
based on a greedy approach.

We will show that both of the versions we consider lead to an NP-hard problem:
(i) when parameter f is given as input (and thus, the number of open entities depends
on f ); and (ii) when the number of opened entities Ne is given as input. Recall that
in the former case, y∗ is obtained by opening the entities with negative coefficients
(according to (22)), while in the latter case y∗ is obtained by opening the entities with
the Ne smallest coefficients. As already mentioned, the optimal y∗ may lead to some
vertices not being assigned to any entities. The hardness of the problem of finding a
feasible solution based on y∗ stems from the fact that more (or different) entities need
to be opened in order to ensure feasibility. Both versions of the problem (for fixed f
and fixed Ne) can be compactly formulated as follows:

min
y

∑
i

C ′
i yi , (23)

such that a matching between the vertices and

opened entities exists, (24)(∑
i

yi = Ne, i = 1, . . . , n,

)
(25)

yi ∈ {0, 1}, i = 1, . . . , n, (26)

where C ′
i = f +Ci if f is fixed, and C ′

i = Ci if the number of entities Ne is fixed, and
Ci = ∑

i min{0, d(i, j) − λi + vi j (λ)} as defined in the previous section. Constraint
(25) is only included in the case of fixing the number of entities Ne. The hardness
result is stated and proven next.

Proposition 2 Finding the optimal set of open entities, as defined in (23)–(26), is an
NP-hard problem both when the entity-opening cost f is fixed, and when the number
of entities Ne is fixed.

Proof We give a reduction from the optimization version of the weighted set cover
problem. We consider a special case where the number of sets is equal to the number
of items to be covered, which still keeps the problem NP-hard. Let {1, 2, . . . , n} be a
set of items to be covered, S a collection of n sets, and M( j) the sub-collection of
sets that contain item j , for j = 1, . . . , n. Each set Si is associated with a cost C ′

i .
By using variable yi to denote whether set i is included in the cover or not, the

weighted set cover problem can be written as

min
y

∑
i

C ′
i yi , (27)

123



Lagrangian relaxations for multiple network alignment 1345

such that
∑

c∈M( j)

yc ≥ 1, j = 1, . . . , n, (28)

yi ∈ {0, 1}, i = 1, . . . , n.

Now we observe that this is a special case of problem (23) where each vertex is
considered to be its own graph and M(i) denotes the set of candidate entities for
vertex i , thus making constraints (24) and (28) equivalent. Furthermore, we could add
constraint (25), without loss of generality, by setting Ne = n, which proves the result
for both cases of fixed f and fixed Ne. ��

The Lagrangian framework itself does not require us to find the optimum y, which
we have shown to be NP-hard, but the further the feasible y we obtain is from the
optimum, the larger the duality gap will be, and thus we want to come up with a
reasonable way of finding an approximate solution.

Greedy methods are known to give good approximations for set cover problems
and hence we adopt a greedy approach for finding y. Next we present a high-level
overview of this approach—the details can be found from the publicly available source
code.3

In the case of fixed Ne, we start opening entities one-by-one after ranking them
primarily by how many vertices from different input graphs can be assigned to each
entity and secondarily by the coefficient of each entity, until a matching between
vertices and opened entities exists. Note that this greedy strategy is different than
the usual “normalized cost” strategy that is used for weighted set cover, however, we
prefer to prioritize the selection of entities based on the number of matching vertices,
as we have a budget Ne on the number of entities that we can open. When all vertices
are matched by at least one opened entity, we can still open extra entities based on
the coefficients until the number of open entities is Ne. Finally, we find a feasible
assignment x by matching the input graphs to the open entities with the Hungarian
algorithm one graph at a time—note that all these matching problems are independent,
so the order we process the graphs does not matter. The edge weights for the matching
problem are given by d(i, j) − λi + vi j (λ) from (20).

In the case of fixed f , we initially set y = y∗. Then we start again matching input
graphs one at a time and open extra entities along the way if a matching cannot be
found otherwise.

3.3.4 Solving the full Lagrangian relaxation

Recall from Sect. 3.1 that for the full Lagrangian relaxation algorithm we wish to find
λ as close to the optimal vector λ∗, that is, ZL D(λ∗) = maxλ ZL D(λ), as possible.
Such a vector is found by the subgradient method (Shor 2012). In particular, we start
with λ = 0, as well as a trivial upper bound u∗ = ∞ and lower bound �∗ = −∞ to
the optimal cost of the original problem.

Then we start an iterative process: in each iteration, we solve ZL D(λ), as described
by Theorem 1, for the current value of λ. This solution is transformed to a feasible

3 The implementation of the feasibility heuristics is available at: https://github.com/ekQ/flan.
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solution for the network-alignment problem, as discussed in Sect. 3.3.3, and the two
solutions are used for updating the bounds �∗ and u∗. Next, a new vector λ is computed
by the subgradient update

λt
i = λt−1

i + θ t (1 −
∑

j

xi j ),

λt
i jk� = λt−1

i jk� + θ t (wi jk� − wk�i j ),

where xi j and wi jk� are part of the relaxed solution. For θ t , we adopt the same update
rules used in Natalie 2.0 (El-Kebir et al. 2015).

The iterative process continues by solving ZL D(λ) for the new vector λ and repeat-
ing the aforementioned steps until a convergence criterion |u∗ − �∗| ≤ ε is satisfied
or the maximum number of iterations (300 in our experiments) is satisfied.

3.3.5 Inferring the edges of the entity graph

The edges of the underlying entity graph are unknown. A reasonable initial guess can
be obtained by setting B = A, but some edges may be missing from this initial guess
as (i) A does not contain any edges between vertices from different graphs, and thus,
there will not be any edges between entities that correspond to vertices in different
input graphs, and (ii) the vertices of an input graph may correspond to only a subset
of the entities.

To infer the missing edges when x and y are fixed, we need to minimize the objective
function (1) with respect to the elements of B which correspond to the potentially
missing edges.4 We decompose the third term of the objective function and denote all
the terms which are constant with respect to the optimized elements of B by C . This
allows us to write the optimization problem as

min
B

∑
j

f y j +
∑
i, j

d(i, j)xi j − g
∑

( j,�)∈EI

∑
i,k

Aik B j�xi j xk�

− g
∑

( j,�)/∈EI

∑
i,k

Aik B j�xi j xk� + γ
∑

( j,�)/∈EI

B2
j�

= min
B

C +
∑

( j,�)/∈EI

⎡
⎣

⎛
⎝−g

∑
i,k

Aik B j�xi j xk�

⎞
⎠ + γ B2

j�

⎤
⎦

= min
B

C +
∑

( j,�)∈Em

B j�

⎛
⎝γ B j� − g

∑
i,k

Aik xi j xk�

⎞
⎠ .

4 For simplicity, we write “minB objective” although the objective is being minimized only w.r.t. elements
B jl , where ( j, �) /∈ EI .

123



Lagrangian relaxations for multiple network alignment 1347

This is solved by setting B j� = 1 whenever term γ B j� −g
∑

i,k Aik xi j xk� is negative,
which happens when

∑
i,k

Aik xi j xk� >
γ

g
.

In all of our experiments, we set γ = g
2 , which means that we add an edge between

entities j and � if there is at least one pair of neighboring vertices that is aligned to
entities j and �.

4 Related work

The Lagrangian relaxation framework has been successfully applied to many NP-
hard optimization problems (Fisher 1981). Cornuejols et al. (1977) show that it is well
suited for the uncapacitated facility location problem where the one-to-one constraint
on sites and facilities is relaxed. Klau (2009) later shows that it is also applicable
to the pairwise network alignment problem where a symmetry constraint is relaxed.
Our multiple network alignment method combines these two ideas and relaxes both
the one-to-one constraint (13) and the symmetry constraint (17) to make the relaxed
problem feasible. Another related application of the Lagrangian relaxation approach
is by Althaus and Canzar (2008) who adopt it for multiple sequence alignment.

A recent survey by Elmsallati et al. (2015) provides an overview of thirteen different
network alignment methods. While the application focus of the survey is on protein–
protein interaction networks, the techniques described are general and can be applied
to different domains. Out of the thirteen methods, only three support multiple network
alignment, namely, IsoRankN (Liao et al. 2009), SMETANA (Sahraeian and Yoon
2013), and NetCoffee (Hu et al. 2013). IsoRankN is a multiple network extension of
the earlier IsoRank method (Singh et al. 2008) which is inspired by the PageRank
algorithm, SMETANA is a greedy method based on a semi-Markov random walk
model, and NetCoffee employs simulated annealing to optimize an objective function
developed for multiple network alignment.

Clark and Kalita (2014) present an experimental survey on ten different pairwise
alignment methods. In many of the experiments presented in the survey, Natalie (Klau
2009; El-Kebir et al. 2015) yields the highest accuracy and it is also reported to have a
fast running time (El-Kebir et al. 2015). Therefore, one of our objectives is to extend
Natalie to support multiple networks. This extension and the differences between
Natalie and our method Flan have been discussed in Sect. 3.2.

Apart from the biological problems, network alignment has been previously applied
at least to ontology alignment by Bayati et al. (2013). The authors present a novel
approach for solving the pairwise graph alignment problem based on the use of belief
propagation (BP): given two networks the BP algorithm begins by defining a proba-
bility distribution on all matchings between the networks and then using a message
passing algorithm to approximately infer a matching which gives the maximum a pos-
terior (MAP) assignment. However, again the BP algorithm is restricted to pairwise
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alignment and it is not clear how a generalization to the multiple alignment case can
be derived.

Multiple network alignment can also be seen as a collective entity resolution prob-
lem (Bhattacharya and Getoor 2007; Singla and Domingos 2006). In the future work, it
would be interesting to study the applicability of multiple network alignment methods
to typical collective entity resolution problems, such as author disambiguation.

The problem of merging family trees has been recently studied by Kouki et al.
(2016), who employ a greedy method, and Malmi et al. (2016), who study an active
learning setting. Furthermore, entity resolution for genealogical data has been previ-
ously studied, for example, by Efremova et al. (2015) and Christen et al. (2015). There
are also methods developed for a related problem of tree alignment, for example, in
the context of web data extraction (Zhai and Liu 2005). However, these methods are
not applicable to family trees since the latter contain cycles.

5 Experimental evaluation

In this section, we present experiments on synthetic and real-world datasets. Our real-
world data are social networks and genealogical trees. In each of these scenarios, the
input graphs are only partially overlapping and the number of graphs is more than two.

A common challenge when applying network alignment methods in practice is the
tuning of the method parameters. In the methods studied in this paper, the parameters
are: f , which controls the dissimilarity of vertices we are willing to align instead of
keeping them separate, and g, which controls the balance between the importance of
aligning neighbors to neighbors vs. aligning vertices to similar vertices. If ground truth
data is available, the parameter values can be tuned via cross-validation but otherwise,
it is common to resort to using some default parameter values.

Motivated by the challenge of parameter selection, the focus of the following exper-
iments is on studying the sensitivity of the methods to the selection of f which is
crucial when aligning partially overlapping networks. We study both the performance
of different methods for a range of f values and the performance of Flan when prior
knowledge on the number of entities is available and thus the selection of f is not
required.

Method naming conventions The following methods are compared in the
experiments: Natalie, progNatalie, and progNatalie++ (Sect. 3.2) are our
multiple-network extensions of the pairwise method originally presented by Klau
(2009). Flan is our facility-location-based method for multiple network alignment,
whereas Flan0 is a baseline method which only solves the Lagrangian relaxation
once and does not update B, the adjacency matrix for entities. cFlan_Ne refers to the
version of Flan with Ne as the fixed number of entities. Both Flan and cFlan_Ne

run the alternating optimization procedure for at most five iterations since the solution
typically does not improve anymore after that. IsoRankN (Liao et al. 2009) is a pop-
ular multiple network alignment method. Instead of f , it has parameter alpha which
controls the relative weight of network and sequence data, taking values between 0
and 1. The other parameters of IsoRankN are set to K = 30, thresh = 10−4, and
maxveclen = 106, based on the recommendations in the README file of the pro-
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gram. Finally, method Unary, which is only used in Sect. 5.3, refers to progNatalie
where discount g for the quadratic term is set to zero so the method aligns the vertices
only based on their attribute similarity.

5.1 Aligning synthetic networks

We start by describing the data generation process and then present the results.

5.1.1 Data

First, we generate an underlying entity graph using the preferential attachment model
(Barabási and Albert 1999) with 100 vertices and 2 as the number of edges new vertices
are attached with. Then we sample a label for each vertex from a set of 33 unique labels
so that there will be 3 vertices with a duplicate label on average. The labels are treated
as attributes and the distance between two vertices is set to 0 if their labels are the same
and 1 otherwise. Only the vertices with the same label are considered as candidate
entities.

Second, we generate 10 manifestations of the entity graph which serve as the input
graphs. The manifestations are generated by picking a random seed vertex and then
doing random walk until 30 distinct vertices have been discovered.

Third, we corrupt the edges of the input graphs to make the alignment problem more
challenging. We first discard 20% of the graph edges, chosen at random, and then we
add 10% more edges, again selected at random. This process is done independently
for each input graph.

The optimization problem corresponding to the alignment of these graphs contains
1500 variables xi j and 1300 variables wi jk� on average, depending on the initialization.

5.1.2 Results

We set g = 0.5 and vary f . Parameter g controls the balance between vertex attribute
distances and the pairwise discounts, but since in this case the attribute distances are
0 for each candidate entity, only the proportion f/g matters. The proportion can be
varied merely by varying f .

The results are shown in Fig. 2. Precision and recall are computed based on the set
of vertex pairs which are predicted to correspond to the same entity (P) and the set of
vertex pairs that truly correspond to the same entity (T ) as follows

precision = |P ∩ T |
|P| , recall = |P ∩ T |

|T | .

In terms of precision, progNatalie++ and Flan yield the best overall perfor-
mance. Both of these methods clearly outperform their counterparts Flan0 and
progNatalie that do not infer the underlying network. In terms of recall, Natalie
and progNatalie++ obtain the best performance, particularly with higher f valuer.
All of these methods clearly outperform IsoRankN when f is sufficiently large.
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Fig. 2 Aligning partial random graphs, varying the cost f of opening an entity

We also study the scenario that we have some prior knowledge about the number
of entities, 100, allowing us to employ cFlan. The results show that by setting the
constraint on the number of entities above or below the true number, we can either
improve precision or improve recall, respectively. This observation can be leveraged
in the case that one of the measures is more important than the other. Although, it is
possible to obtain a higher precision or recall compared to cFlan by carefully selecting
f , in overall, cFlan works rather robustly, providing good alignments without having
to fine-tune f .

Finally, in the bottom-middle plot of Fig. 2, we show the duality gaps for all the
methods except for the progressive ones since they solve several alignment problems
and hence do not provide a single duality gap value. The gaps are relatively small
compared to the total number of variables, 2800, but we can notice that especially for
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Fig. 3 Evolution of the cost of the feasible solution, which yields an upper bound, and the relaxed solution,
which yields a lower bound. For f = 0.2 the algorithm finds the global minimum and converges in 280
steps

Flan0, the duality gap increases with f . Figure 3 shows two examples on how the
duality gap evolves when using Flan0. For Flan, the gaps are smaller, which shows
that by updating the adjacency matrix B and solving the optimization problem again
the problem becomes easier and the Lagrangian relaxation tighter.

5.2 Aligning social networks

The social network alignment problem refers to the problem of finding matching users
across different social networks, such as Facebook and Twitter. This problem points
out privacy concerns as identifying a person’s user handles across multiple service can
lead to highly increased user profiling accuracy. However, it also comes with useful
applications—for instance, a social networking service can provide helpful friend
suggestions for a new user if it can identify the user’s profile in another service.

5.2.1 Data

We study the multiplex dataset from Aarhus University (Magnani et al. 2013). The
dataset contains five networks between the employees of the Department of Computer
Science. Table 1 shows statistics about these networks.

All attributes of the vertices have been anonymized but the true alignment of users
is known through user IDs. We make two modifications to the dataset. First, we select
at most 40 users from each network in order to make the alignment problem more
challenging by having only partially overlapping networks. Second, we sample a
name label for each user ID so that each label is shared by three user IDs on average.
Candidate entities are formed by taking the vertices with the same label.

An example of a social network alignment problem is presented in Fig. 4 where
each name label is assigned a distinct color.
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Table 1 The CS-Aarhus multiplex dataset before and after removing some people to have only partially
overlapping networks

Method # of vertices # of edges Used # of vertices Used # of edges

Lunch 60 193 40 85

Facebook 32 124 32 124

Co-author 25 21 25 21

Leisure 47 88 40 64

Work 60 194 40 85

Total 61 620 60 379

The last row shows the number of distinct vertices after combining the datasets

Fig. 4 An instance of the social network alignment problem. Vertices can only be aligned to other vertices
with the same color. Entity graph depicts the set of underlying entities and edges between them

5.2.2 Results

Figure 5 shows the results for the social network experiment. The relative performance
of the methods is similar to the previous experiment. However, this time the precision
difference between progNatalie++ and Flan is higher. Precision of IsoRankN is
not shown in the figure to make the differences between the other methods more visible
but it is always between 0.34 and 0.40.

5.3 Aligning family trees

Services like Ancestry.com and MyHeritage attract millions of paying subscribers who
upload their ancestry information to the service, trying to find new relatives to add to
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Fig. 5 Aligning the layers of a multiplex graph with randomized usernames. On average, there are three
persons with a duplicate name

their family tree. These family trees (or directed acyclic graphs to be more precise)
are prone to error since they are constructed based on noisy historical records, which
are often challenging to interpret. Furthermore, they overlap only partially since each
genealogist typically starts to expand their own tree so that it is connected to others
only after going back a sufficient number of generations. Therefore, network alignment
methods seem to be ideal tools for aggregating family trees from different users.
However, apart from two recent works (Kouki et al. 2016; Malmi et al. 2016), we
are not aware of previous published work on applying network alignment methods on
genealogical data, which is the aim of this experiment.
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5.3.1 Data

We have obtained a family tree containing 64,208 people constructed by an individual
genealogical researcher in Finland. To be able to have a ground truth to compare
against, we take this tree as the underlying entity graph and sample subgraphs of it to
be aligned.

First, we sample 10 subgraphs as follows. We start by picking a seed person and
then doing random walk until 100 distinct people have been discovered.

Second, from the different attributes associated with each person, we consider only
the first name, last name, and birth year in this experiment. Birth year is corrupted by
rounding it to the nearest ten. For the first and the last name, we use lists of alternative
spellings of names obtained from the Genealogical Society of Finland. The name of
each person found on these lists is randomly replaced by one of its alternative spellings.
For instance, the alternative spellings for name Jean are Jan, Jans, Janne, and Jannes.

When selecting candidate entities for each individual, we find people from other
trees born in the same decade and select up to 5 people with the most similar names.
Name similarity is computed as the average of the Jaro–Winkler string similarity
(Winkler 1990) of the first names and last names. The Jaro–Winkler similarity is a
popular choice for de-duplicating name records.

5.3.2 Results

Now that the vertex similarities are not constant for each candidate match, varying g
could potentially change the results. However, for simplicity, we again set g = 0.5
and focus on studying parameter f . The alignment results are shown in Fig. 6.

This time also Flan0 and progNatalie yield a good performance since the edges
of the input graphs have not been corrupted so updating B does not provide any
significant improvements. Comparing cFlan with other methods, we observe that
unless the user is able to set f between 0.5 and 1.5, cFlan obtains the highest F1
score. The parameter Ne has been set by counting the true number of entities using
the ground truth data. In practice, when the ground truth is not available, we could
be able to estimate Ne, for example, based on census records by counting how many
people used to live in the area that the family trees cover.

In this experiment, we also included method Unary which aligns vertices only
based on attribute similarities and cost f for leaving a vertex unaligned. The perfor-
mance of this method is in overall the lowest after IsoRankN which suggests that
it is, indeed, important to consider also the structure of the networks when aligning
family trees.

5.4 Scalability

Finally, we study the running times of the different alignment methods. We use family
trees as the dataset, varying the number of graphs and the number of people per graph.
The results averaged over 10–30 random initializations of the graphs are shown in
Fig. 7.
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First, we notice that Flan and cFlan have the highest running times which is
natural as they both solve the alignment problem up to five times, updating B between
the runs. Their running times are not, however, five times higher compared to Flan0,
which can be explained by (i) the alternating optimization sometimes converging (i.e.
returning the exact same solution compared to the previous iteration) in less than
five iterations, and (ii) the problem getting easier with the updated and presumably
more accurate B matrices, thus leading to a faster convergence of the subgradient
optimization.

Second, when aligning four graphs with 1400 vertices each, the running time is
almost three hours with Flan, suggesting that the current Python implementation of
Flan would not be scalable enough for input graphs with 104 vertices or more. How-
ever, with a more optimized implementation one could expect significant speedups.
For instance, a Matlab implementation of the pairwise Natalie,5 which heavily uses
matrix operations and is written partly in C++, solves three pairwise family tree align-
ment problems in 5.1 s, whereas our implementation of progNatalie, which also
solves three pairwise problem when the number of input graphs is four, runs in 1050 s
for family trees with 1400 vertices. Thus our implementation is over 200 times slower.

Third, we notice that the running times grow superlinearly when increasing the
number of people per graph. Although the number of vertices grows linearly, the
complexity of the algorithm is superlinear since it requires solving a bipartite matching
problem which takesO (

n3
)

using the Hungarian algorithm. Nevertheless, the running
times do not appear to grow exponentially despite the problem being NP-hard.

6 Conclusions

We formalized the multiple network alignment problem using a novel extension of the
facility location problem. The problem is NP-hard, but we were able to obtain good
approximate solutions using a Lagrangian relaxation approach, called Flan, which
also provides bounds on the quality of a solution.

A practical advantage of Flan is that it has an option to specify the number of
entities. This allows Flan to work robustly without any other ground truth data which
would typically be needed to fine-tune the parameters of a network alignment method
via cross-validation before applying the method. This can be a significant advantage
when solving a new problem instance where ground truth data is unavailable. Further-
more, in addition to aligning the input networks, Flan infers the underlying entity
network.

We also presented and evaluated three multiple-network extensions to Natalie,
which is a state-of-the-art pairwise network alignment method. A progressive exten-
sion with edge updates (progNatalie++) was shown to provide a good experimental
performance.

As a practical guideline for solving multiple network alignment problems, we rec-
ommend first trying out progNatalie++, which is computationally less expensive

5 The implementation is available at https://www.cs.purdue.edu/homes/dgleich/codes/netalign/ and has
been used in Bayati et al. (2013) and Malmi et al. (2016).
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than Flan since it does not consider a single large problem but decomposes it into
multiple, smaller pairwise alignment problems. However, if prior information on the
number of entities, i.e., the number of distinct elements in all the input graphs together,
is available, then Flan is recommended. For instance, in the case of family trees, such
prior information could be possible to extract from separate census records. Finally, if
the main goal is to achieve a high recall, it is recommended to use Natalie with a high
value of f parameter, which yields lower F1 scores compared to progNatalie++ and
Flan but often achieves the highest recall.
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