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Data has become an essential resource, which is used to guide decision making across many levels
of society. To fully leverage the abundance of data sources, the various sources need to be
integrated, which poses difficult computational challenges. Entity resolution techniques address
these challenges by trying to identify data records referring to the same underlying entity. Often,
relational information about the records (for example, a friendship network between the users of
a social networking service) is available, but this information is ignored by the traditional entity
resolution techniques. The goal of this thesis is to develop novel collective entity resolution
methods which match records by leveraging relational information and produce an entity network.
The developed methods are applicable to a wide array of applications - from bioinformatics to
ontologies - but the initial motivation for this work has been the problem of integrating
genealogical data to infer large-scale genealogical networks (family trees).

This thesis makes the following methodological contributions: First, we develop novel methods
for linking vital records, such as birth records, to infer genealogical networks. An experimental
evaluation of the inferred networks shows that even fully automatic methods can produce fairly
accurate networks, and moreover, the estimated link probabilities provide a reliable way to quantify
the certainty of the inferred family relationships. Second, we propose methods with theoretical
guarantees for aggregating the edges of directed acyclic graphs in the case that the correspondance
between input-graph nodes is known. Third, if the correspondance is unknown, an alignment
between the nodes has to be found. We study the resulting network alignment problem and
propose methods for aligning multiple networks and for aligning networks actively by leveraging
human experts.

The proposed vital-record linking methods have been employed to automatically link a dataset
of five million historical birth records from Finland. To visualize the resulting network and to
enable the exploration of the inferred links, we have developed an online tool called AncestryAl,
which has been used so far by thousands of genealogists in Finland. In the final part of the thesis,
we demonstrate the usefullness of the inferred genealogical network for the field of computational
social science by presenting a longitudinal analysis on assortative mating, that is, the tendency to
marry someone with a similar socioeconomic status. This phenomenon is quantified by comparing
the socioeconomic statuses of the automatically inferred spouses. We find evidence that assortative
mating existed in Finland (1735-1885), but interestingly, we do not observe any monotonically
decreasing or increasing trend in the strength of assortative mating.
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Datasta on tullut tirkeé resurssi, joka ohjaa paatoksentekoa monilla yhteiskunnan tasoilla. Eri
dataldhteet tulisi kyetd yhdistimaan, jotta niitd voisi hyédyntdmaa tehokkaasti, mikd muodostaa
haastavan laskennallisen ongelman. Tietueiden linkitysmenetelmit vastaavat tahan ongelmaan
yrittden tunnistaa samaan entiteettiin viittaavat tietueet. Usein tietueista on saatavissa
relationaalista tietoa, kuten esimerkiksi sosiaalisen verkoston kayttéjien vilinen ystavyysverkosto,
mutta perinteiset linkitysmenetelmaét jattavat nama relationaaliset tiedot huomiotta. Taman tyon
tavoitteena on kehittd uusia kollektiivisia tietueiden linkitysmenetelmia, jotka hyodyntéavat
relationaalista tietoa ja tuottavat entiteettiverkoston. Kehitettyji menetelmié voidaan soveltaa
moniin kohteisiin, kuten bioinformatiikkaan tai ontologioihin, mutta tyon alkuperédisena
tavoitteena on ollut laajojen sukuverkostojen eli sukupuiden paattely.

Viitoskirjassa esitellddn seuraavat metodologiset kontribuutiot: 1. HenkilGtietojen, kuten
kastetapahtumien, linkittdmiseen on kehitetty uusia menetelmii, joilla voidaan paatella
sukuverkostoja. Padteltyjen verkostojen analyysi osoittaa, ettd jopa tdysin automaattiset
menetelmaét voivat tuottaa melko tarkkoja verkostoja. Taiman lisiksi menetelmien tuottamat
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suunnattuihin asyklisiin verkostoihin, joiden solmujen vastaavuudet on tunnettu. 3. Mikali
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néin syntyvai verkostojen kohdistamisongelmaa ja kehitetty menetelmié useiden verkostojen
kohdistamiseen automaattisesti seki kahden verkoston kohdistamiseen interaktiivisesti
ihmisasiantuntijoita hyodyntien.
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Preface

The first thing that caught my attention when I joined the data mining group at
Aalto was that during the group meetings people were often smiling and having
fun. These weekly gatherings quickly became something that I would look
forward to attending week after week throughout the 4.5 years that I was part
of the group. I would like to thank all the past and present group members for
creating such a nice and also scientifically stimulating atmosphere. In particular,
thank you to Aris Gionis, our group leader and my supervisor, with whom it has
been a great privilege to work. Aris taught me a lot about math and research,
he was exceptionally responsive to my emails, and he always had time to meet
when I needed advice. He was also very open to all of my non-mainstream
research ideas—from generating rap lyrics to analyzing 400-year old church
records—helping me to turn these into successful research projects.

I'm grateful for the pre-examiners of this thesis, Lise Getoor and Gunnar W.
Klau, for their valuable comments on the manuscript. Their own works have
been central sources of inspiration to the methods developed in this thesis. Also,
I should thank the Nokia Foundation, the Finnish Foundation for Technology
Promotion (TES), and the Emil Aaltonen Foundation for their generous financial
support for my research.

This thesis would look very different if it wasn’t for my friend and collaborator,
Arno Solin, who told me about the HisKi dataset back in 2013. I usually test
ideas by waiting until the next day to see if I'm still as excited about the idea.
In many cases, I'm not. However, with the idea of inferring family trees, I got
even more excited the next day. Thank you to Arno for the valuable advice and
feedback on genealogy, data visualization, typography, machine learning, and
other topics.

Moreover, I received a lot of valuable feedback and advice from the numerous
genealogists who commented my work, and this knowledge would have been
hard or impossible to acquire otherwise. In particular, I would like to thank
Pekka Valta, Juha Mékelainen, and Matti Juhala, who spent dozens of hours
sharing their knowledge about genealogy and providing comments on Ances-
tryAl. Likewise, I'm very thankful to the Genealogical Society of Finland, P. T.
Kuusiluoma, Teppo Ylitalo, and Jouni Malinen, who provided me with access to
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the HisKi data and encouraged me to pursuit this effort.

The collaboration with many genealogists from the early phases of my thesis
project was essential for the success of the thesis and this collaboration was
primarily made possible by the efforts of the Aalto and CS department com-
munications teams who helped to promote my work outside academia. I would
like to thank especially Tiina Aulanko-Jokirinne for her active and enthusiastic
involvement.

I had the pleasure to work with a very strong group of co-authors, namely
Sanjay Chawla, Evimaria Terzi, Nikolaj Tatti, Arno Solin, and Marko Rasa.
Marko also built the web interface of AncestryAl and he’s probably the person
who has taught me the most about programming through various hobby projects
we’ve done together.

During my studies, I also had the opportunity to visit and intern at several
different places. I would like to thank Aris for helping to arrange these visits,
Sanjay for hosting me at QCRI, Timo Smura and Hannu Verkasalo for hosting
me at Verto Analytics, Daniele Pighin and Enrique Alfonseca for hosting me at
Google, and Przemyslaw Grabowicz and Krishna Gummadi for hosting me at
the Max Planck Institute for Software Systems. These visits greatly widened
my perspective on research and other aspects of life.

Doing a PhD wouldn’t have been nearly so pleasant experience if it wasn’t for
all the friends, colleagues, and collaborators who would listen and give ideas
for my research, hang out at conferences, play foosball, and explore some of
the remotest places on Earth (physically as well as virtually!). These people
include but are not limited to: Antonis Matakos, Kiran Garimella, Michael
Mathioudakis, Han Xiao, Sanja Scepanovic, Polina Rozenshtein, Suhas Thejaswi,
Orestis Kostakis, Preethi Lahoti, Jeffrey Lijffit, Antti Ukkonen, Luiza Sayfullina,
Alexander Grigorievsky, Jaakko Luttinen, Juho Kokkala, Pyry Takala, Mikael
Kuusela, Anis Nasir, Oskar Kohonen, Pekka Parviainen, Pauli Miettinen, Mikko
Tolonen, Michael Briga, Virpi Lummaa, Claudia Wagner, and Ingmar Weber.

To my parents and two sisters, I feel really blessed for having such a supportive
and unconditionally loving family. Of the many things I've learned from you,
what has probably inspired me academically the most are my mother’s diligence
and attention to detail and my father’s courage and openness to other cultures.
To my beloved daughter, Lumi, your enthusiastic and determined exploration
of the world around you exemplifies what research is at its best and I'm really
proud to be your dad. And to my beloved wife, Maria, thank you for bringing
order to my life when my mind was too occupied with research, for being my
practice audience and my Finnish copy-editor, and for your love expressed in so
many ways.

Finally, I would like to thank God for everything.

IThanks to Antonis for introducing me to GeoGuessr.com.
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1. Introduction

This chapter presents the motivation and scope of this thesis, summarizes the
main contributions of the thesis, and finally outlines the organization of the
subsequent chapters and articles.

1.1 Motivation and Scope

It has been estimated! that data scientists spend 50 to 80 percent of their time
on data wrangling, that is, preparing data for analysis, and only a minority of
their time on the actual data analysis. Data wrangling encloses various tasks,
but if the data originates from multiple sources, one important task is to identify
the records or mentions in the data referring to the same entities—a problem
known as entity resolution. While in practice this problem is often addressed
by manual data curation, it can also be tackled by computational methods,
which can save the data scientist from a significant amount of manual work if
the number of records to be matched is high. Developing novel computational
methods for entity resolution is the broad area that this thesis contributes to.

Traditionally, entity-resolution methods are presented with multiple questions
which ask whether two records refer to the same entity, and the methods address
these questions independently. However, it is common to have relational informa-
tion about the records, which could improve the accuracy of the entity-resolution
process if properly accounted for. Consider the following example:

Person p goes to a conference and meets persons a and b who work
at the same university. After the conference, p goes to Twitter and
wants to start following a and b, but quick Twitter searches on
a and b return multiple user profiles in both cases. After some
investigative work, p discovers that there is one pair of search
results, ¢ and &, whose names match with @ and b but who also
follow each other. Thus p infers that ¢ and & must be the persons

lhttps ://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-
insights-is-janitor-work.html
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Introduction

that p met at the conference, and starts following them.

While perhaps not entirely realistic, the above example illustrates effectively
the problem of collective entity resolution. In the example, the matching decisions
are made between a recalled name and a Twitter profile returned when querying
by the recalled name. If the matching decisions were made independently for
a and b, it could be challenging to infer the correct Twitter profile among all
the candidate matches returned by a search. However, the additional relation
information (a and b are from the same university and thus more likely to
follow each other than two random persons would be) can be used to help with
the matching decisions. Methods that leverage such relational information are
known as collective entity resolution methods (Bhattacharya and Getoor, 2007).

Relational information can come in many forms but one general way of mod-
eling it is to assume that, in addition to being given two sets of records, we
are given networks, connecting the nodes within each dataset. In this model,
the nodes correspond to records and they are associated with attributes, such
as name and age, and the records related to each other are connected by an
edge. The above example can be presented within this model by considering
one small input network, consisting of two adjacent nodes with name attributes,
and one large network, consisting of the profiles of all Twitter users and the
corresponding follower graph. The task is to align the nodes of the small input
network to the nodes of the large network.

This problem is known as network alignment and it is an instance of collective
entity resolution, although network alignment has been studied mostly in the
context of aligning biological networks (Clark and Kalita, 2014; Elmsallati
et al., 2016; Guzzi and Milenkovié¢, 2017; Meng et al., 2016). In our case, the
problem is initially motivated by a task of aligning multiple partial genealogical
networks (family trees). Most of the existing network-alignment methods are
designed for aligning only two networks, which is why we take an existing
pairwise network aligner with a good experimental performance and extend it
to handle multiple networks. Furthermore, in some cases the attributes of the
input-network nodes and the edges between the nodes are corrupted by so much
noise that fully automatic alignment methods are insufficient—especially in
the case of genealogical networks, where the node attributes are recorded by
interpreting historical hand-written documents (see Figure 1.1 for an example
of such a document). In such cases, it is necessary to involve human experts
in the alignment process, which, unfortunately, is typically slow and costly. To
tackle this problem, we propose an active network alignment method that tries
to minimize the required human involvement by asking the most informative
questions from the humans.

In addition to using network information as input, it is sometimes also desir-
able to output a network. This output network describes the inferred relations
between the entities. To this end, the proposed multiple network alignment
method has been designed to infer an entity network in addition to aligning the

14
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Figure 1.1. A scanned image from the Finnish parish registers from the year 1692. Source:
Finland’s Family History Association (FFHA).

input-network nodes (records) to the entities. Moreover, we study the problem of
directed acyclic graph (DAG) aggregation,? which tries to find a centroid DAG
which is as similar to the input DAGs as possible. This problem is encountered,
for example, when aggregating pairwise preferences from multiple people.

The aforementioned network-alignment and DAG-aggregation methods have
various applications from genealogical networks to social networks (Zhang
and Yu, 2015), protein-protein interaction networks (Singh et al., 2008), and
information cascades (Malmi et al., 2015). However, we also propose a collective
entity resolution method specifically for the problem of inferring genealogical
networks. This method takes as input a large collection of vital records and tries
to link each birth record to the birth records of the parents. The linking task is
formulated as an optimization problem, which tries to link records with similar
attributes and to also capture an intuition that people tend to have children with
the same spouse. The method is applied to a dataset of 5 million historical birth
records from Finland, from which it infers a large-scale genealogical network,
containing a connected component of 2.6 million people. The accuracy of the
linking method is assessed based on a human-constructed genealogical network.

2Terms network and graph are used interchangeably in this thesis. The reason for using
both of these terms is that the former is predominantly used in the field of bioinformatics,
where particularly the network-alignment problem has been studied extensively, while
the latter term is more popular in theoretical computer science literature, which this
thesis also builds upon.

15
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Finally, we apply the inferred genealogical network to study a phenomenon
known as assortative mating or social homogamy, referring to a tendency of
people to marry a spouse with a similar socioeconomic status. This analysis
addresses two questions: (i) can we detect assortative mating in an automatically
inferred genealogical network, and (i) how has the intensity of this phenomenon
evolved over a time period of 150 years. Overall, we argue that large-scale
genealogical networks, which can be inferred with the methods proposed in this
thesis, can open up fundamentally new type of analysis opportunities in the field
of computational social science. This field typically leverages data from online
social media services, but since these services have generally existed for less
than 15 years, they do not allow studying phenomena that take multiple human
generations to occur or evolve. In contrast, genealogical data can cover multiple
centuries or even millennia (Schich et al., 2014).

1.2 Contributions

The main contributions of this thesis are summarized as follows:

* Publication V generalizes Natalie (El-Kebir et al., 2015; Klau, 2009)—
an accurate pairwise network alignment method—to handle multiple
networks.

* Publication VI develops an active network alignment method, which lever-
ages human experts (oracles) in the network alignment process. This
method yields high alignment accuracies with fewer oracle queries than
its competitors.

® Publication IV formalizes the problem of aggregating directed acyclic
graphs and proposes algorithms with approximation guarantees. This
problem asks to integrate networks with a known node correspondence
but inconsistent edges.

e Publications I, II, and III propose methods for linking vital records to infer
large-scale genealogical networks. These methods are applied to link a
dataset of 5 million historical birth records from Finland and evaluated
using a genealogical network constructed by a human genealogist.

* Publication I presents an open web service called AncestryAl (http://
ancestryai.cs.hut.fi/), which allows making searches and exploring the
automatically inferred genealogical network, thus facilitating the job of a
genealogist.

¢ The inferred genealogical network has been used to analyze assortative
mating (the tendency of people to marry someone with a similar status)
over a period of 150 years in Finland. This analysis, presented in Publica-

16
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tion II, reveals interesting long-term patterns in the strength of assortative
mating.

Most of the source code and datasets used in this thesis can be accessed at:
https://github.com/ekQ/. The code and data not available online, are available
upon request from the author.

1.3 Organization

This thesis follows the format of an article-based dissertation, meaning that it
consists of a set of articles, appended at the end of the thesis, and a compilation
part (Chapters 1 to 6) that summarizes the studied problems and the main
findings of the articles.

The compilation part is organized as follows: Chapter 2 provides an overview
of the related work on entity resolution, which is the main topic of this thesis.
Chapter 3 (based on Publications I, II, and III) presents two methods for linking
vital records in order to infer genealogical networks. Additionally, it introduces
a location-estimation method, which can be used for various types of networked
data sources but which is primarily used to geolocate the vital records. Chapter 4
(Publications IV, V, and VI) discusses the problems of aggregating and aligning
networks, whereas Chapter 5 (Publication II) presents an analysis of an inferred
genealogical network and discusses the future analysis opportunities. Finally,
conclusions are drawn in Chapter 6.

The publications are appended in a thematic order and they consist of two jour-
nal publications (IV, V) and four papers published in peer-reviewed conference
proceedings (I, II, III, VI), the first of which is a demo paper.

17
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2. Entity Resolution

Entity resolution (ER) is the problem of identifying which records refer to the
same underlying entity. It is encountered in many applications where data
from different sources need to be integrated or when a single dataset is cleaned
from duplicate entries. The ER problem itself goes by various duplicate names,
including record linkage, data matching, duplicate detection, and reference
reconciliation.

The ER problem has been studied actively for several decades due to a large
number real-world applications where it is encountered (Christen, 2012; Herzog
et al., 2007). In this chapter, we present a non-comprehensive overview of the
studies most related to the topics of this thesis.

2.1 Steps of the Entity-Resolution Process

Christen (2012) distinguishes five steps in the entity-resolution process, which
are illustrated in Figure 2.1. Next we give a brief summary of these steps,
assuming a context of matching two databases A and B.

Data pre-processing involves various steps needed to make the two databases
comparable. For instance, the databases may have slightly differing schemas,
where A includes person names in a single field, whereas B has a separate
field for first name and last name. Furthermore, when dealing with the names
of persons or other entities, it is often necessary to normalize each name to
a standard form. This is particularly important when dealing with historical
records that were kept by multiple different people. For example, a person whose
name is Eric, might also be recorded as Erik, Eerikki, or Erichus.

Often it is infeasible to perform a detailed comparison for all A x B record pairs,
which is why the number of pairs is reduced using blocking or indexing. This
can be done by using a set of blocking keys, such as last name and postal code,
and retrieving the records with matching blocking keys, using an inverted index.
In more advanced ER approaches, we may have a vector-space representation
for each record, which allows us to retrieve the & nearest records using a data
structure such as k-d trees (Bentley, 1975). If our goal is to match record a € A
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Figure 2.1. The steps of the entity resolution process according to Christen (2012).

to a record in B, we use the term candidate matches of a to refer to the set of
possible matches in B obtained from the blocking step.

The record pairs resulting from the blocking step are then compared in more
detail in the comparison step. For example, for a pair of locations, we may
want to compute their geographical distance, and for a pair of names, a string
similarity measure. Levenshtein distance, which measures the number of edits
needed to transform one string to another, is a popular method for comparing
general strings, but methods designed specifically for comparing person names
have also been developed. One example of the latter is the Jaro—Winkler distance
(Winkler, 1990), which is also used in this work.

In the next step, the record pairs are classified into matching, non-matching,
and sometimes also into possibly matching pairs. This can be done in an un-
supervised manner, using simple heuristics (for instance, compute the sum of
similarity values and set a threshold for this sum) or using some prior knowl-
edge about the problem to classify the record pairs probabilistically, using, for
example, the Fellegi—-Sunter method, which is described in the next section.
Alternatively, if labeled pairs of records known to be matches or non-matches
are available, supervised classification methods can be used. Often the record
pairs are classified independently, which may lead into suboptimal results if
we know, for instance, that neither A nor B contains duplicates, implying that
we want to avoid matching two records to one. The main focus of this thesis is
collective entity resolution, which considers multiple matching decisions jointly
to improve the matching quality.

In the final step, the quality of the matched records is evaluated. If the
ER problem is viewed as a classification task, standard evaluation measures
for classifiers, such as precision and recall, can be used. Typically, the main
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challenge is obtaining a sufficiently large ground-truth dataset to compute these
measures. In our work, we use several different approaches to overcome this
challenge: Some datasets, like the multiplex dataset used in Publication V,
contain a unique identifier for each record. In that case, we hide the identifier
when performing ER and use it only in the evaluation phase. In other cases,
we generate a semi-synthetic dataset by using a set of existing records A and
then perturbing the attributes of these records to create another dataset B,
keeping track of the original records that the instances of B correspond to.
This approach is used to evaluate network-alignment methods on genealogical
networks in Publication V and Publication VI. In Publication II, our task
is to link birth records and evaluate the resulting genealogical network by
comparing it to a ground-truth network constructed by a human. This ground-
truth network covers a sizable fraction of the entities mentioned in the birth
records, but unfortunately, the nodes of the network do not contain references
to the corresponding birth records. This means that merely to evaluate the
links inferred between the birth records, we need to solve yet another ER
task of matching a ground-truth network to the inferred network. We take a
conservative approach and consider a ground-truth-network node to be matched
to a birth record only if they have the same first and last name, the birth dates
are exactly the same, and there is only one matching node for the given birth
record. This give us a set of ground-truth links whose both adjacent nodes are
matched to a birth record, and these ground-truth links can then be used to
evaluate the inferred links between birth records.

2.2 Fellegi-Sunter Method

The Fellegi—Sunter method for probabilistic record linkage (Fellegi and Sunter,
1969) is one of the most well-known and widely used ER methods (Christen,
2012). It considers two databases A and B, and tries to classify whether a record
pair (a,b) € A x B is a matched pair (a,b) € M, an unmatched pair (a,b)e U, or a
potentially matched pair.

The decision on which class a record pair belongs to is based on a comparison
vector y, which consists of binary comparisons y;,7,,...,Y,, such as “first names

» «

are the same,” “cities are different,” and “street name missing on one record.”
The likelihood of the comparison vector y“’b for record pair (a,b), given that the

records are matched, is denoted by

m (Ya,b) =p (Ya,b

(a,b)eM),

and by
u (Ya,b] =p (Ya,b

given that the records are unmatched. Fellegi and Sunter (1969) then propose

(a,b)eU),

21



Entity Resolution

the following linkage rule

(a,b) is matched, if m (y"’b) /u (y“’b] =Ty,
d (y“’b) =< (a,b) is potentially matched, ifT)<m [y“’b) /u (y“’b) <Ty,
(a,b) is unmatched, if m (y"’b) /u (ya’b] <T,

where T, and T’y are positive constants. The main result of Fellegi and Sunter
(1969) is that this linkage rule, which is based on the ratio m (y®?) / u(ye?),is
optimal in the sense that among all the linkage rules with a fixed false-positive
rate p and a fixed false-negative rate A, this rule has the lowest probability of
assigning a record pair into the potentially matched category. In other words, this
linkage rule has the best discriminatory power for classifying record pairs into
matches and non-matches. However, this result assumes that we can accurately
estimate likelihood terms m(y) and u(y), which is not straightforward.

More specifically, there are two challenges when estimating the likelihood
terms:

1. Records with the same name are much more likely to be a match if the
name is rare (for example, Jezebel) compared to if the name is a popular
one (for example, Mary). To encounter this, Fellegi and Sunter propose to
adjust the likelihoods based on name frequency.

2. It is common to assume that the different comparison vector terms are
conditionally independent (Christen, 2012), that is

()= Tlo e o3

a,b)

and similarly for u (y . However, this independence assumption does

not often hold in practice.

Instead of categorizing record pairs into the three categories used in the
Fellegi—Sunter method, we take a slightly different approach in Publications I
and II; we find it more natural to estimate p (Ma = b|y“’C°], that is, the proba-
bility of b € B being the matching record for a € A (assuming that B does not
contain duplicates). Term yCa denotes the set of comparison vectors between
a and its candidate matches C, < B. The candidate matches are obtained from
a blocking step, which uses name and potentially other blocking keys. M, is a
random variable corresponding to the matching record of @ and thus it takes
values from C, U @, where ¢ refers to the case that the candidate matches C,
do not contain a matching record for a. Later, in Section 3.1, we show that,
using the Bayes’ rule, we can derive the following expression for the matching
probability

p(My =b)m (y®?) [u(y®?)
y“’c“) = / . @.1)

Tecpug P (Ma = )m (yo°) [u(yo)

p(Ma=b
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Interestingly, this approach is closely connected to the Fellegi—Sunter method
since it incorporates the same likelihood ratio m (y“’b) / u (y“’b) used by the
Fellegi—Sunter method, however, normalizing it by summing over the candidate
matches of a. This approach naturally addresses the first challenge regarding
name popularity, since a record with a rare name will have only a few candidate
matches with the same name, giving the few candidates a higher matching
probability due to a smaller denominator in Equation (2.1).

To address the second challenge, regarding the independence assumption, we
make an observation that likelihood ratios can be estimated with probabilistic
discriminative classifiers when training data is available (Cranmer et al., 2016).
This allows us to use any discriminative classifier, such as Support Vector
Machines (Cortes and Vapnik, 1995) or XGBoost (Chen and Guestrin, 2016),
as long as the classifier outputs probabilities. These discriminative classifiers
typically do not make the conditional independence assumption but capture
some of the correlations between features. Using an off-the-shelf classifier
also makes it easier to add new comparison-vector features, since a separate
probability distribution does not need to be estimated for each new feature.
There are several previous works which also employ discriminative classifiers
for entity resolution (Christen, 2008; Cochinwala et al., 2001; Lian and Xie, 2016;
Tay et al., 2016), but we are not aware of previous works using discriminative

classifiers for estimating the ratio m (y*?) / u(y®?).

2.3 Collective Entity Resolution

While traditional ER methods typically classify record pairs independently, col-
lective entity resolution methods aim at matching multiple records jointly. This
makes it possible to capture transitivity constraints, that is, if we know thata = b
and b = ¢, then, by transitivity, records a and ¢ should also refer to the same
entity. Moreover, by jointly matching records known to be related, information
from one node can be propagated to another node. A classic example of collec-
tive entity resolution is the problem of author disambiguation in bibliographic
datasets (see, for example, Roy et al., 2013): given a collection of paper citations,
disambiguate the authors listed in the citations in order to discover the unique
authors (entities) and assign the correct set of papers to each author. In this
example, if a group of matching author names appears in multiple citations, it
is likely that these author names refer to the same entities.

Next we go through a few popular works on collective entity resolution and
then present two general frameworks for collective entity resolution, namely,
methods based on first-order logic and methods based on network alignment.

Bhattacharya and Getoor (2006) propose a generative method based on Latent-
Dirichlet Allocation for collective ER. This method assumes that entities form
groups and we observe co-occurrence data which is generated as mixtures of
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groups. This setup fits a rather specific class of collective ER tasks but it is
suited particularly well for author disambiguation tasks and thus is shown to
perform well on those.

Another work by Bhattacharya and Getoor (2007) proposes a more general
method for clustering the records referring to the same entity, leveraging re-
lational information represented as a reference graph. Similarity between two
clusters is defined as a linear combination of their attribute similarity and the
similarity of their neighborhoods. The method merges clusters agglomeratively
in a greedy fashion, updating the similarity scores after each merge.

While the aforementioned method (Bhattacharya and Getoor, 2007) models
data as a reference graph, Dong et al. (2005) consider a dependency graph whose
nodes correspond to matching decisions and edges to dependencies between
these decisions. This method supports matching multiple record types, such as
authors, papers, and venues, jointly. The authors propose an iterative approach
that propagates information between the nodes.

A Markov logic network (MLN) (Richardson and Domingos, 2006) is a popular
model, which combines first-order logic and undirected graphical models. It can
be applied to collective ER (Singla and Domingos, 2006) by using first-order logic
to encode the transitivity requirement for entities and rules such as duplicate
papers should have the same venue and duplicate papers should have the same
title (Singla and Domingos, 2006). Furthermore, the MLN framework allows
learning weights for different rules based on training data, which makes it
possible to automatically learn, for example, that having a matching title is a
stronger evidence for a duplicate record than having a matching venue. The
goal is to find a solution which maximizes the sum of the weights of satisfied
rules. Probabilistic soft logic (PSL) is a related approach which similarly uses
first-order logic rules as a template language for graphical models (Kimmig
et al., 2012). Recently, also PSL has been applied to collective ER (Kim et al.,
2017; Kouki et al., 2017). An advantage of PSL compared to MLN is that in
PSL the rules take soft truth values in the range [0, 1], which makes it easier to
incorporate similarities between attributes (Kimmig et al., 2012; Kouki et al.,
2017).

From the perspective of collective entity resolution, the main focus of this
thesis is on the problem of matching two or more networks of records with
the goal of preserving the neighborhood relations between records as well as
matching records with similar attributes. This problem is known as network
alignment, which is discussed next.

2.4 Network Alignment
The network-alignment problem asks to find a matching between the nodes of

a source network G = (V;,E;) and a target network G; = (V;,E;). Each node
should be matched to at most one node in the other network, and a high-quality
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matching should satisfy the following properties:

(i) The aligned nodes should have as similar attributes as possible.

(ii) The neighborhoods of the aligned nodes should be structurally similar.

This problem is related to the subgraph isomorphism problem which is NP-
complete. However, subgraph isomorphism considers only the second property,
asking whether a graph and a subgraph are strictly isomorphic, whereas network
alignment typically tries to maximize a structural similarity score while aligning
nodes with similar attributes. Often, the structural similarity score is based on
the number of conserved edges (i.e. adjacent nodes aligned to adjacent nodes),
but some work has also been done on conserving higher-order structures, such
as triangles (Mohammadi et al., 2017).

Network alignment can be seen as an instance of collective entity resolution
where the goal is to match two networks whose nodes correspond to records
and edges to relations between these records. This entity-resolution problem
is encountered, for example, when aligning social networks (Goga et al., 2015;
Zhang and Yu, 2015), ontologies (Noy et al., 2000; Sarasua et al., 2012), or
genealogical networks (Kouki et al., 2016, 2017; Malmi et al., 2017a,b). However,
probably most of the studies on network alignment have been conducted outside
the entity-resolution domain, namely, in biology, on the problem of aligning
protein-protein interaction networks (see, for example, Chindelevitch et al.,
2010; Clark and Kalita, 2014; Elmsallati et al., 2016; Flannick et al., 2006,
2009; Guzzi and Milenkovié, 2017; Hashemifar and Xu, 2014; Hu et al., 2013;
Klau, 2009; Kuchaiev et al., 2010; Kuchaiev and Przulj, 2011; Liao et al., 2009;
Malod-Dognin and Przulj, 2015; Sahraeian and Yoon, 2013; Singh et al., 2008).

Network-alignment methods can be divided into local and global methods
(Meng et al., 2016; Elmsallati et al., 2016). Local methods match small sub-
graphs independently, meaning that they do not necessarily produce a one-to-one
alignment, whereas global methods often formulate a single global optimization
problem, which tries to capture the two properties mentioned in the beginning
of this section and which requires that the solution is a matching. In this thesis,
we only study global methods.

Another way to categorize network-alignment methods is based on whether
they are designed for pairwise alignment or for multiple network alignment.
Most existing methods are pairwise, but several methods have also been pro-
posed for multiple network alignment, including IsoRankN (Liao et al., 2009),
Graemlin (Flannick et al., 2006, 2009), SMETANA (Sahraeian and Yoon, 2013),
and multiMAGNA++ (Vijayan and Milenkovi¢, 2017). Among the pairwise
methods, Natalie (El-Kebir et al., 2015; Klau, 2009) has performed well in sev-
eral comparisons (Bayati et al., 2013; Clark and Kalita, 2014; El-Kebir et al.,
2015). Natalie formulates the network-alignment problem as a quadratic inte-
ger program and solves it using a Lagrangian relaxation (Fisher, 1981), which
reduces the original network-alignment problem into multiple maximum-weight
bipartite matching problems (El-Kebir et al., 2015; Klau, 2009).
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In Publication V, we propose several extensions of Natalie to the multiple
network alignment problem. These extensions outperform a naive extension of
Natalie as well as IsoRankN.

2.5 Active Learning for Entity Resolution

In supervised learning, labeled training data is needed to learn model param-
eters. The goal of an active learning system is to pick the data samples to
be labeled in order to achieve a higher accuracy with fewer labeled training
samples (Settles, 2010). The selected samples are queried by asking an oracle
(for example, a human expert) to reveal their correct label. Such systems are
particularly useful in scenarios where labeled data is scarce and possibly costly
to obtain. A common approach for selecting the samples to query is to select the
most uncertain samples.

Many entity resolution methods are based on training a classifier to predict
whether a pair of records is a match or not, but often labeled record pairs are
not available in large amounts, which is why several active learning approaches
have been developed for entity resolution problems (Christen, 2012; Firmani
et al., 2016; Fisher et al., 2016; Sarawagi and Bhamidipaty, 2002; Verroios
et al., 2017). The focus of this thesis is on collective entity resolution where the
matching decisions are interdependent. This brings a new dimension to the
query selection, since knowing whether records a and 4 are a match or not can
directly give us information about the correct matches for the records related to
a and b.

Specifically, we focus on the problem of active network alignment, where the
goal is to query the most informative nodes in order to maximize the alignment
accuracy of the remaining nodes. We assume that a similarity function between
record attributes is given (or that a record pair classifier has already been
trained) and, therefore, active network alignment is strictly speaking not an
instance of active learning as we are not learning a model. Rather, it is an
instance of active inference, which focuses on minimizing user interaction cost
while maximizing the benefit and performance of the system (Bilgic and Getoor,
2010).

Actively selecting the nodes to query is a challenging computational problem
since quantifying the uncertainty of a node to be matched cannot be done simply
based on node-similarity scores since those do not capture relational information.
Active network alignment methods have been previously studied mainly in the
context of active ontology alignment (Jiménez-Ruiz et al., 2012; Paulheim et al.,
2013; Sarasua et al., 2012; Shi et al., 2009). These approaches usually focus on
queries which ask whether two nodes are the same or not, whereas we consider
queries which ask for the best-matching candidate node for the query node. We
argue that the latter type of relative queries can be easier for a human expert to
answer. The active network problem is discussed in more detail in Section 4.3
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and Publication VI.

2.6 Entity Resolution with Genealogical Data

Performing entity resolution for birth, marriage, and other vital records was
discussed already in 1946 by Halbert L. Dunn who proposed an idea of creating
a Book of Life for each person, starting from the person’s birth and ending in the
person’s death (Dunn, 1946). More recently, the problem of inferring genealogical
networks, also known as population reconstruction (Bloothooft et al., 2015), has
received fairly lot of attention (see, for example, Efremova et al., 2015; Christen,
2016; Christen et al., 2015; Kouki et al., 2016; Ranjbar-Sahraei et al., 2015)
as the number of indexed genealogical datasets has grown thanks to online
resources curating genealogical data such as Geni.com and the WikiTree project.
Outside the entity resolution domain, the inference of family relationships has
been studied by Backstrom and Kleinberg (2014), who present a method for
spouse inference based on the social network of a person.

Efremova et al. (2015) look into the problem of linking records from multiple
genealogical datasets. Similar to our methods discussed in Chapter 3, they
cast the problem into supervised binary classification tasks. They find name
popularity, geographical distance, and co-reference information to be important
features, whereas in our approach, we can avoid having to explicitly model name
popularity, since the probability of a candidate parent is normalized over the
set of all candidate parents and for popular names this set will be large, thus
downweighting the candidate probability.

Christen (2016) proposes a collective method for linking birth, death, mar-
riage, and census records. The linking results obtained using Scottish data
are concluded to be inferior to a linkage constructed by a domain expert due to
many intrinsically difficult linking cases. We argue that even in such challeng-
ing scenarios automatic linking methods can be useful if they are probabilistic.
Probabilistic methods, such as the one presented in Chapter 3, can handle some
of the matching decisions automatically based on matching probabilities.

Kouki et al. (2016) propose a classification-based approach for integrating
multiple partial views of a genealogical network. Recently, they have extended
this work to use collective inference based on PSL (Kouki et al., 2017). The
partial views are ego-centric networks with first-degree relationships (spouses,
children, etc.) and second-degree relationships (grandparents, aunts, etc.). The
problem is thus closely related to the problem of linking vital records, which is
discussed in Chapter 3 and Publication II. A key advantage of their approach
is the flexibility provided by the PSL framework; if a user wants to add a new
relational rule to the model, the inference method does not need to be updated as
long as the rule can be presented using first-order logical syntax. On the other
hand, we show that one of the methods proposed in this work not only provides
accurate matches but also reliably quantifies the certainty of the matches—an
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important feature of a practical entity-resolution system. Kouki et al. (2017)
perform their experiments on datasets that are two orders of magnitude smaller
than the vital-record dataset used in this work, but they show experimentally
that the PSL approach scales almost linearly with the number of record pairs.
Performing an experimental comparison between the PSL approach and the
proposed methods remains an exciting future direction.
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3. Linking Vital Records

Linking historical vital records, including birth, marriage, and death records,
is a common and one of the earliest applications of entity resolution (Christen,
2012; Dunn, 1946). The difficulty of matching records that are dated before the
adoption of national identification numbers lies in duplicate names, spelling vari-
ations, errors in the data, and missing records. Therefore, robust computational
methods, which can leverage various attributes of the records, are needed.

By linking the birth record of each person to the birth records of the parents,
it is possible to infer large-scale genealogical networks. The results can help
a genealogist to speed up the process of reconstructing his or her own family
history by identifying some ancestors automatically and by providing the most
probable candidate ancestors for the more uncertain cases to narrow down the
search.

In this chapter, we introduce two methods for linking birth records. In Sec-
tion 3.1, we present a non-collective approach, which links the records indepen-
dently and outputs probability distributions. A collective extension, which links
the records jointly and output only a maximum a posteriori (MAP) estimate,
is presented in Section 3.2. In Section 3.3, we propose a method for inferring
the geolocations of historical place names mentioned in vital records, which
allows us to measure the geographical distance between two record location—an
important feature for determining whether the names mentioned in the records
refer to the same person. Finally, in Section 3.4, we present a brief experimental
evaluation of the proposed linking methods.

Problem definition. We define a genealogical network as a directed graph
whose nodes correspond to people and edges to family relationships between the
people. Two type of edges are considered: father edges, going from a father to
a child, and mother edges, going from a mother to a child. Each node can have
at most one biological father and mother, but the parents are not necessarily
known. Because of the temporal ordering of the nodes, this graph is a directed
acyclic graph (DAG). Each person in the graph is represented by the person’s
birth record. Given a set of birth records V, the objective of the genealogical
network inference is to link each birth record a € V to the birth records of the
person’s mother M, € V and father F, e V.
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To avoid having to evaluate a quadratic number of parent—child combinations,
the inference method gets as input a set of mother candidates C™ €V and a set
of father candidates Cf < V for each person. These candidate sets are the results
of a blocking step, which defines the candidates as the people who were born
between 10 and 70 years before the child and whose normalized first and last
name are equal to the normalized first and last name of a parent mentioned in
the child’s record.!

Since the true parents are often ambiguous, the output should ideally be a
probability distribution over different parent candidates, including the case ‘@’
that a parent is not among the candidates.

3.1 Non-Collective Approach

The goal is to find a birth record that matches to a parent mentioned in another
birth record. These parent matches are assumed to be independent so that,
for instance, the inferred father of a person does not affect the inference of the
person’s mother. Nevertheless, we assume that there are no duplicate birth
records, meaning that the sum of probabilities over the candidate mothers C}'
or over the candidate fathers Cf of person a should equal to 1— p(®), where p()
is the probability that the true parent is not among the retrieved candidates.
Similar to the Fellegi—Sunter method presented in Section 2.2, we first con-
struct a comparison vector y®™ for each child—parent pair (a,m). The vector
consists of attribute similarity features based on, for example, names and loca-
tions mentioned in the records. The set of comparison vectors between a and the
candidate mothers of a is denoted by y%C« . Since likelihood p (y®m |M a=m)
depends only on whether m = m’ or not, the joint likelihood of the comparison
vectors is given by
o) J1 ol =)

m'eCRUp

a,Cy

ol

=p(y*"|Mo=m) T py"|Mazm)
m'e(CPug)\m

a,m _
- P(YamlMa =m) [ ey m)
p (Y ’ |Ma # m) m'eCmug

_ P M =m)
p(yom|My #m)’
where the product term « is constant with respect to m. For fathers, the
likelihood is identical apart from replacing M, by F, and C}' by Cg.

IThe names are normalized based on a clustering of Finnish/Swedish names obtained
from the Genealogical Society of Finland. The clustering has been automatically ex-
tended by assigning non-clustered names to the nearest existing cluster or to a new
cluster based on Jaro-Winkler name similarities (Winkler, 1990). The developed name
normalization tool is available at: https://github.com/ekQ/historical_name_normalizer
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Now the probability of candidate parent m can be derived using the Bayes’
rule as follows

M, :m)
M, :m’]

Y“’C‘T) B p(My=m)p (y*C

- Y mecmug P (Mg =m")p (Ya,C{I“

p(Ma:m

_ ) P | Mo=m)
_ PMa=m) i, 2m) 3.1)
_ o P | Ma=m)’ '
LmrecpuoP Mo =m") 6o, 2y

where p (M, = m) is the prior probability of m. The prior probabilities are set
uniformly over all candidates apart from the case ‘@’ (none of the candidates
is the correct parent) whose probability is learned from ground-truth data.
As discussed earlier in Section 2.2, the above Equation (3.1) is related to the
famous Fellegi—Sunter method, which classifies record pairs based on the ratio
of comparison vector likelihoods. Here the same likelihood ratio is normalized
by summing over the candidate parents.

In our first method, introduced in Publication I, we make an independence
assumption between the different elements of the comparison vector y*™, that
is

p(y*" Mo =m)=[]p(y;" |Mo=m).
l

Five attribute similarity features are included in the comparison vector: a Jaro—
Winkler name similarity for first names, last names and patronyms, and the
age difference as well as the birth place distance between the child and the
parent. For each feature i, we estimate the distribution of similarity values for
both matching pairs of records p (y?’m |M «= m) and for non-matching pairs of
records p (y?’m |Ma # m] based on ground-truth data. Because of the attribute-
independence assumption, this method is called NAIVEBAYES.

In real life, the similarity attributes are often not independent, which is why
we also consider a second method that does not make this assumption. This
method is based on the observation that likelihood ratios can be approximated
with probabilistic discriminative classifiers (Cranmer et al., 2016). The most
straightforward way to do this is to approximate

Pl Ma=m) __s(r™)
P My #m) ~ T-s(rem)’

where s (y“’m) € [0, 1] is the output of a probabilistic binary classifier trained to
separate matching comparison vectors from non-matching ones on a balanced
dataset. We use XGBoost (Chen and Guestrin, 2016) as the classifier s since it
has recently been successfully employed to another record linkage task (Lian
and Xie, 2016; Tay et al., 2016). This approach is called BINCLASS and it uses a
set of 20 features which are described in Publication II.

In addition to not having to assume feature independence, a key advantage
of BINCLASS is that it is very easy to add new features to the comparison
vector and retrain the model, whereas in NAIVEBAYES we have to estimate two
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Figure 3.1. A sample subnetwork inferred by NAIVEBAYES. If each child is matched to the
most probable father—-mother pair independently, the number of spouses per person
can be unrealistically high, which is the case for Anders Tihoin. Figure taken from
Publication II.

new likelihood distributions for each new feature, manually selecting a suitable
distribution based on the type of the feature. Moreover, we can add features such
as the year of birth, which alone would not be helpful when inferring the most
likely parent, but which could be informative jointly with other features. On the
other hand, handling missing data is more straightforward with NAIVEBAYES,
since if feature j is missing from the record of child a or parent m, we can simply
set p (y;’m)Ma = m) /p (y?’m‘Ma # m) =1, whereas BINCLASS requires us to

impute the missing value.

3.2 Collective Approach

NAIVEBAYES and BINCLASS, presented in the previous section, assume that
family links can be inferred independently, which can lead to some unlikely
outcomes. In particular, the number of spouses per person can become unrealis-
tically high as illustrated in Figure 3.1, which shows a subgraph of the network
inferred by NAIVEBAYES. A person called Anders Tihoin has been inferred as
the father of six children, while each child has been assigned a different mother.
Although possible, it is very likely that at least the mothers of Catharina (the
left one), Anna Helena, and Anders are actually the same person, since the
mother name attribute of these children is almost the same (Maria Airaxin(en)).

To address this problem, we propose to minimize the number of mother—
father pairs in addition to maximizing the probability of the inferred links. Let
Ym,f €{0,1} indicate whether at least one child has been assigned to the mother—
father pair (m,f) and x4 n,%,,r € {0,1} whether person a is linked to mother
m and to father f, respectively. The collective genealogical network inference
problem can now be written as

Y

Xa,m

oo [_ ﬂmzfym,f +‘§1logp (Ma -m a,c;n)

+Y logp(Fu=f
a,f

ya,’ci’)xar’f] 3.2)
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such that Zxa,mxa’f <Ymyf, forallm,f, (3.3)
a
Zxa,m =1, Zxa,f =1, foralla, (3.4)
m f
Xa,ms> Xa,f» Ym,r €{0,1}, foralla, m, f, (3.5)

where A = 0 controls the penalty induced by each extra parent pair (or the
discount for merging two parent pairs into one).

This optimization problem is an instance of an uncapacitated facility-location
problem, where parent pairs correspond to facilities, child nodes to demand sites,
and the parameter A to a facility opening cost. The uncapacitated facility-location
problem is NP-hard for general graphs, and thus we employ a greedy approach,
which starts with the children with the highest maximum link probability. Then
it goes through the children one-by-one, assigning each child to the most probable
parent pair unless one of the already used parent pairs is more beneficial due
to discount A (for more details, see Algorithm 1 in Publication II). Probabilities
p, which are part of the input to the algorithm, are computed with BINCLASS.
Note that since these probabilities do not necessarily satisfy the properties of a
metric, the approximation guarantees for methods, such as the one proposed by
Jain and Vazirani (2001), do not necessarily hold in this setting.

This method is called COLLECTIVE. It outputs a genealogical network, where
some of the links inferred by BINCLASS have been rewired to reduce the number
of spouses. A limitation of COLLECTIVE is that it does not output link prob-
abilities. In theory, the link probabilities (that is, the marginal probabilities
of random variables corresponding to each parent) could be estimated using a
Markov chain Monte Carlo (MCMC) method that would sample genealogical
networks by proposing swaps to the parent assignments. However, to reach a
reasonable level of precision, we would need to sample a very large number of
networks, making the MCMC approach impractical.

3.3 Record Geolocation

If a person has two equally likely parent candidates, except that the first is
born 500 kilometers from the person’s own birth place and the second is born
in a neighboring village, it is very likely that the latter is the true parent,
since people’s mobility was more restricted in the past centuries. Therefore,
it is important to be able to estimate the geographical distances between the
locations mentioned in the vital records.

The birth records found in the Finnish parish registers, which are our main
data source, contain always the name of the parish (roughly corresponding to a
city), most of the time the name of the village, and occasionally also the name of
the house where the child was born. To geolocate parishes and villages, we can
query them from a database of geolocated contemporary Finnish place names
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Figure 3.2. A simple example of the GEOLOCATION problem with three items to be located, and
a set of discrete candidate locations. Figure taken from Publication III.

collected by the National Land Survey of Finland. However, there are two
challenges: (i) place names may have changed, and (ii) there are often many
potential matches with a duplicate name, especially for villages.

In fact, geolocating the historical parish and village names can be seen as a
geographical collective entity resolution problem (Sehgal et al., 2006), where a
set of input parish names with associated member village names need to be
matched against another dataset of geolocated city and village names. The key
information to be leveraged from the input data is that a parish and its member
villages should be located nearby.

To model this problem, we formulate the following general network-based
location estimation problem.

Problem 1 (GEOLOCATION). Consider a graph G =(V,E) over items V, and a
set of candidate locations L. For each item u € V we are given a prior distribution
p (£(w)) over its candidate locations. The goal is to infer a mapping € of items to
their candidate locations in order to maximize the likelihood p (E | €) of observing
the edges of the graph given the inferred locations.

The graph edges E are assumed to be independent and an edge probability
pu,v} e E | ¢(u),f(v)) is assumed to depend only on the distance between items
u and v so that the probability decreases the farther the items are. Figure 3.2
presents a simple toy instance of this problem with three items (O, ¥¥, and ['}),
each having two to three candidate locations. The maximum-likelihood estimates
of the locations are found in the upper-right corner, where the distances between
adjacent items are minimized.

Problem 1 covers several different geolocation tasks, and previously, a similar
formulation has been applied to geolocating users of a social network (Backstrom
et al., 2010; Jurgens, 2013; McGee et al., 2013). Our main contribution is to
generalize the methods by Backstrom et al. (2010) and by Jurgens (2013) by
incorporating prior distributions into the formulation and keeping track of
distributions rather than point estimates when iteratively updating location
estimates. This generalization outperforms the two previous methods, both in
the case of geolocating social-network users and in the case of geolocating vital
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Figure 3.3. Location of a historical parish called Sddminki as identified by our method (%) and
the location of an island called Saéaminki in contemporary Finland (Q). Candidate
locations for the member villages of Sddminki are shown by black crosses. Figure
taken from Publication III.

records, as shown in Publication III.

As an anecdotal evidence for the usefulness of this method, we show the esti-
mated location of a parish called Sddminki in Figure 3.3. A city with this name
does not exist in contemporary Finland but there used to be a municipality called
Saaminki that nowadays belongs to the city of Savonlinna. The estimated parish
location correctly falls into Savonlinna, whereas the database of contemporary
place names only contains an island called Sa&dminki, located outside Savonlinna.
The island might be incorrectly inferred as the parish location if the location
estimation is done by naively querying the database.

3.4 Experimental Evaluation

Next we evaluate the three genealogical network inference methods introduced
earlier in this chapter: NAIVEBAYES, BINCLASS, and COLLECTIVE. These
methods are applied to a dataset? of 5.0 million birth records from Finland,
1650-1917. Additionally, a set of 18 731 ground-truth parent—child links has
been obtained by matching a large, manually constructed genealogical network
to the birth records. These links are split into training and test data to fit the
models and to evaluate their performance, respectively.

The accuracy of the top-1 links inferred by different methods are shown in
Table 3.1. BINCLASS clearly outperforms NAIVEBAYES and a random baseline
that randomly picks one of the candidate parents. COLLECTIVE further improves
the accuracy of BINCLASS from 61.6% to 65.1%.

To evaluate the accuracy of the link probabilities estimated by BINCLASS, we
bin the ground-truth links by their probability and compute accuracy within
each bin. The results presented on the left-hand side of Figure 3.4 show a strong

2The dataset can be queried at: http://hiski.genealogia.fi/hiski?en
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Table 3.1. Accuracy of the links inferred with different methods.

Method RANDOMCAND NAIVEBAYES BINCLASS COLLECTIVE

Accuracy 12.5% 56.9% 61.6% 65.1%
T e — 2,500,000
gztunald [ i Fathers
| Serve
= 0.8 1 P 2,000,000 4 ——— Mothers
g = T
£ 06 < 1,500,000
B z 1
04 "2 1,000,000
5 z ]
0.2 500,000 -
0.0 0 — T T T T T T T
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Estimated link probability Link probability threshold

Figure 3.4. Left: The link-probability estimates by BINCLASS correlate strongly with the accu-
racy of the links binned by their probability. Right: The number of inferred family
links with the estimated link probability above a given threshold. Figures taken
from Publication II.

correlation between the estimated and the actual link probabilities.? This means
that we can leverage the link probabilities to assess the reliability of a link and,
for instance, to filter out all links below a certain probability threshold as done
later in Section 5.1. However, the increased precision obtained by filtering out
links comes with the cost of decreased recall. This trade-off is illustrated on the
right-hand side of Figure 3.4, which shows the number of links above a given
probability threshold. Even though the number of links considerably decreases
when increasing the threshold close to 100%, we are still left with 253 814 child—
mother links and 341010 child—father links when using a threshold of 90% as
done in Section 5.1.

3 A limitation of the evaluation results presented here is that our ground-truth child—
parent links contain only children whose parent is known, whereas in practice, every
collection of birth records contains some people whose parent records are not in the
collection. Therefore, the measured link accuracies shown in Figure 3.4 (left) are not
representative if there are lots of missing records in the collection of birth records
to be linked. Nevertheless, if we have an estimate for the fraction of records with a
missing parent record, it can be incorporated into the probability of the case ‘@, which
is otherwise estimated only based on the fraction of children whose ground-truth parent
is included in the dataset but not among the retrieved candidates.
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4. Network Aggregation and Alignment

In the previous chapter, we studied the problem of matching (child, mother,
father) triplets found in birth records, whereas in this chapter, we consider a
more general problem of matching networks of records. In other words, we get
as input a set of graphs whose nodes correspond to records and our goal is to
integrate these graphs to produce a single entity graph.

In Section 4.1, we consider the problem of aggregating directed acyclic graphs
(DAGs). This problem assumes that both the input graphs and the output graph
are DAGs and that the correspondence (the correct alignment) between the
nodes of the input graph is already known. Therefore, the main problem is
to resolve the discordances between the input graph edges and output a DAG
which is close to all of the input graphs.

Section 4.2 does not assume that the node correspondence is known but studies
the problem of multiple network alignment which aims at inferring an entity
graph and a mapping from the input graph nodes to the entity graph nodes.
Section 4.3 addresses the network alignment problem in an interactive setting,
where the algorithm is allowed to query a human expert to align some of the
nodes, which might be necessary if the input data is corrupted by a lot of noise.

Finally, in Section 4.4, we discuss the challenges and some solutions related to
parameter tuning when employing the aforementioned methods.

4.1 Directed-Acyclic-Graph Aggregation

Directed acyclic graphs (DAGs) are graphs with directed edges but without
directed cycles. They can be used to model many kind of data and objects, such
as rankings, user preferences, and information cascades. The problem of DAG
aggregation asks to find a summarizing centroid DAG given a set of input DAGs
whose nodes have already been aligned, for instance, based on a unique identifier
associated with each node. Next, we briefly describe the related work, introduce
a distance measure to compare DAGs, and, finally, provide a formal definition of
the DAG-aggregation problem based on the proposed distance measure.

Background. The problem of aggregating rankings has been studied for more
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than two centuries, since it is encountered in many applications such as de-
signing a voting system (Borda, 1781) or aggregating the results of multiple
search engines (Dwork et al., 2001). Kendall-tau (Kendall, 1938) is a popular
distance measure for rankings, but since the rankings encountered in practical
applications are not total orders, Kendall-tau has been extended for partial
rankings, that is, rankings with ties (Fagin et al., 2006). Aggregating rankings
using Kendall-tau leads to an NP-hard problem (Dwork et al., 2001).
Comparing and aggregating DAGs. We propose an extension of the Kendall-
tau measure for an even more general class of objects, namely DAGs. DAGs
provide a natural way for modeling, for instance, preference graphs, which are
constructed by collecting a set of pairwise preferences and drawing an edge from
v to u if a user has indicated a preference of v over u. Such graphs are likely
to be DAGs or near-DAGs since preference relations tend to be transitive, and,
in general, they cannot be modeled as partial rankings without losing some
information.

While the standard Kendall-tau measure penalizes only discordant pairs of
items (i precedes j in one ranking, while j precedes i in the other ranking),
the proposed extension for DAGs penalizes also potentially discordant pairs
(i precedes j in one DAG, while there is no edge between i and j in the other
DAG, or there is no edge between i and j in either of the graphs). The resulting
distance measure, denoted by K, satisfies a relaxed triangle inequality. The exact
definition of K and the proof for the inequality are presented in Publication IV.

Using the distance measure K, the DAG aggregation problem is defined as
follows.

Problem 2 (DAG AGGREGATION). Given a set of M directed graphs G1,..., Gy,
find a DAG C minimizing
M
Z K(@G;,0).
i=1

The goal is to find a centroid DAG which minimizes the distance to the input
DAGs. This problem is NP-hard which can be shown by a reduction from a
known NP-hard problem called FEEDBACK ARC SET as done in Publication IV.

To solve this problem, we propose two algorithms. The first algorithm simply
picks the median input graph that minimizes the sum of distances to all input
graphs. Remarkably, the fact that K satisfies a relaxed triangle inequality gives
this simple approach a constant approximation-ratio guarantee. The second ap-
proach is a greedy method which does not have an approximation guarantee but
which yields a better experimental performance in the experiments presented in
Publication IV.

The experiments are conducted using synthetic data, information-cascade
data from a music-listening service, and preference-graph data on music artists.
The proposed DAG-aggregation methods can be used not only to aggregate but,
conveniently, also to cluster DAGs as a part of a k-means type of algorithm. This
clustering algorithm alternates between assigning DAGs to their closest clusters
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Figure 4.1. An example multiple network alignment problem, where the input graphs are only
partially overlapping. The red arrows show the correct alignment between input
graph nodes and the figure on the right shows the underlying aligned network.

(as defined by the proposed distance measure) and updating the centroids of the
cluster (by aggregating the assigned DAGs).

In summary, the proposed DAG-aggregation methods are useful when inte-
grating graphs (more specifically, directed acyclic graphs) with a known node
correspondence (that is, the entity resolution step has already been done) but
with inconsistent edges. Next we consider a problem where neither the node
correspondence nor the edges of the integrated graph are known.

4.2 Multiple Network Alignment

A majority of existing network-alignment methods assume that the number of
networks to be aligned is two. These pairwise network-alignment methods aim
to find an alignment or a mapping from the nodes of a source graph to the nodes
of a target graph, satisfying two properties: (i) nodes with similar attributes
should be aligned, and (ii) adjacent source-graph nodes should be aligned with
adjacent target-graph nodes. The graphs may be only partially overlapping
which is why some nodes can be left unaligned or aligned with a “gap” node.

Often there is a need to align more than two input graphs, for instance, when
finding functional orthologs across the protein—protein interaction networks
of multiple species (Singh et al., 2008; Liao et al., 2009), when aligning the
social networks of more than two online social networking services (Zhang
and Yu, 2015), or when aligning multiple genealogical networks as illustrated
in Figure 4.1.1 If the input graphs are only partially overlapping, any naive
adaptation of a pairwise method to multiple networks based on fixing one of
the input graphs as the target network will fail, since none of the input graphs
necessarily contains a node for each underlying entity. Furthermore, even if
one input graph covers all entities, it may still be missing some edges between
them, making it necessary to consider multiple networks jointly in order to have
a complete picture of the underlying entity network.

1Aligning multiple networks is also required when aligning two sources with multiple
network layers. This distinct but related problem is known as multimodal network
alignment (Nassar and Gleich, 2017).
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To model the multiple network alignment problem, we propose an extension of
NATALIE (El-Kebir et al., 2015; Klau, 2009) based on formulating the multiple
network alignment problem as an integer program which aims at inferring
the underlying entity network and assigning the input-graph nodes to the
entity nodes. More formally, we are given k input graphs G; = (V1,E1), ...,
G, =(Vy,Ep), which we assume to be partial manifestations of an underlying
entity graph G, = (U,E.). We further assume that:

* Entities U are represented by a subset of all input graph nodes V = Ule Vi,
thatis, UCV.

* The edges between the entities E, contain the input graph edges and
potentially some missing edges, that is, E, = (UleE i)UE,, where E,, is
the set of missing edges.

The goal is to infer the missing edges E,,; and to find an assignment X' :V — U
from the input-graph nodes to the entities. The assignment should try to satisfy
the following properties:

(P1) Nodes are assigned to entities with as similar attributes as possible.

(P2) Adjacent nodes are assigned to adjacent entities.

To avoid having to introduce extensive amounts of notation, we next provide
a high-level overview of the objective function designed to capture the above
properties. The exact formulation of the optimization problem and its solution
are provided in Publication V.

The objective function for the proposed multiple network alignment problem
formulation is given by

)r(n};nflU(X)l+Zdi(X)—g|5(X)|+Y|Em|, 4.1)

where f, g, and y are parameters, |U(X)| is the number of inferred entities in
assignment X, d;(X) is the dissimilarity between the ith node and the entity it
has been assigned to, and |S(X)| is the number of “squares,” that is, adjacent
nodes assigned to adjacent entities. The first term penalizes for using too many
entities, since a trivial solution would be to use all input nodes as entities and
assign each node to itself, the second term captures property (P1), the third
term captures property (P2), and the fourth term penalizes for adding too many
edges to the entity graph, since a trivial solution would be to add all possible
edges to optimize property (P2). Additionally, the optimization problem comes
with constraints ensuring that each node is assigned to exactly one entity and
that the nodes of an input graph are assigned to distinct entities. The problem
formulation is illustrated in Figure 4.2, which shows three input graphs, the
inferred entity graph, and the inferred alignment from input graphs to the entity
graph.

To solve the minimization problem, we propose an alternating optimization
procedure that repeatedly optimizes the assignment X’ and the missing edges
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Figure 4.2. An illustration of the proposed multiple network alignment approach. The goal is
to infer the underlying entity graph and find an alignment from input-graph nodes
to entity nodes. The entity nodes are a subset of the input nodes. A missing edge
between entities ug and v4 has been inferred since two pairs of adjacent input nodes
have been assigned to these entities.

E,,. Optimizing the assignment is shown to be NP-hard but an approximate
solution can be found using a Lagrangian relaxation, which provides a lower
and an upper bound for the optimum. In some cases the bounds collapse,
guaranteeing that an optimal assignment has been found, but in other cases,
they do not as illustrated in Figure 4.3, which plots the bounds for two synthetic
instances of the multiple network alignment problem.

In summary, the proposed network alignment method extends a popular
pairwise network alignment method called NATALIE (El-Kebir et al., 2015;
Klau, 2009) by adding support for multiple networks. Additionally, it aims to
infer the edges of the underlying entity graph. The proposed method yields
high alignment accuracies, but we found that, in practice, a simpler approach
yields similar accuracies while scaling better. The simpler approach splits
the multiple network alignment problem of £ input graphs into &£ — 1 pairwise
network alignment problems and updates the edges of a target graph after each
pairwise alignment.

In the next section, we address the question of how to leverage human input
for network alignment.
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Figure 4.3. The proposed Lagrangian relaxation approach iteratively refines a feasible solution,
which yields an upper bound, and a relaxed solution, which yields a lower bound.
In the iteration shown on the left, the algorithm finds the global minimum and
converges in 280 steps, whereas, on the right, a duality gap remains. Figure taken
from Publication V.

4.3 Active Network Alignment

In case the attributes of the nodes to be aligned are corrupted with a lot of
noise or there are many ambiguous nodes with similar attributes, it may be
infeasible to rely on a fully automatic network alignment method. Thus it may
be necessary to use human experts to help with the alignment process. However,
since interaction with humans is often time consuming and costly, the amount of
interaction should be minimized by presenting the humans with only the most
informative queries. The goal of this section is to propose a method for designing
queries for the problem of pairwise network alignment in order to obtain a high
alignment accuracy with as few queries as possible. We call this problem active
network alignment.

A fairly recent survey on ontology matching, which is an application of network
alignment, lists “user involvement” as one of the future challenges for ontology
matching (Shvaiko and Euzenat, 2013). Only a few previous works have studied
the active network alignment problem but most of them are found, in fact, in the
ontology matching literature (Jiménez-Ruiz et al., 2012; Paulheim et al., 2013;
Sarasua et al., 2012; Shi et al., 2009). To the best of our knowledge, the existing
works on active network alignment mainly focus on the following type of absolute
queries: are nodes v and u the same or not. Since comparative judgments are
generally easier for humans (Laming, 2003), we consider instead the following
relative queries:

Given a node v in the source network Gg, and a set of candidate matches C, in
the target network Gy, which node from C, should be matched to v?

The goal of active network alignment is to select informative query nodes v for
which to ask the human expert to reveal the correct alignment. More specifically,
the problem is defined as follows.

Problem 3 (ActiveNetworkAlignment). Given a source network Gs = (Vs,Ey)
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and a target network G; = (V;,E;), select the node v € Vs for which to ask an
oracle to reveal the correct matched node u € V; so that the alignment accuracy
for the remaining nodes in Vg is maximized.

To solve Problem 3, we propose the following four-step approach.

Step 1. Cast the original network alignment problem into a maximum-weight
bipartite matching problem. The corresponding weighted bipartite graph is
denoted by H = (V,,V;,Ep).

Step 2. Sample a set of ¢ high-quality matchings, My, in H.

Step 3. For each node v € V;, compute the marginal probability distribution
over the candidate matches of v based on the set of sampled matchings, My,
and estimate the certainty we have about the correct match for v based on
the marginal distribution.

Step 4. Identify the node 0 € V; with the least certainty, and query the oracle
to select the best match for ¥ among the set of candidate matching nodes
Cy cVy.
Next we discuss these steps in more detail. In Step 1, the goal is to construct a bi-
partite graph H whose weights capture both attribute similarities and structural
similarities between the nodes to be aligned. After constructing H, an alignment
can be found by computing the maximum-weight matching in H, which can be
done in polynomial time, using, for instance, the Hungarian algorithm (Kuhn,
1955). The idea of constructing a bipartite graph and then solving the final
alignment by finding the maximum-weight matching is employed by several
popular network-alignment methods, including NATALIE (El-Kebir et al., 2015;
Klau, 2009), NETALIGNMP++ (Bayati et al., 2013), and ISORANK (Singh et al.,
2008).

An intuitively appealing approach for finding an uncertain node to query
based on the weighted bipartite graph H would be to find a node with many
candidate matches and a uniform distribution of weights for these candidates.
This approach would not, however, capture the interdependence between the
nodes to be aligned that is caused by the requirement of finding a one-to-one
matching (two nodes from the source graph cannot be matched to the same
target graph node). In other words, even if a source node v has & candidate
matches with equal weights and the correct alignment for v hence appears to
be very uncertain, it could be that £ — 1 of the candidate matches need to be
reserved for other source graph nodes with a very high probability, leaving only
a single likely candidate match for v. Such a scenario is illustrated in Figure 4.4.

To capture the aforementioned node interdependence, we sample a set of
matchings, My, in Step 2 and then quantify the certainty of each node based on
these matchings. The sampling can be done, for example, using Gibbs sampling
with the idea of computing an initial matching and then creating samples by
randomly picking two source graph nodes and swapping their assignments with
a probability depending on the edge weights in H (Volkovs and Zemel, 2012).

To quantify node certainty in Step 3, we first compute the marginal probability
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Figure 4.4. An example of a bipartite graph H corresponding to a network alignment problem.
Considering merely the number of candidate matches would suggest that v is the
most uncertain node and should thus be queried. However, because of the require-
ment of finding a one-to-one mapping, we can infer that v is unambiguously matched
to vs. Thus u should be queried since it has two ambiguous candidate matches.

p(M)=u|H) for each v € Vs and u € M, € V; by computing the fraction of
matchings in M, where v has been matched to u. Intuitively, the more uniform
the marginal distribution the more uncertain is the correct match for v. The
uniformity can be quantified, for instance, based on negative entropy, but we
found using simply the maximum of the marginal distribution to yield a good
experimental performance.

Querying the most uncertain node is a standard active-learning strategy
(Settles, 2010). Therefore, in Step 4, we select the node with the lowest certainty
score and ask a human expert (an oracle) to return the correct match for the
node. In this work we assume—somewhat unrealistically—that the oracle
always returns the correct match.

When applying the proposed four-step approach to a network-alignment task,
we can either recompute H after each query or issue multiple queries in parallel.
If the human queries are the bottleneck of the alignment process, then parallel
querying allows us to speed up the alignment process with the cost of a small
decrease in the alignment accuracy as shown experimentally in Publication VI.

The four steps are further illustrated in Figure 4.5 which shows a small
network alignment problem and the process of selecting the node to query.
Letters and colors are used to denote candidate matches. Indicatively, in an
application of aligning social networks, one can think of A = Andres, C1 = Andrew,
C9 = Andreas, while B = Brendon, B; = Brenden, By = Brendan, etc. Since network
alignment aims at matching adjacent source nodes to adjacent target nodes, we
can deduce that if C is matched to C1 or Cg, then B should be uniquely matched
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to B1, whereas if C is matched to C3, then B should be uniquely matched to By
and A to Ag. Thus, following the algorithm recommendation of querying node C,
to a large extent, determines the rest of the alignment.

4.4 Parameter Tuning

A practical challenge when applying the proposed DAG-aggregation or the
network-alignment methods is setting the method parameters. In this section,
we briefly discuss some strategies for tackling this challenge.

The proposed Kendall-tau measure for comparing DAGs requires two parame-
ters, p and g, which determine the penalty for two types of potentially discordant
pairs. A limitation of the measure is that the optimal parameter values are
problem dependent as shown in Publication IV, Section 7.1.2. A simple heuristic
for tuning the values is provided in Publication IV, but the selection of the
optimal p and ¢ values remains an open problem.

The proposed multiple network alignment method requires setting the three
parameters in Equation (4.1): f, g, and y. Parameter y controls the tendency
to add a new edge to the entity graph and it is natural to set this parameter
toy = ‘%, which implies that an edge is added if at least one pair of adjacent
nodes is aligned to the corresponding entities. Parameter g controls the balance
between the two desired properties (P1) and (P2). These two properties are
orthogonal and therefore the optimal balance is problem dependent. Parameter
f controls the penalty of introducing a new entity.?2 Tuning method parameters
is a common challenge with network-alignment methods in general. Typically
it is addressed by simply using a set of default parameters, by optimizing the
parameters based on known alignments (see, for example, Flannick et al., 2009),
or by computing multiple alignments with different parameter settings (see, for
example, Bayati et al., 2013).

When doing active network alignment, one has to set two types of parame-
ters: the parameters of the underlying non-active aligner and a temperature
parameter B, which is introduced in Publication VI. The temperature parameter
is needed when sampling matchings with Gibbs sampling in Step 2, and it
controls how closely the samples are concentrated around the maximum-weight
matching. In Publication VI, we optimize  using grid search on a separate
development set, containing known alignments, but we also find evidence that
the optimal B is problem dependent. A potential way to tackle this problem

2Compared to the pairwise version of NATALIE, this parameter has a similar function
as the similarity value between the input-graph nodes and a “gap” node. This similarity
has to be defined by the user if the two input graphs are only partially overlapping.
In Publication V we present a variation of Equation (4.1), where term f|U(X)| has
been omitted from the objective but the following new constraint has been added to the
optimization problem: |U(X)| < N,, where N, is the maximum number of entities. This
variant is useful in the case that we have prior knowledge about the number of entities,
since it allows the method to find an accurate alignment robustly without having to
tune parameter f.
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would be to estimate 8 based on already-queried nodes, updating the estimate as
new queries are made. Moreover, the already-queried nodes could also be used
to tune the network-aligner parameters. Designing new active query strategies
that do not try to merely identify the most uncertain nodes given a fixed set
of parameters but also try to query nodes such that the uncertainty about the
parameters would be reduced seems like a promising future direction.
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Step 1
Original network alignment problem Bipartite graph H
-0 A,
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Step 2
A sample of five matchings
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Steps 3 & 4
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A {A1:40%, Ag : 60%} 60%
B {B1:80%, By : 20%} 80%
(6} {C1:40%, Cy :40%, C3 : 20%} 40% v

Figure 4.5. A toy-example illustration of the proposed four-step approach to the problem of
active network alignment. The goal is to decide which node to query: A, B, or C. The
original network alignment problem is first transformed into a bipartite matching
problem (Step 1), then we sample a set of matchings (Step 2), quantify the certainty
of each node based on the matchings (Step 3), and finally query the most uncertain
node (Step 4). In this example, the algorithm ends up querying node C.
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5. Analyzing Inferred Genealogical
Networks

Both the vital-record-linking methods discussed in Chapter 3 and the network-
alignment methods discussed in Chapter 4 can be used to infer large-scale
genealogical networks. Such networks are naturally useful for genealogists and
historians but they also provide a valuable resource for other fields. To demon-
strate the wide applicability of the inferred networks, we present a longitudinal
analysis on assortative mating using a computationally inferred genealogical
network. We also discuss the opportunities these networks can offer specifically
for the field of computational social science.

5.1 Assortative Mating

Humans have a tendency to marry someone with a similar socioeconomic status.
A recent study shows that this phenomenon—known as assortative mating or
social homogamy—has a big societal impact as it contributes to income inequality
(Greenwood et al., 2014). The study also finds that assortative mating has been
on the rise between 1960 and 2005 in the United States (Greenwood et al., 2014),
whereas an earlier work on assortative mating in Norway, 1750-1900, finds that
assortative mating was declining in the mid-1700s after which it stayed fairly
constant.

We leverage an inferred genealogical network to address two questions con-
cerning this phenomenon:

(Q1) Can assortative mating be detected in Finland during the years 1735—
1885?

(Q2) How has the intensity of assortative mating evolved during this time
period?

To operationalize assortative mating, we compare the socioeconomic statuses
of spouses inferred by linking vital records. The status of a person is estimated
based on his or her father’s occupation. Comparing father occupations is more
straightforward and more robust than comparing spouse occupations directly,
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since occupations were strongly gendered in the 18th and 19th centuries, which
are the focus of this study.

In addition to using occupations directly, we also map them to the historical
international classification of occupations (HISCO) (Van Leeuwen et al., 2002)
and divide the HISCO classes into four main categories: (1) upper and middle
class, (2) peasants (who own land), (3) crofters (who rent land), and (4) laborers
(who live at another person’s house). The occupational category of a person’s
father is labeled CLASS4. The HISCO classes can also be mapped into an
occupational stratification scale called HISCAM (Lambert et al., 2013), which
assigns a real-valued number from 0 to 100 to each occupation. HISCAM
measures the social interaction distance of people based on their occupations
(Lambert et al., 2013).

A high percentage p of spouses with the same father occupation is indicative
of assortative mating but this percentage might also be affected by external
factors such as the number of available occupations, which depends on the
context where the spouses lived. To control for such external factors, we propose
a null model, which randomly assigns each person to a new spouse from the
same city and the same birth year +10 years. Then we compute the percentage
pn of matching occupations under the null model. The strength of assortative
mating is defined as the ratio between the two percentages p/p,. This ratio
measures how much more likely people marry someone with a similar social
status compared to a null model where the marriages are randomized. Thus a
ratio larger than 1 is a sign of assortative mating.

Similarly, we can quantify assortative mating based on the occupational cat-
egories (CLASS4) by computing the percentages of matching categories ¢ and
¢, and their ratio q/q,. For the real-valued HISCAM scores, we compute the
mean absolute difference of the scores of the spouses () and of the scores of the
spouses under the null model (6,). In this case, assortative mating is quantified
by the inverse ratio §,,/9, so that again, a ratio larger than 1 indicates assortative
mating.

Data. In Chapter 3, Section 3.4, we applied the linking method BINCLASS to
link a dataset of 5 million historical birth records from Finland and showed
that the estimated link probabilities correlate with the true probability of a
link to be correct. In this analysis, we consider the same set of inferred links
but we only use the links that have a probability of 90% or more. Spouses are
defined as persons who have had a child together. The analysis is limited to
years 1735—-1885, since outside this time period the number of reliably inferred
spouses with known father occupations is small. After filtering out the spouses
with unknown occupations, we are left with 6402 spouse pairs. The CLASS4
categories and the HISCAM scores can be assigned to 6 248 of these pairs.

Results. The similarity of spouse occupations is plotted on the left-hand side
of Figure 5.1, using the occupations directly (top), using the CLASS4 categories
(middle), and using the HISCAM scores (bottom). The corresponding ratios,
which quantify assortative mating, are shown on the right-hand side. To high-
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Figure 5.1. Assortative mating is detected in the inferred genealogical network for Finland
(1735-1885), but the phenomenon is not monotonously decreasing or increasing.

light long-term trends, the curves show moving averages where a data point at
year y uses the inferred spouses from years [y — 10,y + 10]. Confidence inter-
vals are computed using 95% bootstrap confidence intervals. Even though the
shapes of the comparison curves on the left vary significantly across the three
measures, the shapes of the ratio curves on the right are fairly consistent across
the measures. This highlights the importance of using a null model.

The ratios are mostly between 1 and 1.5 with all three methods, suggesting
that assortative mating did occur in Finland (Q1). Up to 1770 there is a slight
decreasing trend and after 1850 a slight increasing trend. Overall, however, we
do not find evidence for a monotonically decreasing or increasing trend across
the whole time period (Q2). These results suggest that even though one might
assume that in the long run our societies become less stratified, this does not
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necessarily happen by itself.

5.2 Implications to Computational Social Science

Computational social science (CSS) is a recently emerged field, which studies
social phenomena by quantitatively analyzing digital traces of humans (Lazer
et al., 2009). This field is driven by the surge in the popularity of online social
networking services, such as Twitter and Facebook, which record granular
information about people’s behavior and interaction with other people—mainly
in the online but also in the offline world through smartphone sensors such as
GPS trackers. These data sources are available to researchers in companies and,
to a varying extent, to researchers in academic institutions via public APIs.

The new online data sources enable numerous opportunities to analyze differ-
ent aspects of human behavior, including migration and mobility (Gonzalez et al.,
2008; Malmi et al., 2012, 2013; Song et al., 2010; Zagheni et al., 2014), social
influence (Bond et al., 2012; Onnela and Reed-Tsochas, 2010), the structural
properties of social networks (Newman et al., 2011; Onnela et al., 2007), and so-
ciolinguistics (Cheng et al., 2015; Danescu-Niculescu-Mizil et al., 2013), to name
a few. Compared to traditional survey-based methods, the new data sources
make it possible to significantly scale up sample sizes in order to capture more
nuanced behavioral differences (see Kramer et al., 2014) and to collect more
granular data without having to resort to self-report studies which may suffer
from various biases such as the social desirability bias. On the other hand, in the
recent years the CSS research community has also started to acknowledge the
biases present in online behavioral datasets, such as sampling biases, causing
the datasets to be non-representative (Baeza-Yates, 2016; Malmi and Weber,
2016; Wagner et al., 2015).

Large-scale genealogical networks, which can be inferred with the methods
proposed in this thesis, and which are also becoming available through online
crowd-sourcing sites, such as Geni.com and WikiTree, offer typically less gran-
ular behavioral data than online-social-network datasets. However, the key
advantage of genealogical networks is the long temporal scale that they offer;
for instance, Twitter and Facebook are both less than 15 years old, whereas
genealogical networks can cover multiple centuries. This makes it possible to
conduct longitudinal studies on phenomena that take multiple generations to
occur or evolve, such as assortative mating, which was studied earlier in this
chapter.

Other concrete research areas that could be tackled with automatically inferred
genealogical networks include: intergenerational social mobility (Mare, 2011;
Zijdeman, 2009), the heritability of longevity (Fire and Elovici, 2015; Kaplanis
et al., 2017), family effects on longevity (Lahdenperi et al., 2004), large-scale
migration patters (Schich et al., 2014), epidemics and mortality (death records
often mention the cause of death), and the effects of wars and other external

52



Analyzing Inferred Genealogical Networks

events on society. Furthermore, combining genealogical data with genetic data
(Gauvin et al., 2015; Kaplanis et al., 2017) seems a promising future direction.
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6. Conclusions

Entity resolution, or record linkage, has been an active research area for the
past 50 years, but more recently, an increasing number of works have been
published in the area of collective entity resolution. The idea of collective entity
resolution is to leverage relational information about the entities or the records
to be linked. In this thesis, we presented several methods for collective entity
resolution. From the methodological perspective, our main focus was in the
problem of network alignment, which is an instance of collective entity resolution,
although it has prominent applications also outside entity resolution. For this
problem, we proposed methods for multiple network alignment and for active
network alignment.

From the application perspective, an overarching theme in the thesis has
been the problem of inferring genealogical networks. We proposed methods
for this task based on aligning existing genealogical networks and by linking
vital records. The latter methods were employed to infer a genealogical network
consisting of millions of individuals. Although the accuracy of the fully-automatic
methods is not yet comparable to a careful human genealogist who has access to
vital records not yet digitized, the probabilities of the inferred links can be used
to distinguish the high-confidence links reliably. Furthermore, automatically
linking 5 million birth records took less than an hour, which shows that the
automatic approach is much more scalable than a manual approach. Moreover,
the inferred link probabilities can be used to guide the manual process. In
addition to supporting genealogical research, large-scale genealogical networks
provide a valuable resource to the field of computational social science because
of the long temporal span of the networks. This was demonstrated by analyzing
assortative mating in Finland over a period of 150 years.

6.1 Future Directions
Some open problems related to DAG aggregation and network alignment were

discussed earlier in Section 4.4. At the end of the previous chapter, we listed
potential future directions regarding the analysis of automatically inferred

55



Conclusions

genealogical networks. An important thing to bear in mind when conducting
such an analysis is that if an analyzed feature is used as input to the network
inference, any bias in the training data or in the inference method will potentially
bias also the analysis results. For example, if we want to study human migration
patterns through birth and burial records, similar to the work of Schich et al.
(2014), and the genealogist who has linked the death records to the birth records
has only been studying records from a single parish to make the manual linking
task more feasible, the inference method might learn that people never move
to another city during their lifetime. One approach to avoid such bias would be
to simply ignore the location features when training the genealogical network
inference method. However, this could decrease the accuracy of the inferred
links considerably since people’s mobility was much more restricted in the past
centuries, so that two records geolocated far from each other are unlikely to refer
to the same person even though it is possible.

Moreover, even ignoring the analyzed features when learning the model does
not guarantee bias-free analysis results. In the analysis of assortative mating
presented in the previous chapter, the analysis is based on spouse occupations.
The occupations are not used by the inference method, but in theory they might
still bias the analysis results; if occupations were biasing the genealogist who
linked the spouses in the training dataset and the occupations correlate with
some of the features used by the inference method, then the occupational bias
of the genealogist could still manifest itself in the assortative mating analysis
results. Interestingly, the emerging field of algorithmic bias (Baeza-Yates, 2016)
is set to combat such scenarios. Therefore, the methods developed for reducing
algorithmic bias could be helpful also when conducting computational social
science studies based on computationally inferred genealogical networks.

It would also be useful to test the generalizability of the vital-record linking
methods by applying them to records from other countries. In Finland, the
indexed records are particularly extensive since all parishes were mandated
by law to keep the records and a significant fraction of the records have been
scanned and transcribed by volunteers in a project called “HisKi”, which started
already in 1980s.! Nevertheless, similar vital records were kept in many other
countries as well and we can expect them to become amenable to computational
analyses in large volumes in the future, through projects, such as READ,? which
develop computational methods for handwritten text recognition.

The proposed vital-record linking methods first link the non-ambiguous burial
records into birth records, and then link the birth records into their parents’ birth
records. Ideally, the linking of all vital records, including birth, burial, marriage,
and migration records, should be formulated as a single optimization task. One
idea for such an integrated method would be to consider vital-record linking as a
multiple network alignment problem, where each vital record corresponds to an
input network with one to three nodes, corresponding to the people mentioned

1For more information, see http://hiski.genealogia.fi/hiskitalkoot/ (only in Finnish).
thtps ://read.transkribus.eu/
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in the record. However, the multiple network alignment formulation presented
in Section 4.2 would need to be adapted somehow to capture constraints such as:
“burial node b and mother node m should not be aligned to the same entity node
if the child of m has a birth date after the death date of .” A more promising
approach for an integrated vital-record linking method would be to adapt the
PSL approach proposed by Kouki et al. (2017). Furthermore, to estimate a
probability distribution over parent candidates, their approach could be used
together with the BINCLASS method discussed in Section 3.1 by replacing the
XGBoost classifier with the PSL method.

Another interesting future direction would be to incorporate DNA data to the
genealogical network inference problem.? DNA tests can provide an estimate for
the family relationship between two tested individuals and these relationships
could be used as (soft) constraints in the genealogical network inference task.
This direction could benefit from the large body of literature on phylogenetic
inference (Huelsenbeck and Ronquist, 2001).

3This idea has been proposed at: https://stats.stackexchange.com/questions/295801/
principled-way-to-formalize-unknown-parents-in-a-genealogy-tree-optimization-p
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