
HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation
Department of Communications and Networking

Yifeng Tan

Active Queue Management for LTE uplink
in eNodeB

Master’s thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology
Espoo, 5th February, 2009

Supervisor: Professor Riku Jäntti
Instructor: Dr. Sc. Riikka Susitaival

Helsinki University of Technology Abstract of the Master’s Thesis

Author: Yifeng Tan

Name of the Thesis: Active Queue Management for LTE uplink in eNodeB

Date: 12th of February 2009 Number of pages: 83

Department: Department of Communications and Networking

Professorship: S-72 Communication Engineering

Supervisor: Professor Riku Jäntti

Instructor: Dr. Sc. Riikka Susitaival

Long-Term Evolution (LTE) is an evolved radio access technology of the 3rd generation mobile
communication. It provides high peak bit rates and good end-to-end Quality of Service (QoS).
Nevertheless, the wireless link is still likely to be the bottleneck of an end-to-end connection. Thus,
having a sophisticated method to manage the queues of the mobile terminal is important.

For Wideband Code Division Multiple Access (WCDMA), an Active Queue Management (AQM)
algorithm managing the buffer based on the queue size was proposed. In LTE, due to its largely
varying bit rates, the queue-size-based approaches are not suitable anymore. Thus, earlier studies have
proposed a delay-based AQM to provide a better performance in LTE. For LTE uplink, the existing
algorithm is supposed to be implemented in the User Equipment (UE). On the other hand, the
implementation of an AQM in the UE is not mandatory. Until now, only a quite simple delay-based
queue management method called Packet Data Convergence Protocol (PDCP) discard is standardized
by 3GPP. However, this method is not adaptive and cannot thus guarantee a good throughput.

The purpose of this thesis is to develop an AQM method for LTE uplink to enhance the performance of
TCP traffic. In order to have a better control of the LTE uplink traffic from the network side, the AQM
algorithm is proposed to be implemented in the eNodeB. It retains the delay-based approach; to achieve
it, a method is developed to estimate the queuing delays of the UE from the eNodeB side. The delay
estimation is based on the changes in Buffer Status Reports (BSRs) and the amount of data delivered in
the eNodeB. In LTE, BSRs are created and transmitted by the UE to report the queue length waiting for
uplink transmission.

A number of simulations are done to study the performance of the delay estimation and the resulting
AQM algorithm. The new AQM algorithm is also compared with other algorithms, i.e., delay-based
AQM implemented in the UE, PDCP discard and drop-from-front. The results show that the delay-
based algorithm implemented in the eNodeB performs almost as well as when implemented in the UE.
The results also show that the advantaged of delay-based algorithms comparing to the drop-from-front
and PDCP discard are evident; They maintain a high throughput and the low end-to-end delay in most
of the scenarios.

Keywords: AQM, LTE, TCP

 1

Preface

This thesis was done in NomadicLab, which is a part of Ericsson Research.

I would thank my manager Johan Torsner for giving me the chance to do the thesis in NomadicLab.
Special thanks to my instructor Dr. Riikka Susitaival who guide me through the whole process; her
talent, patience and kindness give me a lot of help. I thank my supervisor Professor Riku Jäntti for
supervising the thesis.

I would also thank my parents, my friends and my colleagues, who support me during this time.

Kirkkonummi, 12th of February 2009

Yifeng Tan

 2

Table of content

Preface... 2
Table of content .. 3
Abbreviations .. 5
List of Figures ... 9
List of Tables .. 11
1. Introduction... 12
2. LTE overview ... 14

2.1. 3G evolution: from WCDMA to LTE... 14
2.2. LTE design requirements .. 15
2.3. LTE/SAE system architecture... 16
2.4. LTE protocol structures .. 18

2.4.1. PDCP.. 19
2.4.2. RLC.. 19
2.4.3. MAC .. 20
2.4.4. PHY.. 20

2.5. Scheduling... 22
2.5.1. Downlink scheduling ... 22
2.5.2. Uplink scheduling .. 23

2.6. Dataflow.. 24
3. Introduction to TCP .. 26

3.1. Internet Protocol Suite .. 26
3.2. Basic behavior and concept of TCP.. 26
3.3. TCP congestion control... 28

3.3.1. Tahoe.. 29
3.3.2. Reno ... 30
3.3.3. SACK... 31

3.4. TCP over wireless network ... 31
4. Introduction to AQM .. 32

4.1. RED... 33
4.2. PDPC... 34
4.3. A delay-based AQM ... 35

5. AQM in eNodeB for uplink traffic ... 37
5.1. Introduction... 37
5.2. A method to estimate queuing delay... 38
5.3. Estimation of delay in eNodeB ... 43
5.4. Delay-based AQM in eNodeB .. 44

6. Simulator configurations... 47
6.1. Simulation Models .. 47
6.2. Parameter settings ... 48

7. Simulation results and analysis ... 50
7.1. Performance of delay estimation in eNodeB .. 50
7.2. Parameters selection.. 51

 3

7.2.1. Selection of minAgeThreshold .. 51
7.2.2. Selection of minInterDropTime... 57
7.2.3. Selection of lowerDropThreshold.. 60

7.3. Performance comparison of different queue management algorithms 61
7.3.1. Performance comparison with a fixed bandwidth.. 62
7.3.2. Performance comparison in varying bandwidth .. 66
7.3.3. Performance comparison in realistic radio network scenario .. 71
7.3.4. Performance comparison with multiple flows ... 74
7.3.5. The impact of BSR period ... 75
5.3.6 Performance if both R-AQM and T-AQM are implemented... 78

7.4. Conclusions from simulation results... 79
8. Conclusions... 81
References... 82

 4

Abbreviations

3GPP 3rd Generation Partnership Project

ACK Acknowledgement

AM Acknowledged Mode

AQM Active Queue Management

ARP Address Resolution Protocol

ARQ Automatic Repeat reQuest

BSC Base Station Controller

BTS Base Transceiver Station

CDMA Code Division Multiple Access

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

cwnd Congestion window

E-UTRAN Evolved UTRAN

EDGE Enhanced Data Rates for GSM Evolution

eNodeB E-UTRAN NodeB

EPC Evolved Packet Core

EPS Evolved Packet System

EUL Enhanced Uplink

FDD Frequency Division Duplex

FEC Forward Error Correction

FTP File Transfer Protocol

 5

GERAN GSM EDGE Radio Access Network

GSM Global System for Mobile Communication

HARQ Hybrid ARQ

HSDPA High Speed Donwlink Packet Access

HSPA High Speed Packet Access

HSPA+ Evolved HSPA

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IP Internet Protocol

ITU International Telecommunication Union

LTE Long-Term Evolution

MAC Medium Access Control

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

MSS Maximum Segment Size

NAS Non-Access Stratum

OFDM Orthogonal Frequency Division Multiplexing

OSI Open System Interconnection

OSPF Open Shortest Path First

PAPR Peak-to-Average Power Ratio

PC Pipe Capacity

PDCP Packet Data Convergence Protocol

PDCCH Physical Downlink Control Channel

 6

PDN-GW Packet Data Network Gateway

PDPC Packet Discard Prevention Counter

PDU Protocol Data Unit

PHY Physical layer

QoS Quality of Service

R-AQM Receiver-AQM

RARP Reverse Address Resolution Protocol

RAN Radio Access Network

RED Random Early Detection

REM Random Exponential Marking

RLC Radio Link Control

RNC Radio Network Controller

ROHC Robust Header Compression

RRC Radio Resource Control

RTO Retransmission Timeout

RTT Round-Trip Time

S1 The interface between eNodeB and Access Gateway

SACK Selective ACK

SAE System Architecture Evolution

SC-FDMA Single Carrier - Frequency Division Multiple Access

SDU Service Data Units

S-GW Serving Gateway

SMTP Simple Mail Transfer Protocol

 7

T-AQM Transmitter-AQM

TCP Transmission Control Protocol

TDD Time Division Duplex

TM Transparent Mode

UE User Equipment

UDP User Datagram Protocol

UM Unacknowledged Mode

UMTS Universal Mobile Telecommunication System

UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

VoIP Voice over IP

WCDMA Wideband CDMA

X2 The interface between eNodeBs

 8

List of Figures

Figure 2.1: 3G evolution ([1]).. 14
Figure 2.2: Overall Architecture of EPS ([12]) ... 17
Figure 2.3: LTE control plane ([12]).. 17
Figure 2.4: LTE user plane ([12]) .. 18
Figure 2.5: LTE protocol architecture ([1]) ... 19
Figure 2.6: Physical-layer model for DL-SCH transmission ([11])... 21
Figure 2.7: LTE downlink physical resource ([1])... 21
Figure 2.8: General procedure of downlink scheduling... 23
Figure 2.9: General procedure of uplink scheduling ... 24
Figure 2.10: LTE data flow ([1]) ... 25
Figure 3.1: TCP connection establishment and termination ([10]).. 27
Figure 4.1: The PDCP algorithm ([17])... 35
Figure 5.1: Estimate delay at time t0, t1, and t2 .. 39
Figure 5.2: Estimate delay at tn .. 42
Figure 5.3: Detail R-AQM algorithm flow chart ... 46
Figure 6.1: Simulation model of R-AQM.. 47
Figure 6.2: Simulation model of T-AQM, PDCP discard and drop-from-front 48
Figure 7.1: Delay estimation with different HARQ error probabilities... 51
Figure 7.2: Throughput with different bandwidths and minAgeThresholds .. 52
Figure 7.3: CDF of TCP end-to-end delay with different minAgeThreshold when bandwidth is 5 Mbps
... 53
Figure 7.4: Throughput with different minAgeThreshold when bandwidth is 128 kbps 54
Figure 7.5: CDF of queue size with different minAgeThreshold when the bandwidth is 128 kbps 54
Figure 7.6: Throughput with different minAgeThreshold when bandwidth varies 56
Figure 7.7: Throughput with different minAgeThreshold when bandwidth varies 56
Figure 7.8: Throughput with different minAgeThreshold in a realistic radio network 57
Figure 7.9: Times of RTOs with different minInterDropTime.. 59
Figure 7.10: CDF of TCP end-to-end delay with different minInterDropTime 59
Figure 7.11: Scaled throughputs with different lowerDropThreshold... 61
Figure 7.12: Scaled throughputs when transferring one large file... 64
Figure 7.13: Scaled throughputs when transferring multiple small files ... 65
Figure 7.14: Multiple packets drop with PDCP discard algorithm in 3 Mbps bandwidth..................... 66
Figure 7.15: Buffer status of T-AQM when bandwidth down-switch... 67
Figure 7.16: Buffer status of R-AQM when bandwidth down-switch... 68
Figure 7.17: Buffer status of combined-AQM when bandwidth down-switch 68
Figure 7.18: Throughput with varying bandwidths ... 70
Figure 7.19: Mean end-to-end delay with varying bandwidths ... 70
Figure 7.20: Maximum delay with varying bandwidths.. 71
Figure 7.21: Throughput and end-to-end delay in a realistic radio network with UE speed 0.83 m/s .. 72
Figure 7.22: Throughput and end-to-end delay in a realistic radio network with UE speed 30 m/s 73
Figure 7.23: CDF of buffer status in realistic radio network with UE speed 0.83 m/s.......................... 73
Figure 7.24: Average throughput of other small files when one TCP is dominating the bandwidth 75

 9

Figure 7.25: Throughput with different BSR period in 20 Mbps bandwidth .. 76
Figure 7.26: Throughput with different BSR period in 3 Mbps bandwidth .. 77
Figure 7.27: Mean TCP end-to-end delay in different bandwidth... 78
Figure 7.28: Mean TCP end-to-end delay in different bandwidth... 79

 10

List of Tables

Table 3.1: TCP/IP protocol model .. 26
Table 7.1: Times of RTOs with different minAgeThreshold.. 53
Table 7.2: Times of RTOs with different minAgeThresholds when bandwidth varies.......................... 55
Table 7.3: Throughput with different minInterDropTime and bandwidth.. 58
Table 7.4: Number of RTOs with different lowerDropThreshold and bandwidth 61
Table 7.5: The mean and maximum TCP end-to-end delay with different bandwidths when transferring
a large file.. 64
Table 7.6: The mean and maximum TCP end-to-end delay with different bandwidths when transferring
multiple small files.. 65
Table 7.7: Time of RTOs in a realistic radio network .. 72
Table 7.8: Mean delay with different BSR period in 20 Mbps bandwidth... 77
Table 7.9: Mean delay with different BSR period in 3 Mbps bandwidth... 77
Table 7.10: Throughput if both AQM are implemented... 78

 11

1. Introduction

In the past few decades, mobile communication systems have evolved from 1st generation, which are
analog cellular systems, through 2nd generation—known as digital narrowband, to 3rd generation, with
higher bandwidth radio interface. Currently, the evolution of 3G is still in progress. The latest
commercialized wireless network technologies, called High Speed Packet Access (HSPA) and evolved
HSPA (HSPA+), start to be deployed around the world. At the same time, the work of standardization
of Long Term Evolution (LTE), started from 2004, is close to ready. LTE provides even higher data
rate comparing to Wideband Code Division Multiple Access (WCDMA) and HSPA, with the peak of
more than 300 megabits per second in downlink and 50 megabits per second in uplink. Besides, it
provides lower user costs, better spectrum efficiency, smaller latency, etc.

Though LTE offers high peak bit rates, the wireless link is still likely to be the bottleneck of an end-to-
end connection. In an overload situation, meaning a situation where the incoming data rate to the link is
larger than the outgoing data rate from the link, the excessive data is temporarily stored in the memory.
If the overload continues, the data queue will accumulate and finally exceed the physical limitation of
buffer. Then some data have to be discarded. The straightforward way to handle this problem is
discarding the incoming data when the buffer is full. This approach is intuitive and easy to implement,
however, it may cause a number of problems e.g. large packets delay, unfair sharing, buffer overflow
etc. [3] [20] [21]. In order to overcome these problems, some more sophisticated methods are
developed; for example, Active Queue Management (AQM). It drops packets before the buffer is full
and thus maintains the queue size and queuing time in an appropriate value.

Considerable work has been done about AQM. E.g., Random Early Detection (RED), proposed by S.
Floyd and V. Jacobson in [3], is supposed to be implemented in gateways. Following RED, many other
AQM algorithms are proposed, e.g. BLUE is proposed in [5], and Random Exponential Marking (REM)
is proposed in [14]. Nevertheless, most of these algorithms are designed for wired networks and are not
very suitable for mobile communication due to its varying bandwidth characteristics resulting from
varying radio conditions. Packet Discard Prevention Counter (PDPC) algorithm, on the other hand, is
an AQM algorithm developed by M. Sågfors et al. and implemented in WCDMA [20] [21]. T.
Rathonyi and M. Nilsson also studied one AQM algorithm for HSPA and LTE in [4].

All the AQM algorithms mentioned above are supposed to control the buffer directly at the transmitter,
meaning that they should be implemented in User Equipment (UE) side for uplink transmission. On the
other hand, the implementation of AQM in the UE is not mandatory. Until now, only a quite simple
delay-based queue management method called PDCP discard is standardized by 3GPP [23]. This brings
up a potential problem: The UEs with AQM may obtain improved performance, but those UEs without
implementing any AQM may still have bad performance. Thus, it is desirable that an AQM algorithm
implemented in the eNodeB side can control the queue length of all the UEs.

The purpose of this thesis is to develop an AQM algorithm for LTE uplink in the eNodeB. In this
thesis, a “Remote” AQM algorithm is developed. Remote AQM controls the uplink transmission buffer
of the UE remotely from the eNodeB side. More specifically, by implementing Remote AQM, the
eNodeB maintains the queue size in a reasonable value by dropping received packets when necessary.

 12

The target is to reduce the end-to-end delays and probabilities for buffer overflow and underflow. To
achieve this target, a method to estimate the queuing delay of received packets is developed to support
the Remote AQM. By simulations, the performance of Remote AQM will be compared to some other
queue management algorithms i.e. transmitter side AQM proposed in [4], PDCP discard proposed in
[23] and traditional drop-from-front approach.

The rest of the thesis is organized as follows: In Chapter 2-4, background knowledge about LTE, TCP
and AQM is introduced, respectively. Chapter 5 introduces the new AQM method and describes it in
all details. The simulator and the simulation configuration are briefly introduced in Chapter 6. Chapter
7 presents a detailed result analysis. Some conclusions are drawn in Chapter 8.

 13

2. LTE overview

This chapter, together with the following Chapter 3 and Chapter 4, introduces the theoretical and
background knowledge related to this thesis. As mentioned in Chapter 1, LTE is an evolved radio
access technology of 3G mobile communication. This chapter will present the overview of 3G
evolution and LTE.

2.1. 3G evolution: from WCDMA to LTE

3G is the 3rd generation of standards and technologies for mobile communication. It is based on the
standards of International Mobile Telecommunications-2000 (IMT-2000) specified by the International
Telecommunication Union (ITU). There are several different kinds of 3G technologies. In Europe,
WCDMA was chosen as underlying air interface for Universal Mobile Telecommunications System
(UMTS). It was standardized by 3rd Generation Partnership Project (3GPP), which is a collaborative
group consisting of international standards organizations and mobile-technology corporations and is
still evolving. The WCDMA is specified in 3GPP technical specifications Release 99. This release
promises 2 Mbps peak data rate for downlink transmission and 384 kbps for uplink. The next phase of
upgrade from WCDMA is High-Speed Downlink Packet Access (HSDPA), which offers up to 14.4
Mbps for downlink. For the uplink, the WCDMA is followed by Enhanced Uplink (EUL) 3GPP
Release 6, which provides up to 5.76 Mbps peak data rate. The combination of HSDPA and EUL is
referred as HSPA.

The evolution of 3G after HSPA differs from previous Releases: There are two parallel tracks; one is
evolved HSPA, also known as HSPA+, which is still an evolution of WCDMA ‘with basic WCDMA
structures and with a requirement on backwards compatibility to already deployed networks’ [1]. The
other track is a new radio access technique, known as Long-Term Evolution (LTE), which is based on
Orthogonal Frequency Division Multiplex (OFDM). The 3G evolution is presented in Figure 2.1.

R99 Rel4 Rel5 Rel6 Rel7 Rel8

WCDMA HSDPA HSPA HSPA evolution

LTE

Figure 2.1: 3G evolution ([1])

In parallel to the evolved radio access technology LTE, 3GPP also specifies a new core network
evolution, which is called System Architecture evolution (SAE). The purpose of LTE and SAE is to

 14

improve the UMTS system for the future. Standardization of LTE has started November, 2004. The
target of LTE/SAE is to provide mobile networks with higher date rate, spectrum efficiency, lower
latency, etc. In order to fulfill these requirements, some new techniques are introduced in LTE. For
example, Orthogonal Frequency Division Multiplexing (OFDM) is used in downlink data transmission
due to its high spectral efficiency and robustness against interference etc. [1]. In uplink, Single Carrier
Frequency Division Multiple Access (SC-FDMA) is used because of its lower Peak-to-Average Power
Ratio (PAPR) comparing to traditional OFDM [27]. Furthermore, in order to simplify the system
architecture and reduce latencies, the LTE radio access network consists only of a single node, called
eNodeB.

2.2. LTE design requirements

The requirements of LTE are documented in [26]. They are divided into 7 areas. Main requirement
areas and the requirements within the areas are:

1. Capabilities-related requirements

• The instantaneous downlink peak data rate should be at least 100 Mbps within 20 MHz
spectrum allocation and with two receiver antennas at the UE.

• The instantaneous uplink peak data rate should be at least 50 Mbps within 20 MHz
spectrum allocation and with one transmit antenna at the UE.

• The control-plane latency requirement has two measures, one is the transition time from
a camped-state to active state, where the requirement is 100 ms; the other measure is the
transition time from a dormant state to active state, where the requirement is 50 ms.

• The user-plane latency, which is expressed as the time to transmit a small IP packet
either from the terminal to the RAN edge node or from the RAN edge node to the
terminal measured on the IP layer, is required to be under 5 ms.

2. System performance requirements

• The average user throughput should be 3 to 4 times more than in Release 6 for downlink
and 2 to 3 times more in uplink.

• The cell-edge user throughput should be 2 to 3 times more than in Release 6 for
downlink and 2 to 3 times more in uplink

• Spectrum efficiency should be 3 to 4 times more than in Release 6 for downlink and 2 to
3 times more in uplink.

3. Deployment-related requirements

• LTE system can be deployed both standalone and integrating with an existing
WCDMA/HSPA and/or Global System for Mobile communications (GSM) network.

 15

• LTE-based radio access can be deployed in both paired and unpaired spectrum
allocation. Thus, LTE should support both Frequency Division Duplex (FDD) and Time
Division Duplex (TDD) [1].

4. Requirements for architecture and migration to LTE

• LTE architecture should simplify and minimize the introduced number of interfaces;
thus, a single E-UTRAN architecture is required.

• LTE should be designed to minimize the delay variation for e.g. TCP/IP packet
communication.

5. Radio Resource Management requirements

• LTE should provide Enhanced support for end-to-end Quality of Service (QoS). This
requires improved supporting for various applications, services and protocols etc.

• LTE should provide mechanisms to support operation and transmission of higher layer
protocols over radio interface e.g. IP header compression.

6. Complexity requirements

• Basically, the complexity requirements imply that the number of options should be
minimized without redundant mandatory.

7. General requirements

General requirements address the cost and service related aspects:

• Cost-related requirements imply that the cost of future network deployment should
be minimized. Meanwhile, the existing site locations are able to be used as well.
Additionally, the UE complexity and power consumption should be minimized.

• Service-related requirements address that various types of service should be
efficiently supported, including currently available services e.g. Web, File Transfer
Protocol (FTP), etc., as well as more advanced services e.g. real-time video.

2.3. LTE/SAE system architecture

As mentioned in Section 2.1, the SAE is the evolution of the new core network. Together with the new
radio access technology LTE, it comprises a new cellular system, known as Evolved Packet System
(EPS).

As any other cellular system, EPS is made up of the core network and the radio access network, which
are called Evolved Packet Core (EPC) and E-UTRAN, respectively. The SAE is illustrated in Figure
2.2.

 16

S1 S1

S1 S1
X2X2

Figure 2.2: Overall Architecture of EPS ([12])

EPC, which is composed of several functional entities, e.g. Mobile Management Entity (MME),
Serving Gateway (S-GW), Packet Data Network Gateway (PDN-GW) etc., is connected to the E-
UTRAN by means of S1 interface. The E-UTRAN, on the other hand, consists of eNodeBs. Among
eNodeBs there is an X2 interface interconnecting them to each others. It should be noticed that the S1
and X2 interfaces support many-to-many relation between EPC and eNodeBs, which means one
eNodeB can connect to multiple MME/S-GW and multiple eNodeBs at the same time.

EPC provides an access to external data networks and control functionalities, e.g. security, mobility
management, charging etc; while the E-UTRAN performs interaction between the mobile terminals,
also knows as a User Equipment (UE), and the EPC. For the UE, the functionalities of E-UTRAN can
be divided into user plane and control plane protocols, as illustrated in Figure 2.3 and Figure 2.4 below.

Figure 2.3: LTE control plane ([12])

 17

eNB

PHY

UE

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

Figure 2.4: LTE user plane ([12])

As Figure 2.3 and Figure 2.4 illustrated, both user plane and control plane consist of layered protocols.
For control plane, the protocol stack includes Non-Access Stratum (NAS), which located in UE and
MME, and Radio Resource Control (RRC), Packet Data Convergence Protocol (PDCP), Radio Link
Control (RLC), Medium Access Control (MAC) and Physical layer (PHY), all of which are located in
UE and eNodeB. On the other hand, the user plane only consists of PDCP, RLC, MAC and PHY sub-
layers.

The Non-Access Stratum (NAS) layer in MME performs Bearer control, mobility handing for the UE
in an idle mode, paging origination as well as security-related functionalities. More specified
introduction about the other layers will be presented in the following Section 2.4. The dataflow of the
LTE radio interface will be presented in Section 2.6.

2.4. LTE protocol structures

As discussed in Section 2.3, E-UTRAN performs radio access between the core network and the UE.
Its functionalities can be structured as different protocol layers. The Figure 2.5 illustrates the protocol
architecture for the downlink. The uplink, on the other hand, is very similar to the downlink, except
some minor differences, e.g. transport-format selection.

 18

Figure 2.5: LTE protocol architecture ([1])

As can be seen from Figure 2.5, incoming IP packets from the core network go through different layers
processed by different functions. The layers and their main functionalities are presented more detailed
below.

2.4.1. PDCP

The main functionality of Packet Data Convergence Protocol (PDCP) is IP header compression with
the Robust Header Compression (ROHC) mechanism. The purpose of ROHC algorithm is to compress
TCP/IP headers of the IP packets and thus reduce the amount of data to be transmitted over the radio
interface. For small data units, compressing 40 Bytes header to 3 Bytes results significant savings in the
header sizes. Ciphering is another important responsibility of PDCP.

2.4.2. RLC

Radio Link Control (RLC) performs multiple functionalities such as segmentation, concatenation
retransmission and in-sequence delivery of data units. The data units coming from PDCP layer, called
RLC Service Data Units (SDUs), are segmented or concatenated and then the RLC header is added to
them. The resulting data units, RLC Protocol Data Units (PDUs), are then sent to the Medium Access
Control (MAC) layer.

RLC can be configured into different modes, depending on what kind of service it is supposed to offer.
For those applications for which an error-free transmission is required, e.g., Web and FTP service, RLC
should be configured into Acknowledged Mode (AM), in which the Automatic Repeat reQuest (ARQ)

 19

mechanism is used to guarantee the correctness of transmission. On the other hand, when services, for
which error-free delivery is less important than the short delivery time, are offered, RLC can be
configured into Unacknowledged Mode (UM), in which only the in-sequence delivery is provided but
not retransmission are done. Examples of these services are User Datagram Protocol (UDP) traffic or
Voice-over-IP (VoIP). The third possible configurable mode is Transparent Mode (TM), in which the
RLC is completely transparent and no functions will be performed.

2.4.3. MAC

MAC is responsible for scheduling, hybrid-ARQ (HARQ) retransmissions and logical-channel
multiplexing.

• The scheduler is an important part of the MAC layer. It controls resource assignments for both
downlink and uplink. In LTE, the downlink and uplink scheduling are independent of each
other. Downlink assignments carried on Physical Data Control Channel (PDCCH) determines
which UEs are supposed to receive which transmitted blocks. Besides, the downlink scheduler
also decides modulation scheme, transport-block size, etc, which means that it also affects the
RLC and physical layers, as illustrated in Figure 2.5. The uplink scheduler, on the other hand, is
somewhat similar to the downlink scheduler, but for the reverse direction, which is from the
UEs to the eNodeB. An important entity that should be noticed here is the Buffer Status Report
(BSR), which is created and transmitted by a UE. BSRs report the amount of data waiting to be
transmitted for uplink transmission. Some more detailed discussion on scheduling and BSR will
be presented in Section 2.5.

• HARQ with soft combining is used to provide robustness against transmission errors. In this
mechanism, multiple parallel stop-and-wait processes are progressed at the same time,
combining Forward Error Correction (FEC) with standard ARQ. When the received data cannot
be correctly decoded, the receiver asks a retransmission. Then error correction at the receiver
can attempt to combine the transport blocks received from both transmissions. This mechanism
guarantees both good throughput and reliability of transmission [1].

• As seen from Figure 2.5, the MAC layer serves RLC in the form of logical channels. On the
other hand, the MAC layer is served by PHY layer in the form of transport channels. Thus, an
important functionality of MAC layer is to multiplex different logical channels and map the
transport channels to appropriate logical channels.

2.4.4. PHY

The physical layer offers data transport service to upper layers. More specifically, it is responsible for
channel coding/decoding, modulation/demodulation, physical-layer HARQ, frequency and time
synchronization, multi-antenna processing, mapping of the coded transport channel onto physical
channels, etc. The physical layer model of LTE is illustrated in Figure 2.6 below.

 20

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

QPSK, 16QAM,
64QAMData modulation

Interleaving

HARQ

M
A

C
 s

ch
ed

ul
er

N Transport blocks
(dynamic size S1..., SN)

Node B

Redundancy for
data detection

Redundancy for
error detection

Multi-antenna
processing

Resource/power
assignment

Modulation
scheme

Redundancy
version

Antenna
mapping

HARQ info

ACK/NACK

Channel-state
information, etc.

Antenna mapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna demapping

Error
indications

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

QPSK, 16QAM,
64QAMData modulation

Interleaving

HARQ

M
A

C
 s

ch
ed

ul
er

N Transport blocks
(dynamic size S1..., SN)

Node B

Redundancy for
data detection

Redundancy for
error detection

Multi-antenna
processing

Resource/power
assignment

Modulation
scheme

Redundancy
version

Antenna
mapping

HARQ info

ACK/NACK

Channel-state
information, etc.

Antenna mapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna demapping

Error
indications

Figure 2.6: Physical-layer model for DL-SCH transmission ([11])

Unlike in previous 3GPP releases, e.g. WCDMA, HSPA, in which downlink transmission is based on
CDMA technology, the LTE downlink scheme is based on another multiplexing technique called
OFDM. OFDM is a kind of multi-carrier technology but with a large number of sub-carriers which are,
at least in one cell, mutually orthogonal. By spreading the data on a large number of sub-carriers, a
wideband channel is split into many narrow band channels. By this way, the “selective fading” problem
common in wideband mobile communication can be solved to some extent [1]. On the other hand,
keeping the sub-carriers orthogonal can theoretically eliminate the interference between sub-carriers
thus the guard band between sub-carriers are not required; as a consequent, the orthogonality of sub-
carriers can sufficiently reduce the waste of bandwidth [27].

The basic OFDM time-frequency grid of LTE downlink is illustrated in Figure 2.7. As the figure shows,
the sub-carrier spacing ∆ƒ has been chosen to 15 kHz. Furthermore, 12 consecutive sub-carriers
comprise one downlink resource block, with the bandwidth of 180 kHz.

One OFDM symbol

Δf = 15 kHz

One resource element

Time

Frequency

One OFDM symbol

Δf = 15 kHz

One resource element

Time

Frequency

Figure 2.7: LTE downlink physical resource ([1])

 21

Although OFDM works fine in downlink transmission, for LTE uplink, the situation is different. One
obvious drawback of OFDM is the large variation of instantaneous transmitting powers, also known as
high Peak-Average-Power Ratio (PAPR). Variation significantly decreases the power-efficiency and
increases the Bit Error Rate (BER) [27]. On the downlink, the high PAPR problem might be easy to
overcome by using special power amplifier and some other sophisticated mechanisms. However, those
mechanisms increase the computational complexity and power consumption. But on the uplink, the
power control is critical for mobile terminals. Thus, the traditional OFDM is not quite suitable. Instead,
Single-Carrier FDMA is selected for LTE uplink due to its lower PAPR [1]. The basic idea of this
scheme is spreading of the symbols of the uplink on a group of sub-carriers through the use of a unitary
transformation [27]. By this way the peak-to-average ratio of the signals can be considerably reduced,
leading to the increased coverage and decreased terminal power consumption. In addition, similar to
downlink transmission, the uplink is also based on orthogonal separation of users in time and frequency
domain, so the intra-cell interference can be avoided.

2.5. Scheduling

Scheduling determines how the available radio resources in the mobile communication system are
shared between the different UEs. In LTE, the basic strategy of scheduling is so-called dynamic
scheduling [1], where the eNodeB makes a scheduling decision per each TTI and informs it to the
selected UEs. As discussed in Section 2.4.3, the downlink and uplink scheduling are independent of
each other. This section will discuss both downlink and uplink scheduling respectively.

2.5.1. Downlink scheduling

Downlink scheduling is responsible in controlling for which UE(s) the eNodeB transmits and with
which resource blocks. In addition, the downlink scheduling is responsible for the selection of the
transport-format e.g. transport-block size, modulation scheme, antenna mapping, etc. and logical
channel multiplexing for downlink transmission [1].

One of the key characteristic of mobile communication is the rapid and significant variation of the
wireless link environment, both on time domain and frequency domain. Therefore, in order to optimize
the scheduling decision, instantaneous channel quality is taken into account; this strategy is called
channel-dependent scheduling. The overall target of channel-dependent scheduling is to take advantage
of the channel condition variation between UEs and preferably schedule resource to UEs with best
channel condition. To obtain the information of instantaneous channel quality, Channel Quality
Indicator (CQI) is created by the UE and sent to the eNodeB to indicate the channel quality in both
time and frequency domain. The CQI is based on the measurement of downlink reference signals.
Figure 2.8 illustrates the general procedure of downlink scheduling.

In addition to supply efficient radio resource utilization, scheduling is also responsible for handling
priority issues, due to different requirements of QoS. For example, the data from VoIP, which requires
small end-to-end packet delay, is supposed to have higher priority than the data from a file transferring
application e.g. FTP. To support the priority issue, a set of priority queues can be defined. The data is
classified to different queues according to the priority.

 22

Reference signals

CQI report

Resource allocation

Data

UE

eNodeB

Figure 2.8: General procedure of downlink scheduling

2.5.2. Uplink scheduling

Similar to downlink scheduling, uplink scheduling determines which UE(s) is allowed to transmit and
with which resource blocks during a given time interval. However, unlike downlink scheduling, uplink
scheduling cannot automatically “know” the transmission demand from a UE. Thus, before the UE can
transmit data to the eNodeB, it first sends a Scheduling Request (SR) to request the transmission permit.
When the scheduler in eNodeB receives the SR, it replies with a scheduling grant for the request. In
addition, the scheduler determines the time/frequency resource which the UE should use as well as
transport format. After the UE has received the information of assignment, i.e., the UL grant, it can
transmit data with required parameters over a sub-frame when the grant is valid. Additionally, an entity
called Buffer Status Report (BSR) can be transmitted together with the data indicating the queue length
of the UE. The general procedure of uplink scheduling is illustrated in Figure 2.9.

According to [23], there are several events to trigger the BSR transmission:

• New data arrives to the UE transmission buffer where the data is with higher priority than the
data already existing in the buffer.

• Uplink resource has been allocated and the size of padding bits is larger than the size of BSR.
The padding bits refer to the bits in the transport format that are over the actual need.

• The UE moves from one cell to another.
• The Periodic BSR timer, which is used to trigger Periodic BSR, expires.

A triggered BSR can also be cancelled in case when the allocated resource is large enough to
accommodate all the data in buffer excluding the size of BSR.

 23

Scheduling Request

Grant

Resource allocation

Data

UE

eNodeB

Buffer Status Report

Figure 2.9: General procedure of uplink scheduling

2.6. Dataflow

According to the discussion above, an example of downlink data flow of LTE radio interface is
illustrated in Figure 2.10 below. The uplink is somewhat similar. In Figure 2.10, three IP packets are
considered, two on the radio bearer 1 and one on the radio bearer 2. These IP packets are passed first
through the PDCP layer with functionalities of IP head compression and ciphering. Then PDCP header
is added to each packet. The PDCP header carries the information required to deciphering the PDU in
the UE. The output from the PDCP, which is so-called PDCP PDU, is fed to RLC.

The RLC layer performs segmentation and concatenation of PDCP PDUs and then adds an RLC header.
The header is used to identify the RLC PDU when a retransmission is required. In addition, the header
can also be used to support in-sequence delivery in the UE. The RLC PDUs are forwarded to MAC
layer. The multiplexing functionality performed by MAC can assemble a number of RLC PDUs to
form a MAC SDU. The RLC PDUs can be from the same of different radio bearers. After attachment
of a MAC header to the MAC SDU, the data unit is now called a transport block. The size of transport
block depends on the instantaneous data rate. Finally, the transport block is attached with a Cyclic
Redundancy Check (CRC), which is used for error-detection, and transmitted over air.

 24

Figure 2.10: LTE data flow ([1])

 25

3. Introduction to TCP

As discussed in [1], one major driving force of 3G evolution from WCDMA to LTE is the increasing
requirements to access the Internet with high speed by mobile terminals. Meanwhile, the Transmission
Control Protocol (TCP) is one of the core protocols of the Internet. In this section, some basic
knowledge about TCP is introduced.

3.1. Internet Protocol Suite

Internet Protocol Suite, commonly called TCP/IP, is the most widely used protocol suite that runs on
Internet and other commercial networks. It captures 4 layers in the Open Systems Interconnection
Reference Model (OSI model), as illustrated in Table 3.1.

Table 3.1: TCP/IP protocol model

Layers Functionalities Protocols

Application Layer Supporting network applications Telnet, FTP, SMTP, etc

Transport Layer Transporting up-layer message between
source and destination

TCP, UDP, etc

Internet Layer Routing from host to host IP, ICMP, IGMP, etc

Link Layer Interface with physical media ARP, RARP, OSPF, etc

In this section only the protocols tightly related to the thesis are discussed, i.e., Internet Protocol (IP)
and Transmission Control Protocol (TCP). More detailed information about Internet Protocol Suite can
be found from [10].

As presented in [1], EPC is an all-IP system. However, IP only provides unreliable service, which
means the packets can be lost, corrupted, duplicated or delivered in disorder. TCP, on the other hand,
provides reliable, in-order delivery service on the top of IP. Besides, TCP is also responsible for flow
control, congestion control, connection management etc.

3.2. Basic behavior and concept of TCP

TCP is a connection-oriented protocol, which means that a virtual connection will be established before
two end hosts can really communicate to each other. TCP uses a mechanism called “handshake” to
establish the virtual connection. More specifically, the host asking for the connection, also known as a
client, sends first one special segment, also known as server to request connection, to the host. After
the server has received the connection request segment, it responds and sends another special segment
to grant or not grant the connection. If the connection is granted, the client sends the third special
segment to acknowledge the connection-granted segment and the connection is finally established. This

 26

procedure is so-call three-way handshake. Some common parameters, such as initial sequence number,
are also set during the handshake procedure.

The termination of connection is similar to the establishment, except that termination requests are sent
through both sides due to the fact that TCP connection is full-duplex. It is also worth to know that
either side can send a termination request.

The TCP connection establishment and termination are illustrated in Figure 3.1.

Client Server

Time

Figure 3.1: TCP connection establishment and termination ([10])

As presented in Section 3.1, TCP is designed for reliable data transfer. To achieve this target, it also
uses the ARQ mechanism, which has been mentioned in Section 2.4.2. The basic idea of ARQ is that
every time when the receiver receives a packet correctly, it sends an acknowledgement to the
transmitter. If the transmitter does not receive the acknowledgement of some packet before the timeout,
it retransmits the corresponding packet. This procedure is repeated until all packets are acknowledged.
This guarantees the correctness of the transmission.

 27

The TCP algorithm used nowadays is much more complicated than the basic ARQ, but the principal
idea is still the same. TCP breaks the data stream from an upper layer into segments, adds a TCP
header to each segment and assigns a sequence number as segments “identity”. By using ARQ, it is not
only guaranteed that every single segment is received correctly but also they are in right sequence. One
important improvement of TCP comparing to basic ARQ is the use of pipelining, which means that the
sender is allowed to transmit multiple segments that are not acknowledged yet. It greatly increases the
throughput of TCP transmission.

There are several important parameters for TCP:

• MSS − The largest TCP segment that can be transmitted by the sender.
• RTT − The time it takes from transmitting a segment until receiving the acknowledgement.

Because the conditions in networks are always changing, the RTT varies from segment to
segment. In order to get a typical RTT, not an instantaneous one, the following smooth
algorithm is used;

 Estimated_RTT = (1 - α) * Instantaneous_RTT + α * Estimated_RTT,

where α is a smoothing factor which is recommended to 0.9 [10].

• RTO − The time the sender will wait until a retransmission is triggered if the acknowledgement
is not received. It is calculated depending on Estimated_RTT.

RTO = Estimated_RTT + 4 * Dev,

where Dev is the mean deviation of Estimated_RTT defined as:

Deviation = (1 - β) * Deviation + β * | Instantaneous_RTT – Estimated_RTT |,

where β is another smoothing factor recommended to 0.25 [10].

3.3. TCP congestion control

In data networks, the volumes of data streams vary from time to time. At certain time, some links or
nodes may have more data than they are capable to deal with. This is so-call network congestion.
Occasionally the incoming data rate is greater than that outgoing; therefore the router has to store the
data in the memory temporarily waiting for transmission later. If this procedure lasts too long, the
memory will eventually run out and some data have to be discarded. There are several options to do
when facing this situation. The simplest ones are passive mechanisms e.g. drop-tail or drop-front,
which means that the incoming packets (drop-tail) or the longest stayed packets (drop-front) will be
discarded. More complicated methods, usually with better performance, are Active Queue management
mechanisms, which will be discussed in Chapter 4.

When some packets discarded, the sender will finally be aware of the loss, due to the acknowledging
transmission mechanism. For example, if no ACK is received after a while or several duplicated
acknowledgements are received, the loss is most probably occurred. The sender then retransmits those

 28

packets, but it also takes some other actions to avoid further congestion, which is known as TCP
congestion control. There are a few different kinds of congestion control algorithms, which are
implemented in different TCP versions.

Before the discussion of congestion control algorithms, two “windows” should be introduced:

• Congestion window (cwnd) − As discussed in Section 3.2, one improvement of the TCP is
allowing the sender to transmit multiple segments “in the air”, i.e. send those segments without
any acknowledgement received by itself. The allowed number of non-acknowledged segments
is indicated by the congestion window. In other words, the congestion window decides how
many segments can be transmitted in the air by the sender.

• Advertised window − This window indicates the amount of data the receiver can process at a
time, i.e., the advertised window is a receiver side window of how many segments can be
transmitted in the air.

As a result, the amount of actual segments that can be allowed to be transmitted in the air is the
minimum of the congestion window and the advertised window. However, only the congestion window
is considered in this section.

Beside the congestion window, another important concept related to the TCP performance is the pipe
capacity (PC), also known as bandwidth-delay product. PC is the minimum load that a data link needs
to have in the air in order to fully utilize the available bandwidth. The PC is calculated as

PC = Bandwidth * RTTe2e.

When the congestion window is smaller than the PC, the link is under-utilized, which will decrease the
throughput. Congestion control is also used to avoid this situation.

As discussed above, the purpose of congestion control is to decrease the possibility of network
congestion as well as link under-utilization by regulating the congestion window. In the following
subsections we will see how the different congestion control algorithms achieve the purpose.

3.3.1. Tahoe

Tahoe is a wildly implemented TCP congestion control algorithm originally proposed by V. Jacobson
in [2]. Tahoe implements several important algorithms like slow start, congestion avoidance, known
also as “Additive Increase Multiplicative Decrease”, and Fast Retransmit:

• Slow start

The slow start algorithm initially set the cwnd to 1 or to a few segments. Every time the TCP
sender receives an acknowledgement, it increases the cwnd by 1. This behavior doubles the
cwnd every RTT and let the cwnd increase exponentially. This behavior continues until the
cwnd reaches some threshold or the ACK for some segment is not received, which indicates a

 29

segment loss. For the slow start algorithm, a way to detect segment loss is that the RTO timer
expires before the required ACK is received.

When a loss occurs, half of the current cwnd is saved as slow start threshold (ssthresh); at the
same time, the cwnd is set to initial value and increases exponentially again. Once the cwnd
reaches ssthresh, TCP enters Congestion Avoidance phase which will be introduced in the
following paragraph.

• Congestion Avoidance

When the TCP enters the congestion avoidance phase, the cwnd is increased by 1/ cwnd always
when an ACK is received. As a result, the increase of cwnd is additive as compared to slow
start’s exponential increase.

• Fast Retransmit

Before the Fast Retransmit is explained, it is worthy to know that the ACK message includes
the sequence number of the segment that should be transmitted next. Therefore, if there is a
segment loss or out-of-order delivery, the sender will receive duplicate ACKs, which are
requesting the same segment. Fast Retransmit algorithm defines another way to indicate
segment loss by receiving three duplicate ACKs. Thus, when the TCP sender receives the third
duplicate ACK, it retransmits the segment the receiver asks for. At the same time, the sender
also save the ssthresh and set the cwnd to the initial value, as the slow start algorithm does.

As discussed above, for TCP Tahoe, there are two ways to detect the segment loss. One way is to detect
that the RTO for the lost segment expires, and the other is to detect that the sender receives three
duplicate ACKs. Whenever the sender is aware of a segment drop, it retransmits the lost segment. At
the same time, the slow start algorithm is triggered.

One problem of Tahoe is that when the slow start is triggered, the pipeline is usually empty causing the
under-utilization of the link.

3.3.2. Reno

Reno, as proposed in [6], retains the basic principles of Tahoe. However, it adds a mechanism called
“fast recovery” to prevent from the pipe under-utilization:

• Fast Recovery

Fast Recovery is an improvement of fast retransmit. When the third duplicate ACK is received
and the missing segment is retransmitted, ssthresh is saved as half of current cwnd, the same as
in fast retransmit algorithm; however, the fast recovery does not set the cwnd to initial value,
instead, the cwnd is set to ssthresh plus 3. Additionally, every time when another duplicate
ACK is received, cwnd is incremented by one. If a received ACK is acknowledging a new
segment instead of a retransmitted segment, cwnd is set to ssthresh.

 30

According to [19], the Performance of Reno is better than that of Tahoe. The major factor is that when
the third duplicate ACK is received, Tahoe set cwnd to initial value, which is 1 or a few segments.
This causes the pipe under-utilization. Meanwhile, Reno sets cwnd to ssthresh plus 3, which improves
the throughput considerably. However, Reno has severe problems when multiple segments are dropped
at the same window [19].

3.3.3. SACK

Both versions of TCP discussed above, Tahoe and Reno, use cumulative acknowledgements, which
means that only limited amount of information is available for the TCP sender and, in one RTT, only
one packet loss can be learned by the sender. So when multiple segments are lost in a window, the TCP
sender will most likely to get a retransmission timeout and the slow start is trigged, which leads to
throughput reduction. In order to overcome this problem, Selective Acknowledgement (SACK) is
proposed in [13]. The most important improvement of SACK is that it can acknowledge blocks of
isolated segments which have been successfully received. This decreases the possibility that a slow-
start is triggered when there are multiple segments lost in one window improving the throughput
considerably.

3.4. TCP over wireless network

TCP is originally designed for wired networks; however, in wireless networks, the data transmission
characteristics are much different. The signal strength can vary a lot because it depends on a number of
factors, e.g. distance from the antenna, velocity of terminal etc. For that reason, in most wireless access
technologies, automatic bit rate control schemes are implemented to adjust the bit rate of transmission.
Still, the TCP is not adaptive enough as regard to remaining rate diversity. When the bit rate changes
considerably, problems may arise causing the performance degradation [15] [16][17].

 31

4. Introduction to AQM

Chapter 3 has introduced the basic concepts of TCP. Active Queue Management (AQM), one the other
hand, is a mechanism designed to improve the TCP performance. In this chapter, some basic ideas
about AQM will be presented. Furthermore, three detailed algorithms will be introduced.

As mentioned in Section 3.3, when the amount of queuing data in the buffer exceeds the physical limit,
some packets have to be dropped. The most straightforward method of doing this is drop-tail, which
means all the incoming packets are discarded because there is no “room” for them. This method is
intuitive and easy to implement, however, it suffers performance degradation in some situations. One
possible problem is known as unfair sharing. Unfair sharing happens when one or several TCP flows
occupy the whole buffer so that new incoming flows are locked out.

To avoid unfair sharing, new methods called drop-from-front and random drop are proposed. The
differences of these methods relate to way how the packets to be discarded are picked up when the
buffer is full. Instead of dropping incoming packets, drop-from-front drops the packets which have
stayed the longest time in the queue, while the random drop picks the packets to be discarded randomly.
These methods indeed improve the TCP performance as compared to drop-tail. However, they still
suffer from fact that they are passive in responding to congestion, which means that only when the
buffer is full, something is done.

Because passive queue management allows queues to be full or almost full, one obviously problematic
situation occurs when a burst of packets arrives when the buffer is almost full. Then multiple packets
have to be discarded. If those packets belong to different TCP flows, all those flows might reduce the
sending rate at the same time or even trigger the slow-start phase. This is known as global
synchronization. Global synchronization can decrease the throughput significantly; drawbacks are
even more severe in radio networks because of the variation of data rates and thus a higher probability
to packets dropping,

One straightforward way to avoid the global synchronization is increasing the physical buffer;
nevertheless, implementing large buffers do not only increase the system cost but also causes other
problems, e.g. significant delay, timeouts inflation, viscount web surfing [20] [21], etc. Thus, more
sophisticated mechanisms are needed to control the queue.

Active Queue Management (AQM) can somehow overcome the drawbacks of passive queue
management by maintaining the queue size, queuing time or both of them within a reasonable value.
Considerable work has been done in this field and several algorithms have been proposed. RED and its
variations are the best known algorithms of AQM [3] [22] and BLUE, first proposed in [5], is another
important algorithm. All those algorithms are supposed to be implemented in gateways of the Internet,
usually meaning a wired network. Nevertheless, as discussed in Section 3.4, wireless networks have
different characteristics than wired networks and should be thus studied separately. Fortunately also
this work has attracted much attention. PDPC [20] [21] , developed by M. Sågfors et al, is implemented
in 3G WCDMA links. Another AQM algorithm, also developed originally in Ericsson, is studied in
detail and proposed to be implemented in HSPA by T. Rathonyi and M. Nilsson in [4]. Unlike other

 32

algorithms mentioned above, the algorithm studied in [4] is delay-based. In next subsections the AQM
algorithms mentioned here are introduced in more detail.

4.1. RED

The RED algorithm is wildly accepted and implemented AQM method in current Internet routers. It is
a queue-size-based algorithm defining two threshold called minth and maxth. When the queue size is less
than minth, every coming packet is taken into the queue, and when the queue size is greater than minth
but less than maxth, every incoming packet have a probability pα to be dropped, where pα is a value
with range from 0 to maxp. If the queue size is greater than maxth, then every coming packet will be
dropped. In order to avoid unnecessary dropping when packets arrive in a burst, an average queue size
Avg, is used instead of the current queue size.

The general RED algorithm is give below as Algorithm 4.1.

Algorithm 4.1

for each packet arrival
 calculate the average queue size Avg
 if minth ≤ Avg ≤ maxth
 calculate drop probability pα
 with probability pα:
 mark (or drop) the arriving packet
 else if Avg ≥ maxth
 mark (or drop) the arriving packet

As seen from the Algorithm 4.1, The RED algorithm actually has two separate procedures: one is
computing the average queue size to determine the degree of burst; the other is computing the
probability to drop the incoming packet, which depends on the previous calculated average queue size.
The Avg is calculated using the equation:

Avg = (1 – wq) * previous_Avg + wq * current_size,

where wq is a queue weight having a value between 0 and 1. The smaller the value of wq, the smoother
averaging of Avg, meaning that incoming packets can be maintained in a burst without significant
increase in the dropping probability.

The pα, on the other hand, is more complicated to calculate. To calculate pα, another related parameter
pb is calculated depending on maxp, minth and maxth:

() /()p max avg min max min← − −b p th th th

Then the drop probability pα is calculated as

 33

(1)ba bp p count p← − × ,

where count is the number of packet since last drop.

4.2. PDPC

The RED algorithm is certainly an improvement over drop-tail; however, it may be not the best choice
for wireless links. As discussed in [4] [20] [21], Wireless links in WCDMA and HSPA have their own
characteristics e.g. the link queue is dedicated to only one user, the wireless link is the main contributor
of the end-to-end round trip time etc. Thus Ericsson has developed an AQM algorithm called the
Packet Discard Prevention Counter (PDPC) to be implemented in WCDMA.

As RED, PDPC also uses the queue size as an indicator of congestion, but it operates with the
instantaneous queue size instead of the average queue size used by RED. Another difference is that
PDPC discards packets with deterministic drops comparing to the probabilistic policy in RED. In
addition, a counter is used to prevent consecutive drops in one TCP window.

There are three parameters in this algorithm, Tmin ,Tmax, and C (counter). Each time a new packet arrives,
the algorithm will decide if this packet is accepted or not, according to the instantaneous queue size and
parameters Tmin ,Tmax, and C.. That is, if the queue size is smaller than the Tmin, the new arriving packet
is accepted; if the queue size is larger than Tmin but smaller than Tmax, the packet is discarded only if the
C is 0; and if the queue size is larger than Tmax, the incoming packet is discarded anyway, regardless of
the C. The counter C is used to prevent discarding multiple packets consecutively. It is initially set to 0.
When a packet is discarded, C is set to be a predefined number n. Then for each incoming packet, C
decreases by one until it becomes 0 again.

The setting of the parameters is also proposed in [20] [21]. The Tmin should be set to at least the pipe
capacity to avoid the link under-utilization. However, recall that the pipe capacity is the product of
RTTe2e and bandwidth, and the bandwidth of wireless links various fast. For simplicity, the Tmin is
calculated according to some typical value of bandwidth. Once the Tmin is calculated, the Tmax and C
can be calculated according to Tmin. In [20] [21], Tmax is proposed to four times of Tmin and C two time
of Tmin. PDPC works as Figure 4.1 shows.

 34

Figure 4.1: The PDCP algorithm ([20])

4.3. A delay-based AQM

PDPC worked well in WCDMA, but when the 3G evolved to HSPA with a higher peak data rate, the
situation changed. As discussed in [4], a larger bandwidth variation of the latter network significantly
degrades the performance of PDPC. Thus, a new AQM algorithm is studied in [4]. The algorithm is
delay-based, which means that it decides the packets to be dropped based on the time they have been in
the queue.

There are four parameters in this algorithm: minAgeThreshold, maxAgeThreshold,
lowerDropThreshold and minInterDropTime. As discussed in Section 4.2 and [20], one of the most
important purposes of AQM over 3G links is preventing link under-utilization; that is why the Tmin is
used in PDPC algorithm. In delay-based AQM, a parameter called minAgeThreshold is used with
similar purpose to Tmin. But unlike Tmin, which is determined by the pipe capacity of the link, the
minAgeThreshold is determined by end-to-end Round Trip Time (RTTe2e) of the link. According to [4],
the RTTe2e is less dependent on the instantaneous bandwidth than Pipe Capacity. As a consequence, the

 35

minAgeThreshold is less dependent on bandwidth than Tmin; therefore, the delay-based AQM usually
has better throughput in circumstance of large varying bandwidth [4].

The minInterDropTime is defined to prevent the dropping multiple packets consecutively, for the same
reason as the counter in PDPC. The lowerDropThreshold is used to make sure that the algorithm does
not drop from an almost drained queue, no matter how long time the packets have been in the buffer.
Another reason for this parameter is ensuring that there is sufficient number of packets left in the queue
to trigger duplicate ACKs after the drop and thereby avoid RTO, if the data belongs to some TCP flow.
The maxAgeThreshold defines the algorithm drops the packets that have stayed in the queue longer
than the parameter, regardless of the minInterDropTime. To this end, the AQM algorithm can be
defined as Algorithm 4.2

Algorithm 4.2
for each outgoing packet
 if (size ≤ lowerDropThreshold)
 transmit packet
 else
 if ((delay > minAgeThreshold AND now − previousDropTime > minInterDropTime))
 OR (delay > maxAgeThreshold))
 discard packet
 previousDropTime = now
 else
 transmit packet

 36

5. AQM in eNodeB for uplink traffic

In this thesis, a new AQM algorithm for LTE uplink will be developed and investigated. The main
target of this algorithm is to improve the performance of TCP flows when the file is uploaded from the
terminal to the server located in a fixed network. Chapter 2-4 has introduced related background and
theoretical issues. In this chapter, a method to estimate the packet queuing delay of the UE buffer from
the eNodeB side is introduced. Served by this method, a new AQM method is proposed at the end of
this chapter.

5.1. Introduction

Chapter 4 introduces several AQM algorithms and their typical implementing circumstances. PDPC is
an algorithm which discards packets based on the queue length in the buffer. For LTE it is not suitable
due to the largely varying bit rates [4]. On the other hand, PDCP discard [23] is a delay-based
algorithm which discards packets based on how long time the packets have been in the queue. When
the delay exceeds some predefined threshold, the packets will be discarded, as illustrated in Algorithm
5.2.

Algorithm 5.1: PDCP discard
for each outgoing packet
 if (delay > delayThreshold)
 discard packet
 else
 transmit packet

This algorithm can maintain small end-to-end delay but may have considerable throughput degradation
in some situations, e.g. consecutive packet drops etc. More detailed performance of PDCP discard will
be illustrated in Chapter 7. The AQM algorithms proposed in [4], on the other hand, retains the delay-
based principle and implements some mechanisms to improve the throughput, e.g. preventing from
consecutive packet drops or no drop when queue is small etc., without introducing large end-to-end
delay. The simulation results in [4] shows that the algorithm performs well in EUL; thus it was
suggested in 3GPP to be specified as a mandatory AQM functionality in the UE, but it was not
accepted. As a result, there is no guarantee that all the UEs will have AQM implemented. That means
though the UEs with an advanced AQM algorithm implemented may have improved performance, for
those UEs without AQM, the performance may be still bad. Thus, it is desirable to develop an AQM
algorithm which is implemented in the network side to control the UEs’ queue remotely. By this way,
all the UEs should have enhanced performance for uplink transmission, no matter if any AQM is
implemented to themselves. In this thesis, the algorithm implemented in the eNodeB is called as
Receiver-AQM (R-AQM). As a comparison, the delay-based algorithm studied in [4] is called as T-
AQM in the following text.

 37

As discussed above, the main target of the R-AQM is to maintain both good link utilization and small
end-to-end delay for the LTE uplink, even when the bandwidth varies. Additionally, the algorithm
should be easy to implement, i.e. not having too much calculation and memory consumption.

In [4], the advantages of the delay-based AQM algorithm are shown. Comparing to a queue-size-based
approach e.g. PDPC, it maintains both higher link utilization and lower end-to-end delay. Besides, it is
less affected by the bandwidth variation. Thus, in the new algorithm proposed in this thesis, the delay-
based principle is retained. The key point of the delay-based AQM is to consider the time of a packet
stored in a buffer as an indicator of congestion. Hence, in order to implement the algorithm, the
information on how long time a packet is stored in the buffer, so-called queuing delay, is required.
Nevertheless, from the eNodeB side, it is impossible to know the UE’s queuing delay directly without
specific messaging specified for that. Therefore, some method is required to estimate the packet
queuing delay.

The rest of Chapter 5 comprises three sections; Section 5.2 introduces a method to estimate the queuing
delay of the headmost data in a queue by monitoring the queue length discontinuously as well as
monitoring the amount of data served during each monitoring time interval. Section 5.3 presents how
this method can be implemented in eNodeB to estimate the queuing delay in UE’s buffer. Section 5.4
proposed the full algorithm of R-AQM.

5.2. A method to estimate queuing delay

In this section, a method to calculate the approximate queuing delay of the headmost data in a queue is
proposed. Before going to details of the method, we make some assumptions. First, assume that there is
a buffer with infinite capacity. Second, the queue length can be monitored only discontinuously, i.e. we
can only know the queue length with discrete time intervals. Third, the length of the monitoring time
interval is known and supposed to be quite small. Fourth, the amount of data served by the buffer
during each time interval is also available. For convenience, in the following text, we use ti to denote
the time when the queue is monitored, while the queue length at ti is denoted by Qi. Additionally, the
time interval between ti-1 and ti is denoted by ∆ti, and the data served during time interval ∆ti is denoted
as Li.

 38

Waiting time

Queue size

0 ∆t1/2

Waiting time

Queue size

0 ∆t2 ∆t1/2
+
∆t2

∆t2

0

0 Q1

R2

Queue size

Waiting time

∆t1

Q1
+
R2 Q2

Time t0

Time t1

Time t2 L2

∆t1/4
+
∆t2

Figure 5.1: Estimate delay at time t0, t1, and t2

Figure 5.1 shows the delay estimation procedure at time t0, t1 and t2. Obviously, when the queue length
is zero, there is no data in the buffer and the delay is also zero, like the Figure 5.1 shows at t0. Then
after a time interval ∆t1, the queue length is assumed to be Q1. We cannot know exactly when this data
came to the buffer; it can be any time between t0 and t1; besides, the arrival time is supposed to be
uniformly distributed between t0 and t1, thus we can obtain that the expected queuing delay of
headmost data is:

(t1 - t0) / 2 = ∆t1/2.

On the other hand, the queuing delay of backmost packet is zero, as illustrated in Figure 5.1 at t1.
Notice that there are two axes in each box, the above one denotes the queue length and below one
queuing time.

After another interval ∆t2 from t1, there are two possible situations; one is the buffer is empty again. In
this case we are back to situation at t0. The other possibility is that there is still a queue in the buffer,

 39

but comparing to the queue at t1, some old data may have left and new data may have come into the
queue. Firstly we consider a special case: the buffer only has income R2 but no outgo. Hence the delay
of headmost data is ∆t1/2+∆t2 and the leftmost 0. It is also important to notice that the data that was
leftmost at t1 is now with delay ∆t2. Thus the queuing delay of headmost data now is:

D2 = ∆t1/2+∆t2.

where D2 denotes the delay of headmost data at t2. Then we consider the queuing delay is if there is
data outgo, assuming the amount of it is L2. This situation can be treated as cutting and removing the
headmost data, whose size is L2. Obviously L2 < Q1 + R2, otherwise the buffer is empty and the process
returns to the situation at t0. However, there are still two possible conditions, one is L2 < Q1 and the
other is Q1 < L2 < Q1 + R2. We will investigate these two conditions respectively.

If L2 < Q1, which means all the data in the queue at t1 has not yet removed, like illustrated in Figure 5.1
at t2, the queuing delay of headmost data is between ∆t2 and ∆t1/2+∆t2. To facilitate the calculation,
also recall that ∆t2 is assumed to be quite small; the delay is then calculated by

D2 = (∆t2 + ∆t1/2 + ∆t2) / 2 = ∆t2 + ∆t1/4,

On the other hand, if Q1 < L2 < Q1 + R2, it indicates that not only the data at t1 has been removed, but
also some part of new income R2 has been removed. Thus, the maximum delay then can be calculated
by

D2 = (0 + ∆t2) / 2 = ∆t2 / 2.

It is also importance to point out that, according to the assumption at the beginning of this section, the
Q2 and L2 are known but R2 is not. However, R2 can be calculated using Q1, Q2 and L2. Notice that the
remained queue length Q2 in Step 2 is the queue length at t1, which is denoted by Q1, plus the new data
R2 and minus the outgo L2, i.e.,

Q2= Q1+ R2 – L2.

Thus R2 can be calculated by

R2 = Q2 + L2 – Q1.

To summarize, the delay of headmost data at t2 can be expressed in terms of Q1, Q2 and L2:

 (5.1) 2 1 2
2

2 2

 / 4, ,
/ 2, .

t t if L
D

t i
Δ + Δ <⎧

= ⎨Δ >⎩
1

1

Q
f L Q

Additionally, it should be noted that there are several values that should be stored for future calculation,
i.e., R2, Q2 and the corresponding queuing delays ∆t2 and D2 (which is ∆t2 + ∆t1 / 4 in the example
illustrated in Figure 5.1).

 40

The procedure continues step by step in the same way as explained above. Next we will consider a
more general situation: how to calculate the delay of headmost data at tn. As illustrated in Figure 5.2,
every new income Ri during time interval ∆ti is calculated and recorded until it is removed from the
queue. This can be done by maintaining a data structure, e.g. an array, to record received bits in every
time interval. New data Ri can be calculated by monitoring the queue length and outgoing bits, i.e.

 Ri = Qi + Li – Qi-1, (5.2)

where Qi, Li, Qi-1 are known variables. Using Equation (5.2) all the values Ri can be calculated;
additionally, they are recorded with their corresponding monitoring intervals, i.e. ∆ti, as showed in
Figure 5.2. The light blue box indicates the new income Rn, while each green one denotes the received
data in the previous time intervals. Yellow one, on the other hand, presents the headmost data.
However, some part of it has been removed during time interval ∆ti-1. Thus, the queuing delay of
headmost data, if we assume that anything is not removed yet, like Figure 5.2 (a) shows, should be

(
n

i
i r

t
=

Δ∑ +
1

n

i
i r

t
= −

Δ∑) / 2,

where r is the index of monitoring event tr when the headmost data, i.e. the oldest data still existing in
the queue, has arrived. However, the fact is that Ln data is already removed from the queue. Thus the
actual headmost data is the point Qn, which means that the queuing the delay of headmost data is

dependent on which area the Qn is located. For instance, assume that the Qn is between
1

n

i
i r

R
= +
∑

and
n

i
i r

R
=
∑ , then the max queuing delay is calculated as the average of their corresponding delays, i.e.,

Dn = (
1

n

i
i r

t
= +

Δ∑ +
n

i
i r

t
=

Δ∑) / 2,

just as Figure 5.2 (b) shows. Furthermore, Dn is stored in the data structure, as well as its corresponding
queue length Qn. Additionally, in order to facilitate future calculation and memory consumption, the

elements indicating those removed data should be discarded from the data structure, i.e.,
n

i
i r

R
=
∑ , Qn-1 +

Rn and their corresponding delays.

 41

Waiting time

Queue size

0 ∆tn

0

Time tn
Before data removing

Figure 5.2: Estimate delay at tn

By the method described above, we can calculate the queuing delay of the headmost data in every time
interval. The pseudo code of method is given in Algorithm 5.2. As seen from Figure 5.2, in order to
store the amounts of bits received in every time interval and their corresponding queuing delay, i.e. the
sum of Rj, and ∆tj, arrays or similar data structure are required. In the Algorithm 5.2, R[] and D[]

denote the
n

i
i l

R
=
∑ and respectively; furthermore, R[].addFirst(arg) means attaching the argument

to the head of R[], similarly, R[].addLast(arg) means attaching the argument to the end of R[].

n

i
i l

t
=

Δ∑

At any time ti, the queue length Qi, the amount of data served by the buffer Li, and time interval ∆ti, are
assumed to be available. Besides, lastIndex denotes the index of last element in array.

Rn
1

n

i
i n

R
= −
∑

1

n

i
i n

t
= −

Δ∑
······

Qn-1
+
Rn 1

n

i
i r

n

i
i r

R
=
∑

1

n

i
i r

t
= +

Δ∑
n

i
i r

t
=

Δ∑

R
= +
∑

+
1

n

i
i r

t
= −

(
n

i
i r

t
=
∑ ∑Δ Δ) / 2

Waiting time

Queue size

0 ∆ts

0

Time tn
After data removing

Rn
1

n

i
i n

R
= −
∑

1

n

i
i n

t
= −

Δ∑

1

n

i
i r

······

1

n

i
i r

t
= +

Δ∑

R
= +
∑

(
1

n

i
i r

t
= +

Δ∑ +
n

i
i r

t
=

Δ∑

Qn

(a)

(b)

Ln

) / 2

 42

Algorithm 5.2: packet delay estimation
initial Array D[]
initial Array R[]
Q_old← 0
Each time the queue length Q is monitored and also L and ∆t available:
 if (Q = 0)

 initialize D[]
 initial R[]

 Q_old ← 0
 else
 delay ← 0

 for (j ← lastIndex to 0)
 if (R[j] > Q_old – L)
 delay ← D[j]
 remove R[j] from R[]
 remove D[j] from D[]
 else
 if (R[j] + Q + L – Q_old < 0)
 remove element from R[] and D[]
 else
 R[j] ← R[j] + Q + L –Q_old
 D[j] ← D[j] + ∆t
 estimatedDelay ← (delay + ∆t + D[lastIndex])/2

 Q_old ← Q
 R[].addFirst(0)
 R[].addLast(Q)
 D[].addFirst(0)
 D[].addLast(estimatedDelay)

5.3. Estimation of delay in eNodeB

In Section 5.2 a method to estimate the queuing delay of headmost data is introduced. To enable this,
the queue length should be able to be monitored with small time intervals; additionally, both the length
of each time interval and the amount of bits served by the buffer in each time interval are also required.
In this section it is presented how this method to estimate the queuing delay of the buffer in UE is
implemented in eNodeB. As Section 2.4.3 introduced, BSRs are transmitted from the UE to inform the
eNodeB the size of the queue in the buffer of the UE. BSRs are triggered by some special events which
are presented in Section 2.5 as well as in [23]. Typically, the triggering interval is around tens of
milliseconds. Thus, the BSR can be seen as a monitor of the queue length with a small time interval. If
we can obtain the length of time intervals and the amount of bits served by the buffer in each time
interval, the queuing delay of headmost data can be estimated by Algorithm 5.2.

 43

To investigate the problem further, firstly we assume that at time ti-1 a BSR is triggered and transmitted
together with a MAC PDU. After a time interval ∆ti the next BSR is triggered at time ti. Let’s treat the
data in transmission as a stream, thus the data between these two BSRs is exactly the RLC SDUs
served by the buffer, in addition to the MAC headers and CRC codes. Then we assume these two BSRs
are received by the eNodeB at ri-1 and ri respectively, with time interval ∆ti´= ri – ri-1. At the same time,
the data between them is also received during ri-1 and ri. If no HARQ retransmissions are not performed,
the ∆ti´ should be equal to the ∆ti; furthermore, the amount of data delivered to higher layer during ri-1
and ri should approximate the data amount served by the UE’s buffer during ti-1 and ti. In addition to the
queue length Qi-1 and Qi indicated by these BSRs, the queuing delay of headmost data can be calculated.

However, this is only the error-free situation. If there are some HARQ errors detected and
retransmissions are required, the situation is more complicated. First, the ∆ti and ∆ti´ may have different
values if the retransmitted MAC PDU includes the BSR. Second, due to the in-sequence delivery
function provided by the RLC layer, the received RLC SDU will not be directly delivered to higher
layer if previous SDUs are not correctly received; consequently, the delivered data during ri-1 and ri in
eNodeB may quite differ from served data in UE during ti-1 and ti.

As discussed above, some restrictions will affect the accuracy of the delay estimation. Due to the
complexity in realistic situations, we can only investigate it in a statistical way e.g. transmitting large
amount of data and see how close the estimated delay and the real delay are. Thus, the performance of
the estimation s will be investigated by simulations with different fixed HARQ error probabilities in
Section 7.1.

5.4. Delay-based AQM in eNodeB

In section 5.2 and 5.3, a method to estimate the queuing delay has been proposed. After that, this new
method is proposed to be implemented in eNodeB to estimate the delay of the queue in a UE.
Implementing the delay-based AQM algorithm in eNodeB is quite intuitive. We just replace the
accurate packet delay by the estimated delay, as well as we replace the accurate queue length by the
BSR reported size. Nevertheless, the maxAgeThreshold is removed from the T-AQM algorithm. In T-
AQM, the maxAgeThreshold is used to discard the packets whose queuing delay exceeds the
maxAgeThreshold, without considering the minInterDropTime. For T-AQM, this is quite a useful
mechanism which can drain the buffer quickly when there is significant bandwidth down-switch [4].
However, the mechanism is based on the fact that the T-AQM is implemented in UE side directly
operating the queue. For R-AQM, there are some differences. The R-AQM is implemented in eNodeB
and thus cannot directly operate the queue in a UE. Thus, even the eNodeB can correctly estimate the
queuing delay of received packets and drop all the packets whose queuing delay exceeds the
maxAgeThreshold, this is not much help for draining the UE buffer fast, because the packets are not
dropped directly from the queue. Additionally, if a large amount of packets are dropped after they have
been transmitted through the physical channels, the allocated physical resources to transmit them are
actually wasted. Hence, it is not wise to us to define maxAgeThreshold in R-AQM. To handle the
situation when there is significant bandwidth down-switch, a possible solution is combining the R-
AQM with PDCP discard [23]. A more detailed investigation on the combination will be presented in
Section 7.3.2.

As discussed above, the general algorithm of R-AQM is:

 44

Algorithm 5.3
if (bsrSize < lowerDropThreshold)
 deliver packet

else if (estimated_delay > minAgeThreshold AND
 now – lastDropTime > minInterDropTime)
 drop packet
 lastDropTime ← now

else
 deliver packet

The bsrSize is the queue size reported by a BSR and estimated_delay is the delay estimated when the
BSR is received. LastDropTime is the time when last packet is discarded.

The detailed algorithm flow is illustrated in Figure 5.3. There are two separate procedures: one is
estimating the maximum queue delay and the other is deciding if the packet drop will be triggered.
However, they are also interactive with each other, e.g. in order to calculate the maximum queue delay,
the information on how much bits is received during the interval of two received BSRs is provided by
the other procedure. On the other hand, the decision of packet drop is based on the calculations of the
first procedure.

 45

Packet delivering to
higer layer

Is BSRsize <
lowerDropThereshold

Yes

Is estimated delay >
minAgeThreshold

Is drop interval >
minInterDropTime?

Yes No

BSR
received

Renew the
queue length

Is queue
length = 0 ?

Restart
delay

estimation
procedure

Calculate
estimated

delay

No

Yes

No Yes

Packet
delivered and

record size
Is drop interval >
minInterDropTime?

Yes

No

Packet discard
and record time

No

Figure 5.3: Detail R-AQM algorithm flow chart

 46

6. Simulator configurations

All the results in this thesis are obtained from the simulations performed by the simulator developed by
Ericsson Research. It includes a large number of Java classes which specify the details of the radio
network, transport network, propagation models, Internet etc. In addition, most of the parameters in this
simulator are configurable, which makes the simulator a convenient and powerful tool for radio
network simulations. In this thesis, a fully implemented LTE system is used to investigate the
performance of AQM algorithms.

6.1. Simulation Models

The R-AQM algorithm discussed in Chapter 5 is implemented in the RLC layer of eNodeB in the
simulator. Considering the ARQ functionality provided by RLC layer, which will guarantee the error-
free transmission, the dropping performed by AQM happens when RLC SDUs are being delivered to
higher layers, as Figure 6.1 shows.

Drop
triggered?

RLC RLC

UE
eNodeB

PDCP PDUs

RLC SDU

No

Yes

channel

Figure 6.1: Simulation model of R-AQM

As comparison, performance of other Passive Queue Management and Active Queue Management
algorithms for LTE uplink will also be investigated. The algorithms include PDCP discard specified in
[23], drop-from-front and T-AQM proposed in [4]. Unlike the R-AQM, these three algorithms are
supposed to be implemented in UE. It is important to be noted that the PDCP discard is supposed to be
implemented in the PDCP layer and discard the PDCP SDU. However, in order to simplify the

 47

configuration of the simulator, the RLC SDUs are discarded in all simulations. The simulation model
of these three algorithms is illustrated in Figure 6.2. For each outgoing RLC SDU, the algorithms will
check if the drop is triggered; if yes, the RLC SDU will be discarded, otherwise the SDU is attached by
a RLC head and delivered to MAC layer. The algorithms of PDCP discard, drop-from-front and T-
AQM are referred as Algorithm 5.1, Algorithm 6.1 and Algorithm 4.2 respectively.

Figure 6.2: Simulation model of T-AQM, PDCP discard and drop-from-front

Algorithm 6.1: Drop-front-front
for each outgoing packet
 if (queue_size > bufferLimit)
 discard packet
 else
 transmit packet

6.2. Parameter settings

In the simulator, there are a large number of parameters that can be configured. However, in the
simulations which will be done in Chapter 7, we leave most of them as default values. Some important
parameters are listed here:

channel

RLC
RLC

eNodeB UE

PDCP PDUs

PDCP PDUs

Drop
triggered?

No

Yes RLC SDU

RLC PDU

 48

• Max cwnd: 2097 Kbytes
• Buffer size: 1.25 Mbytes
• Transport network delay (one way): 20 ms
• Internet delay (one way): 40 ms
• TTI duration: 1 ms
• BSR period: 20 ms
• Number of Base Station: 1
• Number of downlink beams per cell: 1
• Cell radius: 500 m
• No MIMO used

It is important to be noted that in the subsections of Chapter 7, if there is no obvious indication, the
parameters are set as the values listed above. Otherwise the changed parameters will be listed in those
subsections.

 49

7. Simulation results and analysis

Chapter 5 proposed a method to estimate the queuing delay of UE in eNodeB as well as it proposed an
R- AQM algorithm. In this chapter more detailed investigation on the delay estimation method will be
done using simulations. Additionally, the performance of R-AQM with different thresholds will be
investigated and some optimal values of these parameters will be proposed. Finally, the comparison of
different queue management mechanisms, i.e. R-AQM, T-AQM [4], PDCP discard [23] will be done
based on the simulations. This chapter is divided into three parts: Section 7.1 illustrates the
performance of delay estimation with different HARQ error probability; Section 7.2 presents the
selection of optimal threshold for the R-AQM; while Section 7.3 compares the performance of different
queue management mechanisms.

7.1. Performance of delay estimation in eNodeB

Sections 5.2 and 5.3 introduced a method to estimate the queuing delay and how it is implemented in
the eNodeB. Those sections also presented that error may happen when HARQ error is detected due to
the retransmission and in-sequence delivery function provided by RLC layer. To investigate how the
HAQR error affects the estimated delay, a few simulations are done with manually fixing the HARQ
error probability to 0%, 10%, 30% and 50%. Additionally, no AQM is implemented in these
simulations. The method to handle the RLC transmitter buffer is drop-from-front. Some related
parameters are set as:

• Buffer limit: 375 Kbytes
• File size: 20 Mbytes
• Number of File transfers: 1

Figure 7.1 illustrates the estimated delay, which is denoted by the red points, as well as the real queuing
delay, which is denotes by the green points. Additionally, the x-axis denotes the time and y-axis
denotes the delay. From the figures it can be observed that when the HARQ error probability increases,
the errors of delay estimation increase as well. However, it is to be noted that our purpose of delay
estimation is to serve the R-AQM that trigger the packets drop, i.e. when the estimated delay exceeds
the minAgeThreshold, a packet may be discarded. From all the figures we can see that even though
there are estimation errors, the estimated delay is good enough to trigger the packet drop. This is
because on one hand, the estimated delay follows the real delay quite well in a statistical way if we
ignore the erroneous estimated values. On the other hand, the erroneous estimated values are usually
below the real value, thus there should be few unexpected packet drops by erroneous estimation.

As discussed above, the delay estimation method works well even when the HARQ error probability is
up to 50%, if our purpose is to trigger the packet drop. It is also worthy to point out that in realistic
radio network, the HARQ error probability should be much less than 50%. Hence, we can conclude
that the delay estimation method is qualified to serve the R-AQM.

 50

HARQ error probability = 0 HARQ error probability = 10%

HARQ error probability = 30% HARQ error probability = 50%

Time (s) Time (s)

Time (s) Time (s)

D
elay (s)

D
elay (s)

D
elay (s)

D
elay (s)

Estimated packtet delay
Real packet delay

Figure 7.1: Delay estimation with different HARQ error probabilities

7.2. Parameters selection

Section 7.1 has showed that the delay estimation method works well to serve for the R-AQM. Based on
simulation results, this section proposes some proper values for different parameters of the R-AQM.

7.2.1. Selection of minAgeThreshold

The minAgeThreshold is the most important parameter because it determines how large the estimated
delay can be before packet drops are done. As presented in [4], to maintain full link utilization in fixed
bandwidth, the minAgeThreshold should be at least RTTe2e. In this section a number of simulations will
be done to investigate the performance of R-AQM with different values of minAgeThreshold. It should
be noticed that in these simulations the lowerDropThreshold is disabled because no reasonable value is
available until now. However, the minInterDropTime is set to be 0.3 s. The reason for the setting of
minInterDropTime is that if we disable the minInterDropTime, the consecutive drops of packets
degrade the throughput and it is difficult to obtain meaningful results from the simulations, especially
when the bandwidth varies. The selection of minInterDropTime to 0.3 s is quite arbitrary, but a more
detailed discussion about the selection of it is presented in Section 7.2.2.

 51

The related settings of the simulations are:

• File size: 10 Mbytes
• Number of file transfers: 10

Firstly the throughputs in a fixed bandwidth scenario are illustrated in Figure 7.2. From the figure a
trend can be observed: At the beginning, the throughput increased when a minAgeThresholsd is
increased. The reason is that when the minAgeThreshold is quite small, the packets will be discarded
before the PC is fulfilled, which will cause throughput degradation. However, when the thresholds
exceed some value, the throughputs have no obvious improvement any more. That is because when the
threshold is large enough, the PC is fulfilled and increasing minAgeThreshold can only enlarge the
queue length as well as end-to-end delay. Thus, an optimal value of minAgeThreshold is supposed to
be the value that maintains the throughput high but the end-to-end delay is small.

Throughputs with different minAgeThreshold

0

5000

10000

15000

20000

25000

30000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

minAgeThreshold (s)

th
ro

ug
hp

ut
 (k

bp
s)

30 Mbps
10 Mbps
5 Mbps
1 Mbps

Figure 7.2: Throughput with different bandwidths and minAgeThresholds

 52

Figure 7.3: CDF of TCP end-to-end delay with different minAgeThreshold when bandwidth is 5 Mbps

Figure 7.3 illustrates the TCP end-to-end delays with bandwidth of 5 Mbps. From the curve of 5 Mbps
in Figure 7.2 we can see that when the minAgeThreshold exceeds 0.15 s, there is no improvement
when increasing the minAgeThreshold. On the other hand, the TCP end-to-end delay increases with
less strict minAgeThreshold all the time, as showed in Figure 7.3. Similar observation can be found
with other bandwidths. Thus, 0.15 s is a good value for minAgeThreshold when the bandwidth is fixed.
However, it is important to point out that some disturbances can be observed from the curve in Figure
7.4, where the bandwidth is 128 kbps. To look into this problem, the numbers of RTOs are showed in
Table 7.1 with different minAgeThresholds. As a comparison, the numbers of RTOs with 1 Mbps
bandwidth are also listed.

Table 7.1: Times of RTOs with different minAgeThreshold

minAgeThreshold (s) 0.05 0.08 0.12 0.15 0.2 0.25 0.3 0.35 0.4
Times of RTOs (128 kbps) 207 90 59 62 80 63 64 49 58
Times of RTOs (1 Mbps) 1 7 0 0 1 0 0 0 0

From Table 7.1 it can be seen that when the minAgeThreshold is 0.2 s and the big throughput
degradation can be observed in Figure 7.4, the times of RTOs are higher than e.g. when
minAgeThreshold is 0.15 or 0.25. Additionally, when the bandwidth is 128 kbps, the total number of
RTOs is quite high even the minAgeThreshold is set to 0.4, comparing to the number of RTOs with
bandwidth 1 Mbps. The result indicates that a packet drop in the scenario of low bandwidth have higher
possibility to cause RTO than in high bandwidth. Too many RTOs will definitely degrade the
throughput of TCP significantly. Thus, the parameter lowerDropThreshold is created to prevent from

 53

the packet drop when the queue is quite small. More detailed study on lowerDropThreshold will be in
Section 7.2.3

Throughputs with deifferent minAgeThreshold
Bandwidth = 128 kbps

0.05

0.08

0.2

0.25
0.3

0.35
0.4

0.12 0.15

0

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

minAgeThreshold (s)

th
ro

ug
hp

ut
 (k

bp
s)

Figure 7.4: Throughput with different minAgeThreshold when bandwidth is 128 kbps

Figure 7.5: CDF of queue size with different minAgeThreshold when the bandwidth is 128 kbps

 54

Next we will investigate the performance of different minAgeThresholds in varying bandwidth
scenario. We consider not only deterministic changes but also a realistic radio network scenario where
the bit rate changes due to the physical environment. Figure 7.6 and Figure 7.7 illustrate the throughput
of deterministic changing bandwidth. Figure 7.6 shows the throughput when the bandwidth oscillates
between 1 Mbps and 20 Mbps with period 20 second while Figure 7.7 shows the throughput when the
bandwidth oscillates between 512 kbps and 5 Mbps with period 5 second. It is important to point out
that, as found in [4], a quite low variation, e.g., high bandwidth is a few times of low bandwidth or
quite fast variation, e.g., the oscillation period is less than 1 s, the performance in these situations is
quite similar to the fixed bandwidth. Hence, in this section, only large variations with period 5 s and 20
s are investigated.

From the Figure 7.6 a similar dependency of throughput and minAgeThreshold can be observed as with
the fixed bandwidth. Nevertheless, the “reasonable value” in this situation is around 0.2 s, which is a
little bit more than in a fixed bandwidth. This example indicates that larger minAgeThreshold may
obtain better robustness against bandwidth variations; on the other hand, larger minAgeThreshold
means a larger end-to-end delay. Thus, there is again a tradeoff between the throughput and the delay.

From the Figure 7.7 no obvious trend of throughout as a function of minAgeThreshold can be observed.
When the minAgeThreshold is 0.05 s and 0.08 s, the throughput is very bad; the throughput is even
much less than 100 kbps. After that, the throughput improves significantly when minAgeThreshold
increases from 0.08 s to 0.15 s. Then throughput degradation happens again when the
minAgeThreshold is 0.25 s and 0.3 s. We investigate this problem by listing the number of RTOs with
different minAgeThresholds in Table 7.2.

Table 7.2: Times of RTOs with different minAgeThresholds when bandwidth varies

minAgeThreshold (s) 0.05 0.08 0.12 0.15 0.2 0.25 0.3 0.35 0.4
Times of RTOs 206 211 83 25 14 153 91 16 17

From Table 7.2 we can see that those minAgeThresholds that had throughput degradation has a large
number of RTOs. The reason is that, even we have set the minInterDropTime to 0.3 s, it is not enough
to prevent the occurrences of multiple drops in one window, especially when the bandwidth down-
switches e.g. from 5 Mbps to 512 kbps. Increasing the minInterDropTime can reduce the RTOs and
improve the throughput. More detailed investigation on minInterDropTime will be in Section 7.2.2.

Additionally, it should be noticed that the down-switched bandwidth may cause a delay burst problem,
which means in a short period, the queuing delay may be quite large. The reason is, when the
bandwidth is high, there is a large queue in the buffer. Once the bandwidth down-switches to a lower
lever, the PC decreases. The queue cannot adapt to that very fast, thus some packets in the queue will
get large queuing delay. In the T-AQM studied in [4], this problem is handled by discarding all the
packets whose queuing delay exceeds the maxAgeThreshold. However, for the R-AQM, it cannot
handle this situation, as discussed in Section 5.4.

One scenario throughput can degrades is when the bandwidth up-switched e.g. from 512 kbps to 5
Mbps, since there is too small queue in the buffer to fulfill the suddenly inflated Pipe Capacity.

 55

Throughput with different minAgeThreshold
bandwidth 1 Mbps - 20 Mbps at 20s

0.05

0.08

0.12

0.40.350.30.250.2
0.15

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

minAgeThreshold (s)

th
ro

ug
hp

ut
 (k

bp
s)

Figure 7.6: Throughput with different minAgeThreshold when bandwidth varies

Throughput with different minAgeThreshold
Bandwidth 512 kbps - 5 Mbps at 5s

0.05 0.08

0.12

0.4
0.35

0.3

0.25

0.20.15

0

200

400

600

800

1000

1200

1400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

minAgeThreshold (s)

th
ro

ug
hp

ut
 (k

bp
s)

Figure 7.7: Throughput with different minAgeThreshold when bandwidth varies

 56

Next, the performance with different minAgeThreshold in realistic radio network environment will be
investigated. In these simulations, no predefined bandwidth is assigned and all the scheduling decisions
depend on the instantaneous environments and link adaptation. The related parameter is:

• UE speed: 0.83 m/s

Figure 7.8 illustrates the throughput curve with different minAgeThresholds. From Figure 7.8 a similar
trend of throughputs can be observed as with the fixed bandwidth. Also in this case the “optimal value”
of minAgeThreshold is 0.2 s.

throughput with different minAgeThreshold
realistic radio network

0.05

0.08

0.12

0.15

0.2 0.25 0.3 0.35 0.4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

minAgeThreshold (s)

th
ro

ug
hp

ut
 (k

bp
s)

Figure 7.8: Throughput with different minAgeThreshold in a realistic radio network

As discussed above, we can conclude that the optimal minAgeThreshold is supposed to be around 0.2 s.
It can maintain the high throughput as well as low end-to-end delay both with fixed and varying
bandwidth, though the throughput has degradation when the bandwidth is 128 kbps. Later in this
section we try to improve it by correctly setting the lowerDropThreshold. Additionally, when the
bandwidth oscillates large during a moderate period, e.g. 5 s, a large number of RTOs is observed; this
can be improved by setting the minInterDropTime, which will be discussed in the following Section
7.2.2.

7.2.2. Selection of minInterDropTime

The purpose of the parameter minInterDropTime is to prevent consecutive drops. For TCP, multiple
drops in one congestion window may cause RTO which will reduce the throughput considerably. Quite
a lot of research on how to improve the throughput when multiple packets drops in one window has
been done and SACK is a good option for that. Comparing to Tahoe and Reno, SACK can

 57

acknowledge separate received bunches of packets so that the possibility of RTO decreases. However,
it still faces the RTO problem, especially when the retransmitted packets are discarded. Therefore, the
AQM algorithms usually freeze the packet drop in a predefined period once a packet is discarded. In R-
AQM, the minInterDropTime is defined to separate two continuous drops at least minInterDropTime to
decrease the possibility of RTO.

The simulations in Section 7.2.1 set the minInterDropTime to 0.3 s and it seems suitable in most
situations except for the oscillating bandwidth with the period of 5 s. More simulations will be done in
this section with focus on the TCP performance with different minInterDropTime.

The general parameters are showed below. In addition, the minAgeThreshold is set to 0.2 s, as
proposed in Section 7.2.1. The lowerDropThreshold is still disabled.

Table 7.3 shows the throughput with different minInterDropTimes and bandwidths. In addition, Figure
7.9 illustrates the times of RTOs. From them, it is obvious that when the minInterDropTime is zero, the
numbers of RTOs are quite high and therefore the throughput has severe reduction. Then the
throughput improves with increasing minInterDropTime. When the minInterDropTime is around 0.6 s,
the number of RTOs is very small. However, the curve in the scenario in which the bandwidth
oscillates between 512 kbps – 5 Mbps, varies all the time. Thus it is difficult to predict the exact
performance in such a varying bandwidth environment. Additionally, as Figure 7.10 shows, the TCP
end-to-end delay is quite similar, no matter which the minInterDropTime is. Thus, a value around 0.6 s
is preferred. Nevertheless, as presented in [4], this value might be not quite suitable for multi-flow
scenario because it may cause unfair sharing problem. Hence, there is tradeoff between obtaining a
good throughput and maintaining fairness in multi-flow scenario. In the following simulations, the
previous choice, i.e. obtaining good throughput is chosen and the minInterDropTime is selected as 0.6 s.

Table 7.3: Throughput with different minInterDropTime and bandwidth

 0 0.2s 0.4s 0.6s 0.7s 0.8s 1s 1.5s 2s

30 Mbps 14587.3 25357.99 25358 25358 25358 25358 25358 25358 25486

5 Mbps 3498.8 4422.42 4422.7 4422.7 4422.74 4422.74 4423 4422.7 4424

1 Mbps 244.01 787.8 806.61 869.11 869.11 869.11 869.1 869.28 869

1 – 20 Mbps at 20s 497.94 3125.65 3271.8 3006.6 3228.09 3170.66 3147 3117.1 2756

512k – 5M bps at 5s 11.43 488.85 804.88 981.43 968.07 1369.8 1004 877.07 981.6

Realistic network 2824.02 4741.2 4671 4744.9 4744.88 4744.88 4686 4656.5 4760

 58

Times of RTOs with different minInterDropTime

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5

minInterDropTime (s)

tim
es

Bandwidth 30 Mbps
Bandwidth 5 Mbps
Bandwidth 1 Mbps
Bandwidth 1M-20M at 20s
Bandwidth 512k-5M at 5s
Realistic radio networks

Figure 7.9: Times of RTOs with different minInterDropTime

Figure 7.10: CDF of TCP end-to-end delay with different minInterDropTime

 59

7.2.3. Selection of lowerDropThreshold

The purpose of lowerDropThreshold is to prevent a packet drop when the queue is quite small. The
reason is that when the bandwidth is low, the transmission delay is considerable large and cannot be
neglected any more. Furthermore, a packet drop in the scenario of low bandwidth have higher
possibility to cause RTO than in high bandwidth, As seen from Figure 7.5 and Table 7.1 in Section 7.2.1,
when the queue size is quite small e.g. less than 60 Kbits, a packet drop has a quite high probability to
cause the RTO. Recall that this is the situation with bandwidth 128 kbps. In reality there might be even
lower bandwidths; therefore, a larger minAgeThreshold is required to maintain a good throughput as
compared to a high bandwidth scenario. However, in this thesis the minAgeThreshold is set to some
fixed value for simplicity, thus the lowerDropThreshold is selected to maintain the good throughput
also in a low bandwidth scenario.

As presented in [4], the lowerDropThreshold takes effect only when the bandwidth is quite low, e.g.
less than 1 Mbps. Thus the simulations in this section are only with a low bandwidth. The related
setting of parameters:

• File size: 2 Mbytes
• Numbers of file transfers: 5
• minAgeThreshold: 0.2 s
• minInterDropTime: 0.6 s

Figure 7.11 illustrated the throughput with different lowerDropThresholds in different bandwidth
scenarios. It should be noticed that in the figure, the throughput is scaled, which means the values
divided by the throughput without any packet drop. On the other hand, Table 7.4 shows the number of
RTOs with the same lowerDropThreshold and bandwidth. It can be seen from the figure and table that
when the lowerDropThreshold is quite small, the throughput is reduced significantly due to the large
number of RTOs.

From the same figure and table it can be observed that when the lowerDropThreshold is set to 60-80
Kbits, both the throughput and number of RTOs are acceptable. However, it is important to notice that
in this situation, the TCP end-to-end delay with bandwidth 36 kbps is considerable, i.e. more than one
second. Considering that the rather low bandwidth e.g. tens of kbps should not be often the reality in a
LTE system, the lowerDropThreshold is proposed to 60-80 Kbits.

 60

Scaled throughput with different lowerDropThreshold

0

0.2

0.4

0.6

0.8

1

1.2

10 15 30 45 60 80 100

lowerDropThreshold (kb)

Sc
al

ed
 th

ro
ug

hp
ut

Bandwidth 36 kbps
Bandwidth 128 kbps
Bandwidth 512 kbps

Figure 7.11: Scaled throughputs with different lowerDropThreshold

Table 7.4: Number of RTOs with different lowerDropThreshold and bandwidth

lowerDropThreshold 10 Kbits 15 Kbits 30 Kbits 45 Kbits 60 Kbits 80 Kbits 100 Kbits

Number of
RTOs 559 213 81 4 4 4 4

36 kbps Mean TCP
e2e delay (s) 0.63 0.83 1.06 1.20 1.70 2.02 2.50

Number of
RTOs 10 52 0 0 0 0 0

128 kbps Mean TCP
e2e delay (s) 0.28 0.27 0.31 0.37 0.53 0.67 0.85

Number of
RTOs 19 20 18 10 1 0 0

512 kbps Mean TCP
e2e delay (s) 0.16 0.16 0.16 0.16 0.16 0.17 0.19

7.3. Performance comparison of different queue management algorithms

Section 7.2 has investigated the performance of R-AQM and some optimal values have been proposed
for each parameter. In this section the performance of R-AQM will be compared to other queue
management algorithms i.e. T-AQM, PDCP discard [12] and drop-from-front. The performance mainly
focuses on two subjects: the throughput and the TCP end-to-end delay. A good algorithm should
maintain both of them in an acceptable level, i.e. a good throughput as well as a low end-to-end delay.

 61

Additionally, it should be noticed that when the bandwidth down-switches, the RLC SDUs in the buffer
may get long delay until the TCP adapts to the new PC. Thus, both the mean delay and the maximum
delay are interesting and investigated in this section.

7.3.1. Performance comparison with a fixed bandwidth

In this section, a number of simulations are done to investigate the performance of different queue
management algorithms in a fixed bandwidth scenario. The corresponding parameters for T-AQM and
R-AQM are configured the same, i.e.

 minAgeThreshold minInterDropTime lowerDropThreshold maxAgeThreshold
R-AQM 0.2 s 0.6 s 60000 Kbits N/A
T-AQM 0.2 s 0.6 s 5 packets 0.8 s

It should be noticed that the lowerDropThreshold of R-AQM and T-AQM are different. The
lowerDropThreshold used in [4] denotes the number of packets. However, for R-AQM, the BSR only
reports the amount of bits in the buffer but not the number of packets; thus the lowerDropThreshold in
R-AQM denotes the bits. Additionally, there is no maxAgeThreshold in R-AQM while in T-AQM it is
set to 0.8 s. In most of the cases the maxAgeThreshold will not have any effect, unless the bandwidth
down-switched quite a lot and the data is stuck in the buffer. The other settings are:

• File size: 100 Mbytes
• Numbers of file transfers: 1

Figure 7.12 and Table 7.5 illustrate the scaled throughputs and TCP end-to-end delays when transferring
one large file for the terminal to the server. Scaled throughput means the real throughput is divided by
the optimal throughput, which is the throughput when the buffer is infinite. From the figure it can be
seen that the throughputs are quite similar, i.e., higher than 95% of maximum in most situations except
for the drop-from-front with low bandwidths. The reason for the throughput degradation is that the
drop-from-front algorithm maintains the queue until the buffer is full that may cause the buffer
overflow resulting RTOs. In these simulations, when using the drop-from-front algorithm, the numbers
of RTOs are 2, 3 and 5 with bandwidths of 640, 384 and 128 kbps, respectively. As a comparison, the
numbers of RTOs are 0, 1 and 1 when using R-AQM with the same bandwidths.

On the other hand, if we investigate the TCP end-to-end delay, the delays of drop-from-front in a low
bandwidth scenario are up to tens of seconds and they are definitely unacceptable. Other three
algorithms have quite similar delays despite the PDCP discard which has a little bit smaller mean and
maximum delay than the other two.

Previous simulations are focus on transferring a large i.e. 100 Mbytes file. However, in reality, we
usually transfer much smaller files from time to time, e.g. web objects, mp3 files, flash video etc. In
these kinds of situations, how the AQM algorithms react with the TCP initial slow-start phase is
important. Some simulations are done to investigate the performance when quite a few small files are
transferred. These simulations have the same parameters as above except that the file size and numbers
of file transfers. Additionally, between the file transfers, there is random idle time.

 62

• Mean file size: 300 Kbytes
• File size distribution: exponential
• Numbers of file transfers: 50
• Mean idle time: 8 s
• Maximum idle time: 10 s
• Minimum idle time: 5 s

Figure 7.13 and Table 7.6 illustrate the performance of these simulations. Comparing to the single file
transfer scenario, the drop-from-front has better performance, both end-to-end delay and throughput in
a low bandwidth scenario. The reason is the transfers of small files are usually completed before the
buffer is full. Hence there are few overflow situations and the end-to-end delay is reduced.

On the other hand, the PDCP discard have worse performance in some bandwidth e.g. 10 Mbps and 3
Mbps. To investigate this problem, the cwnd and the RLC buffer are illustrated in Figure 7.14, in which
with the bandwidth of 3 Mbps. It can be observed that in the initial slow-start phase, the cwnd, which is
indicated by the black triangles, increases quite fast; thus the queue size in RLC buffer, which is
indicated by blue crosses, accumulates quickly; thus, the Pipe Capacity can not absorb the queue fast
enough and multiple packets in the queue exceed the PDCP drop threshold and are discarded, the
dropped packets are indicated as orange diamonds in Figure 7.14. The multiple packets drop causes the
RTOs and degrade the performance significantly. From Figure 7.14 we can see that from 3rd second to
6th second there is quite little data to be transmitted. Furthermore, it is important to point out that in this
simulator, the SACK TCP is implemented; as discussed in Section 3.3.3, the SACK improves the
performance when multiple packets drops in one cwnd. Thus, we can image that if some older TCP e.g.
new Reno is used, the performance may even worse.

As discussed above, we can conclude that in a fixed bandwidth scenario, both the T-AQM and R-AQM
have good performance. They maintain the throughput up to 98% comparing to the optimal
throughputs. The TCP end-to-end delays, on the other hand, are less than 0.5 s in most of environments.
Note that the R-AQM usually has a little larger delay than the T-AQM. The reason is that there is a
time interval between each BSR and the estimation of delay is discontinuous, thus the R-AQM usually
does not respond as fast as T-AQM. The PDCP discard also performs well in most situations. However,
it has problem to handle the TCP initial slow-start phase, in which multiple packets are discarded. It
may cause the RTOs and degrade the throughput, especially when transferring multiple small files; e.g.
the throughput is only around 70% in a scenario of 3 Mbps bandwidth in Figure 7.13. The drop-from-
front approach has severe problem when the bandwidth is low: The buffer overflow causes throughput
degradation. On the other hand, the end-to-end delays are huge due to the large buffer.

 63

Scaled throughputs when transferring one large file

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

50 Mbps 30 Mbps 10 Mbps 3 Mbps 1 Mbps 640 kbps 384 kbps 128 kbps

Bandwidth

th
ro

ug
hp

ut R-AQM
T-AQM
PDCP discard
Drop-from-front

Figure 7.12: Scaled throughputs when transferring one large file

Table 7.5: The mean and maximum TCP end-to-end delay with different bandwidths when transferring
a large file

 R-AQM T-AQM PDCP discard Drop-from-front
Mean delay (s) 0.1557 0.1328 0.1332 0.1328 50 Mbps Max delay (s) 0.341 0.263 0.239 0.263
Mean delay (s) 0.1241 0.0983 0.0967 0.2059 30 Mbps Max delay (s) 0.377 0.367 0.247 0.408
Mean delay (s) 0.14 0.1328 0.1316 0.5881 10 Mbps Max delay (s) 0.38 0.352 0.243 1.128
Mean delay (s) 0.1721 0.1655 0.1649 1.9682 3 Mbps Max delay (s) 0.386 0.349 0.258 3.791
Mean delay (s) 0.1797 0.1779 0.1762 1.891 1 Mbps Max delay (s) 0.373 0.366 0.269 11.45
Mean delay (s) 0.1875 0.1843 0.1838 8.6116 640 kbps Max delay (s) 0.383 0.368 0.276 13.886
Mean delay (s) 0.1971 0.1955 0.1934 11.984 384 kbps Max delay (s) 0.43 0.4 0.287 23.769
Mean delay (s) 0.5393 0.5368 0.2753 19.632 128 kbps Max delay (s) 0.886 0.813 0.449 82.827

 64

Scaled throughput when transferring multiple small files

0

0.2

0.4

0.6

0.8

1

1.2

50 Mbps 30 Mbps 10 Mbps 3 Mbps 1 Mbps 640 kbps 384 kbps 128 kbps

Bandwidth

Sc
al

ed
 th

ro
ug

hp
ut

R-AQM
T-AQM
PDCP discard
Drop-from-front

Figure 7.13: Scaled throughputs when transferring multiple small files

Table 7.6: The mean and maximum TCP end-to-end delay with different bandwidths when transferring
multiple small files

 R-AQM T-AQM PDCP discard Drop-from-front
Mean delay (s) 0.08 0.08 0.08 0.08 50 Mbps Max delay (s) 0.141 0.141 0.141 0.141
Mean delay (s) 0.091 0.091 0.091 0.091 30 Mbps Max delay (s) 0.206 0.206 0.206 0.206
Mean delay (s) 0.13 0.128 0.112 0.138 10 Mbps Max delay (s) 0.426 0.373 0.247 0.613
Mean delay (s) 0.186 0.178 0.124 0.426 3 Mbps Max delay (s) 0.445 0.408 0.264 2.192
Mean delay (s) 0.192 0.188 0.178 1.333 1 Mbps Max delay (s) 0.434 0.416 0.297 6.82
Mean delay (s) 0.1626 0.1971 0.1846 1.1518 640 kbps Max delay (s) 0.383 0.418 0.287 4.294
Mean delay (s) 0.1943 0.2066 0.1952 1.9962 384 kbps Max delay (s) 0.43 0.434 0.295 7.409
Mean delay (s) 0.5317 0.5335 0.2804 6.9764 128 kbps Max delay (s) 0.867 0.758 0.452 25.671

 65

TCP cwnd

packets drop

RLC buffer size ╳

Figure 7.14: Multiple packets drop with PDCP discard algorithm in 3 Mbps bandwidth

7.3.2. Performance comparison in varying bandwidth

In Section 7.3.1 the performance of different algorithms are compared in a fixed bandwidth scenario.
However, in mobile communication, one major characteristic is bandwidth variation. In this section,
the performances of different algorithms are compared in a scenario with deterministically varying
bandwidth; that is, the bandwidth oscillates between two predefined values. Note that the oscillation
comprises four categories: fast and low varying, fast and high varying, slow and low varying, slow and
high varying. It is also presented in [4] that when the bandwidth oscillates very fast e.g. less than 1s, it
is actually averaged from the TCP’s point of view. Thus, the “fast” here means the period of oscillation
is the order of 1-5s while “slow” is 10-20s.

As discussed above, the bandwidths of simulations in this section are

 Low bandwidth (Mbps) High bandwidth (Mbps) Period (s)
Fast and low 3 10 2
Fast and high 0.128 2 3
Slow and low 0.512 1.5 15
Slow and high 2 20 20

 66

Note that the bandwidth oscillation includes 2 different phases which are bandwidth up-switch and
down-switch. As discussed in [4], when a large down-switch happens, the queue is heavily over-
dimensioned and the TCP end-to-end delay may become huge. In T-AQM, the maxAgeThreshold is
used to drop consecutive packets to drain the queue quickly. However, in R-AQM, it is difficult to
drain the buffer fast due to the property of discarding the packets at receiver side. Nevertheless, there is
a possible solution: combining the R-AQM and PDCP discard. That is to say, the PDCP discard is
implemented in UE side while the R-AQM is implemented in eNodeB side. Additionally, the drop
threshold of PDCP discard should be configured large enough, e.g. 0.8 s-1 s. In such an implementation,
only the R-AQM takes effect in most situations; on the other hand, in some special situation, e.g. large
bandwidth down-switch, the PDCP discard can take effect to drain the buffer fast, just as the
maxAgeThreshold does with T-AQM. In this section, the performance of combination with R-AQM
and PDCP discard will also be illustrated; it is called combined-AQM in the following text. However, it
should be pointed out again that the PDCP discard is actually implemented in RLC buffer.

Figure 7.15, Figure 7.16 and Figure 7.17 illustrate the RLC buffer status using T-AQM, R-AQM and
combined-AQM respectively when the bandwidth switches from 10 Mbps to 500 kbps at 20 second. It
can be seen that the T-AQM has drained the buffer only after 1 s of the bandwidth down-switch; on the
other hand, the R-AQM spends 5s to absorb the whole queue in the buffer. As a result, the end-to-end
delay of R-AQM may inflate to large. The combine-AQM performs quite similar to the T-AQM.
Additionally, it is worthy to point out that in Figure 7.17 the RLC buffer size changed to zero and then
suddenly to 500 Kbyte at the time 19s. However, there is no reasonable explain about that and we
assume it is a bug of the simulator.

Figure 7.15: Buffer status of T-AQM when bandwidth down-switch

 67

Figure 7.16: Buffer status of R-AQM when bandwidth down-switch

Figure 7.17: Buffer status of combined-AQM when bandwidth down-switch

On the other hand, when the bandwidth up-switch happens, it may cause the link under-utilization. The
reason is that the queue size in a low bandwidth scenario is quite small and not enough to feed the
inflated Pipe Capacity. Thus, in a bandwidth oscillation environment, the delay and throughput may
differ from the case with the fixed bandwidth.

 68

The general parameters of these simulations are

• File size: 10 Mbytes
• Numbers of file transfers: 10

Figure 7.18 illustrates the throughput of different queue management algorithms with different
bandwidths. From the figure we can see that in most situations, the drop-from-front has the best
throughput comparing to the other three delay-based algorithms. The reason is that the delay-based
algorithms will suffer from link under-utilization when the bandwidth up-switches, as discussed above.
Furthermore, when there is a large bandwidth down-switch, the queue is stuck in the buffer. Thus the
packets in this queue will suffer large delay and exceeds the maxAgeThreshold of T-AQM as well as
the drop threshold of PDCP discard, resulting multiple consecutive drops and reducing the throughput
significantly.

It is worthy to point out that when the bandwidth oscillates between 2 Mbps and 20 Mbps with period
of 20 s, the throughput of R-AQM and PDCP discard seems to have an obvious degradation comparing
to T-AQM. In fact, the throughput degradation is not that large. The reason is that the T-AQM
completed the file transferring around 220 s and from 200 s to 220 s is the bandwidth of 20 Mbps.
While the R-AQM and PDCP discard completed at 226 s and from 220 s to 240s is the lower
bandwidth 2 Mbps. Thus, if we calculate the throughput before 220 s, the degradation of R-AQM and
PDCP discard is only a few percentages.

Though the throughput of drop-from-front is the best, it has severe problem of the TCP end-to-end
delay. Figure 7.19 and Figure 7.20 show the mean delay and maximum delay of different algorithms,
respectively. From Figure 7.19 we can see that the mean delay of drop-from-front is much larger than
that of other three approaches, e.g. when the bandwidth oscillates between 521 kbps and 1.5 Mbps, the
mean delay of drop-from-front is up to 1.8 s while the other three are under 0.2 s. The R-AQM, on the
other hand, also has problem of large maximum delay when the bandwidth changes significantly. When
the bandwidth oscillates between 0.128 Mbps and 2Mbps, the maximum delay is up to 2 s. It should be
noted that in realistic radio network, the bandwidth variation may even larger.

The PDCP discard, T-AQM and combined-AQM, on the other hand, maintain good end-to-end delay,
however, there is obvious throughput reduction comparing to drop-from-front. This is a drawback of
delay-based AQM algorithm: when the bandwidth varies significantly, the throughput may suffer
considerably.

 69

0

2000

4000

6000

8000

10000

12000

3M - 10M @2s 0.128M - 2M @
3s

0.512M - 1.5M @
15s

2M - 20M @ 20s

Bandwidth (bps)

th
ro

ug
hp

ut
 (k

bp
s)

R-AQM
T-AQM
combined-AQM
PDCP discard
drop from front

Figure 7.18: Throughput with varying bandwidths

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

3M - 10M @ 2s 0.128M - 2M @ 3s 0.512M - 1.5M @
15s

2M - 20M @ 20s

Bandwidth (bps)

D
el

ay
 (s

)

R-AQM
T-AQM
combine-AQM
PDCP discard
drop from front

Figure 7.19: Mean end-to-end delay with varying bandwidths

 70

0

2

4

6

8

10

12

14

16

3M - 10M @ 2s 0.128M - 2M @ 3s 0.512M - 1.5M @
15s

2M - 20M @ 20s

Bandwidth (bps)

D
el

ay
 (s

)

R-AQM
T-AQM
combined-AQM
PDCP discard
drop from front

Figure 7.20: Maximum delay with varying bandwidths

7.3.3. Performance comparison in realistic radio network scenario

Section 7.3.1 and 7.3.2 compare the performance of different queue management algorithms in
deterministic bandwidth scenarios. However, in a realistic radio network, the bandwidth varies quite
randomly, depending on the instantaneous channel quality as well as number of active users in the cell.
In this section, some simulations are done to investigate the performance of different queue
management algorithms in realistic radio network.

Furthermore, two environments are investigated in this section, the terminals have different speed, one
has 0.83 m/s, which is assumed to be in a pedestrian and the other has 30 m/s, which is assumed to be
in a car. The throughput and end-to-end delay are illustrated in Figure 5.21 and 5.22, where the
corresponding speed are 0.83 and 30 m/s, respectively.

From the Figures it can be observed that when the speed is low, the average bit rate is high and vice
versa. Furthermore, the R-AQM is as good as the T-AQM, both as regard to throughput and end-to-end
delay. The drop-from-front has best throughput but with a larger delay than the others. PDCP discard
has worse throughput because it triggered two much RTOs, as Table 7.7 shows. However, it should be
noticed again that the Drop-from-front may have worse throughput if some other TCP protocol is
implement than SACK. The buffer overflow actually happened as shown in Figure 7.23, which depicts
the CDF of queue size. As comparison, the other algorithms only used quite smaller buffer.

 71

Table 7.7: Time of RTOs in a realistic radio network

 R-AQM T-AQM PDCP discard Drop-from-front
Terminal speed 0.83 m/s 0 0 5 0
Terminal speed 30 m/s 1 0 10 0

0

0.5

1

1.5

2

2.5

R-AQM T-AQM PDCP discard drop-from-
front

D
el

ay
 (s

)

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (k

bp
s)

mean delay
maximum delay
throughput

Figure 7.21: Throughput and end-to-end delay in a realistic radio network with UE speed 0.83 m/s

 72

0

0.5

1

1.5

2

2.5

3

R-AQM T-AQM PDCP discard drop-from-
front

D
el

ay
 (s

)

0

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (k

bp
s)

mean delay
maximum delay
throughput

Figure 7.22: Throughput and end-to-end delay in a realistic radio network with UE speed 30 m/s

(bits)

╳

T-AQM

R-AQM

PDCP discard

Drop-from-front

Figure 7.23: CDF of buffer status in realistic radio network with UE speed 0.83 m/s

 73

7.3.4. Performance comparison with multiple flows

As discussed in Chapter 4, one problem of passive queue management is unfair sharing, which means
one or a few TCP flows dominate the buffer and lock out other new coming TCP flows. In [4] it has
been proved that the T-AQM improves the fairness of bandwidth sharing considerable. This section
will compare the fairness issues of R-AQM with other different queue management algorithms.

In these simulations, one huge TCP flow is firstly dominating the bandwidth and the buffer; then some
small files come randomly and try to share the bandwidth. The throughputs of these small files will be
investigated to see how largely the flows actually share the bandwidth. The general parameters are

• Flow 1 file size: 300 Mbytes
• Numbers of file transfers: 1
• Flow 2 file size mean value: 300 Kbytes
• Size distribution: Exponential
• Number of files: 10

Figure 7.24 shows the average throughput of the small files. It is obvious that the drop-from-front has
severe problem of unfair sharing. When the bandwidth is high, e.g. 20 Mbps and 3 Mbps, the drop-
from-front locks out the new TCP flows. When the bandwidth is quite low, e.g. 384 kbps, the
throughput of drop-from-front is acceptable but the end-to-end delay is large, similar to previous
sections.

On the other hand, the T-AQM, R-AQM and PDCP discard have quite similar performance. However,
when the bandwidth is quite high, e.g. up to 20 Mbps, the throughput of PDCP discard is the best. The
reason is that the R-AQM and T-AQM define the parameter minInterDropTime to prevent consecutive
drop. The value is set to 0.6 s in these simulations. The new coming TCP flow starts with an aggressive
slow-start phase and very soon some packets will exceed the minAgeThreshold. Thus a drop is
triggered. Since the drop is random, the discarded packet may belong to the new comer or the
dominating one. If it belongs to the new comer, then the drop will cause the new TCP flow to halve its
cwnd and wait another 0.6 s to trigger the next drop. During this time, the old one still dominates the
bandwidth. For PDCP discard, there is no requirement for waiting some time between two drops, thus
the dominating one usually have packet drop earlier than T-AQM and R-AQM. Thus the PDCP discard
usually maintain the best fairness of bandwidth sharing. However, the consecutive drops may cause the
whole link under-utilization. Consequently, even the PDCP discard maintain better fairness than T-
AQM and R-AQM, the throughput may be worse, like Figure 7.14 shows in a case when the bandwidth
is 3 Mbps.

As discussed above, the PDCP discard maintains the best fairness issue. However, R-AQM and T-
AQM perform more balanced functionality in maintaining both good fairness and full link utilization.
The drop-from-front, on the other hand, has severe problem on fair sharing bandwidth.

 74

Average throughput of transferring small file

0

500

1000

1500

2000

2500

3000

3500

20 Mbps 3 Mbps 384 kbps

Th
ro

ug
hp

ut
 (k

bp
s)

R-AQM
T-AQM
PDCP
Drop-from-front

Figure 7.24: Average throughput of other small files when one TCP is dominating the bandwidth

7.3.5. The impact of BSR period

The R-AQM estimates the packet delay based on the Buffer Status Report (BSR). Therefore, the time
interval of each BSR has impact on the performance of R-AQM. Furthermore, the BSR also influences
the uplink scheduling decision of eNodeB; thus it may has impact on the performance of T-AQM and
PDCP discard as well, since the uplink scheduling controls the data transmission from the UE to the
eNodeB. This section will investigate how the BSR period affects the performance of different queue
management algorithms.

Figure 7.25 and Figure 7.26 illustrate the throughput with different BSR periods. When the period is
quite small, e.g. 10 ms or 20 ms, the throughput of the four algorithms are quite similar. However,
when the BSR period increases, those delay-based algorithms i.e. T-AQM, R-AQM and PDCP discard
suffer throughput degradation. For example, when the BSR is 100 ms, the throughput of T-AQM and
PDCP discard has around 20% throughput reduction in a 20 Mbps bandwidth scenario. Nevertheless,
the R-AQM can still maintain the throughput in an acceptable level, which is less than 10%. On the
other hand, the drop-from-front has no obvious influence on throughput. This is because the BSR
period has impact on scheduling decision of eNodeB. When the period is low, which means more BSR
will be transmitted and the eNodeB can schedule the uplink transmission more frequently. For delay-
based AQM, this means the packets can leave the buffer more quickly thus few packets will be
discarded. On the other hand, if the period is large, the eNodeB will schedule the uplink transmission
with long time intervals. As a consequence, the packets may wait longer and more packets may exceed
the drop threshold and be discarded. The R-AQM, however, is more robust against on the BSR period

 75

since it estimates the delay according to received BSRs; less BSRs means less estimation and results
less packet drops. The cost is a larger end-to-end delay, as seen from Table 7.8 and Table 7.9.
Meanwhile, when using a queue-size-based algorithm e.g. drop-from-front, the delays of the packets
are not taken into account when dropping packets. Thus, this kind of algorithm is not influenced by the
BSR period length.

As discussed above, the BSR period clearly has impact on the performance, especially for the delay-
based AQM algorithms. However, from the figures we can see that the R-AQM is more robust against
the BSR period inflation than T-AQM and PDCP discard, with the cost of enlarged end-to-end delay.
On the other hand, the Drop-from-front is not influenced by the BSR period.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 40 80 100

BSR period (ms)

Th
ro

ug
hp

ut
 (k

bp
s)

R-AQM
T_AQM
PDCP discard
Drop-from-front

Figure 7.25: Throughput with different BSR period in 20 Mbps bandwidth

 76

0

500

1000

1500

2000

2500

3000

10 20 40 80 100

BSR period (ms)

Th
ro

ug
hp

ut
 (k

bp
s)

R-AQM
T-AQM
PDCP discard
Drop-from-front

Figure 7.26: Throughput with different BSR period in 3 Mbps bandwidth

Table 7.8: Mean delay with different BSR period in 20 Mbps bandwidth

 R-AQM T-AQM PDCP discard Drop-from-front
10ms 0.1243 0.1157 0.114 0.6001
20ms 0.1263 0.1171 0.1158 0.601
40ms 0.1465 0.1245 0.122 0.5951
80ms 0.2101 0.1474 0.1462 0.592
100ms 0.1746 0.1571 0.1581 0.5921

Table 7.9: Mean delay with different BSR period in 3 Mbps bandwidth

 R-AQM T-AQM PDCP discard Drop-from-front
10ms 0.1714 0.1657 0.1644 3.789
20ms 0.1721 0.1655 0.1649 3.791
40ms 0.1762 0.1661 0.1653 3.791
80ms 0.1997 0.1763 0.1756 3.7821
100ms 0.1938 0.1834 0.1828 2.538

 77

5.3.6 Performance if both R-AQM and T-AQM are implemented

As presented in previous sections, the R-AQM can perform quite similar functionalities as T-AQM.
However, there is still a potential problem: What is the performance when the both algorithms are used
at the same time, i.e., an UE having T-AQM implemented is served by an eNodeB with R-AQM
implemented. To investigate this problem, some simulations are done again when both the T-AQM and
R-AQM implemented.

Table 7.10 shows the throughput in fixed bandwidth, with the same parameter as in Section 7.3.1. As
comparison, the throughputs of R-AQM and T-AQM are also provided. From the table it can be
observed that the throughputs are quite similar to each other. On the other hand, the mean and
maximum TCP end-to-end delay is illustrated in Figure 7.27 and Figure 7.28.

As discussed above, it can be concluded that when a UE with T-AQM served by an eNodeB with R-
AQM, the performance will not suffer obvious degradation.

Table 7.10: Throughput if both AQM are implemented

 30 Mbps 3 Mbps 384 kbps
R-AQM 25358 2649.6 316.44
T-AQM 25367 2650.4 320.84

Both AQM 25367 2649.8 316.77

0

0.05

0.1

0.15

0.2

0.25

30M 3M 384k

Bandwidth (bps)

de
la

y
(s

) R-AQM
T-AQM
Both AQM

Figure 7.27: Mean TCP end-to-end delay in different bandwidth

 78

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

30M 3M 384k

Bandwidth (bps)

D
el

ay
 (s

) R-AQM
T-AQM
Both AQM

Figure 7.28: Mean TCP end-to-end delay in different bandwidth

7.4. Conclusions from simulation results

In this section, a summary of simulation results will be done. First, Section 7.2 proposes some optimal
values for each parameter of R-AQM based on simulations. The minAgeThreshold is proposed to be
set around 0.2 s. However, it is important to point out that the simulations are done with 40ms Internet
delay. Generally speaking, a larger Internet delay requires a larger minAgeThreshold. The
lowerDropThreshold, on the other hand, is proposed to be set 60-80 Kbits. This value can improve the
throughput in low bandwidth cases, when the minAgeThreshold is too small to maintain full link-
utilization. Finally, the optimal value of minInterDropTime is above 0.6 s. It can prevent consecutive
drops thus efficiently reduce the number of RTOs.

In Section 7.3 numerous simulations are done to compare the performance of four queue management
algorithms, i.e. R-AQM, T-AQM, PDCP discard and Drop-from-front in different environments. The
results show that in most situations, the major problem of PDCP discard is lack of protection from
consecutive drops. In initial TCP slow-start phase, due to the aggressive increment of TCP cwnd, it is
easy to cause consecutive drops and degrade the throughput significantly, especially when transferring
small files. The drop-from-front algorithm, on the other hand, mainly suffers the over-buffered problem,
e.g. the end-to-end delay is quite huge in a low bandwidth case. Additionally, the buffer overflow may
cause throughput reduction in some situation.

The T-AQM and R-AQM have similar and satisfying performance; maintain both good throughput as
well as low end-to-end delay in most simulations done in Section 7.3. Nevertheless, problems may

 79

arise when the bandwidth varies a lot. Both of T-AQM and R-AQM suffer throughput reduction in
such environments. Furthermore, the R-AQM may have a large end-to-end delay during a short period.
The reason for the difference is that, when the bandwidth down-switches significantly, the T-AQM can
drain the buffer fast thus having a shorter end-to-end delay. Fast draining is handled by defining a
parameter called maxAgeThreshold when this threshold is exceeded, the packet will be discarded
without considering the minInterDropTime. Due to the property that the eNodeB cannot operate UE’s
buffer directly, there is no such parameter in R-AQM. An optional solution is combine the PDCP
discard with R-AQM. That is to say, in the UE side, the PDCP discard is implemented while in the
eNodeB side, the R-AQM is implemented. Furthermore, the drop threshold of PDCP discard should be
larger than minAgeThreshold, e.g. around 0.8 s – 1 s. The performance of the combined algorithms is
illustrated in Section 7.3.2 and it can be seen that the combination efficiently drains the buffer thus
reduces end-to-end delay.

The performance of different algorithm in multiple flows scenario is also investigated by simulations.
From the results it can be seen that the PDCP discard provides the fairest sharing of the bandwidth.
However, this is usually achieved by consecutive drops, which may cause significant throughput
reduction. On the other hand, the T-AQM and R-AQM maintain relatively fair sharing of resources as
well as high throughput. Finally, the drop-from-front has severe problem of fairness.

Because the R-AQM is based on the estimated delay which is calculated according to the BSRs, it is
necessary to investigate how the BSR period length influences the performance of different algorithms.
The simulation results show that the drop-from-front is seldom influenced by the BSR period length.
The PDCP discard and T-AQM suffer 10%-20% throughput reduction when the period changes from
10ms to 100ms. The R-AQM also has reduced throughput, but better than T-AQM and PDCP discard.

Finally, a special situation is considered: the performance when both the R-AQM and the T-AQM are
implemented. The simulation results show that there is not a big difference in performance between
using both AQM algorithms or in using only one of those. Thus, if the R-AQM is implemented in the
eNodeB, it will not degrade the performance of those UEs with having the T-AQM implemented
concurrently.

 80

8. Conclusions

This thesis develops an Active Queue Management algorithm for LTE uplink to enhance the
performance of TCP traffic. As difference to earlier works, the proposed algorithm is implemented in
the eNodeB instead of the mobile terminal thus leaving a better control of the method to the network.
Since the delay-based algorithms are shown to have advantages over the queue size based algorithms
[4], also the proposed algorithm inherits the idea that the packets are discarded based on the queuing
delay. Comparing to queue-size-based criteria e.g. PDPC, the delay-based algorithms maintain both
throughput and end-to-end delay in an acceptable level, even if the bandwidth varies from tens of kbps
to tens of Mbps.

Because the new developed algorithm is supposed to be implemented in eNodeB, the queuing delays of
received packets cannot be known directly. Thus, a method to estimate the delay is proposed. The
method utilizes the information of received Buffer Status Reports as well as the amount of data
delivered from the RLC layer to higher layers in eNodeB. The performance of the delay estimation
method is investigated by simulations. The results show that even though the accuracy of estimation is
slightly influenced by the HARQ error probability, the estimation performs good enough to be used to
indicate the real queuing delay.

Because the delay can be estimated in eNodeB, as well as the queue length is indicated by BSR, the
implementation of Receiver-AQM (R-AQM) in the eNodeB is quite straightforward. Similar to
Transmitted-AQM (T-AQM) studied in [4], the R-AQM also defines several parameters called
minAgeThreshold, lowerDropThreshold and minInterDropTime. Each time the eNodeB receives a
BSR element, it firstly compares the BSR reported queue size with lowerDropThreshold; if the BSR
reported size is smaller than lowerDropThreshold, no drop is allowed. Otherwise, the delay will be
estimated by the method mentioned above. If the estimated delay is larger than minAgeThreshold, a
packet will be discarded unless the time interval between the current time and the previous packet drop
time is less than minInterDropTime.

The simulation results show that the AQM algorithms T-AQM and R-AQM indeed perform advanced
functionalities comparing to the drop-from-front and PDCP discard. They maintain balanced
throughput and end-to-end delay, i.e. a higher throughput than PDCP discard and a smaller end-to-end
delay than the drop-from-front approach in most situations. Furthermore, the R-AQM can perform
quite similar functionalities as T-AQM in most of the scenarios. Only in a scenario where the
bandwidth varies dramatically, the R-AQM may have a larger end-to-end delay than the T-AQM.
However, this problem can be overcome by combining the PDCP discard and R-AQM, which a simple
and standardized approach. Thus, we can conclude that instead of implementing T-AQM in each UE,
we have another option to improve the TCP performance in the LTE uplink: implementing R-AQM in
the eNodeB.

 81

References

[1] Dahlman, E. Parkvall, S. Sköld, J. Beming, P. 3G Evolution: HSPA and LTE for Mobile
Broadband. Elsevier, 2007.

[2] Jacobson, V. Karels, M.J. Congestion Avoidance and Control. In Proceedings of SIGCOMM ’88,
ACM Press, 1988.

[3] Floyd, S. Jacobson, V. Random Early Detection Gateways for Congestion Avoidance, ACM/IEEE
Transactions on Networking. August 1993.

[4] Rathonyi, T. Nilsson, M. An Active Queue Management Algorithm for a Dedicated Wireless
Uplink Broadband Channel. Master Thesis. Lund, September 2007.

[5] Feng, W. Shin, K. Kandlur, D. Saha, D. The BLUE Active Queue Management Algorithms.
ACM/IEEE Transactions on Networking. August 2002.

[6] Jacobson. V. Modified TCP Congestion Avoidance Algorithm. Technical note. 1990.

[7] Dahlman, E. et al. The 3G Long-Term Evolution – Radio Interface Concepts and Performance
Evaluation. In Proceedings of Vehicular Technology Conference, IEEE, 2006.

[8] Braden, B. et al, Recommendation on Queue Management and Congestion Avoidance in the
Internet, IETF RFC 2309, April 1998.

[9] Allman, M. Paxson, V. Stevens, W. TCP Congestion Control. IETF RFC2581. April 1999.

[10] Stevens, W. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[11] 3GPP TS 36.302. Evolved Universal Terrestrial Radio Access (E-UTRA);
Services provided by the physical layer, version 8.0.0. September 2007.

[12] 3GPP TS 36.401. Evolved Universal Terrestrial Radio Access Network
(E-UTRAN); Architecture description, version 8.2.0. June 2008.

[13] Mathis, M. Floyd, S. Romanow, A. TCP Selective Acknowledgment Options, IETF RFC2018.
October 1996.

[14] Athuraliya, S. Low, S. Li, V. and Yin, Q. REM Active Queue Management. IEEE Network
Magazine, May 2001.

[15] Yavuz, M. Khafizov, F. TCP over wireless links with variable bandwidth. In Proceedings of
Vehicular Technology Conference, 2002.

[16] Xylomenos, G. Polyzos, G. C. TCP and UDP performance over a wireless LAN. In Proceedings of
InfoCom'99, 1999.

 82

[17] Park, K. Park, S. Park, D. Enhancing TCP performance over wireless network with variable
segment size. In Proceedings of PDPTA'01, 2001.

[18] Ardelean, D. Blanton, E. Martynov, M. Remote Active Queue Management. In Proceedings of
NOSSDAV’ 08. Germany, 2008.

[19] Fall, K. Floyd, S. Simulation-based Comparisons of Tahoe, Reno, and SACK TCP. ACM
SIGCOMM Computer Communication Review Volume 26, Issue 3. ACM press, 1996.

[20] Sågfors, M. Ludwig, R. Meyer, M. Peisa, J. Queue Management for TCP Traffic over 3G Links.
Wireless Communications and Networking, 2003.

[21] Sågfors, M. Ludwig, R. Meyer, M. Peisa, J. Buffer Management for Rate-Varying 3G Wireless
Links Supporting TCP Traffic. In Proceedings of Vehicular Technology Conference, 2003.

[22] Sun, J. Ko, K.-T. Chen, G. Chan, S. Zukerman, M. PD-RED: To Improve the Performance of
RED. Communications Letters. IEEE, 2003.

[23] 3GPP TS 36.321. Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification, version 8.2.0. May 2008.

[24] 3GPP TS 36.322. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control
(RLC) protocol specification, version 8.2.0. May 2008.

[25] 3GPP TS 36.323. Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data
Convergence Protocol (PDCP) specification, version 8.2.1. May 2008.

[26] 3GPP TS 25.913. Requirements for Evolved UTRA (E-UTRA)
 and Evolved UTRAN (E-UTRAN), version 8.0.0. September 2008.

[27] Myung, H. G. Lim, J. Goodman, D. J. Peak-to-Average Power Ratio of Single Carrier FDMA
Signals with Pulse Shaping. In Proceedings of the 17th Annual IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications. Helsinki, Finland, September 2006.

[28] Lescuyer, P. Lucidarme, T. Evolved Packet System: the LTE and SAE Evolution of 3G UMTS.
Wiley, 2007cification, version 8.2.0. May 2008.

 83

http://hgmyung.googlepages.com/scfdmaPapr_pimrc06.pdf
http://hgmyung.googlepages.com/scfdmaPapr_pimrc06.pdf

	Preface
	Table of content
	Abbreviations
	List of Figures
	List of Tables
	1. Introduction
	2. LTE overview
	2.1. 3G evolution: from WCDMA to LTE
	2.2. LTE design requirements
	2.3. LTE/SAE system architecture
	2.4. LTE protocol structures
	2.4.1. PDCP
	2.4.2. RLC
	2.4.3. MAC
	2.4.4. PHY

	2.5. Scheduling
	2.5.1. Downlink scheduling
	2.5.2. Uplink scheduling

	2.6. Dataflow

	3. Introduction to TCP
	3.1. Internet Protocol Suite
	3.2. Basic behavior and concept of TCP
	3.3. TCP congestion control
	3.3.1. Tahoe
	3.3.2. Reno
	3.3.3. SACK

	3.4. TCP over wireless network

	4. Introduction to AQM
	4.1. RED
	4.2. PDPC
	4.3. A delay-based AQM

	5. AQM in eNodeB for uplink traffic
	5.1. Introduction
	5.2. A method to estimate queuing delay
	5.3. Estimation of delay in eNodeB
	5.4. Delay-based AQM in eNodeB

	6. Simulator configurations
	6.1. Simulation Models
	6.2. Parameter settings

	7. Simulation results and analysis
	7.1. Performance of delay estimation in eNodeB
	7.2. Parameters selection
	7.2.1. Selection of minAgeThreshold
	7.2.2. Selection of minInterDropTime
	7.2.3. Selection of lowerDropThreshold

	7.3. Performance comparison of different queue management algorithms
	7.3.1. Performance comparison with a fixed bandwidth
	7.3.2. Performance comparison in varying bandwidth
	7.3.3. Performance comparison in realistic radio network scenario
	7.3.4. Performance comparison with multiple flows
	7.3.5. The impact of BSR period
	5.3.6 Performance if both R-AQM and T-AQM are implemented

	7.4. Conclusions from simulation results

	8. Conclusions
	References

