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Chapter 1

Introdu
tion

The beginning of modern geneti
s and the s
ien
e of inheritan
e 
an be tra
ed

ba
k to Mendel and his famous 
ross-breeding experiments in the mid-nineteenth


entury. He found out that inheritan
e is 
ontrolled by dis
rete units, whi
h are

nowadays 
alled genes [1℄. This idea was later 
ombined with the Darwinian

theory of evolution into population geneti
s and the modern synthesis theory.

Evolution 
ould now be explained with small 
hanges in genome whi
h lead

to geneti
 diversity in distin
t populations, and spe
iation in separated popu-

lations [2℄. The dis
overy of the physi
al representation of genes as sequen
es of

nu
leotides in DNA mole
ules and the 
ontinuous advan
es in sequen
ing those

genes has sin
e made it possible to dire
tly observe the genes even for a large

number of individuals.

Understanding of the importan
e of geneti
 variation in 
ombination with mod-

ern te
hniques for measuring and quantifying su
h variation 
an nowadays be

used to dire
t the 
onservation of endangered spe
ies. One su
h spe
ies is the

Mediterranean seagrass, Posidonia o
eani
a. It is an important part of the lo
al

e
osystem [3℄; however, its growth is very slow and thus it is di�
ult to 
on-

serve. A better understanding of Posidonias geneti
 population stru
ture and the

geneti
 �ows shaping it might allow fo
using 
onservation attempts su
h that the

geneti
 variation is properly preserved.

The problem in the 
ase of Posidonia [3℄, but also more generally [4℄, is that the

models used for inferring population stru
ture or histori
al evolutionary events

giving rise to the stru
ture are too restri
tive. Traditional methods 
an be mostly

divided into two 
ategories: Population geneti
s studies a large number of genet-
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i
ally similar individuals by using summary statisti
s of allele distributions in

those populations. Phylogeneti
 trees [5, 6℄ are mostly built for studying evolu-

tionary relationships of a smaller number of sampled organisms, whi
h are usually

of di�erent spe
ies. Both of these approa
hes are well established, but work only

when stri
t requirements for the data are ful�lled. Loosening these requirements

would not only allow resear
hers to 
ombine the two levels of geneti
 stru
ture

of the sequen
ed individuals, the population-geneti
 view and phylogeneti
 trees,

but also to study the regions between these levels. However, models taking into

a

ount all possible s
enarios would have to be extremely 
omplex. In addition,

su
h models should be tailor-made for ea
h spe
ies, taking into a

ount their

spe
ial features for example in reprodu
tion patterns.

The biologi
al system of evolving populations is a typi
al example of a 
omplex

system. Complex systems 
ontain a large number of intera
ting 
omponents,

whi
h 
an be simple when isolated from the system, but as a whole exhibit 
om-

plex emergent behavior. The abstra
tion of 
omplex systems to networks has

proven itself as a su

essful approa
h in �elds ranging from so
iology [7℄ and lin-

guisti
s [8℄ to sto
k market [9,10℄ and epidemiology [11℄. Network methods have

been useful tools [13�15℄ for example extra
ting hierar
hi
al stru
ture, modeling

evolving systems and investigating 
olle
tive behavior, all of whi
h are typi
al

features of living systems. Food webs [16℄ and protein intera
tion networks [17℄

are only some examples of biologi
al systems whi
h have been studied, and net-

works have a potential for serving as a general framework for the study of other


omplex biologi
al phenomena, whi
h 
annot be des
ribed with simple models. In

addition, network s
ien
e has already developed tools that resemble those of phy-

logeneti
s and population geneti
s, su
h as methods for hierar
hi
al 
ommunity

dete
tion.

In this Thesis, the possibility of using network-based methods for analyzing phylo-

geneti
 relationships between individuals is explored. Networks built from geneti


distan
es between spe
imens of Posidonia o
eani
a 
olle
ted from multiple lo
a-

tions in the Mediterranean sea are utilized as a test 
ase. Re
ent results based

on the same data set, obtained by using both traditional and network methods,

are also reviewed. Those results are 
ompared to ones produ
ed with methods

developed in this Thesis. The main fo
us in this Thesis is on extra
ting large

and small s
ale stru
ture from the geneti
 network of individuals by using hierar-


hi
al 
ommunity dete
tion. This Thesis presents the �rst results of 
ommunity

dete
tion studies on geneti
 distan
e data; to the best of the author's knowledge,

2



no results of similar studies have been published earlier.

The data set 
onsists of the lengths of mi
rosatellite repetitions in seven lo
i of

the genome of ea
h individual spe
imen. As the Posidonia o
eani
a populations

evolve, these lengths are altered by two overlapping me
hanisms: mutations and

sexual reprodu
tion. Due to this, any distan
e measure de�ned between two

individuals is bound to lose some information and is a 
ompromise between the

two me
hanisms, making the 
hoi
e of the distan
e measure ambiguous. By


hoosing a distan
e measure, biologi
al assumptions are made about the data,

whi
h will re�e
t to any network studies made later. Two plausible distan
e

measures are 
ompared in detail.

After sele
ting the distan
e measure, the data is ready for network abstra
tion,

and the a

ording methodology 
an in theory be straightforwardly applied. In

reality, however, there are some algorithmi
 and pra
ti
al 
ompli
ations 
aused by

the fa
t that most existing methods are developed for sparse unweighted networks,

and we are here dealing with a dense weighted network. Be
ause of this, the aim

of this Thesis is to solve some of these initial problems, and try out di�erent

methods on the data. Some of the tried methods appear to produ
e meaningful

results, whereas others fail.

This Thesis is organized as follows: Chapter 2 begins with a short introdu
tion to

the spe
ies Posidonia o
eani
a, and des
ribes the data set a
quired from 
olle
ted

samples. Spe
ial emphasis is given to geneti
 distan
e methods, as they are the

basis of the network analysis in Chapter 3. Before this, traditional methods

for studying geneti
 relationships of data are brie�y introdu
ed and results from

applying su
h methods are reviewed.

Chapter 3 deals with the network methods used for studying the geneti
 population

stru
ture of Posidonia. It begins by introdu
ing the basi
 
on
epts and ideas of

network methods and 
ontinues by reviewing previous network studies of the

same data. After this, the problem of 
ommunity dete
tion is dis
ussed in de-

tail, and two 
ommunity dete
tion methods suitable for analysis of the geneti


networks of Posidonia are then introdu
ed. Results given by these methods are

then 
ompared to ea
h other, geospatial information on the sampling sites, and

to a 
orresponding phylogeneti
 tree. Chapter 4 presents 
on
lusions on the re-

sults and 
omments on the usefulness of network methods as tools for studying

population geneti
 data. It also suggest solutions to some of the en
ountered

problems and paths for future resear
h.

3



This Thesis has three Appendi
es. The �rst de�nes some basi
 
on
epts and

quantities. The se
ond introdu
es a sequential 
lique per
olation algorithm de-

veloped by the author and his 
oworkers. The algorithm is an important part of

the Thesis, as it is required for 
arrying out the 
ommunity dete
tion analysis in

a reasonable time. The last Appendix introdu
es a software toolbox for network

analysis, whi
h was designed and implemented during making of this Thesis, and

was used for all the 
omputations, ex
luding the blo
k diagonalization approa
h.
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Chapter 2

Biologi
al ba
kground

2.1 The data set and basi
 statisti
s

2.1.1 Posidonia o
eani
a

Posidonia o
eani
a is an endangered seagrass living only in the Mediterranean

area. It forms large meadows in 
oastal areas at depths from 5 to 50 meters,

depending on 
larity of water and nutrient availability. Posidonia is a long-living

organism, known to live over 1000 years, and it grows horizontally by 1 to 6


entimeters ea
h year. The very slow growth makes it vulnerable to outside

in�uen
es. The main reasons for Posidonia's endangerment are polluted waters,

espe
ially due to nutrients released into water, and �shing-related lo
al damages.

Posidonia is an important part of the Mediterranean e
osystem and its meadows

work as 
arbon dioxide sinks. It is thus an important target for 
onservation

e�orts.

Posidonia o
eani
a is an angiosperm mainly reprodu
ing asexually by 
loning and

self-pollination. Sexual reprodu
tion is known to be sporadi
 and even unsu

ess-

ful in the Western Mediterranean basin [26℄. The asexual reprodu
tion 
ombined

with low rate of su

ess in pollination 
an lead to large populations with little

geneti
 variability. It is thus espe
ially important to fo
us 
onservation e�orts of

Posidonia on preserving its geneti
 variability. Finding out whi
h populations are

the most important ones with respe
t to geneti
 variability 
an be problemati
.

It is hard to assess the importan
e of meadows to the overall geneti
 diversity

5



based only on geographi
al observations, be
ause lo
al environmental for
es and

o
ean 
urrents heavily a�e
t the gene �ow.

A better knowledge of the geneti
 population stru
ture and diversity of Posidonia


ould be used to identify the important geographi
al regions for gene �ow. This

information 
ould then guide the 
onservation attempts on Posidonia. However,

it is di�
ult to study Posidonia with traditional phylogeny and population in-

feren
e methods, as they are usually based on models whi
h assume too simple

reprodu
tion dynami
s. Posidonia is thus a good 
andidate for utilizing network

based methods, where assumptions on the geneti
 stru
ture are not as limiting.

Figure 2.1: A photo of Posidonia o
eani
a taken in Porto�ne, Italy [21℄.

2.1.2 Sampling lo
ations

The data set studied in this work 
onsists of 1468 samples of seagrass Posidonia

o
eani
a, whi
h were 
olle
ted by diving from 37 di�erent lo
ations in the Mediter-

ranean sea. The sampling lo
ations were not 
hosen uniformly, but with large

di�eren
es in density at di�erent parts of the sea: The Western Mediterranean

sea was more densely sampled than the Eastern, and the West also 
ontains areas

with large di�eren
es in sampling density. This heterogeneity of sampling lo
a-

tions allows the data to be used to study spatial aspe
ts of the geneti
 stru
ture

6



on many s
ales ranging from few hundreds of meters to thousands of kilometers.

The heterogeneity 
an also 
ause problems for some analysis methods that as-

sume homogeneous sampling. Su
h assumptions are often impli
it, and 
an in

this 
ase lead to overestimating the importan
e of some of the western sampling

lo
ations. Throughout this Thesis, the sampling lo
ations are divided to three

groups: western, 
entral and eastern, to allow a rough assessment of results from

di�erent methods with respe
t to sampling lo
ations. For more details on this

division, see Figure 2.2. The arti
le by Rozenfeld et al. [3℄ whi
h 
ontains more

detailed information on the sampling lo
ations.

Although the sampling lo
ation density varies a lot, the sampling s
heme inside

ea
h of those lo
ations is similar. Approximately 40 shoots were 
olle
ted from

randomly drawn 
oordinates from a sampling area 20 meters in width and 80

meters long [3℄. From ea
h shoot, the meristem portion was 
olle
ted for des-

i

ation and preservation in sili
a 
rystal [3℄. After the 
olle
tion of the 1468

samples, part of the genome of ea
h sample was sequen
ed for further studies

on the population-geneti
 stru
ture. A genome wide sequen
ing would be far

too expensive, and thus the sequen
ing was limited to a number of mi
rosatel-

lite markers. These markers and the sequen
ing pro
edure are dis
ussed in the

following subse
tions.

Figure 2.2: The sampling lo
ations of the meadows of Posidonia o
eani
a are

marked with 
ir
les. The lo
ations are divided to three geographi
al groups:

west (yellow), 
entral (blue) and east (red).

2.1.3 Mi
rosatellites

Mi
rosatellites are a spe
ial 
lass of hypervariable sequen
es of non-
oding DNA,

whi
h are widely used for 
omparing the extent of geneti
 di�eren
es in two

organisms [22℄. The hypervarialibility of mi
rosatellites, i.e. their high mutation

rate, makes them ideal for 
omparing 
losely related organisms, su
h as two

7



samples of the same population or the same spe
ies. This property 
ombined

with the fa
t that mi
rosatellites are mostly not under any sele
tion pressure

has made them in
reasingly popular for example in 
rime investigation, disease

studies and stru
tural population analysis.

Stru
turally, mi
rosatellites are small motifs 1 to 6 nu
leotides long, repeated

up to 60 times. The stru
ture of the mi
rosatellite sequen
e makes it prone to

spe
ial 
opying errors, whi
h 
auses the mutation rate to be 
onsiderably larger

than for example in 
oding genes. Normally, an error in the DNA 
opying pro
ess

would 
ause a mismat
h between the 
opied DNA strand and the template strand

and trigger a repair pro
ess, but o�sets in the number of repeats are not as

easily noti
ed. This DNA slippage is the main me
hanism behind mi
rosatellite

mutations. It mostly 
auses errors that delete or insert one repetition. The

pro
ess does not seem to depend on the number of repeats, when the number is

limited to a 
ertain range usually from few dozens to few hundreds of repeats.

Beyond this range, however, there seem to be some me
hanisms limiting the

length of the sequen
e [22℄. It is fairly straightforward to model the mutation

pro
ess, as it 
an roughly be des
ribed as a random walk.

2.1.4 Sequen
ing

The �rst stage of the sequen
ing pro
ess was isolating the genomi
 DNA by

following a standard CTAB extra
tion pro
edure [3, 23℄. It would be too expen-

sive to sequen
e all known mi
rosatellites from all the samples. Be
ause of this,

samples from eight lo
ations were fully genotyped for eight dinu
leotides, four

trinu
leotides and one 7-nu
leotide, and 7 mi
rosatellite markers where then 
ho-

sen by using the 
onditions dis
ussed by Arnaud-Haond et al. [24℄ to a
hieve the

most e�
ient 
ombination of the markers for separating 
lones from geneti
ally

di�erent spe
imens [3, 25℄. Errors in sequen
ing typi
ally generate very small

dissimilarities among 
lonal ramets, and all spe
imen with a distin
t genotype

for only two or one alleles were re-genotyped for those lo
i [3℄. As Posidonia is

a diploid organism, the �nal geneti
 data set 
onsists of pairs numbers of rep-

etitions in ea
h seven lo
i for ea
h of the 1468 samples, whi
h thus 
onstitutes

a (2 × 7 × 1468) matrix. 834 of the 1468 samples were unique with respe
t to

the 
hosen mi
rosatellite markers, the rest being 
lones or not distinguished as

geneti
ally di�erent by the resolution given by the 14 markers in 7 lo
i.

8



2.2 Choosing the distan
e measure

In the 
ontext of studying the geneti
 stru
ture of a large, geographi
ally widely-

spread population, the individual genomes of the samples are not of mu
h interest.

Instead, the fo
us is on the geneti
 relationships between these samples. As large-

s
ale geneti
 relationships 
an be highly 
omplex, the simplest way to approa
h

the problem seems to be to 
on
entrate on pairwise geneti
 relationships. The

geneti
 relationship of two samples is naturally des
ribed by their similarity. This

approa
h thus leads to de�ning a pairwise distan
e between all samples, in the

hope that the more 
omplex properties of the whole data set 
an be inferred from

these distan
es.

The geneti
 distan
e approa
h 
an be used, for example, to �nd geneti
ally dis-

tin
t populations in the data, as individuals belonging to the same population

should be geneti
ally 
lose. Likewise, a gene �ow between two geneti
ally distin
t

populations would result in short 
ross-population geneti
 distan
es. Distan
e-

based methods are also the starting point of many model-based phylogeneti
 [28℄

and population stru
ture inferen
e methods [18℄, whi
h have be
ome more pop-

ular than purely distan
e-based methods [5, 6, 18℄.

The geneti
 data of ea
h sample 
onsist of mi
rosatellite repetition numbers of

the two alleles in ea
h of the seven lo
i. Transformation of this mi
rosatellite

marker data into pairwise distan
es turns out to be a non-trivial task. This

transformation is dis
ussed in detail below.

2.2.1 De�ning the distan
es

The mi
rosatellite data for ea
h sample 
onsist of unordered pairs of allele lengths

for ea
h lo
us. Genets 
an be distinguished in the data, but there is no unam-

biguous measure of the geneti
 distan
e between di�erent genotypes, although

the me
hanisms for their evolution are fairly well known. This is be
ause two

su
h me
hanisms have an e�e
t on the distan
e: mutations and geneti
 mixing.

Both me
hanisms impli
ate a way to de�ne the distan
e measure. These dis-

tan
e measures are 
al
ulated here for the Posidonia o
eani
a data set and their

properties are studied.

Mutations in the mi
rosatellites usually alter the length of the allele by deleting
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or inserting one repeat, whose length in our 
ase is two nu
leotides. The overall

pro
ess of genome evolution by mutations only 
an be des
ribed by a random

walk in single-allele length. The 
orresponding distan
e measure between two

genomes 
an thus either be the minimum number of single-repeat mutations re-

quired to transform one genome to another, or the expe
ted time it would take

for one genome to transform to another. The �rst 
an also be viewed as the

maximum parsimony measure, and it is not as sensitive to the de�nition of the

underlying pro
ess as the latter one is. The expe
ted-time measure would, for

example, have to take into a

ount the me
hanism restri
ting the number of the

mi
rosatellite repetitions. The parsimony distan
e measure has been previously

used in network-based studies of Posidonia o
eani
a [3, 29℄, and it was thus 
ho-

sen for 
loser inspe
tion. Rozenfeld et al. named the parsimony distan
e linear

Manhattan distan
e (LM), and de�ned it as follows:

di(A,B) =
k

∑

i=1

(|Ai − Bi| + |ai − bi|), (2.1)

where Ai and Bi denote the lengths of the longer of the two alleles at lo
us i for

samples A and B, and ai and bi denote the shorter lengths, respe
tively. The

summation runs over sampled lo
i.

In the sexual reprodu
tion pro
ess only geneti
 re
ombination takes pla
e, and it

is not a�e
ted by the number of repetitions in the alleles. Hen
e a distan
e mea-

sure whi
h takes the allele lengths into a

ount would possibly produ
e misleading

results when applied to a system with a higher rate of sexual reprodu
tion than

the mutation rate. The non-shared alleles distan
e (NSA) 
ounts the number of

non-shared alleles at ea
h lo
us of the two individuals, and as su
h it e�e
tively

dis
ards all information on the di�eren
es of allele lengths. Thus the NSA dis-

tan
e is a suitable measure when sexual reprodu
tion is the dominant me
hanism

of geneti
 variation. The NSA distan
e is de�ned as follows:

di(A,B) =
k

∑

i=1

∑

x∈{Ai,ai,Bi,bi}

(1 − |{x} ∩ {Ai, ai} ∩ {Bi, bi}|), (2.2)

where Ai, Bi, ai and bi are de�ned as in Equation (2.1), and the �rst summation

again runs over sampled lo
i. Instead of 
ounting non-shared alleles, a binary

measure for geneti
 mixing 
ould be de�ned as a parsimony measure, as the linear

Manhattan measure was de�ned. The allele parsimony distan
e (AP) 
ounts

the minimum number of allele repla
ements between two genomes for one to

10



transform to another:

di(A,B) =
k

∑

i=1

min(|{Ai, Bi}| + |{ai, bi}|, |{Ai, bi}| + |{ai, Bi}|). (2.3)

The NSA and AP distan
es are similar to ea
h other up to a 
onstant multiplier,

and the only di�eren
es are the 
ases where one of the samples is homozygous and

other is heterozygous in a lo
us. In the following, we will use the NSA distan
e

measure.

2.2.2 Comparisons between the distan
e measures

The s
atter plot of Figure 2.3, displaying values of the two distan
es for ea
h

pair of ramets, illustrates the relationship between the NSA and LM distan
es.

Judging from this plot, the relationship between these two seems rather linear, but

with reasonably high varian
e. A more quantitative measure of the relationship is

the 
orrelation 
oe�
ient whi
h takes a value of approximately 0.71, in agreement

with the above 
on
lusion.

Figure 2.3: S
atter plot of the linear Manhattan distan
e (2.1) and the non-shared

alleles distan
e (2.2) for every pair of ramets in the Posidonia o
eani
a data. The

value of the 
orrelation 
oe�
ient is approximately 0.71.
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The two distan
e measures assume di�erent underlying evolutionary pro
esses.

Geneti
 population stru
tures produ
ed by these pro
esses 
an be distinguished

from ea
h other, but the real pro
ess behind the geneti
 population stru
ture of

Posidonia is a priori known to be a 
omplex 
ombination of the two pro
esses.

Thus, instead of inferring the probabilities of the pro
esses produ
ing the data, we

must resort to a more qualitative 
omparison of the geneti
 population stru
ture,

and look for geneti
 stru
ture 
hara
teristi
 of the two evolutionary pro
esses.

We begin by looking at the allele length distributions of all seven lo
i (Figure

2.4). A high mutation rate would yield a high degree of polymorphism, whi
h is

the 
ase only for two lo
i (1 and 3). Instead, the number of repeats in lo
i 2, 5,

6 and 7 are mostly 
on�ned to a small number of 
learly distin
t values. This is

indi
ative of a slow rate of mutation, implying that the use of the LM distan
e

in the analysis of this data set might not be well justi�ed.

Figure 2.4: The allele frequen
ies in the 7 sequen
ed lo
i of the Posidonia. The

horizontal axis represents the number of repetitions de�ning an allele, and the

verti
al axis the allele frequen
y. The distributions for lo
i 1 and 3 are fairly

di�use with no 
lear gaps, implying a high rate of mutations. On the 
ontrary,

in the other lo
i the repetition numbers are mostly limited to a small number of

distin
t values, indi
ating that sexual reprodu
tion is the dominant me
hanism.

For lo
us 2, the di�eren
e between these values is large, whi
h 
auses substantial

di�eren
es between the NSA and LM measures.

Let us now dis
uss the e�e
ts of these �ndings on the values of the distan
e

measures. Note that for lo
us 2, there are only 3 di�erent 
ommon allele lengths,
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whi
h are spread far apart separated by wide gaps where almost no alleles 
an be

found. Lo
i 6 and 7 are also 
on�ned to 3 distin
t values, but with the di�eren
e

that the values are not separated by gaps. The NSA distan
e measure dis
ards

all information on the allele lengths, and thus the overall 
ontributions of lo
i 2,

6 and 7 on the distan
es should be roughly equal. This is not the 
ase with the

LM distan
e, for whi
h the length of the gaps is important information. Figure

2.5 displays the mean 
ontribution of ea
h lo
us for both distan
e measures. It

is apparent that lo
i 2, 6 and 7 
ontribute roughly equally to the NSA distan
e;

however, for the LM distan
e, the di�eren
es are very high. This di�eren
e arises

from the ambiguity of the distan
e measures.
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Figure 2.5: Mean 
ontribution over all distan
es of ea
h lo
us to the linear Man-

hattan distan
e and the non-shared alleles distan
e. There are substantial di�er-

en
es between the NSA and LM measures, espe
ially for the lo
i 2, 6 and 7. The

NSA measure seems to give similar weights to ea
h lo
i, as opposed to the LM

distan
e, where the di�eren
es 
an be large.

The problem at hand 
an be roughly divided into two limiting example 
ases. If

two (or several) alleles with a large di�eren
e in the number of repeats 
oexist in

a population of 
losely related individuals, applying the LM measure 
an produ
e

erroneous results. As an example, two ramets heterozygous with respe
t to this

allele 
ould have two homozygous des
endants. The LM measure would yield a

high geneti
 distan
e between these, due to the large di�eren
e in allele lengths.

Thus, NSA would appear as the proper distan
e measure for su
h 
ases. However,
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if there are two distin
t populations su
h that all shorter alleles are found within

one and longer ones within the other, the LM measure 
learly provides a more

a

urate view. One 
an thus interpret the LM distan
e as a measure of geneti


di�eren
es over long, evolutionary time s
ales, and the NSA as a measure related

to shorter time s
ales.

In reality, however, both long and short time s
ales are re�e
ted in the geneti



omposition of populations. For the 
ase of P. o
eani
a, this 
an be 
learly seen

in Figure 2.6, displaying the geospatial distribution of the ramets homozygous

and heterozygous with respe
t to lo
us 2. 121 ramets with alleles (164, 164) are

lo
ated in the eastern and 
entral areas of the Mediterranean sea, whereas 225

ramets with alleles (182, 182) are lo
ated in the western and 
entral areas. This


auses the LM distan
e to di�erentiate well between the east and the west, but


auses noise in the distan
e measure in the 
entral areas. On the other hand,

the 82 heterozygous ramets with alleles (164, 182) lo
ated in the west and 
enter


an also 
ause large errors between the ramets from the west as dis
ussed in the

previous paragraph. This 
laim is studied more 
losely in the following Se
tion.

Figure 2.6: Geographi
al distribution of sampling lo
ations where the two ma-

jor alleles of lo
us 2 
an be found. Distributions for the homozygous [(164,164),

(182,182)℄ ramets are shown separately. Colors indi
ate frequen
y: red for lo
a-

tions with the highest frequen
y, yellow for lowest frequen
y, with the intensity

of the 
olor re�e
ting the frequen
y. Small blue 
ir
les denote lo
ations where

these alleles are not found. It is 
learly seen that the allele 164 is asso
iated

with the east of Mediterranean and 182 with west; however there are also some

heterozygous (164, 182) samples near Spain.
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Correlations with lo
ations

The above results 
learly indi
ate that there are 
orrelations between geneti


distan
es and the lo
ations of the sampling sites of ramets. Furthermore, the

analysis dis
ussed in the previous Se
tion suggested that the LM measure di�er-

entiates well ramets sampled from geographi
ally distant lo
ations, while the NSA

seems to be appropriate measure for analyzing populations whi
h are spatially

and geneti
ally 
lose. Here, we test this hypothesis using ROC 
urves [30, 31℄,

as introdu
ed in this spe
i�
 
ontext by Klemm [32℄. The ROC 
urves quantify

the extent to whi
h the geneti
 distan
es 
an be used to 
lassify samples into


lusters, using the sampling lo
ations as a referen
e. The results of the ROC

analysis for 
omparing di�erent distan
es to the two geographi
al divisions 
an

be seen in Figure 2.7, whi
h seems to support the 
laim, as the LM is better for


oarse 
lassi�
ation than NSA, but NSA is better when all lo
ations are taken

into a

ount.

Ea
h point on the ROC 
urve 
orresponds to a threshold value θ. For ea
h

threshold value θ, the pairs of nodes are divided into two sets: those having a

distan
e smaller than the threshold and those who have a larger distan
e. The

pairs with the small distan
es are predi
ted to belong to same the 
lass, and the

ones with large distan
e are predi
ted to belong to di�erent 
lasses. Using the

sampling sites as the true 
lasses, two rates of su

ess are 
al
ulated for ea
h θ:

the true negative rate, i.e., the fra
tion of samples predi
ted to belong to di�erent


lasses, whi
h a
tually belong to di�erent 
lasses, and similarly, the true positive

rate. These rates are then plotted against another. Hen
e a distan
e whi
h would

not 
orrelate at all with the 
lasses would yield a straight line.

To see how mu
h the ROC 
urves for ML and NSA are a�e
ted by the di�erent

mean 
ontributions of di�erent lo
i to the two distan
e measures illustrated by

the Figure 2.5, a renormalized distan
e measure was 
onstru
ted. This measure

is based on the LM distan
e, where the 
ontribution of ea
h lo
us is renormalized

su
h that their means 
orrespond to those of the NSA distan
e. Figure 2.7 shows

that the normalization has a substantial e�e
t, but does not fully explain the

di�eren
e between the NSA and LM distan
es.

Lo
us 3 was seen to have a high degree of polymorphism in Figure 2.4 and thus

it should have a high mutation rate. This implies that the LM measure 
ould

perform better or as well as NSA in the lo
us 3. To test this, a hybrid distan
e
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Figure 2.7: ROC 
urves for the predi
tion of the sampling lo
ations with di�erent

distan
e measures. The solid 
urves indi
ates the 
lassi�
ation made with all the

37 lo
ations, and the dashed 
urves show the results for more 
oarser 
lassi�
ation

of the data to western, 
entral and eastern regions.

was 
onstru
ted su
h that in the NSA measure, the third term in the distan
e

sum 
orresponding to lo
us 3 was repla
ed by the 
orresponding term of the

LM distan
e. In addition, this repla
ement term was normalized su
h that its

overall 
ontribution was similar to the original NSA term. In Figure 2.7, this

hybrid model is seen to have a negative e�e
t on the predi
tion ability of the

NSA distan
e for lo
ations, and a positive e�e
t when only the 
oarser division

to east, 
enter and west is 
onsidered.

2.2.3 Con
lusions

The ambiguities of measures for mi
rosatellite-based geneti
 distan
es between

individuals are seen to 
ause problems when the measure needs to perform well

on multiple evolutionary time s
ales. For the Posidonia o
eani
a data, this 
ould

indi
ate that for example studying only ramets lo
ated on the 
oast of Spain,

where the sampling is most frequent, the NSA distan
e 
ould be a reasonable

starting point. On the other hand, the LM distan
e 
ould be used to estimate

long-range e�e
ts, however it 
ould 
ause substantial noise in the distan
es when
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improperly used.

An interesting solution to the problem would be a hybrid distan
e measure taking

into a

ount population-level information that 
annot be otherwise in
orporated

to the distan
e measure between two single genomes. However, su
h a measure

would be harder to interpret, and at least is not trivial to 
onstru
t a measure

that would perform better than both NSA and LM in all test 
ases. A substantial

part of this problem is norming the 
ontributions to the distan
e measures made

by ea
h lo
us, as the varian
e in the 
ontributions between the two measures is

large, whi
h has a substantial e�e
t to the overall performan
e of the distan
e

when predi
ting lo
ations.

2.3 Basi
 statisti
s

The above-des
ribed data set on Posidonia o
eani
a has been studied with 
om-

monly used biologi
al summary statisti
s methods in Refs. [24,34,35℄. Results of

these studies 
an be used as a basis in assessing any results produ
ed with the

new methods dis
ussed later. They also give a general idea of how the data is

organized, what the limitations of these methods are, and what they are good

for. In this Se
tion, those results are brie�y reviewed, and some basi
 statisti
s

of the data are dis
ussed. Before that, the general ideas behind these methods

are brie�y des
ribed.

2.3.1 Phylogeneti
s and population geneti
s

Summary statisti
s of population geneti
s and phylogeneti
 trees are both good


andidates for studying large data sets of individuals, whose genome is represented

by a small number of mi
rosatellite markers. Phylogeneti
 trees 
an be used for


lonal spe
ies or for individuals sampled from distin
t populations. Summary

statisti
s are better suited for 
losely related individuals, whi
h are preferably

sampled from same population. However, the use of these methods is often limited

by the underlying assumptions. These limitations are dis
ussed brie�y in this

subse
tion, to give an idea of what kind of data 
an be studied with traditional

methods, without having to resort to the network methods introdu
ed later.
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A phylogeneti
 tree is a representation of lineages and history of evolutionary

events separating them for a set of individual organisms [5, 6℄. Phylogeneti


trees are also 
ommonly built between genes or spe
ies, but these 
ases are not


onsidered here. A 
ommon way of presenting evolutionary relationships is a

rooted tree, where the leafs of the tree depi
t the sampled organisms. The inner

nodes represent the an
estors of the leaves su
h that a 
ommon parent of two

nodes is the last 
ommon an
estor of those nodes. This means that the root of

the tree is the most re
ent 
ommon an
estor of all the nodes. This hierar
hi
al

bran
hing pattern is 
alled the topology of the tree. Most methods for building

phylogeneti
 trees de�ne bran
h lengths in addition to the topology. The lengths


an represent the period of time 
overed by the bran
h or the amount of geneti


divergen
e.

Phylogeneti
 trees are traditionally used in systemati
s by 
omparing morpholog-

i
al di�eren
es of spe
ies. As the amount of mole
ular data has exploded in the

last de
ades, phylogeneti
 analysis has entered the genomi
 age. This, 
ombined

with the development of statisti
al methods of phylogeny inferen
e, has made it

possible to analyze data sets of hundreds of spe
ies. Despite this su

ess, phylo-

geneti
 trees have limitations that restri
t their use, as an example, for the data

set of Posidonia o
eani
a dis
ussed in this Thesis. If the studied set of nodes

or samples are from the same population or even from the same spe
ies, sexual

reprodu
tion 
an limit the usage of phylogeneti
 trees as the di�erent lineages


an now merge. Thus the tree stru
ture 
annot 
orre
tly represent the histories

of all lineages, as mixing would 
ause the appearan
e of 
y
les in the tree. Su
h

e�e
ts 
an also be 
aused by horizontal gene transfer, whi
h is thought to play a

role in ba
terial evolution [33℄.

Traditional population geneti
 studies rely on simpli�ed models of geneti
 evo-

lution and reprodu
tion me
hanisms. The aim is to �t the observed data to the

models, and 
al
ulate summary statisti
s based on the �tted models. A typi
al

problem with this approa
h is the often unrealisti
 assumptions made by the mod-

els, su
h as non-overlapping generations, random mating and equilibrium state,

whi
h are in many 
ases known to be violated in the studied populations [3℄. In

some 
ases, the use of the models is limited even more by the 
hoi
e of the studied

organism. As an example, in the 
ase of Posidonia o
eani
a, 
lonal reprodu
tion

severely limits the number of models that 
an be used. This means that many

of the 
ommonly used summary statisti
s, su
h as the e�e
tive population size

and the generation time, 
ontain assumptions that are not 
ompatible with 
lonal
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organisms su
h as Posidonia.

2.3.2 Results of the summary statisti
 studies

The Posidonia o
eani
a data set des
ribed here has been studied with population

biology summary statisti
 methods in at least three arti
les. The main results

of these arti
les are brie�y presented here. The �rst arti
le by Arnaud-Haond

et al. [24℄ optimized the number of mi
rosatellite markers needed to distinguish


lones from geneti
ally di�erent genotypes, and found a 
ombination of seven

dinu
leotide markers, whi
h are also used in this Thesis as dis
ussed earlier.

Diaz-Almela et al. [34℄, on the other hand, used the seven markers to study the

e�e
t of four Mediterranean �sh-farms on Posidonia o
eani
a. Arnaud-Haond et

al. [35℄ again studied spatial 
orrelations in the geneti
 data and found a strong

west-east 
leavage. In addition, they found a putative se
ondary 
onta
t zone at

Si
ulo-Tunisian Strait, high geneti
 stru
ture between meadows, and high spatial

auto
orrelation in some of the lo
ations.

The strong geneti
 separation between west and east has also been observed

earlier with other data sets [20, 27℄ of Posidonia. On the basis of this strong

eviden
e, the large s
ale geographi
al 
orrelation of the genomi
 distan
es is used

as a �rst ben
hmark for the new methods introdu
ed later. More spe
i�
ally, the

sampling lo
ations and the samples are divided into western, 
entral and eastern

lo
ations as dis
ussed earlier, and the division is 
ompared in various ways to any

new results.

2.3.3 Distan
e based statisti
s and studies

Rozenfeld et al. [3℄ studied the linear Manhattan distan
e distributions by model-

ing the di�erent reprodu
tion pro
esses and observing typi
al distan
es produ
ed

by them. Su
h geneti
 diversity spe
tra (GDS) averaged over all within-lo
ation

distan
es are shown in Figure 2.8. The shapes of the spe
tra for the non-shared

alleles distan
e in panel a) and the linear Manhattan distan
e in panel b) look

fairly similar. The only di�eren
e seems to be related to the fa
t that the number

of distin
t distan
es is larger for the LM measure. Rozenfeld et al. [3℄ found out

that most of the observed distan
es in the GDS in panel b) were typi
al for 
lonal

reprodu
tion and out
rossing, and dedu
ed that these are the main me
hanisms
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in�uen
ing the geneti
 stru
ture of Posidonia o
eani
a. In Figure 2.9, the same

GDS plots for NSA and LM distan
es are shown for the whole Mediterranean-

wide data set. There, the 
lonal peaks at distan
e of zero are almost absent.

However, interestingly, the GDS for LM distan
e shown in panel b) seems to be

a 
ombination of multiple normal distributions. This 
ould be due to the strong

west-east 
leavage. The large peak would then 
orrespond to the distan
es inside

the geographi
al areas and the small peak to the distan
es between the west and

the east. This e�e
t 
annot be seen in the GDS for NSA distan
e in panel a),

whi
h might indi
ate that the di�eren
es inside ea
h of the three geographi
al

areas are already so big for the NSA distan
e that the larger distan
es between

the areas 
annot be distinguished from them. This means that the resolution of

the NSA distan
e for large geographi
al distan
es is not as good as the resolution

of the LM distan
e on the same s
ale.

To verify the hypothesis about the large s
ale geographi
al e�e
ts on the global

GDS, the geneti
 distan
es were plotted against the 
orresponding geographi
al

distan
e in Figure 2.10. A 
lear 
orrelation with the geographi
al and geneti
 dis-

tan
es 
an be observed for both geneti
 distan
e measures. Noti
e that the den-

sity plots of Figure 2.10 are essentially joint distributions of geneti
 distan
e and

geographi
al distan
e, and the GDS distributions in Figure 2.9 are the marginal

distributions of those joint distributions when the geographi
al distan
es are in-

tegrated out. Figure 2.10 thus 
on�rms that the peak 
orresponding to the large

geneti
al distan
es in GDS of LM distan
e is indeed due to node pairs with large

geographi
al distan
e. Although similar 
orrelations to geography 
an be ob-

served for the NSA distan
e, distin
t peaks are not visible in the GDS plots for

NSA distan
e.

Thus the LM and NSA distan
e distributions appear to support the 
on
lusion

made on the basis of ROC 
urves of Figure 2.7, namely that the LM measure

seems to better re�e
t large-s
ale variations, whereas the NSA distan
e performs

better in analysis of lo
al populations. This doesn't 
ome as a surprise, be
ause

the re
ombination pro
ess measured by the NSA distan
e has physi
al 
onstraints

with respe
t to geographi
al distan
e, whereas the mutation pro
ess measured by

the LM distan
e does not depend on geography.
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Figure 2.8: Geneti
 diversity spe
trum (GDS) averaged over all the distan
es in

ea
h sampling lo
ation for a) the non-shared alleles distan
e (NSA) and b) the

linear Manhattan distan
e.
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Figure 2.9: Geneti
 diversity spe
trum (GDS) of the whole data for a) the non-

shared alleles distan
e (NSA) and b) the linear Manhattan distan
e.
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(a) NSA

(b) LM

Figure 2.10: Two geneti
al distan
es plotted against geographi
al distan
e: a)

non-shared alleles (NSA) and b) linear Manhattan (LM). Some 
orrelation be-

tween geographi
al and geneti
 distan
es is visible, when large and small geo-

graphi
al distan
es are 
ompared, but the e�e
t is more apparent for the LM

distan
e.
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Chapter 3

Network analysis of the data

In the previous Chapter, the Posidonia o
eani
a data set was seen to 
ontain 
om-

plexity that 
ould not be fully 
aptured by traditional model-based methods and

summary statisti
s. The reason for this was seen to be the reprodu
tion system

of Posidonia 
onsisting of three di�erent me
hanisms. On one hand, 
lonal repro-

du
tion violates the most basi
 assumption of non-overlapping generations made

by 
lassi
al population geneti
 methods [3℄, and on the other hand, Posidonia's

sexual reprodu
tion severely limits the usage of phylogeny methods. The data

was also seen to 
apture multiple evolutionary s
ales as the distan
es between

the samples vary from few meters to thousands of kilometers.

Network s
ien
e has been su

essfully used to 
apture both small s
ale stru
ture

and large s
ale phenomena on 
omplex systems ranging from so
ial [7℄ to te
hno-

logi
al [19℄ systems. The main idea of the network approa
h is to study systems

with a large number of intera
ting elements by representing them as graphs,

where edges represent intera
tions between the elements. This abstra
tion step

allows the use of generi
 network-based data analysis methods to be applied to a

range of di�erent systems.

In this Chapter, network-based methods are used to ta
kle the 
omplexity in-

herent in the population stru
ture of Posidonia o
eani
a. Earlier network-based

studies of the Posidonia o
eani
a data set are �rst reviewed. These studies are

mostly based on using methods su
h as minimum spanning trees and thresh-

olding, and 
omputing lo
al node-based topologi
al statisti
s from the networks

resulting from the appli
ation of those methods. This line of work is 
ontinued

in this Thesis by studying the large-s
ale stru
ture by hierar
hi
al 
ommunity
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dete
tion methods. Communities are sets of nodes whi
h are more densely 
on-

ne
ted to ea
h other than to the rest of the network, and are usually related to

the fun
tional units of the system. Nested 
ommunities, or 
ommunities inside


ommunities, form hierar
hi
al 
ommunity stru
tures. Community dete
tion is

thus 
lustering of nodes in a graph.

Although it has be
ome in
reasingly popular to take intera
tion strengths into

a

ount in the form of edge weights, most 
ommunity dete
tion methods still

only use the topologi
al properties of the network. This is a problem, as the

geneti
 similarity network of Posidonia is a full weighted network, and dis
arding

the weights would thus lead to a trivial topology. Here, one 
ommunity dete
tion

method, k-
lique per
olation, is modi�ed in a way that allows it to produ
e hierar-


hi
al 
ommunity stru
ture. The other 
ommunity dete
tion method used in this

Thesis is blo
k diagonalization, whi
h is a general method for 
lustering distan
e-

based data. Results of appli
ation of these methods are �rst 
ompared by visual

inspe
tion and then by using the mutual information framework. Geospatial in-

formation on the sampling lo
ations and phylogeny-tree-based 
lusters are also

utilized in the 
omparisons.

3.1 Converting the geneti
 distan
e matrix to a

network

To apply network methods to any dataset, an abstra
tion step is needed for

interpreting the data at hand as a graph. In our 
ase, the natural way of doing

this is interpreting ea
h spe
imen as a node and adding an edge between ea
h

node with a weight representing the geneti
 distan
e between them [3℄. This is

equivalent to using the distan
e matrix D between the spe
imens as a weight

matrix W. Similar approa
hes have been used in past e.g. in interpreting sto
k

pri
e 
orrelations as a network [9, 10℄.

As our data 
ontains 
lones, the �rst preparatory step is to 
ollapse ea
h set of


lones to one node by removing all but one instan
e of ea
h 
lone. This leaves

834 unique nodes.

The usual interpretation of the weight of an edge between two nodes is that

the larger the weight, the stronger the intera
tion between them. However, the
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distan
es de�ned here behave in exa
tly the opposite way. It is also useful to

normalize the weight matrix su
h that the maximum weight equals unity. These

requirements do not de�ne any unique way to transform distan
es to weights.

Here, one of the simplest ways is 
hosen:

Wij = 1 −
dij

max dij

. (3.1)

3.2 Earlier network studies of the data

In addition to traditional population biology studies dis
ussed earlier, the P.

o
eani
a data set has also been studied using network methods. All of the four

arti
les published about these studies are related to the same EDEN proje
t as is

this Thesis, but the author of this Thesis has not parti
ipated in any of them. In

this Se
tion those arti
les are brie�y reviewed and some of their ideas are adopted

as a part of the 
ommunity studies dis
ussed later.

The �rst of the four papers, written by Hernández-Gar
ía et al. [29℄, is a short

introdu
tion to the network perspe
tive for ta
kling the 
omplexity related to this

kind of biologi
al data in multiple resolutions. The se
ond, written by Rozenfeld

et al. [3℄, goes somewhat deeper into the individual level geneti
 networks and

reprodu
tion systems of the Posidonia o
eani
a. Contrary to this, in Ref. [36℄,

Rozenfeld et al. try to infer large s
ale geneti
 �ows from the network of geneti


distan
es between populations de�ned by the sampling lo
ations by using meth-

ods su
h as per
olation and betweenness 
entrality. As this starting point is

somewhat di�erent from the one used in this Thesis, further dis
ussion of this

paper is omitted here. The last arti
le dis
ussed here, by Hernández-Gar
ía et

al. [37℄, observes and models the size distributions of 
lonal samples.

3.2.1 Minimum spanning trees

In Ref. [29℄, Hernández-Gar
ía et al. introdu
e some ideas for analyzing the

mi
rosatellite data of the Posidonia o
eani
a with weighted 
omplex networks,

where the weights are de�ned with the linear Manhattan distan
e (Equation

2.1). They start by building a Minimum Spanning Tree (MST, see Appendix

A) of the distan
e network of sampled ramets of Posidonia o
eani
a, and visual-
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ize the resulting tree, where nodes are 
olored a

ording to sampling lo
ations.

Minimum/maximum spanning trees have also been used earlier to study stru
-

tural properties of e.g. sto
k pri
e 
orrelation networks [10℄. MST visualization

is a good and �exible tool for roughly representing the 
orrelations between the

geneti
 stru
ture and the geographi
al lo
ations of the nodes. MST-based visual-

izations are used in this Thesis for 
omparing the results of 
ommunity dete
tion

methods, as well as their relationship to geography.

One should be somewhat 
autious when making a priori 
laims about the meaning

of the stru
ture of the MST for any parti
ular type of network. Hernández-Gar
ía

et al. [29℄ interpret the MST as the main path of gene �ow among the plant

populations, on the basis that the edges represent 
losest relations between the

nodes. This seems to be a straight-forward interpretation, although it might be

a little problemati
 to de�ne the main path of gene �ow to go through single

organisms as their genomes are of 
ourse stationary. The real problems with the

MST are more general and subtle, and are related to the fa
t that the MST is

not ne
essarily unique if multiple links have same weights. Even if this is not the


ase, the MST is likely to dis
ard many important links due to small di�eren
es

in their weights, and is thus highly vulnerable to small perturbations. As an

extreme example of the non-unique nature of the MST, for a 
ase where all nodes

are 
lones, any tree 
onne
ting those nodes is their MST. If only a single MST

is given for this 
ase, its topology thus depends solely on the algorithm that was

used for 
onstru
ting the tree or is 
ompletely random. Keeping this in mind, it

would be advisable to use only one node to represent all of its 
lones in a MST.

The 
hoi
e of distan
e measure will also have an e�e
t to the topology of the

MST as even small 
hanges in the distan
es 
an 
ause large deviations in the

tree. This must be taken into a

ount espe
ially when using a distan
e measure

whi
h 
an produ
e large random errors in estimating short distan
es, be
ause the

minimum spanning tree is based on small distan
es. This was seen to be the 
ase

with the linear Manhattan distan
e of Eq. (2.1) in the previous Chapter where

the distan
e measures were 
ompared.

3.2.2 Thresholding

Another approa
h for studying full weight matri
es with network-related methods

is thresholding, where the network is 
onstru
ted of those matrix elements whose

weights are above some threshold value, wth. This approa
h was adopted by
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Rozenfeld et al. [3℄ and Hernández-Gar
ía et al. [37℄. Networks resulting from the

thresholding pro
edure 
an be studied with tools of unweighted network analysis,

su
h as analysis of degree distribution or 
lustering 
oe�
ient (see Appendix

A). This approa
h is better than using the MST in the sense that it dis
ards

less information, but on the other hand the 
hoi
e of the threshold wth 
an be

problemati
. In the 
ase of the network of samples of Posidonia O
eani
a, the

threshold 
an be 
hosen based on biologi
al arguments or topologi
al arguments.

For example, the average geneti
 distan
e between parents in simulated data has

been used as a threshold for meadow-wide networks [3℄. The network topology

itself 
an be used to determine the threshold by setting the threshold weight wth

to be equal to the 
riti
al point in per
olation, whi
h is roughly the minimum

threshold weight giving rise to networks where almost all nodes belong to the

largest 
onne
ted 
omponent.

The problem with 
hoosing a single threshold is that many of the network statis-

ti
s depend only on the 
hosen value, as for example the average degree and the


lustering 
oe�
ient go from zero for the maximum threshold to their largest

values for zero threshold. One solution to this is to use a range of threshold

values instead of a single one, and study the 
hosen measures as a fun
tion of the

threshold. This approa
h is used in later this Thesis for the 
ase of 
ommunity

dete
tion using the k-
lique per
olation method. This method is stri
tly topo-

logi
al; however it 
an be applied to weighted networks by thresholding them

�rst.

In the 
ase of the Posidonia o
eani
a data set, 
hoosing a threshold is problem-

ati
 also be
ause of the heterogeneity of the sampling lo
ations, as the geneti


distan
es between samples from the densely sampled Spanish 
oastal area are

short 
ompared to the most of the other distan
es. Hen
e, a threshold giving

rise to a network where the eastern nodes form a sparse network with visible

stru
ture would 
ontain a large, almost fully 
onne
ted 
lique of western nodes.

Furthermore, a threshold providing some resolution on the Spanish data would

leave the eastern nodes dis
onne
ted from ea
h other and from the western nodes.

Thus the proper thresholds for analyzing western, eastern or the whole data are

dramati
ally di�erent.

This problem of 
hoosing a global threshold is addressed in the arti
le by Rozen-

feld et al. [3℄ by simply looking the lo
al networks formed of ea
h sampling lo
a-

tions. Apart from visual inspe
tions of the resulting geneti
 networks in sampling
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lo
ations, the main network-based result seemed to be the small world prop-

erty [56℄ of the networks. This means that path lengths of the network remain at

the level of Erd®s-Rényi random networks [53℄, while the mean 
lustering 
oe�-


ient is notably higher than in random networks. As geneti
 networks are based

on distan
e measures, the triangle inequality implies a large 
lustering, and even

a small number of random links ensures the small path lengths. As Rozenfeld et

al. noted, the small world property is a very 
ommon feature of 
omplex networks.

In Ref. [37℄, Hernández-Gar
ía et al. use the thresholding approa
h and plot the

resulting networks for a single sampling lo
ation for four values of threshold.

In addition, they show the degree distribution averaged over the networks of

ea
h lo
ation at threshold levels zero and 30 of the linear Manhattan distan
e.

Most of their paper after this is devoted to modeling and studying the 
lone size

distributions, whi
h 
an also be interpreted as thresholding with value zero. This

is of 
ourse a trivial threshold level in the network sense as the resulting networks

only 
ontain dis
onne
ted 
liques ea
h 
orresponding to a set of 
lonal samples.

3.3 Community dete
tion

3.3.1 Overview of the problem

Initially, resear
h on 
omplex networks fo
used on studies of distributions of node

and edge based statisti
s, su
h as the 
lustering 
oe�
ient and betweenness 
en-

trality. Sin
e then, the fo
us has been shifting to more mesos
opi
 quantities. One

of the most fundamental large-s
ale problems is 
ommunity dete
tion. Commu-

nity dete
tion is an important problem as in many 
ases 
ommunities 
orrespond

to fun
tional entities in networks, or are otherwise relevant in 
ontext of the un-

derlying system. The problems in 
ommunity dete
tion are not as mu
h related to

di�
ulties with 
omputation or algorithmi
 performan
e as they are to the exa
t

mathemati
al de�nition of a 
ommunity. A 
ommunity is in most 
ases loosely

de�ned as a set of nodes that are internally more densely 
onne
ted than exter-

nally. The de�nition of a 
ommunity is not always based on network topology,

and sometimes 
ommunities are de�ned based on a spe
i�
 underlying problem.

For example, in so
ial networks groups of friends 
an a
t as 
ommunities, or in

geneti
 networks a group of genes performing some well de�ned fun
tion 
an be


onsidered a 
ommunity. In spite of this intuitive knowledge of what 
ommunities
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or 
lusters in graphs should be, a generally a

eptable all-purpose de�nition is

still to be found.

An alternative view to the 
ommunity dete
tion problem is that a universal de�-

nition of a 
ommunity 
annot be found. This view is supported by the existen
e

of dozens of di�erent 
ommunity dete
tion methods built on 
learly di�erent

and in
ompatible underlying assumptions. The la
k of a unique formal de�ni-

tion of a 
ommunity makes the problem of �nding the best 
ommunity dete
tion

method ill-posed, and the problem be
omes 
hoosing whi
h 
ommunity dete
-

tion method is best suited for the task at hand. When sele
ting a 
ommunity

dete
tion method, at least the following questions should be answered:

1. Should it be possible for a node to belong to more than one 
ommunity?

2. Should it be possible for a node not to belong to any 
ommunity, or to form

its own single-node 
ommunity?

3. Should the method assign nodes to 
ommunities of roughly the same size,

or is a large variation of sizes expe
ted in the data?

4. Should the method be hierar
hi
al, or should it produ
e just a single division

of nodes to 
ommunities? That is, should the method be able to dete
t


ommunities nested inside larger 
ommunities?

5. In weighted networks, how are the weights taken into a

ount when dete
t-

ing 
ommunities?

Despite the ambiguities in 
ommunity dete
tion, several properties are 
learly

desirable for any method. For example, adding a new 
omponent to a network

should not a�e
t the 
ommunity stru
ture of the existing 
omponents inferred by

any method. This implies that the 
ommunity stru
ture should be determined

using only the lo
al topology of the network. La
k of su
h lo
ality has proven to

be a 
ommon pitfall in 
ommunity dete
tion, as it is not always apparent from

the des
ription of a method whether it produ
es su
h unwanted global e�e
ts

in the 
ommunity stru
ture. Community dete
tion methods 
an be divided into

global methods, having a network-level �tness fun
tion whose maximum yields the

desired 
lassi�
ation of nodes to 
ommunities, and lo
al methods, whi
h only take

the lo
al topology of the network into a

ount. Both types of methods have their

advantages and problems, whi
h are dis
ussed in more detail in the following

subse
tions.
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One lo
al and one global 
ommunity dete
tion method were 
hosen for 
loser

inspe
tion in this Thesis. The 
lique per
olation method is a lo
al, topologi
al


ommunity dete
tion method, and the blo
k diagonalization method is a global


lustering method for distan
e matri
es. Only a small fra
tion of all available


ommunity dete
tion methods are dis
ussed in this Thesis, and to get a broader

view of the �eld, the reader in en
ouraged to read the re
ent review arti
le on

the matter [39℄.

3.3.2 Lo
al methods: Per
olation and k-
lique per
olation

Dis
arding a fra
tion of the edges of a network based on some 
riterion and

then interpreting the remaining 
omponents as 
ommunities is a straightforward

and 
ommonly used method for 
ommunity dete
tion for example in so
ial net-

works [40℄. Su
h edge per
olation methods 
an be divided into two 
ategories:

in agglomerative methods, edges are added to an initially empty network, and in

divisive methods, edges are removed from the original network. In both 
ases,

the fra
tion of edges added or removed a
ts as a 
ontrol parameter. A variety of


riteria exists for the order of edge removal or addition. For a weighted network,

the given edge weights 
an be used to order the edges. Also topologi
al prop-

erties, su
h as edge betweenness, 
an be used to determine the order in whi
h

the edges are removed or added to the network. Topologi
al properties 
an be


al
ulated only for the original network, or dynami
ally after ea
h addition or

removal.

The goal is to remove just the right fra
tion of edges giving rise to a network whose

dis
onne
ted 
omponents 
orrespond to the 
ommunity stru
ture. If the fra
tion

of removed edges is too high, (almost) all nodes belong to a single 
onne
ted


omponent (the giant 
omponent), whereas removing too many edges leads to a

severely fragmented and ultimately to an empty network. Su
h pro
esses have

been extensively studied in per
olation theory [41℄, and it has been noti
ed that

in many systems the transition from the situation where almost all nodes belong

to a single 
omponent to a situation where there are a large number of small


omponents is very rapid. In this 
ontext, the number of edges needed to be

removed to arrive at the point of transition between the two phases is 
alled the


riti
al point of the system. If su
h a point exists for a per
olation pro
ess, it


an serve as a good 
andidate for determining the proper fra
tion of edges to be

removed.
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The 
lique per
olation method [42℄ 
an be 
onsidered a modi�
ation of the edge

per
olation method. For the edge per
olation method, two nodes are assigned

to the same 
ommunity, if they are 
onne
ted via any path along the edges.

However, for 
lique per
olation, there has to be a path of 
liques. Formally,

two k-
liques, i.e. 
liques of k nodes, are de�ned to be adja
ent if they share a


ommon k − 1-
lique. The k-
liques are thus nodes of a new k-
lique network,

where links represent these adja
en
y relations. Then two nodes in the original

network are in the same 
ommunity if they parti
ipate in k-
liques whi
h are in

the same 
omponent of the k-
lique network.

The k-
lique per
olation method has some desirable properties: The number of


ommunities a node 
an belong to is not predetermined, but a node 
an belong

to any number of 
ommunities, or even to no 
ommunity, depending on the

network topology. The method is based on lo
al network topology only, and far-

away nodes or edges do not have an e�e
t on the lo
al 
ommunity stru
ture. A


ommunity is expli
itly de�ned, whi
h makes the resulting 
ommunity stru
ture

easy to interpret. In addition, the method is deterministi
, whi
h ensures that

k-
lique per
olation algorithms always �nd the same 
ommunities in a network.

The less desirable properties of the 
lique per
olation method in
lude exponen-

tially s
aling 
omputational 
ost as fun
tion of the network size, in the worst 
ase

when 
ommunities of all 
lique sizes k are sought for. Also, small perturbations in

the network 
an 
ause large 
hanges in the 
ommunity stru
ture. For instan
e, if

there is a single k-
lique between two large 
ommunities, removal of a single link

in that 
lique will 
ause the two 
ommunities to split. The s
aling is not a prob-

lem in most 
ases as it is usually enough to use 
liques of size three to �ve [43℄,

and extremely large highly 
onne
ted subgraphs are not very 
ommon in net-

works. S
aling issues 
ould be solved by 
hoosing the right value for the 
lique

size k, but the 
hoi
e of the k-
lique threshold imposes more problems. First,

the 
lique size k must be integer-valued, whi
h may lead to a situation where a

suitable value 
annot be found. Se
ond, Palla et al. [42℄ suggested a heuristi
s

for �nding a global value of the 
lique size k. However if the network is highly

heterogeneous, this might yield a 
ompromise value only, whereas di�erent values

of k 
ould be more suitable for di�erent parts of the network. Choosing a single


lique size k depending on the network also violates the property of 
ommunities

being lo
al in the sense dis
ussed earlier.
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(a) S
hemati
 view (b) Data

Figure 3.1: Clique per
olation in weighted networks is a 
ompromise between

topologi
al 
oheren
e and weighted stru
ture of the 
ommunities. A s
hemati


view of this with respe
t to the optimal threshold is represented in a). The

topologi
al 
oheren
e (verti
al axis) is in
reased as the 
lique size in
reases. In-


reasing the threshold level (horizontal axis), i.e. the smallest a

epted weight,

in
reases the relative importan
e of weights. The ri
hest 
ommunity stru
ture for

ea
h 
lique size 
an be found by using the optimal threshold, whi
h is the 
riti
al

point of the 
lique per
olation pro
ess. In b), the same shape of the optimal

threshold 
urve is observed in a data of east 
oast ramets of Posidonia o
eani
a

with linear Manhattan distan
e. The sus
eptibility in b) is de�ned as the mean

size of the 
omponents ex
luding the largest one, and it is expe
ted to peak and

the giant 
omponent size to saturate near the optimal threshold.

3.3.3 K-
lique per
olation and the Posidonia o
eani
a data

When viewed as networks, the geneti
 distan
e matri
es of samples of Posidonia

o
eani
a represent weighted, full networks. It is 
lear that these networks need

to be thresholded before the 
lique per
olation method 
an be used. An alter-

native is to use the weighted version [44℄ of the method, but this approa
h is


omputationally extremely demanding for full networks. As the network is very

likely to 
ontain nested 
ommunity stru
ture, 
hoosing a single threshold and

disregarding of the rest of the weights seems problemati
. Also the heteroge-

neous lo
ations of the sampling sites result in networks with domains of di�erent

weight s
ales. That is, the nodes from western Mediterranean were sampled with

mu
h higher resolution than those from the eastern parts of the sea, and thus the

weights between western nodes are of di�erent s
ale than the weights between

eastern nodes. These aspe
ts render the use of a single threshold for the 
lique

per
olation method useless for our data set of Posidonia o
eani
a. To solve this

problem, a hierar
hi
al version of the 
lique per
olation method using threshold
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sweeps [43℄ was developed by the author and 
oworkers. In our method, the k-


lique 
ommunities are 
omputed for ea
h weight threshold level of the network

starting from the full network and removing edges one by one, starting from the

smallest weights. The 
lique size k is sele
ted beforehand and kept 
onstant in

this pro
ess. Before removing any edges, the whole network 
onstitutes a single

large 
ommunity. When edges are removed, 
ommunities begin to split, and the

splitting pro
ess 
an be interpreted as hierar
hi
al 
ommunity stru
ture. Su
h

hierar
hi
al stru
tures are presented in this Thesis as rooted trees, where the

root is the 
ommunity 
onsisting of all the nodes in the network, and the leaves

are the smallest 
ommunities in the hierar
hy. As illustrated in Figure 3.1, the


lique size k 
orresponds to the required stru
tural integrity of 
ommunities. The

weight threshold 
orresponds to the smallest weight whi
h has an e�e
t on the


ommunity stru
ture. The 
ombination of the 
lique size and the threshold thus

determines the relative importan
e between topology and weights in 
ommunity

dete
tion.

Although the algorithm suggested for 
lique per
olation by Palla et al [42℄ 
ould

be, in theory, used for the hierar
hi
al the 
lique per
olation method, it is not a

suitable algorithm for the task. Computation of the largest 
liques of a graph,

whi
h is required when using the algorithm for 
lique per
olation suggested by

Palla et al. [42℄, 
an be a problem in dense networks, as it is known to be a NP-

hard problem. In addition, 
ommunity stru
ture should be 
al
ulated separately

for ea
h threshold level, if this algorithm was to be used for the hierar
hi
al


lique per
olation method. These 
ompli
ations were avoided here by developing

a 
omplementary algorithm for 
lique per
olation whi
h is able to produ
e the


ommunity stru
ture at ea
h threshold level in a single run. The trade-o� is

that only a single 
lique size 
an be used at a time. However, the use of single


lique size instead of �nding the largest ones lowers the theoreti
al s
aling of the


omputational time when small 
liques are used. This new algorithm is dis
ussed

in detail in Appendix B and in Ref. [43℄.

Results

As the hierar
hi
al 
lique per
olation method employed in this Thesis is based

on removing edges in order of weight, results are evidently sensitive to the dis-

tribution of edge weights. In parti
ular, if the distribution is heavily dis
rete

instead of 
ontinuous, su
h that for ea
h weight there is a large number of edges,
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the resolution of the method 
an be somewhat 
ompromised. In su
h a 
ase, it

is sensible to use the threshold weight as the 
ontrol parameter instead of the

fra
tion of edges removed, su
h that the 
ommunity stru
ture is evaluated at

points where all edges below the threshold have been removed. Thus, there may

be drasti
 jumps in the 
ommunity stru
ture if there is a large number of edges

with the same weight, espe
ially near the 
riti
al point.

The la
k of resolution is a problem for the geneti
 similarity network of Posidonia

o
eani
a as the distan
es between samples are highly degenerate when the NSA

distan
e measure is used. The resulting tree thus 
onsists of only a few levels

of division steps, whi
h 
an be 
learly seen for 
lique sizes k = 3 and k = 4 in

Figure 3.2. Using a larger 
lique size will not help 
onsiderably, although this

gives more weight to the topology of 
ommunities, as it will most likely only shift

the region of interest instead of widening it. In addition, �nding large 
liques

is 
omputationally demanding for the geneti
 similarity network of P. o
eani
a.

Despite the low resolution of the 
lique per
olation method apparent in Figure 3.2,

divisions made by the 
lique per
olation method are reasonable when 
ompared

to geospatial information on the sampling sites. Clique per
olation might be a

suitable 
ommunity dete
tion method for geneti
 similarity networks for 
ases

where high-de�nition weights not giving rise to resolution problems would be

available, or if the resolution problem 
ould be solved by modifying the method.
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lique per
olation
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Figure 3.2: Splitting pro
ess of 3-
lique and 4-
lique 
ommunities when the weight

threshold is varied for the geneti
 similarity network of Posidonia o
eani
a. The

similarity of nodes is based on the NSA distan
e. The nodes are divided to

three geographi
al groups: west (yellow), 
enter (blue) and east (red) and the

frequen
ies of the groups in ea
h 
ommunity are shown as a pie 
hart.

Using the LM distan
e instead of the NSA distan
e leads to geneti
 similarity

networks with more distin
t weights, and thus in
reases the number of hierar
hy
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levels in the hierar
hi
al 
lique 
ommunity tree. However, the LM measure might

be prone to large random errors in small-s
ale geneti
al distan
es, although it


an be used to predi
t large time s
ales very a

urately. Thus, using the LM

distan
e matrix as a basis of 
lique per
olation might result in more random

errors in the low levels of 
ommunity hierar
hy than using the NSA distan
e

with higher resolution that the number of di�erent weights would allow. The

in
reased number of hierar
hy levels is visible in the hierar
hi
al 
ommunity tree

of Figure 3.3, whi
h uses a geneti
 similarity network based on the LM distan
e.

The rough division of the node lo
ations to three 
lasses 
orrespond very well to

the results of 3-
lique per
olation based on the LM distan
e matrix, whi
h was

expe
ted as the LM distan
e is known to re�e
t the division better than the NSA

distan
e (see Figure 2.7). It is worth noti
ing that the shape of the hierar
hi
al


ommunity tree produ
ed by 
lique per
olation based on the LM distan
e matrix

is very unbalan
ed. This is due to the heterogeneous density of the sampling

lo
ations in the Mediterranean sea.

Figure 3.3: Splitting pro
ess of the 3-
lique 
ommunities when the weight thresh-

old is varied for the geneti
 similarity network of Posidonia o
eani
a. The simi-

larity of the nodes is based on the LM distan
e. The nodes are divided to three

geographi
al lo
ations: west (yellow), 
enter (blue) and east (red) and the fre-

quen
ies of the groups in ea
h 
ommunity is shown as a pie 
hart.

3.3.4 Global methods: blo
k diagonalization

Global 
ommunity dete
tion methods are based on optimizing a value of energy

or �tness fun
tion 
omputed for ea
h division of nodes to 
ommunities. This ap-

proa
h 
an, in the worst 
ase, lead to unwanted behavior, su
h as the 
ommunity
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stru
ture 
orrelating with global properties of the network, su
h as the number

of nodes. This has been re
ently proven [45, 46℄ to be the 
ase with popular

modularity-based methods [40℄, thus rendering these methods highly unreliable

or even 
ompletely useless.

After the short
omings of modularity-based methods were proven, there have

been attempts to 
orre
t these faults. Some of these attempts have turned out

to be just 
osmeti
 
hanges and have failed to 
orre
t the real underlying prob-

lem [46℄. One of the remedies has been proposed by Sales-Pardo et al. [47℄. They

try to 
orre
t the resolution limit problem of the modularity by not limiting their

method to one optimal 
ommunity division. Instead, they try to �nd a hierar-


hi
al 
ommunity stru
ture based on the modularity measure. This is a
hieved

by 
al
ulating multiple greedy modularity optimizations and saving the results in

a weighted network, where ea
h link weight 
orrespond to the number of shared


ommunities between two nodes in ea
h of the optimization out
omes.

This a�nity matrix is then used for hierar
hi
al 
lustering by using the blo
k

diagonalization method. In this method, the indexing of the nodes in the matrix

is reordered in su
h a way that large-weight elements are as 
lose to the diagonal

as possible. This is a
hieved by optimizing a global energy fun
tion assigned for

ea
h node indexing:

C =
1

N

N
∑

i,j=1

Wij|i − j|. (3.2)

The optimization is done in Ref. [47℄ by simulated annealing, but other heuristi


methods 
ould also be used. Simulated annealing is a general approa
h for global

optimization problems whi
h tries to mimi
 the physi
al pro
ess of 
ontrolled

annealing for redu
ing the number of 
rystal defe
ts. The simulated annealing

pro
edure is a greedy optimization method 
ombined with random steps. The

ratio of random steps is 
ontrolled by the temperature parameter, whi
h is grad-

ually de
reased to a
hieve 
onvergen
e of the energy to an optimal value. At ea
h

step of the pro
ess, parameters of the energy fun
tion are randomly perturbed

and the resulting 
hange in the energy is observed. If the energy is de
reased,

the perturbation is kept. If the energy in
reases, the 
hange is a

epted with a

probability whi
h is determined by the amount of 
hange in the energy and the

temperature parameter. In
reases in energy are more likely to be a

epted at

high temperatures than at low temperatures. The whole pro
ess starts from very

high temperatures to avoid lo
al minima, and the temperature is de
reased as a
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fun
tion of perturbation steps. This pro
ess 
an be repeated multiple times using

di�erent starting 
onditions and s
hemes for de
reasing the temperature.

After the optimization of indi
es, possible 
ommunities should show in the re-

ordered matrix as blo
ks along the diagonal, as is the 
ase in Figure 3.4. The

next step is dete
ting the blo
ks, whi
h is done as follows: A similar simulated

annealing pro
edure is used to �t k blo
ks to the matrix, su
h that the varian
e of

weights is minimized inside ea
h blo
k and the surrounding area. This is equiva-

lent to minimizing the following residual sum of the squares E for ea
h value of

k by moving the blo
k boundaries:

E =
k

∑

m=1

∑

i,j∈block(m)

(W (i, j) − 〈Wm〉)
2 +

∑

i,j /∈block

(W (i, j) − 〈Woutside〉)
2, (3.3)

where 〈Wm〉 is the mean weight inside the blo
k m, and 〈Woutside〉 is the mean of

all weights that are not inside any blo
k. This pro
edure is repeated for a range

of values of k, k = 1..K.

In
reasing the number of blo
ks k will not ever 
ause the residual sum of the

squares E to in
rease, be
ause only the number of free parameters in the optimiza-

tion problem is in
reased. Finally, the Bayesian information 
riterion (BIC) [52℄

is used for sele
ting a value of k whi
h 
orresponds to a good 
ompromise between

the value of the residual sum E and the number of free parameters. The BIC is

de�ned as

BIC = N ln(
E

N
) + k ln(N), (3.4)

where the parameter N is the number of elements on the diagonal of the weight

matrix W . The smaller the BIC value is, the better the 
ompromise is, and thus

the optimal value of k 
orresponds to the lowest BIC value.

The hierar
hi
al 
ommunity stru
ture 
an be built by repeating the blo
k diag-

onalization pro
edure for submatri
es 
orresponding to ea
h 
ommunity. This

means that if the optimal number of blo
ks k is larger than one, the blo
k di-

agonalization pro
edure is used re
ursively k times. This re
ursion is further


ontinued, until all blo
ks have k = 1 as their optimal value and splitting is

no longer ne
essary. The results of this re
ursive splitting pro
ess 
an be repre-

sented as a hierar
hi
al 
ommunity tree, where the root of the tree is the set of

all nodes in the network, and the rest of the nodes in the tree 
orrespond to a

blo
k found by the blo
k diagonalization pro
edure. Noti
e that bran
h lengths

38



are not de�ned for the hierar
hy tree.

The blo
k diagonalization method des
ribed by Sales-Pardo et al. in Ref. [47℄ uses

modularity for unweighted networks to 
al
ulate the a�nity matrix. Although

modularity 
an be generalized for weighted networks [48℄, it might be more rea-

sonable to use the weight matrix itself as the a�nity matrix if the network is

dense. For 
ases where the weight matrix is derived from a distan
e matrix it is

even more sensible to dire
tly use the distan
es as a�nities. Thus, the blo
k diag-

onalization pro
edure was used to dete
t 
ommunities in the Posidonia o
eani
a

geneti
 similarity network, with the modi�
ation that the modularity optimiza-

tion part was left out, and instead the distan
e matrix was used as an a�nity

matrix.

3.3.5 Blo
k diagonalization and the Posidonia o
eani
a data

The blo
k diagonalization pro
edure, as des
ribed above, was repeated for the

Posidonia o
eani
a data set using both NSA and LM distan
es. The LM dis-

tan
e was previously seen to 
ontain more noise in the small distan
es, whi
h

radi
ally re�e
ted to the hierar
hi
al 
ommunity stru
ture dete
ted by the blo
k

diagonalization method. The 834 nodes of the network were divided into 61 
om-

munities, when the LM distan
e was used, and only to 24 
ommunities when

using the NSA distan
e. This might suggest that the blo
k diagonalization is

�tting the 
ommunities to noise 
aused by the short
omings of the LM distan
e

measure.

The resulting hierar
hi
al 
ommunity tree produ
ed by the hierar
hi
al blo
k

diagonalization method is shown in Figure 3.7 for the NSA distan
e and in Figure

3.6 for the LM distan
e. The nodes of the tree are displayed as pie 
harts,

whi
h represent the west-
entral-east division of nodes in the 
orresponding blo
k.

The size of nodes indi
ates blo
k size. The �rst splits in both 
ommunity trees


orrespond well to the large-s
ale geography, although the �rst splits might be

more a

urate in this sense when using the LM distan
e, whi
h predi
ts the

large-s
ale divisions better. The more densely sampled west is separated from

the east in the beginning of the splitting pro
ess, and the two parts are thereafter

independent of ea
h other. Thus, it is 
lear that the heterogeneous sampling

does not 
ause problems for the blo
k diagonalization, as it did for the k-
lique

per
olation method.
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The fa
t that the blo
k diagonalization of the LM distan
e matrix produ
ed 61


ommunities, and the same pro
edure produ
ed only 24 
ommunities when the

NSA distan
e was used, raises questions about the reliability of the 
ommunities

at the lower levels of hierar
hy. The blo
k diagonalization method seems to be

�nding 
ommunities in noise, although the Bayesian information 
riterion whi
h

is used for determining the number of 
ommunities should be able to prevent

su
h over�tting. To test the reliability of the hierar
hi
al 
ommunity stru
ture

predi
ted by the blo
k diagonalization for the LM distan
e matrix, the data was

randomized and the blo
k diagonalization pro
edure applied to it. Blo
k di-

agonalization was tested by randomizing the geneti
 data of ramets in western

Mediterranean in two ways: The �rst way was to randomize the genomes in a way

that the pairwise 
orrelations of the alleles in ea
h lo
us were preserved. This

was done by 
olle
ting all pairs of alleles into seven ve
tors, ea
h 
orresponding

to one lo
us. The elements in ea
h ve
tor were then randomly permutated. The

se
ond way was to dis
ard also pairwise 
orrelations and only keep the distribu-

tions of alleles in ea
h lo
us. After this pro
edure, the data would 
orrespond to a

randomly mating population. The NSA distan
e measure was used to 
al
ulated

the distan
e matri
es, whi
h are shown in Figure 3.5 for the �rst randomization

s
heme. In both of the 
ases the blo
k diagonalization found a hierar
hi
al 
om-

munity tree with multiple hierar
hy levels. This suggests that either the Bayesian

information 
riterion is too loose a 
ondition for 
hoosing the number of splits,

or the energy fun
tion used for evaluating ea
h division of nodes to blo
ks is not

suitable for this problem. Either way, more resear
h is needed to verify that the

lower levels of the hierar
hi
al 
ommunity trees inferred by blo
k diagonalization

are not just artefa
ts of the method.

3.3.6 Hierar
hi
al 
ommunity dete
tion vs. phylogeneti


trees

A phylogeneti
 tree is a representation of the evolutionary relationships between

samples having a 
ommon an
estor. The sampled organisms are represented by

leaves of the tree and inner nodes of the tree represent the most re
ent 
ommon

an
estors of their des
endant nodes in the tree.

Algorithms used for building phylogeneti
 trees 
an be divided into 
hara
ter-

based methods and distan
e-based methods. The �rst 
lass uses genomes of two

nodes to 
onstru
t the genome of their last 
ommon an
estor, whi
h is the parent

40



(a) Before (b) After

Figure 3.4: The NSA distan
e matrix of 834 samples. Colors indi
ate the distan
e:

smallest distan
es are denoted by red and largest distan
es by blue. Panel a)

shows the distan
e matrix before reindexing. The visible stru
ture is due to the

fa
t that the indexing is not random, but it follows the sampling lo
ations. The

panel b) shows the distan
e matrix, whi
h is reindexed to maximize Equation 3.2

by moving the small-distan
e elements 
lose to diagonal.

(a) Before (b) After

Figure 3.5: The randomized (preserving the pairwise allele 
orrelations) NSA

distan
e matrix of the 586 samples from western Mediterranean. Colors indi
ate

the distan
e: smallest distan
es are denoted by red and largest distan
es by blue.

In panel a), the indi
es are random and in panel b), the matrix is reindexed to

maximize Equation 3.2 by moving the small distan
es 
lose to diagonal.

node of those two nodes in the phylogeneti
 tree. Distan
e based methods, on the

other hand, use genomes only to 
al
ulate the distan
es between all leaves of the

tree. After that, the distan
es from an
estral nodes to other nodes are inferred

from the original distan
e matrix of the samples, and the genomes of an
estral

nodes are not expli
itly 
onstru
ted. The 
hara
ter-based framework often leads

to better phylogeny trees, but also to 
omplex 
ombinatorial problems. Distan
e-

based methods are mostly more simple 
lustering algorithms, whose results are

used as starting points of heuristi
 algorithms for 
hara
ter-based methods.

Phylogeneti
 distan
e-based methods are similar to 
ommunity dete
tion meth-
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hi
al 
ommunity tree produ
ed by blo
k diagonalization us-

ing the LM distan
e matrix. The size of ea
h node is relative to the size of the


orresponding 
ommunity, and the 
oloring of the pie 
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ographi
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Figure 3.7: Hierar
hi
al 
ommunity tree produ
ed by blo
k diagonalization us-

ing the NSA distan
e matrix. The size of ea
h node is relative to the size of

the 
orresponding 
ommunity, and the 
oloring of the pie 
harts 
orresponds to

geographi
al division of the nodes to west (yellow), 
enter (blue) and east (red).

ods for dense weighted networks in the way that both try to �nd hierar
hi
al

stru
ture in distan
e matri
es. In addition, distan
e-based phylogeneti
 methods
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are basi
ally 
entroid-
lustering methods, and in that sense resemble general 
lus-

tering methods used for weighted networks. However, due to the di�erent starting

points of phylogeny tree and 
ommunity dete
tion methods, there are some dif-

feren
es: Phylogeneti
 tree 
onstru
tion methods mostly try to �t a biologi
ally

motivated evolution model to the distan
e matrix, whereas network 
lustering

methods are more generi
, and typi
ally do not expli
itly assume that the data is

based on any model. In addition, phylogeny 
lustering methods assume that the


lustered matrix is a distan
e matrix, but network 
lustering methods 
an use

any sparse matrix as a starting point. Lastly, the nodes in the phylogeny trees

are splitted until no further divisions are possible, whi
h is not the 
ase for most

of the hierar
hi
al 
ommunity dete
tion methods.

As an example of a distan
e-based phylogeny tree building method, a simple, but

fairly popular method, UPGMA [28℄, is used for 
omparing the results of network-

based hierar
hi
al 
ommunity dete
tion methods to a phylogeneti
 tree. The aim

of this 
omparison is to see if the 
ommunity dete
tion methods really dete
t

more a

urate or meaningful stru
tures. This should be the 
ase, as the obje
tives

behind 
ommunity dete
tion methods are di�erent of those of phylogeny methods.

Note that the 
hoi
e of the phylogeny tree method is motivated by the simpli
ity

of the UPGMA algorithm, and other popular algorithms su
h as neighbor-joining

[49℄ 
ould have been used as well.

UPGMA

UPGMA (Unweighted Pair Group Method with Arithmeti
 mean) is a hierar-


hi
al agglomerative 
lustering method 
ommonly used for building phylogeneti


trees using distan
e-based geneti
 data. It starts by 
reating a 
luster Ci for ea
h

sample i, whi
h are the leaves of the phylogeny tree:

Ci = {i}. (3.5)

The algorithm 
ontinues by 
ombining two 
lusters having the smallest distan
e

between them. This is repeated until there is only one 
luster left. The distan
e

between 
lusters is de�ned as the mean distan
e between their 
onstituent nodes:

d(C1, C2) =
1

|C1||C2|

∑

i∈C1,j∈C2

d(i, j), (3.6)
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where d(i, j) is the geneti
 distan
e between nodes i and j.

Edge lengths in the phylogeneti
 tree produ
ed by UPGMA are 
al
ulated by

assuming that the spe
ies have developed with the same speed after ea
h division,

whi
h is know also as the mole
ular 
lo
k assumption. This leads to de�ning the

edge lengths in su
h a way that the sum of edge lengths along the path from a

leaf to any inner node does not depend on the leaf. This means that every inner

node has a height in the tree whi
h equals half of the distan
e between the two


hildren of that node. The height also 
orresponds to the evolutionary age of the

nodes. The leaves, whi
h have been observed in 
urrent time, have a height of

zero, and the root is the oldest node.

Figure 3.8: The phylogeny tree produ
ed by UPGMA and the NSA distan
e ma-

trix. The size of ea
h node is relative to the size of the 
orresponding 
ommunity,

and the 
oloring of the pie 
harts 
orresponds to geographi
al division of the

nodes to west (yellow), 
enter (blue) and east (red).

Figure 3.8 shows the resulting phylogeneti
 tree when the UPGMA is applied to

the NSA distan
e matrix. Nodes of the tree have been 
olored with respe
t to

the large-s
ale geographi
al divisions. The west-east 
leavage is 
learly visible in

the UPGMA tree, and the eastern and 
entral nodes are perfe
tly divided into

their own 
lusters. The phylogeneti
 tree resembles more the k-
lique per
olation

trees of Figures 3.2 and 3.3 than the blo
k diagonalization tree of Figure 3.7, as

the shape of the UPGMA tree is unbalan
ed. This shape is 
aused by the large

western 
luster breaking apart by splitting into one small and one large 
luster at

ea
h hierar
hy level. Hen
e this method does not provide any meaningful infor-

mation on the 
luster stru
ture within the western nodes, although it a

urately
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dete
ts the east-west 
leavage.

3.4 Comparing 
ommunity dete
tion methods

The problem of 
omparing 
ommunity dete
tion methods is twofold: 
omparing

the performan
e of 
ommunity dete
tion methods and 
omparing the similarity

of 
ommunity stru
tures. As dis
ussed earlier, dete
ting 
ommunities is not a

straightforward problem mainly be
ause no universal de�nition of a 
ommunity

exists. The same problem is en
ountered in a slightly di�erent form when 
om-

munity dete
tion methods are 
ompared. Comparing the performan
e of two


ommunity dete
tion methods is just a variation of the 
ommunity dete
tion

problem, and 
omparing the similarity of two 
ommunity stru
tures is only pos-

sible if the underlying de�nitions of a 
ommunity are 
ompatible. Otherwise, the

whole question of similarity of two 
ommunity stru
tures 
an be ill-posed.

Comparing the performan
e of two 
ommunity dete
tion heuristi
s is straight-

forward if the heuristi
s share the same de�nition of a 
ommunity. However,

it is impossible to 
ompare the performan
e of two 
ommunity dete
tion algo-

rithms without de�ning 
ommunities a priori, be
ause solving the problem of

performan
e 
omparison would lead to a solution of the problem of 
ommunity

dete
tion. A 
omparison method whi
h is able to sele
t the better one of any

two 
ommunity stru
tures with respe
t to performan
e will immediately indu
e

a de�nition of a 
ommunity, be
ause the method 
an be used to sele
t the best


ommunity stru
ture given any network. As the number of possible 
ommunity

stru
tures in any �nite network is also �nite, the best 
ommunity stru
ture with

respe
t to the 
omparison method always exists. An alternative approa
h to


omparing the performan
e of 
ommunity dete
tion methods is to use networks

for whi
h 
ommunity stru
tures are de�ned beforehand. This way, the similarity

of the 
ommunity stru
ture produ
ed by any 
ommunity dete
tion method and

the prede�ned 
ommunity stru
ture 
an be used as a ben
hmark of performan
e

of the method.

Comparing similarity and �nding di�eren
es in 
ommunity stru
tures are non-

trivial tasks, and the di�
ulties en
ountered in those tasks 
an be tra
ed ba
k

to the list of ambiguities in de�ning 
ommunities. Take the 
lique per
olation

method and the blo
k diagonalization method as an example. The blo
k diago-
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nalization method always assigns ea
h node to a single 
ommunity, whereas the


lique per
olation method allows overlapping 
ommunities. Thus, it is impossible

for a 
ommunity stru
ture dete
ted by the blo
k diagonalization method to be

exa
tly similar to one 
ontaining overlapping 
ommunities dete
ted by the 
lique

per
olation method, and the whole 
on
ept of similarity between the stru
tures

dete
ted by these two methods be
omes ambiguous.

The 
ommunity dete
tion methods used in this Thesis all produ
e trees repre-

senting hierar
hi
al 
ommunity stru
tures. A simple 
omparison s
heme for two

hierar
hi
al 
ommunity stru
tures is to 
ompare single levels of hierar
hy at a

time. However, two otherwise very similar hierar
hi
al 
ommunity stru
tures 
an

appear to be very di�erent to this naive 
omparison method, if the two levels


hosen for 
omparison 
orrespond to di�erent stru
tural s
ales in the network. In

addition, trying out all the possible ways of 
hoosing a level in a hierar
hy tree

might not be 
omputationally feasible. A better approa
h would be to in
orporate

the whole hierar
hi
al 
ommunity stru
ture to the 
omparison.

Despite the problems in 
omparing 
ommunity dete
tion methods, some 
ompar-

isons are made in this Thesis for the 
ommunity stru
tures produ
ed with the

methods introdu
ed in the previous Se
tion. We begin by 
omparing single levels

of hierar
hi
al 
ommunity stru
tures using visual 
omparison methods. This al-

lows us to roughly 
ompare the the otherwise in
ompatible methods su
h as the


lique per
olation and blo
k diagonalization. After that, the performan
e of the

blo
k diagonalization method is evaluated by 
omparing similarity of the 
om-

munity stru
ture dete
ted by it to the large-s
ale geographi
al division of nodes

using the mutual information framework. Finally, a phylogeneti
 tree produ
ed

by the UPGMA is 
ompared to the 
ommunity stru
ture produ
ed by the blo
k

diagonalization method.

3.4.1 Visualization using MST

A straightforward way to visualize 
ommunity stru
ture is to visualize the network

su
h that the 
olor of ea
h node 
orresponds to its 
ommunity. Using this ap-

proa
h, Hernández-Gar
ía et al. [29℄ visualized the geneti
 similarity network of

Posidonia o
eani
a using the 37 di�erent geographi
al lo
ations as 
ommunities.

They used the maximum spanning tree for 
al
ulating the layout for the nodes.

In the resulting plots, nodes from same lo
ations formed groups, illustrating that
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smallest distan
es are mostly found inside the sampling lo
ations and only rarely

between two nodes from separate lo
ations.

Plotting multiple 
ommunity stru
tures side by side using the same layout of

nodes for all plots 
an be used to visually 
ompare the similarity of the stru
-

tures, and to identify where the 
ommunities di�er. In this Thesis, MST-based

visualization is used to 
ompare 
ommunities formed by di�erent 
ommunity de-

te
tion methods. Although this visual 
omparison is mostly free of assumptions

made by the 
ommunity dete
tion method, and thus avoids some of the problems

related to 
omparing 
ommunities, other problems still remain.

The �rst problem is the limited 
olor s
ale. Only a few 
ommunities 
an be pre-

sented in a way still visible to the eye, whi
h limits the 
hoi
e of hierar
hy level in

the 
ommunity stru
ture. This leads to a bigger problem, where 
hoosing single

hierar
hy levels from two hierar
hi
al divisions might produ
e two similar divi-

sions or two very di�erent divisions depending on how the 
hoi
e is made. This

problem is also en
ountered later when using mutual information to 
ompare


ommunity stru
tures, and it is dis
ussed in detail in that 
ontext. The number

of di�erent 
olors, and thus the maximum number of di�erent 
ommunities visible

at the same time, was set to six. The MST of Figure 3.9 displays a division of

nodes based on geography and 
ommunities dete
ted with the blo
k diagonaliza-

tion method, the k-
lique per
olation method, and the edge per
olation method.

The large-s
ale geographi
al 
orrelations are 
learly visible in the �gure, as the

western, 
entral and eastern nodes form distin
t groups. The western and eastern

parts are well separated, but the 
entral nodes seem to be somewhat mixed with

the western nodes. The fa
t that some of the 
entral nodes are far away from ea
h

other on the MST does not ne
essarily mean that they are far away from ea
h

other geneti
ally, but 
ould just be an indi
ation that the 
entral nodes are very


lose to the western nodes and the MST is somewhat random for that area. The

west-east 
leavage is visible for all of the three 
ommunity dete
tion methods,

although the per
olation methods have already splitted the east to two parts at

the 
hosen level of hierar
hy.

MST is a useful visualization tool for networks having a 
lear stru
ture, like

the west-east 
leavage observed in geneti
 population stru
ture of P. o
eani
a.

In su
h 
lear 
ases, MST visualization 
an give an overview of the 
ommunity

divisions. However, if the MST is unstable or not unique, visualizations might

be
ome hard to interpret or even misleading. More quantitative methods for
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(a) BD NSA (b) 3-
lique per
olation

(
) Edge per
olation (d) Geographi
al

Figure 3.9: Visualizations of maximal spanning trees of the NSA distan
e network

of Posidonia o
eani
a, where nodes have been 
olored a

ording to various divi-

sions: a) blo
k diagonalization, b) k-
lique per
olation, 
) edge per
olation and

d) geographi
al 
ommunities. For the per
olation methods, only nodes belonging

to the six largest 
ommunities are 
olored, whereas white nodes belong to smaller

or no 
ommunities.


omparing similarity of 
ommunity stru
tures are 
learly needed.

3.4.2 Normalized mutual information

Mutual information is an information-theoreti
 tool [50℄ whi
h 
an be used for


omparing similarity of two divisions of nodes into 
ommunities [51℄. In order

to use the mutual information framework, 
ommunity divisions must �rst be

transformed to random variables having dis
rete probability distributions. A

division of nodes to 
ommunities 
an be transformed to a probability distribution
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of hitting ea
h 
ommunity when a node is 
hosen with uniform probability. For

two divisions, the underlying set of nodes is assumed to be the same, and the

mutual information answers the following question: if a node is 
hosen at random

and the 
ommunity of that node in one division is known, how mu
h information,

or entropy, does that knowledge 
arry about the 
ommunity of the same node in

the other division of nodes to 
ommunities?

Mutual information 
an be formalized for a graph G(V,E) and two of its parti-

tions A and B by de�ning the 
onfusion matrix N su
h that

Nij = |{v|v ∈ V A
i ∧ V B

j }|, (3.7)

where V A
i is the 
ommunity i in partition A and V B

j is the 
ommunity j in par-

tition B. Let us denote by A a random variable depi
ting 
hoosing a 
ommunity

from partition A, if a node is uniformly randomly 
hosen from V . With these

notations, the probability mass fun
tion of A be
omes

pA(i) =

∑

j Nij

|V |
. (3.8)

The respe
tive joint probability mass fun
tion is

p(i, j) =
|V |Nij

(
∑

i Ni)(
∑

j Nj)
. (3.9)

The joint probability mass fun
tion is used in the de�nition of the mutual infor-

mation of the two 
ommunity stru
tures A and B:

I(A; B) =
∑

i∈A

∑

j∈B

p(i, j)

pA(i)p(j)
. (3.10)

The problem with using mutual information is that two mutual information values

are not ne
essarily 
omparable, as they are not normalized, and the result depends

heavily on the entropies of the two divisions. The normalized mutual information


an be de�ned as

In(A; B) =
I(A; B)

0.5(H(A) + H(B))
, (3.11)

where H(A) and H(B) denote entropies of partitions A and B.

The mutual information of two random variables tells how mu
h one random

variable's entropy is redu
ed if the other random variable is known. Mutual
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information is thus relative to the entropies of the two random variables. Nor-

malized mutual information tells how mu
h this 
hange in the amount of entropy

is relative to the mean of the entropies of the two random variables. This ensures

that the normalized mutual information is always between 0 and 1, and makes it

easier to 
ompare 
ases where the underlying entropies di�er. Comparing unnor-

malized values of mutual information would only show the overall di�eren
e in

entropies. This would be the 
ase, e.g., for di�erent 
ommunity hierar
hy levels

where the entropies at the lower levels would always be bigger than at the upper

levels, and the partitions of the upper levels would have smaller values of mutual

information than those of the lower levels.

3.4.3 Comparing 
ommunity dete
tion methods and geog-

raphy with NMI

Communities dete
ted with various methods were seen to 
orrelate with the ge-

ographi
al divisions of nodes to west, 
enter and east when visualized using the

MST of Figure 3.9. The division of nodes to lo
ations was also seen to 
orre-

late with the geneti
 LM distan
e [29℄. Although these 
orrelations were 
learly

visible in MST visualizations, it was also 
lear that the 
orresponden
e was not

perfe
t. The NMI framework is now used to quantify these 
orrelations in both


ases.

Cal
ulating the mutual information between results of a hierar
hi
al 
ommunity

dete
tion method and the large-s
ale geographi
al division is not straightforward

for two reasons. First of all, the mutual information approa
h requires division

of the nodes into groups, whi
h 
an be done for hierar
hi
al 
ommunity stru
ture

tree by looking at one level of the hierar
hy at the time. This is done for the

blo
k diagonalization of the NSA distan
e matrix by de�ning hierar
hy levels

with respe
t to the number of splitting events. For example, at the third level

of hierar
hy, all 
ommunities are three links away from the root node. This is of


ourse not a unique nor ne
essarily the best way to de�ne the hierar
hy levels.

One 
ould, for example, de�ne a distan
e between the nodes in the tree. The

distan
es 
ould be related to the blo
k diagonalization pro
ess, or use some extra

biologi
al information. Trying out all the ways of dividing the tree into hierar
hy

levels would lead to a very large number of di�erent 
ombinations of 
ommunities,

and would not be a feasible solution. The se
ond problem is a variation of the

�rst: geography 
an also be hierar
hi
ally divided to di�erent regions, subregions
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and so on, and the number of su
h 
ombinations is even larger for geographi
al

data than it is for a hierar
hi
al tree. Multiple hierar
hy levels are not used here

for the geographi
al lo
ations. Instead, only two divisions are used: the �rst is

the most a

urate geographi
al division feasible, that is, the division of nodes

a

ording to individual sampling lo
ations. The se
ond is the 
rude division of

nodes to the three areas dis
ussed earlier: west, 
enter and east.

The normalized mutual information for ea
h hierar
hy level of 
ommunity stru
ture

dete
ted with the blo
k diagonalization method is shown in Figure 3.10. The

normalized mutual information of node lo
ations and hierar
hy levels is seen to

in
rease as fun
tion of hierar
hy level in panel a). This means that the last divi-

sions made by the blo
k diagonalization method are not 
ompletely random with

respe
t to the lo
ations. However, the blo
k diagonalization method was seen to

�nd 
ommunities in randomized data, whi
h might suggest that the last levels of

the tree might be noisy also for the real data.

(a) all lo
ations (b) 3 division

Figure 3.10: Normalized mutual information of 
ommunities produ
ed with the

blo
k diagonalization method using the NSA distan
e matrix and a) the lo
ations

of the spe
imen and b) division of the nodes to west, 
enter and east. The

hierar
hy level in the 
ommunity stru
ture is on the horizontal axis and the NMI

on the verti
al axis. The NMI between the two geographi
 division (west-
enter-

east, sampling lo
ations) is approximately 0.37.

The NMI of the large-s
ale geographi
al division and the hierar
hi
al 
ommunity

stru
ture, on the other hand, is at its maximum after the �rst split to blo
ks,

and is seen to slowly de
rease thereafter, almost saturating at the last levels of

hierar
hy. This behavior 
an be explained with the help of Figure 3.7 illustrating

the bran
hing pro
ess. The �rst split separates west from 
enter and east, and

the 
enter and east separate only at the next level. As the west is more densely

sampled, it has more weight on the value of NMI, and thus the se
ond bran
hing
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event separating the east and the 
enter is not enough to raise the overall value of

NMI, as it also further divides the western 
omponent. It is worth noti
ing that,

as dis
ussed earlier, the number of bran
hing events might not be the optimal

way of de�ning di�erent hierar
hy levels. This is highlighted by the fa
t that

if a 
ommunity division is 
hosen from the hierar
hy tree in su
h a way that


ommunities with mainly western nodes are 
hosen from the �rst level and the

rest from the se
ond level, as illustrated in Figure 3.11, the overall NMI improves

from the original �rst level value of 0.468 to a value of 0.527.

Figure 3.11: The �rst two levels of the 
ommunity hierar
hy tree produ
ed by

dete
tion using the blo
k diagonalization method using the NSA distan
e mea-

sure. The green shading represents an alternative way of 
hoosing a division of

nodes to 
ommunities from the tree. This parti
ular 
hoi
e re�e
ts better the

division of nodes to the three geographi
al groups: west, 
enter and east. The

NMI of this division and the large-s
ale geographi
al division is 0.527, whereas if
the original levels of the tree would be used, the 
orresponding values would be

0.468 for the �rst and 0.446 for the se
ond level.

3.4.4 Comparison to UPGMA

A phylogeny tree 
onstru
ted with the UPGMA was 
ompared to the division of

the nodes to 
ommunities at the �nal level of blo
k diagonalization using NMI.

A height was de�ned for ea
h node in the phylogeneti
 tree 
omputed with the

UPGMA as a number relative to the age of the nodes. The leaves are the youngest

and have height (age) of zero, and the root of the tree is the oldest node thus

having the largest height (age). In the hierar
hi
al 
lustering framework, the

height 
an be interpreted as the hierar
hy level of the tree. Figure 3.12 shows

the NMI of the blo
k diagonalization 
ommunity stru
ture and the 
ommunity

stru
ture extra
ted from the last level of the phylogeny tree as a fun
tion of
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minimum a

epted height. This means that nodes below the minimum a

epted

height are dis
arded and the leaves of the tree are 
onsidered as the 
ommunity

division at the respe
tive threshold level.

The NMI for the blo
k diagonalization 
ommunities and the UPGMA tree is seen

to slightly in
rease when the threshold is in
reased from its minimum value. Its

maximal value of 0.61 is attained at a threshold of approximately 0.25. Thereafter

the NMI values begin to de
rease. This means that the blo
k diagonalization


ommunities and the UPGMA tree explain approximately 61 per
ent of ea
h

other's entropies at the maximum. The UPGMA tree 
orresponds better to the


ommunities produ
ed with blo
k diagonalization than any geographi
al divisions

tested here, but the 
orresponden
e is still far from perfe
t.

There are two possible reasons for the imperfe
t 
orresponden
e between the


ommunities produ
ed with blo
k diagonalization and the UPGMA tree. The

�rst reason is that the topology of the tree produ
ed by the blo
k diagonaliza-

tion method 
orresponds well to the one produ
ed with the UPGMA, but the

thresholding s
heme for the UPGMA tree fails to produ
e suitable 
ommunity

divisions. This explanation is supported by the fa
t that the value of NMI in

Figure 3.12 remains pra
ti
ally un
hanged for UPGMA threshold values ranging

from 0 to 0.3, whi
h might suggest that the best level of 
ommunities 
ould be

found as a 
ombination of di�erent thresholds in that range for di�erent bran
hes

of the UPGMA tree. The se
ond possible reason is that the biologi
ally motivated

assumptions behind the UPGMA and the more general assumptions about the


ommunities behind the blo
k diagonalization method lead to genuinely di�erent


ommunity stru
tures.

3.4.5 Summary

As 
ommunity dete
tion methods 
an in general be divided into two 
ategories,

lo
al and global, methods from both 
ategories were 
hosen to study 
lusters in

the geneti
 stru
ture of Posidonia o
eani
a. The 
lique per
olation method was


hosen as representative of lo
al methods and the blo
k diagonalization method

was 
hosen as the global method. Although both methods have earlier been used

for unweighted networks, they had to be modi�ed to allow 
ommunity dete
tion in

dense, weighted networks, and a 
ompletely di�erent approa
h to the algorithmi


implementation of the 
lique per
olation method had to be developed.
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Figure 3.12: Comparing the last level of 
ommunities inferred with the blo
k

diagonalization method using the NSA distan
e to the last level of UPGMA tree

with di�erent height thresholds. Thresholding is done in su
h a way that nodes

whi
h are at distan
e larger than the threshold level from the root are not splitted

any further.

Results obtained using the 
lique per
olation method seemed to be dis
ouraging

as the resolution of the edge weights seemed to be too low, whereas the blo
k di-

agonalization method produ
ed sensible hierar
hi
al 
ommunity stru
ture. How-

ever, both of the methods performed well when 
ompared to the overall west-


entral-east geography. A visualization approa
h using maximum spanning trees

and a more quantitative approa
h using the normalized mutual information were

used to 
ompare the di�erent 
ommunity dete
tion methods, a phylogeny tree

method and underlying geography. The 
omparison methods seemed to su�er

from the fa
t that a single 
ommunity division needed to be used instead of 
om-

paring whole hierar
hi
al trees. Despite of this, NMI was su

essful in quantifying

how mu
h 
ommunities dete
ted with the blo
k diagonalization method 
orrelate

with the geography, and showing that the UPGMA phylogeny tree performs bet-

ter in explaining these 
ommunities than the geographi
al divisions.

Based on these results one 
an argue that the overall geography is 
learly re-

�e
ted in the geneti
 stru
ture of the sampled P. o
eani
a populations, as the

west-
entral-east division was dete
t by all methods. However, when 
omparing
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ommunity divisions by any used method to the higher resolution geography (the

37 sampling lo
ations), the NMI values indi
ate that there is no 
lear one-to-

one mapping: the dete
ted 
lusters 
orrelate with geography, but do not lo
alize

within well-de�ned small geographi
 areas.
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Chapter 4

Con
lusions and future resear
h

In this Thesis, the possibility to use the network framework and network-based

methods to unveil the geneti
 population stru
ture of Posidonia o
eani
a has been


riti
ally assessed using several te
hniques, su
h as the minimum spanning tree,

k-
lique per
olation, blo
k diagonalization and normalized mutual information.

The 
hoi
e of the proper geneti
 distan
e measure was seen to be ambiguous and

a
knowledged to play an important role, as it serves as a link between biologi
al

data and the network abstra
tion. In this Se
tion, the main results and 
on
lu-

sions of this Thesis are 
olle
ted together, and suggestions for solving some of the

en
ountered problems are given.

Two geneti
 distan
e measures with di�erent ba
kground assumptions were tested

and their e�e
ts on the following network analysis dis
ussed. The non-shared al-

leles distan
e (NSA) assumes that variation between two individuals is due to

re
ombination of prede�ned alleles, and the linear Manhattan distan
e (LM)

assumes that variations are due to mutations in the lengths of the mi
rosatel-

lite repetitions. The NSA measure is 
loser to the population dynami
s view

and works well on lo
al, population-level s
ales. The LM distan
e tends to be

more a

urate for longer-times
ale 
hanges, and is 
loser to the phylogeneti
 tree

perspe
tive as no re
ombinations are assumed to happen. This e�e
t 
an also

be seen in the ROC 
urve 
omparing the two distan
es to geographi
al divisions

at di�erent s
ales in Figure 2.7. The NSA distan
e was 
hosen to be the main

distan
e used in this Thesis, but it might be worth the e�ort to pursue a more

e�
ient distan
e measure working at multiple hierar
hy levels. The distan
e mea-

sure 
ould for example be a 
ombination of NSA and LM type distan
es giving
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more weight to the NSA part at small distan
es and more weight to the LM part

at large distan
es.

The k-
lique per
olation method with thresholding was seen to fail to deliver good

results, mainly due to the la
k of resolution in edge weights. However, 
orrelations

with large-s
ale geography were 
learly present in the resulting 
ommunities. A

new algorithm was developed for the the k-
lique per
olation method in order

to dete
t hierar
hi
al 
ommunities in dense weighted networks. Simultaneously,

this algorithm was proven to be very fast for sparse networks and low values of k.

Nevertheless, results of 
ommunity dete
tion with the new algorithm su�er from

the biased sampling s
heme of the data, as all the edges inside the western parts

of the Mediterranean have far higher weights than almost any edges between the

large-s
ale geographi
al areas. The k-
lique per
olation method thus seems to be

almost useless for su
h 
ases, and there are no trivial solutions to this problem.

In
reasing the 
lique size k would not improve the resolution problems, and would

severely harm algorithmi
 performan
e. One way to in
rease the resolution would

be to a

ept the randomness 
aused by evaluating the 
ommunity stru
ture when

an arbitrary number of edges is added. The resulting tree 
ould be then sampled

multiple times with the same number of added edges, but with di�erent permu-

tations of edges with the same weights. Consensus tree methods [54℄ 
ould then

be applied to the set of found trees.

The blo
k diagonalization method, modi�ed from the one introdu
ed by Sales-

Pardo et al. [47℄ for dete
ting 
ommunities, seemed to work better than the

k-
lique per
olation method for geneti
 similarity networks of Posidonia o
eani
a.

Heterogeneous sampling did not 
ause trouble for the blo
k diagonalization method,

and the resulting hierar
hi
al tree was more balan
ed than the ones produ
ed by

the k-
lique per
olation method and the UPGMA. The geneti
 stru
ture pre-

di
ted by the blo
k diagonalization method seemed to 
orrelate with geography

on both large and small s
ales (see Figures 3.7 and 3.10). Despite this su

ess, the

blo
k diagonalization method has some problems: The method does not produ
e

any bran
h lengths for the hierar
hy tree, whi
h severely limits the use of the

hierar
hy, or 
an even 
ause misleading results if the absen
e of bran
h lengths

is solved by assigning a same length to ea
h bran
h. Another problem with the

method is that it produ
ed hierar
hi
al stru
ture even for randomized null mod-

els, whi
h might indi
ate that the lowest 
ommunities in hierar
hy trees might

not be robust or reliable. This over�tting might be solved by using a better model

for sele
ting the blo
ks after the reindexing pro
edure, as it seems 
lear to hu-
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man eye that there are no distin
t blo
ks in panel b) of Figure 3.5. Furthermore,

the method is 
omputationally expensive, as methods su
h as simulated anneal-

ing needs to be used for both reindexing the distan
e matrix and for dete
ting

blo
ks in the matrix. More work on these problems is 
learly needed before the

blo
k diagonalization method 
an be reliably used for 
ommunity dete
tion in

this 
ontext.

Mutual information 
an be used as a tool for 
omparing similarity of two division

of same set of elements, and has a solid basis in information theory. Normalized

mutual information (NMI) has been earlier used to 
ompare 
ommunity stru
tures

found by di�erent 
ommunity dete
tion methods [51℄. The NMI was used in this

Thesis to 
ompare similarity of 
ommunity stru
tures, but hierar
hi
al stru
tures


aused problems, as a single hierar
hy level or division of nodes to 
ommunities

needs to be 
hosen in order to use the NMI framework. This is problemati


spe
ially for the blo
k diagonalization trees, where there are no bran
h lengths,

and the 
hoi
e of a proper hierar
hy level is ambiguous. Topologi
al measures for

the similarity of trees are used in phylogeny and 
ould possibly be also used in

the 
ommunity dete
tion 
ontext with some alterations. Similar problems were

en
ountered when 
ommunities were 
ompared to geographi
al divisions. A ROC


urve of geographi
al distan
es and 
ommunities might be more illustrating than


al
ulating NMI for the two geographi
al divisions used here.

Although the network perspe
tive for studying 
omplex phenomena related to bi-

ologi
al systems at the borderlines between population biology and phylogeneti
s

seems promising, some 
aution is needed. Network studies are not 
ompletely free

of biologi
al assumptions that seem to restri
t the usage of traditional methods.

Network-based methods have both expli
itly de�ned assumptions, su
h as the


hoi
e of geneti
 distan
e measure, and impli
it assumptions, su
h as the ones

made by 
ommunity dete
tion algorithms. The network perspe
tive seems to be

best suited for exploring new data, but results 
an be somewhat unreliable or

even misleading if generi
 network methods are used without 
aution. It would

be advisable to use multiple network methods or some traditional methods to

verify any results produ
ed with network-based methods.
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Appendix A

Networks: de�nitions and basi


measures

The terms �network� and �graph� 
an be used inter
hangeably, although it is

typi
al to speak of 
omplex networks instead of 
omplex graphs when referring

to networks/graphs with non-trivial stru
ture. In this Thesis �network� refers to

an undire
ted graph that doesn't have multiple or self edges. Mathemati
ally

su
h a graph G(V,E) 
onsists of a �nite set of verti
es V and a set of edges

E ⊂ V xV \ {(v, v)|v ∈ V }. When an index is given for ea
h vertex in V ,

the graph G(V,E) 
an be presented as an adja
en
y matrix A, with Aij = 1 if

(vi, vj) ∈ E, and Aij = 0 otherwise.

In many 
ases it is useful to assign some weight to ea
h edge of the network.

This de�nes a weighted graph or weighted network G(V,E,w), where w is some

fun
tion from the set of edges E to positive real numbers: w : E → ℜ+. This 
an

also be represented as a weight matrix where the absen
e of an edge is interpreted

as a zero weight: Wij = w((vi, vj)) if (vi, vj) ∈ E and Wij = 0 otherwise.

The degree k for ea
h node i is de�ned as the number of neighbors it has:

ki =

|V |
∑

j=1

Aij. (A.1)
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In a weighted network an analogous measure, the strength, is de�ned as

si =

|V |
∑

j=1

Wij. (A.2)

Another useful single-node 
hara
teristi
 is the 
lustering 
oe�
ient [56℄. It is

a measure originating from so
ial s
ien
es where it measures the probability of

one's friends also being friends. Su
h a transitivity measure is also generally

useful and 
an be de�ned in a graph for node i as the number of triangles where

the node parti
ipates divided by the maximum possible number of su
h triangles

given the node's degree:

ci =
ti

1
2
ki (ki − 1)

=

∑

j,k AijAjkAki

ki(ki − 1)
. (A.3)

If the 
lustering 
oe�
ient is de�ned this way, its value will depend heavily on the

degrees of the neighboring nodes. To remove the e�e
ts of degree 
orrelations,

the 
lustering 
oe�
ient for node i 
an be de�ned as the number of triangles it

forms divided by the maximum number of triangles it 
an form given its and its

neighbors degrees [57℄.

The 
lustering 
oe�
ient 
an also be de�ned for weighted networks so that the

weights a�e
t its value [58�64℄. This approa
h doesn't seem to be very fruitful as

the value of the 
oe�
ient be
omes very degenerate and hard to interpret [65℄.

Two nodes i and j have a path between them if there is a sequen
e of nodes

pij = {vk}k=1,..,n for whi
h v1 = vi, vn = vj and Ak,k+1 = 1 for every k = 1, .., n−1.

The length of a path is then n − 1 and there is a (possibly non-unique) shortest

path p̂ij between every pair of nodes. Two nodes are said to be in the same


omponent if there is a path between them. The diameter D(G) of the network

is de�ned as the maximum of the shortest path lengths between any two nodes

in the network:

D(G) = max({|p̂ij| − 1|i, j ∈ V }). (A.4)

A network G is said to be a small-world network [56℄, if the average path length

〈p〉 is small 
ompared to the network size, but the average 
lustering 
oe�
ient

〈c〉 is large.

The betweenness 
entrality of node i is the number of shortest paths going through
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the node. If a shortest path is not unique, its 
ontribution to betweenness 
en-

trality is divided by the number of shortest paths between the same nodes:

Bi =
∑

j 6=i6=k

|{p̂jk} ∩ {p̂|vi ∈ p̂}|

|{p̂jk}|
. (A.5)

A 
lique of size k, is denoted here as Ck, is a set of nodes in whi
h every pair of

nodes has an edge between them. Ck′ is a sub-
lique of Ck, if it is a 
lique and

Ck′ ⊂ Ck. Maximal 
lique is a 
lique in graph G whi
h is only a sub-
lique of

itself.

A subgraph G(V ′) = G′(V ′, E ′) of a graph G(V,E) given a set of verti
es V ′ is

a graph, for whi
h V ′ ⊂ V and E ′ = {(v1, v2)|(v1, v2) ∈ E ∧ v1, v2 ∈ V ′}. An

intensity [59℄ 
an be de�ned for a weighted subgraph G′(V ′, E ′, w):

I(G′(V ′, E ′, w)) =
∏

e∈E′

w(e)|E
′|−1

. (A.6)

A tree is a graph with no 
y
les. This means that there is an unique path between

every node of the tree.

A spanning tree of a graph G is a tree that has the same set of nodes as the graph

G. If the graph is not a tree, the spanning tree is not unique for that graph, and

the set of spanning trees is 
alled the spanning tree forest for the graph G.

A minimum/maximum spanning tree (MST) for a weighted graph G is the tree

in the spanning tree forest of G, for whi
h the sum of edge weights is mini-

mal/maximal. Note that the MST might not be unique if there are multiple

edges with similar weights in G.
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Appendix B

A sequential thresholding algorithm

for k-
lique per
olation

The algorithm given by Palla et al. in the paper introdu
ing the 
lique per
ola-

tion method [42℄ relies on �nding maximal 
liques in given networks, enumerating

them and then 
onstru
ting an overlap matrix with ea
h element giving the num-

ber of shared nodes with two 
liques. The matrix 
an be interpreted as a weight

matrix, where the nodes are the maximal 
liques in the network, and there is a

link between two nodes if the 
orresponding 
liques share a sub-
lique. Removing

the weights, whi
h 
orrespond to the sub
lique sizes, of size smaller than desired


lique size k − 1 yields a network whose 
omponents 
orrespond to k-
lique 
om-

munities. Thus 
ommunities for all 
lique sizes 
an be found by adding the edges

to the maximal 
lique network sequentially starting with the largest, and then

observing merging of the 
omponents.

The maximal 
lique algorithm would 
orrespond to a sweep in the verti
al or

topologi
al dire
tion in Figure 3.1, and as su
h has some 
riti
al limitations when

used for dense weighted networks: First, it has to �nd the maximal 
liques, whi
h

is an NP-
omplete problem and thus all known algorithms s
ale exponentially.

Se
ond, it has to be run again from the beginning for ea
h weight threshold level,

whi
h 
an be a problem when the number of su
h levels is large. A solution to

these problems would be to �nd an algorithm that would sweep the same spa
e

horizontally or in the weight threshold dire
tion, as �nding all 
liques of given

size is a polynomial problem and in most 
ases only a few smallest 
lique sizes

are used [43℄. This would mean that the algorithm would be required to run only
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on
e for ea
h desired 
lique size and the polynomial s
aling exponents would not

be very large. Su
h an algorithm was developed by the author and 
oworkers

with the Posidonia o
eani
a data set in mind, and was used for all the k-
lique

per
olation studies in this Thesis. The algorithm is des
ribed below.

B.1 Des
ription of the algorithm

The 
ommon algorithmi
 solution for edge per
olation analysis is to start from

an empty network, re
onstru
t the original network by adding the edges one by

one, and update the 
omponent stru
ture after ea
h addition. This way, the only

updating needed to be done is the joining of two 
omponents 
orresponding to

the nodes at the ea
h end of the edge, whi
h 
an be done by using disjoint-set

forests [66℄. When the nodes in the 
omponents are listed, that is the 
omponents

are evaluated, we need to know the 
omponent where ea
h node belongs to. For

both of these operations the amortized time is related to the inverse A
kermann

fun
tion [66, 67℄, whi
h is in pra
ti
e a 
onstant fa
tor. This makes the whole

algorithm almost linear with respe
t to the number of added edges. Also the

memory 
onsumption is very low as the algorithm only keeps the disjoint-set tree

in the memory, and there is no need to keep the entire network in memory. Thus,

memory use s
ales linearly with respe
t to the number of nodes in the network.

In terms of 
liques, edge per
olation is equivalent to 2-
lique per
olation, where

2-
ommunities 
orrespond to 
omponents in the graph. Thus edge per
olation

algorithms are a good starting point for a threshold-wise k-
lique per
olation

algorithm, as it should redu
e to one of the fast edge per
olation algorithms

when k = 2.

B.1.1 K-
lique per
olation as edge per
olation

The new sequential thresholding algorithm for k-
lique per
olation is based on

edge per
olation algorithms. This generalization requires a few observations to

be made. First of all, a k-
lique 
ommunity 
an be interpreted as a 
omponent

in a bipartite graph between k-
liques and k − 1-
liques, where there is an undi-

re
ted edge from ea
h k-
lique to ea
h of its sub
liques of size k − 1. In this

network, two adja
ent k-
liques have a link to the same k − 1-
lique and thus a
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path between them. Now, as k-
lique 
ommunities are de�ned as maximal sets

of k-
liques adja
ent via k − 1-
liques, they 
orrespond to 
omponents of this

bipartite graph. As the 
omponents of any bipartite network 
orrespond to the


omponents of any unipartite proje
tion of that network, we 
an study k-
lique

per
olation by tra
king down 
omponents in the k − 1-
lique network, whi
h is

the unipartite proje
tion of the bipartite network. Hen
e, one 
an, analogously

to edge per
olation, build the k − 1-
lique network sequentially and monitor its


omponent stru
ture in the pro
ess.

As k-
liques 
orresponds to k edges and k − 1-
liques are represented by nodes

in the unipartite k − 1-
lique network, unweighted 
lique per
olation analysis is

equivalent to dete
ting all k-
liques in the original network and adding them to

the k − 1-
lique network in arbitrary order. The 
omponents of the k − 1-
lique

network 
orrespond to the k-
lique 
omponents of the original network after all

k-
liques are added. In order to use the same algorithm for weighted 
lique per
o-

lation [44℄, the only modi�
ation needed is to sort the list of k-
liques with respe
t

to their intensities before adding them to the k − 1-
lique network. When the k-


liques are added in in
reasing order with respe
t to their intensities, i.e. weights,

the weighted k-
ommunities 
an be evaluated at any intensity threshold during

the addition pro
ess analogous to weighted edge per
olation.

In the hierar
hi
al 
lique per
olation method the weighted 
lique per
olation

method was not used as a staring point. Instead, 
lique 
ommunities were

sear
hed for ea
h value of edge threshold in the original network. Thresholding

the original network and applying the 
lique per
olation method for ea
h level of

edge threshold is equivalent to adding the k-
liques to the k − 1-
lique network

in the order they appear in the original network when the edge threshold level is

raised, and evaluating the emerging k-
ommunities in the k − 1-
lique network

after ea
h edge threshold level. There are two ways of �nding the k-
liques in

the order they are formed in the original network when the edge threshold is

in
reased. The �rst way is to �nd all k-
liques, as is done in weighted 
lique

per
olation, and assign the smallest edge weight in ea
h 
lique as a weight of

that 
lique. Sorting the 
liques with respe
t to these minimal edge weights will

then result in the desired order for the 
liques. The se
ond way of building the

list of sorted k-
liques is to follow the edge per
olation pro
edure for the original

network and to add newly formed k-
liques after ea
h edge addition to end of the

list.
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Finding k-
lique 
ommunities using the unipartite k − 1-
lique network when

the sequen
e of k-
liques is found is known to s
ale almost linearly in time with

respe
t to the number of k-
liques in the network and to s
ale linearly in memory


onsumption with respe
t to the number of k−1-
liques in the network. Finding

and sorting the k-
liques in a general 
ase s
ales log-linearly in time and linearly in

memory with respe
t to the number of k-
liques in the network. Thus the sorting

part of the algorithm has in the worst 
ase a mu
h poorer performan
e than the

rest of the algorithm. This is dis
ussed in the next subse
tion, and the algorithm

for �nding the 
liques in their order of emergen
e in the edge thresholding pro
ess

redu
es the workload dramati
ally.

Algorithm 1 Pseudo
ode for �nding k-
lique 
ommunities when the sequen
e of

k-
liques is known. This done by keeping tra
k of the 
omponents of a k−1-
lique
network with the disjoint-sets forest.

for K in k-
lique sequen
e do

kr=a sub
lique of K

for kr2 in sub
liques of K (not kr) do

join in disjoint-set tree: kr and kr2

end for

end for

The alternative unipartite proje
tion

Noti
e that the unipartite proje
tion in the 
lique per
olation algorithm 
ould be

de�ned by removing k−1-
lique nodes instead of k-
lique nodes without a�e
ting

the results of the algorithm. This was not done for two reasons: First of all, there

are n times more k-
liques in the worst 
ase than k− 1 
liques when the network

size n is a 
onstant. This is also a valid point beyond the worst 
ase, as for example

there are more edges (2-
liques) in most networks than nodes (1-
liques). The

se
ond reason is that adding a k-
lique to the unipartite k − 1-
lique network

requires only 
ombining all sub
liques of the k-
lique to the same 
omponent. As

�nding the ea
h sub
lique takes a 
onstant time, the required workload is k − 1

times the e�ort required by the disjoint-set forest. On the other hand, adding a

k−1-
lique to the k-
lique network would require �nding all k-
liques having the

k − 1-
lique as a sub
lique. Two straightforward solutions to this would be to

either keep a lookup table of su
h 
liques in hand, whi
h is essentially equivalent

of keeping the whole bipartite network in memory, or go through all the n possible

k-
liques for ea
h k − 1-
lique. Neither of these alternatives are good, but more


ompli
ated algorithms might exist somewhere between these two.
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B.1.2 Finding the sequen
e of k-
liques

Finding all k-
liques and sorting them 
an be
ome a bottle ne
k for the dis
ussed

weighted 
lique per
olation algorithm. However, �nding k-
liques their order of

emergen
e when the weight threshold is in
reased 
an be done mu
h faster. The

pro
edure starts from an empty network and re
onstru
ts the original network by

adding the edges one by one, as is done in edge per
olation algorithms. At ea
h

step when an edge e = (i, j) is added to a network, the new k-
liques forming

as a 
onsequen
e of this addition 
an be found in the following way: First, �nd

all the 
ommon neighbors N of i and j. After that, �nd all the k − 2-
liques in

the subgraph of those neighbors G(N). When the nodes i and j are added to

these k − 2-
liques, they form all the new k-
liques born when e is added to the

network.

This approa
h has three bene�ts over the brute-for
e way of �nding and sorting

all k-
liques: It does not require keeping all k-
liques in memory, but only the

original network and possibly information related to the dete
ting k−1-
liques in

ea
h subnetwork depending on the algorithm used. It does not require sorting the

k-
liques as only the edges need to be sorted. Lastly, the k-
lique �nding algo-

rithm 
an be run simultaneously with the k-
lique 
ommunity �nding algorithm

updating the 
ommunity stru
ture immediately after ea
h k-
lique is found. This

makes it possible to stop the k-
lique sear
h algorithm at any time in the 
om-

munity �nding pro
ess. In some 
ases this is a huge advantage over exhaustive

sear
h of every k-
lique: for example in ER random graphs [53℄ the number of


liques grows as O(pk(k−1)/2) [68℄, where p is the probability that an edge exists.

The k-
lique per
olation pro
ess 
an be stopped when all nodes are in the same


ommunity, or even before that, when some other 
riterion is ful�lled.

B.2 S
aling 
onsiderations

As the new algorithm for �nding k-
lique 
ommunities for ea
h edge threshold

level 
an be divided in two parts, the k-
lique per
olation and �nding the k-
lique

sequen
e, worst 
ase s
aling is also studied separately for these parts. It turns

out that the per
olation part dominates the time and memory requirements in

the worst 
ase approximations. If the number of nodes in a network N and the


lique size k are �xed, the worst 
ase for this algorithm is a full network. This
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Algorithm 2 Pseudo
ode for �nding new k-
liques formed when an edge is added

to the network. Noti
e that �nding the k − 2-
liques from a subnetwork 
an be

done by 
alling this 
ode re
ursively for ea
h edge in the subnet, and by treating

the 
ases of k = 1 and k = 2 as trivial separate 
ases.

i,j = nodes of the edge

for l in neighbors of i do

if j is a neighbor of l then

add l to list of 
ommon neighbors

end if

end for

Gsubnet = subnet of 
ommon neighbors

for all k-2-
liques in Gsubnet do

k-
lique=nodes in k − 2-
lique, i and j

add k-
lique to the list of new k-
liques

end for

Algorithm 3 Pseudo
ode for sequential k-
lique per
olation with edge weight

thresholding. Algorithms 1 and 2 are used as subroutines.

sort the list of edges in the network

G=an empty network

while stopping 
riterion for 
ommunity stru
ture is not ful�lled do

pop edge from the sorted list

get list of new k-
liques when the edge is added

add edge to G

update the 
ommunity stru
ture with the list of k-
liques

end while

analysis does not take into a

ount that the algorithm 
an be stopped before all

edges are pro
essed when all nodes belong to the giant 
omponent.

B.2.1 Finding the k-
lique sequen
e

For the k-
lique sequen
e �nding part of the algorithm, the worst 
ase of a full

network means that the number of edges the algorithm has to go through grows

as O(N2), and for ea
h for those edges the number of operations for �nding all

triangles they parti
ipate grows as O(N). The number of triangles ea
h edge

parti
ipates in also grows as O(N), and thus the time to �nd the k − 2 
liques in

a subnetwork of nodes at the 
orners of those triangles grows as O(
(

N
k−2

)

), whi
h

is the number of possible 
ombinations of k − 2 nodes in a set of size N . In all,
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the time to �nd the k-
liques amounts to

O(N2)(N + O(

(

N

k − 2

)

)) = O(N2)O(

(

N

k − 2

)

) = O(

(

N

k

)

). (B.1)

This is also the number of the k-
liques in the network, whi
h means that any

algorithm listing all the k-
liques in any order must perform at least
(

N
k

)

opera-

tions. Thus, in this sense the s
aling of the algorithm is optimal. Note also that

the s
aling of the number of k-
liques 
an be written in the following way, when

k is �xed, or N is �xed and large:

O(

(

N

k

)

) = O(
N !

k!(N − k)!
) = O(

N !

(N − k)!
) = O(Nk). (B.2)

Thus, the number of k-
liques and the time needed to �nd the k-
lique sequen
e

in the worst 
ase grows polynomially with respe
t to network size N when k is

�xed, and exponentially with respe
t to k when the network size N is �xed.

B.2.2 Finding k-
lique 
ommunities

For the per
olation part of the algorithm, the same analysis is more straightfor-

ward, as we 
an use the results published for disjoint-sets forests [66, 67℄. The

algorithm requires k joining operations in the disjoint-sets tree for ea
h k-
lique,

and if there are K of them in the network, the amortized amount of work has been

proven to be O(αK), where α is the A
kermann fun
tion, whi
h grows almost

linearly. This means that the per
olation part of the algorithm dominates the

asymptoti
al required 
omputation time for the des
ribed worst 
ase s
enario,

and the algorithm as a whole is optimal for the task.

Real data 
an be 
onsiderably sparser than full networks, and for many dense

networks, the algorithm 
an be stopped before adding all the links, so the real


omputation times often behave mu
h better than the worst 
ase s
enarios. How-

ever, the real-world networks 
an lo
ally resemble full networks, and those parts

of the networks are often the ones taking most of the time for the k-
lique per-


olation algorithm introdu
ed here. E�e
ts of dense subnetworks to the overall


omputation time 
an be approximated by using the above analysis.
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Appendix C

Software toolbox for network

analysis

C.1 Starting point and requirements

Most of the work done for this Thesis is related to using, implementing and

developing methods from the �eld of network analysis. This is a rather new area

of data analysis, and as su
h the 
hoi
e of 
omputational tools is limited. This

is a problem espe
ially when dealing with weighted dense networks, as is done

in this Thesis. Published software usually o�ers solutions to spe
i�
 problems

only, and general purpose software pa
kages were not 
onsidered suitable for use

in this Thesis. Some su
h pa
kages are listed below:

Pajek A toolbox for network analysis with graphi
al user interfa
e. Not easy to

extend and is designed for rather small networks. [69℄

Boost graph library A C++ template library for graphs. Contains very few

tools for statisti
al analysis. Also not very easy to use and extend as itself.

[70℄

Networkx A Python module designed for network s
ien
e perspe
tive using the

Boost graph library. [71℄

None of the above mentioned pa
kages for network analysis seemed good enough

for the purposes of the work des
ribed in this Thesis. Also the methods and 
ode
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developed for this proje
t 
ould be used and extended for other similar proje
ts

in the future. With this in mind, a list of requirements for a software toolbox

was designed:

• The toolbox should have a suitable user interfa
e for exploratory data anal-

ysis and rapid prototyping. It should be easy to implement s
ripts on it.

• There should be a possibility to write low level 
ode for implementing 
om-

putationally intensive methods.

• The underlying data stru
tures should be e�
ient to allow usage of very

large data sets even in the s
ripting mode.

• The above point should be true for both dense and sparse networks in su
h

a way that the user interfa
e remains transparent with respe
t to the type

of underlying data stru
tures. This means that algorithms implemented for

one should work for both kinds of networks without any 
hanges.

• The toolbox should be based on a framework whi
h has already lots of fast


ode (possibly written in some low level language) for most 
ommon 
om-

putationally expensive tasks, su
h as 
ommunity dete
tion and modeling

networks.

• An automati
 testing framework should be available.

C.2 Spe
i�
ations

A software pa
kage for network analysis was developed as a part of this Thesis

as other pa
kages did not ful�ll the above requirements. The 
losest one was

the Networkx pa
kage, but among its other problems it was not mature enough,

at least at the time. Despite this, it resembles the software pa
kage developed

during this Thesis, as both of them are mostly written in Python and have a

C++ library as a ba
k-end.

The Python [72℄ s
ripting language was 
hosen as a front end for the toolbox for

the following reasons: �rst of all, as a high level language it is easy to use and not

as prone to programming errors as for example C is. Also as it is an interpreted

language, it is easy to try out short pie
es of 
ode with the interpreter interfa
e,
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whi
h is parti
ularly important in data analysis where detailed spe
i�
ations of

the programs and s
ripts 
annot be made beforehand, but the work 
onsists of

exploring di�erent possibilities. Another reason for 
hoosing Python is that there

is an extensive set of libraries for most general-purpose tasks su
h as plotting [73℄,

numeri
al analysis [74℄, intera
tive shell [75℄ and s
ienti�
 analysis [76℄.

For high performan
e, the ba
k-end library for sparse graphs made by Hyvönen

[77℄ was 
hosen. It has been proven to be able to e�
iently handle extremely large

data sets, for example in analysis of mobile phone 
all networks [7℄. It has also

been proven to be suitable for network analysis in general, and has been used in

the Complex networks group in Laboratory of Computational S
ien
e for several

years for almost all data analysis. This use has also generated large amounts

of 
ode written for the library ranging from model generation to 
ommunity

dete
tion.

The design of the software toolbox tries to follow the guidelines and requirements

set in the previous subse
tion. The networking toolbox is organized in su
h a way

that the network interfa
e visible for the user is made with Python. Under that,

the sparse network data stru
ture is the same as in C++ library dis
ussed in the

previous paragraph [77,78℄, and dense networks are implemented with Numpy [74℄

matri
es. This allows for writing C++ extensions for sparse networks by using

the C++ library. The design is illustrated in Figure C.1.

Figure C.1: S
hemati
 pi
ture of the Network Toolbox.

The design of the network Toolbox tries to en
ourage the user to follow a devel-

opment 
y
le, whi
h 
onsist of the following steps:

1. Explore the problem/data in the Python interpreter using the existing li-

brary and modules.

2. Write an own module or extend an existing one with required fun
tions in

Python.
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3. Write unit tests for the Python module/fun
tion.

4. Rewrite the speed/memory 
riti
al parts of the module/fun
tion with C++.

5. Now all analysis and unit tests 
an be done again with the C++ implemen-

tation with very small 
hanges.

The goal of this 
y
le is to allow the resear
her to mainly use high level s
ripting

language su
h as Python, and minimize the risk of programming errors and loss

of time related to writing large standalone C++ programs. Python also o�ers

an easy interfa
e to powerful network-related C++ libraries for people who 
ould

otherwise not use them.
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