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Chapter 1

Introduction

The beginning of modern genetics and the science of inheritance can be traced
back to Mendel and his famous cross-breeding experiments in the mid-nineteenth
century. He found out that inheritance is controlled by discrete units, which are
nowadays called genes [1]. This idea was later combined with the Darwinian
theory of evolution into population genetics and the modern synthesis theory.
Evolution could now be explained with small changes in genome which lead
to genetic diversity in distinct populations, and speciation in separated popu-
lations [2]. The discovery of the physical representation of genes as sequences of
nucleotides in DNA molecules and the continuous advances in sequencing those
genes has since made it possible to directly observe the genes even for a large

number of individuals.

Understanding of the importance of genetic variation in combination with mod-
ern techniques for measuring and quantifying such variation can nowadays be
used to direct the conservation of endangered species. Omne such species is the
Mediterranean seagrass, Posidonia oceanica. It is an important part of the local
ecosystem [3]; however, its growth is very slow and thus it is difficult to con-
serve. A better understanding of Posidonias genetic population structure and the
genetic flows shaping it might allow focusing conservation attempts such that the

genetic variation is properly preserved.

The problem in the case of Posidonia [3], but also more generally [4], is that the
models used for inferring population structure or historical evolutionary events
giving rise to the structure are too restrictive. Traditional methods can be mostly

divided into two categories: Population genetics studies a large number of genet-



ically similar individuals by using summary statistics of allele distributions in
those populations. Phylogenetic trees [5,6] are mostly built for studying evolu-
tionary relationships of a smaller number of sampled organisms, which are usually
of different species. Both of these approaches are well established, but work only
when strict requirements for the data are fulfilled. Loosening these requirements
would not only allow researchers to combine the two levels of genetic structure
of the sequenced individuals, the population-genetic view and phylogenetic trees,
but also to study the regions between these levels. However, models taking into
account all possible scenarios would have to be extremely complex. In addition,
such models should be tailor-made for each species, taking into account their

special features for example in reproduction patterns.

The biological system of evolving populations is a typical example of a complex
system. Complex systems contain a large number of interacting components,
which can be simple when isolated from the system, but as a whole exhibit com-
plex emergent behavior. The abstraction of complex systems to networks has
proven itself as a successful approach in fields ranging from sociology [7] and lin-
guistics [8] to stock market [9,10] and epidemiology [11|. Network methods have
been useful tools [13-15] for example extracting hierarchical structure, modeling
evolving systems and investigating collective behavior, all of which are typical
features of living systems. Food webs |16] and protein interaction networks |17]
are only some examples of biological systems which have been studied, and net-
works have a potential for serving as a general framework for the study of other
complex biological phenomena, which cannot be described with simple models. In
addition, network science has already developed tools that resemble those of phy-
logenetics and population genetics, such as methods for hierarchical community

detection.

In this Thesis, the possibility of using network-based methods for analyzing phylo-
genetic relationships between individuals is explored. Networks built from genetic
distances between specimens of Posidonia oceanica collected from multiple loca-
tions in the Mediterranean sea are utilized as a test case. Recent results based
on the same data set, obtained by using both traditional and network methods,
are also reviewed. Those results are compared to ones produced with methods
developed in this Thesis. The main focus in this Thesis is on extracting large
and small scale structure from the genetic network of individuals by using hierar-
chical community detection. This Thesis presents the first results of community

detection studies on genetic distance data; to the best of the author’s knowledge,



no results of similar studies have been published earlier.

The data set consists of the lengths of microsatellite repetitions in seven loci of
the genome of each individual specimen. As the Posidonia oceanica populations
evolve, these lengths are altered by two overlapping mechanisms: mutations and
sexual reproduction. Due to this, any distance measure defined between two
individuals is bound to lose some information and is a compromise between the
two mechanisms, making the choice of the distance measure ambiguous. By
choosing a distance measure, biological assumptions are made about the data,
which will reflect to any network studies made later. Two plausible distance

measures are compared in detail.

After selecting the distance measure, the data is ready for network abstraction,
and the according methodology can in theory be straightforwardly applied. In
reality, however, there are some algorithmic and practical complications caused by
the fact that most existing methods are developed for sparse unweighted networks,
and we are here dealing with a dense weighted network. Because of this, the aim
of this Thesis is to solve some of these initial problems, and try out different
methods on the data. Some of the tried methods appear to produce meaningful

results, whereas others fail.

This Thesis is organized as follows: Chapter 2 begins with a short introduction to
the species Posidonia oceanica, and describes the data set acquired from collected
samples. Special emphasis is given to genetic distance methods, as they are the
basis of the network analysis in Chapter 3. Before this, traditional methods
for studying genetic relationships of data are briefly introduced and results from

applying such methods are reviewed.

Chapter 3 deals with the network methods used for studying the genetic population
structure of Posidonia. It begins by introducing the basic concepts and ideas of
network methods and continues by reviewing previous network studies of the
same data. After this, the problem of community detection is discussed in de-
tail, and two community detection methods suitable for analysis of the genetic
networks of Posidonia are then introduced. Results given by these methods are
then compared to each other, geospatial information on the sampling sites, and
to a corresponding phylogenetic tree. Chapter 4 presents conclusions on the re-
sults and comments on the usefulness of network methods as tools for studying
population genetic data. It also suggest solutions to some of the encountered

problems and paths for future research.



This Thesis has three Appendices. The first defines some basic concepts and
quantities. The second introduces a sequential clique percolation algorithm de-
veloped by the author and his coworkers. The algorithm is an important part of
the Thesis, as it is required for carrying out the community detection analysis in
a reasonable time. The last Appendix introduces a software toolbox for network
analysis, which was designed and implemented during making of this Thesis, and

was used for all the computations, excluding the block diagonalization approach.



Chapter 2

Biological background

2.1 The data set and basic statistics

2.1.1 Posidonia oceanica

Posidonia oceanica is an endangered seagrass living only in the Mediterranean
area. It forms large meadows in coastal areas at depths from 5 to 50 meters,
depending on clarity of water and nutrient availability. Posidonia is a long-living
organism, known to live over 1000 years, and it grows horizontally by 1 to 6
centimeters each year. The very slow growth makes it vulnerable to outside
influences. The main reasons for Posidonia’s endangerment are polluted waters,
especially due to nutrients released into water, and fishing-related local damages.
Posidonia is an important part of the Mediterranean ecosystem and its meadows
work as carbon dioxide sinks. It is thus an important target for conservation

efforts.

Posidonia oceanica is an angiosperm mainly reproducing asexually by cloning and
self-pollination. Sexual reproduction is known to be sporadic and even unsuccess-
ful in the Western Mediterranean basin |26]. The asexual reproduction combined
with low rate of success in pollination can lead to large populations with little
genetic variability. It is thus especially important to focus conservation efforts of
Posidonia on preserving its genetic variability. Finding out which populations are
the most important ones with respect to genetic variability can be problematic.

It is hard to assess the importance of meadows to the overall genetic diversity



based only on geographical observations, because local environmental forces and

ocean currents heavily affect the gene flow.

A better knowledge of the genetic population structure and diversity of Posidonia
could be used to identify the important geographical regions for gene flow. This
information could then guide the conservation attempts on Posidonia. However,
it is difficult to study Posidonia with traditional phylogeny and population in-
ference methods, as they are usually based on models which assume too simple
reproduction dynamics. Posidonia is thus a good candidate for utilizing network

based methods, where assumptions on the genetic structure are not as limiting.

Figure 2.1: A photo of Posidonia oceanica taken in Portofine, Italy [21].

2.1.2 Sampling locations

The data set studied in this work consists of 1468 samples of seagrass Posidonia
oceanica, which were collected by diving from 37 different locations in the Mediter-
ranean sea. The sampling locations were not chosen uniformly, but with large
differences in density at different parts of the sea: The Western Mediterranean
sea was more densely sampled than the Eastern, and the West also contains areas
with large differences in sampling density. This heterogeneity of sampling loca-

tions allows the data to be used to study spatial aspects of the genetic structure



on many scales ranging from few hundreds of meters to thousands of kilometers.
The heterogeneity can also cause problems for some analysis methods that as-
sume homogeneous sampling. Such assumptions are often implicit, and can in
this case lead to overestimating the importance of some of the western sampling
locations. Throughout this Thesis, the sampling locations are divided to three
groups: western, central and eastern, to allow a rough assessment of results from
different methods with respect to sampling locations. For more details on this
division, see Figure 2.2. The article by Rozenfeld et al. 3] which contains more

detailed information on the sampling locations.

Although the sampling location density varies a lot, the sampling scheme inside
each of those locations is similar. Approximately 40 shoots were collected from
randomly drawn coordinates from a sampling area 20 meters in width and 80
meters long [3]. From each shoot, the meristem portion was collected for des-
iccation and preservation in silica crystal [3]. After the collection of the 1468
samples, part of the genome of each sample was sequenced for further studies
on the population-genetic structure. A genome wide sequencing would be far
too expensive, and thus the sequencing was limited to a number of microsatel-
lite markers. These markers and the sequencing procedure are discussed in the

following subsections.

Figure 2.2: The sampling locations of the meadows of Posidonia oceanica are
marked with circles. The locations are divided to three geographical groups:
west (yellow), central (blue) and east (red).

2.1.3 Microsatellites

Microsatellites are a special class of hypervariable sequences of non-coding DNA,
which are widely used for comparing the extent of genetic differences in two
organisms [22|. The hypervarialibility of microsatellites, i.e. their high mutation

rate, makes them ideal for comparing closely related organisms, such as two



samples of the same population or the same species. This property combined
with the fact that microsatellites are mostly not under any selection pressure
has made them increasingly popular for example in crime investigation, disease

studies and structural population analysis.

Structurally, microsatellites are small motifs 1 to 6 nucleotides long, repeated
up to 60 times. The structure of the microsatellite sequence makes it prone to
special copying errors, which causes the mutation rate to be considerably larger
than for example in coding genes. Normally, an error in the DNA copying process
would cause a mismatch between the copied DNA strand and the template strand
and trigger a repair process, but offsets in the number of repeats are not as
easily noticed. This DNA slippage is the main mechanism behind microsatellite
mutations. It mostly causes errors that delete or insert one repetition. The
process does not seem to depend on the number of repeats, when the number is
limited to a certain range usually from few dozens to few hundreds of repeats.
Beyond this range, however, there seem to be some mechanisms limiting the
length of the sequence [22]. It is fairly straightforward to model the mutation

process, as it can roughly be described as a random walk.

2.1.4 Sequencing

The first stage of the sequencing process was isolating the genomic DNA by
following a standard CTAB extraction procedure [3,23]. It would be too expen-
sive to sequence all known microsatellites from all the samples. Because of this,
samples from eight locations were fully genotyped for eight dinucleotides, four
trinucleotides and one 7-nucleotide, and 7 microsatellite markers where then cho-
sen by using the conditions discussed by Arnaud-Haond et al. [24] to achieve the
most efficient combination of the markers for separating clones from genetically
different specimens [3,25|. FErrors in sequencing typically generate very small
dissimilarities among clonal ramets, and all specimen with a distinct genotype
for only two or one alleles were re-genotyped for those loci [3]. As Posidonia is
a diploid organism, the final genetic data set consists of pairs numbers of rep-
etitions in each seven loci for each of the 1468 samples, which thus constitutes
a (2 x 7 x 1468) matrix. 834 of the 1468 samples were unique with respect to
the chosen microsatellite markers, the rest being clones or not distinguished as

genetically different by the resolution given by the 14 markers in 7 loci.



2.2 Choosing the distance measure

In the context of studying the genetic structure of a large, geographically widely-
spread population, the individual genomes of the samples are not of much interest.
Instead, the focus is on the genetic relationships between these samples. As large-
scale genetic relationships can be highly complex, the simplest way to approach
the problem seems to be to concentrate on pairwise genetic relationships. The
genetic relationship of two samples is naturally described by their similarity. This
approach thus leads to defining a pairwise distance between all samples, in the
hope that the more complex properties of the whole data set can be inferred from

these distances.

The genetic distance approach can be used, for example, to find genetically dis-
tinct populations in the data, as individuals belonging to the same population
should be genetically close. Likewise, a gene flow between two genetically distinct
populations would result in short cross-population genetic distances. Distance-
based methods are also the starting point of many model-based phylogenetic 28]
and population structure inference methods [18|, which have become more pop-

ular than purely distance-based methods 5,6, 18].

The genetic data of each sample consist of microsatellite repetition numbers of
the two alleles in each of the seven loci. Transformation of this microsatellite
marker data into pairwise distances turns out to be a non-trivial task. This

transformation is discussed in detail below.

2.2.1 Defining the distances

The microsatellite data for each sample consist of unordered pairs of allele lengths
for each locus. Genets can be distinguished in the data, but there is no unam-
biguous measure of the genetic distance between different genotypes, although
the mechanisms for their evolution are fairly well known. This is because two
such mechanisms have an effect on the distance: mutations and genetic mixing.
Both mechanisms implicate a way to define the distance measure. These dis-
tance measures are calculated here for the Posidonia oceanica data set and their

properties are studied.

Mutations in the microsatellites usually alter the length of the allele by deleting



or inserting one repeat, whose length in our case is two nucleotides. The overall
process of genome evolution by mutations only can be described by a random
walk in single-allele length. The corresponding distance measure between two
genomes can thus either be the minimum number of single-repeat mutations re-
quired to transform one genome to another, or the expected time it would take
for one genome to transform to another. The first can also be viewed as the
maximum parsimony measure, and it is not as sensitive to the definition of the
underlying process as the latter one is. The expected-time measure would, for
example, have to take into account the mechanism restricting the number of the
microsatellite repetitions. The parsimony distance measure has been previously
used in network-based studies of Posidonia oceanica [3,29], and it was thus cho-
sen for closer inspection. Rozenfeld et al. named the parsimony distance linear
Manhattan distance (LM), and defined it as follows:

di(A,B) = 3 (|4 = Bl + |a; = bi]), (2.1)

i=1
where A; and B; denote the lengths of the longer of the two alleles at locus 7 for
samples A and B, and a; and b; denote the shorter lengths, respectively. The

summation runs over sampled loci.

In the sexual reproduction process only genetic recombination takes place, and it
is not affected by the number of repetitions in the alleles. Hence a distance mea-
sure which takes the allele lengths into account would possibly produce misleading
results when applied to a system with a higher rate of sexual reproduction than
the mutation rate. The non-shared alleles distance (NSA) counts the number of
non-shared alleles at each locus of the two individuals, and as such it effectively
discards all information on the differences of allele lengths. Thus the NSA dis-
tance is a suitable measure when sexual reproduction is the dominant mechanism

of genetic variation. The NSA distance is defined as follows:

d(AB) =) Y (-l {dia}n{B.b]), (22

i=1 z€{A;,a;,B;,b;}

where A;, B;, a; and b; are defined as in Equation (2.1), and the first summation
again runs over sampled loci. Instead of counting non-shared alleles, a binary
measure for genetic mixing could be defined as a parsimony measure, as the linear
Manhattan measure was defined. The allele parsimony distance (AP) counts

the minimum number of allele replacements between two genomes for one to

10



transform to another:
k
di(A, B) =Y min(|{A;, B} + {ai, bi}|, [{As, bi}] + {ai, Bi}]). (2.3)
i=1

The NSA and AP distances are similar to each other up to a constant multiplier,
and the only differences are the cases where one of the samples is homozygous and
other is heterozygous in a locus. In the following, we will use the NSA distance

measure.

2.2.2 Comparisons between the distance measures

The scatter plot of Figure 2.3, displaying values of the two distances for each
pair of ramets, illustrates the relationship between the NSA and LM distances.
Judging from this plot, the relationship between these two seems rather linear, but
with reasonably high variance. A more quantitative measure of the relationship is
the correlation coefficient which takes a value of approximately 0.71, in agreement

with the above conclusion.
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Figure 2.3: Scatter plot of the linear Manhattan distance (2.1) and the non-shared
alleles distance (2.2) for every pair of ramets in the Posidonia oceanica data. The
value of the correlation coefficient is approximately 0.71.
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The two distance measures assume different underlying evolutionary processes.
Genetic population structures produced by these processes can be distinguished
from each other, but the real process behind the genetic population structure of
Posidonia is a priori known to be a complex combination of the two processes.
Thus, instead of inferring the probabilities of the processes producing the data, we
must resort to a more qualitative comparison of the genetic population structure,
and look for genetic structure characteristic of the two evolutionary processes.
We begin by looking at the allele length distributions of all seven loci (Figure
2.4). A high mutation rate would yield a high degree of polymorphism, which is
the case only for two loci (1 and 3). Instead, the number of repeats in loci 2, 5,
6 and 7 are mostly confined to a small number of clearly distinct values. This is
indicative of a slow rate of mutation, implying that the use of the LM distance

in the analysis of this data set might not be well justified.
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Figure 2.4: The allele frequencies in the 7 sequenced loci of the Posidonia. The
horizontal axis represents the number of repetitions defining an allele, and the
vertical axis the allele frequency. The distributions for loci 1 and 3 are fairly
diffuse with no clear gaps, implying a high rate of mutations. On the contrary,
in the other loci the repetition numbers are mostly limited to a small number of
distinct values, indicating that sexual reproduction is the dominant mechanism.
For locus 2, the difference between these values is large, which causes substantial
differences between the NSA and LM measures.

Let us now discuss the effects of these findings on the values of the distance

measures. Note that for locus 2, there are only 3 different common allele lengths,

12



which are spread far apart separated by wide gaps where almost no alleles can be
found. Loci 6 and 7 are also confined to 3 distinct values, but with the difference
that the values are not separated by gaps. The NSA distance measure discards
all information on the allele lengths, and thus the overall contributions of loci 2,
6 and 7 on the distances should be roughly equal. This is not the case with the
LM distance, for which the length of the gaps is important information. Figure
2.5 displays the mean contribution of each locus for both distance measures. It
is apparent that loci 2, 6 and 7 contribute roughly equally to the NSA distance;
however, for the LM distance, the differences are very high. This difference arises

from the ambiguity of the distance measures.
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Figure 2.5: Mean contribution over all distances of each locus to the linear Man-
hattan distance and the non-shared alleles distance. There are substantial differ-
ences between the NSA and LM measures, especially for the loci 2, 6 and 7. The
NSA measure seems to give similar weights to each loci, as opposed to the LM
distance, where the differences can be large.

The problem at hand can be roughly divided into two limiting example cases. If
two (or several) alleles with a large difference in the number of repeats coexist in
a population of closely related individuals, applying the LM measure can produce
erroneous results. As an example, two ramets heterozygous with respect to this
allele could have two homozygous descendants. The LM measure would yield a
high genetic distance between these, due to the large difference in allele lengths.

Thus, NSA would appear as the proper distance measure for such cases. However,
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if there are two distinct populations such that all shorter alleles are found within
one and longer ones within the other, the LM measure clearly provides a more
accurate view. One can thus interpret the LM distance as a measure of genetic
differences over long, evolutionary time scales, and the NSA as a measure related

to shorter time scales.

In reality, however, both long and short time scales are reflected in the genetic
composition of populations. For the case of P. oceanica, this can be clearly seen
in Figure 2.6, displaying the geospatial distribution of the ramets homozygous
and heterozygous with respect to locus 2. 121 ramets with alleles (164, 164) are
located in the eastern and central areas of the Mediterranean sea, whereas 225
ramets with alleles (182,182) are located in the western and central areas. This
causes the LM distance to differentiate well between the east and the west, but
causes noise in the distance measure in the central areas. On the other hand,
the 82 heterozygous ramets with alleles (164, 182) located in the west and center
can also cause large errors between the ramets from the west as discussed in the

previous paragraph. This claim is studied more closely in the following Section.

(164,164) (182,182)

~7

Figure 2.6: Geographical distribution of sampling locations where the two ma-
jor alleles of locus 2 can be found. Distributions for the homozygous [(164,164),
(182,182)| ramets are shown separately. Colors indicate frequency: red for loca-
tions with the highest frequency, yellow for lowest frequency, with the intensity
of the color reflecting the frequency. Small blue circles denote locations where
these alleles are not found. It is clearly seen that the allele 164 is associated
with the east of Mediterranean and 182 with west; however there are also some
heterozygous (164, 182) samples near Spain.
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Correlations with locations

The above results clearly indicate that there are correlations between genetic
distances and the locations of the sampling sites of ramets. Furthermore, the
analysis discussed in the previous Section suggested that the LM measure differ-
entiates well ramets sampled from geographically distant locations, while the NSA
seems to be appropriate measure for analyzing populations which are spatially
and genetically close. Here, we test this hypothesis using ROC curves [30, 31],
as introduced in this specific context by Klemm [32]. The ROC curves quantify
the extent to which the genetic distances can be used to classify samples into
clusters, using the sampling locations as a reference. The results of the ROC
analysis for comparing different distances to the two geographical divisions can
be seen in Figure 2.7, which seems to support the claim, as the LM is better for
coarse classification than NSA, but NSA is better when all locations are taken

into account.

Each point on the ROC curve corresponds to a threshold value 6. For each
threshold value 6, the pairs of nodes are divided into two sets: those having a
distance smaller than the threshold and those who have a larger distance. The
pairs with the small distances are predicted to belong to same the class, and the
ones with large distance are predicted to belong to different classes. Using the
sampling sites as the true classes, two rates of success are calculated for each 6:
the true negative rate, i.e., the fraction of samples predicted to belong to different
classes, which actually belong to different classes, and similarly, the true positive
rate. These rates are then plotted against another. Hence a distance which would

not correlate at all with the classes would yield a straight line.

To see how much the ROC curves for ML and NSA are affected by the different
mean contributions of different loci to the two distance measures illustrated by
the Figure 2.5, a renormalized distance measure was constructed. This measure
is based on the LM distance, where the contribution of each locus is renormalized
such that their means correspond to those of the NSA distance. Figure 2.7 shows
that the normalization has a substantial effect, but does not fully explain the
difference between the NSA and LM distances.

Locus 3 was seen to have a high degree of polymorphism in Figure 2.4 and thus
it should have a high mutation rate. This implies that the LM measure could
perform better or as well as NSA in the locus 3. To test this, a hybrid distance
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Figure 2.7: ROC curves for the prediction of the sampling locations with different
distance measures. The solid curves indicates the classification made with all the
37 locations, and the dashed curves show the results for more coarser classification
of the data to western, central and eastern regions.

was constructed such that in the NSA measure, the third term in the distance
sum corresponding to locus 3 was replaced by the corresponding term of the
LM distance. In addition, this replacement term was normalized such that its
overall contribution was similar to the original NSA term. In Figure 2.7, this
hybrid model is seen to have a negative effect on the prediction ability of the
NSA distance for locations, and a positive effect when only the coarser division

to east, center and west is considered.

2.2.3 Conclusions

The ambiguities of measures for microsatellite-based genetic distances between
individuals are seen to cause problems when the measure needs to perform well
on multiple evolutionary time scales. For the Posidonia oceanica data, this could
indicate that for example studying only ramets located on the coast of Spain,
where the sampling is most frequent, the NSA distance could be a reasonable
starting point. On the other hand, the LM distance could be used to estimate

long-range effects, however it could cause substantial noise in the distances when
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improperly used.

An interesting solution to the problem would be a hybrid distance measure taking
into account population-level information that cannot be otherwise incorporated
to the distance measure between two single genomes. However, such a measure
would be harder to interpret, and at least is not trivial to construct a measure
that would perform better than both NSA and LM in all test cases. A substantial
part of this problem is norming the contributions to the distance measures made
by each locus, as the variance in the contributions between the two measures is
large, which has a substantial effect to the overall performance of the distance

when predicting locations.

2.3 Basic statistics

The above-described data set on Posidonia oceanica has been studied with com-
monly used biological summary statistics methods in Refs. [24,34,35|. Results of
these studies can be used as a basis in assessing any results produced with the
new methods discussed later. They also give a general idea of how the data is
organized, what the limitations of these methods are, and what they are good
for. In this Section, those results are briefly reviewed, and some basic statistics
of the data are discussed. Before that, the general ideas behind these methods
are briefly described.

2.3.1 Phylogenetics and population genetics

Summary statistics of population genetics and phylogenetic trees are both good
candidates for studying large data sets of individuals, whose genome is represented
by a small number of microsatellite markers. Phylogenetic trees can be used for
clonal species or for individuals sampled from distinct populations. Summary
statistics are better suited for closely related individuals, which are preferably
sampled from same population. However, the use of these methods is often limited
by the underlying assumptions. These limitations are discussed briefly in this
subsection, to give an idea of what kind of data can be studied with traditional

methods, without having to resort to the network methods introduced later.
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A phylogenetic tree is a representation of lineages and history of evolutionary
events separating them for a set of individual organisms [5,6|. Phylogenetic
trees are also commonly built between genes or species, but these cases are not
considered here. A common way of presenting evolutionary relationships is a
rooted tree, where the leafs of the tree depict the sampled organisms. The inner
nodes represent the ancestors of the leaves such that a common parent of two
nodes is the last common ancestor of those nodes. This means that the root of
the tree is the most recent common ancestor of all the nodes. This hierarchical
branching pattern is called the topology of the tree. Most methods for building
phylogenetic trees define branch lengths in addition to the topology. The lengths
can represent the period of time covered by the branch or the amount of genetic

divergence.

Phylogenetic trees are traditionally used in systematics by comparing morpholog-
ical differences of species. As the amount of molecular data has exploded in the
last decades, phylogenetic analysis has entered the genomic age. This, combined
with the development of statistical methods of phylogeny inference, has made it
possible to analyze data sets of hundreds of species. Despite this success, phylo-
genetic trees have limitations that restrict their use, as an example, for the data
set of Posidonia oceanica discussed in this Thesis. If the studied set of nodes
or samples are from the same population or even from the same species, sexual
reproduction can limit the usage of phylogenetic trees as the different lineages
can now merge. Thus the tree structure cannot correctly represent the histories
of all lineages, as mixing would cause the appearance of cycles in the tree. Such
effects can also be caused by horizontal gene transfer, which is thought to play a

role in bacterial evolution [33].

Traditional population genetic studies rely on simplified models of genetic evo-
lution and reproduction mechanisms. The aim is to fit the observed data to the
models, and calculate summary statistics based on the fitted models. A typical
problem with this approach is the often unrealistic assumptions made by the mod-
els, such as non-overlapping generations, random mating and equilibrium state,
which are in many cases known to be violated in the studied populations [3]. In
some cases, the use of the models is limited even more by the choice of the studied
organism. As an example, in the case of Posidonia oceanica, clonal reproduction
severely limits the number of models that can be used. This means that many
of the commonly used summary statistics, such as the effective population size

and the generation time, contain assumptions that are not compatible with clonal
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organisms such as Posidonia.

2.3.2 Results of the summary statistic studies

The Posidonia oceanica data set described here has been studied with population
biology summary statistic methods in at least three articles. The main results
of these articles are briefly presented here. The first article by Arnaud-Haond
et al. [24| optimized the number of microsatellite markers needed to distinguish
clones from genetically different genotypes, and found a combination of seven
dinucleotide markers, which are also used in this Thesis as discussed earlier.
Diaz-Almela et al. [34], on the other hand, used the seven markers to study the
effect of four Mediterranean fish-farms on Posidonia oceanica. Arnaud-Haond et
al. [35] again studied spatial correlations in the genetic data and found a strong
west-east cleavage. In addition, they found a putative secondary contact zone at
Siculo-Tunisian Strait, high genetic structure between meadows, and high spatial

autocorrelation in some of the locations.

The strong genetic separation between west and east has also been observed
earlier with other data sets [20, 27| of Posidonia. On the basis of this strong
evidence, the large scale geographical correlation of the genomic distances is used
as a first benchmark for the new methods introduced later. More specifically, the
sampling locations and the samples are divided into western, central and eastern
locations as discussed earlier, and the division is compared in various ways to any

new results.

2.3.3 Distance based statistics and studies

Rozenfeld et al. |3] studied the linear Manhattan distance distributions by model-
ing the different reproduction processes and observing typical distances produced
by them. Such genetic diversity spectra (GDS) averaged over all within-location
distances are shown in Figure 2.8. The shapes of the spectra for the non-shared
alleles distance in panel a) and the linear Manhattan distance in panel b) look
fairly similar. The only difference seems to be related to the fact that the number
of distinct distances is larger for the LM measure. Rozenfeld et al. 3| found out
that most of the observed distances in the GDS in panel b) were typical for clonal

reproduction and outcrossing, and deduced that these are the main mechanisms
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influencing the genetic structure of Posidonia oceanica. In Figure 2.9, the same
GDS plots for NSA and LM distances are shown for the whole Mediterranean-
wide data set. There, the clonal peaks at distance of zero are almost absent.
However, interestingly, the GDS for LM distance shown in panel b) seems to be
a combination of multiple normal distributions. This could be due to the strong
west-east cleavage. The large peak would then correspond to the distances inside
the geographical areas and the small peak to the distances between the west and
the east. This effect cannot be seen in the GDS for NSA distance in panel a),
which might indicate that the differences inside each of the three geographical
areas are already so big for the NSA distance that the larger distances between
the areas cannot be distinguished from them. This means that the resolution of
the NSA distance for large geographical distances is not as good as the resolution

of the LM distance on the same scale.

To verify the hypothesis about the large scale geographical effects on the global
GDS, the genetic distances were plotted against the corresponding geographical
distance in Figure 2.10. A clear correlation with the geographical and genetic dis-
tances can be observed for both genetic distance measures. Notice that the den-
sity plots of Figure 2.10 are essentially joint distributions of genetic distance and
geographical distance, and the GDS distributions in Figure 2.9 are the marginal
distributions of those joint distributions when the geographical distances are in-
tegrated out. Figure 2.10 thus confirms that the peak corresponding to the large
genetical distances in GDS of LM distance is indeed due to node pairs with large
geographical distance. Although similar correlations to geography can be ob-
served for the NSA distance, distinct peaks are not visible in the GDS plots for
NSA distance.

Thus the LM and NSA distance distributions appear to support the conclusion
made on the basis of ROC curves of Figure 2.7, namely that the LM measure
seems to better reflect large-scale variations, whereas the NSA distance performs
better in analysis of local populations. This doesn’t come as a surprise, because
the recombination process measured by the NSA distance has physical constraints
with respect to geographical distance, whereas the mutation process measured by

the LM distance does not depend on geography.
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Figure 2.8: Genetic diversity spectrum (GDS) averaged over all the distances in

each sampling location for a) the non-shared alleles distance (NSA) and b) the
linear Manhattan distance.
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Chapter 3

Network analysis of the data

In the previous Chapter, the Posidonia oceanica data set was seen to contain com-
plexity that could not be fully captured by traditional model-based methods and
summary statistics. The reason for this was seen to be the reproduction system
of Posidonia consisting of three different mechanisms. On one hand, clonal repro-
duction violates the most basic assumption of non-overlapping generations made
by classical population genetic methods [3|, and on the other hand, Posidonia’s
sexual reproduction severely limits the usage of phylogeny methods. The data
was also seen to capture multiple evolutionary scales as the distances between

the samples vary from few meters to thousands of kilometers.

Network science has been successfully used to capture both small scale structure
and large scale phenomena on complex systems ranging from social |7] to techno-
logical [19] systems. The main idea of the network approach is to study systems
with a large number of interacting elements by representing them as graphs,
where edges represent interactions between the elements. This abstraction step
allows the use of generic network-based data analysis methods to be applied to a

range of different systems.

In this Chapter, network-based methods are used to tackle the complexity in-
herent in the population structure of Posidonia oceanica. Earlier network-based
studies of the Posidonia oceanica data set are first reviewed. These studies are
mostly based on using methods such as minimum spanning trees and thresh-
olding, and computing local node-based topological statistics from the networks
resulting from the application of those methods. This line of work is continued

in this Thesis by studying the large-scale structure by hierarchical community
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detection methods. Communities are sets of nodes which are more densely con-
nected to each other than to the rest of the network, and are usually related to
the functional units of the system. Nested communities, or communities inside
communities, form hierarchical community structures. Community detection is

thus clustering of nodes in a graph.

Although it has become increasingly popular to take interaction strengths into
account in the form of edge weights, most community detection methods still
only use the topological properties of the network. This is a problem, as the
genetic similarity network of Posidonia is a full weighted network, and discarding
the weights would thus lead to a trivial topology. Here, one community detection
method, k-clique percolation, is modified in a way that allows it to produce hierar-
chical community structure. The other community detection method used in this
Thesis is block diagonalization, which is a general method for clustering distance-
based data. Results of application of these methods are first compared by visual
inspection and then by using the mutual information framework. Geospatial in-
formation on the sampling locations and phylogeny-tree-based clusters are also

utilized in the comparisons.

3.1 Converting the genetic distance matrix to a

network

To apply network methods to any dataset, an abstraction step is needed for
interpreting the data at hand as a graph. In our case, the natural way of doing
this is interpreting each specimen as a node and adding an edge between each
node with a weight representing the genetic distance between them [3]. This is
equivalent to using the distance matrix D between the specimens as a weight
matrix W. Similar approaches have been used in past e.g. in interpreting stock

price correlations as a network [9,10].

As our data contains clones, the first preparatory step is to collapse each set of
clones to one node by removing all but one instance of each clone. This leaves

834 unique nodes.

The usual interpretation of the weight of an edge between two nodes is that

the larger the weight, the stronger the interaction between them. However, the
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distances defined here behave in exactly the opposite way. It is also useful to
normalize the weight matrix such that the maximum weight equals unity. These
requirements do not define any unique way to transform distances to weights.

Here, one of the simplest ways is chosen:

_ (3.1)

max dij )

Wy=1-

3.2 Earlier network studies of the data

In addition to traditional population biology studies discussed earlier, the P.
oceanica data set has also been studied using network methods. All of the four
articles published about these studies are related to the same EDEN project as is
this Thesis, but the author of this Thesis has not participated in any of them. In
this Section those articles are briefly reviewed and some of their ideas are adopted

as a part of the community studies discussed later.

The first of the four papers, written by Hernandez-Garcia et al. [29], is a short
introduction to the network perspective for tackling the complexity related to this
kind of biological data in multiple resolutions. The second, written by Rozenfeld
et al. |3], goes somewhat deeper into the individual level genetic networks and
reproduction systems of the Posidonia oceanica. Contrary to this, in Ref. [36],
Rozenfeld et al. try to infer large scale genetic flows from the network of genetic
distances between populations defined by the sampling locations by using meth-
ods such as percolation and betweenness centrality. As this starting point is
somewhat different from the one used in this Thesis, further discussion of this
paper is omitted here. The last article discussed here, by Hernandez-Garcia et

al. [37], observes and models the size distributions of clonal samples.

3.2.1 Minimum spanning trees

In Ref. [29], Hernandez-Garcia et al. introduce some ideas for analyzing the
microsatellite data of the Posidonia oceanica with weighted complex networks,
where the weights are defined with the linear Manhattan distance (Equation
2.1). They start by building a Minimum Spanning Tree (MST, see Appendix

A) of the distance network of sampled ramets of Posidonia oceanica, and visual-
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ize the resulting tree, where nodes are colored according to sampling locations.
Minimum/maximum spanning trees have also been used earlier to study struc-
tural properties of e.g. stock price correlation networks |[10]. MST visualization
is a good and flexible tool for roughly representing the correlations between the
genetic structure and the geographical locations of the nodes. MST-based visual-
izations are used in this Thesis for comparing the results of community detection

methods, as well as their relationship to geography.

One should be somewhat cautious when making a priori claims about the meaning
of the structure of the MST for any particular type of network. Hernandez-Garcia
et al. [29] interpret the MST as the main path of gene flow among the plant
populations, on the basis that the edges represent closest relations between the
nodes. This seems to be a straight-forward interpretation, although it might be
a little problematic to define the main path of gene flow to go through single
organisms as their genomes are of course stationary. The real problems with the
MST are more general and subtle, and are related to the fact that the MST is
not necessarily unique if multiple links have same weights. Even if this is not the
case, the MST is likely to discard many important links due to small differences
in their weights, and is thus highly vulnerable to small perturbations. As an
extreme example of the non-unique nature of the MST, for a case where all nodes
are clones, any tree connecting those nodes is their MST. If only a single MST
is given for this case, its topology thus depends solely on the algorithm that was
used for constructing the tree or is completely random. Keeping this in mind, it
would be advisable to use only one node to represent all of its clones in a MST.
The choice of distance measure will also have an effect to the topology of the
MST as even small changes in the distances can cause large deviations in the
tree. This must be taken into account especially when using a distance measure
which can produce large random errors in estimating short distances, because the
minimum spanning tree is based on small distances. This was seen to be the case
with the linear Manhattan distance of Eq. (2.1) in the previous Chapter where

the distance measures were compared.

3.2.2 Thresholding

Another approach for studying full weight matrices with network-related methods
is thresholding, where the network is constructed of those matrix elements whose

weights are above some threshold value, wy,. This approach was adopted by
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Rozenfeld et al. [3] and Hernandez-Garcia et al. [37]. Networks resulting from the
thresholding procedure can be studied with tools of unweighted network analysis,
such as analysis of degree distribution or clustering coefficient (see Appendix
A). This approach is better than using the MST in the sense that it discards
less information, but on the other hand the choice of the threshold wy, can be
problematic. In the case of the network of samples of Posidonia Oceanica, the
threshold can be chosen based on biological arguments or topological arguments.
For example, the average genetic distance between parents in simulated data has
been used as a threshold for meadow-wide networks [3]. The network topology
itself can be used to determine the threshold by setting the threshold weight wy,
to be equal to the critical point in percolation, which is roughly the minimum
threshold weight giving rise to networks where almost all nodes belong to the

largest connected component.

The problem with choosing a single threshold is that many of the network statis-
tics depend only on the chosen value, as for example the average degree and the
clustering coefficient go from zero for the maximum threshold to their largest
values for zero threshold. One solution to this is to use a range of threshold
values instead of a single one, and study the chosen measures as a function of the
threshold. This approach is used in later this Thesis for the case of community
detection using the k-clique percolation method. This method is strictly topo-
logical; however it can be applied to weighted networks by thresholding them
first.

In the case of the Posidonia oceanica data set, choosing a threshold is problem-
atic also because of the heterogeneity of the sampling locations, as the genetic
distances between samples from the densely sampled Spanish coastal area are
short compared to the most of the other distances. Hence, a threshold giving
rise to a network where the eastern nodes form a sparse network with visible
structure would contain a large, almost fully connected clique of western nodes.
Furthermore, a threshold providing some resolution on the Spanish data would
leave the eastern nodes disconnected from each other and from the western nodes.
Thus the proper thresholds for analyzing western, eastern or the whole data are

dramatically different.

This problem of choosing a global threshold is addressed in the article by Rozen-
feld et al. [3] by simply looking the local networks formed of each sampling loca-

tions. Apart from visual inspections of the resulting genetic networks in sampling
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locations, the main network-based result seemed to be the small world prop-
erty [56] of the networks. This means that path lengths of the network remain at
the level of Erdés-Rényi random networks [53], while the mean clustering coeffi-
cient is notably higher than in random networks. As genetic networks are based
on distance measures, the triangle inequality implies a large clustering, and even
a small number of random links ensures the small path lengths. As Rozenfeld et

al. noted, the small world property is a very common feature of complex networks.

In Ref. [37], Hernandez-Garcia et al. use the thresholding approach and plot the
resulting networks for a single sampling location for four values of threshold.
In addition, they show the degree distribution averaged over the networks of
each location at threshold levels zero and 30 of the linear Manhattan distance.
Most of their paper after this is devoted to modeling and studying the clone size
distributions, which can also be interpreted as thresholding with value zero. This
is of course a trivial threshold level in the network sense as the resulting networks

only contain disconnected cliques each corresponding to a set of clonal samples.

3.3 Community detection

3.3.1 Overview of the problem

Initially, research on complex networks focused on studies of distributions of node
and edge based statistics, such as the clustering coefficient and betweenness cen-
trality. Since then, the focus has been shifting to more mesoscopic quantities. One
of the most fundamental large-scale problems is community detection. Commu-
nity detection is an important problem as in many cases communities correspond
to functional entities in networks, or are otherwise relevant in context of the un-
derlying system. The problems in community detection are not as much related to
difficulties with computation or algorithmic performance as they are to the exact
mathematical definition of a community. A community is in most cases loosely
defined as a set of nodes that are internally more densely connected than exter-
nally. The definition of a community is not always based on network topology,
and sometimes communities are defined based on a specific underlying problem.
For example, in social networks groups of friends can act as communities, or in
genetic networks a group of genes performing some well defined function can be

considered a community. In spite of this intuitive knowledge of what communities
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or clusters in graphs should be, a generally acceptable all-purpose definition is
still to be found.

An alternative view to the community detection problem is that a universal defi-
nition of a community cannot be found. This view is supported by the existence
of dozens of different community detection methods built on clearly different
and incompatible underlying assumptions. The lack of a unique formal defini-
tion of a community makes the problem of finding the best community detection
method ill-posed, and the problem becomes choosing which community detec-
tion method is best suited for the task at hand. When selecting a community

detection method, at least the following questions should be answered:

1. Should it be possible for a node to belong to more than one community?

2. Should it be possible for a node not to belong to any community, or to form

its own single-node community?

3. Should the method assign nodes to communities of roughly the same size,

or is a large variation of sizes expected in the data?

4. Should the method be hierarchical, or should it produce just a single division
of nodes to communities? That is, should the method be able to detect

communities nested inside larger communities?

5. In weighted networks, how are the weights taken into account when detect-

ing communities?

Despite the ambiguities in community detection, several properties are clearly
desirable for any method. For example, adding a new component to a network
should not affect the community structure of the existing components inferred by
any method. This implies that the community structure should be determined
using only the local topology of the network. Lack of such locality has proven to
be a common pitfall in community detection, as it is not always apparent from
the description of a method whether it produces such unwanted global effects
in the community structure. Community detection methods can be divided into
global methods, having a network-level fitness function whose maximum yields the
desired classification of nodes to communities, and local methods, which only take
the local topology of the network into account. Both types of methods have their
advantages and problems, which are discussed in more detail in the following

subsections.
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One local and one global community detection method were chosen for closer
inspection in this Thesis. The clique percolation method is a local, topological
community detection method, and the block diagonalization method is a global
clustering method for distance matrices. Only a small fraction of all available
community detection methods are discussed in this Thesis, and to get a broader
view of the field, the reader in encouraged to read the recent review article on
the matter [39].

3.3.2 Local methods: Percolation and k-clique percolation

Discarding a fraction of the edges of a network based on some criterion and
then interpreting the remaining components as communities is a straightforward
and commonly used method for community detection for example in social net-
works |40]. Such edge percolation methods can be divided into two categories:
in agglomerative methods, edges are added to an initially empty network, and in
divisive methods, edges are removed from the original network. In both cases,
the fraction of edges added or removed acts as a control parameter. A variety of
criteria exists for the order of edge removal or addition. For a weighted network,
the given edge weights can be used to order the edges. Also topological prop-
erties, such as edge betweenness, can be used to determine the order in which
the edges are removed or added to the network. Topological properties can be
calculated only for the original network, or dynamically after each addition or

removal.

The goal is to remove just the right fraction of edges giving rise to a network whose
disconnected components correspond to the community structure. If the fraction
of removed edges is too high, (almost) all nodes belong to a single connected
component (the giant component), whereas removing too many edges leads to a
severely fragmented and ultimately to an empty network. Such processes have
been extensively studied in percolation theory [41], and it has been noticed that
in many systems the transition from the situation where almost all nodes belong
to a single component to a situation where there are a large number of small
components is very rapid. In this context, the number of edges needed to be
removed to arrive at the point of transition between the two phases is called the
critical point of the system. If such a point exists for a percolation process, it
can serve as a good candidate for determining the proper fraction of edges to be

removed.
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The clique percolation method [42] can be considered a modification of the edge
percolation method. For the edge percolation method, two nodes are assigned
to the same community, if they are connected via any path along the edges.
However, for clique percolation, there has to be a path of cliques. Formally,
two k-cliques, i.e. cliques of k nodes, are defined to be adjacent if they share a
common k — 1-clique. The k-cliques are thus nodes of a new k-clique network,
where links represent these adjacency relations. Then two nodes in the original
network are in the same community if they participate in k-cliques which are in

the same component of the k-clique network.

The k-clique percolation method has some desirable properties: The number of
communities a node can belong to is not predetermined, but a node can belong
to any number of communities, or even to no community, depending on the
network topology. The method is based on local network topology only, and far-
away nodes or edges do not have an effect on the local community structure. A
community is explicitly defined, which makes the resulting community structure
easy to interpret. In addition, the method is deterministic, which ensures that

k-clique percolation algorithms always find the same communities in a network.

The less desirable properties of the clique percolation method include exponen-
tially scaling computational cost as function of the network size, in the worst case
when communities of all clique sizes k are sought for. Also, small perturbations in
the network can cause large changes in the community structure. For instance, if
there is a single k-clique between two large communities, removal of a single link
in that clique will cause the two communities to split. The scaling is not a prob-
lem in most cases as it is usually enough to use cliques of size three to five [43],
and extremely large highly connected subgraphs are not very common in net-
works. Scaling issues could be solved by choosing the right value for the clique
size k, but the choice of the k-clique threshold imposes more problems. First,
the clique size k must be integer-valued, which may lead to a situation where a
suitable value cannot be found. Second, Palla et al. |42]| suggested a heuristics
for finding a global value of the clique size k. However if the network is highly
heterogeneous, this might yield a compromise value only, whereas different values
of k could be more suitable for different parts of the network. Choosing a single
clique size k depending on the network also violates the property of communities

being local in the sense discussed earlier.
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Figure 3.1: Clique percolation in weighted networks is a compromise between
topological coherence and weighted structure of the communities. A schematic
view of this with respect to the optimal threshold is represented in a). The
topological coherence (vertical axis) is increased as the clique size increases. In-
creasing the threshold level (horizontal axis), i.e. the smallest accepted weight,
increases the relative importance of weights. The richest community structure for
each clique size can be found by using the optimal threshold, which is the critical
point of the clique percolation process. In b), the same shape of the optimal
threshold curve is observed in a data of east coast ramets of Posidonia oceanica
with linear Manhattan distance. The susceptibility in b) is defined as the mean
size of the components excluding the largest one, and it is expected to peak and
the giant component size to saturate near the optimal threshold.

3.3.3 K-clique percolation and the Posidonia oceanica data

When viewed as networks, the genetic distance matrices of samples of Posidonia
oceanica represent weighted, full networks. It is clear that these networks need
to be thresholded before the clique percolation method can be used. An alter-
native is to use the weighted version [44] of the method, but this approach is
computationally extremely demanding for full networks. As the network is very
likely to contain nested community structure, choosing a single threshold and
disregarding of the rest of the weights seems problematic. Also the heteroge-
neous locations of the sampling sites result in networks with domains of different
weight scales. That is, the nodes from western Mediterranean were sampled with
much higher resolution than those from the eastern parts of the sea, and thus the
weights between western nodes are of different scale than the weights between
eastern nodes. These aspects render the use of a single threshold for the clique
percolation method useless for our data set of Posidonia oceanica. To solve this

problem, a hierarchical version of the clique percolation method using threshold
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sweeps [43] was developed by the author and coworkers. In our method, the k-
clique communities are computed for each weight threshold level of the network
starting from the full network and removing edges one by one, starting from the
smallest weights. The clique size k is selected beforehand and kept constant in
this process. Before removing any edges, the whole network constitutes a single
large community. When edges are removed, communities begin to split, and the
splitting process can be interpreted as hierarchical community structure. Such
hierarchical structures are presented in this Thesis as rooted trees, where the
root is the community consisting of all the nodes in the network, and the leaves
are the smallest communities in the hierarchy. As illustrated in Figure 3.1, the
clique size k corresponds to the required structural integrity of communities. The
weight threshold corresponds to the smallest weight which has an effect on the
community structure. The combination of the clique size and the threshold thus
determines the relative importance between topology and weights in community

detection.

Although the algorithm suggested for clique percolation by Palla et al [42] could
be, in theory, used for the hierarchical the clique percolation method, it is not a
suitable algorithm for the task. Computation of the largest cliques of a graph,
which is required when using the algorithm for clique percolation suggested by
Palla et al. [42|, can be a problem in dense networks, as it is known to be a NP-
hard problem. In addition, community structure should be calculated separately
for each threshold level, if this algorithm was to be used for the hierarchical
clique percolation method. These complications were avoided here by developing
a complementary algorithm for clique percolation which is able to produce the
community structure at each threshold level in a single run. The trade-off is
that only a single clique size can be used at a time. However, the use of single
clique size instead of finding the largest ones lowers the theoretical scaling of the
computational time when small cliques are used. This new algorithm is discussed
in detail in Appendix B and in Ref. [43].

Results

As the hierarchical clique percolation method employed in this Thesis is based
on removing edges in order of weight, results are evidently sensitive to the dis-
tribution of edge weights. In particular, if the distribution is heavily discrete

instead of continuous, such that for each weight there is a large number of edges,
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the resolution of the method can be somewhat compromised. In such a case, it
is sensible to use the threshold weight as the control parameter instead of the
fraction of edges removed, such that the community structure is evaluated at
points where all edges below the threshold have been removed. Thus, there may
be drastic jumps in the community structure if there is a large number of edges

with the same weight, especially near the critical point.

The lack of resolution is a problem for the genetic similarity network of Posidonia
oceanica as the distances between samples are highly degenerate when the NSA
distance measure is used. The resulting tree thus consists of only a few levels
of division steps, which can be clearly seen for clique sizes k = 3 and k = 4 in
Figure 3.2. Using a larger clique size will not help considerably, although this
gives more weight to the topology of communities, as it will most likely only shift
the region of interest instead of widening it. In addition, finding large cliques
is computationally demanding for the genetic similarity network of P. oceanica.
Despite the low resolution of the clique percolation method apparent in Figure 3.2,
divisions made by the clique percolation method are reasonable when compared
to geospatial information on the sampling sites. Clique percolation might be a
suitable community detection method for genetic similarity networks for cases
where high-definition weights not giving rise to resolution problems would be

available, or if the resolution problem could be solved by modifying the method.

(b) 4-clique percolation

Figure 3.2: Splitting process of 3-clique and 4-clique communities when the weight
threshold is varied for the genetic similarity network of Posidonia oceanica. The
similarity of nodes is based on the NSA distance. The nodes are divided to
three geographical groups: west (yellow), center (blue) and east (red) and the
frequencies of the groups in each community are shown as a pie chart.

Using the LM distance instead of the NSA distance leads to genetic similarity

networks with more distinct weights, and thus increases the number of hierarchy
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levels in the hierarchical clique community tree. However, the LM measure might
be prone to large random errors in small-scale genetical distances, although it
can be used to predict large time scales very accurately. Thus, using the LM
distance matrix as a basis of clique percolation might result in more random
errors in the low levels of community hierarchy than using the NSA distance
with higher resolution that the number of different weights would allow. The
increased number of hierarchy levels is visible in the hierarchical community tree
of Figure 3.3, which uses a genetic similarity network based on the LM distance.
The rough division of the node locations to three classes correspond very well to
the results of 3-clique percolation based on the LM distance matrix, which was
expected as the LM distance is known to reflect the division better than the NSA
distance (see Figure 2.7). It is worth noticing that the shape of the hierarchical
community tree produced by clique percolation based on the LM distance matrix
is very unbalanced. This is due to the heterogeneous density of the sampling

locations in the Mediterranean sea.
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Figure 3.3: Splitting process of the 3-clique communities when the weight thresh-
old is varied for the genetic similarity network of Posidonia oceanica. The simi-
larity of the nodes is based on the LM distance. The nodes are divided to three
geographical locations: west (yellow), center (blue) and east (red) and the fre-
quencies of the groups in each community is shown as a pie chart.

3.3.4 Global methods: block diagonalization

Global community detection methods are based on optimizing a value of energy
or fitness function computed for each division of nodes to communities. This ap-

proach can, in the worst case, lead to unwanted behavior, such as the community
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structure correlating with global properties of the network, such as the number
of nodes. This has been recently proven [45,46] to be the case with popular
modularity-based methods [40]|, thus rendering these methods highly unreliable

or even completely useless.

After the shortcomings of modularity-based methods were proven, there have
been attempts to correct these faults. Some of these attempts have turned out
to be just cosmetic changes and have failed to correct the real underlying prob-
lem [46]. One of the remedies has been proposed by Sales-Pardo et al. [47]. They
try to correct the resolution limit problem of the modularity by not limiting their
method to one optimal community division. Instead, they try to find a hierar-
chical community structure based on the modularity measure. This is achieved
by calculating multiple greedy modularity optimizations and saving the results in
a weighted network, where each link weight correspond to the number of shared

communities between two nodes in each of the optimization outcomes.

This affinity matrix is then used for hierarchical clustering by using the block
diagonalization method. In this method, the indexing of the nodes in the matrix
is reordered in such a way that large-weight elements are as close to the diagonal
as possible. This is achieved by optimizing a global energy function assigned for
each node indexing:

N
1 Z o

ij=1

The optimization is done in Ref. [47] by simulated annealing, but other heuristic
methods could also be used. Simulated annealing is a general approach for global
optimization problems which tries to mimic the physical process of controlled
annealing for reducing the number of crystal defects. The simulated annealing
procedure is a greedy optimization method combined with random steps. The
ratio of random steps is controlled by the temperature parameter, which is grad-
ually decreased to achieve convergence of the energy to an optimal value. At each
step of the process, parameters of the energy function are randomly perturbed
and the resulting change in the energy is observed. If the energy is decreased,
the perturbation is kept. If the energy increases, the change is accepted with a
probability which is determined by the amount of change in the energy and the
temperature parameter. Increases in energy are more likely to be accepted at
high temperatures than at low temperatures. The whole process starts from very

high temperatures to avoid local minima, and the temperature is decreased as a
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function of perturbation steps. This process can be repeated multiple times using

different starting conditions and schemes for decreasing the temperature.

After the optimization of indices, possible communities should show in the re-
ordered matrix as blocks along the diagonal, as is the case in Figure 3.4. The
next step is detecting the blocks, which is done as follows: A similar simulated
annealing procedure is used to fit k£ blocks to the matrix, such that the variance of
weights is minimized inside each block and the surrounding area. This is equiva-
lent to minimizing the following residual sum of the squares F for each value of

k by moving the block boundaries:

E=Y" > (W(i.5) = (Wa))?+ D> (W(i,5) = (Wousiae))®,  (3.3)

m=14 jeblock(m) i,j¢block

where (IW,,,) is the mean weight inside the block m, and (W,ysiqe) is the mean of
all weights that are not inside any block. This procedure is repeated for a range
of values of k, k = 1..K.

Increasing the number of blocks k£ will not ever cause the residual sum of the
squares F to increase, because only the number of free parameters in the optimiza-
tion problem is increased. Finally, the Bayesian information criterion (BIC) [52]
is used for selecting a value of £ which corresponds to a good compromise between
the value of the residual sum E and the number of free parameters. The BIC is
defined as

BIClen(%)%—kln(N), (3.4)

where the parameter N is the number of elements on the diagonal of the weight
matrix W. The smaller the BIC value is, the better the compromise is, and thus

the optimal value of k corresponds to the lowest BIC value.

The hierarchical community structure can be built by repeating the block diag-
onalization procedure for submatrices corresponding to each community. This
means that if the optimal number of blocks k is larger than one, the block di-
agonalization procedure is used recursively k times. This recursion is further
continued, until all blocks have k& = 1 as their optimal value and splitting is
no longer necessary. The results of this recursive splitting process can be repre-
sented as a hierarchical community tree, where the root of the tree is the set of
all nodes in the network, and the rest of the nodes in the tree correspond to a

block found by the block diagonalization procedure. Notice that branch lengths
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are not defined for the hierarchy tree.

The block diagonalization method described by Sales-Pardo et al. in Ref. [47] uses
modularity for unweighted networks to calculate the affinity matrix. Although
modularity can be generalized for weighted networks [48], it might be more rea-
sonable to use the weight matrix itself as the affinity matrix if the network is
dense. For cases where the weight matrix is derived from a distance matrix it is
even more sensible to directly use the distances as affinities. Thus, the block diag-
onalization procedure was used to detect communities in the Posidonia oceanica
genetic similarity network, with the modification that the modularity optimiza-
tion part was left out, and instead the distance matrix was used as an affinity

matrix.

3.3.5 Block diagonalization and the Posidonia oceanica data

The block diagonalization procedure, as described above, was repeated for the
Posidonia oceanica data set using both NSA and LM distances. The LM dis-
tance was previously seen to contain more noise in the small distances, which
radically reflected to the hierarchical community structure detected by the block
diagonalization method. The 834 nodes of the network were divided into 61 com-
munities, when the LM distance was used, and only to 24 communities when
using the NSA distance. This might suggest that the block diagonalization is
fitting the communities to noise caused by the shortcomings of the LM distance

measure.

The resulting hierarchical community tree produced by the hierarchical block
diagonalization method is shown in Figure 3.7 for the NSA distance and in Figure
3.6 for the LM distance. The nodes of the tree are displayed as pie charts,
which represent the west-central-east division of nodes in the corresponding block.
The size of nodes indicates block size. The first splits in both community trees
correspond well to the large-scale geography, although the first splits might be
more accurate in this sense when using the LM distance, which predicts the
large-scale divisions better. The more densely sampled west is separated from
the east in the beginning of the splitting process, and the two parts are thereafter
independent of each other. Thus, it is clear that the heterogeneous sampling
does not cause problems for the block diagonalization, as it did for the k-clique

percolation method.
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The fact that the block diagonalization of the LM distance matrix produced 61
communities, and the same procedure produced only 24 communities when the
NSA distance was used, raises questions about the reliability of the communities
at the lower levels of hierarchy. The block diagonalization method seems to be
finding communities in noise, although the Bayesian information criterion which
is used for determining the number of communities should be able to prevent
such overfitting. To test the reliability of the hierarchical community structure
predicted by the block diagonalization for the LM distance matrix, the data was
randomized and the block diagonalization procedure applied to it. Block di-
agonalization was tested by randomizing the genetic data of ramets in western
Mediterranean in two ways: The first way was to randomize the genomes in a way
that the pairwise correlations of the alleles in each locus were preserved. This
was done by collecting all pairs of alleles into seven vectors, each corresponding
to one locus. The elements in each vector were then randomly permutated. The
second way was to discard also pairwise correlations and only keep the distribu-
tions of alleles in each locus. After this procedure, the data would correspond to a
randomly mating population. The NSA distance measure was used to calculated
the distance matrices, which are shown in Figure 3.5 for the first randomization
scheme. In both of the cases the block diagonalization found a hierarchical com-
munity tree with multiple hierarchy levels. This suggests that either the Bayesian
information criterion is too loose a condition for choosing the number of splits,
or the energy function used for evaluating each division of nodes to blocks is not
suitable for this problem. Either way, more research is needed to verify that the
lower levels of the hierarchical community trees inferred by block diagonalization

are not just artefacts of the method.

3.3.6 Hierarchical community detection vs. phylogenetic

trees

A phylogenetic tree is a representation of the evolutionary relationships between
samples having a common ancestor. The sampled organisms are represented by
leaves of the tree and inner nodes of the tree represent the most recent common

ancestors of their descendant nodes in the tree.

Algorithms used for building phylogenetic trees can be divided into character-
based methods and distance-based methods. The first class uses genomes of two

nodes to construct the genome of their last common ancestor, which is the parent
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Figure 3.4: The NSA distance matrix of 834 samples. Colors indicate the distance:
smallest distances are denoted by red and largest distances by blue. Panel a)
shows the distance matrix before reindexing. The visible structure is due to the
fact that the indexing is not random, but it follows the sampling locations. The
panel b) shows the distance matrix, which is reindexed to maximize Equation 3.2
by moving the small-distance elements close to diagonal.
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Figure 3.5: The randomized (preserving the pairwise allele correlations) NSA
distance matrix of the 586 samples from western Mediterranean. Colors indicate
the distance: smallest distances are denoted by red and largest distances by blue.
In panel a), the indices are random and in panel b), the matrix is reindexed to
maximize Equation 3.2 by moving the small distances close to diagonal.

node of those two nodes in the phylogenetic tree. Distance based methods, on the
other hand, use genomes only to calculate the distances between all leaves of the
tree. After that, the distances from ancestral nodes to other nodes are inferred
from the original distance matrix of the samples, and the genomes of ancestral
nodes are not explicitly constructed. The character-based framework often leads
to better phylogeny trees, but also to complex combinatorial problems. Distance-
based methods are mostly more simple clustering algorithms, whose results are

used as starting points of heuristic algorithms for character-based methods.

Phylogenetic distance-based methods are similar to community detection meth-
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Figure 3.6: Hierarchical community tree produced by block diagonalization us-
ing the LM distance matrix. The size of each node is relative to the size of the
corresponding community, and the coloring of the pie charts corresponds to ge-
ographical division of the nodes to west (yellow), center (blue) and east (red).
Only three first branching events are shown (the maximum is 9).
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Figure 3.7: Hierarchical community tree produced by block diagonalization us-
ing the NSA distance matrix. The size of each node is relative to the size of
the corresponding community, and the coloring of the pie charts corresponds to
geographical division of the nodes to west (yellow), center (blue) and east (red).

ods for dense weighted networks in the way that both try to find hierarchical

structure in distance matrices. In addition, distance-based phylogenetic methods
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are basically centroid-clustering methods, and in that sense resemble general clus-
tering methods used for weighted networks. However, due to the different starting
points of phylogeny tree and community detection methods, there are some dif-
ferences: Phylogenetic tree construction methods mostly try to fit a biologically
motivated evolution model to the distance matrix, whereas network clustering
methods are more generic, and typically do not explicitly assume that the data is
based on any model. In addition, phylogeny clustering methods assume that the
clustered matrix is a distance matrix, but network clustering methods can use
any sparse matrix as a starting point. Lastly, the nodes in the phylogeny trees
are splitted until no further divisions are possible, which is not the case for most

of the hierarchical community detection methods.

As an example of a distance-based phylogeny tree building method, a simple, but
fairly popular method, UPGMA 28|, is used for comparing the results of network-
based hierarchical community detection methods to a phylogenetic tree. The aim
of this comparison is to see if the community detection methods really detect
more accurate or meaningful structures. This should be the case, as the objectives
behind community detection methods are different of those of phylogeny methods.
Note that the choice of the phylogeny tree method is motivated by the simplicity
of the UPGMA algorithm, and other popular algorithms such as neighbor-joining

[49] could have been used as well.

UPGMA

UPGMA (Unweighted Pair Group Method with Arithmetic mean) is a hierar-
chical agglomerative clustering method commonly used for building phylogenetic
trees using distance-based genetic data. It starts by creating a cluster C; for each

sample ¢, which are the leaves of the phylogeny tree:
C; = {i}. (3.5)

The algorithm continues by combining two clusters having the smallest distance
between them. This is repeated until there is only one cluster left. The distance

between clusters is defined as the mean distance between their constituent nodes:
1
d(C,05) = ———— d(z,7), 3.6

i€Cq,jeCo
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where d(i, j) is the genetic distance between nodes i and j.

Edge lengths in the phylogenetic tree produced by UPGMA are calculated by
assuming that the species have developed with the same speed after each division,
which is know also as the molecular clock assumption. This leads to defining the
edge lengths in such a way that the sum of edge lengths along the path from a
leaf to any inner node does not depend on the leaf. This means that every inner
node has a height in the tree which equals half of the distance between the two
children of that node. The height also corresponds to the evolutionary age of the
nodes. The leaves, which have been observed in current time, have a height of

zero, and the root is the oldest node.
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Figure 3.8: The phylogeny tree produced by UPGMA and the NSA distance ma-
trix. The size of each node is relative to the size of the corresponding community,
and the coloring of the pie charts corresponds to geographical division of the
nodes to west (yellow), center (blue) and east (red).

Figure 3.8 shows the resulting phylogenetic tree when the UPGMA is applied to
the NSA distance matrix. Nodes of the tree have been colored with respect to
the large-scale geographical divisions. The west-east cleavage is clearly visible in
the UPGMA tree, and the eastern and central nodes are perfectly divided into
their own clusters. The phylogenetic tree resembles more the k-clique percolation
trees of Figures 3.2 and 3.3 than the block diagonalization tree of Figure 3.7, as
the shape of the UPGMA tree is unbalanced. This shape is caused by the large
western cluster breaking apart by splitting into one small and one large cluster at
each hierarchy level. Hence this method does not provide any meaningful infor-

mation on the cluster structure within the western nodes, although it accurately
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detects the east-west cleavage.

3.4 Comparing community detection methods

The problem of comparing community detection methods is twofold: comparing
the performance of community detection methods and comparing the similarity
of community structures. As discussed earlier, detecting communities is not a
straightforward problem mainly because no universal definition of a community
exists. The same problem is encountered in a slightly different form when com-
munity detection methods are compared. Comparing the performance of two
community detection methods is just a variation of the community detection
problem, and comparing the similarity of two community structures is only pos-
sible if the underlying definitions of a community are compatible. Otherwise, the

whole question of similarity of two community structures can be ill-posed.

Comparing the performance of two community detection heuristics is straight-
forward if the heuristics share the same definition of a community. However,
it is impossible to compare the performance of two community detection algo-
rithms without defining communities a priori, because solving the problem of
performance comparison would lead to a solution of the problem of community
detection. A comparison method which is able to select the better one of any
two community structures with respect to performance will immediately induce
a definition of a community, because the method can be used to select the best
community structure given any network. As the number of possible community
structures in any finite network is also finite, the best community structure with
respect to the comparison method always exists. An alternative approach to
comparing the performance of community detection methods is to use networks
for which community structures are defined beforehand. This way, the similarity
of the community structure produced by any community detection method and
the predefined community structure can be used as a benchmark of performance
of the method.

Comparing similarity and finding differences in community structures are non-
trivial tasks, and the difficulties encountered in those tasks can be traced back
to the list of ambiguities in defining communities. Take the clique percolation

method and the block diagonalization method as an example. The block diago-
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nalization method always assigns each node to a single community, whereas the
clique percolation method allows overlapping communities. Thus, it is impossible
for a community structure detected by the block diagonalization method to be
exactly similar to one containing overlapping communities detected by the clique
percolation method, and the whole concept of similarity between the structures

detected by these two methods becomes ambiguous.

The community detection methods used in this Thesis all produce trees repre-
senting hierarchical community structures. A simple comparison scheme for two
hierarchical community structures is to compare single levels of hierarchy at a
time. However, two otherwise very similar hierarchical community structures can
appear to be very different to this naive comparison method, if the two levels
chosen for comparison correspond to different structural scales in the network. In
addition, trying out all the possible ways of choosing a level in a hierarchy tree
might not be computationally feasible. A better approach would be to incorporate

the whole hierarchical community structure to the comparison.

Despite the problems in comparing community detection methods, some compar-
isons are made in this Thesis for the community structures produced with the
methods introduced in the previous Section. We begin by comparing single levels
of hierarchical community structures using visual comparison methods. This al-
lows us to roughly compare the the otherwise incompatible methods such as the
clique percolation and block diagonalization. After that, the performance of the
block diagonalization method is evaluated by comparing similarity of the com-
munity structure detected by it to the large-scale geographical division of nodes
using the mutual information framework. Finally, a phylogenetic tree produced
by the UPGMA is compared to the community structure produced by the block

diagonalization method.

3.4.1 Visualization using MST

A straightforward way to visualize community structure is to visualize the network
such that the color of each node corresponds to its community. Using this ap-
proach, Hernandez-Garcia et al. [29] visualized the genetic similarity network of
Posidonia oceanica using the 37 different geographical locations as communities.
They used the maximum spanning tree for calculating the layout for the nodes.

In the resulting plots, nodes from same locations formed groups, illustrating that
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smallest distances are mostly found inside the sampling locations and only rarely

between two nodes from separate locations.

Plotting multiple community structures side by side using the same layout of
nodes for all plots can be used to visually compare the similarity of the struc-
tures, and to identify where the communities differ. In this Thesis, MST-based
visualization is used to compare communities formed by different community de-
tection methods. Although this visual comparison is mostly free of assumptions
made by the community detection method, and thus avoids some of the problems

related to comparing communities, other problems still remain.

The first problem is the limited color scale. Only a few communities can be pre-
sented in a way still visible to the eye, which limits the choice of hierarchy level in
the community structure. This leads to a bigger problem, where choosing single
hierarchy levels from two hierarchical divisions might produce two similar divi-
sions or two very different divisions depending on how the choice is made. This
problem is also encountered later when using mutual information to compare
community structures, and it is discussed in detail in that context. The number
of different colors, and thus the maximum number of different communities visible
at the same time, was set to six. The MST of Figure 3.9 displays a division of
nodes based on geography and communities detected with the block diagonaliza-
tion method, the k-clique percolation method, and the edge percolation method.
The large-scale geographical correlations are clearly visible in the figure, as the
western, central and eastern nodes form distinct groups. The western and eastern
parts are well separated, but the central nodes seem to be somewhat mixed with
the western nodes. The fact that some of the central nodes are far away from each
other on the MST does not necessarily mean that they are far away from each
other genetically, but could just be an indication that the central nodes are very
close to the western nodes and the MST is somewhat random for that area. The
west-east cleavage is visible for all of the three community detection methods,
although the percolation methods have already splitted the east to two parts at

the chosen level of hierarchy.

MST is a useful visualization tool for networks having a clear structure, like
the west-east cleavage observed in genetic population structure of P. oceanica.
In such clear cases, MST visualization can give an overview of the community
divisions. However, if the MST is unstable or not unique, visualizations might

become hard to interpret or even misleading. More quantitative methods for
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Figure 3.9: Visualizations of maximal spanning trees of the NSA distance network
of Posidonia oceanica, where nodes have been colored according to various divi-
sions: a) block diagonalization, b) k-clique percolation, ¢) edge percolation and
d) geographical communities. For the percolation methods, only nodes belonging
to the six largest communities are colored, whereas white nodes belong to smaller
Or no communities.

comparing similarity of community structures are clearly needed.

3.4.2 Normalized mutual information

Mutual information is an information-theoretic tool [50] which can be used for
comparing similarity of two divisions of nodes into communities [51|. In order
to use the mutual information framework, community divisions must first be
transformed to random variables having discrete probability distributions. A

division of nodes to communities can be transformed to a probability distribution
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of hitting each community when a node is chosen with uniform probability. For
two divisions, the underlying set of nodes is assumed to be the same, and the
mutual information answers the following question: if a node is chosen at random
and the community of that node in one division is known, how much information,
or entropy, does that knowledge carry about the community of the same node in

the other division of nodes to communities?

Mutual information can be formalized for a graph G(V, E) and two of its parti-

tions A and B by defining the confusion matrix N such that
Ni; = Holv e VA AVEY, (3.7)

where VA is the community 4 in partition A and VjB is the community 7 in par-
tition B. Let us denote by A a random variable depicting choosing a community
from partition A, if a node is uniformly randomly chosen from V. With these

notations, the probability mass function of A becomes

> Ny

pa(i) = : (3.8)
V]
The respective joint probability mass function is
V|IN;;

) = (SN, )

The joint probability mass function is used in the definition of the mutual infor-

mation of the two community structures A and B:

[(A;B) = ZZ%. (3.10)

i€A jEB

The problem with using mutual information is that two mutual information values
are not necessarily comparable, as they are not normalized, and the result depends
heavily on the entropies of the two divisions. The normalized mutual information
can be defined as 1(A:B)
I,(A;B) = ’ , 3.11
( ) 0.5(H(A)+ H(B)) ( )

where H(A) and H(B) denote entropies of partitions A and B.

The mutual information of two random variables tells how much one random

variable’s entropy is reduced if the other random variable is known. Mutual
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information is thus relative to the entropies of the two random variables. Nor-
malized mutual information tells how much this change in the amount of entropy
is relative to the mean of the entropies of the two random variables. This ensures
that the normalized mutual information is always between 0 and 1, and makes it
easier to compare cases where the underlying entropies differ. Comparing unnor-
malized values of mutual information would only show the overall difference in
entropies. This would be the case, e.q., for different community hierarchy levels
where the entropies at the lower levels would always be bigger than at the upper
levels, and the partitions of the upper levels would have smaller values of mutual

information than those of the lower levels.

3.4.3 Comparing community detection methods and geog-
raphy with NMI

Communities detected with various methods were seen to correlate with the ge-
ographical divisions of nodes to west, center and east when visualized using the
MST of Figure 3.9. The division of nodes to locations was also seen to corre-
late with the genetic LM distance [29]. Although these correlations were clearly
visible in MST visualizations, it was also clear that the correspondence was not
perfect. The NMI framework is now used to quantify these correlations in both

cases.

Calculating the mutual information between results of a hierarchical community
detection method and the large-scale geographical division is not straightforward
for two reasons. First of all, the mutual information approach requires division
of the nodes into groups, which can be done for hierarchical community structure
tree by looking at one level of the hierarchy at the time. This is done for the
block diagonalization of the NSA distance matrix by defining hierarchy levels
with respect to the number of splitting events. For example, at the third level
of hierarchy, all communities are three links away from the root node. This is of
course not a unique nor necessarily the best way to define the hierarchy levels.
One could, for example, define a distance between the nodes in the tree. The
distances could be related to the block diagonalization process, or use some extra
biological information. Trying out all the ways of dividing the tree into hierarchy
levels would lead to a very large number of different combinations of communities,
and would not be a feasible solution. The second problem is a variation of the

first: geography can also be hierarchically divided to different regions, subregions
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and so on, and the number of such combinations is even larger for geographical
data than it is for a hierarchical tree. Multiple hierarchy levels are not used here
for the geographical locations. Instead, only two divisions are used: the first is
the most accurate geographical division feasible, that is, the division of nodes
according to individual sampling locations. The second is the crude division of

nodes to the three areas discussed earlier: west, center and east.

The normalized mutual information for each hierarchy level of community structure
detected with the block diagonalization method is shown in Figure 3.10. The
normalized mutual information of node locations and hierarchy levels is seen to
increase as function of hierarchy level in panel a). This means that the last divi-
sions made by the block diagonalization method are not completely random with
respect to the locations. However, the block diagonalization method was seen to
find communities in randomized data, which might suggest that the last levels of

the tree might be noisy also for the real data.
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Figure 3.10: Normalized mutual information of communities produced with the
block diagonalization method using the NSA distance matrix and a) the locations
of the specimen and b) division of the nodes to west, center and east. The
hierarchy level in the community structure is on the horizontal axis and the NMI
on the vertical axis. The NMI between the two geographic division (west-center-
east, sampling locations) is approximately 0.37.

The NMI of the large-scale geographical division and the hierarchical community
structure, on the other hand, is at its maximum after the first split to blocks,
and is seen to slowly decrease thereafter, almost saturating at the last levels of
hierarchy. This behavior can be explained with the help of Figure 3.7 illustrating
the branching process. The first split separates west from center and east, and
the center and east separate only at the next level. As the west is more densely

sampled, it has more weight on the value of NMI, and thus the second branching

51



event separating the east and the center is not enough to raise the overall value of
NMI, as it also further divides the western component. It is worth noticing that,
as discussed earlier, the number of branching events might not be the optimal
way of defining different hierarchy levels. This is highlighted by the fact that
if a community division is chosen from the hierarchy tree in such a way that
communities with mainly western nodes are chosen from the first level and the
rest from the second level, as illustrated in Figure 3.11, the overall NMI improves

from the original first level value of 0.468 to a value of 0.527.

96

382

Figure 3.11: The first two levels of the community hierarchy tree produced by
detection using the block diagonalization method using the NSA distance mea-
sure. The green shading represents an alternative way of choosing a division of
nodes to communities from the tree. This particular choice reflects better the
division of nodes to the three geographical groups: west, center and east. The
NMI of this division and the large-scale geographical division is 0.527, whereas if
the original levels of the tree would be used, the corresponding values would be
0.468 for the first and 0.446 for the second level.

3.4.4 Comparison to UPGMA

A phylogeny tree constructed with the UPGMA was compared to the division of
the nodes to communities at the final level of block diagonalization using NMI.
A height was defined for each node in the phylogenetic tree computed with the
UPGMA as a number relative to the age of the nodes. The leaves are the youngest
and have height (age) of zero, and the root of the tree is the oldest node thus
having the largest height (age). In the hierarchical clustering framework, the
height can be interpreted as the hierarchy level of the tree. Figure 3.12 shows
the NMI of the block diagonalization community structure and the community

structure extracted from the last level of the phylogeny tree as a function of
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minimum accepted height. This means that nodes below the minimum accepted
height are discarded and the leaves of the tree are considered as the community

division at the respective threshold level.

The NMI for the block diagonalization communities and the UPGMA tree is seen
to slightly increase when the threshold is increased from its minimum value. Its
maximal value of 0.61 is attained at a threshold of approximately 0.25. Thereafter
the NMI values begin to decrease. This means that the block diagonalization
communities and the UPGMA tree explain approximately 61 percent of each
other’s entropies at the maximum. The UPGMA tree corresponds better to the
communities produced with block diagonalization than any geographical divisions

tested here, but the correspondence is still far from perfect.

There are two possible reasons for the imperfect correspondence between the
communities produced with block diagonalization and the UPGMA tree. The
first reason is that the topology of the tree produced by the block diagonaliza-
tion method corresponds well to the one produced with the UPGMA, but the
thresholding scheme for the UPGMA tree fails to produce suitable community
divisions. This explanation is supported by the fact that the value of NMI in
Figure 3.12 remains practically unchanged for UPGMA threshold values ranging
from 0 to 0.3, which might suggest that the best level of communities could be
found as a combination of different thresholds in that range for different branches
of the UPGMA tree. The second possible reason is that the biologically motivated
assumptions behind the UPGMA and the more general assumptions about the
communities behind the block diagonalization method lead to genuinely different

community structures.

3.4.5 Summary

As community detection methods can in general be divided into two categories,
local and global, methods from both categories were chosen to study clusters in
the genetic structure of Posidonia oceanica. The clique percolation method was
chosen as representative of local methods and the block diagonalization method
was chosen as the global method. Although both methods have earlier been used
for unweighted networks, they had to be modified to allow community detection in
dense, weighted networks, and a completely different approach to the algorithmic

implementation of the clique percolation method had to be developed.
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Figure 3.12: Comparing the last level of communities inferred with the block
diagonalization method using the NSA distance to the last level of UPGMA tree
with different height thresholds. Thresholding is done in such a way that nodes
which are at distance larger than the threshold level from the root are not splitted
any further.

Results obtained using the clique percolation method seemed to be discouraging
as the resolution of the edge weights seemed to be too low, whereas the block di-
agonalization method produced sensible hierarchical community structure. How-
ever, both of the methods performed well when compared to the overall west-
central-east geography. A visualization approach using maximum spanning trees
and a more quantitative approach using the normalized mutual information were
used to compare the different community detection methods, a phylogeny tree
method and underlying geography. The comparison methods seemed to suffer
from the fact that a single community division needed to be used instead of com-
paring whole hierarchical trees. Despite of this, NMI was successful in quantifying
how much communities detected with the block diagonalization method correlate
with the geography, and showing that the UPGMA phylogeny tree performs bet-

ter in explaining these communities than the geographical divisions.

Based on these results one can argue that the overall geography is clearly re-
flected in the genetic structure of the sampled P. oceanica populations, as the

west-central-east division was detect by all methods. However, when comparing
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community divisions by any used method to the higher resolution geography (the
37 sampling locations), the NMI values indicate that there is no clear one-to-
one mapping: the detected clusters correlate with geography, but do not localize

within well-defined small geographic areas.
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Chapter 4

Conclusions and future research

In this Thesis, the possibility to use the network framework and network-based
methods to unveil the genetic population structure of Posidonia oceanica has been
critically assessed using several techniques, such as the minimum spanning tree,
k-clique percolation, block diagonalization and normalized mutual information.
The choice of the proper genetic distance measure was seen to be ambiguous and
acknowledged to play an important role, as it serves as a link between biological
data and the network abstraction. In this Section, the main results and conclu-
sions of this Thesis are collected together, and suggestions for solving some of the

encountered problems are given.

Two genetic distance measures with different background assumptions were tested
and their effects on the following network analysis discussed. The non-shared al-
leles distance (NSA) assumes that variation between two individuals is due to
recombination of predefined alleles, and the linear Manhattan distance (LM)
assumes that variations are due to mutations in the lengths of the microsatel-
lite repetitions. The NSA measure is closer to the population dynamics view
and works well on local, population-level scales. The LM distance tends to be
more accurate for longer-timescale changes, and is closer to the phylogenetic tree
perspective as no recombinations are assumed to happen. This effect can also
be seen in the ROC curve comparing the two distances to geographical divisions
at different scales in Figure 2.7. The NSA distance was chosen to be the main
distance used in this Thesis, but it might be worth the effort to pursue a more
efficient distance measure working at multiple hierarchy levels. The distance mea-

sure could for example be a combination of NSA and LM type distances giving
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more weight to the NSA part at small distances and more weight to the LM part

at large distances.

The k-clique percolation method with thresholding was seen to fail to deliver good
results, mainly due to the lack of resolution in edge weights. However, correlations
with large-scale geography were clearly present in the resulting communities. A
new algorithm was developed for the the k-clique percolation method in order
to detect hierarchical communities in dense weighted networks. Simultaneously,
this algorithm was proven to be very fast for sparse networks and low values of k.
Nevertheless, results of community detection with the new algorithm suffer from
the biased sampling scheme of the data, as all the edges inside the western parts
of the Mediterranean have far higher weights than almost any edges between the
large-scale geographical areas. The k-clique percolation method thus seems to be
almost useless for such cases, and there are no trivial solutions to this problem.
Increasing the clique size k would not improve the resolution problems, and would
severely harm algorithmic performance. One way to increase the resolution would
be to accept the randomness caused by evaluating the community structure when
an arbitrary number of edges is added. The resulting tree could be then sampled
multiple times with the same number of added edges, but with different permu-
tations of edges with the same weights. Consensus tree methods [54] could then

be applied to the set of found trees.

The block diagonalization method, modified from the one introduced by Sales-
Pardo et al. [47] for detecting communities, seemed to work better than the
k-clique percolation method for genetic similarity networks of Posidonia oceanica.
Heterogeneous sampling did not cause trouble for the block diagonalization method,
and the resulting hierarchical tree was more balanced than the ones produced by
the k-clique percolation method and the UPGMA. The genetic structure pre-
dicted by the block diagonalization method seemed to correlate with geography
on both large and small scales (see Figures 3.7 and 3.10). Despite this success, the
block diagonalization method has some problems: The method does not produce
any branch lengths for the hierarchy tree, which severely limits the use of the
hierarchy, or can even cause misleading results if the absence of branch lengths
is solved by assigning a same length to each branch. Another problem with the
method is that it produced hierarchical structure even for randomized null mod-
els, which might indicate that the lowest communities in hierarchy trees might
not be robust or reliable. This overfitting might be solved by using a better model

for selecting the blocks after the reindexing procedure, as it seems clear to hu-
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man eye that there are no distinct blocks in panel b) of Figure 3.5. Furthermore,
the method is computationally expensive, as methods such as simulated anneal-
ing needs to be used for both reindexing the distance matrix and for detecting
blocks in the matrix. More work on these problems is clearly needed before the
block diagonalization method can be reliably used for community detection in

this context.

Mutual information can be used as a tool for comparing similarity of two division
of same set of elements, and has a solid basis in information theory. Normalized
mutual information (NMI) has been earlier used to compare community structures
found by different community detection methods [51]. The NMI was used in this
Thesis to compare similarity of community structures, but hierarchical structures
caused problems, as a single hierarchy level or division of nodes to communities
needs to be chosen in order to use the NMI framework. This is problematic
specially for the block diagonalization trees, where there are no branch lengths,
and the choice of a proper hierarchy level is ambiguous. Topological measures for
the similarity of trees are used in phylogeny and could possibly be also used in
the community detection context with some alterations. Similar problems were
encountered when communities were compared to geographical divisions. A ROC
curve of geographical distances and communities might be more illustrating than

calculating NMI for the two geographical divisions used here.

Although the network perspective for studying complex phenomena related to bi-
ological systems at the borderlines between population biology and phylogenetics
seems promising, some caution is needed. Network studies are not completely free
of biological assumptions that seem to restrict the usage of traditional methods.
Network-based methods have both explicitly defined assumptions, such as the
choice of genetic distance measure, and implicit assumptions, such as the ones
made by community detection algorithms. The network perspective seems to be
best suited for exploring new data, but results can be somewhat unreliable or
even misleading if generic network methods are used without caution. It would
be advisable to use multiple network methods or some traditional methods to

verify any results produced with network-based methods.
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Appendix A

Networks: definitions and basic

measures

The terms “network” and “graph” can be used interchangeably, although it is
typical to speak of complex networks instead of complex graphs when referring
to networks/graphs with non-trivial structure. In this Thesis “network” refers to
an undirected graph that doesn’t have multiple or self edges. Mathematically
such a graph G(V, E) consists of a finite set of vertices V' and a set of edges
E c VaV \ {(v,v)lv € V}. When an index is given for each vertex in V,
the graph G(V, E) can be presented as an adjacency matrix A, with A;; = 1 if
(vi,vj) € E, and A;; = 0 otherwise.

In many cases it is useful to assign some weight to each edge of the network.
This defines a weighted graph or weighted network G(V, E,w), where w is some
function from the set of edges E to positive real numbers: w : E — R . This can
also be represented as a weight matrix where the absence of an edge is interpreted

as a zero weight: W;; = w((v;,v;)) if (v;,v;) € E and W;; = 0 otherwise.

The degree k for each node ¢ is defined as the number of neighbors it has:

=Y A, (A1)

29



In a weighted network an analogous measure, the strength, is defined as

j=1

Another useful single-node characteristic is the clustering coefficient |56|. It is
a measure originating from social sciences where it measures the probability of
one’s friends also being friends. Such a transitivity measure is also generally
useful and can be defined in a graph for node i as the number of triangles where
the node participates divided by the maximum possible number of such triangles
given the node’s degree:

ti ik A Ak A

ki(ki—1)  ki(ki—1) (A-3)

Ci = 7
2
If the clustering coefficient is defined this way, its value will depend heavily on the
degrees of the neighboring nodes. To remove the effects of degree correlations,
the clustering coefficient for node ¢ can be defined as the number of triangles it
forms divided by the maximum number of triangles it can form given its and its

neighbors degrees [57].

The clustering coefficient can also be defined for weighted networks so that the
weights affect its value [58-64|. This approach doesn’t seem to be very fruitful as

the value of the coefficient becomes very degenerate and hard to interpret |65].

Two nodes i and j have a path between them if there is a sequence of nodes
Dij = {Vk k=1, for which vy = v;, v, = v; and Ay p11 = L forevery k =1, .., n—1.
The length of a path is then n — 1 and there is a (possibly non-unique) shortest
path p;; between every pair of nodes. Two nodes are said to be in the same
component if there is a path between them. The diameter D(G) of the network
is defined as the maximum of the shortest path lengths between any two nodes
in the network:

D(G) = maz({|p;| — 11i,j € V}). (A.4)

A network G is said to be a small-world network [56], if the average path length
(p) is small compared to the network size, but the average clustering coefficient

(c) is large.
The betweenness centrality of node 7 is the number of shortest paths going through
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the node. If a shortest path is not unique, its contribution to betweenness cen-

trality is divided by the number of shortest paths between the same nodes:

po Y B} 0ol €Y )

2= o]

A clique of size k, is denoted here as CY, is a set of nodes in which every pair of
nodes has an edge between them. C} is a sub-clique of Cy, if it is a clique and
Cy C Cy. Mazimal clique is a clique in graph G which is only a sub-clique of
itself.

A subgraph G(V') = G'(V', E’) of a graph G(V, E) given a set of vertices V"' is
a graph, for which V' C V and E' = {(v1,v2)|(v1,v2) € EAwvj,vy € V'}. An
intensity [59] can be defined for a weighted subgraph G'(V', E', w):

GV, E' \w)) = [] wie) ™. (A.6)

eck’

A tree is a graph with no cycles. This means that there is an unique path between

every node of the tree.

A spanning tree of a graph G is a tree that has the same set of nodes as the graph
G. If the graph is not a tree, the spanning tree is not unique for that graph, and

the set of spanning trees is called the spanning tree forest for the graph G.

A minimum/mazimum spanning tree (MST) for a weighted graph G is the tree
in the spanning tree forest of G, for which the sum of edge weights is mini-
mal/maximal. Note that the MST might not be unique if there are multiple

edges with similar weights in G.
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Appendix B

A sequential thresholding algorithm

for k-clique percolation

The algorithm given by Palla et al. in the paper introducing the clique percola-
tion method [42] relies on finding maximal cliques in given networks, enumerating
them and then constructing an overlap matrix with each element giving the num-
ber of shared nodes with two cliques. The matrix can be interpreted as a weight
matrix, where the nodes are the maximal cliques in the network, and there is a
link between two nodes if the corresponding cliques share a sub-clique. Removing
the weights, which correspond to the subclique sizes, of size smaller than desired
clique size k — 1 yields a network whose components correspond to k-clique com-
munities. Thus communities for all clique sizes can be found by adding the edges
to the maximal clique network sequentially starting with the largest, and then

observing merging of the components.

The maximal clique algorithm would correspond to a sweep in the vertical or
topological direction in Figure 3.1, and as such has some critical limitations when
used for dense weighted networks: First, it has to find the maximal cliques, which
is an NP-complete problem and thus all known algorithms scale exponentially.
Second, it has to be run again from the beginning for each weight threshold level,
which can be a problem when the number of such levels is large. A solution to
these problems would be to find an algorithm that would sweep the same space
horizontally or in the weight threshold direction, as finding all cliques of given
size is a polynomial problem and in most cases only a few smallest clique sizes

are used [43]. This would mean that the algorithm would be required to run only
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once for each desired clique size and the polynomial scaling exponents would not
be very large. Such an algorithm was developed by the author and coworkers
with the Posidonia oceanica data set in mind, and was used for all the k-clique

percolation studies in this Thesis. The algorithm is described below.

B.1 Description of the algorithm

The common algorithmic solution for edge percolation analysis is to start from
an empty network, reconstruct the original network by adding the edges one by
one, and update the component structure after each addition. This way, the only
updating needed to be done is the joining of two components corresponding to
the nodes at the each end of the edge, which can be done by using disjoint-set
forests [66]. When the nodes in the components are listed, that is the components
are evaluated, we need to know the component where each node belongs to. For
both of these operations the amortized time is related to the inverse Ackermann
function [66, 67|, which is in practice a constant factor. This makes the whole
algorithm almost linear with respect to the number of added edges. Also the
memory consumption is very low as the algorithm only keeps the disjoint-set tree
in the memory, and there is no need to keep the entire network in memory. Thus,

memory use scales linearly with respect to the number of nodes in the network.

In terms of cliques, edge percolation is equivalent to 2-clique percolation, where
2-communities correspond to components in the graph. Thus edge percolation
algorithms are a good starting point for a threshold-wise k-clique percolation
algorithm, as it should reduce to one of the fast edge percolation algorithms
when k = 2.

B.1.1 K-clique percolation as edge percolation

The new sequential thresholding algorithm for k-clique percolation is based on
edge percolation algorithms. This generalization requires a few observations to
be made. First of all, a k-clique community can be interpreted as a component
in a bipartite graph between k-cliques and k£ — 1-cliques, where there is an undi-
rected edge from each k-clique to each of its subcliques of size £k — 1. In this

network, two adjacent k-cliques have a link to the same k — 1-clique and thus a
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path between them. Now, as k-clique communities are defined as maximal sets
of k-cliques adjacent via k — 1-cliques, they correspond to components of this
bipartite graph. As the components of any bipartite network correspond to the
components of any unipartite projection of that network, we can study k-clique
percolation by tracking down components in the & — 1-clique network, which is
the unipartite projection of the bipartite network. Hence, one can, analogously
to edge percolation, build the k& — 1-clique network sequentially and monitor its

component structure in the process.

As k-cliques corresponds to k edges and k — 1-cliques are represented by nodes
in the unipartite £ — 1-clique network, unweighted clique percolation analysis is
equivalent to detecting all k-cliques in the original network and adding them to
the k — 1-clique network in arbitrary order. The components of the k — 1-clique
network correspond to the k-clique components of the original network after all
k-cliques are added. In order to use the same algorithm for weighted clique perco-
lation [44], the only modification needed is to sort the list of k-cliques with respect
to their intensities before adding them to the k — 1-clique network. When the k-
cliques are added in increasing order with respect to their intensities, i.e. weights,
the weighted k-communities can be evaluated at any intensity threshold during

the addition process analogous to weighted edge percolation.

In the hierarchical clique percolation method the weighted clique percolation
method was not used as a staring point. Instead, clique communities were
searched for each value of edge threshold in the original network. Thresholding
the original network and applying the clique percolation method for each level of
edge threshold is equivalent to adding the k-cliques to the k& — 1-clique network
in the order they appear in the original network when the edge threshold level is
raised, and evaluating the emerging k-communities in the £ — 1-clique network
after each edge threshold level. There are two ways of finding the k-cliques in
the order they are formed in the original network when the edge threshold is
increased. The first way is to find all k-cliques, as is done in weighted clique
percolation, and assign the smallest edge weight in each clique as a weight of
that clique. Sorting the cliques with respect to these minimal edge weights will
then result in the desired order for the cliques. The second way of building the
list of sorted k-cliques is to follow the edge percolation procedure for the original
network and to add newly formed k-cliques after each edge addition to end of the
list.
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Finding k-clique communities using the unipartite & — 1-clique network when
the sequence of k-cliques is found is known to scale almost linearly in time with
respect to the number of k-cliques in the network and to scale linearly in memory
consumption with respect to the number of k£ — 1-cliques in the network. Finding
and sorting the k-cliques in a general case scales log-linearly in time and linearly in
memory with respect to the number of k-cliques in the network. Thus the sorting
part of the algorithm has in the worst case a much poorer performance than the
rest of the algorithm. This is discussed in the next subsection, and the algorithm
for finding the cliques in their order of emergence in the edge thresholding process

reduces the workload dramatically.

Algorithm 1 Pseudocode for finding k-clique communities when the sequence of
k-cliques is known. This done by keeping track of the components of a k—1-clique
network with the disjoint-sets forest.
for K in k-clique sequence do
kr=a subclique of K
for kr2 in subcliques of K (not kr) do
join in disjoint-set tree: kr and kr2
end for
end for

The alternative unipartite projection

Notice that the unipartite projection in the clique percolation algorithm could be
defined by removing k — 1-clique nodes instead of k-clique nodes without affecting
the results of the algorithm. This was not done for two reasons: First of all, there
are n times more k-cliques in the worst case than k — 1 cliques when the network
size n is a constant. This is also a valid point beyond the worst case, as for example
there are more edges (2-cliques) in most networks than nodes (1-cliques). The
second reason is that adding a k-clique to the unipartite & — 1-clique network
requires only combining all subcliques of the k-clique to the same component. As
finding the each subclique takes a constant time, the required workload is k£ — 1
times the effort required by the disjoint-set forest. On the other hand, adding a
k — 1-clique to the k-clique network would require finding all k-cliques having the
k — 1-clique as a subclique. Two straightforward solutions to this would be to
either keep a lookup table of such cliques in hand, which is essentially equivalent
of keeping the whole bipartite network in memory, or go through all the n possible
k-cliques for each k — 1-clique. Neither of these alternatives are good, but more

complicated algorithms might exist somewhere between these two.
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B.1.2 Finding the sequence of k-cliques

Finding all k-cliques and sorting them can become a bottle neck for the discussed
weighted clique percolation algorithm. However, finding k-cliques their order of
emergence when the weight threshold is increased can be done much faster. The
procedure starts from an empty network and reconstructs the original network by
adding the edges one by one, as is done in edge percolation algorithms. At each
step when an edge e = (4,7) is added to a network, the new k-cliques forming
as a consequence of this addition can be found in the following way: First, find
all the common neighbors N of ¢ and j. After that, find all the £ — 2-cliques in
the subgraph of those neighbors G(N). When the nodes i and j are added to
these k — 2-cliques, they form all the new k-cliques born when e is added to the

network.

This approach has three benefits over the brute-force way of finding and sorting
all k-cliques: It does not require keeping all k-cliques in memory, but only the
original network and possibly information related to the detecting k — 1-cliques in
each subnetwork depending on the algorithm used. It does not require sorting the
k-cliques as only the edges need to be sorted. Lastly, the k-clique finding algo-
rithm can be run simultaneously with the k-clique community finding algorithm
updating the community structure immediately after each k-clique is found. This
makes it possible to stop the k-clique search algorithm at any time in the com-
munity finding process. In some cases this is a huge advantage over exhaustive
search of every k-clique: for example in ER random graphs [53] the number of
cliques grows as O(p**~1/2) [68|, where p is the probability that an edge exists.
The k-clique percolation process can be stopped when all nodes are in the same

community, or even before that, when some other criterion is fulfilled.

B.2 Scaling considerations

As the new algorithm for finding k-clique communities for each edge threshold
level can be divided in two parts, the k-clique percolation and finding the k-clique
sequence, worst case scaling is also studied separately for these parts. It turns
out that the percolation part dominates the time and memory requirements in
the worst case approximations. If the number of nodes in a network /N and the

clique size k are fixed, the worst case for this algorithm is a full network. This
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Algorithm 2 Pseudocode for finding new k-cliques formed when an edge is added
to the network. Notice that finding the k£ — 2-cliques from a subnetwork can be
done by calling this code recursively for each edge in the subnet, and by treating
the cases of £k =1 and k£ = 2 as trivial separate cases.
i,j = nodes of the edge
for 1 in neighbors of i do
if j is a neighbor of 1 then
add 1 to list of common neighbors
end if
end for
Gsubnet = subnet of common neighbors
for all k-2-cliques in Gyupne: do
k-clique=nodes in k — 2-clique, i and j
add k-clique to the list of new k-cliques
end for

Algorithm 3 Pseudocode for sequential k-clique percolation with edge weight
thresholding. Algorithms 1 and 2 are used as subroutines.
sort the list of edges in the network
G=an empty network
while stopping criterion for community structure is not fulfilled do
pop edge from the sorted list
get list of new k-cliques when the edge is added
add edge to G
update the community structure with the list of k-cliques
end while

analysis does not take into account that the algorithm can be stopped before all

edges are processed when all nodes belong to the giant component.

B.2.1 Finding the k-clique sequence

For the k-clique sequence finding part of the algorithm, the worst case of a full
network means that the number of edges the algorithm has to go through grows
as O(N?), and for each for those edges the number of operations for finding all
triangles they participate grows as O(N). The number of triangles each edge
participates in also grows as O(N), and thus the time to find the k — 2 cliques in
a subnetwork of nodes at the corners of those triangles grows as O((k]j ,)), which

is the number of possible combinations of k — 2 nodes in a set of size N. In all,
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the time to find the k-cliques amounts to

oy +o(, ™ =owo (X =0 ) my

This is also the number of the k-cliques in the network, which means that any
algorithm listing all the k-cliques in any order must perform at least (ZZ ) opera-
tions. Thus, in this sense the scaling of the algorithm is optimal. Note also that
the scaling of the number of k-cliques can be written in the following way, when

k is fixed, or N is fixed and large:

o} ) = Ol = Oy o) =0 (B2)

Thus, the number of k-cliques and the time needed to find the k-clique sequence
in the worst case grows polynomially with respect to network size N when £ is

fixed, and exponentially with respect to k when the network size N is fixed.

B.2.2 Finding k-clique communities

For the percolation part of the algorithm, the same analysis is more straightfor-
ward, as we can use the results published for disjoint-sets forests [66,67|. The
algorithm requires k joining operations in the disjoint-sets tree for each k-clique,
and if there are K of them in the network, the amortized amount of work has been
proven to be O(aK), where « is the Ackermann function, which grows almost
linearly. This means that the percolation part of the algorithm dominates the
asymptotical required computation time for the described worst case scenario,

and the algorithm as a whole is optimal for the task.

Real data can be considerably sparser than full networks, and for many dense
networks, the algorithm can be stopped before adding all the links, so the real
computation times often behave much better than the worst case scenarios. How-
ever, the real-world networks can locally resemble full networks, and those parts
of the networks are often the ones taking most of the time for the k-clique per-
colation algorithm introduced here. Effects of dense subnetworks to the overall

computation time can be approximated by using the above analysis.
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Appendix C

Software toolbox for network

analysis

C.1 Starting point and requirements

Most of the work done for this Thesis is related to using, implementing and
developing methods from the field of network analysis. This is a rather new area
of data analysis, and as such the choice of computational tools is limited. This
is a problem especially when dealing with weighted dense networks, as is done
in this Thesis. Published software usually offers solutions to specific problems
only, and general purpose software packages were not considered suitable for use

in this Thesis. Some such packages are listed below:

Pajek A toolbox for network analysis with graphical user interface. Not easy to

extend and is designed for rather small networks. [69]

Boost graph library A C-++ template library for graphs. Contains very few
tools for statistical analysis. Also not very easy to use and extend as itself.
[70]

Networkx A Python module designed for network science perspective using the
Boost graph library. [71]
None of the above mentioned packages for network analysis seemed good enough

for the purposes of the work described in this Thesis. Also the methods and code
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developed for this project could be used and extended for other similar projects
in the future. With this in mind, a list of requirements for a software toolbox

was designed:

e The toolbox should have a suitable user interface for exploratory data anal-

ysis and rapid prototyping. It should be easy to implement scripts on it.

e There should be a possibility to write low level code for implementing com-

putationally intensive methods.

e The underlying data structures should be efficient to allow usage of very

large data sets even in the scripting mode.

e The above point should be true for both dense and sparse networks in such
a way that the user interface remains transparent with respect to the type
of underlying data structures. This means that algorithms implemented for

one should work for both kinds of networks without any changes.

e The toolbox should be based on a framework which has already lots of fast
code (possibly written in some low level language) for most common com-
putationally expensive tasks, such as community detection and modeling

networks.

e An automatic testing framework should be available.

C.2 Specifications

A software package for network analysis was developed as a part of this Thesis
as other packages did not fulfill the above requirements. The closest one was
the Networkx package, but among its other problems it was not mature enough,
at least at the time. Despite this, it resembles the software package developed
during this Thesis, as both of them are mostly written in Python and have a
C++ library as a back-end.

The Python [72] scripting language was chosen as a front end for the toolbox for
the following reasons: first of all, as a high level language it is easy to use and not
as prone to programming errors as for example C is. Also as it is an interpreted

language, it is easy to try out short pieces of code with the interpreter interface,
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which is particularly important in data analysis where detailed specifications of
the programs and scripts cannot be made beforehand, but the work consists of
exploring different possibilities. Another reason for choosing Python is that there
is an extensive set of libraries for most general-purpose tasks such as plotting [73],

numerical analysis [74], interactive shell [75] and scientific analysis [76].

For high performance, the back-end library for sparse graphs made by Hyvonen
[77] was chosen. It has been proven to be able to efficiently handle extremely large
data sets, for example in analysis of mobile phone call networks [7]. It has also
been proven to be suitable for network analysis in general, and has been used in
the Complex networks group in Laboratory of Computational Science for several
years for almost all data analysis. This use has also generated large amounts
of code written for the library ranging from model generation to community

detection.

The design of the software toolbox tries to follow the guidelines and requirements
set in the previous subsection. The networking toolbox is organized in such a way
that the network interface visible for the user is made with Python. Under that,
the sparse network data structure is the same as in C+-+ library discussed in the
previous paragraph |77,78|, and dense networks are implemented with Numpy |74|
matrices. This allows for writing C++ extensions for sparse networks by using
the C++ library. The design is illustrated in Figure C.1.

Network interface — PYython library for

in Python network analysis
Numpy C++ implementation of the e C++4 implementation
network data structure of the network analysis

Figure C.1: Schematic picture of the Network Toolbox.

The design of the network Toolbox tries to encourage the user to follow a devel-

opment, cycle, which consist of the following steps:

1. Explore the problem/data in the Python interpreter using the existing li-

brary and modules.

2. Write an own module or extend an existing one with required functions in
Python.
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3. Write unit tests for the Python module/function.
4. Rewrite the speed /memory critical parts of the module/function with C++.

5. Now all analysis and unit tests can be done again with the C++ implemen-

tation with very small changes.

The goal of this cycle is to allow the researcher to mainly use high level scripting
language such as Python, and minimize the risk of programming errors and loss
of time related to writing large standalone C++ programs. Python also offers
an easy interface to powerful network-related C+-+ libraries for people who could

otherwise not use them.
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