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1. Introduction

There is an acute need for and considerable potential in developing systems

that deliver the best healthcare for the limited resources that are available.

Demand for and expenditures on healthcare increase steadily, as a result of

ageing populations, technological developments, and increased medical knowl-

edge (WHO, 2010; OECD, 2015). At the same time, there is also substantial

potential for improvement: World Health Organization estimates that globally,

20−40% of the healthcare resources could be saved by utilizing the available

resources more efficiently (WHO, 2010).

The overarching goal of healthcare delivery is argued to be achieving high

value for patients (e.g., Gray, 2012; Porter, 2010; Porter & Teisberg, 2006).

Porter (2010) defines value as health outcomes achieved per money spent, where

the health outcomes are multidimensional and include, for example, the effec-

tiveness, quality, and timing of care, treatment appropriateness, and the effect

on the equality of population.

This Dissertation focuses on two essential elements of improving healthcare

and its value. The first element is that of identifying which healthcare sys-

tems (i.e., organizations, processes, or programs under scrutiny) perform the

best and therefore can be learned from. The multidimensionality of the value

of healthcare creates challenges of (i) comparing the performance in a com-

prehensive and robust way, (ii) presenting the results clearly and intuitively,

(iii) assessing to what extent the objectives of healthcare systems related to

health outcomes, treatment appropriateness, and other dimensions have been

met, and (iv) facilitating communication with the public. Earlier methods vary

from estimating the relative performance separately for each objective (e.g.,

Hauck & Street, 2006) to obtaining a composite measure of performance by set-

ting weights which reflect the relative importance to different indicators (e.g.,

Smith, 2002).

The second element of improving the value of healthcare considered in this

1
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Dissertation is the design of efficient healthcare delivery strategies. In the con-

text with many alternative clinical tests and treatments, the delivery strategy

answers the questions of (i) whom to test, (ii) which tests to carry out and in

which order, and (iii) which treatments to carry out based on the test results.

Efficiency measures whether healthcare resources are being used to maximize

the health outcomes (e.g., Palmer & Torgerson, 1999). The amount and di-

versity of diagnostic and prognostic information from, for instance, different

biomarkers, clinical tests, and activity gadgets grows continuously. This pro-

vides substantial possibilities for more accurate estimates about the patient’s

health, individual preferences, and interventions’ effectiveness. Nevertheless,

the optimal utilization of diagnostic and prognostic information is not unam-

biguous, because the tests and biomarkers are rarely totally reliable and entail

costs. From the perspective of evaluating the value of diagnostic information,

earlier methods in the literature are not entirely aligned with decision support

needs: a decision maker (DM) needs to know not only whether information is

accurate, but whether it is clinically helpful, possibly in combination with other

tests and treatments (Steyerberg et al., 2012; Vickers, 2008).

The scarcity of healthcare resources complicates the design of optimal health-

care delivery strategies and leads to the question of value judgment. When

resources are limited, it is impossible to provide everyone with every test or

treatment they might need or want. In these situations, a decision maker

faces the problem that each unit of resources spent on interventions (for in-

stance, treating a patient or carrying out diagnostic tests) means that some-

where or sometime, resources will be unavailable for some other healthcare

purpose (Hunink et al., 2001). This phenomenon lifts the objectives of health-

care delivery strategy from the single-patient-level to the population-level, or

to population medicine as Gray (2013) labels it. On the population-level, a

decision maker may need to choose, based on her values, the objective of, for ex-

ample, maximizing the total health outcome of a population or reducing health

inequalities, which, in general, result in different optimal resource allocations

and healthcare delivery strategies.

Methods of operations research can support decision makers of healthcare in

the problem domains described above. Operations research is a scientific ap-

proach to decision making which uses techniques such as mathematical mod-

eling and optimization and seeks to determine how best to design and operate

a system, usually under conditions requiring the allocation of scarce resources

(Winston & Goldberg, 2004). In the last decades, the breadth and volume of

operations research applied to healthcare has expanded hugely. To highlight

2
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the suitability of operations research for the problems considered in this Dis-

sertation, we quote Gray (2012): “the choice of which set of cost-effective inter-

ventions to invest in within programmes and the allocation of resources across

programmes in order to achieve good value health care is a complex, multi-

layered problem ripe for operations research”.

1.1 Objectives and scope

This Dissertation develops and applies models for supporting efficiency anal-

ysis and decision making in healthcare. These models take into account (i)

the multidimensionality of healthcare value and system performance and (ii)

the efficient use of resources in order to maximize the appropriate objectives.

The models support decision makers and healthcare professionals in realizing

the best possible use of available resources. In particular, this Dissertation

addresses the following research questions (RQ), which are linked to Papers

[I]-[IV] as shown in Table 1.1:

RQ1: What methodological aspects should one consider when attempting to

assess the performance of healthcare systems and delivery in a robust

and comprehensive way?

RQ2: What kind of framework should one use for designing sequential testing

strategies with the aim of expending resources efficiently?

RQ3: What kind of framework should one use for designing healthcare deliv-

ery strategies under limited resources with respect to population-level

objectives?

RQ4: What is the influence of different population-level objectives of health-

care systems on the healthcare delivery strategies and population-level

health outcomes and costs?

Table 1.1. Scope of Papers [I]-[IV]

[I] [II] [III] [IV]

RQ1 X

RQ2 X X

RQ3 X

RQ4 X

3
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1.2 Research methods and dissertation structure

The modeling approach in Paper [I] builds on ratio-based efficiency analysis

(REA) (Salo & Punkka, 2011) which uses mathematical programming meth-

ods such as linear programming and mixed integer programming (Bertsimas &

Tsitsiklis, 1997) to assess which decision-making units are more efficient than

others in converting inputs to outputs. Papers [II], [III], and [IV] use (i) decision

trees and Bayesian methods to model uncertainties about the patients’ proba-

bility of having the disease and the tests’ results (see e.g., Hunink et al., 2014;

Gelman et al., 2014; Sox et al., 2013), and (ii) dynamic programming to solve the

optimal path through the decision tree (e.g., Bertsekas, 1995). Moreover, mixed

integer linear programming (MILP) and multi-objective optimization (MOO;

e.g., Miettinen, 1998) are used in Paper [IV] to identify the optimal resource

allocation at a population-level. In Papers [II] and [III], the efficiency of health-

care delivery is assessed through the framework of cost-benefit analysis (Drum-

mond et al., 2005), whereas in Paper [IV], the framework of cost-effectiveness

analysis (Gold et al., 1996) is used.

The rest of this summary article is structured as follows. Section 2 discusses

the methodological foundations of the main topics in this Dissertation. Sec-

tion 3 presents the key contributions of Papers [I]-[IV]. Section 4 discusses the

implications of these contributions and suggests avenues for future research.

4



2. Methodological foundations

2.1 Efficiency analysis

Evaluating and comparing the efficiency of decision making units (DMUs; i.e.,

systems, organizations, processes etc.) usually involves several criteria. Many

of these criteria can be considered either as inputs a DMU consumes or as

outputs it produces. In the context of healthcare, the inputs can include, for

example, the use of resources and the outputs, for example, the various health

outcomes. The efficiency of the DMU is then considered to be the ratio between

(i) the value of outputs it produces and (ii) the value of inputs it consumes (e.g.,

Charnes et al., 1978). Efficiency analysis, a subfield of economics and opera-

tions research, provides models to evaluate the overall value and performance

with regard to multiple criteria.

In the healthcare literature, there have been calls for the development of

composite measures of performance (WHO, 2000; Carinci et al., 2015). Com-

posite measures, as a part of efficiency analysis, summarize the information

contained in diverse indicators in a single index and thus simplify the compar-

ison of DMUs (Smith, 2002). Rather than having to identify a trend across a

range of separate indicators, a single number may be easier to interpret and

thus provides a rounded evaluation of performance. Traditionally in the lit-

erature, composite measures of performance have been obtained as weighted

averages of criterion-specific performances, where the weights reflect the rela-

tive importance of the criteria. Nevertheless, the determination of weights is

unlikely to be straightforward because, for example, experts may not agree on

what is actually important for the attainment of overall objectives. This dif-

ficulty of determining relative importance of the criteria is considerable also

because composite measures are highly sensitive to the choice of weights (Ja-

cobs et al., 2005; Nardo et al., 2005; Reeves et al., 2007).

5
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To overcome the challenge of determining appropriate point estimates for

criterion-specific weights, data-driven weighting systems are frequently used.

Data envelopment analysis (DEA; Charnes et al., 1978), for example, is a widely

used method of efficiency analysis in which the weights are derived from the

data so as to maximize each DMU’s efficiency measure. In DEA, the DMUs’

efficiencies are characterized by evaluating them with the output and input

weights that are most favorable to them, in the sense that their efficiency ratio

divided by that of the most efficient DMU is maximized over the set of output

and input weights. As a result, the efficient DMUs are assigned an efficiency

score of one, and inefficient DMUs’ efficiency scores are between zero and one.

Some of the shortcomings of DEA are that (i) the efficiency scores do not dis-

criminate between efficient DMUs, and (ii) the efficiency score is based on one

combination of weights, which is typically different for each DMU and also de-

pends on what other DMUs are included in the comparison.

The shortcomings of DEA are addressed in the ratio-based efficiency analysis

(REA) methodology (Salo & Punkka, 2011) which resembles the DEA method in

that it models DMUs’ efficiencies with their efficiency ratios. However, it differs

from DEA methods in that it derives results not only based on a single set of

weights for each DMU, but for all feasible output and input weights, which

fulfill possible statements about the relative importance of different inputs and

outputs. REA extends conventional efficiency scores by computing efficiency

bounds, which indicate how efficient a DMU can be within a benchmark group

of DMUs for all feasible output and input weights. To our knowledge, REA has

not been applied to healthcare before the research of this Dissertation.

2.2 Cost-effectiveness analysis and cost-benefit analysis

When healthcare resources are limited, the costs of medical care need to be

taken into account in addition to health-related outcomes. Clinicians and pol-

icy makers must identify inefficient healthcare systems, management strate-

gies, and interventions and improve them. In healthcare, the most established

methods for characterizing efficiency are cost-effectiveness analysis (CEA) and

cost-benefit analysis (CBA).

Cost-effectiveness analysis (e.g., Gold et al., 1996) is a method for comparing

the relative value of different interventions and clinical strategies by their rel-

ative costs and clinical effects. Effects refer to health outcomes, such as cases of

a disease prevented, years of life gained, or quality-adjusted life-years (QALYs)

in which the outcome, in terms of length of life, is adjusted to reflect the quality
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of life (e.g., Sox et al., 2013). The costs and effects of decision alternatives, such

as healthcare interventions or strategies, are often presented in a ratio of in-

cremental cost to incremental effect. This incremental cost-effectiveness ratio

(ICER) serves as a basis for decision rules of resource allocation between alter-

native interventions or programs (see, e.g., Johannesson & Weinstein, 1993;

Karlsson & Johannesson, 1996). CEA can be used to inform DMs about how

to apply new or existing tests, therapies, and preventive and public health in-

terventions so that they represent a judicious use of resources (Sanders et al.,

2016).

Cost-benefit analysis (e.g., Drummond et al., 2005) estimates the net benefit

of an intervention or strategy as the incremental health outcomes of the pro-

gram minus the incremental cost, with all health outcomes and costs measured

in the same units (either monetary units (Claxton & Posnett, 1996) or health-

related units (Stinnett & Mullahy, 1998)). Health outcomes and costs are con-

verted to same units using a coefficient which often represents the threshold of

societal willingness-to-pay per an additional unit of health outcome gained. As

a decision rule, it is recommended that the interventions which have a positive

net benefit should be carried out. In CBA, the efficiency between health out-

comes and costs is implicitly considered in the converting coefficient: the less

monetary value is assigned to an additional unit of health outcome gained, the

more efficient an intervention must be to provide a positive net benefit.

Both CEA and CBA are known to have methodological challenges. First, CEA

lacks a criterion for cost-effectiveness: it is not possible to say if an intervention

or strategy is cost-effective; it is only possible to compare the cost-effectiveness

of alternatives. Artificial threshold values have been used in the decision mak-

ing, at least in the literature, but those are highly contested (e.g., Eichler et al.,

2004; Neumann et al., 2014). CBA, in a sense, provides a clearer decision rule

but again, the coefficient value for converting health outcomes to monetary

units is highly contested. In Finland, there are no explicit threshold or coef-

ficient values which are commonly used. Elsewhere, values such as $50000 per

QALY gained (in the US) or $20000 or $30000 per QALY gained (in the UK)

have been used (Cleemput et al., 2008). Second, CEA and CBA are typically

used to compare a small subset of predetermined intervention strategies with-

out exhaustively considering all possible strategies, whereby the recommended

strategy is likely to be suboptimal (Severens et al., 2001). Third, equity con-

siderations are largely neglected in CEA and CBA studies (Johri & Norheim,

2012; Sassi et al., 2001; Ubel et al., 1996; Weatherly et al., 2009). A normal

assumption in the studies is that the value of a health outcome is the same no
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matter who receives it. Yet, the distribution of health gains between population

sub-groups takes on particular importance in public health, given that there is

evidence to suggest that tackling inequalities is considered more preferable by

the majority of the population (Cuadras-Morató et al., 2001; Dolan & Cookson,

2000; Nord et al., 1995; Yaari & Bar-Hillel, 1984).

2.3 Decision tree modeling

In medical decision making, there is typically uncertainty about the patient’s

state of health and thus also in the effects of possible interventions. There are

both personal and societal costs of not treating a patient with a disease, on the

one hand, and the costs and other undesirable consequences of providing un-

necessary treatments, on the other. Often, there are many diagnostic and prog-

nostic tests which can be carried out to acquire information about the patient’s

state of health and thus to assist decision making. However, tests consume

resources and are not totally reliable. From these premises, it is important to

determine which tests are optimal and in which order they should be carried

out, and given the preceding test results, when it is the time to stop testing and

choose a treatment action.

Decision analysis, a field of operations research helps address the above ques-

tion of medical decision making. In decision analysis, one identifies possible

actions and consequences, and selects the action with the best expected conse-

quence, in recognition of relevant risk preferences. Often this process is aided

by constructing a decision tree. The principle of the decision tree is first to iden-

tify every possible decision, then to identify every possible consequence of each

decision, and finally to assign a probability and a benefit to each consequence

(e.g., Hunink et al., 2014; Sox et al., 2013).

In the case of a treatment decision, the probability of each treatment outcome

can be seen to depend on the prior probability of having the particular disease.

In the case of additional testing, these probabilities of having the disease are

also dependent on the results of the additional tests. Such models can benefit

from Bayesian analysis, where prior belief about the patient’s state of health

(e.g., the probability of having the disease) is updated according to the infor-

mation obtained from test results (e.g., Gelman et al., 2014). For fundamental

works on this topic in the medical decision making literature, see, e.g., Doubilet

(1983); Hershey et al. (1986); Pauker & Kassirer (1980).
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2.4 Multi-objective optimization

Almost all real-world optimization problems in healthcare involve multiple, of-

ten conflicting objectives. In most decision problems in practice, these multiple

objectives or multiple criteria are apparent, such as maximizing diverse health

benefits and minimizing costs in healthcare. In the past, such problems have

been mostly converted and solved as a single-objective optimization problems.

One such approach is cost-benefit analysis, in which the health outcomes and

costs are first converted to the same units and then the formed net benefit is

maximized. However, because of the contradictions and possible incommen-

surability of the objectives and criteria, sometimes it is neither possible nor

desirable to convert and consider the problem as a single-objective problem.

Multi-objective optimization (MOO; e.g., Miettinen, 1998) provides formal meth-

ods for quantitative analysis of decisions with multiple objectives. In MOO,

much of the computational effort lies in finding all Pareto optimal solutions, de-

fined as solutions for which there are no other solution which would be as good

on all criteria and better on at least one criterion. Once a set of such Pareto

optimal solutions has been found, a DM can then use higher-level qualitative

considerations to make a choice. Classical MOO methods include, for example,

(i) the weighted-sum method which scalarizes a set of objectives into a single

objective by pre-multiplying each objective with a DM-supplied weight, and (ii)

ε-constraint method in which the problem is reformulated such that just one of

the objectives is kept and the other objectives are restricted within DM-specific

values.

In healthcare, multi-objective optimization is called for, e.g., supporting deci-

sion making in priority setting of health interventions (Baltussen & Niessen,

2006). Other examples of healthcare applications are the studies of Cardoen

et al. (2009); Harewood (2002); Li et al. (2009); Oddoye et al. (2007); Petrovic

et al. (2011).
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3. Contributions of the papers

Table 3.1 summarizes the contributions of Papers [I]-[IV]. Specifically, Paper [I]

applies ratio-based efficiency analysis (REA; Salo & Punkka, 2011) to the com-

parison of the quality of Scottish Health Boards. In Paper [II], a decision-

analytic model for identifying optimal testing sequences is developed. Paper

[III] applies this model to the identification of the optimal use of genetic test-

ing in the prevention of cardiovascular events and assesses the cost-benefit of

various testing strategies. Paper [IV] extends the decision-analytic model of

Paper [II] to identify optimal population-level allocation of scarce healthcare

resources.

3.1 Paper [I]

Paper [I] explores a robust approach to ranking organisations based on a com-

posite indicator of performance in a context of ambiguity about choices of weight

sets and choices of appropriate denominator variable. The study adopts a novel

ratio-based efficiency analysis (REA; Salo & Punkka, 2011) technique. The

main benefit of REA is its ability to use the full set of feasible weights and to

take into account multiple denominator variables which in this study represent

various probable definitions of the “population at risk”. This avoids the need to

settle on a single, potentially controversial set of weights and on a single, possi-

bly biased denominator population. The results, displayed as ranking intervals

and dominance relations, allow one to identify organizations whose rank can-

not be, for example, worse than 3rd or better than 8th. Using data from the

Scottish HEAT target system, the study demonstrates the applicability of REA

to comparative performance assessment in healthcare.

The significance of the study is that it introduces an intuitive, information-

rich, and robust method for comparing the performance of healthcare systems.

By using ranking intervals and dominance relations, REA offers an alternative
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Table 3.1. Contributions of the papers

Paper Research objectives Methodology Main contribution

[I] Explore a robust
approach for health
system performance
comparison and
ranking

REA methodology REA considers
incomplete information
and provides robust
composite measures in
the form of ranking
intervals and
dominance relations

[II] Develop a model for
optimizing sequential
testing strategies with
multiple tests and
testing stages

Decision tree,
Bayesian analysis,
dynamic programming,
cost-benefit analysis

Decision-analytic
model to determine
which tests and in
which order to carry
out for various
segments of population

[III] Assess the value and
optimal use of genetic
testing in the
prevention of
cardiovascular events

Decision tree,
Bayesian analysis,
dynamic programming,
cost-benefit analysis

Optimal use and
targeting of genetic
testing and its
cost-benefit

[IV] Develop a model to
allocate limited
resources optimally
between testing and
treatment and
between different
patient segments

Decision tree,
Bayesian analysis,
dynamic programming,
linear programming,
cost-effectiveness
analysis, multi-
objective optimization

Optimal priority
setting of population
and allocation of
limited resources.
Cost of equity.
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for the traditional approach of assigning single performance rankings, which

may be questionable from a policy and management perspective. Since REA

is able to make the uncertainty on rankings explicit and visualize it, Paper [I]

suggests that REA can help improve the transparency and reliability of per-

formance rankings and thus usefully complement the existing techniques of

healthcare decision makers.

3.2 Paper [II]

In Paper [II], we develop a decision-analytic model for the optimization of se-

quential testing strategies. It extends the classical framework of selecting and

interpreting diagnostic tests (Doubilet, 1983; Hershey et al., 1986; Pauker &

Kassirer, 1980) to take into account a larger number of tests, test results, and

testing stages. In the context of multiple available tests, testing stages, and

treatments, a testing strategy is defined to determine: (i) which tests should

be carried out and in which order? (ii) when is it optimal to stop testing and

decide on a treatment action? (iii) how to segment the population of patients

for different clinical pathways? The problem of determining an optimal test-

ing strategy is modeled as a decision tree in which the probability of a patient

having a disease is updated based on the test results using Bayesian methods.

The model applies the approach of cost-benefit analysis, whereby the health

outcomes and costs of decisions are converted to same units, called net benefit.

Testing strategies are then optimized by maximizing the expected net benefit

of a testing and treatment sequence. We also develop a dynamic programming

algorithm which can be used to determine the optimal testing strategies in a

computationally efficient way for all prior probabilities about the patient’s state

of health.

The study is important because it provides a generic framework for optimiz-

ing and assessing the value of the joint use of tests. Previous methods in the

literature have mainly focused on single tests even though in reality, tests are

most often used in combinations and sequences. The capability to analyze and

optimize testing strategies is particularly important in the future healthcare,

given that the number of available tests and the resulting amount of informa-

tion about the patients’ state of health increase continuously. The model helps

understand, for example, for whom and at which stage it is justified to use ap-

proximate, inexpensive tests, on the one hand, or expensive, state-of-art tests,

on the other hand. The assessment of the additional value of a test can also

support both acquirement and price setting decisions about novel testing tech-
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nologies.

3.3 Paper [III]

In the case study of Paper [III] the model developed in Paper [II] is applied to

support the value assessment of genetic testing in the prevention of the cardio-

vascular disease (CVD) events. The model is used for optimizing the targeting

and sequencing of genetic testing alongside traditional risk factors. Specifically,

testing strategies are optimized by maximizing the net benefit (CBA approach)

on a single-patient level. Paper [III] extends the model of Paper [II] such that

the outcomes of the optimal strategies can be presented (i) at a population-level

in addition to a single-patient-level, and (ii) separately in aggregated health

outcomes and costs. A further noteworthy feature of the study is its excep-

tionally wide data which is combined from national healthcare registers, the

Finnish Institute for Molecular Medicine, and published literature.

To our knowledge, this paper is the first to optimize the targeting of a genetic

test to different patient segments in the prevention of CVD events. Even in

the more comprehensive earlier analyses in the literature, the focus has been

mainly on predetermined strategies in which, for instance, patient segments

to be tested have been fixed in advance. The comparison between optimized

and predetermined, non-optimized strategies indicates that the optimization

provides substantial benefits.

3.4 Paper [IV]

Paper [IV] contributes to the literature of healthcare resource allocation and

priority setting. Building on the models of Papers [II] and [III], Paper [IV]

develops a model to optimize resource allocation between sequential testing

and treatment and between various patient groups. The earlier models are ex-

tended to take into account (i) limited healthcare resources and (ii) population-

level objectives in the optimization of testing and treatment strategies. The

models of Papers [II] and [III] optimize the strategies by maximizing the single

patient’s net benefit in the context of unlimited resources whereas the model

of Paper [IV] takes into consideration that, typically, (i) not everyone can be

provided with every effective test or treatment one might need or want, and

(ii) the objectives of healthcare policies are often related to the population-level

outcomes rather than patient-level outcomes. Under these assumptions, the
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model optimizes the testing and treatment strategies and provides the optimal

priority setting, i.e., the allocation of resources between testing and treatment

and between patient groups. The health outcomes and costs are considered

separately throughout the optimization process by utilizing methods of multi-

objective optimization (MOO). This approach allows us to identify Pareto opti-

mal strategies while avoiding the use of the somewhat artificial coefficient (e.g.,

the societal willingness-to-pay threshold) which is needed in the earlier models

to convert the health outcomes and costs to same units.

The model of Paper [IV] can be used to understand the impacts of different

population-level objectives on testing and treatment strategies. The study com-

pares two population-level objectives: (i) maximizing the total health outcome

of a population (utilitarian) and (ii) maximizing the health outcome of those

worst off (egalitarian). The utilitarian objective is dominant in standard eco-

nomic evaluations of public healthcare interventions whereas the egalitarian

objective (i.e., the reduction of inequalities) is considered more acceptable by

most people and is a primary goal of many public healthcare interventions and

programs. The model estimates the impact of the objective on the population-

level costs and health outcomes. It also estimates the cost of equity, defined as

the opportunity cost in terms of health outcome forgone for the sake of equity.

The results support decisions about healthcare policies and help determine a

reasonable level of investment on the care of a particular disease.
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4. Discussion and avenues for future
research

This Dissertation develops and applies new mathematical models to support

efficient use and allocation of resources in healthcare. The overarching goal

of these models is to assess and improve the value of healthcare systems and

delivery. The models serve to support real decision and policy making by ac-

knowledging the multiple dimensions of healthcare processes, most notably by

accounting for both costs and health outcomes alike. The models help under-

stand (i) which healthcare systems appear most efficient and can thus serve

as benchmarks and (ii) which testing and intervention strategies are efficient.

Moreover, the computational algorithms developed in this Dissertation provide

reasonable computational efficiency for applying the Dissertation’s methods in

practice.

The ratio-based efficiency analysis (REA) explored in Paper [I] offers a tool

for the robust comparison and ranking of healthcare systems. The REA tech-

nique is able to incorporate the full set of feasible weights and different choices

of denominator variables when forming the ratio of multiple outputs and in-

puts. The results include ranking intervals and dominance relations which can

help to avoid the forced assignment of a single, potentially controversial rank-

ing based on a composite measure of performance to each organisation under

examination.

The purpose of and the level on which comparison methods are carried out

need to be chosen carefully. Methods for comparison and ranking, such as REA,

can be used for various purposes and on various levels of operations. Tradition-

ally, such methods have often been used for the comparison of healthcare per-

formance between countries or large units such as hospitals (e.g., Linna et al.,

2006, 2010). Even though such an administration-level analysis provides a “big

picture”, it alone may not provide enough practical support for local healthcare

managers for decisions, as varying patterns of clinical practice can obscure the

analysis at the higher level. For instance, it has been observed that in local
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healthcare management, many decision makers prefer to work with local and

disaggregated data consisting of separate indicators on different processes, be-

cause local management processes can be too different to be consistently com-

pared on geographical level (Schang et al., 2014). Thus, in order to reveal and

identify the reasons for differences, it is reasonable (i) to carry out the compara-

tive, composite-indicator-based analyses such as REA on many different levels

(e.g., geographical, administrative, provider), and (ii) to complement the anal-

yses with other techniques, such as separate indicators or simulation-based

methods.

Papers [II], [III], and [IV] propose and apply models to support the design

of optimal testing and treatment strategies, i.e., the sequence of tests and a

treatment for various patient groups. One of the strengths of the models is that

they integrate the testing and treatment decisions. The domains of testing and

treatment are often considered separately in the literature even though they

are not independent: both testing and treatment have an impact on patient’s

health outcomes and costs. For example, an optimal policy for the screening

of a disease is likely to be highly dependent on the treatment options of the

disease. Another strength lies in the versatility and applicability of the models:

they provide a generic framework which can be applied to different contexts,

even beyond healthcare in the testing and maintenance of technical systems,

for instance.

The models developed in Papers [II], [III], and [IV] are topical in the current

healthcare as the amount, variety, and possibilities of information increase con-

tinuously. The number of new state-of-art clinical tests and biomarkers grows

constantly (e.g., genetic testing (Abraham et al., 2016) and metabolomic testing

(Würtz et al., 2015) for estimating cardiovascular event risk), rapid diagnostic

tests provide information faster and with less costs (for instance, in managing

Ebola epidemics (Nouvellet et al., 2015)), and various activity meters and other

gadgets monitor many people’s physical activity non-stop. In view of this abun-

dance of information, questions arise: How to interpret information and what

decisions to do based on data? What is the value of tests and the information

they provide? How can the tests be used jointly in the best possible way?

In addition to relevant mathematical models, addressing these questions re-

quires platforms which gather and combine the data from various sources and

from large groups of people: test results on the same patient cohorts, national

healthcare register data on healthcare visits, costs, and health outcomes dur-

ing follow-up periods, quality of life surveys etc. For this purpose, among oth-

ers, the Finnish government decided in 2016 to invest 17 million euros in a
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new national center which integrates all genome, biobank and healthcare uti-

lization registers (Government Communications Department, 2016). The data

collected by this center would make it possible to acquire more accurate risk

estimates for individual patients which, in turn, would deliver more accurate

cost-effectiveness analyses about new tests.

The rapid development of new biomarkers and other health-related data en-

ables personalized medicine which creates new possibilities and challenges for

modeling healthcare systems. Personalized medicine emphasizes the customiza-

tion of healthcare interventions for individual patients using each person’s unique

clinical, genetic, genomic, and environmental information (see, e.g., Ginsburg

& Willard, 2009). Ginsburg & Willard (2009) state, for example, that “the over-

arching goal of personalized medicine is to optimize medical care and outcomes

for each individual, to include treatments, medication types and dosages, and/or

prevention strategies [which] may differ from person to person resulting in an

unprecedented customization of patient care”. From the viewpoint of model-

ing, this increases the number of possible prevention, testing, and treatment

strategies that need to be evaluated, preferably in an integrated way taking

into account the whole continuum from health to disease. Here, mathematical

modeling and optimization techniques can be powerful tools, although signifi-

cant methodological and computational challenges remain in determining the

solutions for large-scale and multi-group instances (Denton et al., 2011).

This Dissertation opens up several avenues for future research. First, em-

pirical case studies are needed to test and validate the methodological develop-

ments of Papers [II], [III], and [IV] in practice. Second, extending and applying

the models to the context of comorbidity should be considered. The approach

developed in Paper [II] can be used to model multiple diseases and their joint

detection and treatment. However, there are challenges related to the avail-

ability of suitable data and the computational efficiency. Third, considering

the time dynamic of diseases’ progression provides an interesting challenge for

the scheduling of screening. Often tests and biomarkers are used to screen pa-

tients repetitively in order to detect a disease at its early stages or to estimate

the risk of having a disease in following years. In this context, key questions

include: (i) at what age should one start and end screening and (ii) how often

should one carry out a screening test. Fourth, if the aim is to provide even

more generic framework, the models of this Dissertation could be extended to

integrate all prevention, detection, and treatment decisions. This means mod-

eling, for instance, multiple and sequential preventions and other treatments

and the means to measure their effectiveness. Model-wise, this would further
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increase the number of decisions to be evaluated which may cause computa-

tional challenges. Finally, as the context of healthcare is continuously chang-

ing, there is a need for robust optimization results. For instance, the uncer-

tainty and variation related to parameters about costs and health outcomes of

interventions imply that methods are needed to help assess how sensitive the

proposed strategies are to these parameters. This incomplete information about

the model parameters can, to some extent, be captured by allowing parameters

to be set-valued (e.g., Liesiö & Salo, 2012; Weber, 1987). Applying such mod-

els to healthcare is a potential avenue for future research and requires further

work.
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