
fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 022 / 7102

esaeler nredom fo smelborp noitpodA
 secitcarp gnireenigne

 nenakkuaL oreE

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A
eht fo noissimrep eht htiw ,dednefed eb ot)ygolonhceT(ecneicS

ta dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevinU otlaA
 .21 ta 7102 rebmeceD 12 no loohcs eht fo 2T llah erutcel eht

 ytisrevinU otlaA
 ecneicS fo loohcS

 ecneicS retupmoC fo tnemtrapeD
 puorG hcraeseR ssecorP erawtfoS

 rosseforp gnisivrepuS
 dnalniF ,ytisrevinU otlaA ,suinessaL repsaC .forP

 srosivda sisehT

 dnalniF ,yO atleD rotiN ,nenoktI ahuJ).hceT(.cS.D
 kramneD ,negahnepoC fo ytisrevinU TI ,araavisaaP airaM .forP

 srenimaxe yranimilerP

 dnalniF ,iknisleH fo ytisrevinU ,nenokkiM immoT .forP
 yawroN ,olsO fo ytisrevinU ,grebøjS gaD .forP

 tnenoppO

 nedewS ,ygolonhceT fo ytisrevinU sremlahC ,hcsoB naJ .forP

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD 022 / 7102

 © 7102 nenakkuaL oreE

 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

:NBSI:NRU/if.nru//:ptth 7-4177-06-259-879

 yO aifarginU
 iknisleH 7102

 dnalniF

 tcartsbA
 otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA if.otlaa.www

 rohtuA
 nenakkuaL oreE

 noitatressid larotcod eht fo emaN
 secitcarp gnireenigne esaeler nredom fo smelborp noitpodA

 rehsilbuP ecneicS fo loohcS

 tinU ecneicS retupmoC fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 022 / 7102

 hcraeser fo dleiF gnireenignE erawtfoS

 dettimbus tpircsunaM 7102 enuJ 31 ecnefed eht fo etaD 7102 rebmeceD 12

)etad(detnarg hsilbup ot noissimreP 7102 tsuguA 12 egaugnaL hsilgnE

 hpargonoM noitatressid elcitrA noitatressid yassE

 tcartsbA
erawtfos a ot edam segnahc laudividni eht gnignirb fo ssecorp eht snaem gnireenigne esaeleR

secitcarp gnireenigne esaeler nredom ehT .ytilauq hgih htiw erawtfos eht fo sresu dne eht ot metsys
ssorca noitaroballoc gnitatilicaf dna noitamotua tnemyolped dna tset ,dliub gnisu ezisahpme

esaeler eht ni ytilauq dna deeps htob eveihca ot elbissop si ti taht os ,seiradnuob lanoitcnuf
esaeler nredom gnitpoda ni lufsseccus neeb evah seinapmoc emos elihW .ssecorp gnireenigne

 .citamelborp eb ot noitpoda eht dnuof evah seinapmoc rehto ,secitcarp gnireenigne
nredom gnitpoda morf snoitazinagro stneverp tahw dnatsrednu ot mia ew ,noitatressid siht nI

eht yevrus ot weiver erutaretil citametsys a detcudnoc ew ,tsriF .secitcarp gnireenigne esaeler
ruof detcudnoc ew ,noitidda nI .snoitulos dna sesuac rieht ,smelborp noitpoda eht tuoba erutaretil
noitcelloc atad sa gninim yrotisoper erawtfos dna sweivretni evitatilauq dedulcni hcihw seiduts esac

detubirtsid a ni smelborp noitpoda eht detagitsevni ew ,yduts esac tsrfi eht nI .sdohtem
esaeler eht woh ees ot redro ni ,yduts esac pu-wollof a ni dednetxe saw yduts esac ehT .noitazinagro
desucof ew ,yduts esac driht eht nI .stroffe noitpoda eht retfa decuder eb dluoc doirep noitazilibats

noitpoda eht denialpxe ti woh dna ssecorp tnempoleved etag-egats eht fo secneuqesnoc eht no
gnikrow stxetnoc lanoitazinagro tnereffid htiw snoitazinagro owt derapmoc ew ,yllaniF .smelborp

tnereffid fo stceffe eht erapmoc ot redro ni ,yduts esac htruof eht ni stcudorp ralimis htiw
 .stxetnoc lanoitazinagro

emit eht sesaerced secitcarp gnireenigne esaeler nredom gnitpoda taht ,sefiitnedi noitatressid sihT
noitpoda eht gnirud smelborP .deyolped eb nac ti erofeb metsys erawtfos a gnizilibats rof dedeen

lacinhcet fo semeht melborp rednu dezirogetac era secitcarp gnireenigne esaeler nredom fo
,wols(noitamotua dliub edulcni smelborp noitpoda lacinhceT .noitpoda laicos dna noitpoda

tnemyolped dna)stset tnecfifusni ro elbailernu ,wols(noitamotua tset ,)dliub elbixeflni ro xelpmoc
smelborp noitpoda laicos dna ,smelborp)tnemyolped elbailernu ro xelpmoc ,wols(noitamotua

kcal(noitpoda laudividni dna)noitanidrooc ro secruoser fo kcal(noitpoda lanoitazinagro edulcni
eerht htiw denialpxe eb nac smelborp yramirp esehT .smelborp)ecneirepxe ro noitavitom fo
lacinhcet snialpxe)elbayolped ro elbatset ton metsys(ngised metsys :snoitanalpxe defiitnedi

dna noitavitom ,noitacinummoc tlucfifid erom(noitubirtsid lanoitazinagro ,smelborp noitpoda
noitpoda htob nialpxe secruoser detimil dna smelborp noitpoda laicos snialpxe)noitanidrooc
erawtfos rieht ngised ot noitatressid eht fo stluser eht esu nac snoitazinagrO .semeht melborp

 .secitcarp gnireenigne esaeler nredom tius ot ylgnidrocca secitcarp dna sessecorp

 sdrowyeK ,noitargetni suounitnoc ,noitpoda ,gnireenigne esaeler ,gnireenigne erawtfos
erutaretil citametsys ,yduts esac ,spoved ,tnemyolped suounitnoc ,yreviled suounitnoc

 weiver
)detnirp(NBSI 0-3177-06-259-879)fdp(NBSI 7-4177-06-259-879

 L-NSSI 4394-9971)detnirp(NSSI 4394-9971)fdp(NSSI 2494-9971

 rehsilbup fo noitacoL iknisleH gnitnirp fo noitacoL iknisleH raeY 7102

 segaP 961 nru :NBSI:NRU/fi.nru//:ptth 7-4177-06-259-879

 ämletsiviiT
 otlaA 67000 ,00011 LP ,otsipoily-otlaA if.otlaa.www

 äjikeT
 nenakkuaL oreE

 imin najriksötiäV
 tamlegno-ottonööttyäk nediokiinketusiakluj neinredoM

 ajisiakluJ uluokaekrok nedieteitsureP

 ökkiskY sotial nakiinketoteiT

 ajraS seires noitacilbup ytisrevinU otlaA SNOITATRESSID LAROTCOD 022 / 7102

 alasumiktuT otnatoutotsimlejhO

 mvp neskutiojrikisäK 7102.60.31 äviäpsötiäV 7102.21.12

 äviäpsimätnöym navulusiakluJ 7102.80.12 ileiK itnalgnE

 aifargonoM ajriksötiävilekkitrA ajriksötiäveessE

 ämletsiviiT
tydhet nootsimlejho tesiättisky alloj ,aissesorp naatetiokrat allakiinketusiakluj nejotsimlejhO
tavatsorok takiinketusiakluj tinredoM .alludaal ällävyh ellijättyäkuppol naatsiakluj teskotuum

attoj ,ily nejojar netsilaanoitknuf ätöytsiethy aj atoitaamotuasunnesa aj -itset ,-sönnääk
teenutsinno tavo teskytiry niktoj akkiaV .nudaal nävyh isiakat aj aepon isilo issesorpusiakluj

nediokiinket teennadhok tavo tesiot ,assotonööttyäk nediokiinketusiakluj neinredom
 .aimlegno assesimuskamo

ajenredom atsamuskamo atioitaasinagro äätse äkim näämäträmmy emmiryp assajriksötiäv ässäT
emmitiotrak assoj ,neskuastaksuusillajrik nesittaametsys nisne emmituetoT .atiokiinketusiakluj
nämäT .assesimuskamo nediokiinketusiakluj neinredom ajusiaktar aj ätiys neimlegno ,aimlegno

aj atiulettatsaah aisilludaal emmityäk assioj ,atsumiktutsuapat äjlen emmitirous neekläj
asseskumiktutsuapat ässesiämmisnE .änimletenemuureknodeit atsimihuol nejotsaravotsimlejho

noitaasinagro namas emmioktaJ .assoitaasinagro assutetuajah aimlegnosimuskamo emmitivles
aakiasimattuakav nusiakluj akniuk emmiletsakrat assoj ,asseskumiktutsuapat assesiot atsimiktut
-ehiav akniuk ,emmiktut asseskumiktutsuapat assennamloK .neekläj nesimuskamo äätnehyl niitiov

ässennäjlen iskupoL .aimlegnosimuskamo äättiles öttyäk nissesorpsytihek-ittrop
titsketnok tesirotasinagro tesialire ilo allioj ,atoitaasinagro athak emmiliatrev asseskumiktutsuapat

netsirotasinagro netsialire naameliatrev emmiytsyp attoj ,teettout tesiatlaknamas attum
 .niimlegnosimuskamo atsutukiav neitsketnok

äätnehäv nenimuskamo nediokiinketusiakluj neinredom ätte ,niittetsinnut assajriksötiäv ässäT
neinredoM .atsunnesa notsimlejho nenne aakia aavattivrat neesimattuakav notsimlejho

niisilaaisos aj niisinket niitiosirogetak tamlegnosimuskamo nediokiinketusiakluj
iat neniaktuminom ,sadih(-sönnääk tävätläsis tamlegnosimuskamo tesinkeT .nihiomeetamlegno
-oitaamotuasunnesa aj)suatset nötämättiir iat avattetouläpe ,sadih(-itset ,)sönnääk notamatsuoj

tamlegnosimuskamo tesilaaisos aj ,)sunnesa avattetouläpe iat neniaktuminom ,sadih(tamlegno
iat noitaavitom(tesillölisky aj)etuup ninnionidrook aj neissruser(tesirotasinagro tävätläsis

emlok tävättiles aimlegno äisiräämirp ätiäN .tamlegnosimuskamo)etuup neskumekok
äisinket äättiles)avattennesa iat avattatset ie ämlejräj(iruuthetikkra notsimlejho :ääjiketsytiles

aj itniovitom ,itniokinummok ipmaekiav(sutuajah nenirotasinagro ,aimlegnosimuskamo
aipmelom tävättiles tissruser tesilleettuup aj aimlegnosimuskamo aisilaaisos äättiles)itnionidrook

naasselletinnuus aiskolut najriksötiäv nämät äättyäk taviov toitaasinagrO .ajomeetamlegno
 .elliokiinketusiakluj ellienredom tavipos en attoj ,nääjötnätyäk aj naajessesorp

 tanasniavA avuktaj ,itniorgetni avuktaj ,ottonööttyäk ,akkiinketusiakluj ,otnatoutotsimlejho
nenittaametsys ,sumiktutsuapat ,spoved ,sunnesa avuktaj ,sutimiot

 suastaksuusillajrik
)utteniap(NBSI 0-3177-06-259-879)fdp(NBSI 7-4177-06-259-879

 L-NSSI 4394-9971)utteniap(NSSI 4394-9971)fdp(NSSI 2494-9971

 akkiapusiakluJ iknisleH akkiaponiaP iknisleH isouV 7102

 äräämuviS 961 nru :NBSI:NRU/fi.nru//:ptth 7-4177-06-259-879

Dedicated to my loving spouse Suvi and our daughter Minea.

Preface

I would like to acknowledge the people who made this book possible.

I thank my colleagues in the Software Process Research Group at Aalto

University. Thanks to my supervisor, Professor Casper Lassenius, for pro-

viding me inspiration, direction and freedom. Thanks to my instructors,

Juha Itkonen and Maria Paasivaara, for discussing the details and giv-

ing practical guidance. Thanks to Timo Lehtinen for initial support and

for coauthoring a publication. Thanks to the other members of the group,

Jari Vanhanen, Ville T. Heikkilä, Lauri Hukkanen and Raoul Udd, for

inspiring discussions during, before and after our lunch breaks.

Thanks to Nokia, Ericsson and other organizations who were the re-

search subjects in the dissertation. Thanks to Teemu Arvonen, who was

the chief case informant at Ericsson and coauthored two publications. All

the intervieweees who were interviewed receive my sincere thanks.

Thanks to the people who reviewed the work. Thanks to Tommi Mikko-

nen and Dag Sjøberg for performing the preliminary examination. Thanks

to Jan Bosch for being the opponent of the dissertation.

This work was financially supported by TEKES (the Finnish Funding

Agency for Innovation) as part of the Need for Speed research program of

DIMECC (Finnish Strategic Center for Science, Technology and Innova-

tion in the field of ICT and digital business).

Finally, I could not have done this book without my spouse Suvi and our

daughter Minea. I thank you for the unlimited patience, love and support.

Rekola, Vantaa, October 19, 2017,

Eero Laukkanen

1

Preface

2

Contents

Preface 1

Contents 3

List of publications 7

Author’s contribution 9

1. Introduction 11

1.1 Background . 11

1.2 Research problem and questions 11

1.3 Research methods . 12

1.4 Structure of the thesis . 12

2. Related work 13

2.1 Modern release engineering 13

2.2 Empirical research on modern release engineering 15

2.2.1 Benefits of modern release engineering practices . . . 15

2.2.2 Adoption of modern release engineering practices . . 15

2.2.3 Adoption problems of modern release engineering prac-

tices . 16

3. Research problem and methodology 17

3.1 Research problem and questions 17

3.2 Research methodology . 18

3.2.1 Systematic literature review 19

3.2.2 Case studies . 20

3.2.3 Data collection . 21

3.2.4 Data analysis . 22

3.2.5 Validation . 23

3

Contents

4. Overview of the results 25

4.1 RQ1. How are modern release engineering practices adopted? 25

4.1.1 RQ1.1. How is the continuous end-to-end testing prac-

tice adopted? . 25

4.1.2 RQ1.2. How is the release stabilization period reduced? 27

4.2 RQ2. What problems have been faced when adopting mod-

ern release engineering practices? 27

4.3 RQ3. What explanations for the problems have been pre-

sented? . 28

4.3.1 Stage-gate product development process explaining

the problems . 30

4.3.2 Organizational context explaining the problems . . . 30

4.4 RQ4. What solutions for the problems have been used or

proposed? . 31

5. Discussion 33

5.1 Adopting modern release engineering practices 33

5.1.1 Adopting modern release engineering practices re-

quires build automation, test automation and deploy-

ment automation . 33

5.1.2 Adopting modern release engineering practices re-

quires adoption on both organizational and individ-

ual levels . 35

5.1.3 Adopting modern release engineering practices re-

duces the time needed for deployment stabilization . 35

5.2 Explanations for the adoption problems 36

5.2.1 Problems are related to build automation, test au-

tomation, deployment automation or social adoption . 37

5.2.2 Organizational distribution explains social adoption

problems . 37

5.2.3 System design explains technical adoption problems . 37

5.2.4 Limited resources explains both social and technical

adoption problems . 38

5.2.5 There are no easy solutions for the adoption problems 38

5.3 Implications to research . 39

5.4 Implications to practice . 40

5.5 Threats to validity . 40

5.5.1 Construct validity . 41

4

Contents

5.5.2 Internal validity . 41

5.5.3 External validity . 41

5.5.4 Reliability . 42

6. Conclusions 43

6.1 Contributions of the research 43

6.1.1 RQ1. How are modern release engineering practices

adopted? . 43

6.1.2 RQ2. What problems have been faced when adopting

modern release engineering practices? 43

6.1.3 RQ3. What explanations for the problems have been

presented? . 44

6.1.4 RQ4. What solutions for the problems have been

used or proposed? . 44

6.2 Future work . 44

Publications 53

5

Contents

6

List of publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Eero Laukkanen, Juha Itkonen, Casper Lassenius. Problems, causes

and solutions when adopting continuous delivery—–A systematic

literature review. Information and Software Technology, 82, 55–79,

February 2017.

II Eero Laukkanen, Maria Paasivaara, Teemu Arvonen. Stakeholder

Perceptions of the Adoption of Continuous Integration – A Case Study.

In Proceedings of the 2015 Agile Conference, Washington, D.C., 11–

20, August 2015.

III Eero Laukkanen, Maria Paasivaara, Juha Itkonen, Casper Lasse-

nius, Teemu Arvonen. Towards Continuous Delivery by Reducing

the Feature Freeze Period: A Case Study. In Proceedings of the

39th International Conference on Software Engineering: Software

Engineering in Practice Track, Buenos Aires, Argentina, 23–32, May

2017.

IV Eero Laukkanen, Timo O.A. Lehtinen, Juha Itkonen, Maria Paasi-

vaara, Casper Lassenius. Bottom-up Adoption of Continuous Deliv-

ery in a Stage-Gate Managed Software Organization. In Proceed-

ings of the 10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, Ciudad Real, Spain, 45:1–

45:10, September 2016.

V Eero Laukkanen, Maria Paasivaara, Juha Itkonen, Casper Lasse-

nius. Comparison of Release Engineering Practices in a Large Ma-

ture Company and a Startup. Submitted to Empirical Software En-

gineering, May 2017.

7

List of publications

8

Author’s contribution

Publication I: “Problems, causes and solutions when adopting
continuous delivery—–A systematic literature review”

The author was the first author and the main responsible for the study

design. The author collected the data, analyzed the data and wrote the

article. Other authors participated in the study design, inter-rater agree-

ment and commented other parts of the work.

Publication II: “Stakeholder Perceptions of the Adoption of
Continuous Integration – A Case Study”

The author was the first author and the main responsible for the study

design. The author collected the data with the second author, analyzed

the data and wrote the article. Other authors participated in the study

design and commented other parts of the work.

Publication III: “Towards Continuous Delivery by Reducing the
Feature Freeze Period: A Case Study”

The author was the first author and the main responsible for the study

design. The author collected the data with the second author, analyzed

the data and wrote the article. Other authors participated in the study

design and commented other parts of the work.

9

Author’s contribution

Publication IV: “Bottom-up Adoption of Continuous Delivery in a
Stage-Gate Managed Software Organization”

The author was the first author and the main responsible for the study

design. The author collected the data with the second and third author,

analyzed the data and wrote the article. Other authors participated in

the study design and commented other parts of the work.

Publication V: “Comparison of Release Engineering Practices in a
Large Mature Company and a Startup”

The author was the first author and the main responsible for the study

design. The author collected half of the data with the second and fourth

author. Other half of the data was collected by the fourth author. The au-

thor analyzed the data and wrote the article. Other authors participated

in the study design and commented other parts of the work.

10

1. Introduction

1.1 Background

Release engineering is an important part of the software development life

cycle. Release engineering means the process of bringing the individual

changes made to a software system to the end users of the software with

high quality [1]. The process consists of version control, building, testing,

deploying and releasing the software [1]. In order to survive the market

pressure, companies are required to respond quickly to customer needs

[2], which is enabled by modern release engineering practices [1] (see the

definition in 2.1). The modern release engineering practices emphasize

using build, test and deployment automation [3] and facilitating collab-

oration across functional boundaries [4], so that it is possible to achieve

both speed and quality in the release engineering process.

1.2 Research problem and questions

While some companies, such as Facebook [5], have been successful in

adopting modern release engineering practices, other companies have found

the adoption to be problematic [6]. Some explanations for the problems

are related to the domain of the developed software system, e.g., in the

embedded systems domain [7] and mobile software domain [8]. However,

other aspects have been identified as well, such as organizational and ar-

chitectural aspects [9] that explain the problems. In this dissertation, we

aim to understand the research problem: what prevents organizations

from adopting modern release engineering practices?

We address the research problem by answering four research questions:

1. How are modern release engineering practices adopted?

11

Introduction

2. What problems have been faced when adopting modern release en-

gineering practices?

3. What explanations for the problems have been presented?

4. What solutions for the problems have been used or proposed?

The research questions follow the logic of root cause analysis [10]; in order

to solve problems, we have to first understand the phenomenon (RQ1),

identify the problems (RQ2), explain the problems (RQ3) and then develop

solutions for the problems (RQ4).

1.3 Research methods

First, we conducted a systematic literature review (SLR) in Publication

I, to survey the literature about the adoption problems, their causes and

solutions. As we found that the literature was not providing enough expla-

nations for the problems, we conducted four additional case studies. In the

first case study in Publication II, we investigated the adoption problems

in a distributed organization. This case study was extended in a follow-up

case study in Publication III, in order to see how the release stabilization

period could be reduced after the adoption efforts. In another case study,

we focused on the consequences of the stage-gate development process

and how it explained the adoption problems in Publication IV. Finally, we

compared two organizations with different organizational contexts work-

ing with similar products in a fourth case study in Publication V, in order

to compare the effects of different organizational contexts.

1.4 Structure of the thesis

The dissertation is structured as follows. First, we discuss related work

in Section 2. Second, we define our research problem and introduce the

research methodology in Section 3. Third, we present an overview of the

results in the publications in Section 4. Fourth, we discuss the implica-

tions and validity of the results in Section 5. Finally, we conclude the

dissertation and propose future work in Section 6.

12

2. Related work

In this section, we review related work related to the dissertation. First,

we conceptualize the modern release engineering and after that, review

empirical research on the subject.

2.1 Modern release engineering

Release engineering is the process where the individual changes made to

a software system are assured for quality and brought to the end users

of the software [1]. As shown in Table 2.1, the areas of release engineer-

ing have been studied under several research topics: software configura-

tion management (SCM) [11], software testing (ST) [12], software release

management (SRM) [13] and IT operations (ITO) [14]. What release en-

gineering adds to the research topics is that it studies the connections

between the topics and aims to improve the release engineering process

holistically to avoid local optimization.

While assuring the quality during software development has been a re-

search topic in the past, recently more focus has been set on the speed

Table 2.1. The relationships of the release engineering areas and previous research top-
ics.

Release engineering areas SCM ST SRM ITO

Version control X

Deployment pipeline X X

Build systems X

Infrastructure-as-code X

Deployment X X

Release X X

13

Related work

of delivery due to market pressure [2]. Thus, when designing a release

engineering process, there is a requirement to balance release confidence

and velocity [15]. In this dissertation, we define that modern release en-

gineering practices [1] aim to achieve both confidence and velocity, includ-

ing practices such as version control [1], organizational collaboration [14],

build, test and deployment automation [3], releasing individual changes

[3], decoupling deployment from release [1, 16] and detecting defects dur-

ing deployments [17].

The industry has used three concepts to describe the maturity level of

modern release engineering practices: continuous integration, continuous

delivery and continuous deployment. Next, each of them is introduced.

Continuous integration (CI) [18] states that changes to a software sys-

tem are automatically build and tested. Typically a CI server, such as

Jenkins [19], is used to automatically build and test changes that are sub-

mitted to the used version control system. The CI server also notifies the

developers if the build or tests fail, so that problems can be solved imme-

diately when occurred. Thus, the CI server keeps the development team

aware of the status of their work [20]. In order to keep the CI feedback

fast, developers should submit their changes frequently to the version con-

trol system. For example, Fowler [18] suggests changes to be submitted

at least once a day.

Continuous delivery (CD) [3] extends CI by requiring that the test and

deployment processes are automated to the extent that the changes can

be deployed to the production environment after passing the tests. A

CI server is used to automate the process, but in addition tools, such as

Docker [21] and Ansible [22], are used to automate and manage the de-

ployments to different environments. Finally, a testing tool such as Robot

Framework [23] is used to automate the end-to-end acceptance tests. In

CD, production deployments are not automatically triggered after passing

all the tests, but instead production deployments are triggered manually,

in order to allow deferring production deployments for business reasons.

Continuous deployment (CDep) [17] removes the decision whether to de-

ploy changes to production or not, as the changes are automatically de-

ployed if the tests pass. Thus, the only difference to CD is that the pro-

duction deployments are automatically triggered after the changes have

passed all the required tests. A production deployment does not always

mean that a change is released, as it can be hidden with feature toggles

[16].

14

Related work

2.2 Empirical research on modern release engineering

As advances in release engineering have been driven by the industry [1],

empirical research available on the modern release engineering has been

limited until recently [24]. In his dissertation, Wright [9] studied release

engineering in general and concluded that improving process automation

and organizational communication would prevent the most common re-

lease engineering failures. Leppänen et al. [25] surveyed Finnish soft-

ware companies and discovered that the goals to adopt modern release

engineering practices vary between companies. The same survey data

was analyzed by Mäkinen et al. [26] to investigate tool-usage in release

engineering. Some tools, such as version control, are used in every com-

pany, whereas test automation tools for acceptance testing are not used

in most of the companies. Thus, it seems that some areas of the release

engineering are commonly used, but not all of them.

Other related concepts to modern release engineering are rapid releases

[27] and devops [4]. Rapid releases concern the release frequency, and

modern release engineering practices are an enabler for rapid releases,

as the time for testing with rapid releases is limited [27]. Devops is an

organizational approach and focuses on the collaboration of different or-

ganizational functions, especially development and operations [4]. While

organizational collaboration is not an area of release engineering, it is an

enabler for better release engineering practices [9].

2.2.1 Benefits of modern release engineering practices

Benefits of modern release engineering practices have been examined in

multiple studies. Claimed benefits, such as support for automated testing,

improved communication, developer productivity and project predictabil-

ity have been verified in an interview study [28]. An analysis of ver-

sion control data has shown that projects using modern release engineer-

ing practices are more productive without a decrease in software quality

[29]. Furthermore, projects using modern release engineering practices

are able to release the software more often [30].

2.2.2 Adoption of modern release engineering practices

The adoption of modern release engineering practices have been charac-

terized in two models. The stairway to heaven model by Holmström Ols-

15

Related work

son et al. [31] describes CI and CD as the stepping stones between the

adoption of agile practices and having R&D function as an experiment

system. The model states that after adopting CD, an organization can

develop software through experimentation instead of traditional specifi-

cation; minimal functionality is implemented and deployed first to see

whether or not the expected benefits of the functionality are present when

the software is actually used.

The other adoption model by Eck et al. [32] describes the implications

that an organization must implement when adopting the modern release

engineering practices. The model introduces three adoption stages, ac-

ceptance, routinization and infusion, in which different implications take

place. The implications are categorized into four categories: purposeful

adoption, processes & organization, testing and IT infrastructure. Thus,

the adoption includes both social and technical implications.

2.2.3 Adoption problems of modern release engineering
practices

The adoption of modern release engineering practices has been investi-

gated in many experience reports and a few case studies, as studied in

the systematic literature review of this dissertation, Publication I. While

many problems during the adoption have been identified and solutions to

mitigate the problems have been proposed, there is still not a clear picture

of the adoption, especially in more complex software development con-

texts. In addition, there are no commonly accepted explanations for the

problems during the adoption of modern release engineering practices.

In order to understand the adoption problems, the adoption itself has to

be understood as a technological and social process [33]. In addition, the

process is centered around an organization developing software systems.

Eck et al. [32] studied the actions needed to adopt the practices across an

organization, and found that the actions relate to the themes of purposeful

adoption, processes and organization, testing and IT infrastructure. In

addition to an organizational-level view of adoption, the adoption requires

acceptance on an individual-level too [34].

16

3. Research problem and methodology

In this section, we first define the research problem and research ques-

tions of the dissertation. After that, we introduce the research methodol-

ogy, including data collection, data analysis and validation methods.

3.1 Research problem and questions

As previous research has not identified the explanations for modern re-

lease engineering adoption problems, in this dissertation, we perform ex-

ploratory research on the adoption problems. Exploratory research is a

valid research approach when there is not much information available on

the subject [35]. The aim of exploratory research is to produce hypothe-

ses that can be used in the following descriptive or explanatory research

[35]. Our research can be also categorized as inductive [35], as we did

not employ any theory to explain the phenomenon before conducting the

studies.

The research problem of the study is what prevents the adoption of

modern release engineering practices? In our investigation, we limit

ourselves to the internals of organizations and do not attempt to under-

stand other stakeholders’, such as customers’, viewpoints. The research

problem is investigated by answering the research questions of the study

in Table 3.1. The research questions follow the logic of root cause analysis

[10]. First, in order to understand the problems, we have to understand

the phenomenon itself (RQ1). Second, we have to identify problems (RQ2),

in order to improve the practice. Third, we have to explain the problems

(RQ3), in order to be able to solve them. Finally, we can develop solutions

for the problems based on the explanations (RQ4).

We map the publications to the research questions in Table 3.1. In Pub-

lication I, we conducted a systematic literature review to investigate the

17

Research problem and methodology

Table 3.1. The relationships of the research questions and the publications. "X" denotes
that the research question was directly addressed in the publication and "(X)"
denotes that the publication indirectly yielded results related to the research
question.

Research Question I II III IV V

RQ1. How are modern release engineering

practices adopted?

(X) (X)

RQ1.1. How is the continuous end-to-end test-

ing practice adopted?

X

RQ1.2. How is the release stabilization period

reduced?

X

RQ2. What problems have been faced when

adopting modern release engineering practices?

X X X

RQ3. What explanations for the problems have

been presented?

X (X) X X

RQ4. What solutions for the problems have

been used or proposed?

X X

research questions RQ2, RQ3 and RQ4. In Publication II, we conducted

the first case study that examined the research questions RQ1, RQ2 and

RQ4. The last three case studies were more focused. In Publication III, we

focused on the reduction of release stabilization period and how it was en-

abled by the test automation efforts. In Publication IV, we focused on how

the used stage-gate product development process explained the adoption

problems. Finally, in Publication V, we focused on how the organizational

context explained the used release engineering practices in two case orga-

nizations.

3.2 Research methodology

In this section, we overview the used research methodology. First, we

introduce the systematic literature review methodology used in Publica-

tion I. After that, we introduce the case study methodology used in the

other publications. Finally, we discuss the data collection, analysis and

validation methods used in the publications.

18

Research problem and methodology

Figure 3.1. Overview of the research process in Publication I.

3.2.1 Systematic literature review

Systematic literature reviews (SLR) are used to present the available ev-

idence on specific research questions with trustworthy, rigorous and au-

ditable methodology [36]. Conducting a SLR consists of five steps [36]:

identification of research, selection of primary articles, study quality as-

sessment, data extraction and data synthesis.

In Publication I, we identified related literature by using the following

search string in major bibliographic databases: ("continuous integration"

OR "continuous delivery" OR "continuous deployment") AND software. As

the review was conducted in 2014, the concept of "modern release engi-

neering" was not yet identified, and we used the terms continuous in-

tegration, continuous delivery and continuous deployment, which were

used in both research and practice for the phenomenon. Currently, the

research field has matured, and other relevant search terms, such as "de-

vops", have emerged. The search, filtering and data extraction process is

visualized in Figure 3.1. A total of 30 articles were selected for the data

extraction phase. We classified 21 articles as experience reports and 9

articles as scientific articles.

We selected the primary articles by excluding articles that did not pro-

19

Research problem and methodology

vide evidence from real-life software development contexts. In addition,

we excluded cases that provided only technical implementation descrip-

tions, but did not provide evidence from the use of the technical imple-

mentations.

We did not exclude articles based on quality assessment, as most of the

articles were experience reports and at the time there were only a few

proper empirical research articles on the subject. We mitigated the bias

from the experience reports by focusing on experiences instead of opinions

or claims.

The data was extracted and synthesized by following the thematic syn-

thesis procedures [37]. First, quotations of text that discussed problems

with the modern release engineering practices or the adoption were iden-

tified in the primary articles. Next, the problems were given descriptive

codes and descriptions. In addition to problems, explanations of the prob-

lems and solutions to the problems were captured with codes. The ex-

planations were coded as relationships between the problem codes, e.g.,

nondeterministic tests can explain the ambiguity of test results. Finally,

the problem and solution codes were grouped under higher-order themes

which describe areas where adoption problems can exist.

3.2.2 Case studies

Case study is a research strategy which can be used for investigating a

contemporary phenomenon within its real-life context, especially when it

is difficult to separate the phenomenon from the context [38]. The case

study strategy is appropriate for investigating modern release engineer-

ing practices, as it would be difficult to simulate the phenomenon in a

laboratory setting. Furthermore, our goal in this dissertation is to cap-

ture realistic adoption problems which might not occur in isolation from

the context of development. It is also possible that the adoption problems

are explained by the context.

In this dissertation, we conducted four case studies studying four cases

which are described in Table 3.2. We used development organizations

developing single products as the units of analysis. Two case studies were

conducted for the case Ericsson in Publication II and Publication III. The

case Nokia was studied in Publication IV and both cases BigCorp and

SmallOrg were compared in Publication V.

The cases were selected to be investigated because they were revelatory

[38] considering the adoption of modern release engineering practices.

20

Research problem and methodology

Table 3.2. Case organizations studied in this dissertation. OC=Organizational Context,
CS=Company Size, COS=Case Organization Size, OD=Organizational Distri-
bution, CD=Case Domain.

Case Ericsson Nokia BigCorp SmallOrg

OC Unit in a

large com-

pany

Unit in a

large com-

pany

Unit in a

large com-

pany

Startup

CS > 100,000 > 50,000 > 20,000 50

COS 135 – 180 50

OD Four sites in

Europe

Several sites

in multiple

countries

Several sites

in Europe and

Asia

One site in

North Amer-

ica

CD Telecom Telecom Domain X Domain X

Table 3.3. Data collected in the case study publications.

Publ. II III IV V

Cases Ericsson Ericsson Nokia BigCorp,

SmallOrg

Data 27 interviews 11 inter-

views, ver-

sion control

and issue

tracking data

2 workshops

with alto-

gether 15

participants

18 inter-

views, con-

tinuous

integration

data

Case Ericsson was revelatory, because it was a large distributed orga-

nization adopting modern release engineering practices. Case Nokia was

revelatory, because the product development process used in the case was

claimed to explain the adoption problems. Finally, comparing BigCorp

and SmallOrg was revelatory, because they were developing competing

products in different kind of organizations. Therefore we were able to in-

vestigate the effects of organizational context to the release engineering

practices and mitigate the effect of the product context on the practices.

3.2.3 Data collection

In the case studies, the main data collection method was qualitative in-

terviews with an interview guide approach [39], as shown in Table 3.3.

21

Research problem and methodology

In Publication III, quantitative data from version control and issue track-

ing systems was collected to triangulate the qualitative results. Also in

Publication V, continuous integration data was collected to illustrate the

difference in discipline in the cases. Finally, in Publication IV, we used

ARCA root cause analysis method [10] to investigate the adoption prob-

lems. The ARCA method is comparable to structured group interviews

[39].

In the interview guide approach [39], interview questions are not deter-

mined beforehand, but instead a list of topics is used as a guide to make

sure that the research questions are covered in the interviews. Otherwise,

the approach is flexible and allows interviewees discuss subjects that they

feel important regarding the subject of the research. In addition, ques-

tions can be asked spontaneously based on the role and experience of the

interviewee, which allows investigating topics that would be difficult to

plan before the interviews.

We interviewed various roles in the organizations. In Publication II,

we interviewed managers, architects, developers, testers and coaches. In

Publication III, we interviewed managers, testers and developers. In Pub-

lication IV, we interviewed managers, developers and testers. In Pub-

lication V, we interviewed managers, architects, developers and service

team members. This allowed us to gain a holistic understanding on the

subject, not being biased by single roles. In addition, we attempted to

interview team members from as many teams as possible, although the

organizational distribution limited the possibility to interview everyone.

The interviewees were selected by the key stakeholders in the case orga-

nizations, according to the requests we made.

3.2.4 Data analysis

The interviews were audio recorded and transcribed by a professional

transcription company. The ARCA workshops were transcribed by the au-

thor of the dissertation, due to having multiple people talking in the work-

shop and technical language. The transcriptions were first read through

by the author to get immersed with the data [39]. After that, the au-

thor identified quotations from the transcriptions that were relevant to

the research goals of the individual studies. The concepts in the quota-

tions were given descriptive codes [39] to identify the same concepts in

other quotations too. The codes were refined until they represented the

interview data well enough and comprised a coherent whole.

22

Research problem and methodology

Quantitative data from software repositories were analyzed in Publica-

tion III and Publication V. In Publication V, the descriptive statistics were

calculated from the data, to compare the continuous integration discipline

in the two case organizations. In Publication III, time series analysis [38]

was done to investigate the effects of reducing the release stabilization pe-

riod. In both publications, the quantitative data analysis was performed

to triangulate [38] the qualitative data analysis.

3.2.5 Validation

In this section, we describe how we mitigated the threats validity, accord-

ing to the validity types of case study research [40]: construct validity,

internal validity, external validity and reliability. In Section 5.5, we dis-

cuss what threats we could not mitigate.

Construct validity

Construct validity assesses whether the constructs operationalized in re-

search are the same as what is investigated according to the research

questions. In the SLR, it was more difficult to assess if an article used the

same definition for, e.g. CI, as we did. Nevertheless, the inclusion and ex-

clusion steps of the SLR were performed by multiple researchers in order

to reduce bias.

In the case studies, it was easier to improve construct validity, because

we either asked the interviewees what they meant by CI (Publication II)

or provided them a common definition (Publication IV). Furthermore, in

the interviews, we used a flexible interview guide approach and open

questions, which allowed interviewees to explain their experiences with

their own words. Finally, we could ask them clarifications if something

was ambiguous.

Internal validity

Internal validity assesses whether the explanations based on the collected

data are valid. In both SLR and case studies, this was achieved with

triangulation [38]. First, multiple researchers were involved in primary

article selection in the SLR and in most of the interviews. Second, in

the case studies, we interviewed employees in various roles, teams and

sites. Third, the data analysis results were reviewed and criticized by the

other authors of the publications. Finally, key stakeholders from the case

organizations reviewed the final results of the case studies and made sure

23

Research problem and methodology

that the results truthfully represented their situation.

External validity

External validity assesses whether the results are generalizable outside

the studied cases. We described the context of the case organizations in

order to allow generalizing the results to other similar contexts. In Pub-

lication V, we identified constructs that can be generalized outside the

studied cases.

Reliability

Reliability assesses whether the data and analysis are dependent on the

researchers. We documented the used data collection and analysis pro-

cedures in the publications. In the SLR, we performed inter-rater agree-

ment on the selection of primary articles and achieved moderate agree-

ment.

24

4. Overview of the results

In this section, an overview of the answers to the research questions are

given based on the publications in the dissertation.

4.1 RQ1. How are modern release engineering practices adopted?

The adoption of modern release engineering practices consists of automat-

ing the build, test and deployment activities. In this dissertation, we focus

on the test automation. In addition, we study how the release stabiliza-

tion period can be reduced with test automation, as in the more mature

modern release engineering practices, there should be no release stabi-

lization period needed before production deployment.

4.1.1 RQ1.1. How is the continuous end-to-end testing practice
adopted?

In Publication II, we investigated a case organization that had adopted

the practice of continuous end-to-end testing (CET). For the case organiza-

tion, it took over a year to automate half of the manual test cases of their

system, as shown in Table 4.1. The adoption consisted of three phases.

First, the CET system was created by two specialized teams. Second, au-

tomated end-to-end tests (AET) were created for the legacy functionality

by the two teams. Third, the habit of creating AETs for new functional-

ity was spread across the whole organization. The first two phases could

be done by specialized teams, whereas the last phase required collabora-

tion of the whole organization. While creating AETs is a technical task,

spreading the practice in an organization is a social process.

25

Overview of the results

Table 4.1. Timeline of the events during continuous end-to-end testing adoption in Pub-
lication II.

Date Event

September 2013 Testing activities and test automation close to non-

exist, two teams on Site A start to build the CET

system and create legacy AETs

January 2014 Evaluation of test frameworks done by one team on

Site A, one framework chosen for the system

March 2014 Events organized at all sites to spread the test au-

tomation mindset and give trainings for the chosen

test framework

December 2014 50 % of legacy AETs created

Figure 4.1. After the release stabilization period was reduced, less commits were done
near the release date in Publication III.

26

Overview of the results

Table 4.2. Problem themes and related problems found in Publication I.

Theme Problems

Build Design Complex build, inflexible build

System Design System modularization, unsuitable architecture, internal

dependencies, database schema changes

Integration Large commits, merge conflicts, broken build, work

blockage, long-running branches, broken development flow,

slow integration approval

Testing Ambiguous test result, flaky tests, time-consuming testing,

hardware testing, multi-platform testing, UI testing,

untestable code, problematic deployment, complex testing

Release Customer data preservation, documentation, feature

discovery, marketing, more deployed bugs, third party

integration, users do not like updates, deployment

downtime

Human and

Organizational

Lack of discipline, lack of motivation, lack of experience,

more pressure, changing roles, team coordination,

organizational structure

Resource Effort, insufficient hardware resources, network latencies

4.1.2 RQ1.2. How is the release stabilization period reduced?

In Publication III, we investigated how the same case organization as in

Publication II reduced the release stabilization period after automating

the end-to-end and subsystem tests. Reducing the release stabilization

period made the feature freeze practice work more as intended; less com-

mits were done near the release date, as shown in Figure 4.1. However,

further reduction of stabilization period would have required deployment

automation too, as setting up the test environments for the release testing

took the majority of the time during the release stabilization period.

4.2 RQ2. What problems have been faced when adopting modern
release engineering practices?

In Publication I, we studied the literature about the problems faced when

adopting modern release engineering practices. From the 30 analyzed

articles, we extracted 35 descriptions of cases where modern release en-

27

Overview of the results

Figure 4.2. Adoption problems and their proposed solutions found in Publication II.

gineering practices were either used or being adopted. We could identify

multiple problems related to the adoption, under the themes of build de-

sign, system design, integration, testing, release, human and organiza-

tional and resource (see Table 4.2).

In Publication II (see Figure 4.2) and Publication IV, we investigated the

problems in two case organizations. We could recognize all the problem

themes in the cases. However, the problems that the cases were mostly

struggling with were in the themes of system design, integration, testing,

human and organizational and resource. In addition, problems in human

and organizational and resource themes were perceived to explain the

problems in the other themes.

4.3 RQ3. What explanations for the problems have been
presented?

In Publication I, we found that in the literature, some problems were per-

ceived to explain other adoption problems, as shown in Figure 4.3. How-

ever, the literature does not explain, why the adoption problems are not

solved in practice, even when there are plenty of solutions described in

the literature. The case studies, Publication II, Publication IV and Publi-

cation V, provided explanations how the problems emerge and why they

28

Overview of the results

time-
consuming

testing

large
commits

slow
integration
approval

network
latencies

broken de-
velopment

flow

merge
conflicts

work
blockage

broken
build

long-
running

branches

flaky tests

complex
build

inflexible
build

unsuitable
architecture

untestable
code

system
modulari-

zation

complex
testing

problematic
deploy-
ment

lack of
discipline

ambiguous
test result

effort

lack of
motivation

lack of
experience

more
pressure

build system integration testing human resources

Figure 4.3. Relationships between the problems found in Publication I.

are not solved.

In Publication II, the system design made the automated testing and

deployment more difficult. First, changes to some subsystems could not

be version controlled at all, which would be needed for the automatic de-

ployment of the changes. Second, some subsystems did not behave de-

terministically enough to be automatically tested. Instead, the system

behavior included delays which would slow down the execution of tests

and cause tests to fail nondeterministically. The subsystems were devel-

oped by third parties and could not be improved by the case organization.

In Publication IV, the system design also explained the adoption problems

by causing nondeterministic tests.

In Publication II, the organizational distribution was an explanation for

the slow adoption of continuous end-to-end testing. The distribution made

communication and coordination more difficult. In addition, all the adop-

tion drivers were located on a single site and the adoption had not spread

over the site borders. In Publication IV, the organizational distribution

also explained the adoption problems by lack of communication and coor-

dination, which resulted in broken builds and duplicate testing.

29

Overview of the results

Figure 4.4. Mechanisms that explain the adoption problems in Publication IV.

4.3.1 Stage-gate product development process explaining the
problems

In Publication IV, we investigated how the stage-gate product develop-

ment process explained the adoption problems in the case organization.

We found that the plans which were conceived early in the stage-gate pro-

cess were overscoped and could not be realized on later stages, adding

time pressure on new feature development and reducing time from the

adoption (see Figure 4.4). Similar time pressure for new feature develop-

ment was explaining the adoption problems in Publication II. In addition,

the stage-gate process required the use of different development branches

for different stages, which added complexity to the development work and

increased the cost of adoption.

4.3.2 Organizational context explaining the problems

In Publication V, we compared the release engineering practices imple-

mented in two organizational contexts: large mature company context

and startup context. Since the case organizations were developing com-

peting products, we could control the effect of product context and inves-

tigate the differences explained by the organizational context (see Fig-

ure 4.5). We found out that in the large mature company context, the

30

Overview of the results

Figure 4.5. Mechanisms that explain the outcomes of the release engineering practices
in Publication V.

number of customers and stakeholders inside the company increases the

cost of adoption due to higher quality requirements and adoption com-

plexity. Thus, the increased cost of adoption can prevent it from hap-

pening. In the startup context, the main explaining factor is the lack of

resources which prevents further adoption. However, with flexibility, star-

tups can mitigate the lack of resources by collaborating more tightly with

customers.

4.4 RQ4. What solutions for the problems have been used or
proposed?

In Publication I, we found that in the literature, most of the adoption prob-

lems can be solved with the solutions given in Table 4.3. However, since

the problems described in the literature are not contextualized, it might

be that the solutions are not applicable in every context. In Publication II,

we identified proposed solutions for the problems present in the case orga-

nization. Especially the actions of starting the adoption with specialized

teams for the technical implementation, demonstrating early value with

radiators, providing trainings and support for creating the automated test

cases while learning and moving the specialists to other teams after im-

plementing the initial technical infrastructure were considered beneficial

31

Overview of the results

Table 4.3. Solutions themes and related solutions found in Publication I.

Theme Solutions

System

Design

System modularization, hidden changes, rollback, redundancy

Integration Reject bad commits, no branches, monitor build length

Testing Test segmentation, test adaptation, simulator, test

parallelization, database testing, testing tests, comprehensive

testing, commit-by-commit tests

Release Marketing blog, separate release processes

Human and

Organiza-

tional

Remove blockages, situational help, demonstration,

collaboration, social rules, more planning, low learning curve,

training, top-management strategy, communication

Resource Tooling, provide hardware resources

for succeeding with the adoption. Still, the actions could not be applied

on every site of the organization, because there was no required organiza-

tional support and individual acceptance, which explains the slower than

expected adoption rate in the case organization.

32

5. Discussion

In this section, we discuss the implications of the results as shown in Fig-

ure 5.1, first generally as hypotheses that can be tested in future studies,

and then specifically to research and practice. After that, we discuss the

threats to validity of the results.

5.1 Adopting modern release engineering practices

In this section, we will discuss the implications regarding the adoption of

modern release engineering practices. We will focus on what the adoption

requires and how it can be measured.

5.1.1 Adopting modern release engineering practices requires
build automation, test automation and deployment
automation

Adopting modern release engineering practices requires automation of

build, test and deployment activities, which is described in the practi-

tioner literature [3]. This is also visible in the results from the SLR in

Publication I, as there were problem themes for build design and test-

ing, and a problem concept "problematic deployment" under the testing

theme. Finally, lack of automation and tool support has been found to

hinder successful release processes [9].

In the case studies, we focused on the test automation, because the im-

provements in the case organizations focused mostly on test automation.

Especially automating the end-to-end testing is problematic, since it was

the major theme discussed in Publication II, and a survey of Finnish soft-

ware companies shows that acceptance testing tools are not used in most

of the companies [26]. Thus, especially the automation of the end-to-end

or acceptance tests is a substantial part of adopting modern release engi-

33

Discussion

Figure 5.1. An overview of the implications of the results.

neering practices.

The interviewees did not bring out build automation as a noteworthy

theme in the interviews, and we suspect that the build automation was

not a substantial issue in the case organizations. However, for some other

software systems with more complex compilation configurations, build au-

tomation can be a major issue [41].

Regarding deployment automation, the case organizations did not have

access to production environments in order to automate deployments to

production. However, deployments to test environments were automated

in the case organizations. In Publication III, we identified that deploy-

ments to the release test environment were problematic and they could

have been automated to improve the release testing process. But as re-

leases were performed six times per year in Publication III, the lack of

automation regarding deployments was not a critical issue. When mov-

ing towards faster release cycles, we suspect that deployment automation

becomes more important.

34

Discussion

5.1.2 Adopting modern release engineering practices requires
adoption on both organizational and individual levels

Adopting complex technological innovations in organizations requires both

organizational- and individual-level adoption [34]. In the context of mod-

ern release engineering practices, organizational-level adoption is required

to get resources for the adoption and to coordinate the adoption. Individual-

level adoption is required, because the adoption requires that individuals

automate the testing of the developed system and keep the system stable

during the development. In Publication IV, we could see that organiza-

tional support for the adoption was missing, as the adoption was driven

by the development organization and not by the management. Thus, the

organizational processes did not provide enough slack [42] and resources

for the adoption.

In Publication II, there was organizational support for the adoption, as

two teams were permitted to focus only on the adoption and the man-

agers in the organization were facilitating the adoption. However, the

individual-level adoption was not proceeding as fast as expected by the

adoption drivers. Gallivan [34] shows that bureaucratic culture, central-

ized planning, cultural norms of learning and job roles and individual

attributes may hinder the adoption on the individual-level. The case or-

ganization in Publication II was part of a large mature company, and it

can be suspected that some of the hindering factors were present in the

organization, although they were not under our investigation.

Persuasion of informal advocates, e.g. team members, can significantly

speed the adoption of innovations [43]. This was also visible in Publica-

tion II, as moving early adopters to other teams had spread the adoption

to other team members in those teams. However, after accepting the adop-

tion, individuals still have to learn to use the test automation tools, which

can take long time if the individual has no previous experience with test

automation. Furthermore, time for learning can be limited, as the devel-

opment of the system is often prioritized higher than the adoption, which

was visible in both Publication II and Publication IV.

5.1.3 Adopting modern release engineering practices reduces
the time needed for deployment stabilization

In Publication III, we studied how the adoption of modern release engi-

neering practices allowed the case organization to reduce the time needed

35

Discussion

for release stabilization. According to the results, reducing the release

stabilization time did not have any negative consequences. Thus, we could

deduce that the time needed for release stabilization could be used as a

measure for the maturity of modern release engineering adoption.

However, when developing new features or making changes with large

impacts, there is often a need to hide the changes with feature toggles

[16] after they have been deployed to production environment, in order

to verify the functionality in a realistic setting. Thus, there might not

be deployment stabilization before the production deployment in CD, but

there can still be release stabilization after the production deployment.

As in modern release engineering, the release of a feature is decoupled

from the deployment of a feature [1], stabilization for deployment and sta-

bilization for release can be decoupled too. In Publication III, the deploy-

ment and release of the system were still coupled and thus we could only

speak of release stabilization regarding the case organization. However,

based on the literature, we suggest using deployment stabilization as the

measure for the maturity of modern release engineering practices instead

of release stabilization, in order to cover scenarios where deployment and

release are decoupled.

The release stabilization period was reduced from six weeks to three

weeks in Publication III. From the literature, we can find release stabi-

lization periods for other types of software: 9 weeks for Linux [44], 13

weeks for Chrome [44] and 1 week for Facebook mobile applications [8].

As explained in [8], product context can explain the need for release sta-

bilization period, e.g., if the deployment cannot be controlled by the de-

velopment organization and the number of and variance in production

environments is large. Thus, the measures of deployment stabilization

are not easily comparable across different software systems.

5.2 Explanations for the adoption problems

In this section, we discuss the implications regarding the explanations for

the adoption problems. First, we overview the problems and then focus on

specific explanations based on organizational distribution, system design,

stage-gate process and organizational context. Finally, we discuss the

proposed or used solutions.

36

Discussion

5.2.1 Problems are related to build automation, test
automation, deployment automation or social adoption

As discussed in the previous section, the adoption requires build automa-

tion, test automation, deployment automation and adoption on both or-

ganizational and individual levels. Thus, these areas cover the primary

adoption problems. In the SLR in Publication I, we also identified the

problem themes of system design and integration. However, system de-

sign explains the primary problems of build automation, test automation

and deployment automation. In addition, integration problems can be

explained by the primary problems.

5.2.2 Organizational distribution explains social adoption
problems

Organizational distribution explains the social adoption problems related

to organizational and individual adoption. In Publication II, the site bound-

aries and limited communication channels were limiting the adoption.

Similarly, in Publication IV, the organizational distribution hindered the

communication, which showed as surprising changes to the software sys-

tem coming from other sites. However, in the literature in Publication I,

the organizational distribution was not identified as a problem. Thus, the

relationship between the organizational distribution and adoption prob-

lems should be investigated in further studies.

While the organizational distribution explains the adoption problems,

adopting modern release engineering practices can also improve collabo-

ration in a distributed setting [32]. Thus, if possible, the adoption should

be made before distributing the development and not afterwards, as in a

distributed setting the adoption itself is more difficult.

5.2.3 System design explains technical adoption problems

System design can explain problems in the technical areas of the adop-

tion: build automation, test automation and deployment automation. In

Publication I, we found cases where the system design had an effect on

the testability and deployability on the system. Similarly, in Publication

II and Publication IV, the system design made the automated testing and

deployment of the system more difficult, as the system tests were not re-

liable enough and deploying the systems was not possible without down-

time. The results of this dissertation align with other studies that have

37

Discussion

investigated the relationship between the system design and modern re-

lease engineering practices [9, 45, 46, 47, 48].

5.2.4 Limited resources explains both social and technical
adoption problems

In Publication IV, we found that the use of stage-gate process limited the

resources for the adoption, and thus hindered the adoption in all areas.

Similar finding was made in Publication II, where the pressure for new

feature development decreased the amount of resources for the adoption.

The problems can be due to overscoping [49], as the scope for the new

feature development in both cases was stated to be high and prioritized

over the adoption. Gruver et al. [50] describe a similar situation, where

the scope of development was not decreased, but instead an architectural

change was applied which allowed the development of same scope with

less resources than previously. Thus, changes in architecture or business

processes might be needed in order to allow the adoption enough resources

for proceeding as planned.

In Publication V, we found that different types of organizations have dif-

ferent kind of requirements for the modern release engineering practices.

The variance in requirements explains the cost to adopt the practices,

especially regarding the test automation. Thus, in some contexts, the re-

sources can be limited for the adoption because the requirements are set

higher, whereas some contexts can have a successful adoption with less re-

sources if the requirements are lower. We are not aware of other studies

that have investigated the effects of organizational context to the modern

release engineering practices.

5.2.5 There are no easy solutions for the adoption problems

In Publication I, we found solutions from the literature that can help in

adopting the modern release engineering practices. Some of the reported

solutions relate to the system design explanation and can help in some

situations, but as seen in Publication II, solving system design problems

can require replacing entire subsystems, which requires substantial re-

sources. Wright [9] emphasizes the role of architecture when improving

release engineering processes. He also makes the observation that orga-

nizations recognize the need for improvement in architecture, but imple-

menting the improvements is often difficult.

38

Discussion

Recently, an architectural pattern called microservices [51] has been

used to solve the system design adoption problems when the system is

executed in a cloud environment. The pattern implies that the developed

system is split into multiple services that can be built, tested and deployed

independently of each other. As speculation, the case organization stud-

ied in Publication II and Publication III could have gained benefit from

the microservices approach, as the organization had control over the pro-

duction environment, although only through a separate operations orga-

nization. The case organizations studied in the other publications would

have gained less benefit from the approach, because the production envi-

ronments were operated by their customers.

We did not find any strategies from the literature on how to solve the

problems related to the organizational distribution. If possible, similar

actions that were made in Publication II could be applied on all sites of

the organization to spread the adoption over the site boundaries. Further-

more, collaboration between sites can be improved with the best practices

in global software engineering [52]: face-to-face meetings and effective

and frequent synchronous communication.

5.3 Implications to research

This dissertation provides a framework for future research on modern

release engineering practices. Future research can consider only some

parts of the modern release engineering practices, for example, build au-

tomation, test automation or deployment automation. In addition, future

research can use the metric of deployment stabilization time to assess

the maturity and improvement of modern release engineering practices.

Also the difference between deployment and release stabilization can be

studied.

Social adoption can be studied on its own. Adopting complex technologi-

cal innovations in organizations has been studied previously [34] and ap-

plying results from that research topic to the adoption of modern release

engineering practices would be a good topic for future research. How-

ever, when studying technical adoption in case studies, the social prob-

lems should be taken into consideration too, since they can explain the

technical problems. Similarly, technical problems can explain social prob-

lems. For example, a problematic system design increases the complexity

of the adoption.

39

Discussion

The organizational distribution and system design explain many of the

adoption problems. System design has been studied in multiple earlier

investigations, but the effects of distribution are recognized only in this

study to our knowledge. Thus, in future research, the distribution and

system design should be taken into account when studying modern re-

lease engineering practices.

Finally, organizational context and used development processes, such

as stage-gate process, can explain the adoption problems. Researchers

should take these into account when comparing the practices between or-

ganizations.

5.4 Implications to practice

Based on this dissertation, the practitioners can measure their release

engineering maturity with the time needed for deployment stabilization.

In addition, practitioners can focus on how well their build, test and de-

ployment processes have been automated, when assessing the maturity.

Practitioners can assess the suitability of their system design for the

modern release engineering practices. In addition, when designing new

systems, practitioners can consider the testability and deployability of the

systems, if they aim to implement modern release engineering practices.

Practitioners in distributed organizations, with stage-gate processes or

otherwise difficult organizational contexts can see that implementing mod-

ern release engineering practices in their context might be difficult. Fur-

thermore, they can prepare for the difficulties before committing to the

adoption of modern release engineering practices.

5.5 Threats to validity

In this section, we discuss the threats to validity of our results. In Sec-

tion 3.2.5, we showed how the threats were mitigated. We use the validity

types of case study research [40]: construct validity, internal validity, ex-

ternal validity and reliability. We discuss the threats to validity of the

SLR also under these validity types.

40

Discussion

5.5.1 Construct validity

Construct validity assesses whether the constructs operationalized in re-

search are the same as what is investigated according to the research

questions. In this dissertation, there is a threat to construct validity, be-

cause the terminology used for modern release engineering practices is

ambiguous and used differently by different practitioners and researchers.

For example, there is no clear and agreed difference between CI and CD,

nor what is considered to be "continuous" enough to be accepted as CI.

In addition, the definition of CD requires the software to be always re-

leasable, but it is again questionable what is considered to be "releasable"

and what is not.

5.5.2 Internal validity

Internal validity assesses whether the explanations based on the collected

data are valid. We used interviews and software repository mining as

our data collection methods. Including observation as a data collection

method would have had better validity, as it does not have the same bi-

ases. Our data collection and analysis procedures included interpretation,

which reduced the internal validity. Finally, the studied case organiza-

tions were large, and we could not interview all parts of the organizations.

5.5.3 External validity

External validity assesses whether the results are generalizable outside

the studied cases. In the SLR, we identified 35 cases related to the subject.

However, the cases were not presented identically in the primary articles

and they did not use the same research questions as we used in the SLR.

Furthermore, the articles did not provide enough context-dependent ma-

terial for synthesizing and generalizing the results.

In the case studies, the case organizations were from two business do-

mains. The dynamics of the domains are different from other domains,

e.g., the web application domain where most of the successes in modern

release engineering practices are reported. As reported in Publication

V, it is typical in the studied domain to have release cycles of multiple

months. In addition, three of the studied cases were large mature compa-

nies and one was a startup. Thus, we were not able to study a mid-sized

company. The presented results are only generalizable to similar situa-

41

Discussion

tions and contexts.

Finally, we investigated the phenomenon in three cases. There exist

many more software organizations with the aims of implementing modern

release engineering practices. It can be expected that the results in this

dissertation can be extended by investigating further cases in different

domains and situations.

5.5.4 Reliability

Reliability assesses whether the data and analysis are dependent on the

researchers. The data collection and analysis phases included interpre-

tative elements and thus, replicating the work by other researchers can

produce different results.

42

6. Conclusions

In this section, we present the contributions of the dissertation and pro-

pose topics for future research.

6.1 Contributions of the research

This dissertation provides four contributions for the research problem:

what prevents organizations from adopting modern release engi-

neering practices? The contributions are the answers for the research

questions of the dissertation.

6.1.1 RQ1. How are modern release engineering practices
adopted?

Modern release engineering practices are adopted by automating the build,

test and deployment activities. The automation activities result in de-

crease of deployment stabilization period. The adoption is similar to the

adoption of complex technological innovations in organizations and re-

quires adoption to happen on both organizational and individual levels.

6.1.2 RQ2. What problems have been faced when adopting
modern release engineering practices?

The identified adoption problems concern primarily automation of build,

test and deployment, and social aspects. Other problems explain or are

consequences of these primary problems. The automated build and de-

ployment can be too slow, complex or inflexible so that building or deploy-

ing the system takes too long or requires substantial maintenance effort.

Automated tests can be too slow, unreliable or the tests might not be suf-

ficient for being certain of the quality of the system. Finally, individuals

might resist the change needed in the work practices, due to, e.g., lack of

43

Conclusions

resources or insufficient training. On an organizational-level, resources

or coordination can be missing for the adoption to be successful.

6.1.3 RQ3. What explanations for the problems have been
presented?

Identified explanations for the adoption problems were organizational dis-

tribution, system design, stage-gate development processes and organiza-

tional context. Organizational distribution explains the social adoption

problems, because distribution makes it more difficult to communicate,

motivate and coordinate the changes needed in the organization. System

design explains the technical adoption problems, when the architectural

requirements for modern release engineering practices, such as testabil-

ity and deployability, were not taken into account when the system was

designed. Stage-gate processes and organizational context explain all the

adoption problems, as they can either limit the resources for the adoption

or increase the need for resources by higher quality requirements.

6.1.4 RQ4. What solutions for the problems have been used or
proposed?

We identified that solutions exist for both technical and social problems.

Technical problems can be solved by changing the design of the system

so that the system and its parts are more testable and deployable. When

an organization has control over the production environment of the de-

velopment system, the microservices architectural pattern can be used to

allow deploying smaller parts of the system separately. Social problems

can be solved by implementing case specific strategies for achieving or-

ganizational change. For example, specialized teams can concentrate on

creating automated legacy test cases and supporting other teams to cre-

ate test cases for new features. These solutions can require substantial

resources and thus need support from the management.

6.2 Future work

We did not study the automation of the build or deployment activities, as it

was not either feasible in the cases or the subject was not yet timely for the

organizations. However, automation of the deployment is an important

part of adopting modern release engineering practices, as we identified in

44

Conclusions

Publication III. This could be a subject in future studies.

As our work was conducted inductively, we did not employ existing the-

ories during the data collection and analysis. However, only afterwards,

we recognized the existence of adoption theories, e.g. [34], that could be

employed for more structured investigation of the adoption.

Finally, the hypotheses presented in the discussion section of the disser-

tation can be validated further in future studies.

45

Conclusions

46

References

[1] B. Adams and S. McIntosh. “Modern Release Engineering in a Nut-

shell – Why Researchers Should Care”. In: 2016 IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER). 2016 IEEE 23rd International Conference on Soft-

ware Analysis, Evolution, and Reengineering (SANER). Vol. 5. Mar.

2016, pp. 78–90. DOI: 10.1109/SANER.2016.108.

[2] J. Bosch. “Speed, Data, and Ecosystems: The Future of Software

Engineering”. In: IEEE Software 33.1 (Jan. 2016), pp. 82–88. ISSN:

0740-7459. DOI: 10.1109/MS.2016.14.

[3] Jez Humble and David Farley. Continuous Delivery: Reliable Soft-

ware Releases through Build, Test, and Deployment Automation.

1 edition. Upper Saddle River, NJ: Addison-Wesley Professional,

Aug. 6, 2010. 512 pp. ISBN: 978-0-321-60191-9.

[4] Andrej Dyck, Ralf Penners, and Horst Lichter. “Towards Definitions

for Release Engineering and DevOps”. In: Proceedings of the Third

International Workshop on Release Engineering. RELENG ’15. Pis-

cataway, NJ, USA: IEEE Press, 2015, pp. 3–3.

[5] Tony Savor et al. “Continuous deployment at Facebook and

OANDA”. In: Proceedings of the 38th International Conference on

Software Engineering Companion. ICSE2016. ACM Press, 2016,

pp. 21–30. ISBN: 978-1-4503-4205-6. DOI: 10 . 1145 / 2889160 .

2889223.

[6] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svens-

son. “Challenges When Adopting Continuous Integration: A

Case Study”. In: Product-Focused Software Process Improvement.

Vol. 8892. Lecture Notes in Computer Science. Springer Interna-

tional Publishing, 2014, pp. 17–32. ISBN: 978-3-319-13834-3.

47

REFERENCES

[7] Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. “Continuous

Integration Applied to Software-Intensive Embedded Systems –

Problems and Experiences”. In: Product-Focused Software Process

Improvement. Springer International Publishing, Nov. 22, 2016,

pp. 448–457. DOI: 10.1007/978-3-319-49094-6_30.

[8] Chuck Rossi et al. “Continuous Deployment of Mobile Software at

Facebook (Showcase)”. In: Proceedings of the 2016 24th ACM SIG-

SOFT International Symposium on Foundations of Software Engi-

neering. FSE 2016. New York, NY, USA: ACM, 2016, pp. 12–23.

ISBN: 978-1-4503-4218-6. DOI: 10.1145/2950290.2994157.

[9] Hyrum Kurt Wright. “Release engineering processes, their faults

and failures”. PhD thesis. The University of Texas at Austin, 2012.

[10] Timo O. A. Lehtinen, Mika V. Mäntylä, and Jari Vanhanen. “Devel-

opment and evaluation of a lightweight root cause analysis method

(ARCA method) – field studies at four software companies”. In: In-

formation and Software Technology 53.10 (2011), pp. 1045–1061.

[11] Stephen P. Berczuk and Brad Appleton. Software configuration

management patterns: effective teamwork, practical integration.

Addison-Wesley Longman Publishing Co., Inc., 2002.

[12] Srinivasan Desikan. Software testing: principles and practice. Pear-

son Education India, 2006.

[13] André van der Hoek et al. “Software Release Management”. In: Pro-

ceedings of the 6th European Software Engineering Conference Held

Jointly with the 5th ACM SIGSOFT International Symposium on

Foundations of Software Engineering. ESEC ’97/FSE-5. New York,

NY, USA: Springer-Verlag New York, Inc., 1997, pp. 159–175. ISBN:

978-3-540-63531-4. DOI: 10.1145/267895.267909.

[14] James Roche. “Adopting DevOps Practices in Quality Assurance”.

In: Commun. ACM 56.11 (Nov. 2013), pp. 38–43. ISSN: 0001-0782.

DOI: 10.1145/2524713.2524721.

[15] G. Schermann et al. “Towards quality gates in continuous deliv-

ery and deployment”. In: 2016 IEEE 24th International Conference

on Program Comprehension (ICPC). 2016 IEEE 24th International

Conference on Program Comprehension (ICPC). May 2016, pp. 1–4.

DOI: 10.1109/ICPC.2016.7503737.

48

REFERENCES

[16] Md Tajmilur Rahman et al. “Feature toggles: practitioner practices

and a case study”. In: Proceedings of the 13th International Confer-

ence on Mining Software Repositories. MSR’16. ACM Press, 2016,

pp. 201–211. ISBN: 978-1-4503-4186-8. DOI: 10 . 1145 / 2901739 .

2901745.

[17] Timothy Fitz. Continuous Deployment. Feb. 8, 2009. URL: http://

timothyfitz.com/2009/02/08/continuous-deployment/ (visited on

09/08/2014).

[18] Martin Fowler. Continuous Integration. May 1, 2006. URL: http://

martinfowler.com/articles/continuousIntegration.html (visited

on 09/08/2014).

[19] Jenkins CI. URL: http://jenkins-ci.org/ (visited on 06/13/2014).

[20] John Downs, John Hosking, and Beryl Plimmer. “Status Commu-

nication in Agile Software Teams: A Case Study”. In: Proceedings

of the 2010 Fifth International Conference on Software Engineering

Advances. ICSEA ’10. Washington, DC, USA: IEEE Computer Soci-

ety, 2010, pp. 82–87. ISBN: 978-0-7695-4144-0. DOI: 10.1109/ICSEA.

2010.20.

[21] Docker containerization platform. URL: https://www.docker.com/

(visited on 01/12/2017).

[22] Ansible IT automation. URL: https://www.ansible.com/ (visited on

01/12/2017).

[23] Robot Framework for generic acceptance testing. URL: http : / /

robotframework.org/ (visited on 01/12/2017).

[24] Pilar Rodríguez et al. “Continuous deployment of software intensive

products and services: A systematic mapping study”. In: Journal of

Systems and Software 123 (Jan. 2017), pp. 263–291. ISSN: 0164-

1212. DOI: 10.1016/j.jss.2015.12.015.

[25] Marko Leppänen et al. “The Highways and Country Roads to Con-

tinuous Deployment”. In: IEEE Software 32.2 (2015), pp. 64–72.

[26] Simo Mäkinen et al. “Improving the delivery cycle: A multiple-case

study of the toolchains in Finnish software intensive enterprises”.

In: Information and Software Technology 80 (Dec. 2016), pp. 175–

194. ISSN: 0950-5849. DOI: 10.1016/j.infsof.2016.09.001.

49

REFERENCES

[27] Mika V. Mäntylä et al. “On rapid releases and software testing: a

case study and a semi-systematic literature review”. In: Empirical

Software Engineering 20.5 (2015), pp. 1384–1425. ISSN: 1382-3256,

1573-7616. DOI: 10.1007/s10664-014-9338-4.

[28] Daniel Ståhl and Jan Bosch. “Experienced benefits of continuous in-

tegration in industry software product development: A case study”.

In: IASTED Multiconferences - Proceedings of the IASTED Interna-

tional Conference on Software Engineering, SE 2013. 2013, pp. 736–

743.

[29] Bogdan Vasilescu et al. “Quality and Productivity Outcomes Relat-

ing to Continuous Integration in GitHub”. In: Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering.

ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 805–816.

ISBN: 978-1-4503-3675-8. DOI: 10.1145/2786805.2786850.

[30] Michael Hilton et al. “Usage, Costs, and Benefits of Continuous

Integration in Open-source Projects”. In: Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engi-

neering. ASE 2016. New York, NY, USA: ACM, 2016, pp. 426–437.

ISBN: 978-1-4503-3845-5. DOI: 10.1145/2970276.2970358.

[31] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. “Climb-

ing the "Stairway to Heaven" – A Multiple-Case Study Exploring

Barriers in the Transition from Agile Development Towards Con-

tinuous Deployment of Software”. In: Proceedings of the 2012 38th

Euromicro Conference on Software Engineering and Advanced Ap-

plications. Washington, DC, USA, 2012, pp. 392–399. ISBN: 978-0-

7695-4790-9. DOI: 10.1109/SEAA.2012.54.

[32] Alexander Eck, Falk Uebernickel, and Walter Brenner. “Fit for Con-

tinuous Integration: How Organizations Assimilate an Agile Prac-

tice”. In: Twentieth Americas Conference on Information Systems.

Savannah, Georgia, USA, 2014.

[33] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Au-

rum. “On the journey to continuous deployment: Technical and so-

cial challenges along the way”. In: Information and Software Tech-

nology 57 (2015), pp. 21–31. ISSN: 0950-5849.

[34] Michael J. Gallivan. “Organizational Adoption and Assimilation

of Complex Technological Innovations: Development and Applica-

50

REFERENCES

tion of a New Framework”. In: SIGMIS Database 32.3 (July 2001),

pp. 51–85. ISSN: 0095-0033. DOI: 10.1145/506724.506729.

[35] Claes Wohlin and Aybüke Aurum. “Towards a decision-making

structure for selecting a research design in empirical software engi-

neering”. In: Empirical Software Engineering (2014), pp. 1–29.

[36] B.A. Kitchenham. Guidelines for performing systematic literature

reviews in software engineering. Keele University Technical Report,

2007.

[37] D. S. Cruzes and T. Dybå. “Recommended Steps for Thematic Syn-

thesis in Software Engineering”. In: Empirical Software Engineer-

ing and Measurement (ESEM), 2011 International Symposium on.

IEEE, Sept. 2011, pp. 275–284. ISBN: 978-1-4577-2203-5 978-0-

7695-4604-9. DOI: 10.1109/ESEM.2011.36.

[38] Robert K Yin. Case study research: Design and methods. 2nd. Sage

publications, 1994.

[39] Michael Q. Patton. Qualitative Research & Evaluation Methods.

3rd. Published: Hardcover. SAGE Publications, Jan. 2002. ISBN: 0-

7619-1971-6.

[40] Per Runeson and Martin Höst. “Guidelines for conducting and re-

porting case study research in software engineering”. In: Empirical

Software Engineering 14.2 (2009), pp. 131–164. ISSN: 1382-3256.

DOI: 10.1007/s10664-008-9102-8.

[41] Shane McIntosh et al. “A Large-Scale Empirical Study of the Re-

lationship between Build Technology and Build Maintenance”. In:

Empirical Software Engineering (Aug. 1, 2014). ISSN: 1382-3256,

1573-7616. DOI: 10.1007/s10664-014-9324-x.

[42] MB Buff Lawson. “In praise of slack: Time is of the essence”. In: The

Academy of Management Executive 15.3 (2001), pp. 125–135.

[43] Dorothy Leonard-Barton. “Implementing Structured Software

Methodologies: A Case of Innovation in Process Technology”. In: In-

terfaces 17.3 (June 5, 1987), pp. 6–17. ISSN: 00922102.

[44] Md Tajmilur Rahman and Peter C. Rigby. “Release Stabilization on

Linux and Chrome”. In: IEEE Software 2 (2015), pp. 81–88.

51

REFERENCES

[45] S. Bellomo et al. “Toward Design Decisions to Enable Deployability:

Empirical Study of Three Projects Reaching for the Continuous De-

livery Holy Grail”. In: Dependable Systems and Networks (DSN),

2014 44th Annual IEEE/IFIP International Conference on. June

2014, pp. 702–707. DOI: 10.1109/DSN.2014.104.

[46] L. Chen. “Towards Architecting for Continuous Delivery”. In: 2015

12th Working IEEE/IFIP Conference on Software Architecture.

2015 12th Working IEEE/IFIP Conference on Software Architec-

ture. May 2015, pp. 131–134. DOI: 10.1109/WICSA.2015.23.

[47] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “The

Intersection of Continuous Deployment and Architecting Process:

Practitioners’ Perspectives”. In: Proceedings of the 10th ACM/IEEE

International Symposium on Empirical Software Engineering and

Measurement. ESEM ’16. New York, NY, USA: ACM, 2016, 44:1–

44:10. ISBN: 978-1-4503-4427-2. DOI: 10.1145/2961111.2962587.

[48] Gerald Schermann et al. An empirical study on principles and prac-

tices of continuous delivery and deployment. PeerJ Preprints, 2016.

[49] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. “Are you

biting off more than you can chew? A case study on causes and ef-

fects of overscoping in large-scale software engineering”. In: Infor-

mation and Software Technology 54.10 (Oct. 2012), pp. 1107–1124.

ISSN: 0950-5849. DOI: 10.1016/j.infsof.2012.04.006.

[50] Gary Gruver, Mike Young, and Pat Fulghum. A Practical Approach

to Large-Scale Agile Development: How HP Transformed LaserJet

FutureSmart Firmware. 1st. Addison-Wesley Professional, 2012.

ISBN: 0-321-82172-6 978-0-321-82172-0.

[51] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Ar-

chitecture Enables DevOps: Migration to a Cloud-Native Architec-

ture”. In: IEEE Software 33.3 (May 2016), pp. 42–52. ISSN: 0740-

7459. DOI: 10.1109/MS.2016.64.

[52] Darja Šmite et al. “Empirical evidence in global software engineer-

ing: a systematic review”. In: Empirical Software Engineering 15.1

(Feb. 2010), pp. 91–118. ISSN: 1382-3256, 1573-7616. DOI: 10.1007/

s10664-009-9123-y.

52

fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

fo ssecorp eht snaem gnireenigne esaeleR
a ot edam segnahc laudividni eht gnignirb

eht fo sresu dne eht ot metsys erawtfos
esaeler lanoitidarT .ytilauq hgih htiw erawtfos

no desucof evah sessecorp gnireenigne
sah hcihw ,esaeler a fo ytilauq eht gnizimixam

ehT .esaeler eht fo deeps eht desaerced
secitcarp gnireenigne esaeler nredom

tnemyolped dna tset ,dliub gnisu ezisahpme
noitaroballoc gnitatilicaf dna noitamotua
si ti taht os ,seiradnuob lanoitcnuf ssorca

ni ytilauq dna deeps htob eveihca ot elbissop
emos elihW .ssecorp gnireenigne esaeler eht
gnitpoda ni lufsseccus neeb evah seinapmoc
rehto ,secitcarp gnireenigne esaeler nredom

eb ot noitpoda eht dnuof evah seinapmoc
ot mia ew ,noitatressid siht nI .citamelborp

morf snoitazinagro stneverp tahw dnatsrednu
gnireenigne esaeler nredom gnitpoda

 .secitcarp

-o
tl

a
A

D
D

0

2
2

/
 7

10
2

 +a
dbhh

a*GM
FTSH

9 NBSI 0-3177-06-259-879)detnirp(
 NBSI 7-4177-06-259-879)fdp(

 L-NSSI 4394-9971
 NSSI 4394-9971)detnirp(
 NSSI 2494-9971)fdp(

ytisrevinU otlaA

ecneicS fo loohcS
ecneicS retupmoC fo tnemtrapeD

 if.otlaa.www

 + SSENISUB
 YMONOCE

 + TRA

 + NGISED
 ERUTCETIHCRA

 + ECNEICS

 YGOLONHCET

 REVOSSORC

 LAROTCOD
 SNOITATRESSID

 n
en

ak
ku

aL
 o

re
E

 s
ec

it
ca

rp
 g

ni
re

en
ig

ne
 e

sa
el

er
 n

re
do

m f
o

s
me

lb
or

p
no

it
po

d
A

 y
ti

sr
ev

i
n

U
otl

a
A

 7102

 ecneicS retupmoC fo tnemtrapeD

fo smelborp noitpodA
gnireenigne esaeler nredom

 secitcarp

 nenakkuaL oreE

 LAROTCOD
 SNOITATRESSID

	Aalto_DD_2017_Laukkanen_verkko

