Adoption problems of
modern release engineering
practices

Eero Laukkanen

Aalto University DOCTORAL
DISSERTATIONS
||

Aalto University publication series
DOCTORAL DISSERTATIONS 220/2017

Adoption problems of modern release
engineering practices

Eero Laukkanen

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 21 December 2017 at 12.

Aalto University

School of Science

Department of Computer Science
Software Process Research Group

Supervising professor
Prof. Casper Lassenius, Aalto University, Finland

Thesis advisors
D.Sc. (Tech.) Juha ltkonen, Nitor Delta Oy, Finland
Prof. Maria Paasivaara, IT University of Copenhagen, Denmark

Preliminary examiners
Prof. Tommi Mikkonen, University of Helsinki, Finland
Prof. Dag Sjeberg, University of Oslo, Norway

Opponent
Prof. Jan Bosch, Chalmers University of Technology, Sweden

Aalto University publication series
DOCTORAL DISSERTATIONS 220/2017

© 2017 Eero Laukkanen

ISBN 978-952-60-7713-0 (printed)

ISBN 978-952-60-7714-7 (pdf)

ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-7714-7

Unigrafia Oy
Helsinki 2017

Finland

441

wy

697
Printed matter

A' Aalto University Abstract

u Aalto University, P.O. Box 11000, FI-00076 Aalto

Author
Eero Laukkanen

Name of the doctoral dissertation
Adoption problems of modern release engineering practices

Publisher School of Science

Unit Department of Computer Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 220/2017

Field of research Software Engineering

Manuscript submitted 13 June 2017 Date of the defence 21 December 2017
Permission to publish granted (date) 21 August 2017 Language English
[Monograph X Article dissertation [Essay dissertation
Abstract

Release engineering means the process of bringing the individual changes made to a software
system to the end users of the software with high quality. The modern release engineering practices
emphasize using build, test and deployment automation and facilitating collaboration across
functional boundaries, so that it is possible to achieve both speed and quality in the release
engineering process. While some companies have been successful in adopting modern release
engineering practices, other companies have found the adoption to be problematic.

In this dissertation, we aim to understand what prevents organizations from adopting modern
release engineering practices. First, we conducted a systematic literature review to survey the
literature about the adoption problems, their causes and solutions. In addition, we conducted four
case studies which included qualitative interviews and software repository mining as data collection
methods. In the first case study, we investigated the adoption problems in a distributed
organization. The case study was extended in a follow-up case study, in order to see how the release
stabilization period could be reduced after the adoption efforts. In the third case study, we focused
on the consequences of the stage-gate development process and how it explained the adoption
problems. Finally, we compared two organizations with different organizational contexts working
with similar products in the fourth case study, in order to compare the effects of different
organizational contexts.

This dissertation identifies, that adopting modern release engineering practices decreases the time
needed for stabilizing a software system before it can be deployed. Problems during the adoption
of modern release engineering practices are categorized under problem themes of technical
adoption and social adoption. Technical adoption problems include build automation (slow,
complex or inflexible build), test automation (slow, unreliable or insufficent tests) and deployment
automation (slow, complex or unreliable deployment) problems, and social adoption problems
include organizational adoption (lack of resources or coordination) and individual adoption (lack
of motivation or experience) problems. These primary problems can be explained with three
identified explanations: system design (system not testable or deployable) explains technical
adoption problems, organizational distribution (more difficult communication, motivation and
coordination) explains social adoption problems and limited resources explain both adoption
problem themes. Organizations can use the results of the dissertation to design their software
processes and practices accordingly to suit modern release engineering practices.

Keywords software engineering, release engineering, adoption, continuous integration,
continuous delivery, continuous deployment, devops, case study, systematic literature

review
ISBN (printed) 978-952-60-7713-0 ISBN (pdf) 978-952-60-7714-7
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2017
Pages 169 urn http://urn.fi/URN:ISBN:978-952-60-7714-7

A' Aalto-yliopisto Tiivistelma

u Aalto-yliopisto, PL 11000, 00076 Aalto

Tekija
Eero Laukkanen

Vaitoskirjan nimi
Modernien julkaisutekniikoiden kayttoonotto-ongelmat

Julkaisija Perustieteiden korkeakoulu

Yksikké Tietotekniikan laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 220/2017
Tutkimusala Ohjelmistotuotanto

Kasikirjoituksen pvm 13.06.2017 Vaitospaiva 21.12.2017
Julkaisuluvan mydntamispaiva 21.08.2017 Kieli Englanti
[Monografia X Artikkelivaitoskirja [] Esseeviitdskirja
Tiivistelma

Ohjelmistojen julkaisutekniikalla tarkoitetaan prosessia, jolla yksittdiset ohjelmistoon tehdyt
muutokset julkaistaan loppukéayttajille hyvilla laadulla. Modernit julkaisutekniikat korostavat
kaannos-, testi- ja asennusautomaatiota ja yhteistyotd funktionaalisten rajojen yli, jotta
julkaisuprosessi olisi nopea ja takaisi hyvian laadun. Vaikka jotkin yritykset ovat onnistuneet
modernien julkaisutekniikoiden kayttoonotossa, toiset ovat kohdanneet tekniikoiden
omaksumisessa ongelmia.

Téssé vaitoskirjassa pyrimme ymmartdmaan miké estda organisaatioita omaksumasta moderneja
julkaisutekniikoita. Toteutimme ensin systemaattisen kirjallisuuskatsauksen, jossa kartoitimme
ongelmia, ongelmien syit4 ja ratkaisuja modernien julkaisutekniikoiden omaksumisessa. Tamén
jalkeen suoritimme nelja tapaustutkimusta, joissa kdytimme laadullisia haastatteluita ja
ohjelmistovarastojen louhimista tiedonkeruumenetelmini. Ensimmaiisessa tapaustutkimuksessa
selvitimme omaksumisongelmia hajautetussa organisaatiossa. Jatkoimme saman organisaation
tutkimista toisessa tapaustutkimuksessa, jossa tarkastelimme kuinka julkaisun vakauttamisaikaa
voitiin lyhentdd omaksumisen jilkeen. Kolmannessa tapaustutkimuksessa tutkimme, kuinka vaihe-
portti-kehitysprosessin kaytto selittdad omaksumisongelmia. Lopuksi neljannessa
tapaustutkimuksessa vertailimme kahta organisaatiota, joilla oli erilaiset organisatoriset kontekstit
mutta samankaltaiset tuotteet, jotta pystyimme vertailemaan erilaisten organisatoristen
kontekstien vaikutusta omaksumisongelmiin.

Téssa viitoskirjassa tunnistettiin, ettd modernien julkaisutekniikoiden omaksuminen vihentad
ohjelmiston vakauttamiseen tarvittavaa aikaa ennen ohjelmiston asennusta. Modernien
julkaisutekniikoiden omaksumisongelmat kategorisoitiin teknisiin ja sosiaalisiin
ongelmateemoihin. Tekniset omaksumisongelmat sisaltavat kiannos- (hidas, monimutkainen tai
joustamaton kaannos), testi- (hidas, epaluotettava tai riittimaton testaus) ja asennusautomaatio-
ongelmat (hidas, monimutkainen tai epéaluotettava asennus), ja sosiaaliset omaksumisongelmat
sisdltavat organisatoriset (resurssien ja koordinoinnin puute) ja yksil6lliset (motivaation tai
kokemuksen puute) omaksumisongelmat. Naitd primééarisid ongelmia selittavit kolme
selitystekijaa: ohjelmiston arkkitehtuuri (jarjelma ei testattava tai asennettava) selittaa teknisid
omaksumisongelmia, organisatorinen hajautus (vaikeampi kommunikointi, motivointi ja
koordinointi) selittda sosiaalisia omaksumisongelmia ja puutteelliset resurssit selittavit molempia
ongelmateemoja. Organisaatiot voivat kayttaa timén viitoskirjan tuloksia suunnitellessaan
prosessejaan ja kdytdntojaan, jotta ne sopivat moderneille julkaisutekniikoille.

Avainsanat ohjelmistotuotanto, julkaisutekniikka, kdyttoonotto, jatkuva integrointi, jatkuva
toimitus, jatkuva asennus, devops, tapaustutkimus, systemaattinen

kirjallisuuskatsaus
ISBN (painettu) 978-952-60-7713-0 ISBN (pdf) 978-952-60-7714-7
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2017

Sivumaira 169 urn http://urn.fi/URN:ISBN:978-952-60-7714-7

Dedicated to my loving spouse Suvi and our daughter Minea.

Preface

I would like to acknowledge the people who made this book possible.

I thank my colleagues in the Software Process Research Group at Aalto
University. Thanks to my supervisor, Professor Casper Lassenius, for pro-
viding me inspiration, direction and freedom. Thanks to my instructors,
Juha Itkonen and Maria Paasivaara, for discussing the details and giv-
ing practical guidance. Thanks to Timo Lehtinen for initial support and
for coauthoring a publication. Thanks to the other members of the group,
Jari Vanhanen, Ville T. Heikkil4, Lauri Hukkanen and Raoul Udd, for
inspiring discussions during, before and after our lunch breaks.

Thanks to Nokia, Ericsson and other organizations who were the re-
search subjects in the dissertation. Thanks to Teemu Arvonen, who was
the chief case informant at Ericsson and coauthored two publications. All
the intervieweees who were interviewed receive my sincere thanks.

Thanks to the people who reviewed the work. Thanks to Tommi Mikko-
nen and Dag Sjgberg for performing the preliminary examination. Thanks
to Jan Bosch for being the opponent of the dissertation.

This work was financially supported by TEKES (the Finnish Funding
Agency for Innovation) as part of the Need for Speed research program of
DIMECC (Finnish Strategic Center for Science, Technology and Innova-
tion in the field of ICT and digital business).

Finally, I could not have done this book without my spouse Suvi and our

daughter Minea. I thank you for the unlimited patience, love and support.

Rekola, Vantaa, October 19, 2017,

Eero Laukkanen

Preface

Contents

Preface 1
Contents 3
List of publications 7
Author’s contribution 9
1. Introduction 11
1.1 Background 11
1.2 Research problem and questions 11
1.3 Researchmethods 12
1.4 Structureofthethesis 12

2. Related work 13
2.1 Modern release engineering 13
2.2 Empirical research on modern release engineering 15
2.2.1 Benefits of modern release engineering practices . . . 15

2.2.2 Adoption of modern release engineering practices . . 15

3.

2.2.3 Adoption problems of modern release engineering prac-

tices 16

Research problem and methodology 17
3.1 Research problem and questions 17
3.2 Research methodology 18
3.2.1 Systematic literaturereview. 19
322 Casestudies 20
3.2.3 Datacollection 21
3.24 Dataanalysis 22
3.25 Validation 23

Contents

4.

5.

Overview of the results

25

4.1 RQ1. How are modern release engineering practices adopted? 25

4.1.1 RQ1.1. How is the continuous end-to-end testing prac-

25

4.1.2 RQ1.2. How is the release stabilization period reduced? 27

4.2 RQ2. What problems have been faced when adopting mod-
ern release engineering practices?

4.3 RQ3. What explanations for the problems have been pre-
sented?
4.3.1 Stage-gate product development process explaining
theproblems

4.3.2 Organizational context explaining the problems . . .

4.4 RQ4. What solutions for the problems have been used or

Discussion
5.1 Adopting modern release engineering practices
5.1.1 Adopting modern release engineering practices re-
quires build automation, test automation and deploy-
ment automation
5.1.2 Adopting modern release engineering practices re-
quires adoption on both organizational and individ-
uallevels Lo L
5.1.3 Adopting modern release engineering practices re-
duces the time needed for deployment stabilization
5.2 Explanations for the adoption problems
5.2.1 Problems are related to build automation, test au-
tomation, deployment automation or social adoption .
5.2.2 Organizational distribution explains social adoption
problems,
5.2.3 System design explains technical adoption problems .
5.2.4 Limited resources explains both social and technical
adoption problems
5.2.5 There are no easy solutions for the adoption problems
5.3 Implicationstoresearch
5.4 Implicationstopractice.
5.5 Threatstovalidity
5.5.1 Constructvalidity

27

28

30
30

31

33
33

33

35

35
36

37

37
37

Contents

5.5.2 Internalvalidity 41

5.5.3 External validity 41

5.5.4 Reliability 42

6. Conclusions 43
6.1 Contributions oftheresearch 43

6.1.1 RQ1. How are modern release engineering practices
adopted? 43
6.1.2 RQ2. What problems have been faced when adopting

6.1.3 RQ3. What explanations for the problems have been

presented? 44
6.1.4 RQ4. What solutions for the problems have been
used or proposed? 44
6.2 Futurework, 44
Publications 53

Contents

List of publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I

II

II1

v

\'%

Eero Laukkanen, Juha Itkonen, Casper Lassenius. Problems, causes
and solutions when adopting continuous delivery—A systematic
literature review. Information and Software Technology, 82, 55-79,
February 2017.

Eero Laukkanen, Maria Paasivaara, Teemu Arvonen. Stakeholder
Perceptions of the Adoption of Continuous Integration — A Case Study.
In Proceedings of the 2015 Agile Conference, Washington, D.C., 11—
20, August 2015.

Eero Laukkanen, Maria Paasivaara, Juha Itkonen, Casper Lasse-
nius, Teemu Arvonen. Towards Continuous Delivery by Reducing
the Feature Freeze Period: A Case Study. In Proceedings of the
39th International Conference on Software Engineering: Software
Engineering in Practice Track, Buenos Aires, Argentina, 23—32, May
2017.

Eero Laukkanen, Timo O.A. Lehtinen, Juha Itkonen, Maria Paasi-
vaara, Casper Lassenius. Bottom-up Adoption of Continuous Deliv-
ery in a Stage-Gate Managed Software Organization. In Proceed-
ings of the 10th ACM /| IEEE International Symposium on Empirical
Software Engineering and Measurement, Ciudad Real, Spain, 45:1—
45:10, September 2016.

Eero Laukkanen, Maria Paasivaara, Juha Itkonen, Casper Lasse-
nius. Comparison of Release Engineering Practices in a Large Ma-
ture Company and a Startup. Submitted to Empirical Software En-
gineering, May 2017.

List of publications

Author’s contribution

Publication I: “Problems, causes and solutions when adopting
continuous delivery—A systematic literature review”

The author was the first author and the main responsible for the study
design. The author collected the data, analyzed the data and wrote the
article. Other authors participated in the study design, inter-rater agree-

ment and commented other parts of the work.

Publication II: “Stakeholder Perceptions of the Adoption of
Continuous Integration — A Case Study”

The author was the first author and the main responsible for the study
design. The author collected the data with the second author, analyzed
the data and wrote the article. Other authors participated in the study

design and commented other parts of the work.

Publication IlI: “Towards Continuous Delivery by Reducing the
Feature Freeze Period: A Case Study”

The author was the first author and the main responsible for the study
design. The author collected the data with the second author, analyzed
the data and wrote the article. Other authors participated in the study

design and commented other parts of the work.

Author’s contribution

Publication IV: “Bottom-up Adoption of Continuous Delivery in a
Stage-Gate Managed Software Organization”

The author was the first author and the main responsible for the study
design. The author collected the data with the second and third author,
analyzed the data and wrote the article. Other authors participated in

the study design and commented other parts of the work.

Publication V: “Comparison of Release Engineering Practices in a
Large Mature Company and a Startup”

The author was the first author and the main responsible for the study
design. The author collected half of the data with the second and fourth
author. Other half of the data was collected by the fourth author. The au-
thor analyzed the data and wrote the article. Other authors participated

in the study design and commented other parts of the work.

10

1. Introduction

1.1 Background

Release engineering is an important part of the software development life
cycle. Release engineering means the process of bringing the individual
changes made to a software system to the end users of the software with
high quality [1]. The process consists of version control, building, testing,
deploying and releasing the software [1]. In order to survive the market
pressure, companies are required to respond quickly to customer needs
[2], which is enabled by modern release engineering practices [1] (see the
definition in 2.1). The modern release engineering practices emphasize
using build, test and deployment automation [3] and facilitating collab-
oration across functional boundaries [4], so that it is possible to achieve

both speed and quality in the release engineering process.

1.2 Research problem and questions

While some companies, such as Facebook [5], have been successful in
adopting modern release engineering practices, other companies have found
the adoption to be problematic [6]. Some explanations for the problems
are related to the domain of the developed software system, e.g., in the
embedded systems domain [7] and mobile software domain [8]. However,
other aspects have been identified as well, such as organizational and ar-
chitectural aspects [9] that explain the problems. In this dissertation, we
aim to understand the research problem: what prevents organizations
from adopting modern release engineering practices?

We address the research problem by answering four research questions:

1. How are modern release engineering practices adopted?

11

Introduction

2. What problems have been faced when adopting modern release en-
gineering practices?

3. What explanations for the problems have been presented?

4. What solutions for the problems have been used or proposed?
The research questions follow the logic of root cause analysis [10]; in order
to solve problems, we have to first understand the phenomenon (RQ1),
identify the problems (RQ2), explain the problems (RQ3) and then develop
solutions for the problems (RQ4).

1.3 Research methods

First, we conducted a systematic literature review (SLR) in Publication
I, to survey the literature about the adoption problems, their causes and
solutions. As we found that the literature was not providing enough expla-
nations for the problems, we conducted four additional case studies. In the
first case study in Publication II, we investigated the adoption problems
in a distributed organization. This case study was extended in a follow-up
case study in Publication III, in order to see how the release stabilization
period could be reduced after the adoption efforts. In another case study,
we focused on the consequences of the stage-gate development process
and how it explained the adoption problems in Publication IV. Finally, we
compared two organizations with different organizational contexts work-
ing with similar products in a fourth case study in Publication V, in order

to compare the effects of different organizational contexts.

1.4 Structure of the thesis

The dissertation is structured as follows. First, we discuss related work
in Section 2. Second, we define our research problem and introduce the
research methodology in Section 3. Third, we present an overview of the
results in the publications in Section 4. Fourth, we discuss the implica-
tions and validity of the results in Section 5. Finally, we conclude the

dissertation and propose future work in Section 6.

12

2. Related work

In this section, we review related work related to the dissertation. First,
we conceptualize the modern release engineering and after that, review

empirical research on the subject.

2.1 Modern release engineering

Release engineering is the process where the individual changes made to
a software system are assured for quality and brought to the end users
of the software [1]. As shown in Table 2.1, the areas of release engineer-
ing have been studied under several research topics: software configura-
tion management (SCM) [11], software testing (ST) [12], software release
management (SRM) [13] and IT operations (ITO) [14]. What release en-
gineering adds to the research topics is that it studies the connections
between the topics and aims to improve the release engineering process
holistically to avoid local optimization.

While assuring the quality during software development has been a re-

search topic in the past, recently more focus has been set on the speed

Table 2.1. The relationships of the release engineering areas and previous research top-
ics.

Release engineering areas SCM ST SRM ITO
Version control X

Deployment pipeline X X

Build systems X
Infrastructure-as-code X
Deployment X X
Release X X

13

Related work

of delivery due to market pressure [2]. Thus, when designing a release
engineering process, there is a requirement to balance release confidence
and velocity [15]. In this dissertation, we define that modern release en-
gineering practices [1] aim to achieve both confidence and velocity, includ-
ing practices such as version control [1], organizational collaboration [14],
build, test and deployment automation [3], releasing individual changes
[3], decoupling deployment from release [1, 16] and detecting defects dur-
ing deployments [17].

The industry has used three concepts to describe the maturity level of
modern release engineering practices: continuous integration, continuous
delivery and continuous deployment. Next, each of them is introduced.

Continuous integration (CI) [18] states that changes to a software sys-
tem are automatically build and tested. Typically a CI server, such as
Jenkins [19], is used to automatically build and test changes that are sub-
mitted to the used version control system. The CI server also notifies the
developers if the build or tests fail, so that problems can be solved imme-
diately when occurred. Thus, the CI server keeps the development team
aware of the status of their work [20]. In order to keep the CI feedback
fast, developers should submit their changes frequently to the version con-
trol system. For example, Fowler [18] suggests changes to be submitted
at least once a day.

Continuous delivery (CD) [3] extends CI by requiring that the test and
deployment processes are automated to the extent that the changes can
be deployed to the production environment after passing the tests. A
CI server is used to automate the process, but in addition tools, such as
Docker [21] and Ansible [22], are used to automate and manage the de-
ployments to different environments. Finally, a testing tool such as Robot
Framework [23] is used to automate the end-to-end acceptance tests. In
CD, production deployments are not automatically triggered after passing
all the tests, but instead production deployments are triggered manually,
in order to allow deferring production deployments for business reasons.

Continuous deployment (CDep) [17] removes the decision whether to de-
ploy changes to production or not, as the changes are automatically de-
ployed if the tests pass. Thus, the only difference to CD is that the pro-
duction deployments are automatically triggered after the changes have
passed all the required tests. A production deployment does not always
mean that a change is released, as it can be hidden with feature toggles
[16].

14

Related work

2.2 Empirical research on modern release engineering

As advances in release engineering have been driven by the industry [1],
empirical research available on the modern release engineering has been
limited until recently [24]. In his dissertation, Wright [9] studied release
engineering in general and concluded that improving process automation
and organizational communication would prevent the most common re-
lease engineering failures. Leppénen et al. [25] surveyed Finnish soft-
ware companies and discovered that the goals to adopt modern release
engineering practices vary between companies. The same survey data
was analyzed by Mikinen et al. [26] to investigate tool-usage in release
engineering. Some tools, such as version control, are used in every com-
pany, whereas test automation tools for acceptance testing are not used
in most of the companies. Thus, it seems that some areas of the release
engineering are commonly used, but not all of them.

Other related concepts to modern release engineering are rapid releases
[27] and devops [4]. Rapid releases concern the release frequency, and
modern release engineering practices are an enabler for rapid releases,
as the time for testing with rapid releases is limited [27]. Devops is an
organizational approach and focuses on the collaboration of different or-
ganizational functions, especially development and operations [4]. While
organizational collaboration is not an area of release engineering, it is an

enabler for better release engineering practices [9].

2.2.1 Benefits of modern release engineering practices

Benefits of modern release engineering practices have been examined in
multiple studies. Claimed benefits, such as support for automated testing,
improved communication, developer productivity and project predictabil-
ity have been verified in an interview study [28]. An analysis of ver-
sion control data has shown that projects using modern release engineer-
ing practices are more productive without a decrease in software quality
[29]. Furthermore, projects using modern release engineering practices

are able to release the software more often [30].

2.2.2 Adoption of modern release engineering practices

The adoption of modern release engineering practices have been charac-

terized in two models. The stairway to heaven model by Holmstrém Ols-

15

Related work

son et al. [31] describes CI and CD as the stepping stones between the
adoption of agile practices and having R&D function as an experiment
system. The model states that after adopting CD, an organization can
develop software through experimentation instead of traditional specifi-
cation; minimal functionality is implemented and deployed first to see
whether or not the expected benefits of the functionality are present when
the software is actually used.

The other adoption model by Eck et al. [32] describes the implications
that an organization must implement when adopting the modern release
engineering practices. The model introduces three adoption stages, ac-
ceptance, routinization and infusion, in which different implications take
place. The implications are categorized into four categories: purposeful
adoption, processes & organization, testing and IT infrastructure. Thus,

the adoption includes both social and technical implications.

2.2.3 Adoption problems of modern release engineering
practices

The adoption of modern release engineering practices has been investi-
gated in many experience reports and a few case studies, as studied in
the systematic literature review of this dissertation, Publication I. While
many problems during the adoption have been identified and solutions to
mitigate the problems have been proposed, there is still not a clear picture
of the adoption, especially in more complex software development con-
texts. In addition, there are no commonly accepted explanations for the
problems during the adoption of modern release engineering practices.
In order to understand the adoption problems, the adoption itself has to
be understood as a technological and social process [33]. In addition, the
process is centered around an organization developing software systems.
Eck et al. [32] studied the actions needed to adopt the practices across an
organization, and found that the actions relate to the themes of purposeful
adoption, processes and organization, testing and IT infrastructure. In
addition to an organizational-level view of adoption, the adoption requires

acceptance on an individual-level too [34].

16

3. Research problem and methodology

In this section, we first define the research problem and research ques-
tions of the dissertation. After that, we introduce the research methodol-

ogy, including data collection, data analysis and validation methods.

3.1 Research problem and questions

As previous research has not identified the explanations for modern re-
lease engineering adoption problems, in this dissertation, we perform ex-
ploratory research on the adoption problems. Exploratory research is a
valid research approach when there is not much information available on
the subject [35]. The aim of exploratory research is to produce hypothe-
ses that can be used in the following descriptive or explanatory research
[35]. Our research can be also categorized as inductive [35], as we did
not employ any theory to explain the phenomenon before conducting the
studies.

The research problem of the study is what prevents the adoption of
modern release engineering practices? In our investigation, we limit
ourselves to the internals of organizations and do not attempt to under-
stand other stakeholders’, such as customers’, viewpoints. The research
problem is investigated by answering the research questions of the study
in Table 3.1. The research questions follow the logic of root cause analysis
[10]. First, in order to understand the problems, we have to understand
the phenomenon itself (RQ1). Second, we have to identify problems (RQ2),
in order to improve the practice. Third, we have to explain the problems
(RQ3), in order to be able to solve them. Finally, we can develop solutions
for the problems based on the explanations (RQ4).

We map the publications to the research questions in Table 3.1. In Pub-

lication I, we conducted a systematic literature review to investigate the

17

Research problem and methodology

Table 3.1. The relationships of the research questions and the publications. "X" denotes
that the research question was directly addressed in the publication and "(X)"
denotes that the publication indirectly yielded results related to the research

question.
Research Question I IT IIT IV V
RQl. How are modern release engineering X)) X

practices adopted?

RQ1.1. How is the continuous end-to-end test- X

ing practice adopted?

RQ1.2. How is the release stabilization period X
reduced?

RQ2. What problems have been faced when X X X
adopting modern release engineering practices?

RQ3. What explanations for the problems have X (X) X X
been presented?

RQ4. What solutions for the problems have X X

been used or proposed?

research questions RQ2, RQ3 and RQ4. In Publication II, we conducted
the first case study that examined the research questions RQ1, RQ2 and
RQ4. The last three case studies were more focused. In Publication III, we
focused on the reduction of release stabilization period and how it was en-
abled by the test automation efforts. In Publication IV, we focused on how
the used stage-gate product development process explained the adoption
problems. Finally, in Publication V, we focused on how the organizational
context explained the used release engineering practices in two case orga-

nizations.

3.2 Research methodology

In this section, we overview the used research methodology. First, we
introduce the systematic literature review methodology used in Publica-
tion I. After that, we introduce the case study methodology used in the
other publications. Finally, we discuss the data collection, analysis and

validation methods used in the publications.

18

Research problem and methodology

Search Strategy Filtering Strategy Articles
Cases
Quotations
Search on Remove Duplicates
July 2014 Codes
Themes
317 Case Categories
Remove
Unrelated Filter
526 (— Abstracts
33
643
186 Filter Full-
texts
326 203 7
Selected
Articles
117 ‘

Search on

February 2015
[Identify M Contextual

Contextual

e i "
Cases Categorization Analysis

Evaluation
of Criticality

Problems Thematic

Synthesis 7

Identify Causes

Quotations

Qualitative
Coding

Solutions Thematic

Synthesis

Data Extraction
and Synthesis

Figure 3.1. Overview of the research process in Publication I.

3.2.1 Systematic literature review

Systematic literature reviews (SLR) are used to present the available ev-
idence on specific research questions with trustworthy, rigorous and au-
ditable methodology [36]. Conducting a SLR consists of five steps [36]:
identification of research, selection of primary articles, study quality as-
sessment, data extraction and data synthesis.

In Publication I, we identified related literature by using the following
search string in major bibliographic databases: ("continuous integration”
OR "continuous delivery” OR "continuous deployment”) AND software. As
the review was conducted in 2014, the concept of "modern release engi-
neering" was not yet identified, and we used the terms continuous in-
tegration, continuous delivery and continuous deployment, which were
used in both research and practice for the phenomenon. Currently, the
research field has matured, and other relevant search terms, such as "de-
vops", have emerged. The search, filtering and data extraction process is
visualized in Figure 3.1. A total of 30 articles were selected for the data
extraction phase. We classified 21 articles as experience reports and 9
articles as scientific articles.

We selected the primary articles by excluding articles that did not pro-

19

Research problem and methodology

vide evidence from real-life software development contexts. In addition,
we excluded cases that provided only technical implementation descrip-
tions, but did not provide evidence from the use of the technical imple-
mentations.

We did not exclude articles based on quality assessment, as most of the
articles were experience reports and at the time there were only a few
proper empirical research articles on the subject. We mitigated the bias
from the experience reports by focusing on experiences instead of opinions
or claims.

The data was extracted and synthesized by following the thematic syn-
thesis procedures [37]. First, quotations of text that discussed problems
with the modern release engineering practices or the adoption were iden-
tified in the primary articles. Next, the problems were given descriptive
codes and descriptions. In addition to problems, explanations of the prob-
lems and solutions to the problems were captured with codes. The ex-
planations were coded as relationships between the problem codes, e.g.,
nondeterministic tests can explain the ambiguity of test results. Finally,
the problem and solution codes were grouped under higher-order themes

which describe areas where adoption problems can exist.

3.2.2 Case studies

Case study is a research strategy which can be used for investigating a
contemporary phenomenon within its real-life context, especially when it
is difficult to separate the phenomenon from the context [38]. The case
study strategy is appropriate for investigating modern release engineer-
ing practices, as it would be difficult to simulate the phenomenon in a
laboratory setting. Furthermore, our goal in this dissertation is to cap-
ture realistic adoption problems which might not occur in isolation from
the context of development. It is also possible that the adoption problems
are explained by the context.

In this dissertation, we conducted four case studies studying four cases
which are described in Table 3.2. We used development organizations
developing single products as the units of analysis. Two case studies were
conducted for the case Ericsson in Publication IT and Publication III. The
case Nokia was studied in Publication IV and both cases BigCorp and
SmallOrg were compared in Publication V.

The cases were selected to be investigated because they were revelatory

[38] considering the adoption of modern release engineering practices.

20

Research problem and methodology

Table 3.2. Case organizations studied in this dissertation. OC=0Organizational Context,
CS=Company Size, COS=Case Organization Size, OD=Organizational Distri-
bution, CD=Case Domain.

Case Ericsson Nokia BigCorp SmallOrg
oC Unit in a Unit in a Unit in a Startup
large com- large com- large com-
pany pany pany
CS > 100,000 > 50,000 > 20,000 50
COS 135 - 180 50
OD Four sites in Several sites Several sites One site in
Europe in multiple in Europeand North Amer-
countries Asia ica
CD Telecom Telecom Domain X Domain X
Table 3.3. Data collected in the case study publications.
Publ. 1II 111 v \'%
Cases Ericsson Ericsson Nokia BigCorp,
SmallOrg
Data 27 interviews 11 inter- 2 workshops 18 inter-
views, ver- with alto- views, con-
sion control gether 15 tinuous
and issue participants integration
tracking data data

Case Ericsson was revelatory, because it was a large distributed orga-
nization adopting modern release engineering practices. Case Nokia was
revelatory, because the product development process used in the case was
claimed to explain the adoption problems. Finally, comparing BigCorp
and SmallOrg was revelatory, because they were developing competing
products in different kind of organizations. Therefore we were able to in-
vestigate the effects of organizational context to the release engineering

practices and mitigate the effect of the product context on the practices.

3.2.3 Data collection

In the case studies, the main data collection method was qualitative in-

terviews with an interview guide approach [39], as shown in Table 3.3.

21

Research problem and methodology

In Publication III, quantitative data from version control and issue track-
ing systems was collected to triangulate the qualitative results. Also in
Publication V, continuous integration data was collected to illustrate the
difference in discipline in the cases. Finally, in Publication IV, we used
ARCA root cause analysis method [10] to investigate the adoption prob-
lems. The ARCA method is comparable to structured group interviews
[39].

In the interview guide approach [39], interview questions are not deter-
mined beforehand, but instead a list of topics is used as a guide to make
sure that the research questions are covered in the interviews. Otherwise,
the approach is flexible and allows interviewees discuss subjects that they
feel important regarding the subject of the research. In addition, ques-
tions can be asked spontaneously based on the role and experience of the
interviewee, which allows investigating topics that would be difficult to
plan before the interviews.

We interviewed various roles in the organizations. In Publication II,
we interviewed managers, architects, developers, testers and coaches. In
Publication III, we interviewed managers, testers and developers. In Pub-
lication IV, we interviewed managers, developers and testers. In Pub-
lication V, we interviewed managers, architects, developers and service
team members. This allowed us to gain a holistic understanding on the
subject, not being biased by single roles. In addition, we attempted to
interview team members from as many teams as possible, although the
organizational distribution limited the possibility to interview everyone.
The interviewees were selected by the key stakeholders in the case orga-

nizations, according to the requests we made.

3.24 Data analysis

The interviews were audio recorded and transcribed by a professional
transcription company. The ARCA workshops were transcribed by the au-
thor of the dissertation, due to having multiple people talking in the work-
shop and technical language. The transcriptions were first read through
by the author to get immersed with the data [39]. After that, the au-
thor identified quotations from the transcriptions that were relevant to
the research goals of the individual studies. The concepts in the quota-
tions were given descriptive codes [39] to identify the same concepts in
other quotations too. The codes were refined until they represented the

interview data well enough and comprised a coherent whole.

22

Research problem and methodology

Quantitative data from software repositories were analyzed in Publica-
tion IIT and Publication V. In Publication V, the descriptive statistics were
calculated from the data, to compare the continuous integration discipline
in the two case organizations. In Publication III, time series analysis [38]
was done to investigate the effects of reducing the release stabilization pe-
riod. In both publications, the quantitative data analysis was performed

to triangulate [38] the qualitative data analysis.

3.2.5 Validation

In this section, we describe how we mitigated the threats validity, accord-
ing to the validity types of case study research [40]: construct validity,
internal validity, external validity and reliability. In Section 5.5, we dis-

cuss what threats we could not mitigate.

Construct validity

Construct validity assesses whether the constructs operationalized in re-
search are the same as what is investigated according to the research
questions. In the SLR, it was more difficult to assess if an article used the
same definition for, e.g. CI, as we did. Nevertheless, the inclusion and ex-
clusion steps of the SLR were performed by multiple researchers in order
to reduce bias.

In the case studies, it was easier to improve construct validity, because
we either asked the interviewees what they meant by CI (Publication II)
or provided them a common definition (Publication IV). Furthermore, in
the interviews, we used a flexible interview guide approach and open
questions, which allowed interviewees to explain their experiences with
their own words. Finally, we could ask them clarifications if something

was ambiguous.

Internal validity

Internal validity assesses whether the explanations based on the collected
data are valid. In both SLR and case studies, this was achieved with
triangulation [38]. First, multiple researchers were involved in primary
article selection in the SLR and in most of the interviews. Second, in
the case studies, we interviewed employees in various roles, teams and
sites. Third, the data analysis results were reviewed and criticized by the
other authors of the publications. Finally, key stakeholders from the case

organizations reviewed the final results of the case studies and made sure

23

Research problem and methodology

that the results truthfully represented their situation.

External validity

External validity assesses whether the results are generalizable outside
the studied cases. We described the context of the case organizations in
order to allow generalizing the results to other similar contexts. In Pub-
lication V, we identified constructs that can be generalized outside the

studied cases.

Reliability

Reliability assesses whether the data and analysis are dependent on the
researchers. We documented the used data collection and analysis pro-
cedures in the publications. In the SLR, we performed inter-rater agree-
ment on the selection of primary articles and achieved moderate agree-

ment.

24

4. Overview of the results

In this section, an overview of the answers to the research questions are

given based on the publications in the dissertation.

4.1 RAQ1. How are modern release engineering practices adopted?

The adoption of modern release engineering practices consists of automat-
ing the build, test and deployment activities. In this dissertation, we focus
on the test automation. In addition, we study how the release stabiliza-
tion period can be reduced with test automation, as in the more mature
modern release engineering practices, there should be no release stabi-

lization period needed before production deployment.

4.1.1 RQ1.1. How is the continuous end-to-end testing practice
adopted?

In Publication II, we investigated a case organization that had adopted
the practice of continuous end-to-end testing (CET). For the case organiza-
tion, it took over a year to automate half of the manual test cases of their
system, as shown in Table 4.1. The adoption consisted of three phases.
First, the CET system was created by two specialized teams. Second, au-
tomated end-to-end tests (AET) were created for the legacy functionality
by the two teams. Third, the habit of creating AETSs for new functional-
ity was spread across the whole organization. The first two phases could
be done by specialized teams, whereas the last phase required collabora-
tion of the whole organization. While creating AETSs is a technical task,

spreading the practice in an organization is a social process.

25

Overview of the results

Table 4.1. Timeline of the events during continuous end-to-end testing adoption in Pub-
lication II.

Date Event

September 2013 Testing activities and test automation close to non-
exist, two teams on Site A start to build the CET
system and create legacy AETs

January 2014 Evaluation of test frameworks done by one team on
Site A, one framework chosen for the system

March 2014 Events organized at all sites to spread the test au-
tomation mindset and give trainings for the chosen
test framework

December 2014 50 % of legacy AETs created

T T
releases before freeze reduction (mean)

releases before freeze reduction (min-max)
releases after freeze reduction (mean)

Iy

releases after freeze reduction (min-max)

remaining commits
w
o
o
T

=50 —40 -30 -20 -10 0
days to release

Figure 4.1. After the release stabilization period was reduced, less commits were done
near the release date in Publication III.

26

Overview of the results

Table 4.2. Problem themes and related problems found in Publication I.

Theme Problems

Build Design Complex build, inflexible build

System Design System modularization, unsuitable architecture, internal

dependencies, database schema changes

Integration Large commits, merge conflicts, broken build, work
blockage, long-running branches, broken development flow,

slow integration approval

Testing Ambiguous test result, flaky tests, time-consuming testing,
hardware testing, multi-platform testing, Ul testing,

untestable code, problematic deployment, complex testing

Release Customer data preservation, documentation, feature
discovery, marketing, more deployed bugs, third party
integration, users do not like updates, deployment

downtime

Human and Lack of discipline, lack of motivation, lack of experience,
Organizational more pressure, changing roles, team coordination,

organizational structure

Resource Effort, insufficient hardware resources, network latencies

4.1.2 RQ1.2. How is the release stabilization period reduced?

In Publication III, we investigated how the same case organization as in
Publication II reduced the release stabilization period after automating
the end-to-end and subsystem tests. Reducing the release stabilization
period made the feature freeze practice work more as intended; less com-
mits were done near the release date, as shown in Figure 4.1. However,
further reduction of stabilization period would have required deployment
automation too, as setting up the test environments for the release testing

took the majority of the time during the release stabilization period.

4.2 RQ2. What problems have been faced when adopting modern
release engineering practices?

In Publication I, we studied the literature about the problems faced when
adopting modern release engineering practices. From the 30 analyzed

articles, we extracted 35 descriptions of cases where modern release en-

27

Overview of the results

Limited o
Communication Better Communication
Channels

Support for Creating

Lack of Time Automated Test Cases

itable T
Un:g::gvsor: st Division of Work |

Insufficient Testing Uil Sy |

Environments

More Frequent Smaller

Releases
Unstable Tests
Proper Testing
Envi
Difficult Subsystems nvironments
Change the
Slow Tests Architecture

Figure 4.2. Adoption problems and their proposed solutions found in Publication II.

gineering practices were either used or being adopted. We could identify
multiple problems related to the adoption, under the themes of build de-
sign, system design, integration, testing, release, human and organiza-
tional and resource (see Table 4.2).

In Publication II (see Figure 4.2) and Publication IV, we investigated the
problems in two case organizations. We could recognize all the problem
themes in the cases. However, the problems that the cases were mostly
struggling with were in the themes of system design, integration, testing,
human and organizational and resource. In addition, problems in human
and organizational and resource themes were perceived to explain the

problems in the other themes.

4.3 RAQ3. What explanations for the problems have been
presented?

In Publication I, we found that in the literature, some problems were per-
ceived to explain other adoption problems, as shown in Figure 4.3. How-
ever, the literature does not explain, why the adoption problems are not
solved in practice, even when there are plenty of solutions described in
the literature. The case studies, Publication II, Publication IV and Publi-

cation V, provided explanations how the problems emerge and why they

28

Overview of the results

lack of
untestable
code A
? problematic
o ment
re

\ “a

network work | (" broken | _[complex complex
latencies blockage build build testing
v v 4

imes | merge inflexibl
consuming FY| HEREE | P g flaky tests inflexible
: commits conflicts build
testing
A 2 NG

slow long- ambiguous
integration running test result
A~
approval branches lack of
discipline
lack of - more
experience pressure
o) o) () (D (D D

Figure 4.3. Relationships between the problems found in Publication I.

are not solved.

In Publication II, the system design made the automated testing and
deployment more difficult. First, changes to some subsystems could not
be version controlled at all, which would be needed for the automatic de-
ployment of the changes. Second, some subsystems did not behave de-
terministically enough to be automatically tested. Instead, the system
behavior included delays which would slow down the execution of tests
and cause tests to fail nondeterministically. The subsystems were devel-
oped by third parties and could not be improved by the case organization.
In Publication IV, the system design also explained the adoption problems
by causing nondeterministic tests.

In Publication II, the organizational distribution was an explanation for
the slow adoption of continuous end-to-end testing. The distribution made
communication and coordination more difficult. In addition, all the adop-
tion drivers were located on a single site and the adoption had not spread
over the site borders. In Publication IV, the organizational distribution
also explained the adoption problems by lack of communication and coor-

dination, which resulted in broken builds and duplicate testing.

29

Overview of the results

Distributed Insufficient Breaking
Organization Communication Changes

Legend

Unsuitable Unstable Failing
Architecture Architecture Builds Process

Mechanism

Other
Mechanism

Flaky Tests

Pressure

Tight
Schedule
Lackof)
Stage-gate Process Ti?r(\:e .?o
Process Overhead |
mprove
Limited)
Branch Imite
Hardware
Overhead
Resources)
f N\
Multiple Delayed
Branches Integration
J
Lack of Testing Duplicate
Strategy Testing

Figure 4.4. Mechanisms that explain the adoption problems in Publication IV.

Root Cause

Ha

Low Test
Coverage

Sharing Test
Environments

)

Slow
Feedback

Slow Build

4.3.1 Stage-gate product development process explaining the
problems

In Publication IV, we investigated how the stage-gate product develop-
ment process explained the adoption problems in the case organization.
We found that the plans which were conceived early in the stage-gate pro-
cess were overscoped and could not be realized on later stages, adding
time pressure on new feature development and reducing time from the
adoption (see Figure 4.4). Similar time pressure for new feature develop-
ment was explaining the adoption problems in Publication II. In addition,
the stage-gate process required the use of different development branches
for different stages, which added complexity to the development work and

increased the cost of adoption.

4.3.2 Organizational context explaining the problems

In Publication V, we compared the release engineering practices imple-
mented in two organizational contexts: large mature company context
and startup context. Since the case organizations were developing com-
peting products, we could control the effect of product context and inves-
tigate the differences explained by the organizational context (see Fig-

ure 4.5). We found out that in the large mature company context, the

Overview of the results

Number of
Production
Environments

Number of

CUE S \‘ /v Defect Reports
+

Control Over | — | Internal Quality

Production Standards " -
Available / cl Complextt Release
Resources omplexity Capability
V_
Org. Size & _ - Ayt +
Distribution > ClDiscipline

Figure 4.5. Mechanisms that explain the outcomes of the release engineering practices
in Publication V.

number of customers and stakeholders inside the company increases the
cost of adoption due to higher quality requirements and adoption com-
plexity. Thus, the increased cost of adoption can prevent it from hap-
pening. In the startup context, the main explaining factor is the lack of
resources which prevents further adoption. However, with flexibility, star-
tups can mitigate the lack of resources by collaborating more tightly with

customers.

4.4 RQ4. What solutions for the problems have been used or
proposed?

In Publication I, we found that in the literature, most of the adoption prob-
lems can be solved with the solutions given in Table 4.3. However, since
the problems described in the literature are not contextualized, it might
be that the solutions are not applicable in every context. In Publication II,
we identified proposed solutions for the problems present in the case orga-
nization. Especially the actions of starting the adoption with specialized
teams for the technical implementation, demonstrating early value with
radiators, providing trainings and support for creating the automated test
cases while learning and moving the specialists to other teams after im-

plementing the initial technical infrastructure were considered beneficial

31

Overview of the results

Table 4.3. Solutions themes and related solutions found in Publication I.

Theme Solutions
System System modularization, hidden changes, rollback, redundancy
Design

Integration Reject bad commits, no branches, monitor build length

Testing Test segmentation, test adaptation, simulator, test
parallelization, database testing, testing tests, comprehensive

testing, commit-by-commit tests
Release Marketing blog, separate release processes

Human and Remove blockages, situational help, demonstration,

Organiza- collaboration, social rules, more planning, low learning curve,
tional training, top-management strategy, communication
Resource Tooling, provide hardware resources

for succeeding with the adoption. Still, the actions could not be applied
on every site of the organization, because there was no required organiza-
tional support and individual acceptance, which explains the slower than

expected adoption rate in the case organization.

32

5. Discussion

In this section, we discuss the implications of the results as shown in Fig-
ure 5.1, first generally as hypotheses that can be tested in future studies,
and then specifically to research and practice. After that, we discuss the

threats to validity of the results.

5.1 Adopting modern release engineering practices

In this section, we will discuss the implications regarding the adoption of
modern release engineering practices. We will focus on what the adoption

requires and how it can be measured.

5.1.1 Adopting modern release engineering practices requires
build automation, test automation and deployment
automation

Adopting modern release engineering practices requires automation of
build, test and deployment activities, which is described in the practi-
tioner literature [3]. This is also visible in the results from the SLR in
Publication I, as there were problem themes for build design and test-
ing, and a problem concept "problematic deployment” under the testing
theme. Finally, lack of automation and tool support has been found to
hinder successful release processes [9].

In the case studies, we focused on the test automation, because the im-
provements in the case organizations focused mostly on test automation.
Especially automating the end-to-end testing is problematic, since it was
the major theme discussed in Publication II, and a survey of Finnish soft-
ware companies shows that acceptance testing tools are not used in most
of the companies [26]. Thus, especially the automation of the end-to-end

or acceptance tests is a substantial part of adopting modern release engi-

33

Discussion

Decreases deployment stabilization time

*

Adoption of modern release engineering practices

Technical adoption Social adoption

Build automation explains
problems
in

> < >
> < > <

Test automation

Organizational adoption

Individual adoption

Deployment automation

— System design Limited resources Organizational distribution 1

Explanations for the adoption problems

Figure 5.1. An overview of the implications of the results.

neering practices.

The interviewees did not bring out build automation as a noteworthy
theme in the interviews, and we suspect that the build automation was
not a substantial issue in the case organizations. However, for some other
software systems with more complex compilation configurations, build au-
tomation can be a major issue [41].

Regarding deployment automation, the case organizations did not have
access to production environments in order to automate deployments to
production. However, deployments to test environments were automated
in the case organizations. In Publication III, we identified that deploy-
ments to the release test environment were problematic and they could
have been automated to improve the release testing process. But as re-
leases were performed six times per year in Publication III, the lack of
automation regarding deployments was not a critical issue. When mov-
ing towards faster release cycles, we suspect that deployment automation

becomes more important.

34

Discussion

5.1.2 Adopting modern release engineering practices requires
adoption on both organizational and individual levels

Adopting complex technological innovations in organizations requires both
organizational- and individual-level adoption [34]. In the context of mod-
ern release engineering practices, organizational-level adoption is required
to get resources for the adoption and to coordinate the adoption. Individual-
level adoption is required, because the adoption requires that individuals
automate the testing of the developed system and keep the system stable
during the development. In Publication IV, we could see that organiza-
tional support for the adoption was missing, as the adoption was driven
by the development organization and not by the management. Thus, the
organizational processes did not provide enough slack [42] and resources
for the adoption.

In Publication II, there was organizational support for the adoption, as
two teams were permitted to focus only on the adoption and the man-
agers in the organization were facilitating the adoption. However, the
individual-level adoption was not proceeding as fast as expected by the
adoption drivers. Gallivan [34] shows that bureaucratic culture, central-
ized planning, cultural norms of learning and job roles and individual
attributes may hinder the adoption on the individual-level. The case or-
ganization in Publication II was part of a large mature company, and it
can be suspected that some of the hindering factors were present in the
organization, although they were not under our investigation.

Persuasion of informal advocates, e.g. team members, can significantly
speed the adoption of innovations [43]. This was also visible in Publica-
tion II, as moving early adopters to other teams had spread the adoption
to other team members in those teams. However, after accepting the adop-
tion, individuals still have to learn to use the test automation tools, which
can take long time if the individual has no previous experience with test
automation. Furthermore, time for learning can be limited, as the devel-
opment of the system is often prioritized higher than the adoption, which

was visible in both Publication II and Publication IV.

5.1.3 Adopting modern release engineering practices reduces
the time needed for deployment stabilization

In Publication III, we studied how the adoption of modern release engi-

neering practices allowed the case organization to reduce the time needed

35

Discussion

for release stabilization. According to the results, reducing the release
stabilization time did not have any negative consequences. Thus, we could
deduce that the time needed for release stabilization could be used as a
measure for the maturity of modern release engineering adoption.

However, when developing new features or making changes with large
impacts, there is often a need to hide the changes with feature toggles
[16] after they have been deployed to production environment, in order
to verify the functionality in a realistic setting. Thus, there might not
be deployment stabilization before the production deployment in CD, but
there can still be release stabilization after the production deployment.

As in modern release engineering, the release of a feature is decoupled
from the deployment of a feature [1], stabilization for deployment and sta-
bilization for release can be decoupled too. In Publication III, the deploy-
ment and release of the system were still coupled and thus we could only
speak of release stabilization regarding the case organization. However,
based on the literature, we suggest using deployment stabilization as the
measure for the maturity of modern release engineering practices instead
of release stabilization, in order to cover scenarios where deployment and
release are decoupled.

The release stabilization period was reduced from six weeks to three
weeks in Publication III. From the literature, we can find release stabi-
lization periods for other types of software: 9 weeks for Linux [44], 13
weeks for Chrome [44] and 1 week for Facebook mobile applications [8].
As explained in [8], product context can explain the need for release sta-
bilization period, e.g., if the deployment cannot be controlled by the de-
velopment organization and the number of and variance in production
environments is large. Thus, the measures of deployment stabilization

are not easily comparable across different software systems.

5.2 Explanations for the adoption problems

In this section, we discuss the implications regarding the explanations for
the adoption problems. First, we overview the problems and then focus on
specific explanations based on organizational distribution, system design,
stage-gate process and organizational context. Finally, we discuss the

proposed or used solutions.

36

Discussion

5.2.1 Problems are related to build automation, test
automation, deployment automation or social adoption

As discussed in the previous section, the adoption requires build automa-
tion, test automation, deployment automation and adoption on both or-
ganizational and individual levels. Thus, these areas cover the primary
adoption problems. In the SLR in Publication I, we also identified the
problem themes of system design and integration. However, system de-
sign explains the primary problems of build automation, test automation
and deployment automation. In addition, integration problems can be

explained by the primary problems.

5.2.2 Organizational distribution explains social adoption
problems

Organizational distribution explains the social adoption problems related
to organizational and individual adoption. In Publication II, the site bound-
aries and limited communication channels were limiting the adoption.
Similarly, in Publication IV, the organizational distribution hindered the
communication, which showed as surprising changes to the software sys-
tem coming from other sites. However, in the literature in Publication I,
the organizational distribution was not identified as a problem. Thus, the
relationship between the organizational distribution and adoption prob-
lems should be investigated in further studies.

While the organizational distribution explains the adoption problems,
adopting modern release engineering practices can also improve collabo-
ration in a distributed setting [32]. Thus, if possible, the adoption should
be made before distributing the development and not afterwards, as in a

distributed setting the adoption itself is more difficult.

5.2.3 System design explains technical adoption problems

System design can explain problems in the technical areas of the adop-
tion: build automation, test automation and deployment automation. In
Publication I, we found cases where the system design had an effect on
the testability and deployability on the system. Similarly, in Publication
IT and Publication IV, the system design made the automated testing and
deployment of the system more difficult, as the system tests were not re-
liable enough and deploying the systems was not possible without down-

time. The results of this dissertation align with other studies that have

37

Discussion

investigated the relationship between the system design and modern re-

lease engineering practices [9, 45, 46, 47, 48].

5.24 Limited resources explains both social and technical
adoption problems

In Publication IV, we found that the use of stage-gate process limited the
resources for the adoption, and thus hindered the adoption in all areas.
Similar finding was made in Publication II, where the pressure for new
feature development decreased the amount of resources for the adoption.
The problems can be due to overscoping [49], as the scope for the new
feature development in both cases was stated to be high and prioritized
over the adoption. Gruver et al. [50] describe a similar situation, where
the scope of development was not decreased, but instead an architectural
change was applied which allowed the development of same scope with
less resources than previously. Thus, changes in architecture or business
processes might be needed in order to allow the adoption enough resources
for proceeding as planned.

In Publication V, we found that different types of organizations have dif-
ferent kind of requirements for the modern release engineering practices.
The variance in requirements explains the cost to adopt the practices,
especially regarding the test automation. Thus, in some contexts, the re-
sources can be limited for the adoption because the requirements are set
higher, whereas some contexts can have a successful adoption with less re-
sources if the requirements are lower. We are not aware of other studies
that have investigated the effects of organizational context to the modern

release engineering practices.

5.2.5 There are no easy solutions for the adoption problems

In Publication I, we found solutions from the literature that can help in
adopting the modern release engineering practices. Some of the reported
solutions relate to the system design explanation and can help in some
situations, but as seen in Publication II, solving system design problems
can require replacing entire subsystems, which requires substantial re-
sources. Wright [9] emphasizes the role of architecture when improving
release engineering processes. He also makes the observation that orga-
nizations recognize the need for improvement in architecture, but imple-

menting the improvements is often difficult.

38

Discussion

Recently, an architectural pattern called microservices [51] has been
used to solve the system design adoption problems when the system is
executed in a cloud environment. The pattern implies that the developed
system is split into multiple services that can be built, tested and deployed
independently of each other. As speculation, the case organization stud-
ied in Publication IT and Publication III could have gained benefit from
the microservices approach, as the organization had control over the pro-
duction environment, although only through a separate operations orga-
nization. The case organizations studied in the other publications would
have gained less benefit from the approach, because the production envi-
ronments were operated by their customers.

We did not find any strategies from the literature on how to solve the
problems related to the organizational distribution. If possible, similar
actions that were made in Publication II could be applied on all sites of
the organization to spread the adoption over the site boundaries. Further-
more, collaboration between sites can be improved with the best practices
in global software engineering [52]: face-to-face meetings and effective

and frequent synchronous communication.

5.3 Implications to research

This dissertation provides a framework for future research on modern
release engineering practices. Future research can consider only some
parts of the modern release engineering practices, for example, build au-
tomation, test automation or deployment automation. In addition, future
research can use the metric of deployment stabilization time to assess
the maturity and improvement of modern release engineering practices.
Also the difference between deployment and release stabilization can be
studied.

Social adoption can be studied on its own. Adopting complex technologi-
cal innovations in organizations has been studied previously [34] and ap-
plying results from that research topic to the adoption of modern release
engineering practices would be a good topic for future research. How-
ever, when studying technical adoption in case studies, the social prob-
lems should be taken into consideration too, since they can explain the
technical problems. Similarly, technical problems can explain social prob-
lems. For example, a problematic system design increases the complexity

of the adoption.

39

Discussion

The organizational distribution and system design explain many of the
adoption problems. System design has been studied in multiple earlier
investigations, but the effects of distribution are recognized only in this
study to our knowledge. Thus, in future research, the distribution and
system design should be taken into account when studying modern re-
lease engineering practices.

Finally, organizational context and used development processes, such
as stage-gate process, can explain the adoption problems. Researchers
should take these into account when comparing the practices between or-

ganizations.

5.4 Implications to practice

Based on this dissertation, the practitioners can measure their release
engineering maturity with the time needed for deployment stabilization.
In addition, practitioners can focus on how well their build, test and de-
ployment processes have been automated, when assessing the maturity.
Practitioners can assess the suitability of their system design for the
modern release engineering practices. In addition, when designing new
systems, practitioners can consider the testability and deployability of the
systems, if they aim to implement modern release engineering practices.
Practitioners in distributed organizations, with stage-gate processes or
otherwise difficult organizational contexts can see that implementing mod-
ern release engineering practices in their context might be difficult. Fur-
thermore, they can prepare for the difficulties before committing to the

adoption of modern release engineering practices.

5.5 Threats to validity

In this section, we discuss the threats to validity of our results. In Sec-
tion 3.2.5, we showed how the threats were mitigated. We use the validity
types of case study research [40]: construct validity, internal validity, ex-
ternal validity and reliability. We discuss the threats to validity of the
SLR also under these validity types.

40

Discussion

5.5.1 Construct validity

Construct validity assesses whether the constructs operationalized in re-
search are the same as what is investigated according to the research
questions. In this dissertation, there is a threat to construct validity, be-
cause the terminology used for modern release engineering practices is
ambiguous and used differently by different practitioners and researchers.
For example, there is no clear and agreed difference between CI and CD,
nor what is considered to be "continuous" enough to be accepted as CI.
In addition, the definition of CD requires the software to be always re-
leasable, but it is again questionable what is considered to be "releasable”

and what is not.

5.5.2 Internal validity

Internal validity assesses whether the explanations based on the collected
data are valid. We used interviews and software repository mining as
our data collection methods. Including observation as a data collection
method would have had better validity, as it does not have the same bi-
ases. Our data collection and analysis procedures included interpretation,
which reduced the internal validity. Finally, the studied case organiza-

tions were large, and we could not interview all parts of the organizations.

5.5.3 External validity

External validity assesses whether the results are generalizable outside
the studied cases. In the SLR, we identified 35 cases related to the subject.
However, the cases were not presented identically in the primary articles
and they did not use the same research questions as we used in the SLR.
Furthermore, the articles did not provide enough context-dependent ma-
terial for synthesizing and generalizing the results.

In the case studies, the case organizations were from two business do-
mains. The dynamics of the domains are different from other domains,
e.g., the web application domain where most of the successes in modern
release engineering practices are reported. As reported in Publication
V, it is typical in the studied domain to have release cycles of multiple
months. In addition, three of the studied cases were large mature compa-
nies and one was a startup. Thus, we were not able to study a mid-sized

company. The presented results are only generalizable to similar situa-

41

Discussion

tions and contexts.

Finally, we investigated the phenomenon in three cases. There exist
many more software organizations with the aims of implementing modern
release engineering practices. It can be expected that the results in this
dissertation can be extended by investigating further cases in different

domains and situations.

5.5.4 Reliability

Reliability assesses whether the data and analysis are dependent on the
researchers. The data collection and analysis phases included interpre-
tative elements and thus, replicating the work by other researchers can

produce different results.

42

6. Conclusions

In this section, we present the contributions of the dissertation and pro-

pose topics for future research.

6.1 Contributions of the research

This dissertation provides four contributions for the research problem:
what prevents organizations from adopting modern release engi-
neering practices? The contributions are the answers for the research

questions of the dissertation.

6.1.1 RQI1. How are modern release engineering practices
adopted?

Modern release engineering practices are adopted by automating the build,
test and deployment activities. The automation activities result in de-
crease of deployment stabilization period. The adoption is similar to the
adoption of complex technological innovations in organizations and re-

quires adoption to happen on both organizational and individual levels.

6.1.2 RQ2. What problems have been faced when adopting
modern release engineering practices?

The identified adoption problems concern primarily automation of build,
test and deployment, and social aspects. Other problems explain or are
consequences of these primary problems. The automated build and de-
ployment can be too slow, complex or inflexible so that building or deploy-
ing the system takes too long or requires substantial maintenance effort.
Automated tests can be too slow, unreliable or the tests might not be suf-
ficient for being certain of the quality of the system. Finally, individuals

might resist the change needed in the work practices, due to, e.g., lack of

43

Conclusions

resources or insufficient training. On an organizational-level, resources

or coordination can be missing for the adoption to be successful.

6.1.3 RQ3. What explanations for the problems have been
presented?

Identified explanations for the adoption problems were organizational dis-
tribution, system design, stage-gate development processes and organiza-
tional context. Organizational distribution explains the social adoption
problems, because distribution makes it more difficult to communicate,
motivate and coordinate the changes needed in the organization. System
design explains the technical adoption problems, when the architectural
requirements for modern release engineering practices, such as testabil-
ity and deployability, were not taken into account when the system was
designed. Stage-gate processes and organizational context explain all the
adoption problems, as they can either limit the resources for the adoption

or increase the need for resources by higher quality requirements.

6.1.4 RQ4. What solutions for the problems have been used or
proposed?

We identified that solutions exist for both technical and social problems.
Technical problems can be solved by changing the design of the system
so that the system and its parts are more testable and deployable. When
an organization has control over the production environment of the de-
velopment system, the microservices architectural pattern can be used to
allow deploying smaller parts of the system separately. Social problems
can be solved by implementing case specific strategies for achieving or-
ganizational change. For example, specialized teams can concentrate on
creating automated legacy test cases and supporting other teams to cre-
ate test cases for new features. These solutions can require substantial

resources and thus need support from the management.

6.2 Future work

We did not study the automation of the build or deployment activities, as it
was not either feasible in the cases or the subject was not yet timely for the
organizations. However, automation of the deployment is an important

part of adopting modern release engineering practices, as we identified in

44

Conclusions

Publication III. This could be a subject in future studies.

As our work was conducted inductively, we did not employ existing the-
ories during the data collection and analysis. However, only afterwards,
we recognized the existence of adoption theories, e.g. [34], that could be
employed for more structured investigation of the adoption.

Finally, the hypotheses presented in the discussion section of the disser-

tation can be validated further in future studies.

45

Conclusions

46

References

[1]

[2]

[3]

[4]

[5]

[6]

B. Adams and S. McIntosh. “Modern Release Engineering in a Nut-
shell - Why Researchers Should Care”. In: 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER). 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER). Vol. 5. Mar.
2016, pp. 78-90. DOI: 10.1109/SANER. 2016.108.

dJ. Bosch. “Speed, Data, and Ecosystems: The Future of Software
Engineering”. In: IEEE Software 33.1 (Jan. 2016), pp. 82—88. ISSN:
0740-7459. DOI: 10.1109/MS.2016. 14.

Jez Humble and David Farley. Continuous Delivery: Reliable Soft-
ware Releases through Build, Test, and Deployment Automation.
1 edition. Upper Saddle River, NJ: Addison-Wesley Professional,
Aug. 6,2010. 512 pp. ISBN: 978-0-321-60191-9.

Andrej Dyck, Ralf Penners, and Horst Lichter. “Towards Definitions
for Release Engineering and DevOps”. In: Proceedings of the Third
International Workshop on Release Engineering. RELENG ’15. Pis-
cataway, NJ, USA: IEEE Press, 2015, pp. 3-3.

Tony Savor et al. “Continuous deployment at Facebook and
OANDA?”. In: Proceedings of the 38th International Conference on
Software Engineering Companion. ICSE2016. ACM Press, 2016,
pp. 21-30. ISBN: 978-1-4503-4205-6. DOI: 10 . 1145 / 2889160 .
2889223.

Adam Debbiche, Mikael Dienér, and Richard Berntsson Svens-
son. “Challenges When Adopting Continuous Integration: A
Case Study”. In: Product-Focused Software Process Improvement.
Vol. 8892. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2014, pp. 17-32. ISBN: 978-3-319-13834-3.

47

REFERENCES

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

48

Torvald Martensson, Daniel Stahl, and Jan Bosch. “Continuous
Integration Applied to Software-Intensive Embedded Systems —
Problems and Experiences”. In: Product-Focused Software Process
Improvement. Springer International Publishing, Nov. 22, 2016,
pp. 448-457. DOI: 10.1007/978-3-319-49094-6_30.

Chuck Rossi et al. “Continuous Deployment of Mobile Software at
Facebook (Showcase)”. In: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engi-
neering. FSE 2016. New York, NY, USA: ACM, 2016, pp. 12-23.
ISBN: 978-1-4503-4218-6. DOI: 10.1145/2950290.2994157.

Hyrum Kurt Wright. “Release engineering processes, their faults

and failures”. PhD thesis. The University of Texas at Austin, 2012.

Timo O. A. Lehtinen, Mika V. Méantyla, and Jari Vanhanen. “Devel-
opment and evaluation of a lightweight root cause analysis method
(ARCA method) — field studies at four software companies”. In: In-
formation and Software Technology 53.10 (2011), pp. 1045-1061.

Stephen P. Berczuk and Brad Appleton. Software configuration
management patterns: effective teamwork, practical integration.

Addison-Wesley Longman Publishing Co., Inc., 2002.

Srinivasan Desikan. Software testing: principles and practice. Pear-

son Education India, 2006.

André van der Hoek et al. “Software Release Management”. In: Pro-
ceedings of the 6th European Software Engineering Conference Held
Jointly with the 5th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ESEC *97/FSE-5. New York,
NY, USA: Springer-Verlag New York, Inc., 1997, pp. 159-175. ISBN:
978-3-540-63531-4. DOI: 10.1145/267895.267909.

James Roche. “Adopting DevOps Practices in Quality Assurance”.
In: Commun. ACM 56.11 (Nov. 2013), pp. 38-43. 1SSN: 0001-0782.
DOI: 10.1145/2524713.2524721.

G. Schermann et al. “Towards quality gates in continuous deliv-
ery and deployment”. In: 2016 IEEE 24th International Conference
on Program Comprehension (ICPC). 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). May 2016, pp. 1-4.
DOI: 10.1109/ICPC.2016.7503737.

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

Md Tajmilur Rahman et al. “Feature toggles: practitioner practices
and a case study”. In: Proceedings of the 13th International Confer-
ence on Mining Software Repositories. MSR’16. ACM Press, 2016,
pp. 201-211. ISBN: 978-1-4503-4186-8. DOI: 16 . 1145 /2901739 .
2901745.

Timothy Fitz. Continuous Deployment. Feb. 8, 2009. URL: http://
timothyfitz.com/2009/02/08/continuous-deployment/ (visited on
09/08/2014).

Martin Fowler. Continuous Integration. May 1, 2006. URL: http://
martinfowler.com/articles/continuousIntegration.html (visited
on 09/08/2014).

Jenkins CI. URL: http://jenkins-ci.org/ (visited on 06/13/2014).

John Downs, John Hosking, and Beryl Plimmer. “Status Commu-
nication in Agile Software Teams: A Case Study”. In: Proceedings
of the 2010 Fifth International Conference on Software Engineering
Advances. ICSEA ’10. Washington, DC, USA: IEEE Computer Soci-
ety, 2010, pp. 82—87. ISBN: 978-0-7695-4144-0. DOI: 10.1109/ICSEA.
2010.20.

Docker containerization platform. URL: https://www.docker . com/
(visited on 01/12/2017).

Ansible IT automation. URL: https://www.ansible.com/ (visited on
01/12/2017).

Robot Framework for generic acceptance testing. URL: http : / /
robotframework.org/ (visited on 01/12/2017).

Pilar Rodriguez et al. “Continuous deployment of software intensive
products and services: A systematic mapping study”. In: Journal of
Systems and Software 123 (Jan. 2017), pp. 263—291. 1SSN: 0164-
1212. DOI: 10.1016/5.jss.2015.12.015.

Marko Leppénen et al. “The Highways and Country Roads to Con-
tinuous Deployment”. In: IEEE Software 32.2 (2015), pp. 64-72.

Simo Makinen et al. “Improving the delivery cycle: A multiple-case
study of the toolchains in Finnish software intensive enterprises”.
In: Information and Software Technology 80 (Dec. 2016), pp. 175—
194. 1SSN: 0950-5849. DOI: 10.1016/j.infsof.2016.09.001.

49

REFERENCES

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

50

Mika V. Méntyl4 et al. “On rapid releases and software testing: a
case study and a semi-systematic literature review”. In: Empirical
Software Engineering 20.5 (2015), pp. 1384-1425. 1SSN: 1382-3256,
1573-7616. DOI: 10.1007/s10664-014-9338-4.

Daniel Stahl and Jan Bosch. “Experienced benefits of continuous in-
tegration in industry software product development: A case study”.
In: JASTED Multiconferences - Proceedings of the IASTED Interna-
tional Conference on Software Engineering, SE 2013. 2013, pp. 736—
743.

Bogdan Vasilescu et al. “Quality and Productivity Outcomes Relat-
ing to Continuous Integration in GitHub”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 805-816.
ISBN: 978-1-4503-3675-8. DOI: 10.1145/2786805.2786850.

Michael Hilton et al. “Usage, Costs, and Benefits of Continuous
Integration in Open-source Projects”. In: Proceedings of the 31st
IEEE /|ACM International Conference on Automated Software Engi-
neering. ASE 2016. New York, NY, USA: ACM, 2016, pp. 426-437.
ISBN: 978-1-4503-3845-5. DOI: 10.1145/2970276.2970358.

Helena Holmstrom Olsson, Hiva Alahyari, and Jan Bosch. “Climb-
ing the "Stairway to Heaven" — A Multiple-Case Study Exploring
Barriers in the Transition from Agile Development Towards Con-
tinuous Deployment of Software”. In: Proceedings of the 2012 38th
Euromicro Conference on Software Engineering and Advanced Ap-
plications. Washington, DC, USA, 2012, pp. 392—-399. ISBN: 978-0-
7695-4790-9. DOI: 10.1109/SEAA.2012.54.

Alexander Eck, Falk Uebernickel, and Walter Brenner. “Fit for Con-
tinuous Integration: How Organizations Assimilate an Agile Prac-
tice”. In: Twentieth Americas Conference on Information Systems.
Savannah, Georgia, USA, 2014.

Gerry Gerard Claps, Richard Berntsson Svensson, and Aybiike Au-
rum. “On the journey to continuous deployment: Technical and so-
cial challenges along the way”. In: Information and Software Tech-
nology 57 (2015), pp. 21-31. 1SSN: 0950-5849.

Michael J. Gallivan. “Organizational Adoption and Assimilation

of Complex Technological Innovations: Development and Applica-

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

REFERENCES

tion of a New Framework”. In: SIGMIS Database 32.3 (July 2001),
pp. 51-85. 1SSN: 0095-0033. DOI: 10.1145/506724.506729.

Claes Wohlin and Aybiike Aurum. “Towards a decision-making
structure for selecting a research design in empirical software engi-

neering”. In: Empirical Software Engineering (2014), pp. 1-29.

B.A. Kitchenham. Guidelines for performing systematic literature
reviews in software engineering. Keele University Technical Report,
2007.

D. S. Cruzes and T. Dyba. “Recommended Steps for Thematic Syn-
thesis in Software Engineering”. In: Empirical Software Engineer-
ing and Measurement (ESEM), 2011 International Symposium on.
IEEE, Sept. 2011, pp. 275-284. ISBN: 978-1-4577-2203-5 978-0-
7695-4604-9. DOI: 10.1109/ESEM.2011. 36.

Robert K Yin. Case study research: Design and methods. 2nd. Sage
publications, 1994.

Michael Q. Patton. Qualitative Research & Evaluation Methods.
3rd. Published: Hardcover. SAGE Publications, Jan. 2002. ISBN: 0-
7619-1971-6.

Per Runeson and Martin Hést. “Guidelines for conducting and re-
porting case study research in software engineering”. In: Empirical
Software Engineering 14.2 (2009), pp. 131-164. ISSN: 1382-3256.
DOI: 10.1007/s10664-008-9102-8.

Shane McIntosh et al. “A Large-Scale Empirical Study of the Re-
lationship between Build Technology and Build Maintenance”. In:
Empirical Software Engineering (Aug. 1, 2014). 1SSN: 1382-3256,
1573-7616. DOI: 10.1007/s10664-014-9324-x.

MB Buff Lawson. “In praise of slack: Time is of the essence”. In: The
Academy of Management Executive 15.3 (2001), pp. 125-135.

Dorothy Leonard-Barton. “Implementing Structured Software
Methodologies: A Case of Innovation in Process Technology”. In: In-
terfaces 17.3 (June 5, 1987), pp. 6—17. I1SSN: 00922102.

Md Tajmilur Rahman and Peter C. Rigby. “Release Stabilization on
Linux and Chrome”. In: IEEE Software 2 (2015), pp. 81-88.

51

REFERENCES

[45]

[46]

[47]

[48]

[49]

[50]

[561]

[52]

52

S. Bellomo et al. “Toward Design Decisions to Enable Deployability:
Empirical Study of Three Projects Reaching for the Continuous De-
livery Holy Grail”. In: Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. June
2014, pp. 702-707. DOI: 10.1109/DSN.2014. 104.

L. Chen. “Towards Architecting for Continuous Delivery”. In: 2015
12th Working IEEE/IFIP Conference on Software Architecture.
2015 12th Working IEEE/IFIP Conference on Software Architec-
ture. May 2015, pp. 131-134. DOI: 16.1109/WICSA.2015.23.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “The
Intersection of Continuous Deployment and Architecting Process:
Practitioners’ Perspectives”. In: Proceedings of the 10th ACM /| IEEE
International Symposium on Empirical Software Engineering and
Measurement. ESEM ’16. New York, NY, USA: ACM, 2016, 44:1-
44:10. ISBN: 978-1-4503-4427-2. DOI: 10.1145/2961111.2962587.

Gerald Schermann et al. An empirical study on principles and prac-

tices of continuous delivery and deployment. Peerd Preprints, 2016.

Elizabeth Bjarnason, Krzysztof Wnuk, and Bjoérn Regnell. “Are you
biting off more than you can chew? A case study on causes and ef-
fects of overscoping in large-scale software engineering”. In: Infor-
mation and Software Technology 54.10 (Oct. 2012), pp. 1107-1124.
ISSN: 0950-5849. DOI: 10.1016/j.infsof.2012.04.006.

Gary Gruver, Mike Young, and Pat Fulghum. A Practical Approach
to Large-Scale Agile Development: How HP Transformed LaserdJet
FutureSmart Firmware. 1st. Addison-Wesley Professional, 2012.
ISBN: 0-321-82172-6 978-0-321-82172-0.

A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Ar-
chitecture Enables DevOps: Migration to a Cloud-Native Architec-
ture”. In: IEEE Software 33.3 (May 2016), pp. 42-52. 1SSN: 0740-
7459. DOI: 10.1109/MS.2016.64.

Darja Smite et al. “Empirical evidence in global software engineer-
ing: a systematic review”. In: Empirical Software Engineering 15.1
(Feb. 2010), pp. 91-118. 1SSN: 1382-3256, 1573-7616. DOI: 10. 1007/
s10664-009-9123-y.

Release engineering means the process of
bringing the individual changes made to a
software system to the end users of the
software with high quality. Traditional release
engineering processes have focused on
maximizing the quality of a release, which has
decreased the speed of the release. The
modern release engineering practices
emphasize using build, test and deployment
automation and facilitating collaboration
across functional boundaries, so that it is
possible to achieve both speed and quality in
the release engineering process. While some
companies have been successful in adopting
modern release engineering practices, other
companies have found the adoption to be
problematic. In this dissertation, we aim to
understand what prevents organizations from
adopting modern release engineering

practices.

ISBN 978-952-60-7713-0 (printed)
ISBN 978-952-60-7714-7 (pdf)
ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)

Aalto University

School of Science

Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

	Aalto_DD_2017_Laukkanen_verkko

