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In order to study vocal loading, we developed a speech analysis environment for continuous speech. The objective was to build
a robust system capable of handling large amounts of data while minimizing the amount of user-intervention required. The
current version of the system can analyze up to five-minute recordings of speech at a time. Through a semiautomatic process it
will classify a speech signal into segments of silence, voiced speech and unvoiced speech. Parameters extracted from the input
signal include fundamental frequency, sound pressure level, alpha-ratio and speech segment information such as the ratio of
speech to silence. This paper presents results from the performance evaluation of the system, which shows that the analysis
environment is able to perform robust and consistent measurements of continuous speech.
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INTRODUCTION

Speech and voice professions have become common-

place in modern society (9, 18, 19). Extensive voice

usage causes voice loading which, in turn, can result in

occupational health problems (19). Previous research

has been carried out on the effects of prolonged voice

use on voice production (e.g., (10, 13)) but results on

how loading is reflected in acoustical parameters are

sparse. The most important finding to indicate vocal

loading is the rise of fundamental frequency (F0).

However, such concomitant issues as environment,

speech task, speaker training, as well as the psycho-

logical state of the speaker, can cause discrepancies in

the results and must be taken into account (12, 13, 16).

Most studies on speech have focused on stationary

voice qualities whereas only a limited amount of work

has been devoted to dynamic variations and the

influence of a linguistic-phonetic frame including

prosody (5). Concurrently, analysis of sustained vo-

wels or fixed words is appealing for the technical

simplicity of the analysis, but it is not clear how much

this unnatural speech context affects the results (8, 14).

Fast variations in running speech cause technical

difficulties for the analysis task. For example, a vowel

might not last more than 20 msec but still it should be

classified as a vowel. This sets a lower limit to the

granularity of parameters measured. Still, it is desir-

able to present some temporal averaging in order to

minimize measurement errors due to the large signal

variations.

In 1993, Kari Haataja had developed a speech

analysis environment for the clinical speech analysis

laboratory at Oulu University Hospital, Finland (6,

15). It is based on analog measurements of voice

quality parameters which are transferred to a compu-

ter through a multi-channel A/D-card. The purpose of

the current software was to update and replace this

analysis environment with a modern digital one. The

new environment implementation was to be based on

state of the art signal processing techniques, which can

now be implemented due to high-speed processors and

large memory capacity.

The project was initiated by the largest Finnish

telecommunications operator, Sonera, in an effort to

gather data on the voices of their call-centre personnel.

The objective was to improve the working environ-

ment of the call-centre personnel and to reduce the
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number of sick-leave absences related to voice failures.

It had been noted that the call-centre personnel had

more sick leave than any other department and the
company wished to analyze the reasons behind this.

The purpose of this paper is to evaluate with

objective measurements the performance of the soft-

ware. We will study the effects of user-induced

variance in measurements, as well as the performance

in different background noise conditions. A more

extensive, technical description of the methods used

in this project can be found in (3, 4).

SPEECH MATERIAL AND OPERATORS IN

SYSTEM EVALUATION

Speech material

The voice material used was excerpts from customer

service recordings at a call-centre. Throughout their

working day, customer service employees answer the

phone in an open-plan office. During phone calls, they

discuss clients’ problems related to their phone use.

The entire pool of recorded voices consisted of 36
subjects (27 F, 9 M). A subset of these voices was used

for this paper. Detailed analysis of all the voices is to

appear in a separate study.

Speech was recorded on DAT tapes (sampling

frequency 44.1 kHz) with Sony DAT TDC-D3 and

TDC-D7 recorders, an AKG CK97-0 condenser

microphone capsule and an AKG SE 300 B output

module. The microphone was attached to the headset
mouthpiece of the phone, close to the mouth (ap-

proximately 3 cm).

Operators

Performance of the system was evaluated by running a

series of tests, where different operators used the
system. Variance of the results was tested with three

experiments. Firstly, intra-operator variance was mea-

sured by an experienced voice therapist with prior

experience in the current software. She repeated a

measurement five times on different days, using the

same material (a five minute speech recording of a

female subject).

Secondly, for inter-operator variance measurements,
13 subjects served as operators. Of these, six were

speech professionals (speech-language therapists and

similar) and seven were computer engineering profes-

sionals and students. Both groups included one

operator with prior experience of the software, while

the others were naı̈ve users. Before the actual mea-

surements, each naı̈ve operator had a trial run

supervised by one of the experienced operators. Each
operator analyzed two recordings, one spoken by a

female voice (age 22) and the other by a male voice

(age 23), neither having a history of vocal disorders.

Both recordings were chosen as average representa-

tives of the voice material, in light of fundamental
frequency and perceptual voice quality. The choice

was made by an experienced speech-language thera-

pist. The recording used in the trial run was the same

female voice as in the actual measurement.

Thirdly, four operators analyzed four additional

recordings, two male and two female voices. The

recordings chosen were the voice samples with extreme

(both lowest and highest) values of the average
fundamental frequencies for each gender.

METHODS

Pattern recognition

The methodology essential in this work can be divided

into three categories: Voice activity measures (also

known as features), voice activity classification (also
known as voice activity detection) and voice quality

measures. The voice activity measures generate differ-

ent features of the voice signal according to voice

activity classification procedures. Each activity mea-

sure analyzes a different property of the signal, and the

classification methods aim to combine these in an

intelligent way in order to classify the signal into

silence, voiced and unvoiced speech segments.
Once the classification has been carried out, the

speech segments, both voiced and unvoiced, are

analyzed using different voice quality measures. These

quality measures are given to the user for further

analyses.

The input signal is analyzed in 20 msec non-over-

lapping frames. For each frame, three parameters are

extracted for the classification procedure: sound
pressure level (SPL), fundamental frequency (F0)

and a stationarity measure.

For the SPL measure, the user is given the option to

calibrate the SPL or to apply the maximum-amplitude

signal as a reference. Independently of the reference

level, the SPL is thresholded to classify speech and

silence segments.

The stationarity measure used is based on the
Akaike information criterion, which is widely used in

system identification (1, 17). This measure effectively

estimates the amount of information in the autocor-

relation, thus indicating the level of stationarity of the

signal, as opposed to randomness. In our case, we

defined the stationarity measure c as follows (1):

c�
NrT r

r2(0)

where N is the number of elements in the autocorrela-

tion vector r. The Akaike information criterion is
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normally used for model-order specification. The

criterion also contains model-order as a parameter,

but in our case, the model is static and we therefore

need only the simplified formula as above. The

underlying assumption is that voiced speech is sta-

tionary whereas unvoiced speech is closer to white

noise. The stationarity measure thus gives us the

means to classify voiced and unvoiced speech.

The fundamental frequency was extracted with an

autocorrelation-based algorithm. The algorithm lo-

cates the maximal correlation peak in a user-defined

frequency range. If the F0 was outside the valid range,

or a non-valid peak was located, the frame was

classified as unvoiced even in those cases where the

stationarity measure would indicate voiced speech.

Speech analysis

The signal features described above divided the input

signal unambiguously into three classes: silence,

voiced speech and unvoiced speech. However, the

classifier sometimes generated erroneous results. To

remove obvious classification errors, a post-classifica-

tion procedure was applied to the classification vector.

Speech and silence segment lengths were thresholded

with constant parameters. These parameters are user

defined, but typical values would be 250 msec for

speech segment thresholding and 70 msec for silence

thresholding. Speech segments are defined as the

union of voiced and unvoiced speech. Speech segments

shorter than the threshold were merged into silence

segments, and silence segments similarly into unvoiced

speech segments. This method ensures that voiced

speech segments have valid F0 estimates while still

removing most classification errors.
The segmented speech signal then provided all

necessary data for the actual speech analysis. In

addition to the measures described above (F0 and

SPL), the alpha-ratio was also calculated. The alpha-

ratio is defined as the ratio of energy in the signal

above 1 kHz (up to the Nyquist frequency) and below

1 kHz (7). The alpha-ratio measure was applied to all

frames in voiced speech segments thus eliminating the

need to use long time average spectra (LTAS).

Additionally, while each voiced speech frame is given

equal weight, prosody will not introduce bias to the

measure, as is the case with LTAS.

For all the measures, the program provides the

following statistics: mean, standard deviation, median,

histogram and time-domain profile. Optionally, each

parameter can be filtered to remove 5% of the most

extreme values (2.5% of highest and lowest values), in

order to remove possible measurement errors (out-

liers).

A Signal to Noise Ratio (SNR) measure was also

developed for evaluation of recording quality. In short,

the SNR measure assumes that all silent segments are
noise while speech segments are the desired signal. The

ratios of the corresponding average energy levels are

then compared to produce the SNR-value.

System environment

The software runs on a regular MS-Windows based
off-the-shelf computer. The user-interface was created

with National Instruments LabVIEW version 5.1 and

mathematical programming in MATLAB version 6.0

R12 by MathWorks Inc.

The only hardware requirement, apart from the

audio card, is the amount of RAM which should be at

least 128 Mb. The program will run with less memory

but in that case its speed is drastically reduced. The
audio card used was a Turtle Beach Montego II�/ that

allows digital copying of DAT tapes and has excellent

audio quality for analog recordings.

System usage

The analysis procedure consists of three stages for the

operator: recording the speech, thresholding of signal
energy and stationarity, and analysis of results.

Recording usually consists of copying previously

recorded DAT-tapes to the computer. Apart from

setting the thresholding levels, the thresholding also

includes visual and auditory identification and re-

moval of non-speech sounds of high energy.

RESULTS

Intra-operator variance

In human-computer interaction, some variance will
always appear due to the inexact behavior of the user.

The current software contains manually tuned thresh-

olds on energy and stationarity levels, which will

undoubtedly present some user-induced intra-opera-

tor variance. The results were collected and compared

to give an estimate of the measurement variance, as

well as confidence intervals for the values measured.

The measurement variances, and all other variance
estimates in this paper, are normalized by N�/1 where

N is the sequence length. This makes the estimate the

best unbiased estimate. Furthermore, we present

variances by means of standard deviations, since it is

a more descriptive representation. The mean and

standard deviation of the measurements are listed in

Table 1.

The standard deviation of all parameters, with the
exception of segment lengths, is approximately 1% of

the mean or below. This indicates that these measure-
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ments are consistent and not affected by the user
actions. The segment length measurements are tech-

nically more demanding and thus variance due to user

decision will affect the results more easily. However,

both speech time and speech segment length measures

do not seem to deviate in subsequent measurements,

indicating that the signal energy thresholding is an

easier operation than the voiced/unvoiced segmenta-

tion. This is not surprising since the difference between
voiced and unvoiced segments is difficult to distin-

guish even if it is done manually, let alone automati-

cally.

It should be noted that the total recording time is

not influenced by the actions of the operator, since the

maximal recording time is a preset parameter of five

minutes. Furthermore, the user-interface software,

LabVIEW, regularly exceeds the preset recording
length by a few seconds. This minor problem is a

consequence of application synchronization difficul-

ties due to the massive flux of data. However, since the

preset recording time is so consistently exceeded (no

cases of recording times below five minutes were

observed), it was judged not to be a problem worth

further action.

Since the 1% standard deviation seems to be a
consistent approximation, it is suggested, as a rule of

thumb, that the 95% confidence interval for measure-

ments is 2% of the value measured.

Inter-operator variance

Variances of parameter values analyzed by different

operators are shown in Table 2. In comparison to the

intra-operator variance in Table 1, we can see that for

the female voice the standard deviation is larger for
the inter-operator measurements in three cases out of

thirteen. However, the three cases that are larger in the

inter-operator measurements, still fall well within the

95%-interval of measurements. It is therefore a plau-

sible assumption that the intra-operator variance

accounts for a larger part of the total variance than

the inter-operator variance. Moreover, the three mea-

surements that are larger in the inter-operator mea-

surements, SPL, unvoiced segment length and silence

segment (B/2 sec) length, are all among those

measurements most sensitive to choices made by the

operator.

The inter-operator variance for the male voice is,

contrary to expectations, larger than that of the female

voice. However, with the exception of fundamental

frequency and the number of glottal oscillations, all

measurements are insensitive to the common problems

with the higher fundamental frequency of female

voices. In addition, the difference in standard devia-

tions between the male and the female voice is in most

cases not significant.

Results of the third experiment, where four opera-

tors analyzed the female and male voices which had

the extreme fundamental frequencies of the whole

material, are listed in Table 3. The three most

important measures for our purposes are F0, SPL

and alpha-ratio, and their variances are therefore of

special interest. Looking at Table 2 and Table 3, we

can see that the ratio between the standard deviation

and the mean (coefficient of variation) is, in all cases,

below 2%, and, in 14 cases out of 18, below 1%. The

largest value is found in Table 3 for the male with the

highest F0 and for the F0 measure, where the

coefficient of variation is 1.97%. It was to be expected

that high-pitch voices are the most problematic cases,

especially for the F0 measure. However, the worst case

(standard deviation of 2%) still clearly indicates that

the performance of the system is acceptable even for

voices of extreme F0.

Table 1. Intra-operator variance; one operator, five repeated measurements

Parameter Mean Standard
deviation

95%-interval 99%-interval

Total recording time (sec) 310.4 1.1 2.1 2.8
Speech time (sec) 111.4 1.4 2.7 3.5
SNR (dB) 16.00 0.12 0.24 0.31
Number of glottal oscillations 20560 210 400 530
SPL (dB) 84.5 0.2 0.4 0.5
F0 (Hz) 184.6 0.5 1.0 1.4
Alpha-ratio (dB) 17.77 0.05 0.09 0.12
Speech segment length (sec) 1.755 0.065 0.13 0.17
Voiced segment length (sec) 0.149 0.026 0.051 0.067
Unvoiced segment length (sec) 0.0702 0.0041 0.0080 0.0104
Silence segment length (sec) 2.59 0.06 0.12 0.16
Silence segment (B/2s) length (sec) 0.788 0.012 0.024 0.031
Silence segment (�/2s) length (sec) 6.84 0.11 0.22 0.28
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Learning curve of operators

In the inter-operator variance measurements, each

operator executed one trial run before the actual

measurements, supervised by an experienced operator.

Since the voice material in the trial run was the same

as in the first actual measurement, it was possible to

study how quickly the operator would learn how to

use the software. Therefore, we compared all the

resulting pairs of measurements for each naı̈ve opera-
tor. We could not find any consistent trend in any of

the measurement means. However, the inter-operator

variance of each measure (the variance of measure-

ments means over all operators) did decrease slightly

in all cases, except for the average lengths of voiced

and unvoiced segments, where no significant change in

variance was found. The second, unsupervised, mea-

surement (of the male voice) did not show a consistent
trend in inter-operator variance with respect to the

two earlier measurements. It is clear that this decrease

in variance between the two first measurements is

attributable to some learning process. Nevertheless,

since the inter-operator variance for the male voice, in

the majority of cases, was larger than that for the

female voice (both in the trial run and the actual

measurement), the learning process probably is asso-
ciated with the specific voice, as opposed to learning of

the software. In conclusion, learning the software is

straightforward and does not seem to present any

substantial variance to the results. Detailed results

indicating operator learning are listed in Table 2.

Robustness of voiced/unvoiced classification

In addition to tests evaluating operator-induced

variance, the second major task was to evaluate the

performance of the stationarity measure. That is, to

determine the SNR limit where a voiced sound cannot
be distinguished from unvoiced sounds. Since the

stationarity test is immune to changes in energy it

can safely be assumed that unvoiced sounds and

background noise are equivalent. With this objective,

test sounds were created with increasing levels of noise

added to concatenated words of /pa:p:a/ (Finnish for

grandpa) pronounced by one female and one male

subject (the same speakers as before). There was a
silence segment in between the consecutive /pa:p:a/

words such that the length of a sample was one

second. The SNR range was from 20 dB down to 0 dB

in 2 dB steps. Gain was adjusted so that the overall

SPL was constant.

Two noise types were used: white noise and ambient

noise. The ambient noise was synthesized so as to

mimic the real background noise present in the
recordings. In order to model the background record-

ing noise, we searched a non-speech segment (of 10T
ab

le
2

.
In

te
r-

o
p

er
a

to
r
va

ri
a

n
ce

;
a

fe
m

a
le

a
n

d
a

m
a

le
vo

ic
e

(
w

it
h

1
3

o
p

er
a

to
rs

)
,

to
g
et

h
er

w
it

h
th

e
tr

ia
l

ru
n

(
fo

r
th

e
1

1
n

a
ı̈v

e
o

p
er

a
to

rs
)

P
a

ra
m

et
er

T
ri

a
l

ru
n

(f
em

a
le

vo
ic

e)
F

em
a

le
v
o

ic
e

M
a

le
vo

ic
e

M
ea

n
S

ta
n

d
a

rd
d

ev
ia

ti
o

n
M

ea
n

S
ta

n
d

a
rd

d
ev

ia
ti

o
n

M
ea

n
S

ta
n

d
a

rd
d

ev
ia

ti
o

n

T
o

ta
l

re
co

rd
in

g
ti

m
e

(s
ec

)
3

0
9

.1
1

.7
3

0
8

.5
1

.0
3

0
9

.1
1

.3
S

p
ee

ch
ti

m
e

(s
ec

)
1

1
2

.5
1

.1
1

1
2

.1
0

.8
7

5
.0

2
.4

S
N

R
(d

B
)

1
5

.9
8

0
.1

5
1

6
.0

9
0

.1
0

1
7

.0
7

0
.4

2
N

u
m

b
er

o
f

g
lo

tt
a

l
o

sc
il

la
ti

o
n

s
2

0
7

6
0

1
7

0
2

0
7

1
0

1
1

0
7

4
2

0
2

2
0

S
P

L
(d

B
)

8
4

.0
7

0
.4

6
8

4
.1

1
0

.2
8

8
1

.2
6

0
.6

5
F

0
(H

z)
1

8
4

.6
0

.4
1

8
4

.7
0

.3
9

8
.9

0
.4

A
lp

h
a

-r
a
ti

o
(d

B
)

1
7

.7
8

0
.0

5
1

7
.8

0
0

.0
4

1
6

.7
4

0
.0

7
S

p
ee

ch
se

g
m

en
t

le
n

g
th

(s
ec

)
1

.7
6

1
0

.0
5

1
1

.7
6

0
0

.0
2

5
1

.1
3

7
0

.0
4

6
V

o
ic

ed
se

g
m

en
t

le
n

g
th

(s
ec

)
0

.1
8

1
9

0
.0

4
0

6
0

.1
8

4
5

0
.0

4
0

4
0

.1
8

7
7

0
.0

2
1

1
U

n
vo

ic
ed

se
g

m
en

t
le

n
g

th
(s

ec
)

0
.0

6
1

9
0

.0
0

6
4

0
.0

6
3

7
0

.0
0

6
5

0
.0

6
5

9
0

.0
0

6
7

S
il

en
ce

se
g

m
en

t
le

n
g

th
(s

ec
)

2
.5

6
0

.0
5

2
.5

8
0

.0
4

3
.3

4
0

.0
9

S
il

en
ce

se
g

m
en

t
(B

/2
s)

le
n

g
th

(s
ec

)
0

.7
8

8
0

.0
1

4
0

.7
8

7
0

.0
1

4
0

.9
2

9
0

.0
3

6
S

il
en

ce
se

g
m

en
t

(�
/2

s)
le

n
g

th
(s

ec
)

6
.7

4
0

.1
3

6
.6

8
0

.1
1

6
.4

3
0

.2
3

Automatic pre-segmentation of running speech 105

Logoped Phoniatr Vocol 28



seconds) from the original recordings made in the

open-plan office. A linear predictive model of order 6

was computed for this segment (11). Model order was
chosen large enough to grasp the spectral envelope of

noise but small enough not to model (possible)

resonances. Finally, the model generated was excited

with white random noise to produce a noise signal

with spectral envelope properties similar to those of

the background noise in the original recordings.

The main result with both white and ambient noise

was that both speech and voiced segments were easily
detected from the noise-corrupted vowels in the whole

SNR range, and for both subjects. For the female

voice, speech segments and voiced segments were all

classified correctly. For the male voice, speech seg-

ments were correctly classified with SNR values from

20 dB to 4 dB. For SNR values of 2 dB and 0 dB, the

speech segments identified by the classifier were

slightly longer than expected. However, the voiced/
unvoiced classification was successful in all cases. It is

unlikely that any recording would have a worse SNR

than 0 dB. We can therefore safely conclude that

voiced/unvoiced segmentation is not a problem with

respect to SNR level.

Robustness of parameter computation

The third objective was to evaluate how changes in the

recording conditions affect the results. For this pur-
pose, 10-second speech excerpts of the recordings of

both subjects were analyzed in the following manner.

Eleven different levels of noise (SNR level ranged from

30 dB down to 0 dB with 3 dB intervals) were added to

the speech signal and the results were compared. The

noise signals were the same as those described in the

previous section.

For signals corrupted with white noise, all values,
except for the alpha-ratio and the SNR estimate, were

found to be approximately constant over the whole

SNR range. If the measurements had any trend it was

masked by the inter-measurement variance. A slight

increase in variance could have been expected but it is

difficult to distinguish such a change in measurements

without a large number of laborious repetitions.

With the decreasing SNR a clear increase in the
alpha-ratio was evident as was to be expected. White

noise added to the speech signal has more energy at

high frequencies than the original speech signal. An

increase in the level of the noise component will thus

increase the relative amount of high frequencies,

thereby increasing the alpha-ratio.

In the measurements, the SNR estimate decreased

proportionally to the increase of the noise component.
However, the range of the SNR estimate was not quite

as large as the ratio of the energies of the originalT
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speech signal and the noise component. This is due to

the fact that the clean speech signal always contained

some noise and the SNR estimate is thus always
biased.

For the signal corrupted with ambient noise, the

results were similar to those obtained using white

noise. The fundamental frequency estimates were

within 1 Hz up to the SNR of 6 dB for both the

female and male voice. Alpha-ratio was approximately

constant up to an SNR of 9 dB where it started to rise,

similarly to white noise. With the increase of noise,
weak segments of speech disappear slowly into the

noise. Speech segment lengths were therefore observed

to shrink with decreasing SNR. Furthermore, voiced

segments sometimes shrunk and scattered, since weak

voiced segments had less energy than the threshold.

However, this effect often did not split the speech

segment, since energy dips of short duration (such as

voiceless plosives) were ignored. Nevertheless, one
should not be too concerned about these problems

since they appeared only on SNR levels below 9 dB.

No significant differences in the results between the

male and female subject were found in these measure-

ments.

It should be noted that the ambient noise signal was

concentrated heavily on the lower end of the spectrum.

This could degrade the accuracy of energy threshold-
ing of the signal as well as estimates of the funda-

mental frequency. However, in the current case, this

did not present a problem. Should this become a

problem in some other setting, it could be easily solved

by high-pass filtering the signal with a cut-off of, e.g.,

60 Hz. An option for filtering is built into the

software, but as explained above, it was thus not

used in the current experiments.

CONCLUSIONS

In this paper, we have evaluated the performance of an

analysis environment for studying effects of vocal

loading from continuous speech. The performance

was evaluated by means of repeated measurements of

the same signal, vowels in noise, and speech samples in

noise. The results show that the analysis software

performs consistently, that is, user actions do not
significantly alter the results. It was shown that the

95% confidence interval for measurements is 2% of

their average magnitudes. Furthermore, recording

conditions, that is, the SNR level of measurements,

do not degrade the quality of measurements. Only the

alpha-ratio increases with a decreased SNR. However,

this is not a design flaw of the software but rather a

property of the measure.
This software was developed for vocal loading

measurements. As expansions to the current software,

we have considered inclusion of automatic inverse

filtering of the voice source in the system, using, for

example, the method presented in (2). Performing
inverse filtering on voiced speech segment is supported

by the classification algorithm implemented in the

system. Moreover, this classification algorithm is not

restricted to vocal loading studies alone, but can be

applied in any task requiring voice/unvoiced classifica-

tion of continuous speech.

In conclusion, we have described and evaluated in

this paper the performance of an analysis environment
for continuous speech. This analysis shows that the

environment is able to perform robust and consistent

measurements of continuous speech.
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