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1. Introduction

1.1 Science of Science

The underlying driving force of science has always been to start from empirical
evidence in order to gain information about the structure of the phenomena
taking place around us. With such a pursuit in mind it was just a matter of
time until science would start investigating itself. The moment came in the
60s, when the first bibliographic efforts required to improve the searchability of
scientific material took place in the form of a search for proper indexing [1, 2]
and therefore allowing, for the first time, to analyze the published material as its
own data set. With only few previous works being carried out [3], the historical
breakthrough in the field of science of science came with De Solla Price’s work
Networks of Scientific Papers [4]. De Solla’s publication not only was one of
the first to directly tackle the pattern of bibliographical references, but it also
introduced key concepts for the development of the field, starting from the need
to analyze it in its topological structure as a network. Figs.1.1 and 1.2 show the
earliest attempts of representing citation data as a network, even though the
theory behind network science was still in its earliest stages.

What is most striking however, is that already in its origins, the study of the
scientific production has required an analysis of science as a whole and in time.
These key features are intrinsic properties of the entire scientific production,
since it is in the nature of science to build one’s work on the top of previous ones,
therefore adding a temporal dimension to its development, as new discoveries
and breakthroughs appear and link themselves to older ones. Since that seminal
paper, the whole world, as well as the scientific one, has seen an amazing rise
in technological possibilities, which have affected heavily the opportunities for
collaborations, allowing people, as well as ideas, to move freely across the globe.

These conditions, along with an improvement in the economies in the post
War era, has allowed science to grow at an amazing rate [5]. The amount of
information generated by science has been growing exponentially at a rate close
to a 4% growth each year in the last decades as shown in Fig.1.3. Scientists
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Figure 1.1. Representation of citations as
a network structure. Figure
adapted from [4] with permis-
sion of The American Associ-
ation for the Advancement of
Science.

Figure 1.2. Representation of citations as
an adjacency matrix. Figure
adapted from [4] with permis-
sion of The American Associ-
ation for the Advancement of
Science.

are constantly dealing with the necessity to retrieve the latest results from
their fields, which are also growing at a fast rate; in such framework the ability
to focus on the most relevant works becomes a key aspect. However, need for
constant update requires to shift one’s attention towards more recent scientific
results, gradually discarding older ones.

The same applies in the other direction, with scientists trying to get their
latest publication known as much as possible, in order to gather attention on
their latest results. Therefore, scientists are actors in a market where the
ability of reaching popularity in terms of scientific productivity has become a
dominating aspect, implying that scientists/groups/institutions are all competing
for attention in a market where the allocation thereof is structurally limited by
one’s ability to store information regarding all scientific results published in the
past.

1.2 Scope of the Thesis

This thesis focus mainly on this temporal and cumulative aspect, investigating
the changes that science has undergone in time due to its constantly changing
nature. Chapter 2 talks about the study of citation patterns, with their prop-
erties, biases and attempts at modeling them. Chapter 3 introduces the basic
concepts of network theory and how these concepts have been used to analyze the
social and collaborative structure of science. Chapter 4 talks about the efforts
in trying to determine the quality of scientific publications by the development
of metrics. Finally, Chapter 5 summarizes the content of Publications I-IV and

10
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Figure 1.3. Growth of publication in science and for a selected number of fields based on our ISI
dataset of over 50 million publications and 600 million citations. The rate of growth
can be well approximated by an exponential curve. Figure adapted from Publication
II.

discusses briefly how they contribute to the field of Science of Science.
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2. Scientific Citations and Their
Patterns

"If I have seen further, it is by standing on the shoulders of giants”. This famous
quote by Sir Isaac Newton summarizes perfectly the moral obligation of a scien-
tist to acknowledge the contribution of previous works to their own. Newton was
perfectly aware that his groundbreaking discoveries would have been impossible
without the fundamental work done by previous scientists, from Aristotle to
Galileo and Kepler, covering centuries, if not millennia of scientific and philo-
sophical endeavours. While the recognition of the work done by predecessors at
the times of Newton was done primarily by mentioning the names in the text
or in private correspondence (as was the quote mentioned before) as a form of
intellectual courtesy, in modern times it has taken the form in scientific journals
of a moral obligation based on an agreed voluntary scheme and is considered as
a fundamental part of good scientific practice, while for patents it even has a
legal side, with previous patents being cited in order to be able to clarify how the
new patent differs substantially from previously similar ones. Furthermore, due
to the limited space available in a text, along with the gradual process that turns
recent discoveries into common knowledge, the publications mentioned in the
reference lists represent an extremely careful and precise process of selection
of a very limited number of works among thousands, if not millions, of related
works published in recent times.

As the results in aging literature are slowly assimilated as basic findings,
scientists move on to newer results as the basis of their works, thus implicitly
determining when a groundbreaking result becomes obsolete, as more impelling
results require their attention. Just like Newton chose to acknowledge Galileo
for a few selected results, but ignoring to do to the same with Pythagoras
and his extensively used theorem, a recent paper in Quantum Physics will
hardly mention any of the works of Einstein’s Annus Mirabilis even though they
are the very foundation on which its work is based on, since their results are
now accepted as being universally known and do not need to be individually
addressed anymore.

It is for these reasons that ever since the early times of scientometrics, a lot
of attention has been given to the analysis of the individual performance of a
single publication in terms of citations. A simple citation count is a superficial
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yet quantitative evaluation of the success of a paper and is deemed sufficient by
some to be able to compare and rank publications as well as scientists. However,
the aforementioned process of obsolesce in science adds a dimension which has
been described as an attention economy [6] in which authors are aware that they
have a limited amount of time to gather attention (i.e. citations) and therefore
compete against each other in order to obtain the maximum attention available.

Such complex aspects that lead to the selection of the cited material has been
the source of even more interest into the citation patterns as well as statistics
of citation counts across disciplines, countries and through time. This chapter
will go through the most relevant works that have investigated the citation
patterns in science, looking at the basic properties in citation habits and with
a summary of the most interesting attempts at modeling mathematically the
citation patterns of scientists.

2.1 Citation distributions

One of the earliest questions that scientometrics tried to answer already with
de Solla’s seminal paper [4] has been: What is the functional form of the distri-
butions of citations?. In particular, since the average value of citations gathered
is bound to be structurally low as its value is linked to the finite number of
references available, the interest was in the tail of the distributions, that is what
are the citation values and patterns for the few exceptional publications capable
to gather a number of citations that span over multiple orders of magnitude. De
Solla claimed, based on his limited data, that the functional form was power law
like, with the number of papers with c citations behaving like N(c)∝ c−α, with
an estimate of α ∈ [2.5,3.6].

For a long time, no one looked further into the claim with only Laherrère
and Sornette in 1998 [7] suggesting a generic stretched exponential form for
the citation distribution of authors. It was only in 1998 that S. Redner tackled
the topic in a systematic way [8]. It is important to notice that such analysis
was possible to be carried out mainly thanks to the availability of a properly
catalogued data set of scientific publications. By using two large data sets
( 700 thousand papers obtained from the Institute for Scientific Information
(ISI) and 24 thousand papers from Physical Review D) combining for more
than 7 million citations, the author was able, for the first time, to carry out a
thorough computational statistical analysis of citation distributions. The results
offered an interesting and, to a certain extent, worrisome insight of the relative
popularity of scientific publications: almost half of the papers failed to gather
any citation at all from publication date to the time of the study, with 80%
of the publications gathering 10 citations or less. Even though also de Solla
noticed a huge amount of uncited papers, Redner was able to confirm the pattern
also for a larger and more significant data set. The author concluded that
a final evaluation of the functional form of the citation distribution cannot be
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thoroughly computed as the tail of the distribution has not reached its final state,
as the highly cited papers are still gathering citations. He also pointed out how a
few highly cited papers can affect the higher-order moments of the distributions,
thus making the task even harder. However, Redner succeeded in gathering
some indirect measurement through a Zipf plot [9], providing evidence of a power
law behaviour with α≈ 3, compatible with de Solla’s findings. Furthermore, the
author concluded with what can be considered the cookbook for future attempts
at modeling the citation mechanism: a short memory (or Myopia) and the "rich
get richer" kind of mechanism that was introduced by de Solla himself in 1976
[10]. The latter would become a massive topic starting from the following year,
with Barabási’s work on scaling in random networks [11] which managed to
mathematically justify the power law distribution of citations.

Despite the case seeming to be settled, it was Redner himself in 2005 who
challenged his own previous findings [12]. In his later work, the author looked
deeper in the PR data set, this time expanded to over 300 thousand papers from
July 1893 through June 2003, suggesting that a log-normal distribution better
describes the data.

A somewhat conclusive result in the discussion of the form of citation distri-
butions came in 2008 with the work of Radicchi et al. [13] who found strong
evidence for a lognormal distribution for the citation distribution of scientific
publications and furthermore managed to discover universal properties in the
citation distribution across disciplines as different fields have. In their paper,
the authors show how the citation distributions across fields, despite being
apparently extremely different quantitatively, can be mapped into a universal
distribution if taking into account the statistical properties of each distribution.
Differences in citation counts across disciplines are a well known bias, the roots
of which lie in the different sizes of the fields or disciplines [14] as well as in
different conceptual meaning of the citation itself [15]. In order to get rid of
discipline dependent factors, the authors introduced a new Relative Indicator
(RI) c f = c/c0 for each paper, where c is the number of citation the paper receives
and c0 is the average number of citations received by articles published in its
field in the same year and writing a functional form for the distribution of RI as
F(c f )= 1

σc f
�

2π
e−[log(c f )−μ]2/2σ2

, where σ2 =−2μ allows the expected value of c f

to be 1, thus allowing to compare the distributions across disciplines. Radicchi
et al. also reported that the collapsing behaviour persists also when distribution
from different years are compared, therefore suggesting that the functional form
mentioned before is a universal curve, thus allowing to compare citation counts
across fields and times in a fair way.

Field dependent patterns are also known to cause to disproportionate citation
counts, even though they can be quantified and corrected for. This can be
achieved by "imposing" a mapping between cumulative distributions of citations
for papers published in a single category (i.e. subfields or fields) to the aggregated
cumulative citation distribution [16]. For each field is therefore possible to
assign to each citation count c′ in the field cumulative distribution Pf (≥ c′) to
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the corresponding value c in the aggregated cumulative distribution (P(≥ c))
such that Pf (≥ c′) = P(≥ c). The relation between the two values for different
fields is show in Fig. 2.1 as a quantile-quantile plot, in which it can be seen
that the two citation measures are connected by a power law relation, therefore
suggesting that the main difference between the citation distributions across
fields lies only in a difference in each field’s scaling factor.

c

c'

Figure 2.1. c′ vs c adapted from [16] and reproduced with our data set. We can see that the
scaling follows the relation: c′ = acα where a is a pre-factor and α is a field dependent
scaling factor.
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2.2 Biases in citations

In 2005 Hajra et al. were [17] were among the first ones to suggest a temporal
aspect in citation dynamics and decided to look at the impact that age has on
citations. By looking at the citation dynamic of a set of papers, they found a
critical time tc of 10 years, after which the rate at which citations are gathered
drop significantly, indicating that papers have approximately a lifespan of 10
years. In another paper in the following year [18], the authors suggest that the
rich get richer mechanism might require to be connected with an aging of the
publications in order to take into account the obsolesce of scientific publications.
In Publication II we confirmed this property, showing that the typical life cycle
of a paper is becoming shorter in time. Fig.2.2 shows the evolution of the time to
reach the peak of citations for top papers in a selected number of fields.
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Figure 2.2. Time evolution of the mean values of time to peak Δtpeak for top 10% (top) and
[11-30]% percentiles (bottom) of our ISI dataset. Δtpeak represents the time elapsed
between the publication of a paper and the year in which it reached its maximum
yearly citation count. The mean value 〈Δtpeak〉 decreases linearly in time. The linear
fit, 95% confidence interval and the slopes of the linear fits are also shown. Figure
adapted from Publication II.

While the average suggests that papers are being forgotten within a limited
period of time, other works have been looking at the opposite phenomenon, the
one of sleeping beauties, i.e. scientific papers that remained almost citationless
for a long period of time only to become suddenly highly influential and cited

[19]. The authors designed a Beauty coefficient defined as B =∑tm
t=0

ctm−c0
tm

∗t+c0−ct

max{1,ct}
,
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where ctm is the maximum number of yearly citations gathered at time tm ∈ [0,T]
and T is the time at which the coefficient is measured. The coefficient therefore
quantifies how "unexpected" the citation history of a paper is, with B = 1 being
the coefficient for a paper that grows linearly at a steady rate. One of the most
interesting results of the study is that sleeping beauties, albeit appearing to be
extreme cases, are impossible to distinguish from the core of all papers, as there
is no minimum B∗ value that allows to define a sleeping beauty as such. While
most values of B are shown to be low, the authors conclude that it is an intrinsic
property of scientific output to have a vast heterogeneity in the times at which
recognition takes place. These results make particular sense for field such as
Physics or Chemistry, where the theoretical and experimental sides of the same
field are not always synchronized.

One of the most evident examples of this asynchronism is the recent experimen-
tal discovery of the Higgs boson, the existence of which was originally proposed
in the 60s [20] but was confirmed only in 2012 thanks to the development of the
LHC at CERN in Geneva [21]. The search of the boson was lagging so much
behind that still 10 years after the theoretical breakthrough the hopes of a
search for the Boson seemed remote despite phenomenological studies regarding
its discovery had already started [22], as one of these studies points out [23] :

“We should perhaps finish our paper with an apology and a caution. We
apologize to experimentalists for having no idea what is the mass of the Higgs
boson, ..., and for not being sure of its couplings to other particles, except that
they are probably all very small. For these reasons, we do not want to encourage
big experimental searches for the Higgs boson, but we do feel that people doing
experiments vulnerable to the Higgs boson should know how it may turn up.”

The temporal aspect of recognition of older theoretical breakthroughs was a
central source of inspiration for Publication I. In the paper we looked at the
time lag between the publication of Nobel discoveries and the conferment of the
prize, finding that it has been increasing at a very high rate, to the point where
the original authors might pass away before seeing their discoveries empirically
confirmed as shown in Fig.2.3. These findings led us to conjecture that we
are potentially in presence of two opposite scenarios: either the frequency of
groundbreaking discoveries is decreasing or, conversely, it could be that too
many significant results are being published and that older discoveries are being
awarded in order not to forget worthy winners.

Furthermore, one author might not be even aware of certain scientific works
if he has not had the chance to read them or to search them efficiently. Even
though the limitations of access to scientific knowledge might have become less
relevant in modern times thanks to the rise of the Internet era and immediate
access to online catalogues, at the same time the possibility to browse more
recent material has consequently introduced a change in the way authors update
their knowledge. The effects on the scientific community were rapid, as in 2003
already De Groote et al. [24] showed through a survey that general users of
scientific material prefer digital copies to printed ones. The constant need for
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Figure 2.3. Time lag between discovery and Nobel prize vs year in which the prize was awarded
for Physics, Chemistry and Medicine, created with data from Publication I. For each
Nobel prize we searched bibliographic material on the author in order to identify one
or more publications that could be directly associated to the awarding of the Nobel
prize. The blue dots represent individual discoveries, while the red dots are a 5 year
average over all awards in the bin. We can see a clear increase in average lag as well
as the presence in more recent year of extremely high values (lag ≈ 50 years). Figure
adapted from Publication I.

immediate access to recent scientific knowledge has become such a relevant
aspect of science itself that it has led to suggesting a ranking of journals in
terms of the speed at which their publications complete their cycle [25].

An interesting study in the impact of online available material on citation
patterns came in 2008 when Evans [26] studied the effect of online availability
of journal issues within the citation patterns of the journals and reported that
the rise of online available publications shifted the citation patterns. The results
showed that the more journals started to appear online, the more the reference
list tended to be pointing at more recent discoveries and caused a concentration
of citations towards fewer articles and fewer journals, an effect the authors claim
is caused by hyperlinking, i.e. the search of further bibliographic material from
the reference lists of papers previously read.

Recently however the claim has been challenged by Verstak et al. [27] as
well as by Pan et al. [28]. Verstak et al. used Google Scholar Data to analyze
all publications available between 1990 and 2013. The authors calculated the
fraction of references in these papers pointing at least 10 years before the year of
publication for each paper and found that such fraction is actually increasing in
time. Furthermore, they noticed that the value of the change over the second half
of the period studied was much larger than in the first, with the former matching
the period in which digitalization has took place (2001-2013). The authors
therefore concluded that the accessibility of older material has allowed scientists
to cite the most suited paper that they were able to find, regardless of the time at
which it was published. The latter paper by Pan et al. instead devised a model
to test Evans’ hypothesis which builds a citation network in which papers choose
whom to cite both by "browsing" (i.e. by searching previous publications freely)
and by a redirection link-formation mechanism in which knowledge is found by
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following the reference list of a source article previously browsed. By controlling
the rate at which these two processes take place the authors simulated a spark
in the redirection mechanism, representing the availability of online journals.
The model showed that the redirection mechanism had very little impact on
the average age of citations, while the growth of the system appeared to have a
much more significant role.

The constant increase in scientific works might limit the ability to physically
and mentally keep track of all relevant publications being published. This might
be among one of the greatest limiting factors in citation patterns, as it has
been reported [29] that scientists read more papers, yet dedicating less time on
average to each one. The temporal dimension of the citation selection process
has been the key source of inspiration for Publication II, where we suggest that
the increasing number of publications causes a constant shift in focus towards
more recent papers, therefore shortening the citation life cycle of papers both
in terms of time to reach their peak in popularity, as well as in terms of time
needed to stop gathering significant citations after the peak. Fig. 2.4 shows the
main results of the analysis.

Another aspect that influences citation choices is one that looks at the role
that the individual authors play. Science is not only a philosophical endeavour,
but also a social system where scientists personally interact and collaborate and
therefore are more exposed to works coming from a familiar set of collaborators
or, in general, people working in the same area of research. Early research in
fact showed that [30] intellectual ties based on shared content surpass friendship
as a predictor of reciprocal citation. Similarly, Persson et al. [31] showed in
2004 that collaboration leads to a positive effects in the success of a paper, in
particular if the authors come from different countries. This can be seen as
a success linked to the possibility of the same work to be pushed forward at
twice (or more) the same rate as a single author paper in different "market
pools" of customers, i.e. potential citers. Furthermore, in 2004 Glänzel et al.
reported that multi-authorship increases the chances of self citation [32], with
the number of authors not being a factor though. However, the authors point
out that the most dominating contribution of multi authorship is the increase in
foreign citations, thus showing the social contribution of a multi author paper in
terms of geographical advantage.

The topic of self-citations is a highly debated one in a world where citation
metrics are used as tools to quantify careers and quality of research. The same
author showed in another paper in the same year that self citations are an
"Essential part of scientific communication" [33], but that its contribution plays
a higher role in the immediate times after publications. This result, linked with
empirical evidence of self-citation being correlated with publishing on average
in journals with relatively low impact shows that this trend might be linked
to the need of a "push" in fame, hoping for success to accumulate from there.
However, while self-citation does appear to have an impact on citation counts,
it is not clear whether the correlation is linked to a matter of visibility, i.e.

20



Scientific Citations and Their Patterns

6

8

10

12

14

16
〈t̄

1 2 i
〉

Medicine,−0.149 ± 0.007
Biology,−0.154 ± 0.006
Chemistry,−0.266 ± 0.006
Physics,−0.256 ± 0.008

1970 1975 1980 1985 1990 1995

Years

0.4

0.6

0.8

1.0

1.2

〈t̃
1 2 i,
f
〉

×106

Medicine, 9128 ± 1027
Biology, 2926 ± 241

Chemistry,−1378 ± 492
Physics, 1702 ± 879

Figure 2.4. The evolution of the half life of papers after the peak 〈t
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fields and for the top 10% percentile. For each paper we calculated the time required
for the publication to drop below half of the number of citations gathered in its peak
year. We then proceeded to average the values for papers published in the same
field and peaking in the same year. The half life has been calculated both in terms
of number of years and in terms of number of paper published within the field in
the same time interval. The linear fit, 95% confidence interval and the slopes of
the linear fits are also shown. The dashed line represents the linear fit. Despite its
noisy behavior, the renormalized half-life shows a relatively stable trend throughout
the years, possibly with the only exception of Medicine and Biology, which show a
slightly rising pattern for recent time. Figure adapted from Publication II.
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trying to put forward one’s results as a "bandwagon" effect, or rather a matter of
quality, as one author mentions its own best works as a basis for future ones
[34]. More recent results confirm [35] that the trend is still significant, yet
retaining different patterns in different fields, due to the possibility of certain
fields to have many groups working on independent topics, thus focusing the
selection of cited material from a smaller subset of works. The authors also
report that a higher propensity in inter-author-citations leads to a higher chance
of inter-citations of the second order, with collaborators of collaborators being
more likely to be cited.

Authors might also influence their own career retroactively as shown by
Mazloumian et al. [36]. The authors found that groundbreaking results by
an author have a positive impact on their own previous literature, therefore
creating a status of authority for the author even though the earlier works
might not be necessarily related to the successful recent ones both in terms
of topic and intrinsic scientific quality. The role of prestige in science is so
critical that it has been suggested to also be a bias within the peer review
mechanism [37]. This psychosociological mechanism that enhances the career
of already successful scientists based on their academic reputation is often
called Matthew Effect and its impact on science has been discussed since the
60’s [38]. In general, a citation bias towards successful papers (preferential
attachment) and one towards successful authors (Matthew Effect) shows that
the citation mechanisms are not only based on scientific necessity, but are
also based on individual and collective aspects that emerge from the human
interaction between scientists. Finally, it is worth to mention that there are
plenty of other factors that influence citations, such as journal-dependent factors,
field-dependent factors and technical ones [39], which will not be analyzed for
the sake of brevity.

2.3 Modeling

The previous section showed how many factors and biases play a role in the
mechanisms underlying the decision of which papers will appear on a reference
list, with empirical results showing heterogeneous results within the same field
of analysis. It is therefore not surprising that the pursuit for a mathematical
model that could correctly reproduce the properties of citation mechanism has
been a challenging one, which scientists however were eager to undertake in
order to shed more lights on the way science itself works, focusing in particular
on the temporal aspect of the models.

The earliest and most successful attempts at modeling citation dynamics lie in
the rich get richer or, technically speaking, preferential attachment mentioned
in the previous sections . Despite the original idea was already formulated in
de Solla’s work [4], it was Barabási in 1999 who was able to mathematically
describe it exhaustively [11]. In his work, Barabasi suggests a model (PAM)
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in which the probability (or attachment rate) A of a paper of receiving another
citation from a new paper is directly proportional to the number of citations
c citations previously collected: A(c) ∝ c. This mechanism is able to explain
the citation distribution both from a qualitative point of view (its fat tailed
behaviour) as well as numerically, confirming an expected value extremely close
to 3 for α. Interestingly, the model was applied to a vast amount of complex
systems, with particular success in biology [40, 41], of which citation dynamics
represent one of the examples.

A confirmation of the validity of the preferential attachment mechanism came
in 2005 with Redner [12], who reported that the attachment rate is indeed linear,
leading to a double paradox: the linear attachment rate shown by the data
should lead to a power law distribution for citations, while data shows that
the form is log-normal, which in turn would require an attachment rate of the
form Ac = c

1+a ln(c) with a > 0. Despite confirming empirically the validity of a
linear form of preferential attachment, Redner suggests that the underlying
assumptions behind the preferential attachment model, when applied to science,
might be not completely realistic, as the model implies a full knowledge of all
the corpus of existing papers, a challenge which has its limitations both in terms
of accessibility as well as in terms of memory.

As we saw in the previous section however, it is fundamental to introduce the
question of time dependence within the modeling framework. While theoretical
works tried to tackle the topic from a purely mathematical standpoint [42, 43],
it was Hajra et al. [17] in 2004 who applied it with success to the modeling of
citations. The authors followed the previous theoretical works and formulated a
functional form for the attachment rate of Π(c, t)= C(c)T(t), where C(c) and T(t)
are generic functions and where the attachment rate is assumed to be separable.
The authors then tried to identify the functional form for the temporal aspect
that would best fit the data through the analysis of the distribution of citation
ages Q(t), i.e. the raw distribution of the fraction of citations with age t. In order
to do so, the authors took into consideration the stochastic nature of the rate
at which new citations appear, i.e. the rate at which new papers are published.
Therefore by empirically estimating from their data sets a publication rate of
n(t) = a(1− e−bt) they were able to renormalize the distribution and obtain a
functional form of T(t)= Q(t)

n(t) . Comparing the model with the collected data, the
authors identified two distinct regimes of power-law decay of the distribution:
T(t) ∼ t−α1 for 0 < t < tc and T(t) ∼ t−α2 for t > tc where tc ∼ 10 is the expected
lifespan of a paper mentioned earlier.

In Publication II we proposed a model for the process of gathering new citations
as a counting process. In this ultradiffusive framework, the arrival of a new
citation is hypothesized to be correlated to an earlier event or a combination of
events. Therefore, ultradiffusion proposes that the pattern of events emerges as
a consequence of an underlying hierarchy of states, in which a more recent event
is more likely to affect the future ones. Our results, that show an exponential
fall in citation after reaching the peak, which is slowly transitioning into a power
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law pattern is coherent with the hypothesis of an ultradiffusive process driving
the attraction of new citations. This framework is known to be able to explain
the evolution of the response to new pieces of information online [44], allowing
us to draw a comparison between the way in which attention is dedicated to new
publications and the way readers react to news.

A further improvement on the PAM came in 2008 with a work by Wang et
al. [45]. Their model proposes to not separate globally the dependence of
the attachment rate on the two variables, considering the aging process to be
related not to the whole paper, but to the citations themselves. The logic behind
this idea is that a paper that has received a lot of attention lately (a sleeping
beauty for example) will be more likely to gather new citations if compared to
a paper published in the same year, with a similar citation count, but having
failed to receive citations recently. Therefore, the authors express the rate as
Π(c, t)∝∑

t ci f (ti)∝∑
t ci exp(−λti), where ki are the citations gathered in year

ti and the exponential form for the weights is taken from fitting data, a scheme
they call Gradually-vanishing Memory Preferential Attachment Mechanism
(GMPAM). While the empirical data shows a good accordance the model, the
authors admit that the model is somewhat excessively complicated, as it requires
to calculate weights for decades of citation data coming from different citation
pools (field and geographical biases above all) that require to fine tune the
value of λ case by case. The authors therefore proceed to simplify the model,
by observing that the most significant temporal contribution to the attachment
rate comes from the most recent number of citations, i.e. the number of citations
gathered in the last year. The temporal aspect therefore it’s taken to be as a
memory effect, that makes the older citations be "forgotten", giving priority to
papers that are riding a popularity wave. The updated model, called Short-
term Memory Preferential Attachment Mechanism (SMPAM) thus expresses
the attachment rate as Π(c, t)∝ ct−1.

Similarly, other authors have decided to focus the modeling part only to
reproduce certain aspects of the citation dynamics with still a focus on the
temporal aspect. In 2001 Burrel was able to confirm that a stochastic process
that assigns citations to publications based a non-homogeneous Poisson process
[46] is bound to produce articles that will remain uncited. In 2009 Wallace et
al [47] tried to model the citation distribution of publications by separating
the citation curve in different areas, developping in particular a model able to
quantify the impact of uncited papers in the citation distribution. The authors
hypothesized that the probability for a certain paper to receive an initial citation
depends only on the number of articles NA published in the same year and the
number of references NR available in the following year, with citations being
given randomly through a Poissonian distribution, given the size of the two
variables. The authors then limit the probability of citing an uncited paper to
the field-dependent rate at which uncited papers are cited for the first time. It
therefore follows that the pool of available references is reduced to βI NR , where
βI ∈ [0,1] is extracted from the data, and that the probability for a single paper
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to fail to receive any citations is: ΦI = e−βI (NR /NA).
In 2009, Newman [48] published a study which added to the temporal aging

process the aspect of novelty, the so called first mover effect. The idea behind
the work is that science is based on the production of new results and therefore
there is an intrinsic advantage in the being the first ones to publish a new
result in a field, since future works are bound to cite the paper introducing
the novelty. In his paper, the author works with previous models based on
preferential attachment to build a new one where on average newly published
papers cite m earlier papers, chosen proportionally to the number of citations k
they already have, plus a variable r needed to ensure that uncited papers still
have a nonzero probability of being cited. From this model one can calculate
the average number of citations γ a paper is expect to receive at time t as:
γ(t)= r(t−1/(α−1) −1), where α= 2+ r/m. Therefore, it follows that older papers
(i.e. t → 0) should on average receive far more citations than those published
later, even taking into consideration the the fact that later papers have less time
to gain citations.

These results are somewhat in contrast with the previous discussion regarding
obsolescence and the time span of papers. However, Newman himself points out
that the first mover advantage is limited to scenarios in which the results are not
part of a larger, already established field, but rather represent the emergence of
new subfields or fields altogether, as their analysis of citation data in fact seems
to confirm.

In 2011 Eom and Fortunato [49] published a paper in which the aspect of
the burstiness in science is tackled. Burstiness is a sudden and intermittent
modification of the frequency of an event, which has been known to play a
fundamental role in many human dynamics [50, 51]. In this context, burstiness
represents all sorts of inhomogeneous fluctuations that lead to a sudden and
unexpected rise in the citation count of a paper, which can be expressed as
Δc/c = [c(t+δt)i

in−c(t)i
in]/c(t)i

in], where c(t)i
in is the number of incoming citations

a paper received at time t measured in years. This rate therefore measures the
relative change in citations during the period of time δt, compared to the history
of citations of the paper. Data shows that the distribution of these rates is fat
tailed for δt = 1, showing therefore that it is possible for a paper to suddenly
receive orders of magnitude of citations more than they ever did, especially
during its early years. Similarly to what happens to sleeping beauties, burstiness
shows that there can be stochastic driving forces that cannot be ignored and that
a linear model with no memory or time dependence cannot grasp. The authors
therefore propose a model still based on the preferential attachment model,
where however each papers has an intrinsic attractiveness that depends on time.
The result is a model in which a new paper i cites m new papers, with the
probability of a certain paper j to be cited described as : Π(i → j, t)∝ [c j +A j(t)].
For the form of the attractiveness the authors assume an exponential decay
A(t)= A0exp−(t−t0)/τ, where τ is the time scale at which the temporal dimension
plays a role, with initial attractiveness taken from a power law in order to

25



Scientific Citations and Their Patterns

best fit the data. Once again, we have a model where a linear preferential
attachment is mixed with a temporal dimension, which in this case takes into
account random fluctuations of the citation history of the paper that alter the
expected individual citation trajectories. Attractiveness can be seen as proxy
of an intrinsic quality of the paper, which is explicitly separated by the success
of a paper in terms of citation. The model therefore suggests that citations do
not represent the absolute measure of the quality of the paper, but that rather
they are a probable (but not guaranteed) consequence of papers of high quality
(attractiveness). However, with citations and preferential attachment still being
a fundamental driving force of the citation market, an initial failure to gather
an initial minimum number of citations might be sufficient to prevent a high
quality paper from rising to notoriety.

In 2015 Wang et al. [52], including the original proponent of the Preferential
Attachment Model Barabási tried to further expand the concept of separating
the driving force of citation and the one of fitness of the individual paper, by
proposing an attachment rate of the form: Φi(t) ∝ ηiPi(t,μi,σi)ci, where η is
the fitness of the individual paper and Pi(t,μi,σi) represents the aging process
of the ideas introduced by the paper. The separation of fitness from aging (i.e.
it’s not the fitness that decays, but rather the novelty) comes at a cost, as the
authors needed to introduce two new parameters, represented by the immediacy
η of a paper and its longevity σ which determine the time at which a paper
reaches its peak of notoriety and how long its notoriety will last respectively.
The model is therefore able to predict the future citation trajectory of a paper,
given a previous window of time during which its intrinsic parameters can
somehow reveal themselves and be quantified through a least square fit method.
Furthermore, the authors managed to quantify the importance of the individual
contributions within the attachment rate formula, finding that the dependence
on the number of citations (i.e. the classical model) is triggered only when
a paper crosses the threshold of seven citations, below which it’s the paper
attractiveness that dominates.
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3. Network Structure of Science

De Solla’s seminal paper [4] begins like this: "This article is an attempt to
describe in the broadest outline the nature of the total world network of scientific
papers. We shall try to picture the network which is obtained by linking each
published paper to other papers directly associated with it.". Already at the
beginning of the study of scientometrics it appeared evident that science needed
to be tackled from a global perspective, analyzing the connections that link
scientific papers to one another. Similarly, two co-authors of the same paper can
be linked together, as well as two scientists who have collaborated with the same
scientist as the famous Erdős number grasps [53] 1. In general, the intrinsic
collaborative nature of science either by cumulative contribution (the shoulders
of giants) or by direct collaboration has led to the creation of a massive scientific
network that can be analyzed in many of its levels, where both its nodes and
links can take many forms, with nodes representing papers as well as authors,
institutions or countries and links representing citations, co-authorship, shared
funding etc.

Graph theory showed for the first time the potential of network research for
practical problems in the famous work by Euler in 1796; by simplifying the
bridge and road structure of the city of Königsberg in terms of nodes (land
masses) and links (bridges), the Swiss mathematician was able to negatively
answer the question: is it possible to perform a path around the city that crosses
each bridge of the city exactly once? For a long time graph (or network) theory
remained confined mainly as a branch of topology in theoretical mathematics
[54] until the middle of the 19th century when the earliest structured books
appeared [55, 56], allowing the developments in the theory to spread to new
fields [57], including sociology, where researchers understood that a matrix
based representation, i.e. one of the underlying bedrocks of network theory, of
social ties could be beneficial for the study of social structures [58, 59]. The
breakthrough came in 1959 with Erdős and Rényi’s work on random graphs

1The Erdős number measures the distance in terms of collaborative steps between the
Hungarian mathematician Erdős and his direct or indirect collaborators. Anyone who
has collaborated with him has a Erdős number equal to 1. All their collaborators have a
EN of 2 and so on.
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[60] in which the authors studied the invariant properties of graphs generated
through a stochastic model that distributes a fixed number of links across all
possible node pairs. The ER model turned out to have strong analogies with
statistical mechanics [61] and was later used as a fundamental tool for studies
that required a network based structure, in particular for models in epidemiology
[62, 63].

In general, the ER model allowed the rise of what are called generative mod-
els. These models aim at reproducing the statistical properties of the observed
networks [64], yet keeping the most important features (usually the degree
distribution or the average degree) of the network statistically constant, while
allowing for the edges to be distributed at random. Generative models there-
fore act as tools for generating null-hypothesis that can be tested statistically,
allowing to identify which properties in real networks are statistically relevant,
with applications to multiple fields [65, 66]. Among the attempts, de Solla Price
contributed with the earliest definition of the rich get richer mechanism [10] that
would later be made popular by Barabási and Albert, who showed its potential
[11] as a tool to describe the emergence of scale-free networks. Barabási and
Albert’s paper was part of a period of extreme interest for network theory studies
as the rapid accumulation of data of large networks thanks to the digitalization
of society, allowed for the first time to provide a robust set of data that could
be used to test previous models. While the ER model had been extremely suc-
cessful due to its simplicity, the evidence of different properties in real networks
required the development of new models, which rapidly took place [67, 68]

Since then, network theory has been applied in a large spectrum of fields, deal-
ing with non-trivial network structures that required methods and algorithms
tailored to specific types of network problems, leading to a whole new field,
often referred to as complex networks, in order to differentiate it from Graph
Theory. As the theory developed, the application of its methods to publication
data became a fertile branch of the field. This Chapter will first go through
the basics of network theory, in order to provide a mathematical foundation for
the rest of the chapter, in which the most significant applications to scientific
networks will be discussed.

3.1 Networks

A network, also called graph, is a collection of nodes connected by links. Math-
ematically it is represented by G = (V ,E) where V is a set of N nodes and E
is a set of M links (or edges) connecting pairs of nodes. A convenient way to
represent a network is through its adjacency matrix A, which fully describes the
graph. Its elements ai j are 1 if there is a link connecting node i and node j and
0 otherwise. If A is symmetric the graph is undirected as all of its links go in
both directions. It is often assumed that there are no self loops, i.e. aii = 0 for
all i. In this simplest scenario, the elements of the matrix are usually binary
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and symmetric, thus only indicating whether two nodes have a connection or
not. However, more sophisticated networks can be built by modifying these
conditions: Directed graphs take into account the directionality of the links by
dropping the symmetry requirement, while weighted graphs drop the binary
requirement for the elements of the matrix, thus quantifying the "strength"
of the link. An example are mobile call networks, in which ai j can indicate
the number of calls between user i and j, or the total time spent between two
users [69]. Networks in which most elements of the adjacency matrix are 0s are
usually called sparse, while in the opposite case they are called dense. Sparse
matrices, which are not rare at all [70], can represent a problem computationally
in terms of storage space since, if stored in matrix form, N2 entries need to be
stored, most of which do not carry information. Fortunately, the disadvantage
can be turned in an advantage by using adjacency lists in which each row i
enumerates the neighbors of the node along with the value of the edge in case
it is required. Recently, there has been a need to analyze many different kinds
of network structures. For example, temporal networks take into consideration
the intermittent activity of the edges in the network, thus adding a temporal
dimension to the analysis of complex networks [71]. Multilayer networks instead
deal with systems in which nodes exist in one or more of multiple layers and
where links can connect nodes also across layers [72, 73]. Such networks can be
useful to analyze interactions in social systems, where each layer represents a
different kind of interaction and where not all users are equally active in each
layer, or might not be active at all in some of them [74].

3.1.1 Degree

The degree ki of a node is the number of nodes that node i is connected to. It
can be derived using the adjacency matrix A as ki =∑

j ai j, i.e. the sum of the
nonzero elements of row i. In case of a directed network two separate degrees
are considered : kin

i and kout
i , which differentiate between the degree calculated

respectively over the columns or the rows. The average degree k̄ of a network
is the average value of individual degrees k̄ =

∑
i ki
N , where N is the number of

nodes in the network. Again, it is possible to define an average k̄in
i and k̄out

i for
directed networks.

When analyzing a large network, it can be useful to look at the overall distri-
bution of the degree values for the nodes of the network, as with an increasing
number of nodes it becomes necessary to analyze them statistically. In the ER
model 2 each link exists with probability M

(N
2 )

, leading to the probability of node

i to have degree k to be the probability of having k times successful Bernoulli
trials, thus converging to a Poissonian distributions as the size of the network
grows, with k̄ remaining constant. However, empirical evidence [76] has shown
that real world networks have a dramatically different behaviour when it comes

2This formulation was presented in the same year by Gilbert [75] and is statistically
equivalent to the ER model.
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to degree distribution.
While the ER model predicts a large amount of nodes sharing similar degree

values, social, biological and transportation network among others, revealed
themselves to have fat-tailed distributions [77], i.e. they showed the existence
of nodes with large degree called hubs, along with a vast amount of nodes
with low degree values. In 1999, Barabási and Albert proposed a different
model, in which the network is generated by adding new nodes and connecting
them proportionally to the degree of the previously existing nodes, through the
Preferential Attachment Method already introduced in the previous chapter.
In Fig.3.1 we can see a comparison between the appearance and the degree
distribution of a random networks compared to a scale-free network.
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Figure 3.1. Difference in topology and degree distribution between a random graph (left) and a
scale-free network (right). The random network has its degree distribution heavily
centered around its average, with no significant outliers. In the scale-free model
instead, degrees can span multiple orders of magnitude.

Another fundamental property of degree is linked to the concepts of assortativ-
ity and resilience. Assortativity is used to investigate what is the tendency in a
network for nodes with similar degree to be connected [78, 79] and is therefore
often expressed as degree-degree correlation. In a network with high assortativ-
ity, high-degree nodes are likely to be connected and tend to avoid connections
to low-degree nodes. Similarly, a network is disassortative if high degree nodes
tend to avoid being linked to each other and prefer being connected to lower
degree nodes. In both the ER and Preferential Attachment models, there is no
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correlation between degrees; in the ER model links are given randomly, thus an
absence of correlation is to be expected for large graphs, while in the PA model
the evidence is less trivial, but it comes from the fact that hubs have a tendency
to get links from all new nodes, thus failing to select connections to specific nodes.
Interestingly, real life networks show different scenario, with certain networks
being assortative (power grids, social networks) and other disassortative (WWW,
protein-interaction networks), thus requiring more sophisticated models to be
able to reproduce these features [80]. A direct consequence of assortativity is
resilience, i.e. the ability of a network to resist the attack or failure of random
nodes. In a air transportation network for example, this corresponds at how
the passenger traffic is affected by the closure of randomly selected airports.
Numerical simulations [78] show that a high assortativity is linked to a better
chance to resist attacks due to the fact that hubs, which are often fundamental
as they allow to distribute "services" to the periphery of the network, are likely to
be connected to each other, thus creating dense cores of highly connected nodes
that keep the structure of the network efficient. In disassortative networks
instead, hubs are fundamental local service providers and, if shut down, are
more likely to cause an interruption in services. Unfortunately, many communi-
cation networks are disassortative [81] and have therefore been often subject of
systematic failures [82] due to their structural inefficiency.

3.1.2 Clustering, paths and distances

The clustering coefficient measures how likely two nodes within the neighbour-
hood of a node are also be connected [67]. Let’s consider a node with k neighbours.
Among these neighbours there are k(k−1)

2 possible links, i.e. the number of ways
2 nodes can be selected if there are k nodes, out of which only Ei are present in
the network. The CC is defined as the ration between the two terms:

Ci = Ei
ki(ki−1)

2

(3.1)

In case of weighted and directed graphs the concept can be generalized in
multiple ways [83]. The average clustering coefficient of a network is the average
C = ∑

i Ci/N of the individual clustering coefficients. The global clustering
coefficient is a similar measure as the average clustering coefficient which looks
at the clustering of a network from a geometric point of view. It is defined as
the fraction of triplets (i.e. a set of 3 connected nodes) that actually form a
triangle and can be applied to both undirected and directed networks [84]. In an
undirected network the average path length between two nodes is defined as
l = 1

n(n+1)
2

∑
i≥ j di j, where di j is the length of the shortest path between two nodes.

In case the graph is not connected (i.e. there are parts of the networks that
are separated), the value of the average path length diverges and is therefore
convenient to compute it individually for each subgraph of the network. The
diameter, D, of a network is defined as the maximum shortest path between any
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two nodes in the network. Its name recalls the topologic properties of circles as
it represents the approximate linear size of the network.

In 1998 Watts and Strogatz published a paper that showed how the currently
available models based either on regular lattices or on random graphs were
unable to grasp the properties of real networks in terms of clustering coefficient
and path length[67]. While their analysis of diverse networks (power grids,
biological networks, film actors) showed large CC and short paths, the ER model
[68] is bound to generate networks with average path length ∝ log(N) and
have an extremely low value for the CC. They called their networks small-
world networks in reference to the famous social experiment of the six degrees
of separation [85], which was the first attempt at calculating path lengths in
social networks. They proposed a stylized model based on a regular lattice, thus
guaranteeing high clustering, with a random rewiring of each link controlled
by a parameter p. The value of p therefore allows the transition from a regular
lattice (p = 0) to a random network p = 1. As p increases from 0, local clustering
remains high while paths between distant nodes cause a significant reduction of
the average path lengths. With this simple model Watts and Strogatz managed
to show how even a small number of short cuts can transform a sparse, locally
clustered network in a small-world one.

3.1.3 Communities and modularity

Between 1970 and 1972 Wayne W. Zachary collected data about the interac-
tion between 34 members of a karate club, during which two instructors had
an argument, leading to a split of the group into two, with half of the group
remaining in the club with one instructor and the other half leaving it [86].
Based on the difference between the interaction patterns, Zachary was able to
devise an algorithm able to automatically detect in which half a node would
lie. This became the first example, and later the benchmark, of a community
detection algorithm [87]. The idea behind community detection is that networks
can be organized in locally highly connected clusters separated one from the
other, known as communities. Real world examples are abundant: metabolic
networks are organized into small, highly connected modules [88], urban areas
and societies can be structured in large groups divided by language [89], and also
network scientists are organized in communities [90]. While communities are
easy to qualitatively define, their mathematical definition has been the source
of debates as, like in the Karate Network splitting in two roughly equivalent
groups, one needs to possess previous information in order to know how many
communities are to be found and what their typical size is.

As new algorithms attempted to find the most optimal division of the network
in communities, it became therefore necessary to develop a method able to grasp
the quality of the partition of the network. Among the various methods, the most
popular one is the one of modularity optimization [87]. This method, introduced
by Girvan and Newman in 2002 [91] is based on the idea that a good partitioning
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Figure 3.2. Visualization of the karate network based on the data from [86]. The network is
visibly structured around the two hubs (larger nodes), with clustered communi-
ties around each hub and a few nodes acting as intermediaries between the two
communities.

maximizes the amount of edges within a community and minimizes the amount
of links towards the outside of the community. Modularity is therefore calculated
as the difference in number of edges within a cluster and the expected number
of edges that one would found in a similar network in which individual nodes
retain their degree, but the edges are randomly rewired. In Publication III a
similar idea was used to investigate how dense the subgraph of Ego Networks,
the graph formed by the neighbours of a specific individual (the ego) and by their
mutual relationships, is. The EN is the realistic, local perspective of a given
node representing the information that it might use in basic decision processes.
We calculated for new nodes joining the EN the fraction of references that stay
within the EN, thus quantifying how modular the EN is and how its modularity
evolves in time. We showed that the EN has a sharp initial growth in modularity
that saturates within 10 years, before gradually decreasing as shown in Fig.3.3.

Unfortunately, despite its simplicity, modularity also offers some limitations.
Fortunato et al. showed in 2007 that modularity optimization is bound to have a
resolution limit, i.e. a minimum size of communities under which the method
fails to detect communities [92], which can represent an issue as real networks
can be organized in hierarchical or tree-like structures [93]. Furthermore, such
resolution limit depends on the size of the network; as a network increases in
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size the null model might expect two clusters to have a very low probability to
be connected, therefore allowing one single connection between them to be seen
as a strong statistical indicator of modularity, thus merging the two clusters.
Even by trying to introduce a resolution parameter in order to find clusters of
various sizes, problems such as merging of subgraphs and splitting of graphs
arise [94]. Furthermore, another key limitation is the presence of multiple
suboptimal solutions [95] that still offer good results. While other methods are
being introduced with good results, they all come at a cost somewhere, due to the
intrinsic loose definition of a community, thus forcing the scientists to perform a
trial and error analysis based on the cumulative information gathered in the
process [96]. To summarize, there is no "Free Lunch" in community detection
[97].
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Figure 3.3. Time evolution of the mean and median of the fraction f i of references of papers of
the full Ego Network belonging to the Ego Network as a function of the number of
years since publication. In this framework, f i is the EN equivalent of the modularity
of the community that is formed around the original paper. In the first years f i
increases significantly, peaking after ≈ 7 years, after which a constant decrease takes
place. Interestingly however, the EN is also getting bigger in size, thus potentially
allowing for more references to be part of the EN. Figure adapted from Publication
III.
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3.2 Author networks

As we have seen, network theory provides a solid framework with which to
investigate social structures. It followed therefore that scientists could use the
very same methods to investigate the social structure of science itself. The main
candidate for such analysis are author based networks, i.e. networks in which
nodes are represented by individual scientists that are connected according to
similarity in their publications.

The most straight forward approach is the one to considers co-authorship
networks, in which links are assigned between scientists who collaborate in
the writing of a single paper. The first study in the field was performed by
Newman in 2001, by studying a dataset of over 2 milion papers and 1 milion
authors in Physics, Computer Science and Biomedical research [98]. This work
allowed for the first time to quantify the collaborative structure of science with
the newly formulated tools of network science. The data showed that the degree
distribution, i.e. the number of collaborators for a single author, follows a power-
law behaviour with an exponential cutoff, a result coherent with a power-law
degree distribution, with the cutoff being due to a size restraint in the system.
The author also reports that the network of scientific collaborations shows a
small-world structure, with authors being no more than five or six steps apart
from each other. The network showed also an interesting tendency for authors
to cluster, even though this might be biased by the presence of papers written by
3 or more authors, which, by the network construction rules, create triangles
in the network. Newman’s work showed the intrinsic social nature of science
as a network of collaborating nodes, with a structure that is coherent with a
PAM in which authors with most collaborations are more likely to collaborate
with new scientists. However, from a theoretical point of view, it fails to find
an explanation for the coexistence of a power-law degree distribution and the
intrinsic community-based structure, a feature absent in the PAM.

The matter was further analyzed by Barabási et al. [99], who confirmed
the clustering nature of co-authorship networks with a caveat: clustering, as
well as other key properties of the network, are time dependent, therefore
providing only partial information about the true structure of the network. This
work, while reinforcing a preferential-attachment approach to the evolution
of co-authorship networks, once again introduces the matter of time in the
exploration of properties of the scientific community.

It has been suggested that a major role in the temporal aspect of co-authorship
networks may reside in the evolution of the individual careers of the different
authors [100]. Sociological considerations [101] can support the hypothesis that
the preferential attachment method, that is the phenomenon by which authors
with many collaborations are more likely to have new ones, is the the driving
force only of collaboration only for scientists in the middle of the career (thus
also in the middle of the distribution). The tails of the distribution instead are
dominated by either established scientists, who don’t require to build up their
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network anymore, or newcomers who instead fail to act as attractors in the
network. It therefore follows that one cannot investigate the social structure
of science in snapshots, but rather needs to follow its temporal evolution as
"networks change over time, both because people enter and leave the professions
they represent and because practices of scientific collaboration and publishing
change" [102].

Furthermore, one needs to step at a deeper structural level: while co-authorships
provide the basic framework, it is important to differentiate between the various
substructures that exist within a network as evidence shows that the local struc-
ture of the network has an impact on the citation and co-authorship patterns
[103]. In fact, co-authorship practices are extremely heterogeneous across fields,
as in certain applied sciences it is not rare to find papers co-authored by tens
of authors, thus putting into question the ability of this approach to reflect the
social structure of science. In fact, networks of different size need different
collaborative behaviours for the their community structure to persist in time.
While smaller collaborative groups tend to be based on a core of strong relation-
ships that are self-sufficient, larger groups need a more dynamic structure that
reaches out to new members in order to survive, similarly to what happens in
mobile communication networks [104].

Even though the co-authorship network is purely abstract in its formulation,
it is possible to merge it with physical data, e.g. the location of the institution in
which the authors work, allowing to add a geographic dimension to the analysis.
Relocation is common in academia, even though scientists usually are not likely
to cover long distances, and can play a crucial role in one’s career [105]. Similarly,
the choices of collaborators are also affected by geographical considerations that
can be linked to policy making from individual countries or unions [106, 107].

3.2.1 Ties and careers

In a framework in which the career and the connections of individuals change
structurally over time, it becomes therefore fundamental to investigate the
different nature of the links that connect different authors at different stages
of their careers; after all science is not only driven by purely intellectual but
also by more practical driving forces, such as economical and political matters
that can also alter the paths of individual careers [108, 109], thus affecting the
structure of collaborations both locally and in time. Similarly, as the network
structures are known to influence team-performance [110, 111], it is natural to
conjecture that these kinds of mechanisms are reflected in the data of scientific
collaborations.

In order to better understand such effects it is beneficial to investigate the
role of the strength of the ties between authors as a measure to identify which
connections are more productive and represent a stronger tie within the sphere
of scientific collaboration. This can be done by building a weighted network,
where the weight of each link is defined as wi j =∑

p
1

np−1 where p is the set of

36



Network Structure of Science

papers where authors i and j collaborate and np is the number of co-authors
of paper p. Contrary to previous results in social networks [69], collaborative
networks show a unique characteristic: weak ties form the core structure of
dense neighbourhoods, with strong ties connecting different neighourhoods. This
effect is considered to reflect the hierarchical and temporal dimension of scientific
careers: as senior researches build strong ties with each other over time, they
form research groups composed of young researchers [112, 113]. Even though
it is only a few strong links between senior scientists that keeps the scientific
network of authors together, simulations show that they are fundamental for
the efficient spreading of information through the network.

In an academic world where most junior scientists drop out [112], which is
hierarchically and sometimes unequally structured in its hiring system [114] and
in which early developments can lead to a cumulative advantage in a career [38,
115] it appears evident that the evolution of the social and collaborative structure
of scientific interaction is closely related to the evolution of the individual careers
of the prominent scientists: their moving forward in the hierarchy of science,
projects their connections to a more important role within the scientific network
and eventually allows them to influence the local properties of the network as
they build their own team.

In 2015, Petersen published a work that offered an interesting insight into the
role of ties in the formation of careers and in their evolution [116]. In his longi-
tudinal study of careers through an egocentric perspective of the collaboration
network, the author found an exponential distribution in collaboration strength,
allowing to define super ties as ties beyond a certain extreme threshold. Such
ties appear to be equally distributed across disciplines(4% of the collaborators
are super ties), making long lasting partnerships an intrinsic feature of scien-
tific collaboration. Most importantly however, super ties were shown to have a
positive effect on individual careers as contributions to super ties are positively
correlated with an increase in productivity in terms of numbers of publications,
thus supporting the growth of careers. Similarly, publications authored by super
tie collaborators are statistically more likely to attract citations on the long term,
receiving on average 17% more citations, probably due to an increase in visibility
brought by the presence of a super tie collaborator.

3.2.2 Centrality

From the previous subsection we have seen that as junior researchers’ careers
unfold into established academic positions and their early connections are car-
ried along, they play a central role in the evolution of scientific network. But
how can this property be measured? Once again, network theory comes to the
rescue with the concept of network centrality, thanks to the computation imple-
mentation [117, 118] of basic ideas and algorithms originally introduced decades
earlier in the early years of quantitative sociological studies of social networks
[119, 120]. The most common type of centrality is betweenness centrality [119],
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which quantifies the centrality of node j by calculating the number of shortest
paths between any two other nodes that goes through node j. A similar defini-
tion is the one of eigenvector centrality, which is based on a recursive idea that
that a node is central in the network if it is connected to other central nodes
[121]. Let ai j be the adjacency matrix of a graph. The eigenvector centrality xi

of node i is given by:

xi = 1
λ

∑
k

ak,i xk

where λ 
= 0 is a constant and ai, j are the elements of the adjacency matrix and
λ is a constant. This score therefore recursively increases the score of a node if
it is connected to other nodes with high score, with the score being eventually
measured in terms of degree. This recursive equation can be solved by writing it
in matrix notation and solving the eigenvector equation [122]

λx = xA.

Eigenvector centrality can come in many forms [120] and is also the main idea
behind Google’s PageRank algorithm [123]. Regardless of the practical definition
of centrality, most of the measures are found to be strongly correlated with each
other, with strong values linked to a higher possibility to influence the flow of
information through the network [124].

Data shows that the values of centrality in co-authorship networks are ex-
tremely skewed, with scientists with the highest score being well separated from
the 2nd tier, which in turn is well separated from the 3rd and so on, thus con-
firming the hierarchical structure of science [125]. Also, the weighted network
analysis shows that within one’s collaborators, there is a strong difference in
how they contribute to the short paths, with 90% of these paths going through
the top 2 collaborators, therefore reinforcing the idea of strong ties between the
most relevant scientists.

Centrality measures therefore represent an excellent indicator of the absolute
importance of a scientist in the web of scientists, to the point where centrality
itself can be shown to act as an attractor in models of preferential attachment
[126]. Authors who lie in the center of network are therefore not only crucial for
information spreading within the network, but also act as dominating actors who
gather more attention than others to the point where the central positions allows
also to have a positive effect on citations count, which are strongly correlated
with centrality measures [127, 128].

3.3 Publication-based networks

In Section 2.1 we discussed the distribution of citations, which in the paper
based network framework represents the analysis of the in-degree distribution.
However, the structure of the connection between scientific papers can offer
much more than a simple analysis of its properties. In Publication III, we
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focused the analysis of the connections with papers from the point of view of the
community that builds around a single paper. This kind of network is called
an Ego Network (EN) and it has been extensively studied in social contexts
[129, 130]. In a social network where nodes are individuals, those who are part of
th EN are the ones that influence the most the Ego, as they form the community
in which the Ego lives. Similarly, the EN of a scientific paper is made by the set
of all papers citing the Ego and of all the mutual citations between them. Fig.3.4
shows an example of an EN and of its evolution in temporal snapshots based
on different time windows. The figure shows a typical pattern of the EN. The
EN is initially extremely dense, with initial citers being likely to be connected
to each other. The density of the EN peaks after a few years, with the building
of a strongly connected core while, however, islands of isolated papers start
to appear and eventually, after 5-10 years, the EN becomes extremely sparse.
Interestingly, the global EN continues to grow, indicating that later papers are
also citing papers from earlier windows. This indicates that, despite the original
idea of the Ego being still highly considered in the scientific community, it fails
to act as an aggregator of it, suggesting a specialization of the topic or, but not
mutually exclusively, an increasing popularity of the ego in different disciplines.

Figure 3.4. Ego-network for Barabási and R. Albert’s paper on scale-free networks [11]. We
consider windows of size w = 2 at t=1 (left), t=3 (center) and t=5 (right), where t is
the number of years from publication. Therefore the windows are non-overlapping
and cover the intervals 1-2, 3-4 and 5-6 (years after publication). The EN is initially
well connected, its link density is highest at t=3, but it quickly becomes sparse, with
a growing number of isolated nodes. Some well known papers are highlighted with
colors, their titles are reported at the top. Figure adapted from Publication II.

While the EN approach aims at analyzing the local structure of the community
around an idea/publication and its evolution in time, it is possible to continue
the analysis by "zooming out" gradually from the EN network, encompassing
more and more layers of citations. Even though a single paper might not have
a massive first layer (i.e. citation count), it can accumulate a vast offspring in
following layers, thus spreading its influence to a large portion of the scientific
network.

The growth of the influence of an idea can be studied in its evolution, assigning
a stronger weight to nodes that lie in the lower circles and thus allowing to
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quantify the size and shape of the wake of a paper [131]. Interestingly, high
values of this metric are able to reveal groundbreaking results that do not have
high citation counts, with in particular Nobel laureates appearing as authors
of some of the most significant papers. In Publication IV we found a similar
pattern: we introduced a measure of the impact that a single paper has on
the whole future corpus of science by allowing citing papers to "inherit" the
scientific importance of the cited paper. By recursively applying the method
we are thus able to measure the global contribution of a paper in the scientific
network and to compare the performance of papers between citations and impact.
Fig. 3.5 shows this comparison through a parameter δ= Rc−Ri

Ri
, where Rc and

Ri are the rankings based on either citations (the former) or influence (the
latter). δ measures the outpferformance in impact vs. citation rankings, which
is extremely high for Nobel papers if compared to papers with similar citation
counts, thus confirming that the cumulative importance "down the road" of
scientific discoveries is not necessarily correlated to the first approximation, i.e.
the citation count.
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Figure 3.5. Cumulative distribution of δ for Nobel papers, paper within a 3% in citation volume
in the same time interval compared to Nobel papers and for random papers after
five years (panel c), ten years (panel b) and at the end of the process in 2008 (panel
a). Only papers with positive δs are included. Nobel prize winning papers are
more likely to climb the influence rankings, while similar papers behave similarly
to random papers. Also, while the fraction of Nobel papers that is climbing the
ranking is increasing as time progresses, the control group shows no significant
change. Figure adapted from Publication IV.

As the previous examples show, the network structure of science can be an
excellent indicator of the spread of ideas within the network. This kind of
analysis has already been applied with success at a country and institutional
level [132]. In this kind of framework, publications can be seen as new ideas
introduced in a existing network, that are initially "exposed" to contagion from
previous and become later the very source of contagion for future works. This
kind of approach borrowed from epidemiology [133] is well known to be a driving
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force of the spread of new ideas [134] and of the emergence and diffusion of
topics across disciplines. Susceptible-infected epidemic models applied to article
networks show that the diffusion of new ideas over disciplines takes a long time
with the incubation period ranging from 4.0 to 15.5 years [135].

Another way to look at this process is by comparison with genetics, seeing
scientific ideas as genes that replicate/propagate themselves to new publications
in order to survive, an idea originally introduced by Dawkins in his book The
Selfish Gene [136]. The term he coined for these replicating entities is meme
and it has become extremely relevant nowadays, with the explosion of similar
phenomena online that behave in such a way [137]. However, as genes and
viruses replicate themselves to survive, they inevitably end up competing for
the same resources, thus leading to the inevitable disappearance of some of
them [138]. A meme based approach to the spreading of scientific ideas has
been attempted with success [139], introducing a meme score that quantifies
the tendency of a scientific idea (e.g. chemical formulas or technical terms) to
be replicated in a publication through a citation. Not surprisingly, high meme
scores are found to be important concepts in science.

3.4 Communities, fields and multidisciplinarity

In the previous sections we talked about the global structural properties of
scientific networks that can be determined from network theory. However, the
opposite process can also be done. In the section on modularity and communities
we discussed how the knowledge of the underlying structure of a network can be
useful in order to devise methods to analyze it, similarly in science we are aware
a priori that science is structurally organized in fields. Even within a single
institution, there are separate faculties or departments, in which scientists work
separate one from another, with each group focusing on different branches of
science. Fields are a concept everyone is familiar with as the classical division of
science in major branches such as Physics, Mathematics, Biology, Economics etc.
is commonly used also outside the academic world and also the ISI has a list of
21 static fields (or rather categories) used to label all journals.

This categorization is simplistic and efficient on a superficial scale, but we
know science to be a intrinsically dynamic world. Bibliometric studies [140] and
studies on the co-occurrence network of scientific terms [141] have shown that
fields themselves are not static, but rather follow a life-cycle that may contain
branching or merging events. It appears therefore evident from these observa-
tions that also fields need to be studied not statically, but rather dynamically
and that the information we know from scientific fields can be used recursively
to analyze their changes in time.

Once again, works from epidemiology have been successfully applied to the
topic. In a SEIR epidemic model scientists start off being Susceptible to a new
idea (i.e. working in a related field), transition to being Exposed to it (i.e. they
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have found out about it), proceed to become Infected spreading the idea before
ultimately Retiring. Empirical evidence shows that the population growth of
fields can be modeled with success by this model [142].

However, these processes are not always smooth: in 1970 the philosopher T.
Kuhn discussed this matter in his famous book The Structure of Scientific Revo-
lutions [143], in which he described the process by which scientific knowledge
progresses as being composed of periods of staticity separated by abrupt changes
caused by paradigm shifts that challenge the scientific consensus. These shifts
are mainly driven by discoveries of new information that contradicts and falsi-
fies previous theories and methods, thus requiring collaborative effort from the
scientific community in order to provide new theoretical explanations. One of
the most classic examples can be seen in the foundational crisis of most scientific
fields at the end of the 19th century when Darwin’s evolutionary theory, Gödel’s
works on coherence and completeness and the new theory of Quanta caused
dramatic earthquakes in Biology, Mathematics and Physics. All these events
happened sharply with either the experimental observation of new phenomena
or the publication of new innovative work which ultimately leads to completely
new fields being born in a relative short time.

One can therefore look at structural changes in the organization of fields
themselves in order to identify what are the crucial moments in the development
of a single field. Studies on the temporal evolution of fields show that successful
fields grow in size, becoming more dense. In particular, the relationship between
the number of edges and the number of nodes follows a scaling law : edges
= A(nodes)α, where A and α are constant. This process is accompanied by a
topological transformation in the structure of the author network of the field:
initially the authors are clustered in separate communities that, due to the
densification of the network, end up merging and forming of a large connected
component of authors, a phenomenon that does not take place for pathological
cases (e.g. cold fusion in Physics) due to the innovative failure of the original idea
[144]. This results show that the forming of a field is structurally connected to
the forming of a sort of social network of authors around an innovative concept.
This social network, shown to be dense, can therefore be used as a ground truth
in community detection algorithms in order to identify these communities in the
global network.

In fact, the changes in the connections between scientists and the subsequent
change in modularity within the network can be used to accurately model the
birth of new fields as a process of merging and splitting of author communities
[145]. On the other hand, the diverse nature of fields and their change in time
undermines the possibility to use static definition of fields as a baseline for
community detection. The application of modularity maximization algorithm
to paper network in fact has found that communities found in this way show a
wide range of structure, varying from being strongly clustered to being barely
noticeable [146]. Furthermore, fields themselves are not monolithic blocks, but
rather can be organized in structured hierarchical layers; Physics for example,
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manifests in its own paper network a number of subfields that have different
local structure, with smaller subfields being more self-referential and thus more
modular [147]. This is to be expected: the larger the extent of a field (or subfield),
the more it is bound to see a diversification of its ideas and the reciprocal
contamination with other fields and subfields. This process leads to the birth of
interdisciplinarity and multidisciplinarity.

The hierarchical nature of fields and the structural overlapping across sub-
fields and fields has led to the necessity to use also alternative methods for
community detection, such as clique percolation techniques [148]. Interdisci-
plinarity is not only an inevitable phenomenon of overlapping between fields,
but in recent years it has shown to become an intrinsic part of the core of Physics,
gradually becoming more and more relevant [149, 147]. Multidisciplainarity
is slowly increasing and it can be analyzed in terms of the flow of information
across fields [150], a technique that has led to the possibility of determining
the stabilization of interdisciplinary fields, thus becoming new stand alone
disciplines [151].

In Publication IV we studied the diffusion of scientific credit through the
paper network, by spreading the scientific value of seed nodes from a field/sub-
field/journal of a certain year through the network. By collecting the diffused
scientific value and merging it into the same groups as the seed it is possible
to measure the flow of information across fields. We found that fields retain
their information exponentially in time and that the exponent regulating the
decay is increasing in time, thus manifesting an increase in multidisciplinarity
which, however, might be a consequence of the increased rate of publication.
A renormalization of time similar to the one in Publication I shows that the
trend of increased interdisciplinarity is actually reversed, as shown in Fig.3.6.
Interestingly, multidisciplinarity shows to be the field slowing down the most in
its tendency to share information, probably as a consequence of it growing to
the level of a stand-alone discipline with increased levels of self-referentiality.
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Figure 3.6. Changes in half life in time for the regular (left column, panels a-c-e) and renor-
malized scenario (panels b-d-f) and for different grouping of papers. Panel a shows
the evolution of the half life for a number of selected fields relatively to the 1970
value, in order to compare the trend across disciplines. We can see that fields in
general show a downward trend in which the half lives are decreasing. In panel b
instead we can see the same evolution but but for the renormalized scenario, in which
time is measured in numbers of publications published. We can see that the trend
either stabilizes or is reversed. Panels c and d shows the cumulative distribution of
half lives for subfields and journals for different years, while panels e and f show
the same distributions with renormalized half lives. We can see that the coloring
order between the two columns is reversed, indicating that also for subfields and
journals are on average the same pattern as for the fields applies. Figure adapted
from Publication IV.
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In 1955, Dr. Eugene Garfield published a fundamental paper in the history of
bibliometric studies [2]. In his work, Garfield introduced the idea of a citation
index, i.e., a database that would allow scientists to navigate the corpus of
scientific publication through citation in order to find valuable bibliographic
material for their own research, an idea that eventually led to the foundation in
1960 of the Institute for Scientific Information (ISI). While advocating for the
importance of such index, Garfield used as an example the possibility to quantify
the number of citations: " Thus, in the case of a highly significant article, the
citation index has a quantitative value, for it may help the historian to measure
the influence of the article—that is, its ‘impact factor’", symbolically giving birth
to the field of Scientometrics, which aims at providing a quantitative analysis of
science and scientific research in general through statistical and mathematical
analysis. In 1972, Garfield continued on this path by introducing a quantitative
measure to rank journals based on their publication and citation count [152].

In its earliest stages the field had a huge overlap with bibliometric and library
studies in general, as well as with a quantitative analysis at a micro level, such
as the individual habits of scientists [153]. With the increase of the availability
of data scientometrics started to differentiate as its own field aimed at the
development of scientific indicators [154], also pushed by the increase need
of instruments in the process of academic policy making [155], with citation
based measures being the dominating base in order to assess quality in scientific
output. As more citation based analysis were being introduced [156, 157],
scientists also started to question the validity of such methods to assess quality
of research both from a technical point of view (i.e. the mathematical validity of
the methods) as well as from a philosophical one (do citations reflect quality?)
[158, 159, 160, 161].

In fact, the clash between the scientific requirement to cite relevant works
along with the knowledge that metrics are used in order to assess the quality
of scientific research however, can lead to a vicious circle in which the methods
used to analyze the scientific outputs end up influencing the selection process
of cited works [162] or, in general, influencing the structure of Academia itself
[163], thus compromising the previous underlying assumptions of citations as a
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free and voluntary choice. In spite of these limitations, citation based metrics
continued being introduced and citation based rankings were introduced for
authors [164] as well as for universities [165]. In this chapter I will briefly go
through some of the most popular ranking measures for individual papers and
authors.

4.1 Publication rankings

Even though a large of number of rankings for authors and journals were being
developed, paper rankings required more time to be introduced. Unlike metrics
meant for groups of papers that allow to address the rankings statistically,
ranking of papers comes down to the ranking of individual nodes in a network.
This task can be extremely challenging in the scientific network, especially
considering the difference in citation patterns across fields both quantitatively
[13] and conceptually [166]. Therefore citation counts remained for a long time
a valid ranking method locally, provided that one would know what the typical
citation count of a paper on a topic could be.

In order to allow for a fair ranking across all scientific publications instead, one
would have to put into context the local properties of a paper, i.e. the community
from which the citations come, with the global properties of the network, i.e. how
the single community relates to all the others. This problem is closely related to
what the well known Page Rank (PR) algorithm of Google does [167]. Page Rank
was the most successful method among a number of solutions introduced in the
90s [168] for solving the problem of rating Web Pages in the WWW. Curiously,
in their paper, Page and Brin analyze comparison between ranking pages and
publications, concluding that citation counts are a far too limited tool in the
presence of a large evolving network.

The idea behind PR is to provide a metric for quality of web pages that takes
into account the quality of the citations themselves. In this framework therefore,
a large degree (the equivalent of citation count) cannot be enough to receive a
high PR as these citations might be incoming from poorly ranked nodes. In this
framework therefore quality is built among a reinforcing behavior in which high
quality pages "support" each other ranking wise through mutual citations or, in
general, by being highly connected within the same community. Mathematically,
the PR algorithm can be implemented in many ways, among which a recursive
method that initially assigns equal ranking to all papers and then proceeds to
propagate the ranking through the equation:

PR( j)= 1−d
N

+d
∑

j∈Ni

PR( j)
|Nj|

(4.1)

where N is the total number of nodes and Ni is the neighborhood of node
i. The PR can also be thus calculated by solving the eigenvalue equation
�R = (1− d)/N�1+ dA�R where �R is the array ranking and A is the adjacency
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matrix of the WWW. The possibility to express the PR algorithm in the solving
of an eigenvalue equations shows that the PR is ultimately a centrality measure.
The problem can be solved efficiently with the power method, requiring 52
iterations to obtain convergence for the snapshot of the WWW that Page and
Bring used in 1999 [167]. The parameter d is a quantity called damping factor
and it plays a crucial factor in the algorithm. The damping factor is linked to
the implementation of the model as a random walker that propagates the PR of
a single node by randomly jumping to a nearby one through its links. In this
context, the damping factor represents the probability for the walker to "get
bored", as the authors say, and jump to a random node in the network after 1/d
steps on average. Practically, this factor prevents the influence of "sinks" (node
or group of nodes without outgoing links) that would absorb all the rankings;
with d = 1 we would have an infinite series of clicks, thus allowing the walker
to be trapped in such sinks, while d = 0 would be equal to a situation in which
the PR are uniform and constant. However, the damping factor also plays a
fundamental role in the correct renormalization of scores across communities
of different sizes [169]. If a community is strongly isolated from the core of the
network (i.e. it has few incoming links), it might be difficult for the random
walker to enter the community and to correctly evaluate its global PR, without
the necessity to perform separate rankings.

This feature of the Page Rank thus allows to solve issues linked to different
topological structures of scientific communities in citation networks both across
fields and within fields [170]. In 2007 two papers attempted two adapt the Page
Rank algorithm to scientific publications. Chen et al. applied the pure Page
Rank algorithm to all publications belonging to the Physical Review family of
journals from 1893 to 2003, with a choice of d = 0.5 as they believed it would
better reflect the citation practices in science. Even though the PR was shown to
be positively correlated with the citation count, as expected [171], a few paper
were shown to be significant outliers and were identified as being important
"gems" in Physics. In the same years a follow up paper came that introduced
the CiteRank algorithm [172]: a generalization of the PR algorithm, in which
the effects of aging into the Page Rank algorithm are taken into account. This
was necessary as the PR has in intrinsic directionality based on the fact that
papers cannot be cited by older ones, thus forcing the "flow" of the PR towards
older entries. In the CR framework, the random walker starts from a recent
paper and recursively follows scientific papers selecting a link not randomly, but
rather in a weighed process that penalizes older papers and therefore gives a
stronger value to novelty.

In Publication IV we introduced a measure that we called persistent influence.
Despite appearing at first glance similar to PR methods, it is conceptually very
different. In our approach in fact, we reversed the flow of time and we turned
a stochastic process into a deterministic one. While the PR methods measure
how likely a random walker is to land on a single node, we imagined a scenario
in which the knowledge created in an article percolates through the network
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of articles. In this framework citing papers do not pass their own credit to the
cited papers, but rather inherits it from them. Mathematically, we start from
an original seed s with an initial influence Is = 1 and we allow newer papers to
inherit the influence through the equation :

I j =
∑

i∈Nj

Ii

kin
j

(4.2)

where kin
j is the in-degree (or, number of references) of the article j, and Nj is

the set of out-neighbors. The normalization guarantees that the total influence
that the cited articles have on article j is constant and that the influence value
does not exceed 1. As the process continues, the influence values dilute through
the network, but at the same time they are spread to increasing number of
articles. At the end of the process we can then proceed to observe the influence
that a single paper has had on the whole scientific network as shown in Fig.4.1.

Figure 4.1. Scatter plot of values for citations vs persistent influence for different years. The full
dots represent the average influence for publications within the same citation bin.
Diamond shaped dots represent individual Nobel prize winning papers, the coloring
of which is assigned according to the closest year to the publication date. The values
appear to be correlated by a power law curve, but within each citation bin influence
values can span multiple orders of magnitude. Also, Nobel prize winning papers
are clustered in the top right corner, indicating both a high citation count and high
influence values. Figure adapted from publication IV.
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4.2 Author rankings

Science has primarily been a public endeavor carried out in public universities.
As more investments were being put into research, it is no surprise that soon
pressure to properly quantify scientific output would start to increase [173].
Citation counts served this purposes and have been used to decide how to
allocate funds [174] as well as to select candidates for academic positions [175].
In this search for a "perfect" measure, one of the most important contributions
was developed in 2005 by J.E. Hirsch [164], who introduced for the first time
a clear metric aimed at ranking scientists through their citation count. The
h-index is based on a very straightforward definition: an author has index h if h
of their publications have gathered at least h citations each and the remaining
papers have citations ≤ h.

The new metric became immediately popular among scientists and started
being considered as a standard to which to compare standard bibliometric
indicators [176], both thanks to its simplicity and its ability to "rescue from
obscurity" scientists who had been heavily contributing in very specific fields
[177]. However, the h index was also soon discussed from a methodological point
of view as authors claimed that it was not a correct way to quantify a career. In
particular, it was pointed out that one can artificially alter one’s index through
self-citations [178] and that citations need to be weighed, as not all of them carry
the same weight [179]. As other critiques followed, tackling the limitation of
the h index in guaranteeing a fair ranking of scientists, new methods appeared,
trying to fix the structural limitations of the h-index: indexes focusing on high
cited papers (g-index) [180], indexes focusing on the average citations of the
papers that grant the h-index to an author (A and AR index) [181], indexes
focusing on the different volume of publications across authors (h-normalized
index) [182], indexes that take into account the difference in lengths in careers
(m-quotient) [183], indexes that focus only on the most cited papers (Google
Scholar’s i10 index) [184] and many others [185].

As citation based indexes continued to proliferate however, another key aspect
became important to tackle: what is the predictive power of the h index? Since
these measures were being actively used as proxies of scientific excellence in
the hiring process, it is normal to investigate the ability of the h index to
predict the quality of individual careers. Hirsch himself soon tackled the aspect,
reporting that the h index is able to predict a carreer: "That is, a researcher
with a high h index after 12 years is highly likely to have a high h index after 24
years"[186]. While more works have similar results by combining the h index
with other citation based metrics [187], other publications reported a different
scenario in which past citations are only good at predicting future citations to
past publications, but are ultimately not good at predicting future citations to
future publications [188]. This contrast between prediction of previous results
vs prediction of past results brought back the attention to the validity of the
h index as a measure to predict the evolution of a career. In fact it has been
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argued that the h index suffers from methodological flaws due to the nature of its
definition: the h index is a non stationary measure [189] which has a high auto
correlation to its whole previous history, ultimately causing the h index being a
good predictor of itself [190]. Quantitatively, any cumulative, non decreasing
measure has auto correlation between its index at two different stages of the
career following the relation Cor(h(t),h(t+Δt))=

√
t

t+Δt , which means that the
predictive power of such indexes is much lower when trying to estimate an
individual’s h-index many more years into their future than the current career
academic age (t/(t+Δt)→ 0) and that for the same prediction interval (Δt) the
prediction will be much more sound for a senior researcher rather than for a
junior one [191]. This latter result leads to the consequence that the h index of a
researcher, as their career progresses, increases regardless of their productivity
[190].

These findings are ultimately in contrast with the very idea that metrics
should be used to hire someone for that they will do, since such kind of citation
metrics based on previous results appear to be able grasp mainly only what a
scientist has done and show their strongest predictive limitations for the cases
in which these will be used in real academic hiring decisions [191]. Furthermore,
it can even introduce a self-reassurance bias as bureaucrats may actually take
advantage of the metric auto correlation in order to have a guarantee that
metrics will increase [190].

In parallel to citation based rankings however, other authors have attempted
to introduce rankings based on methods similar to the Page Rank algorithm
discussed in the previous paragraph [192, 193] as well as on centrality measures
similar to the one mentioned in section 3.2.2 [194], but ultimately the intrinsic
feasibility of the distinction between quality and quantity in scientific output is
still an open question [195] and the predictability of individual indexes remains
a statistical method that can possibly lead to average results, while careers have
been shown to be extremely uncertain and volatile, with single events leading
both to sudden career boosts [36] and negative shocks to equally extreme, yet
opposite consequences [109]. Even though it is probably impossible to either
develop a perfectly universal and unbiased metrics or to prevent the usage of
metrics in the academic selection process, it has been argued that it would be
most beneficial to minimize the increasing “taste for publication” [196] that
has been gradually replacing the "taste for science" and to rely on multiple
factors and measure instead of reducing the process to the evaluation of a single
statistic [197].
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5. Scientific Results and Discussion

5.1 Temporal patterns

Publication I studies the changes over time of the age statistics in the awarding
of Nobel Prizes. In the early days of the award, prizes in Physics, Medicine
and Chemistry had a ≈ 50% chance to be awarded to discoveries from the
previous decade, while only a smaller fraction ≈ 20% of prizes was awarded to
discoveries older than 20 years. In time the pattern has dramatically reversed,
with nowadays more than half of the prizes being awarded over 20 years from
discovery. As a result, also the age at which the Nobel prize laureates are
awarded has seen a drastic increasing trend, that ultimately might lead, by the
end of the century, to not be able to reward an old discovery, since the prizes
cannot be awarded posthumously. While it is not simple to offer an exhaustive
explanation for this trend, we suggested that a plausible one might be one of
two extreme scenarios: on one hand it could be possible that the number of
groundbreaking discoveries has been decreasing, therefore forcing the Nobel
committee to look at older ones to find a worthy winner; on the other hand, it
could be that the rate of new significant discoveries has increased so much that
the limit to only 2 independent discoveries being awarded every year cannot
keep up with the pace of scientific innovation.

Publication II studies the intrinsic temporal features of the life cycle of an
individual paper. Publications from a dataset of over 50 million papers and
600 million citations were grouped by peak year, i.e. the year in which the
higher number of yearly citations was reached, thus separating the history of a
paper between its rise to "fame" and its consequent decay. In order to compare
individual cycles, citation cycles were renormalized so that the maximum value
(i.e. the peak) would equal to one. The time required to peak has been constantly
shrinking in time across the fields of Physics, Medicine, Biology and Chemistry,
with Biology showing the lowest numbers in general. The result is coherent with
previous studies that show the average reference age being increasing in time,
thus allowing to allocate less attention to more recent papers, which inevitably
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peak earlier. On the other side of the peak, the decay was found to have a form
very close to either an exponential or a power law, with the former working
better for older publications and the latter being a better fit as time goes by. We
explained this feature as a consequence of the citation mechanism being linked
to a ultradiffusive process, i.e. a mechanism in which a later event might be
caused by or correlated to an earlier event or a combination of earlier events: in
this case the citation count. This ultradiffusive approach allows to quantify the
probability of a paper having a certain number of citations as an auto correlation
function between citation counts, which can be shown analytically to be either
exponential or power law in its form, as it was found in the data. Finally a
non-parametric quantification of the time required to decay (i.e. an half life)
allows us to show a similar pattern as for the time to peak: across fields there is
a clear shrinking in the time required for a paper to be forgotten.

Publication III studies the temporal evolution of the Ego Network of highly
cited scientific papers. An Ego Network built based on a single paper (the
EGO) and is formed by the publications citing as nodes (the Ego is not included)
with all the citations between such publications as edges. Since results of
Publications I have shown that the cycle of a paper is extremely short, the EN
was analyzed in its evolution in snapshots of 2 and 3 years in size, thus focusing
on a temporally coherent bulk of papers that shared the Ego in their reference
lists. The structure of the EN in its earliest years initially consolidates in a dense
community, but is later followed by a consistent scenario, in which the networks
fragment into many small components within 10 years from publication of the
ego-paper, possibly linked to a specialization of the offspring of the Ego or to an
increased popularity of the ego across disciplines, thus affecting the probability
of cross citing.

5.2 Cumulative patterns

Publication IV studies the cumulative process of knowledge spreading stemming
from the knowledge created by an individual papers. Starting from individual
papers a measure called persistent influence is introduced and is based on citing
papers inheriting the knowledge of cited papers. The process is then repeated
recursively, thus propagating the initial influence into a cascade that eventually
allows to quantify the overall influence a single paper has had on the whole
corpus of scientific publications, unlike citation counts, which are based only on
a local snapshot of the network limited to the first "round" of citations. Nobel
winning papers are used as a benchmark for highly influential papers and in the
persistent influence framework are found to be performing significantly better in
their influence measures if compared to papers with similar citation counts, thus
reinforcing the idea that a difference exists between local and global influence of
a paper.

Publication IV also introduced a diffusive method that is used to quantify
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the flow of knowledge across categories (field,subfields and journals). Curves
representing the loss of knowledge to other scientific categories shows a constant
pattern where knowledge rapidly falls and then converges to a plateau in a
typical time (the half life). While the plateau value varies across disciplines
but is constant in time, the half life is decreasing in time for virtually all fields,
suggesting an increase in interdisciplinarity. Furthermore, there seems to be
in time a narrowing of the difference in half lives of humanistic fields (higher
values) and of hard sciences (lower values), possibly linked to a structural
change in the citing patterns of humanities. Multidisciplinary studies are found
to have a peculiar pattern: their plateau value is increasing and their half
life slowing down is among the slowest, suggesting that multidisciplinarity is
possibly becoming a stand alone field that is growing internally.

Publications II and IV offer a tool of renormalization that uses cumulative
information to rescale temporal patterns, thus connecting the two aspects. In
both studies, temporal patterns were calculated using years as an absolute
measure of time. However, in both cases, the quantities being measured were
part of a system in which "updates" happen every time a new publication
appears. In a system where publications come in at a constant rate, the two
measures would coincide but that is not the case in science, where publications
are growing at a slow, yet exponential rate. A renormalization of the time based
on the number of publications instead, offers a dramatic change in the patterns
observed. The speeding up in the half life for the decay of attention of a paper
shown in Publication I slows down to the point where the process seems to be
stable over decades and across fields, thus providing evidence for the fact that a
faster decay is just a consequence of the impossibility for scientists to keep track
for the ever growing amount of published material. Similarly, the speeding up
of the spread of knowledge across fields found in Publication IV also changes
its structure, indicating that the increasing speed of knowledge sharing across
scientific fields could be explained by the increase in the speed at which the
system is updated.

53



Scientific Results and Discussion

5.3 Discussion

Science of science as a field has seen a massive series of changes in the time
since its formulation in the post war period. For a long time the pursuit of new
findings in the field was hindered by the absence of properly indexed data sets
that would allow a systematic analysis of the data available. As scientific data
piled up over the decades and with the ever growing role of digitalization in
modern times, such hinders were removed, uncovering a massive amount of
information on the underlying dynamics that govern the way science works and
operates.

Ever since an increasing amount of effort has been put into the uncovering of
the patterns hidden in data from scientific publications: connections between
papers, authors, institutions, fields, countries allowed to unravel the intrinsic
properties that are at the basis of the production of scientific material. In this
kind of research the basic approach has often been the one to analyze the data in
locally and temporally confined snapshots. Furthermore, as scientific research
sees its economical aspects become more relevant year after year, quantification
of scientific output has also seen a spark in interest both from scientists and
from those hiring them. This has led to a constant search for perfect metrics
able to grasp universal properties for individual authors,journals or papers,
compacting longitudinal careers, both past and future, into a mere number.

The research presented in this Thesis presents a diametrically opposed point
of view to the matter; science does not represent a static platform for the output
of new information, but is rather an ever changing system with sociological,
economical and geographical characteristics, which is bound to be influenced
by the constant modification of the real world on which it is ultimately based.
Such changes in turn, lead to a modification of science’s very own structure, thus
creating patterns that are constantly evolving in time. In particular, science has
been going through a constant exponential growth over the decades since the
post war era, with more and more scientific knowledge accumulating on top of
previous findings over a short interval of time.

The main focus of this Thesis has been to analyze these temporal and cumula-
tive patterns both by considering their individual contribution to the analysis of
scientific data as well as their united one. Only with this combined approach has
it been possible to properly quantify the dynamics of life cycles of citation histo-
ries and Ego Network structures of individual papers, as well as the information
flow between areas of science. Similarly, it allowed to introduce a paper-based
measure to quantify the influence of a single publication over the whole corpus
of scientific data, also allowing to track its evolution in time.

54



References

[1] J. W. Tukey, “Keeping research in contact with the literature: Citation indices
and beyond.,” Journal of Chemical Documentation, vol. 2, no. 1, pp. 34–37, 1962.

[2] E. Garfield, “Citation indexes for science: A new dimension in documentation
through association of ideas,” Science, vol. 122, no. 3159, pp. 108–111, 1955.

[3] R. E. Burton and R. W. Kebler, “The “half-life” of some scientific and technical
literatures,” American Documentation, vol. 11, no. 1, pp. 18–22, 1960.

[4] D. de Solla Price, “Networks of scientific papers,” Science, vol. 149, no. 3683,
pp. 510–515, 1965.

[5] P. O. Larsen and M. von Ins, “The rate of growth in scientific publication and the
decline in coverage provided by science citation index,” Scientometrics, vol. 84,
pp. 575–603, mar 2010.

[6] A. Klamer and H. P. v. Dalen, “Attention and the art of scientific publishing,”
Journal of Economic Methodology, vol. 9, pp. 289–315, Jan. 2002.

[7] Laherrère, J. and Sornette, D., “Stretched exponential distributions in nature
and economy: "fat tails" with characteristic scales,” Eur. Phys. J. B, vol. 2, no. 4,
pp. 525–539, 1998.

[8] Redner, S., “How popular is your paper? an empirical study of the citation
distribution,” Eur. Phys. J. B, vol. 4, no. 2, pp. 131–134, 1998.

[9] P. S. Florence The Economic Journal, vol. 60, no. 240, pp. 808–810, 1950.

[10] D. de Solla Price, “A general theory of bibliometric and other cumulative advan-
tage processes,” Journal of the American Society for Information Science, vol. 27,
pp. 292–306, sep 1976.

[11] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 509–512, 1999.

[12] S. Redner, “Citation statistics from 110 years ofPhysical review,” Physics Today,
vol. 58, pp. 49–54, June 2005.

[13] F. Radicchi, S. Fortunato, and C. Castellano, “Universality of citation distributions:
Toward an objective measure of scientific impact,” Proceedings of the National
Academy of Sciences, vol. 105, no. 45, pp. 17268–17272, 2008.

[14] J. King, “A review of bibliometric and other science indicators and their role in
research evaluation,” Journal of Information Science, vol. 13, no. 5, pp. 261–276,
1987.

55



References

[15] C. Hurt, “Conceptual citation differences in science, technology, and social sciences
literature,” Information Processing & Management, vol. 23, no. 1, pp. 1 – 6, 1987.

[16] F. Radicchi and C. Castellano, “A reverse engineering approach to the suppression
of citation biases reveals universal properties of citation distributions,” PLOS
ONE, vol. 7, pp. 1–9, 03 2012.

[17] K. B. Hajra and P. Sen, “Aging in citation networks,” Physica A: Statistical
Mechanics and its Applications, vol. 346, no. 1–2, pp. 44 – 48, 2005.

[18] K. B. Hajra and P. Sen, “Modelling aging characteristics in citation networks,”
Physica A: Statistical Mechanics and its Applications, vol. 368, no. 2, pp. 575 –
582, 2006.

[19] Q. Ke, E. Ferrara, F. Radicchi, and A. Flammini, “Defining and identifying
sleeping beauties in science,” Proceedings of the National Academy of Sciences,
vol. 112, no. 24, pp. 7426–7431, 2015.

[20] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev.
Lett., vol. 13, pp. 508–509, Oct 1964.

[21] A. COLLABORATION, “Observation of a new particle in the search for the
standard model higgs boson with the {ATLAS} detector at the {LHC},” Physics
Letters B, vol. 716, no. 1, pp. 1 – 29, 2012.

[22] J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, “A historical profile of the higgs
boson,” 2012.

[23] J. Ellis, M. K. Gaillard, and D. Nanopoulos, “A phenomenological profile of the
higgs boson,” Nuclear Physics B, vol. 106, pp. 292 – 340, 1976.

[24] S. L. De Groote and J. L. Dorsch, “Measuring use patterns of online journals and
databases,” J Med Libr Assoc, vol. 91, pp. 231–240, Apr 2003.

[25] M. J. Stringer, M. Sales-Pardo, and L. A. Nunes Amaral, “Effectiveness of journal
ranking schemes as a tool for locating information,” PLOS ONE, vol. 3, pp. 1–8,
02 2008.

[26] J. A. Evans, “Electronic publication and the narrowing of science and scholarship,”
Science, vol. 321, no. 5887, pp. 395–399, 2008.

[27] A. Verstak, A. Acharya, H. Suzuki, S. Henderson, M. Iakhiaev, C. C. Lin, and
N. Shetty, “On the shoulders of giants: The growing impact of older articles,”
CoRR, vol. abs/1411.0275, 2014.

[28] R. K. Pan, A. M. Petersen, F. Pammolli, and S. Fortunato, “The memory of science:
Inflation, myopia, and the knowledge network,” CoRR, vol. abs/1607.05606, 2016.

[29] C. Tenopir, D. W. King, S. Edwards, and L. Wu, “Electronic journals and changes
in scholarly article seeking and reading patterns,” Aslib Proceedings, vol. 61, no. 1,
pp. 5–32, 2009.

[30] H. D. White, B. Wellman, and N. Nazer, “Does citation reflect social structure?:
Longitudinal evidence from the “globenet” interdisciplinary research group,” Jour-
nal of the American Society for Information Science and Technology, vol. 55, no. 2,
pp. 111–126, 2004.

[31] O. Persson, W. Glänzel, and R. Danell, “Inflationary bibliometric values: The
role of scientific collaboration and the need for relative indicators in evaluative
studies,” Scientometrics, vol. 60, no. 3, pp. 421–432, 2004.

[32] W. Glänzel and B. Thijs, “Does co-authorship inflate the share of self-citations?,”
Scientometrics, vol. 61, no. 3, pp. 395–404, 2004.

56



References

[33] G. Wolfgang, T. Bart, and S. Balázs, “A bibliometric approach to the role of author
self-citations in scientific communication,” Scientometrics, vol. 59, no. 1, pp. 63–77,
2004.

[34] J. H. Fowler and D. W. Aksnes, “Does self-citation pay?,” Scientometrics, vol. 72,
no. 3, pp. 427–437, 2007.

[35] M. L. Wallace, V. Larivière, and Y. Gingras, “A small world of citations? the
influence of collaboration networks on citation practices,” PLOS ONE, vol. 7,
pp. 1–10, 03 2012.

[36] A. Mazloumian, Y.-H. Eom, D. Helbing, S. Lozano, and S. Fortunato, “How citation
boosts promote scientific paradigm shifts and nobel prizes,” PLOS ONE, vol. 6,
pp. 1–6, 05 2011.

[37] C. J. Lee, C. R. Sugimoto, G. Zhang, and B. Cronin, “Bias in peer review,” Journal
of the American Society for Information Science and Technology, vol. 64, no. 1,
pp. 2–17, 2013.

[38] R. K. Merton, “Thein Science,” Science, vol. 159, pp. 56–63, Jan. 1968.

[39] L. Bornmann and H. Daniel, “What do citation counts measure? a review of
studies on citing behavior,” Journal of Documentation, vol. 64, no. 1, pp. 45–80,
2008.

[40] A.-L. Barabasi and Z. N. Oltvai, “Network biology: understanding the cell’s
functional organization,” Nat Rev Genet, vol. 5, pp. 101–113, Feb 2004.

[41] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi, “The large-scale
organization of metabolic networks,” Nature, vol. 407, pp. 651–654, Oct 2000.

[42] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes of small-
world networks,” Proc Natl Acad Sci U S A, vol. 97, pp. 11149–11152, Oct 2000.
200327197[PII].

[43] H. Zhu, X. Wang, and J.-Y. Zhu, “Effect of aging on network structure,” Phys. Rev.
E, vol. 68, p. 056121, Nov 2003.

[44] R. Ghosh and B. A. Huberman, “Information relaxation is ultradiffusive,”
arXiv:1310.2619 [physics], Oct. 2013. arXiv: 1310.2619.

[45] M. Wang, G. Yu, and D. Yu, “Measuring the preferential attachment mechanism in
citation networks,” Physica A: Statistical Mechanics and its Applications, vol. 387,
no. 18, pp. 4692 – 4698, 2008.

[46] Q. L. Burrel, “Stochastic modelling of the first-citation distribution,” Scientomet-
rics, vol. 52, no. 1, pp. 3–12, 2001.

[47] M. L. Wallace, V. Larivière, and Y. Gingras, “Modeling a century of citation
distributions,” Journal of Informetrics, vol. 3, no. 4, pp. 296 – 303, 2009.

[48] M. E. J. Newman, “The first-mover advantage in scientific publication,” EPL
(Europhysics Letters), vol. 86, no. 6, p. 68001, 2009.

[49] Y.-H. Eom and S. Fortunato, “Characterizing and modeling citation dynamics,”
PLOS ONE, vol. 6, pp. 1–7, 09 2011.

[50] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex systems,” EPL
(Europhysics Letters), vol. 81, no. 4, p. 48002, 2008.

[51] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, and
J. Saramäki, “Small but slow world: How network topology and burstiness slow
down spreading,” Phys. Rev. E, vol. 83, p. 025102, Feb 2011.

57



References

[52] D. Wang, C. Song, and A.-L. Barabási, “Quantifying long-term scientific impact,”
Science, vol. 342, no. 6154, pp. 127–132, 2013.

[53] C. Goffman, “And what is your erdos number?,” The American Mathematical
Monthly, vol. 76, no. 7, pp. 791–791, 1969.

[54] P. Cayley, “On the analytical forms called trees,” American Journal of Mathemat-
ics, vol. 4, no. 1/4, p. 266, 1881.

[55] D. König, Theory of Finite and Infinite Graphs. Birkhäuser, 1990.

[56] J.-C. Fournier, Théorie des graphes et applications avec exercices et problèmes
revue et augmentée. Hermes Science Publications.

[57] Graph Theory and Theoretical Physics. Academic Press Inc, 1968.

[58] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,”
Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[59] R. S. Weiss and E. Jacobson, “A method for the analysis of the structure of complex
organizations,” American Sociological Review, vol. 20, no. 6, pp. 661–668, 1955.

[60] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes Mathematicae
(Debrecen), vol. 6, pp. 290–297, 1959.

[61] J. E. Cohen, “Threshold phenomena in random structures,” Discrete Applied
Mathematics, vol. 19, no. 1, pp. 113 – 128, 1988.

[62] M. Altmann, “Susceptible-infected-removed epidemic models with dynamic part-
nerships,” J Math Biol, vol. 33, no. 6, pp. 661–675, 1995.

[63] M. J. Keeling, “The effects of local spatial structure on epidemiological inva-
sions,” Proceedings of the Royal Society of London B: Biological Sciences, vol. 266,
no. 1421, pp. 859–867, 1999.

[64] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, “Configuring
random graph models with fixed degree sequences,” 2016. arXiv: 1608.00607.

[65] E. F. Connor and D. Simberloff, “The assembly of species communities: Chance or
competition?,” Ecology, vol. 60, p. 1132, dec 1979.

[66] M. Gail and N. Mantel, “Counting the number of r × c contingency tables with
fixed margins,” Journal of the American Statistical Association, vol. 72, p. 859,
dec 1977.

[67] D. J. Watts and S. H. Strogatz, “Collective dynamics of /‘small-world/’ networks,”
Nature, vol. 393, pp. 440–442, Jun 1998.

[68] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Re-
views of Modern Physics, vol. 74, pp. 47–97, jan 2002.

[69] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A.-L. Barabási, “Structure and tie strengths in mobile communication net-
works,” Proceedings of the National Academy of Sciences, vol. 104, no. 18, pp. 7332–
7336, 2007.

[70] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM
Trans. Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

[71] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol. 519, no. 3,
pp. 97 – 125, 2012. Temporal Networks.

[72] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,
“Multilayer networks,” Journal of Complex Networks, vol. 2, pp. 203–271, jul 2014.

58



References

[73] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Ro-
mance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, “The structure and dynamics of
multilayer networks,” Physics Reports, vol. 544, pp. 1–122, nov 2014.

[74] M. Szell, R. Lambiotte, and S. Thurner, “Multirelational organization of large-
scale social networks in an online world,” Proceedings of the National Academy of
Sciences, vol. 107, no. 31, pp. 13636–13641, 2010.

[75] E. N. Gilbert, “Random graphs,” Ann. Math. Statist., vol. 30, pp. 1141–1144, 12
1959.

[76] A.-L. Barabasi and Z. N. Oltvai, “Network biology: understanding the cell’s
functional organization,” Nat Rev Genet, vol. 5, pp. 101–113, Feb 2004.

[77] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in
empirical data,” SIAM Review, vol. 51, pp. 661–703, nov 2009.

[78] M. E. J. Newman, “Assortative mixing in networks,” Phys. Rev. Lett., vol. 89,
p. 208701, Oct 2002.

[79] M. E. J. Newman, “Mixing patterns in networks,” Physical Review E, vol. 67, feb
2003.

[80] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H.
Strogatz, “Are randomly grown graphs really random?,” Physical Review E, vol. 64,
sep 2001.

[81] R. Noldus and P. Van Mieghem, “Assortativity in complex networks,” Journal of
Complex Networks, vol. 3, no. 4, p. 507, 2015.

[82] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer, M. Schöller,
and P. Smith, “Resilience and survivability in communication networks: Strate-
gies, principles, and survey of disciplines,” Computer Networks, vol. 54, no. 8,
pp. 1245 – 1265, 2010. Resilient and Survivable networks.

[83] G. Fagiolo, “Clustering in complex directed networks,” Physical Review E, vol. 76,
aug 2007.

[84] M. E. J. Newman, “The structure and function of complex networks,” SIAM
Review, vol. 45, pp. 167–256, jan 2003.

[85] S. Milgram, “The small-world problem,” Psychology Today, vol. 1, no. 1, 1967.

[86] W. W. Zachary, “An information flow model for conflict and fission in small groups,”
Journal of Anthropological Research, vol. 33, no. 4, pp. 452–473, 1977.

[87] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3–5,
pp. 75 – 174, 2010.

[88] E. Ravasz, “Hierarchical organization of modularity in metabolic networks,” Sci-
ence, vol. 297, pp. 1551–1555, aug 2002.

[89] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2008, no. 10, p. P10008, 2008.

[90] M. E. J. Newman, “Finding community structure in networks using the eigenvec-
tors of matrices,” 2006.

[91] M. Girvan and M. E. J. Newman, “Community structure in social and biological
networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 12,
pp. 7821–7826, 2002.

59



References

[92] S. Fortunato and M. Barthélemy, “Resolution limit in community detection,”
Proceedings of the National Academy of Sciences, vol. 104, no. 1, pp. 36–41, 2007.

[93] A. Lancichinetti, M. Kivelä, J. Saramäki, and S. Fortunato, “Characterizing the
community structure of complex networks,” PLOS ONE, vol. 5, pp. 1–8, 08 2010.

[94] A. Lancichinetti and S. Fortunato, “Limits of modularity maximization in commu-
nity detection,” Phys. Rev. E, vol. 84, p. 066122, Dec 2011.

[95] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “Performance of modularity
maximization in practical contexts,” Phys. Rev. E, vol. 81, p. 046106, April 2010.

[96] S. Fortunato and D. Hric, “Community detection in networks: A user guide,”
Physics Reports, vol. 659, pp. 1 – 44, 2016. Community detection in networks: A
user guide.

[97] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about metadata and
community detection in networks,” Science Advances, vol. 3, p. e1602548, may
2017.

[98] M. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings
of the National Academy of Sciences, vol. 98, no. 2, pp. 404–409, 2001.

[99] A. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution
of the social network of scientific collaborations,” Physica A: Statistical Mechanics
and its Applications, vol. 311, no. 3–4, pp. 590 – 614, 2002.

[100] C. S. Wagner and L. Leydesdorff, “Network structure, self-organization, and the
growth of international collaboration in science,” Research Policy, vol. 34, no. 10,
pp. 1608 – 1618, 2005.

[101] D. de Solla Price and S. Gürsey, “Studies in scientometrics i transience and
continuance in scientific authorship,” Ciência da Informação, vol. 4, no. 1, 1975.

[102] M. E. Newman, Who Is the Best Connected Scientist?A Study of Scientific Coau-
thorship Networks, pp. 337–370. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

[103] S. Uddin, L. Hossain, and K. Rasmussen, “Network effects on scientific collabora-
tions,” PLOS ONE, vol. 8, no. 2, pp. 1–12, 2013.

[104] G. Palla, A.-L. Barabasi, and T. Vicsek, “Quantifying social group evolution,”
Nature, vol. 446, pp. 664–667, April 2007.

[105] P. Deville, D. Wang, R. Sinatra, C. Song, V. D. Blondel, and A.-L. Barabási, “Career
on the move: Geography, stratification, and scientific impact,” Scientific Reports,
vol. 4, pp. 4770 EP –, Apr 2014. Article.

[106] J. Hoekman, K. Frenken, and R. J. Tijssen, “Research collaboration at a distance:
Changing spatial patterns of scientific collaboration within europe,” Research
Policy, vol. 39, no. 5, pp. 662 – 673, 2010. Special Section on Government as
Entrepreneur.

[107] L. Leydesdorff and C. S. Wagner, “International collaboration in science and the
formation of a core group,” Journal of Informetrics, vol. 2, no. 4, pp. 317 – 325,
2008.

[108] K. Kaplan, “Academia: The changing face of tenure,” Nature, vol. 468, pp. 123–125,
nov 2010.

[109] A. M. Petersen, M. Riccaboni, H. E. Stanley, and F. Pammolli, “Persistence and
uncertainty in the academic career,” Proceedings of the National Academy of
Sciences, vol. 109, pp. 5213–5218, mar 2012.

60



References

[110] R. Guimera, “Team assembly mechanisms determine collaboration network struc-
ture and team performance,” Science, vol. 308, pp. 697–702, apr 2005.

[111] A. Pentland, “The new science of building great teams.,” Harv Bus Rev, vol. 90,
pp. 60–69, 2012.

[112] R. K. Pan and J. Saramäki, “The strength of strong ties in scientific collaboration
networks,” EPL (Europhysics Letters), vol. 97, p. 18007, jan 2012.

[113] Q. Ke and Y.-Y. Ahn, “Tie strength distribution in scientific collaboration net-
works,” Physical Review E, vol. 90, sep 2014.

[114] A. Clauset, S. Arbesman, and D. B. Larremore, “Systematic inequality and hierar-
chy in faculty hiring networks,” Science Advances, vol. 1, no. 1, 2015.

[115] A. M. Petersen, W.-S. Jung, J.-S. Yang, and H. E. Stanley, “Quantitative and
empirical demonstration of the matthew effect in a study of career longevity,”
Proceedings of the National Academy of Sciences, vol. 108, no. 1, pp. 18–23, 2011.

[116] A. M. Petersen, “Quantifying the impact of weak, strong, and super ties in
scientific careers,” Proceedings of the National Academy of Sciences, vol. 112,
no. 34, pp. E4671–E4680, 2015.

[117] M. J. Newman, “A measure of betweenness centrality based on random walks,”
Social Networks, vol. 27, no. 1, pp. 39 – 54, 2005.

[118] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[119] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry,
vol. 40, no. 1, pp. 35–41, 1977.

[120] L. Katz, “A new status index derived from sociometric analysis,” Psychometrika,
vol. 18, no. 1, pp. 39–43, 1953.

[121] P. Bonacich, “Factoring and weighting approaches to status scores and clique
identification,” The Journal of Mathematical Sociology, vol. 2, no. 1, pp. 113–120,
1972.

[122] B. Ruhnau, “Eigenvector-centrality — a node-centrality?,” Social Networks,
vol. 22, no. 4, pp. 357 – 365, 2000.

[123] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[124] T. W. Valente, K. Coronges, C. Lakon, and E. Costenbader, “How correlated
are network centrality measures?,” Connect (Tor), vol. 28, pp. 16–26, Jan 2008.
20505784[pmid].

[125] M. E. J. Newman, “Scientific collaboration networks. II. shortest paths, weighted
networks, and centrality,” Physical Review E, vol. 64, jun 2001.

[126] A. Abbasi, L. Hossain, and L. Leydesdorff, “Betweenness centrality as a driver
of preferential attachment in the evolution of research collaboration networks,”
Journal of Informetrics, vol. 6, no. 3, pp. 403 – 412, 2012.

[127] A. Abbasi, J. Altmann, and L. Hossain, “Identifying the effects of co-authorship
networks on the performance of scholars: A correlation and regression analysis
of performance measures and social network analysis measures,” Journal of
Informetrics, vol. 5, no. 4, pp. 594 – 607, 2011.

[128] E. Sarigöl, R. Pfitzner, I. Scholtes, A. Garas, and F. Schweitzer, “Predicting
scientific success based on coauthorship networks,” EPJ Data Science, vol. 3,
no. 1, p. 9, 2014.

61



References

[129] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks.,”
in NIPS, vol. 2012, pp. 548–56, 2012.

[130] V. Arnaboldi, M. Conti, A. Passarella, and F. Pezzoni, “Analysis of ego network
structure in online social networks,” in Privacy, security, risk and trust (PASSAT),
2012 international conference on and 2012 international confernece on social
computing (SocialCom), pp. 31–40, IEEE, 2012.

[131] D. F. Klosik and S. Bornholdt, “The citation wake of publications detects nobel
laureates’ papers,” PLOS ONE, vol. 9, pp. 1–9, 12 2014.

[132] K. Börner, S. Penumarthy, M. Meiss, and W. Ke, “Mapping the diffusion of schol-
arly knowledge among major u.s. research institutions,” Scientometrics, vol. 68,
no. 3, pp. 415–426, 2006.

[133] N. A. Christakis and J. H. Fowler, “Social contagion theory: examining dynamic
social networks and human behavior,” Statistics in Medicine, vol. 32, pp. 556–577,
jun 2012.

[134] L. M. Bettencourt, A. Cintrón-Arias, D. I. Kaiser, and C. Castillo-Chávez, “The
power of a good idea: Quantitative modeling of the spread of ideas from epidemio-
logical models,” Physica A: Statistical Mechanics and its Applications, vol. 364,
pp. 513 – 536, 2006.

[135] I. Z. Kiss, M. Broom, P. G. Craze, and I. Rafols, “Can epidemic models describe
the diffusion of topics across disciplines?,” Journal of Informetrics, vol. 4, no. 1,
pp. 74 – 82, 2010.

[136] R. Dawkins, The Selfish Gene. Oxford University Press, 1976.

[137] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics of
the news cycle,” in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09, (New York, NY, USA),
pp. 497–506, ACM, 2009.

[138] L. Weng, A. Flammini, A. Vespignani, and F. Menczer, “Competition among
memes in a world with limited attention,” Scientific Reports, vol. 2, mar 2012.

[139] T. Kuhn, M. c. v. Perc, and D. Helbing, “Inheritance patterns in citation networks
reveal scientific memes,” Phys. Rev. X, vol. 4, p. 041036, Nov 2014.

[140] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong, “TextFlow:
Towards better understanding of evolving topics in text,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, pp. 2412–2421, dec 2011.

[141] D. Chavalarias and J.-P. Cointet, “Phylomemetic patterns in science evolu-
tion—the rise and fall of scientific fields,” PLOS ONE, vol. 8, pp. 1–11, 02 2013.

[142] L. M. A. Bettencourt, D. I. Kaiser, J. Kaur, C. Castillo-Chávez, and D. E. Wo-
jick, “Population modeling of the emergence and development of scientific fields,”
Scientometrics, vol. 75, no. 3, p. 495, 2008.

[143] T. S. Kuhn, The structure of scientific revolutions. Chicago: University of Chicago
Press, 1970.

[144] L. M. Bettencourt, D. I. Kaiser, and J. Kaur, “Scientific discovery and topological
transitions in collaboration networks,” Journal of Informetrics, vol. 3, no. 3,
pp. 210 – 221, 2009. Science of Science: Conceptualizations and Models of
Science.
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