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Â Vector potential operator

A Cross-sectional area
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âe Electric part of the photon annihilation operator
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1. Introduction

1.1 Motivation

The foundations of classical electrodynamics are laid upon Maxwell’s equa-

tions which describe how electric and magnetic fields depend on charges

and currents and on each other. These equations were discovered by

James Clerk Maxwell in the 1860s [1, 2]. The classical electrodynam-

ics provides an accurate description of electromagnetic phenomena when-

ever the field strengths and relevant length scales are large enough for

the quantum mechanical effects to be negligible. Instead, for low field

strengths and for small distances, the electromagnetic interactions are

known to be better described by quantum electrodynamics (QED), which

is the well-known quantum theory of electromagnetism developed between

the 1920s and 1950s by many physicists [3–12]. QED describes how the

field and matter interact at the quantum level by means of exchange of

photons. It was also the first theory where full agreement between the

special theory of relativity and quantum mechanics was achieved.

The downside of using QED is that, without approximations, it is ex-

tremely difficult to apply QED to complex systems including a huge amount

of electromagnetically interacting particles. Such a system is formed even

by an electromagnetic field and a simple dielectric medium, where there

is a huge amount of induced dipoles interacting with the electromag-

netic field. Additional inhomogeneities in the materials make the sys-

tem even more complex. Between the pure classical and quantum ap-

proaches, there exist semiclassical theories, which aim to include some

quantum features of the fields in computations, which are tractable also

in quite complex geometries. One of the most widely used semiclassi-
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cal theories is fluctuational electrodynamics (FED) originally developed

by Sergeı̆ Mikhaı̆lovich Rytov in the 1950s [13, 14]. In FED, the ther-

mal and zero-point motion of real and virtual electrically charged par-

ticles inside materials and vacuum results in a fluctuating electromag-

netic field. An essential part of FED is the application of the fluctuation–

dissipation theorem (FDT), which combines statistical physics, quantum

physics, and macroscopic electrodynamics to relate the rate of energy

dissipation in a non-equilibrium system to the spontaneous fluctuations

that occur in equilibrium systems [13, 15]. The well-known FDT relates

the spectral density of fluctuating charge density to the local tempera-

ture, and frequency-dependent relative dielectric permittivity of materi-

als [13, 15]. The essence of FED is the frequency distribution of the fluc-

tuations and its relation to the dissipation of electromagnetic waves.

The most conventional quantum approach to study the behavior of quan-

tized electromagnetic field in simple optical instruments is the mode pic-

ture and the related input–output formalism (IOF) [16, 17]. Basically,

IOF is a scattering theory approach, where the input fields are given and

the output fields of the system are computed. Consequently, IOF relates

the photon creation and annihilation operators of the input fields to the

corresponding operators of the output fields, but it does not reveal the

properties of intermediate states. In IOF, the spatial field evolution is

only included in the form of mode functions that are typically arbitrar-

ily scaled. The formalism was originally developed for dispersionless and

lossless dielectrics for the study of passive optical devices, such as res-

onatorlike cavities, beam splitters, lenses, and filters by Knöll et al. in

the 1980s [18, 19]. Soon, the formalism was also extended to describe

lossy and dispersive media by several groups [20–25] eventually leading

to a complete position-dependent noise operator formalism (NOF) [24–

26]. The resulting complete quantization procedures fully account for the

coupling between the electromagnetic field and the states of lossy dielec-

tric media highlighting that the noise and field operators in general lossy

systems became position dependent.

The electric field and vector potential operators in the above works using

IOF obeyed the well-known canonical commutation relation for an arbi-

trary choice of normal mode functions as expected [23, 24]. However, the

well-known canonical commutation relations of the ladder operators were

not found to be generally satisfied as the ladder operators were found to
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exhibit anomalies in resonant structures [27]. The anomalous commuta-

tion relations of the ladder operators were investigated in several works

[28–31] but no clear resolution for the anomalies was found apart from

reaching a consensus that the anomalies were irrelevant as long as the

classical field quantities and the commutation relations of the correspond-

ing field operators were well defined. Since then, in the studies of electro-

magnetic fields inside dielectric media, IOF has mainly been applied in

calculating the classical field quantities. Only recently it has been sug-

gested that, despite the early interpretations, the ladder operators and

their commutation relations might in fact relate to experimentally mea-

surable physical properties [32, 33]. Such a property is for example the

threshold for the second harmonic generation when it occurs inside micro-

cavities [32, 33]. The commutation relation anomalies also lead to other

problems. For example, the photon number is a useful concept in ther-

modynamics, but due to the commutation relation anomalies, it has been

difficult to consistently define the photon number in resonant structures

and in non-equilibrium conditions.

Due to the very precise explanation of a large set of phenomena in elec-

trodynamics, Maxwell’s equations are often thought to provide a complete

picture on classical electrodynamics. However, surprisingly the under-

standing of the theory of classical electromagnetic fields can still be seen

as somewhat incomplete since there have been remaining significant con-

troversies even in certain simple questions. For example, the form of the

momentum of light in transparent materials has remained as an exten-

sive scientific controversy for more than a century [34–46]. This contro-

versy is known as the Abraham–Minkowski dilemma, where there exist

two rivaling forms for the photon momentum in a medium. The angular

momentum of light forms another challenging topic that has allowed new

discoveries until these days [47]. The modern interest in the angular mo-

mentum of light started from the discovery of how the angular momentum

of light is split into the orbital and spin related parts [48, 49].

One of the main goals of this thesis has been to increase our understand-

ing of the relations between the classical, quantum, and semiclassical the-

ories and to develop practical approaches that can be used to simulate the

behavior of quantized electromagnetic field in materials. This is impor-

tant as optical energy transfer has a key role in several fields of opti-

cal technologies related, e.g., to thin-film light-emitting diodes [50, 51],

3
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nanoplasmonics [52–55], near-field microscopy [56, 57], metamaterials

[58, 59], photonic crystals [60, 61], optical data processing [62, 63], and ra-

diative cooling [64]. The behavior of light in microscopic systems and the

related optical phenomena also naturally lead to questions on the quan-

tum nature of light, on proper ways to quantize the electromagnetic field,

and, even more importantly, on how to correctly interpret the results of

various experiments. Related questions consider the wave–particle dual-

ity and the possibility to describe the propagating electromagnetic field

as a flow of photons. These questions have their origin in the principle of

complementarity according to which wave and particle aspects of physical

objects cannot be measured at a particular moment. The photon flow pic-

ture of the electromagnetic field is known to become especially challeng-

ing in the case of resonant structures and it is also closely related to the

mentioned Abraham–Minkowski controversy of the photon momentum in

a medium [34–46].

The research related to classical and quantum optics of microscopic sys-

tems is strongly influenced by the availability of simple and transparent

theoretical models and tools that allow in-depth understanding of the var-

ious relevant phenomena in a sufficiently simple form. Such insight has

been used, for example, in the recent experimental demonstrations and

theoretical investigations of noiseless but nondeterministic optical ampli-

fiers [65–71] and in the studies of optical properties of cavities [33, 72–74].

Simple description of the quantum aspects of energy transfer is especially

interesting and challenging in lossy microscopic systems often simulated

by the prototypical layered structures. Due to the existing challenges,

there is a growing need for transparent theoretical tools that allow mod-

eling electromagnetic fields and related quantities in a wide range of ap-

plications, especially, including lossy systems and resonant structures.

1.2 Scope and objectives

This doctoral thesis project aims at developing the physical insight needed

to describe quantum optical energy and momentum transfer and pho-

ton number in lossy and lossless microscopic structures. As fundamen-

tal starting points for our investigations, we use Maxwell’s equations, the

conventional FED, the second quantization of fields, the canonical commu-

tation relations of field and ladder operators, and the covariance principle
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of the special theory of relativity. Another goal is also to clarify our under-

standing of the relations between the classical, quantum, and semiclas-

sical theories of light propagation in a medium. In particular, we focus

on deriving and analyzing physical quantities that quantify energy and

momentum transfer in a medium in a clear and comprehensible fashion.

We also aim at bringing the insight offered by the equations towards the

practical limit where they can be adapted to engineering problems.

We started the studies of this thesis by investigating the output fields of

simple beam-splitter-based setups. In Publication I, we presented an ex-

perimental setup for noiseless amplification of weak coherent fields and

modeled it theoretically using the conventional Wigner function formal-

ism of quantum optics. The proposed setup differs from previously demon-

strated setups [65–68] by replacing the usually used single-photon source

with a quantum nondemolition (QND) measurement. The annihilation

and creation operators in these kinds of beam-splitter-based setups are

generally considered as independent of position and they naturally obey

their canonical commutation relations in any QED description.

After studying simple beam-splitter-based setups, it became natural to

investigate how the behavior of fields changes inside material structures,

where the field quantities were known to become position-dependent, and

where previous theoretical works using IOF had observed anomalies in

the commutation relations of the ladder operators. The simplest examples

of such structures are given by stratified media, which form optical cav-

ities. In Publication II, we introduced a quantized fluctuational electro-

dynamics (QFED) method to determine commutation-relation-preserving

photon ladder operators for the electric field part of the total electromag-

netic field in arbitrary dielectric structures. The main idea was to avoid

the IOF related challenges in defining the optical modes by adopting an

approach, where the canonical commutation relations are combined with

the spatial field modes directly following from Maxwell’s equations. This

starting point naturally led to unambiguous commutation relations, but

also enabled to generalize the photon-number concept to arbitrary res-

onator structures. In Publication II, we also established a simple connec-

tion relating the electric part of the photon number to thermal balance

and illustrated the results by studying the field fluctuations and photon

number in stratified media.

In Publication III, we presented how to extend the previous electric
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field based quantization introduced in Publication II to describe also the

magnetic field and the total electromagnetic field. We showed that the

photon-number parts of the electric, magnetic, and total electromagnetic

fields have different position dependencies near material interfaces at

non-equilibrium conditions. We also introduced the concept of frequency-

dependent local field temperature that describes the equilibrium temper-

ature of a resonant particle interacting with the electromagnetic field at

a single frequency. Later, in Publication IV, we adapted a photon flow pic-

ture of the propagation of light in a medium to present how to separate

the fields and photon numbers into parts propagating in different direc-

tions in interfering structures. Thus, our approach bridged QFED and

the commonly used quantum optical IOF. We also introduced the concept

of the interference density of states that was instrumental in the unam-

biguous separation of the fields and the related quantum operators into

parts propagating in different directions.

In Publication V, we described how to extend QFED field quantization

previously applied only to dielectric media to describe also magnetic me-

dia with nonunity permeability. This non-trivial generalization became

possible by using two independent noise operators that follow from the

additional degree of freedom introduced by the magnetic field–matter in-

teractions. Then, in Publication VI, we developed the QFED formalism

further to three dimensions by using the dyadic Green’s functions and

the three-dimensional noise-current operators. The extended description

allowed studying also field components that are not normal to material

interfaces in the studied layered structures. The evanescent waves and

surface plasmons (SPs) were naturally included in the description via

the dyadic Green’s functions. We also illustrated the position-dependent

effective field temperatures in a selected quantum well (QW) structure

with a metallic coating supporting SPs. Then, in Publication VII, we used

the propagating photon number concepts of Publication IV to derive the

interference-exact radiative transfer equation (RTE), which extended the

applicability of the conventional RTE [75–79] beyond its main limitation

in describing interference effects. We obtained position-dependent damp-

ing and scattering coefficients that can be used to replace the conventional

damping and scattering coefficients used in the RTE. These coefficients

account for both the nonlocal wave and local particle features in stratified

geometries providing tools to study the wave–particle duality [80].
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During studying the photon number in the QFED description in sev-

eral works, we started to investigate if and how the adapted photon flow

description of optical fields could be applied to the centennial Abraham–

Minkowski controversy of photon momentum in a medium, a puzzling

problem which had been faced by the other members of the Engineered

Nanosystems group in the previous studies on thermal cavities. The so-

lution to the Abraham–Minkowski controversy would essentially increase

our understanding of the momentum flow associated to the photon flow.

As the QFED method was not as such found to provide sufficient tools to

solve the controversy without additional assumptions on the form of the

optical force density (that was a controversial topic in the previous litera-

ture [34–41]) and the related dynamics of the medium, we decided to rely

our investigations on the most fundamental relations between energy and

momentum, namely the conservation laws and the covariance condition of

the special theory of relativity. This led us to present the foundations of

a covariant theory of light in a medium and the related resolution of the

Abraham–Minkowski controversy in Publication VIII. The theory was de-

rived using two approaches: (1) The mass-polariton (MP) quasiparticle

picture was based only on the fundamental conservation laws of nature

and the special theory of relativity. (2) The electrodynamics of continuous

media and the continuum mechanics were coupled to form an optoelas-

tic continuum dynamics (OCD) theory of light in a medium. Our solu-

tion of the Abraham–Minkowski controversy shows that the light wave

propagating in a medium must be described by using MP quasiparticles,

coupled states of the field and matter. We also introduced the concept of a

light associated mass density wave (MDW) and predicted the photon mass

drag effect displacing the medium along the photon flow. We also showed

that the photon mass drag effect must lead to dissipation of photon energy

when the photon propagates through transparent materials.

1.3 Organization of this thesis

This thesis is organized as follows: Chapter 2 reviews the theoretical

background for the investigations of this thesis. It covers the essential

parts from both the classical and quantum theories of electromagnetic

fields and the dynamics of field–matter interaction. Chapter 3 presents

the new models developed in this thesis. In particular, it covers the QFED
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formalism developed in Publications II–VII and the MP and OCD models

of energy and momentum transfer in a medium developed in Publication

VIII. Chapter 4 presents selected results obtained by applying the con-

ventional models and developed tools to example structures. The results

of Publication I are discussed in Sec. 4.1, the results of Publications II–VII

are reviewed in Sec. 4.2, and the results of Publication VIII are discussed

in Sec. 4.3. Chapter 5 concludes the dissertation with a summary and

discussion of the obtained main results and future challenges.
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2. Theoretical background

This chapter covers the theoretical background of electromagnetic fields

and the dynamics of field–matter interaction applied in this thesis. In

Sec. 2.1, we review the classical theory of electromagnetic fields based on

Maxwell’s equations. We also cover the solution of electromagnetic fields

in terms of Green’s functions and discuss the framework of FED. The co-

variance principle of the special theory of relativity is also described as, in

this thesis, we also directly apply this fundamental principle to describe

the coupled dynamics of the field and matter. Section 2.2 covers the quan-

tum theory. It first reviews the foundation, which is formed by the second

quantization and the canonical commutation relations of fields and ladder

operators. Then it describes the quantum optical IOF used to calculate

possible output fields of a setup when the input fields are known. It also

covers the position-dependent NOF and the Wigner function formalism

commonly used to model quantum optical experiments.

2.1 Classical theory

This section reviews the classical theory of electromagnetic fields in a

medium, which lays the foundation for the studies of this thesis. In

Sec. 2.1.1, we start the review with the frequency space Maxwell’s equa-

tions in linear and isotropic media since, in this thesis, all media are as-

sumed to be piecewise linear and isotropic. This is followed by presenting

the solution of classical electric and magnetic fields in a medium using the

Green’s function approach in Sec. 2.1.2. The Green’s function approach

also forms the basis for the solution of the fields in the classical FED for-

malism presented in Sec. 2.1.3. The covariance principle of the special

theory of relativity is described in Sec. 2.1.4.
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2.1.1 Maxwell’s equations

In classical electrodynamics, the behavior of the electromagnetic field is

completely described by Maxwell’s equations. In the macroscopic form,

Maxwell’s equations relate the electric field strength E, the magnetic field

strength H, the electric flux density D, and the magnetic flux density B

to the free electric charge density ρf and the current density Jf as [81]

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1)

∇×H(r, t) = Jf(r, t) +
∂D(r, t)

∂t
, (2.2)

∇ ·D(r, t) = ρ f(r, t), (2.3)

∇ ·B(r, t) = 0. (2.4)

It is convenient to represent the fields in Maxwell’s equations in terms

of their Fourier transforms written, e.g., for the electric field as

E(r, t) =

∫ ∞

0
E(r, ω)e−iωtdω + c.c., (2.5)

where E(r, ω) describes the time-harmonic component of the electric field

at angular frequency ω and c.c. denotes the complex conjugate of the first

term. Similar relations apply also for the fields D, H, B and sources ρf

and Jf . Note that, throughout this thesis, we use the same symbols for

the fields and their frequency components and specify the meaning with

the function arguments.

By applying the time harmonic field components defined in Eq. (2.5),

Maxwell’s equations (2.1)–(2.4) read [81]

∇×E(r, ω) = iωB(r, ω), (2.6)

∇×H(r, ω) = Jf(r, ω)− iωD(r, ω), (2.7)

∇ ·D(r, ω) = ρf(r, ω), (2.8)

∇ ·B(r, ω) = 0. (2.9)

Under the conditions of an approximatively linear and isotropic medium

used in this thesis, the fields and field densities are related by the consti-

tutive relations [82]

D(r, ω) = ε0ε(r, ω)E(r, ω) + δP(r, ω), (2.10)

B(r, ω) = μ0μ(r, ω)H(r, ω) + μ0δM(r, ω), (2.11)
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where ε0 and μ0 are the permittivity and permeability of vacuum, ε(r, ω) =

εr(r, ω) + iεi(r, ω) and μ(r, ω) = μr(r, ω) + iμi(r, ω) are the relative per-

mittivity and permeability of the medium with real and imaginary parts

denoted by subscripts r and i, and δP and δM are the polarization and

magnetization fields that are not linearly proportional to the respective

electric and magnetic field strengths [82, 83]. In the context of this thesis,

δP and δM describe small noise related parts in the linear polarization

and magnetization fields as customary in the classical FED [84].

2.1.2 Solution of fields using Green’s functions

From Maxwell’s equations for time-harmonic field components in

Eqs. (2.6)–(2.9) and the constitutive relations in Eqs. (2.10) and (2.11),

it follows that the electric field obeys the well-known equation [26]

∇×
[∇×E(r, ω)

μ0μ(r, ω)

]
−ω2ε0ε(r, ω)E(r, ω) = iωJe(r, ω)−∇×

[ Jm(r, ω)

μ0μ(r, ω)

]
, (2.12)

where Je(r, ω) = Jf(r, ω)− iωδP(r, ω) and Jm(r, ω) = −iωμ0δM(r, ω) repre-

sent the polarization and magnetization noise currents that act as field

sources in the classical FED [85, 86]. The electric noise-current term

Je(r, ω) includes contributions from both the electric currents due to free

charges, which amount to zero for insulating dielectrics, as well as polar-

ization terms associated with dipole currents and thermal dipole fluctu-

ations. The magnetic noise-current term Jm(r, ω) acts as a separate field

source arising from the magnetic dipole fluctuations.

The dyadic Green’s functions are used to make the presentation of the

solution of electromagnetic problems compact [82, 87]. In short, in the

dyadic notation, the solutions of fields for three independent dipoles ori-

ented along different coordinate axes are collected into a single dyadic,

which can be presented as a matrix [88]. Formally dyadic Green’s func-

tions are solutions of vector form differential equations for delta function

sources. For the delta function source term
↔
Iδ(r− r′), where

↔
I is the unit

dyadic and δ(r−r′) is the Dirac delta function, an equation for the Green’s

function of Eq. (2.12) is written as [26, 89]

∇r ×
[∇r ×

↔
Gee(r, ω, r

′)
μ(r, ω)

]
− k20ε(r, ω)

↔
Gee(r, ω, r

′) =
↔
Iδ(r− r′). (2.13)

Here k0 = ω/c is the wavenumber in vacuum with the vacuum velocity of

light c and ∇r is the vector differential operator ∇ with respect to r. In

terms of the electric Green’s function
↔
Gee(r, ω, r

′), the solution of Eq. (2.12)
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is then written by integrating the product of the Green’s function and the

source terms over all the source points r′ as

E(r, ω)

= μ0

∫ ↔
Gee(r, ω, r

′) ·
{
iωJe(r

′, ω)−∇r′ ×
[ Jm(r

′, ω)
μ0μ(r′, ω)

]}
d3r′

= iωμ0

∫ ↔
Gee(r, ω, r

′) · Je(r
′, ω)d3r′ + k0

∫ ↔
Gem(r, ω, r

′) · Jm(r
′, ω)d3r′.

(2.14)

In the case of the second term in (2.14), we have applied Stokes’ theorem,

which results in the integration by parts formula
∫
V Gj · (∇r′ × J)d3r′ =∫

V (∇r′ ×Gj) · Jd3r′ −
∫
∂V (G

j × J) · dS′ for each row vector Gj of the ma-

trix representation of
↔
Gee(r, ω, r

′). As the boundary condition, the Green’s

functions are assumed to go to zero when the separation between the field

point r and the source point r′ tends to infinity. Using the shorthand no-

tation
↔
G(r, ω, r′) × �∇r′ = −[∇r′ × G1,∇r′ × G2,∇r′ × G3]T adopted from

Ref. [26], where T denotes transpose, we have then defined the exchange

Green’s function
↔
Gem(r, ω, r

′) in the last step in (2.14) as

↔
Gem(r, ω, r

′) =
↔
Gee(r, ω, r

′)× �∇r′

k0μ(r′, ω)
. (2.15)

After solving for the electric field, the magnetic field can be solved by

using Faraday’s law in Eq. (2.6) and the constitutive relation in Eq. (2.11)

resulting in

H(r, ω)

=
1

iωμ0μ(r, ω)

[
Jm(r, ω) +∇r ×E(r, ω)

]

= k0

∫ ∇r ×
↔
Gee(r, ω, r

′)
k0μ(r, ω)

· Je(r
′, ω)d3r′

− ik20
ωμ0

∫ [∇r ×
↔
Gem(r, ω, r

′)
k0μ(r, ω)

+
↔
I
δ(r− r′)
k20μ(r, ω)

]
· Jm(r

′, ω)d3r′

= k0

∫ ↔
Gme(r, ω, r

′) · Je(r
′, ω)d3r′ + iωε0

∫ ↔
Gmm(r, ω, r

′) · Jm(r
′, ω)d3r′.

(2.16)

Here we have first substituted the expression for E(r, ω) in terms of the

Green’s functions given in Eq. (2.14) and incorporated the separate source

term Jm(r, ω) into the integral using a suitable delta function presentation

and, in the last step, defined the exchange Green’s function
↔
Gme(r, ω, r

′)

and the magnetic Green’s function
↔
Gmm(r, ω, r

′) as

↔
Gme(r, ω, r

′) =
∇r ×

↔
Gee(r, ω, r

′)
k0μ(r, ω)

, (2.17)
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↔
Gmm(r, ω, r

′) = −∇r ×
↔
Gem(r, ω, r

′)
k0μ(r, ω)

−
↔
I
δ(r− r′)
k20μ(r, ω)

. (2.18)

By using Eqs. (2.15) and (2.18), we also obtain an expression of the mag-

netic Green’s function
↔
Gmm(r, ω, r

′) directly in terms of the electric Green’s

function
↔
Gee(r, ω, r

′) as

↔
Gmm(r, ω, r

′) = −∇r × [
↔
Gee(r, ω, r

′)× �∇r′ ]

k20μ(r, ω)μ(r
′, ω)

−
↔
I
δ(r− r′)
k20μ(r, ω)

. (2.19)

Even though many problems may be solved without using dyadic Green’s

functions, the symbolic simplicity offered by them makes the use of dyadic

Green’s functions attractive once one is familiar with the dyadic nota-

tion. This is especially true in complex scattering problems, in which the

physics related to the electromagnetic vector field is compactly accounted

for using the dyadic Green’s functions.

2.1.3 Fluctuational electrodynamics

In FED, the studied objects are considered to be close to equilibrium, and

the non-equilibrium behavior is described by using linear response theory.

In this regime, the fluctuation–dissipation theorem (FDT) relates the rate

of energy dissipation in a non-equilibrium system to the fluctuations that

occur spontaneously in equilibrium systems. For example, if a system is

placed in a state that is slightly out of thermal equilibrium, e.g., by a me-

chanical force acting on the system, then the system will relax back to the

initial state of thermal equilibrium. In the relaxation process, the energy

of the small perturbation is dissipated to heat on a characteristic time

scale that is related to the thermal fluctuations of the system in thermal

equilibrium. Therefore, a statistical fluctuation in thermal equilibrium

is indistinguishable from a small mechanical perturbation that puts the

system out of equilibrium.

The FDT is also needed for the understanding of fluctuating fields near

microscopic objects and optical interactions at small distances. Typically,

the FDT for the polarization current density in a dielectric medium is

written in the frequency domain as [84, 90]

〈Je,j(r, ω)J∗
e,k(r

′, ω′)〉 = 4πωε0εi(r, ω)Θ(ω, T )δjkδ(r− r′)δ(ω − ω′), (2.20)

where j, k ∈ {x, y, z}, the brackets denote the expectation value, and

Θ(ω, T ) = �ω/2+�ω/(e�ω/(kBT )−1), where � is the reduced Planck constant

13
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and kB is Boltzmann’s constant, is the average energy of the quantum har-

monic oscillator in thermal equilibrium at an angular frequency ω and at

temperature T . The Dirac delta functions δ(r−r′) and δ(ω−ω′) are present

due to the spatial and temporal locality of the dielectric constant and the

Kronecker symbol δjk accounts for the assumption of isotropic media [91].

The term �ω/2 in the average energy of the quantum harmonic oscilla-

tor corresponds to the zero-point energy and it is often neglected as it is

compensated by the surrounding of the body [14].

The FDT can also be applied to derive the fields radiated by a system

with an inhomogeneous temperature distribution [84, 86]. Although the

mean values of the fields are zero, their correlations corresponding to

power densities are non-zero. For example, by using the FDT, the electric

field solution in terms of the Green’s function in Eq. (2.14), and neglect-

ing the magnetization current fluctuations by setting Jm(r
′, ω) = 0, which

applies to a dielectric medium, the symmetrized cross-spectral correlation

function of the electric field is given by [84]

〈Ej(r, ω)E
∗
k(r

′, ω′)〉 = 4πω3

c4ε0
δ(ω − ω′)

∑
l

∫
εi(r

′′, ω)Θ
(
ω, T (r′′)

)
×Gee,jl(r, ω, r

′′)G∗
ee,kl(r

′, ω, r′′)d3r′′, (2.21)

where T (r′′) is the pointwise defined local temperature of the medium.

In addition to the electric field correlations, with the help of the FDT,

it is also possible to calculate magnetic field correlations, the total elec-

tromagnetic energy density, energy flow described by the Poynting vector,

and Maxwell’s stress tensor [84]. In addition, it is possible to define the

electric and magnetic local densities of states (LDOSs) [85, 92, 93]. Since

the initiation of the theory, FED has been widely applied in the studies

of field fluctuations, radiative energy transfer, and Casimir forces [86].

However, FED has not been previously used in the context of fully quan-

tizing the electromagnetic field using position-dependent photon numbers

and commutation-relation-preserving ladder operators. Together with the

quantum-optical input–output formalism discussed in the following sub-

section, FED provides a solid background for the investigations of the

position-dependent photon-number concept developed in this thesis.
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2.1.4 Covariance principle

In the studies of the momentum of light in a medium in Publication VIII,

we have taken the covariance principle of the special theory of relativity

as one of the main starting points. The covariance principle essentially

states that the laws of physics are the same for all inertial observers. In

other words, the formulation of physical laws using certain physical quan-

tities measured in different frames of reference can be unambiguously

correlated via Lorentz transformations. The Lorentz transformation of

the energy-momentum four-vector of a particle (E, pxc, pyc, pzc), where E

is energy and px, py, and pz are the x, y, and z components of the momen-

tum, is written in the case of motion in x direction as [94]

E′ = γ(E − vpx), (2.22)

p′xc = γ(pxc− vE/c), (2.23)

p′yc = pyc, (2.24)

p′zc = pzc. (2.25)

Here γ = 1/
√
1− v2/c2 is the Lorentz factor and primed quantities denote

the quantities in the transformed reference frame.

A scalar quantity that is Lorentz invariant is the Minkowski inner prod-

uct of the energy-momentum four-vector with itself. This covariance con-

dition, which is also known as the relativistic energy-momentum relation,

is given by [94]

E2 − (pc)2 = (m0c
2)2, (2.26)

where p is the total momentum and m0 is the rest mass of the particle.

In the studies of this thesis in Publication VIII, we have shown that the

conventional Abraham and Minkowski models of light in a medium do not

satisfy the covariance principle in Eq. (2.26) due to the assumption that

there is not any rest mass propagating with a light pulse in a medium. As

these earlier formulations of the theory had failed to lead to a covariant

description, in Publication VIII it became natural to consider a possibility

that the light pulse is actually a coupled state of the field and matter

with a small but finite rest mass. This will be described in more detail in

Sec. 3.2.
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2.2 Quantum theory

This section covers the conventional quantum theory of the electromag-

netic field. Its foundation is provided by the second quantization that we

briefly review in Sec. 2.2.1. Then, in Sec. 2.2.2, we describe the quantum

optical IOF and the canonical commutation relations of fields and pho-

ton ladder operators. The noise source operators in NOF are presented

in Sec. 2.2.3. To allow practical modeling of quantum noise in the output

fields in beam splitter experiments, in Sec. 2.2.4, we also briefly review

the Wigner function formalism, the related beam splitter description, and

common quantum states of light.

2.2.1 Second quantization

In QED, like in other quantum field theories, the fields are presented as

field operators, in a manner similar to how the physical quantities, such

as position and momentum, are treated as operators in the conventional

quantum mechanics. This method is called the second quantization or

the canonical field quantization. The main underlying ideas of the sec-

ond quantization were introduced by Paul Dirac in 1927 [3], and they

were developed forward by many physicists, most notably, by Fock [95]

and Jordan [96]. The formalism of the second quantization introduces the

creation and annihilation operators that provide useful tools to the study

of the quantum many-body problems. The creation operator â†k creates

and the annihilation operator âk annihilates a photon with energy �ωk in

the electromagnetic field mode with wave vector k. The canonical commu-

tation relations of the creation and annihilation operators are given by

[97]

[âk, âk′ ] = [â†k, â
†
k′ ] = 0,

[âk, â
†
k′ ] = δkk′ . (2.27)

In the second quantization with the Coulomb gauge ∇ · Â(r, t) = 0,

the vector potential operator Â(r, t), the electric field operator Ê(r, t) =

−∂Â(r, t)/∂t, and the magnetic field operator B̂(r, t) = ∇× Â(r, t) at each

point in free space are given in terms of the creation and annihilation

operators as [98]

Â(r, t) =
∑
k

√
�

2ε0V ωk
êk(âke

ik·r−iωkt + â†ke
−ik·r+iωkt), (2.28)
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Ê(r, t) =
∑
k

i

√
�ωk

2ε0V
êk(âke

ik·r−iωkt − â†ke
−ik·r+iωkt), (2.29)

B̂(r, t) =
∑
k

i

√
�

2ε0V ωk
k× êk(âke

ik·r−iωkt − â†ke
−ik·r+iωkt). (2.30)

Here êk is the polarization unit vector of mode k and V is the quantization

volume. In the expressions in Eqs. (2.28)–(2.30), the first terms are the

positive frequency parts conventionally denoted by Â+(r, t), Ê+(r, t), and

B̂+(r, t) [98]. The second terms, which are Hermitian conjugates of the

first terms, are the negative frequency parts denoted by Â−(r, t), Ê−(r, t),

and B̂−(r, t). In the case of a continuum of modes, it is convenient to

convert the summation over k to an integration by using the general sub-

stitution relation
∑

k → [V/(2π)3]
∫
d3k [98].

As the ladder operators, also the field operators in Eqs. (2.28)–(2.30)

obey certain commutation relations. For example, from commutation re-

lations of the ladder operators in Eq. (2.27) and from the expressions of

the vector potential and electric field operators in Eqs. (2.28) and (2.29),

it follows that the vector potential and electric field operators obey the

canonical commutation relation given by [98, 99]

[Âj(r, t),−ε0Êl(r
′, t)] = i�δTjl

(r− r′). (2.31)

Here δTjl
(r−r′) is the transverse delta function, which is an operator that

maps a vector field to its transverse component defined as a part whose

divergence is zero [98]. The transverse delta function is explicitly written

as [98]

δTjl
(r− r′) =

1

(2π)3

∫ (
δjl −

kjkl
k2

)
eik·(r−r′)d3k. (2.32)

2.2.2 Quantum optical input–output formalism

The quantum optical IOF can be introduced by studying the input and

output fields of a beam splitter, which is one of the simplest optical de-

vices. In a beam splitter, two incident beams may interfere to produce

two emerging beams. On dielectric interfaces of a beam splitter, it is also

possible to split one incident beam into two beams as a part of the field

is reflected while another part is transmitted. An ideal beam splitter is

reversible and lossless. An illustration of a beam splitter is represented

in Fig. 2.1.
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Figure 2.1. Beam splitter. Two incident beams are represented by mode operators â1 and
â2, and the emerging beams by mode operators â′

1 and â′
2.

In the Heisenberg picture, the annihilation operators of the incident

fields transform as [16]⎛
⎝ â′1

â′2

⎞
⎠ = SBS

⎛
⎝ â1

â2

⎞
⎠ , SBS =

⎛
⎝ t1 r2

r1 t2

⎞
⎠ , (2.33)

where t1, t2, r1, and r2 are the transmission and reflection coefficients for

the corresponding beams. In general, they are complex numbers resulting

in a unitary scattering matrix SBS that preserves the bosonic commuta-

tion relations between the mode operators. The matrix elements must

obey the relations

|r1| = |r2|, |t1| = |t2|, |r1|2 + |t1|2 = 1, r∗2t1 + r1t
∗
2 = 0. (2.34)

Due to the linearity, the beam splitter scattering matrix SBS can also be

used to obtain the vector potential, electric field, and magnetic field oper-

ators of the output fields, when the input field operators are known to be

of the form in Eqs. (2.28)–(2.30).

In the description of a single beam splitter, we do not encounter any

problems with the canonical commutation relations of the ladder opera-

tors as the commutation relations are preserved by the unitary scattering

matrix SBS. The same is also true in the case of two beam splitters if

neither of the output fields of the second beam splitter is directed back

to the first beam splitter, i.e., there does not exist back coupling between

the beam splitters or self-interference of the fields. However, if an output

field of the second beam splitter is directed back to the first beam split-

ter resulting in feedback, then the above description leads to anomalies

in the commutation relations of the ladder operators [27]. The origin of

the anomalies has previously been identified as self-interference of the

mode whose coherence length is longer than the distance between the
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beam splitters [27]. However, as we have shown in Publications II and IV

and as discussed in Sec. 3.1, we can completely resolve the anomalies by

adapting a different approach, which results in meaningful ladder opera-

tors and the related photon-number concept also in resonant structures.

2.2.3 Noise operator formalism

In the conventional NOF, as a starting point for the field quantization,

one uses an approach where the field quantities in the classical equations

of Secs. 2.1.1 and 2.1.2 are replaced by corresponding quantum operators

[24, 26]. The relations of the electric and magnetic field operators Ê+(r, ω)

and Ĥ+(r, ω) to the polarization and magnetization noise-current opera-

tors Ĵ+
e (r, ω) and Ĵ+

m(r, ω) are given by the classical forms in Eqs. (2.14)

and (2.16). The forms of the polarization and magnetization noise-current

operators Ĵ+
e (r, ω) and Ĵ+

m(r, ω) are then determined by requiring that the

resulting electric field and vector potential operators obey the well-known

canonical commutation relation in Eq. (2.31). As a result, the operators

Ĵ+
e (r, ω) and Ĵ+

m(r, ω) are written in terms of the bosonic source-field oper-

ators f̂e(r, ω) and f̂m(r, ω) and normalization factors j0,e(r, ω) and j0,m(r, ω)

as

Ĵ+
e (r, ω) =

∑
l

j0,e(r, ω)êlf̂e(r, ω), (2.35)

Ĵ+
m(r, ω) =

∑
l

j0,m(r, ω)êlf̂m(r, ω), (2.36)

where the index l ranges over the three independent coordinate directions.

The bosonic source-field operators f̂e(r, ω) and f̂m(r, ω) obey the canonical

commutation relations

[f̂j(r, ω), f̂k(r
′, ω′)] = [f̂ †

j (r, ω), f̂
†
k(r

′, ω′)] = 0,

[f̂j(r, ω), f̂
†
k(r

′, ω′)] = δjkδ(r− r′)δ(ω − ω′), (2.37)

where j, k ∈ {e,m}. These relations clearly resemble the commutation

relations of the free-space photon ladder operators in Eq. (2.27), but here

the operators are not only uncorrelated at different frequencies but also

at different positions. The normalization factors j0,e(r, ω) and j0,m(r, ω)

in Eqs. (2.35) and (2.36) are given by j0,e(r, ω) =
√
4π�ω2ε0εi(r, ω) and

j0,m(r, ω) =
√
4π�ω2μ0μi(r, ω) ensuring that the field commutation rela-

tion in Eq. (2.31) is satisfied [24, 26, 100].
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Substituting the polarization and magnetization noise-current opera-

tors in Eqs. (2.35) and (2.36) into the classical expressions for the elec-

tric and magnetic fields in terms of the Green’s functions in Eqs. (2.14)

and (2.16), we then obtain the positive frequency parts of the electric and

magnetic field operators as

Ê+(r, ω) =
∑
k

∫ [
iωμ0j0,e(r

′, ω)
↔
Gee(r, ω, r

′) · êkf̂e(r′, ω)

+ k0j0,m(r
′, ω)

↔
Gem(r, ω, r

′) · êkf̂m(r′, ω)
]
d3r′, (2.38)

Ĥ+(r, ω) =
∑
k

∫ [
iωε0j0,m(r

′, ω)
↔
Gmm(r, ω, r

′) · êkf̂m(r′, ω)

+ k0j0,e(r
′, ω)

↔
Gme(r, ω, r

′) · êkf̂e(r′, ω)
]
d3r′, (2.39)

The negative frequency parts are given by Hermitian conjugates. These

field operators can be shown to result in the same cross-spectral correla-

tion functions as obtained by using FDT in Sec. 2.1.3. From this fact, it

also follows that the field fluctuations that will be presented in Sec. 3.1.4

are equal to those obtained by using the classical FED.

2.2.4 Wigner function formalism

Next, we review the standard relations of the Wigner function formalism

[101] that can be applied in cases where the ladder operators and photon

numbers are not position dependent, e.g., in the studies of the output field

of a beam splitter setup. The Wigner function theory is commonly applied

to model experiments based on optical quantum tomography [65, 102–

106].

Wigner function

A quantum phase space distribution can be constructed to calculate ob-

servable quantities in a classical-like fashion. This quantum phase space

distribution is called Wigner function according to its inventor Eugene

Wigner who developed the distribution in 1932 while studying quantum

corrections to classical mechanics [101]. A useful representation of the

Wigner function of a state corresponding to the density operator ρ̂ is given

in a coherent basis by [107]

W (α) =
1

π2

∫ ∞

−∞

∫ ∞

−∞
eλ

∗α−λα∗
Tr

(
ρ̂ eλâ

†−λ∗â︸ ︷︷ ︸
D̂(λ)

)
d2λ, (2.40)

where â and â† are annihilation and creation operators obeying the canon-

ical commutation relation in Eq. (2.27) and D̂ is the displacement operator
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which forms a coherent state from a vacuum state as D̂(α)|0〉 = |α〉 [16].

The basis variables α and α∗ of the coherent basis obey the relations

â|α〉 = α|α〉 and 〈α|â† = 〈α|α∗ [107]. These variables are clearly not in-

dependent as being a complex number and its conjugate. Their relation

to the position and momentum quadrature variables x and p is given by

x = (α + α∗)/(
√
2κ) and p = −i�κ(α − α∗)/

√
2, where κ is the spring con-

stant of the field oscillator.

In many cases, it is useful to compare quantum states with each other.

A practical measure for this purpose is the fidelity, which is a measure

of closeness of two quantum states. A commonly used definition is the

Bures-Uhlmann fidelity [108, 109]. If at least one of the states is pure,

the fidelity is given by the overlap between the states as [110]

F (W1,W2) = π

∫ ∞

−∞

∫ ∞

−∞
W1(α)W2(α) d

2α. (2.41)

In the Wigner function formalism, the expectation value of an opera-

tor can be calculated in two ways. In the case of an operator Ô, the first

method is to calculate the Wigner function WÔ(α) of Ô by using Eq. (2.40),

where the density operator ρ̂ has been replaced with Ô. Then, the expecta-

tion value can be calculated as an overlap between WÔ(α) and the Wigner

function of the state as

〈Ô〉 = π

∫ ∞

−∞

∫ ∞

−∞
WÔ(α)W (α) d2α. (2.42)

Another possibility for calculating expectation values is to mirror the ac-

tion of the operator Ô directly on the Wigner function as follows [107]

〈Ô〉 =
∫ ∞

−∞

∫ ∞

−∞
D̂ÔW (α) d2α. (2.43)

Here D̂Ô is a differential operator corresponding to the operator Ô. For ex-

ample, an operator correspondence relation for the annihilation operator

â is given by D̂â = α+ (1/2)∂/∂α∗ [111].

Beam splitter description

The Wigner function of an output state of a beam splitter has four degrees

of freedom, two from each initial fields, and it can be written in terms of

the initial Wigner functions W1 and W2 as [16, 17]

W ′(α1, α2) = W1(α
′
1)W2(α

′
2) (2.44)

with the changed variables⎛
⎝ α ′

1

α ′
2

⎞
⎠ = S†

BS

⎛
⎝ α1

α2

⎞
⎠ , (2.45)

21



Theoretical background

where SBS is the scattering matrix of a beam splitter given in Eq. (2.33).

The Wigner functions of the emerging fields, W ′
1 and W ′

2, can be cal-

culated as marginal distributions by integrating W ′ with respect to the

mode variables of the other emerging field, α1 or α2 depending on the

output field as

W ′
1 (α) =

∫ ∞

−∞

∫ ∞

−∞
W ′(α, α2) d

2α2, (2.46)

W ′
2 (α) =

∫ ∞

−∞

∫ ∞

−∞
W ′(α1, α) d

2α1. (2.47)

If one knows the initial Wigner functions and observes the Wigner func-

tion of one emerging beam in a state W ′
1, it is possible to calculate the

Wigner function of the second output using standard relation of condi-

tional probability given by

W ′
2 (α) =

π
∫
W ′(α1, α)W

′
1 (α1)d

2α1

π
∫
W ′(α1, α2)W ′

1 (α1)d2α1d2α2
. (2.48)

The numerator describes the overlap of the Wigner functions and the de-

nominator equals the probability of observation and it renormalizes the

obtained distribution.

Quantum states of light

Coherent, Fock, and thermal states are examples of the most commonly

described quantum states of light. Coherent states are eigenstates of the

annihilation operator. They are the closest quantum states to a classical

sinusoidal wave such as a continuous laser wave. Fock states are eigen-

states of the photon-number operator, thus having a perfectly fixed pho-

ton number. Thermal states are equilibrium states for a field coupled to

a reservoir at temperature T , and their photon statistics obeys the Bose–

Einstein distribution. The Wigner functions of these states are given,

respectively, by [107]

Wcoh(α) =
2

π
exp(−2|α− α0|2), (2.49)

W|n〉〈n|(α) =
2(−1)n

π
exp(−2|α|2)Ln(4|α|2), (2.50)

Wth(α) =
2

π
tanh

(
�ω

2kBT

)
exp

[
− 2|α|2 tanh

(
�ω

2kBT

)]
. (2.51)

Here α0 is the displacement parameter of a coherent state and Ln denote

Laguerre polynomials, which can be defined by the Rodrigues’ formula,

given by

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
. (2.52)
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This chapter reviews the key elements of the new theory of the QFED for-

malism developed in Publications II–VII and the coupled state description

of the field and matter developed in Publication VIII. Section 3.1 describes

the consistent commutation-relation-preserving photon-ladder operators

and the related position-dependent photon-number concept of the QFED

formalism. It also reviews the related density of state concepts and the

application of the QFED method to the description of the local thermal

balance between the field and matter. The separation of the ladder oper-

ators and photon numbers into the left and right propagating parts and

the related quantum optical RTE are also described. Section 3.2 covers

our coupled state description of the field and matter. While the QFED

method mainly concentrates on describing photon numbers, in Sec. 3.2

we model light propagation in a medium as MP quasiparticles, coupled

states of the field and matter. The MP and OCD models are shown to

lead to the photon mass drag effect and the emergence of a MDW, which

is inevitably associated with a light pulse propagating in a medium.

3.1 Quantized fluctuational electrodynamics

This section reviews the QFED formalism developed in this thesis in Pub-

lications II–VII. In Sec. 3.1.1, we describe the source-field number opera-

tor. In Sec. 3.1.2, we review the derivation of the consistent commutation-

relation-preserving photon-ladder operators of the QFED formalism ap-

plicable to nonuniform structures and non-equilibrium conditions. This is

followed by the review of the density of state concepts in Sec. 3.1.3 and the

presentation of the photon numbers and field fluctuations in Sec. 3.1.4.

The application of the QFED formalism to the description of the local
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thermal balance is reviewed in Sec. 3.1.5. The separation of the lad-

der operators and photon numbers into the left and right propagating

parts is described in Sec. 3.1.6 and the related quantum optical RTE is

reviewed in Sec. 3.1.7. Here, we present certain parts of the theory in a

one-dimensional form for easier interpretation, while other parts are pre-

sented in the complete three-dimensional form as described for dielectric

and magnetic media in Publication VI.

3.1.1 Source-field number operator

As described in the one-dimensional case in Publication II, the bosonic

source-field operators f̂j(r, ω) of Sec. 2.2.3 give the local source-field num-

ber operator η̂(r, ω) as η̂(r, ω) =
∫
f̂ †
j (r, ω)f̂j(r

′, ω′)d3r′dω′. In the case of

thermal fields, the expectation value of the operator η̂(r, ω) is given by the

Bose–Einstein distribution as 〈η̂(r, ω)〉 = 1/(e�ω/[kBT (r)] − 1), in which T (r)

is the possibly position-dependent temperature profile of the medium. In

thermal non-equilibrium conditions, the local thermal equilibrium (LTE)

approximation is often applied. The LTE approximation is justified when

the temperature gradients are small compared to a material-dependent

current-current correlation length scale, which is of the order of the atomic

scale or the phonon mean-free path [86].

3.1.2 Commutation-relation-preserving ladder operators

In any NOF description, the canonical commutation relations are satis-

fied for field quantities, i.e., Eq. (2.31) [99], but the same is not generally

true for the canonical commutation relations of the ladder operators in

Eq. (2.27). The dominant approach in evaluating the ladder operators

has been to separate the field operators obtained from QED into the left

and right propagating normal modes uL(x, ω) and uR(x, ω) and the cor-

responding ladder operators âL(ω) and âR(ω) so that, e.g., the spectral

component of the vector potential operator of a field propagating along x

axis is written as Â+(x, ω) = uR(x, ω)âR(ω) + uL(x, ω)âL(ω) [29, 30, 112].

This is tempting in view of the analogy with the field operators in free

space given in Eqs. (2.28)–(2.30), but in most cases results in ladder oper-

ators that are not uniquely determined due to the possibility to scale the

normal modes nearly arbitrarily. More recently, physically more transpar-

ent interpretations also accounting for the noise contribution have been
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reported [31], but none of the previously reported definitions consistently

give the canonical commutation relations for the photon ladder operators.

In the QFED formalism, we adopt a different starting point that en-

sures the preservation of the canonical commutation relations of the lad-

der operators by simply writing the electric field operator as Ê+(x, ω) =

Ce(x, ω)âe(x, ω), where âe(x, ω) is the position-dependent electric part of

the photon annihilation operator and Ce(x, ω) is a normalization factor

that corresponds to the classical mode function defined simultaneously for

all the source points. This simple relation between Ê+(x, ω) and âe(x, ω)

is obviously of the same form as that in free space in Eq. (2.29). The elec-

tric part of the photon annihilation operator is then given by âe(x, ω) =

Ê+(x, ω)/Ce(x, ω) and the normalization factor Ce(x, ω) can be uniquely

determined apart from the possible phase factor by requiring that the

canonical commutation relation [âe(x, ω), â
†
e(x, ω′)] = δ(ω−ω′), correspond-

ing to Eq. (2.27), is fulfilled at any position.

Above, the photon annihilation operator has been normalized with re-

spect to the electric field. However, it is also possible to perform a corre-

sponding normalization with respect to the magnetic field or other suit-

able quantity like the field component propagating in a certain direction

as discussed later in Sec. 3.1.6. In the case of the normalization with

respect to the magnetic field as âm(x, ω) = Ĥ+(x, ω)/Cm(x, ω), we de-

note the magnetic part of the photon annihilation operator with âm(x, ω)

and the corresponding normalization factor with Cm(x, ω). Depending on

the normalization, we obtain in general different photon ladder operators

âe(r, ω), âm(r, ω), and â(r, ω) and normalization factors Ce(x, ω), Cm(x, ω),

and C(x, ω) for the electric, magnetic, and total electromagnetic fields. As

presented in Publication III, using the explicit forms of the normalization

factors, the electric and magnetic parts of the photon annihilation opera-

tor are then given by

âe(x, ω) =

√
ε0

2π2�ωρe(x, ω)
Ê+(x, ω), (3.1)

âm(x, ω) =

√
μ0

2π2�ωρm(x, ω)
Ĥ+(x, ω), (3.2)

where ρe(x, ω) and ρm(x, ω) are, respectively, the one-dimensional elec-

tric and magnetic LDOSs and the electric and magnetic field operators

are those obtained by using NOF given in Eqs. (2.38) and (2.39). The

photon annihilation operator â(x, ω) for the total electromagnetic field is
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defined as a linear combination of the electric and magnetic field annihi-

lation operators as discussed in Publications III and V. As conventional,

the corresponding photon creation operators are Hermitian conjugates of

the annihilation operators.

When we substitute the electric and magnetic field operators from

Eqs. (2.14) and (2.16) into Eqs. (3.1) and (3.2), we obtain more abstract

expressions for the annihilation operators in terms of the bosonic field op-

erators f̂e(x, ω) and f̂m(x, ω). In terms of the three-dimensional nonlocal

densities of states (NLDOSs) described in Publication VI and reviewed be-

low, the electric and magnetic parts of the photon annihilation operators

are given by

âj(r, ω) =

∫ [√
ρeNL,j(r, ω, r

′)f̂e(r′, ω) +
√
ρmNL,j(r, ω, r

′)f̂m(r′, ω)
]
d3r′√∫

ρNL,j(r, ω, r′)d3r′
, (3.3)

where j ∈ {e,m}. The NLDOS components ρeNL,j(r, ω, r
′) and ρmNL,j(r, ω, r

′)

in Eq. (3.3) denote, respectively, the first and the second terms of Eqs. (3.9)

and (3.10) below. An equation corresponding to Eq. (3.3) also holds for the

total annihilation operator â(r, ω). In this case, the total NLDOS terms

ρeNL(r, ω, r
′) and ρmNL(r, ω, r

′) are obtained by using Eq. (3.11) below with

the corresponding terms in the electric and magnetic NLDOSs.

For easy comparison with the well-known field operator relations in vac-

uum in Eqs. (2.29) and (2.30), we next rewrite the time domain electric

and magnetic field operators of QFED explicitly in terms of the corre-

sponding photon annihilation operators. The time domain electric and

magnetic field operators are naturally given by taking the inverse Fourier

transforms of the frequency domain operators in Eqs. (3.1) and (3.2) as

done for the electric field operator in Publication II. This results in the

one-dimensional case in relations

Ê(x, t) =
1

2π

∫ ∞

0
Ce(x, ω)

[
âe(x, ω)e

−iωt + â†e(x, ω)e
iωt

]
dω, (3.4)

Ĥ(x, t) =
1

2π

∫ ∞

0
Cm(x, ω)

[
âm(x, ω)e

−iωt + â†m(x, ω)e
iωt

]
dω, (3.5)

which clearly resemble the equations for the field operators in the well-

known field quantization in free space given in Eqs. (2.29) and (2.30).

However, the field operators and their prefactors are now in general both

position dependent, which is not the case with the free-space field opera-

tors in Eqs. (2.29) and (2.30).
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3.1.3 Densities of states

Following the calculation performed in the three-dimensional case in Pub-

lication VI, we can define the electric, magnetic, and total electromagnetic

NLDOSs ρNL,e(r, ω, r
′), ρNL,m(r, ω, r′), and ρNL(r, ω, r

′) as factors that ap-

pear in the expressions for the field fluctuations. In terms of the NLDOSs,

the electric and magnetic field fluctuations and the total energy density

of the electromagnetic field are written as

〈E2(r, t)〉 =
∫ ∞

0

∫
�ω

ε0
ρNL,e(r, ω, r

′)
[
〈η̂(r′, ω)〉+ 1

2

]
d3r′dω, (3.6)

〈H2(r, t)〉 =
∫ ∞

0

∫
�ω

μ0
ρNL,m(r, ω, r

′)
[
〈η̂(r′, ω)〉+ 1

2

]
d3r′dω, (3.7)

〈u(r, t)〉 =
∫ ∞

0

∫
�ωρNL(r, ω, r

′)
[
〈η̂(r′, ω)〉+ 1

2

]
d3r′dω. (3.8)

As shown in Publication VI, the NLDOSs for the electric, magnetic, and

total electromagnetic fields, can be written as

ρNL,e(r, ω, r
′) =

2ω3

πc4

{
εi(r

′, ω)Tr[
↔
Gee(r, ω, r

′) ·
↔
G

†
ee(r, ω, r

′)]

+ μi(r
′, ω)Tr[

↔
Gem(r, ω, r

′) ·
↔
G

†
em(r, ω, r

′)]
}
, (3.9)

ρNL,m(r, ω, r
′) =

2ω3

πc4

{
εi(r

′, ω)Tr[
↔
Gme(r, ω, r

′) ·
↔
G

†
me(r, ω, r

′)]

+ μi(r
′, ω)Tr[

↔
Gmm(r, ω, r

′) ·
↔
G

†
mm(r, ω, r

′)]
}
, (3.10)

ρNL(r, ω, r
′) =

|ε(r, ω)|
2

ρNL,e(r, ω, r
′) +

|μ(r, ω)|
2

ρNL,m(r, ω, r
′). (3.11)

The LDOSs ρe(r, ω), ρm(r, ω), and ρ(r, ω) are obtained as integrals of the

corresponding NLDOSs as

ρj(r, ω) =

∫
ρNL,j(r, ω, r

′)d3r′, (3.12)

where j ∈ {e,m, tot} in which the index tot denotes the quantities for the

total electromagnetic field, e.g., ρNL(r, ω, r
′) in Eq. (3.11), written through-

out this thesis without the subscript tot for brevity. It is well-known that

the electric and magnetic LDOSs ρe(r, ω) and ρm(r, ω) are given in vac-

uum by the imaginary parts of the traces of the dyadic Green’s functions

as [84, 92]

ρj(r, ω) =
2ω

πc2
Im{Tr[

↔
Gjj(r, ω, r)]}, (3.13)

where j ∈ {e,m}. As described in Publication III, a similar relation also

applies for the normal components of the Fourier-transformed quantities
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in stratified media. Typically, the spatially resolved form in Eq. (3.13)

is also expected to be valid inside lossy media. However, in lossy media,

these LDOSs are generally known to become infinite due to the contribu-

tion of evanescent fields, which do not propagate in the medium as elec-

tromagnetic waves, but whose energy density is spatially concentrated in

the vicinity of the field sources [84, 92].

Next we also familiarize the concept of the interference density of states

(IFDOS) that was introduced in Publication IV and that is related to the

definition of the Poynting vector. The quantum optical Poynting vector of

an optical mode is defined as a normal-ordered operator in terms of the

positive- and negative-frequency parts of the electric and magnetic field

operators as Ŝ(r, t) =: Ê(r, t) × Ĥ(r, t) := Ê−(r, t) × Ĥ+(r, t) − Ĥ−(r, t) ×
Ê+(r, t) [98]. As detailed in the three-dimensional case in Publication VI,

we obtain the Poynting vector expectation value as

〈Ŝ(r, t)〉 =
∫ ∞

0

∫
�ωv(r, ω)ρIF(r, ω, r

′)〈η̂(r′, ω)〉d3r′dω, (3.14)

where v(r, ω) = c/nr(r, ω) is the propagation velocity of the field in the

direction of the wave vector with the real part of the refractive index de-

noted by nr(r, ω). Inside the integral in Eq. (3.14), we have defined the

IFDOS ρIF(r, ω, r
′) as

ρIF(r, ω, r
′) =

2ω3nr(r, ω)

πc4

×
(
μi(r

′, ω)Im
{
Tr[

↔
Gmm(r, ω, r

′)×
↔
G

†
em(r, ω, r

′)]
}

− εi(r
′, ω)Im

{
Tr[

↔
Gee(r, ω, r

′)×
↔
G

†
me(r, ω, r

′)]
})

. (3.15)

Here we have used the shorthand notation Tr[
↔
G1(r, ω, r

′) ×
↔
G

†
2(r, ω, r

′)] =∑
j [

↔
G1(r, ω, r

′) · êj ] × [
↔
G2(r, ω, r

′) · êj ]†, where the result is by definition

a vector, in contrast to the conventional trace of a matrix, which is a

scalar. The integral of the IFDOS with respect to r′ is always zero, i.e.,∫
ρIF(r, ω, r

′)d3r′ = 0, which is required by the fact that, in a medium at

thermal equilibrium, there is no net energy flow.

In Publication IV, it was found that the IFDOS concept describing in-

terference effects is instrumental in allowing an unambiguous separation

of the fields and the related quantum operators into parts propagating in

different directions. This is described further in Sec. 3.1.6.
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3.1.4 Photon numbers and field fluctuations

Using, the ladder operators presented in Sec. 3.1.2 and the source-field

photon-number expectation value given for thermal fields in Sec. 3.1.1,

the position-dependent photon-number expectation values are given for

the electric, magnetic, and total electromagnetic fields, j ∈ {e,m, tot}, by

〈n̂j(r, ω)〉 =
∫
ρNL,j(r, ω, r

′)〈η̂(r′, ω)〉d3r′∫
ρNL,j(r, ω, r′)d3r′

. (3.16)

In terms of the photon-number expectation values in Eq. (3.16) and the

LDOSs in Eq. (3.12), the spectral electric and magnetic field fluctuations

and the energy density in Eqs. (3.6)–(3.8) can be written as

〈Ê2(r, t)〉ω =
�ω

ε0
ρe(r, ω)

[
〈n̂e(r, ω)〉+

1

2

]
, (3.17)

〈Ĥ2(r, t)〉ω =
�ω

μ0
ρm(r, ω)

[
〈n̂m(r, ω)〉+

1

2

]
, (3.18)

〈û(r, t)〉ω = �ωρ(r, ω)
[
〈n̂(r, ω)〉+ 1

2

]
. (3.19)

Here the subscript ω denotes the spectral component of the total quan-

tities which are obtained as integrals over positive frequencies. These

expressions are equivalent with the spectral components of the field fluc-

tuations and the energy density obtained in the classical FED. Therefore,

we can conclude that using the canonical commutation relations of the

source-field operators as a starting point automatically leads to results

that are consistent with FDT.

3.1.5 Thermal balance

An insightful view of the effective photon numbers of the QFED frame-

work in Eq. (3.16) is provided by their connection to local thermal balance

between the field and matter as detailed in Publication II and as described

in the three-dimensional case in Publication VI. For the macroscopic de-

scription of the field–matter interaction, we first define the normal-ordered

emission and absorption operators Q̂em(r, t) and Q̂abs(r, t) as

Q̂em(r, t) = − : Ĵe(r, t) · Ê(r, t) : − : Ĵm(r, t) · Ĥ(r, t) :, (3.20)

Q̂abs(r, t) = : Ĵe,abs(r, t) · Ê(r, t) : + : Ĵm,abs(r, t) · Ĥ(r, t) : . (3.21)

Here Ĵe,abs(r, t) and Ĵm,abs(r, t) are the electric and magnetic absorption-

current operators that are written in the spectral domain in terms of the
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electric and magnetic field operators as Ĵ+
e,abs(r, ω) = −iωε0χe(r, ω)Ê

+(r, ω)

and Ĵ+
m,abs(r, ω) = −iωμ0χm(r, ω)Ĥ

+(r, ω), where χe(r, ω) = ε(r, ω)− 1 and

χm(r, ω) = μ(r, ω) − 1 are the electric and magnetic susceptibilities of the

medium.

The net emission operator Q̂(r, t) is defined as the difference of the

emission and absorption operators in Eqs. (3.20) and (3.21) as Q̂(r, t) =

Q̂em(r, t) − Q̂abs(r, t). It describes the total energy transfer between the

electromagnetic field and the local medium and it is given by

Q̂(r, t) =− : Ĵe,tot(r, t) · Ê(r, t) : − : Ĵm,tot(r, t) · Ĥ(r, t) : . (3.22)

Here Ĵe,tot(r, t) = Ĵe(r, t)+ Ĵe,abs(r, t) and Ĵm,tot(r, t) = Ĵm(r, t)+ Ĵm,abs(r, t)

are the total noise-current operators, which correspond to the classical to-

tal current densities that are sums of the classical free and bound current

densities. As presented in the three-dimensional case in Publication VI,

the spectral component of the expectation value of the net emission oper-

ator in Eq. (3.22) can be written in terms of the LDOSs and the electric

and magnetic parts of the photon number in Eq. (3.16) as

〈Q̂(r, t)〉ω

= �ω2εi(r, ω)ρe(r, ω)[〈η̂(r, ω)〉 − 〈n̂e(r, ω)〉]

+ �ω2μi(r, ω)ρm(r, ω)[〈η̂(r, ω)〉 − 〈n̂m(r, ω)〉]. (3.23)

From Eq. (3.23) it follows that local thermal balance, described by the

condition 〈Q̂(r, t)〉ω = 0, is generally reached when the source-field photon

numbers coincide with the electric and magnetic field parts of the photon

number defined in Eq. (3.16). One can also note that the expectation value

of the net emission operator in Eq. (3.23) equals the divergence of the

Poynting vector in Eq. (3.14) as 〈Q̂(r, t)〉ω = ∇ · 〈Ŝ(r, t)〉ω.

In the case of resonant systems, where the exchange of energy is dom-

inated by a narrow frequency band, the condition 〈Q̂(r, t)〉ω = 0 can be

used to approximately determine the steady-state temperature of a res-

onant particle that is interacting weakly with the electromagnetic field

[113]. Therefore, in Publication II, we have suggested that the electric

field temperature is experimentally measurable by measuring the steady-

state temperature reached by a detector whose field–matter interaction

is weak and dominated by the coupling to the electric field. Such a de-

tector is, e.g., the movable transparent intracavity photodetector studied

and demonstrated by Lazar et al. [114, 115]. In Publication III, we have
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also suggested that a similar measurement setup for the measurement of

the magnetic field related effective temperature might also be possible to

construct. In this kind of a setup, at least at microwave frequencies, one

would need to use materials whose field–matter interactions have been

engineered to be sensitive to magnetic fields instead of electric fields, us-

ing, e.g., magnetic metamaterials [116] or micro-coil sensors [117].

3.1.6 Left and right propagating fields

It is commonly known how to separate the electric and magnetic fields

into parts propagating in different directions [82, 83]. However, due to

the interference of the field components inside resonant structures, the

same is not true for all field-related quantities. Especially, in previous

literature, it has not been shown how the separation should be made for

the energy density or the photon number, which are quantities that do not

directly depend on the fields but on their squares.

In Publication IV, we have used the LDOS and photon-number con-

cepts of Publications II and III and Eq. (3.16) to separately account for

the left and right propagating fields. In the derivation of this general-

ization, we first write the left and right propagating field spectral Poynt-

ing vector expectation values 〈Ŝ+(x, ω)〉ω and 〈Ŝ−(x, ω)〉ω as 〈Ŝ±(x, ω)〉ω =

�ωv(x, ω)ρ±(x, ω)
[
〈n̂±(x, ω)〉 + 1

2

]
, where ρ±(x, ω) and 〈n̂±(x, ω)〉 are the

left and right propagating field LDOSs and photon numbers to be deter-

mined, and the term one half describes the zero-point fluctuation current.

The left and right propagating photon numbers are additionally assumed

to satisfy two equations as the total Poynting vector is given by

〈Ŝ(x, t)〉ω = �ωv(x, ω)ρ+(x, ω)
[
〈n̂+(x, ω)〉+

1

2

]
− �ωv(x, ω)ρ−(x, ω)

[
〈n̂−(x, ω)〉+

1

2

]
, (3.24)

and the total energy density in Eq. (3.19) is given by

〈û(x, t)〉ω = �ωρ+(x, ω)
[
〈n̂+(x, ω)〉+

1

2

]
+ �ωρ−(x, ω)

[
〈n̂−(x, ω)〉+

1

2

]
. (3.25)

At zero temperature, where 〈n̂+(x, ω)〉 = 〈n̂−(x, ω)〉 = 0, the Poynting vec-

tor is also zero and thus the equality of the densities of states of the left

and right propagating fields ρ+(x, ω) = ρ−(x, ω) follows from Eq. (3.24).

Respectively, at zero temperature, Eq. (3.25) leads to the relation ρ+(x, ω)+
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ρ−(x, ω) = ρ(x, ω). Together, these conditions uniquely define the left

and right propagating LDOSs in terms of the total LDOS as ρ+(x, ω) =

ρ−(x, ω) = ρ(x, ω)/2.

Using the LDOS relations above, we can unambiguously solve the left

and right propagating photon numbers from Eqs. (3.24) and (3.25) as

〈n̂±(x, ω)〉 = [�ωρ(x, ω)]−1[〈û(x, t)〉ω±〈Ŝ(x, t)〉ω/v(x, ω)]−1/2. As described

in Publication IV, in terms of the densities of states and the source-field

photon number, this corresponds to

〈n̂±(x, ω)〉 =
1

ρ(x, ω)

∫ ∞

−∞
[ρNL(x, ω, x

′)± ρIF(x, ω, x
′)]〈η̂(x′, ω)〉dx′. (3.26)

Equation (3.26) indicates that the propagating field photon-number ex-

pectation values are also obtained as weighted sums of the source-field

values, but the weight factors now contain an additional IFDOS related

term that describes the interference and propagation direction.

Above we have only focused on the photon-number expectation values

that are directly related to the Poynting vector and energy density. In

order to find the corresponding ladder and photon-number operators in

QFED, we investigate the forms of the photon creation and annihilation

operators â†±(x, ω) and â±(x, ω) that fulfill the canonical commutation re-

lations and lead to the photon-number expectation values in Eq. (3.26).

The photon annihilation operators satisfying these conditions are of the

form

â±(x, ω)

=
1√

ρ(x, ω)

∫ ∞

−∞

[
ei(φe±π/4)

√
ρeNL(x, ω, x

′)± ρeIF(x, ω, x
′) f̂e(x′, ω)

+ ei(φm±π/4)
√
ρmNL(x, ω, x

′)± ρmIF(x, ω, x
′) f̂m(x′, ω)

]
dx′, (3.27)

where ρjNL(x, ω, x
′) and ρjIF(x, ω, x

′), with j ∈ {e,m}, denote the electric and

magnetic source related terms of the NLDOS and IFDOS in Eqs. (3.11)

and (3.15). The phase factors φe and φm in Eq. (3.27) are in principle

arbitrary and they do not play a role in our calculations as they cancel

in the commutators. The annihilation operator â(x, ω) of the total field

is given by the sum â(x, ω) = 1√
2
[â+(x, ω) + â−(x, ω)]. It is straightfor-

ward to verify that the annihilation operators of the left and right prop-

agating field in Eq. (3.27) also obey the commutation relation of the form

[â±(x, ω), â
†
±(x, ω′)] = δ(ω − ω′). However, as the reflecting interfaces cou-

ple the left and right propagating fields originating from the same source
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points, the cross-commutators become nonzero as [â±(x, ω), â
†
∓(x, ω′)] �= 0.

This cross-commutator form is intuitively reasonable and it has not been

found to present any complications as the only commutation relations that

are expected to be directly related to physical observables are the self-

commutators.

3.1.7 Quantum optical radiative transfer equation

Next, we discuss the connection between the QFED formalism and the

well-known RTE model [75–79] whose main limitation is that it does not

capture interference effects that are crucial in the exact description of

fields in any inhomogeneous structures. The same limitation in the de-

scription of interference effects also applies to many recently developed

quantum models of light propagation in a medium [118–121]. Therefore,

establishing an interference-exact RTE model also provides means to ex-

tend the applicability of these non-interference-exact quantum models.

RTE-model parameters

Here we assume normal incidence for simplicity but, in Publication VII,

the calculations have been performed in the case of general incidence. The

connection between QFED and the RTE model is established by compar-

ing the derivative of the photon numbers in Eq. (3.26) with the RTE model

for stratified media written as

d

dx
〈n̂±(x, ω)〉 =∓ α±(x, ω)[〈n̂±(x, ω)〉 − 〈η̂(x, ω)〉]

± β±(x, ω)[〈n̂∓(x, ω)〉 − 〈η̂(x, ω)〉]. (3.28)

Here we have allowed that the damping and scattering coefficients α±(x, ω)

and β±(x, ω) can be in general position dependent.

Substituting the integral expressions for the photon numbers of the

QFED framework given in Eq. (3.26) into the RTE model in Eq. (3.28)

and omitting the function arguments x, x′, and ω for brevity, we obtain∫ ∞

−∞

(1
ρ

∂ρNL±

∂x
− 1

ρ2
∂ρ

∂x
ρNL±

)
〈η̂〉dx′

=

∫ ∞

−∞

{
∓ α±

[ρNL±

ρ
− δ(x− x′)

]
± β±

[ρNL∓

ρ
− δ(x− x′)

]}
〈η̂〉dx′. (3.29)

Here we have imported the source-field photon numbers η̂ of Eq. (3.28)

within the integrals by using delta function representations. In order to

determine the damping and scattering coefficients α± and β±, we require
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that the RTE model must be valid for arbitrary temperature distributions

of the material described by the position-dependent source-field photon

number 〈η̂〉. This requirement is equivalent to the condition that the in-

tegrands on the left and right hand side of Eq. (3.29) must be equal at

all positions x and x′. Although it is not directly evident, one can find

that the integrands on the left and right in Eq. (3.29) are linearly depen-

dent functions of x′ for x′ �= x. This enables us to separate Eq. (3.29) into

two linearly independent equations, one for x = x′ and one for x �= x′.

For x = x′, by setting the integrands on the left and right hand side of

Eq. (3.30) equal, we obtain an equation

1

ρ

∫ x+

x−

∂ρNL±

∂x
dx′ = ±α± ∓ β±, (3.30)

where x− and x+ denote positions on the left and right infinitesimally

close to x. For x �= x′, we respectively obtain an equation

∂ρNL±

∂x
− 1

ρ

∂ρ

∂x
ρNL± = ∓α±ρNL± ± β±ρNL∓. (3.31)

The solutions of the pair of equations for α± and β±, formed by Eqs. (3.29)

and (3.30), are given by

α±(x, ω) =
1

2ρρIF

(∂ρ
∂x

ρNL± − ρ
∂ρNL±

∂x
− ρNL∓

∫ x+

x−

∂ρNL±

∂x
dx′

)
, (3.32)

β±(x, ω) =
1

2ρρIF

(∂ρ
∂x

ρNL± − ρ
∂ρNL±

∂x
− ρNL±

∫ x+

x−

∂ρNL±

∂x
dx′

)
. (3.33)

These quantum optical light-matter interaction parameters fully capture

the interference, emission, damping and scattering of propagating pho-

tons in stratified media. To include the corrections in the conventional

RTE model, one only needs to replace the classical damping and scatter-

ing coefficients with the position-dependent parameters in Eqs. (3.32) and

(3.33). The derived interference-exact RTE model is also expected to ex-

tend the useful range of interference-aware optical models from simple

structures to full device level simulations.

Solution of the RTE model

In order to write the photon number as a solution of the RTE model in

a general form, we first rewrite the RTE model in Eq. (3.28) as a matrix

equation
d

dx
n(x, ω) = −α(x, ω)[n(x, ω)− η(x, ω)]. (3.34)

Here we have written the photon numbers of the left and right propa-

gating fields and source fields as vectors n(x, ω) = [〈n̂+(x, ω)〉, 〈n̂−(x, ω)〉]T
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and η(x, ω) = [〈η̂(x, ω)〉, 〈η̂(x, ω)〉]T , and the damping and scattering coef-

ficients have been incorporated in a matrix

α(x, ω) =

[
α+ −β+

β− −α−

]
. (3.35)

With the boundary condition n(x0, ω) = n0 defined at x = x0, the solution

to Eq. (3.34) is then given by

n(x, ω) = e
− ∫ x

x0
α(x′,ω) dx′

n0 +

∫ x

x0

e−
∫ x
x′ α(x′′,ω) dx′′

α(x′, ω)η(x′, ω)dx′. (3.36)

The form of Eq. (3.36) is fully analogous with the solution of the conven-

tional RTE model whose damping coefficients are here replaced by the

matrix α(x, ω). The same applies to some representations of the conven-

tional quantum optical IOF [118].

3.2 Coupled state description of the field and matter

This section reviews the coupled state description of the field and matter

in a medium described in Publication VIII. In Sec. 3.2.1, we briefly present

some background for the Abraham–Minkowski controversy of photon mo-

mentum in a medium as this controversy was one of the main motiva-

tions for the development of the coupled state description in this thesis.

In Sec. 3.2.2, we review the MP quasiparticle picture, where we consider

the light pulse as a coupled state between a single photon and matter, iso-

lated from the rest of the medium, and apply only the conservation laws

and the Lorentz invariance. In Sec. 3.2.3, we describe the corresponding

OCD model that is based on Newton’s equation of motion. The OCD model

presents an alternative derivation of the main results obtained in the MP

quasiparticle approach, and it also allows simulations of the predicted

photon mass drag effect with realistic material parameters.

3.2.1 Abraham–Minkowski controversy

The quantum hypothesis by Max Planck in 1900 [122] related the energy

E of a photon to the frequency of light as E = �ω. Since then, the mo-

mentum of a photon propagating in vacuum has been known to be given

by p = �ω/c. However, the momentum of light in a medium with refrac-

tive index n has remained a subject of an extensive scientific controversy

for more than a century [34–46, 123–132]. The controversy has culmi-
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Abraham momentum

Minkowski momentum

Refractive 
index

Medium block

Anti-reflective
coatings

Coupled state

Photon

Photon

Figure 3.1. Schematic illustration of the problem of a photon propagating through a
medium block having refractive index n. The photon emerges from vacuum
on the left. Then it couples to the atoms of the medium block forming an
MP quasiparticle, which propagates through the block. After penetrating the
medium block, the photon continues to propagate in vacuum on the right.
At the interfaces, the medium block experiences recoil forces F1 and F2 that
depend on the total momentum of the MP in the medium. Figure adapted
from Publication VIII.

nated in the difficulty to establish an unambiguous expression for the

photon momentum and, in particular, in formulating a consistent theory

to choose between the Abraham momentum pA = �ω/(nc) [133, 134] and

the Minkowski momentum pM = n�ω/c [135]. Therefore, this momentum

dilemma has become known as the Abraham–Minkowski controversy. The

problem of the propagation of a light wave in a nondispersive medium is

schematically illustrated in Fig. 3.1.

Neither the Abraham nor the Minkowski momentum has previously

been proven to be fully consistent with the energy and momentum con-

servation laws, de Broglie hypothesis, Lorentz invariance, and available

experimental data. To explain the controversy, it has been previously

suggested that both forms of momenta are correct but describe differ-

ent aspects of the momentum of light [37, 38]. In some other theoretical

studies, the Abraham–Minkowski controversy has been reasoned to be re-

solved by arguing that the division of the total energy-momentum tensor

into material and electromagnetic components would be completely arbi-

trary [36, 136, 137]. On the experimental side, several different setups

have been introduced for the measurement of the momentum of light in a

medium [138–149]. However, experimental results have been interpreted

to be partly controversial, and therefore, they have not been able to con-

clusively resolve the controversy.
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Abraham model

A simple derivation of the Abraham model of light can be presented by

considering how the so-called Einstein’s box thought experiment [150,

151] is traditionally applied to determine the momentum of a photon in-

side the medium. In this approach, the starting point is Newton’s first law

generalized to account for both the fields and particles [37]. This law is

also known as the constant center of energy velocity (CEV) of an isolated

system, such as the photon and the medium block in Fig. 3.1. The con-

stant CEV for a system of a photon with energy �ω and velocity c initially

in vacuum and a medium block with mass M and energy Mc2 initially at

rest is argued to obey the equation

VCEV =

∑
iEivi∑
iEi

=
�ωc

�ω +Mc2
=

�ωv +Mc2V

�ω +Mc2
. (3.37)

Here the two forms on the right are written for the cases before and after

the photon has entered the medium. It is assumed that inside the medium

the initial photon energy �ω propagates with velocity v = c/n which re-

sults in the medium block obtaining a velocity V to be determined from

Eq. (3.37). From Eq. (3.37) we then obtain �ω/c = �ω/(nc) +MV suggest-

ing that the initial photon momentum �ω/c in vacuum is split into the

Abraham momentum of a photon in a medium equal to

pA =
�ω

nc
(3.38)

and to the medium block momentum equal to MV . One might then con-

clude that the Abraham momentum would be the correct photon momen-

tum in a medium and that the Minkowski momentum would thus violate

Newton’s first law [37].

Minkowski model

The simplest theoretical derivation of the Minkowski model is provided

by the application of the de Broglie hypothesis to the state of a light wave

in a medium. According to the de Broglie hypothesis, the momentum of a

quantum state is related to the wavelength as

p =
h

λ
, (3.39)

where h is the (non-reduced) Planck constant and λ is the wavelength. As

the wavelength of light is very well known to be reduced in the medium

as λ = λ0/n, where λ0 is the wavelength in vacuum, and λ0 = 2πc/ω,
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we obtain that the momentum of light in the medium is given by the

Minkowski formula as

pM =
n�ω

c
. (3.40)

Therefore, one might conclude that the Minkowski momentum would be

the quantum mechanically correct photon momentum in a medium. Thus,

one might also conclude that there is a clear inconsistency between New-

ton’s first law in Eq. (3.37) and the de Broglie hypothesis in Eq. (3.39).

However, in Publication VIII, we show that this is not actually the case

and there exists a unique and fully transparent resolution to the contro-

versy.

3.2.2 Mass-polariton (MP) quasiparticle model

Next we review the MP quasiparticle model introduced in Publication

VIII, where light quanta are described as MP quasiparticles that are

formed by the coupled state of a photon and a mass displacement field as-

sociated with the photon. Due to the photon induced mass displacement

propagating at speed c/n, the MP is also shown to have a rest mass. Since

the MP does not involve a clear resonance with an internal excited state of

the medium, the polariton term here has a meaning that fundamentally

differs from its conventional use in the context of the exciton-polariton

and the phonon-polariton quasiparticles.

As the consistent description of the propagation of a light field in a

medium has appeared to be extremely difficult leading, e.g., to the Abra-

ham–Minkowski controversy, we base the MP quasiparticle model on the

most fundamental laws of energy and momentum provided by their con-

servation laws and the covariance principle of the special theory of relativ-

ity. The covariance condition in Eq. (2.26) clearly indicates that a photon

with energy �ω having either Abraham or Minkowski momentum prop-

agating in a nondispersive medium cannot be covariantly described by a

state with a zero rest mass. Therefore, we consider the possibility that the

photon forms a new quasiparticle with a nonzero mass δm, consisting of

the photon moving at speed c/n and a photon induced mass displacement

field that also propagates at speed c/n. This is equivalent to allowing that

the medium is not perfectly rigid contrasting the typical assumption in

previous works on the Abraham–Minkowski controversy. Therefore, our

model allows the formation of a mass density wave (MDW), i.e., excess
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Figure 3.2. Schematic illustration of the energy and momentum transfer of the photon,
the MP, and the medium block in the processes where the MP is created and
destroyed. Inside the block, the mass energy is transferred as a MDW illus-
trated by the bending of the lattice planes. Figure adapted from Publication
VIII.

mass density of the medium, which is associated with light as illustrated

in Fig. 3.2.

Here, in the MP quasiparticle approach, we determine the value of δm

by requiring that the MP is described by a covariant state that enables

the transfer of energy trough the medium at speed v = c/n. It is shown

that the determination of δm also determines the momentum of the MP.

Consequently, the energy ratio δmc2/�ω and the energy-momentum ratio

E/p of the MP are internal properties of the light wave. Separate in-

terface forces in Fig. 3.1 are additionally needed to balance the possible

momentum change between the photon momentum in vacuum and the

momentum of the covariant MP state so that the total momentum is con-

served. The related recoil energies and momenta at the interfaces are

assumed to directly affect only thin material layers at the surface.

Laboratory frame (L-frame)

In L-frame, which is the initial rest frame of the medium block, the total

energy of the MP in our model is given by EMP = �ω + δmc2. It consists

of the part �ω describing the energy of the field including the potential

energy of induced dipoles and the kinetic energy of MDW atoms, and the

part δmc2 related to the rest energy of δm transferred as a MDW. It can

be reasoned that, in the total energy of the MP in L-frame, all other con-

tributions, but the mass energy δmc2, have their origin in the field energy

of the incoming photon. In any inertial frame, all this field energy can be

exploited, for instance, in the resonance excitation of the medium atoms.
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For example, the kinetic energy of δm is included in the field energy �ω

as atoms are moved by the field–dipole forces following from the presence

of the field. However, since δm is not the mass of an isolated particle in

vacuum but the mass carried by the MDW, where the total mass of con-

tributing atoms is vastly larger than δm, the kinetic energy of δm is neg-

ligible even though it is carried at the relativistic speed v = c/n through

the medium. In Publication VIII, this is reasoned by using the numerical

results of the OCD model and also by using simple classical energy and

momentum arguments.

MP rest frame (R-frame)

Next we transform the total L-frame energy of the MP, given by EMP =

�ω+ δmc2, to an inertial frame moving with the velocity v′ with respect to

L-frame. Denoting the so far unknown momentum of the MP in L-frame

by pMP and using the Lorentz transformation in Eqs. (2.22) and (2.23), we

obtain the energy E′
MP and momentum p′MP of the MP in the transformed

frame as

E′
MP = γ′(EMP − v′pMP) = γ′(�ω − v′pMP) + γ′δmc2, (3.41)

p′MP = γ′
(
pMP −

v′EMP

c2

)
= γ′

(
pMP −

v′�ω
c2

− v′δm
)
. (3.42)

Here γ′ is the Lorentz factor corresponding to the velocity v′. In Eq. (3.41),

the last term on the right presents the transformed rest energy of the

MDW, while the first term �ω′ = γ′(�ω − v′pMP) originates from the field

energy and it corresponds to the Doppler-shifted energy of a photon in

a medium. According to the Doppler shift [152], the field energy be-

comes zero in the reference frame moving with the velocity of light in

the medium. This condition is equivalent to the fact that photons do not

have a rest mass. Therefore, setting �ω′ −→ 0 in R-frame, where v′ = c/n,

one obtains

pMP =
n�ω

c
. (3.43)

The Doppler shift has been used to justify the Minkowski momentum also

earlier [37, 129]. However, in the earlier derivation, the Lorentz transfor-

mation in Eqs. (3.41) and (3.42) was not used, and thus, the transferred

mass δm carried by the MDW remained undetermined.

Transferred mass carried by the MDW and the rest mass of the MP

Since R-frame moves with the MP, the total momentum of the MP in R-

frame is zero by definition. Therefore, inserting the momentum pMP of the
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MP from Eq. (3.43) into Eq. (3.42) and setting v′ = c/n, one obtains the

transferred mass carried by the MDW as

δm = (n2 − 1)�ω/c2. (3.44)

According to the special theory of relativity, the total energy of a particle

or any structural system with rest mass m0 in its rest frame can be writ-

ten as m0c
2. Therefore, we denote the mass of the MP in R-frame by m0

and call it the rest mass of the MP. Inserting pMP and δm from Eqs. (3.43)

and (3.44) into Eq. (3.41) and setting v′ = c/n, we can solve the rest mass

of the MP as

m0 = n
√
n2 − 1 �ω/c2. (3.45)

For the energy and momentum of the MP, one then obtains in L-frame

EMP = γm0c
2 = n2

�ω,

pMP = γm0v =
n�ω

c
. (3.46)

It can be directly observed that the energy and momentum of the MP in

Eq. (3.46) and the rest mass in Eq. (3.45) fulfill the covariance condition

in Eq. (2.26). Note that although knowing δm is enough to understand

the mass transfer associated with the MP, m0 is useful for transparent

understanding of the covariant MP state of light in a medium.

The rest mass of the MP, the transferred mass carried by the MDW,

and the Minkowski form of the MP momentum were found to be direct

consequences of the Lorentz transformation, Doppler shift, and the fun-

damental conservation laws of nature. This is in contrast with earlier

explanations of the Minkowski momentum, where the transferred mass

carried by the MDW has been neglected.

Momenta of the field and matter parts of the MP

The covariant energy-momentum ratio E/p = c2/v following from the

Lorentz transformation in Eqs. (3.41)–(2.25) allows splitting the total MP

momentum in Eq. (3.46) into parts corresponding to the electromagnetic

energy �ω and the MDW energy δmc2. As a result, one obtains the field

and MDW momenta given in L-frame by

pfield =
�ω

nc
,

pMDW =
(
n− 1

n

)
�ω

c
. (3.47)
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Therefore, one can observe that the field’s share of the total MP momen-

tum is of the Abraham form while the MDW’s share is given by the dif-

ference of the Minkowski and Abraham momenta. However, due to the

coupling, only the total momentum of the MP and the transferred mass

are expected to be directly measurable.

Einstein’s box thought experiment revised

Our results in Eqs. (3.45) and (3.46) show that the MP rest mass m0 has

not been taken properly into account in Einstein’s box thought experiment

discussed above. Accounting for the rest mass of the MP, we can write the

constant CEV law in Eq. (3.37) before and after the photon has entered

the medium as

VCEV =

∑
iEivi∑
iEi

=
�ωc

�ω +Mc2
=

γm0c
2v +Mrc

2Vr

γm0c2 +Mrc2
, (3.48)

where Mr = M − δm and Vr = (1 − n)�ω/(Mrc). The equality of the de-

nominators corresponds to the conservation of energy and the equality

of the numerators divided by c2 corresponds to the momentum conser-

vation. Equation (3.48) directly shows that the mass-polariton with the

Minkowski momentum obeys the constant CEV motion and explains why

earlier derivations of the Minkowski momentum assuming zero rest mass

for the propagating light pulse lead to violation of the constant CEV mo-

tion [37, 38].

3.2.3 Optoelastic continuum dynamics (OCD)

Newton’s equation of motion and optoelastic forces

Next we briefly review the essence of the OCD model that corresponds

to the MP model above, but is an independent and complementary ap-

proach to the same problem of light propagation in a medium. In the

OCD model introduced in Publication VIII, we apply Newtonian formula-

tion of the continuum mechanics to show that the field–dipole forces give

rise to the MDW, which propagates with the light field in a medium. The

MDW effect disturbs the mass density of the medium from its equilibrium

value ρ0. Another related effect is the recoil effect, which exists only at

material interfaces, where the refractive index changes. The total dis-

turbed atomic mass density of the medium, in the OCD model, becomes

ρa(r, t) = ρ0 + ρrec(r, t) + ρMDW(r, t), where ρrec(r, t) is the mass density

disturbance due to the recoil effect and ρMDW(r, t) is the mass density of
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MDW. The mass density disturbances related to the recoil and MDW ef-

fects become spatially well separated after the light pulse has penetrated

in the medium. While the recoil effect exists only at material interfaces,

the MDW effect follows the light pulse inside the medium. As the veloci-

ties of atoms are nonrelativistic in the inertial reference frame where the

medium is initially at rest, we can write Newton’s equation of motion for

the mass density of the medium as

ρa(r, t)
d2ra(r, t)

dt2
= fopt(r, t) + fel(r, t), (3.49)

where ra(r, t) is the atomic displacement field of the medium and fopt(r, t)

and fel(r, t) are the optical and elastic force densities.

The optical force density fopt(r, t) has its origin in the interaction be-

tween the induced dipoles and the electromagnetic field. It has remained

as a controversial topic related to the Abraham–Minkowski controversy

[36, 40, 41, 149]. In the OCD model, we use the force density correspond-

ing to the conventional Abraham model given by [41, 153]

fopt(r, t) = −ε0
2
E2(r, t)∇n2 +

n2 − 1

c2
∂

∂t
S(r, t). (3.50)

The displacement of atoms from their equilibrium positions due to the

optical force in Eq. (3.50) gives rise to the elastic force density fel(r, t)

following from Hooke’s law. In the simulations in Publication VIII, we as-

sume a homogeneous isotropic elastic medium, in which case the stiffness

tensor in Hooke’s law has only two independent entries described in terms

of the bulk modulus B and the shear modulus G [154]. The elastic force

density is then given by [155]

fel(r, t) = (B + 4
3G)∇[∇ · ra(r, t)]−G∇× [∇× ra(r, t)]. (3.51)

In the special case of non-viscous fluids, one could set the shear modulus

G to zero, in which case Eq. (3.51) is simplified so that only the first term

remains.

In the OCD model, Newton’s equation of motion in Eq. (3.49) with the

optical and elastic force densities in Eqs. (3.50) and (3.51) can be solved

by time integration using appropriate space and time discretization. To

verify the correspondence with the MP quasiparticle model reviewed in

Sec. 3.2.2, the OCD model has been applied to simulate the optical and

elastic forces and the resulting mass and momentum transfer as a func-

tion of time when a Gaussian light pulse propagates through a diamond
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crystal block in Publication VIII. The results of these simulations are re-

viewed in Sec. 4.3.

3.2.4 Comparison of the MP and OCD approaches

For the light pulse of energy E0 = N0�ω0, where N0 is the number of

photons and ω0 is the central frequency of the pulse, the total mass carried

by the MDW can be written as

δM =

∫
ρMDW(r, t)d

3r = (n2 − 1)N0�ω0/c
2. (3.52)

The integral expression is the result obtained from the OCD model of

Sec. 3.2.3 and the right hand side is the result obtained from the MP

quasiparticle model of Sec. 3.2.2. The total momentum of the coupled

state of the field and matter is a sum of the momenta of the field and the

MDW, and it is given by

pMP =

∫
ρ0va(r, t)d

3r +

∫
S(r, t)

c2
d3r =

nN0�ω0

c
x̂. (3.53)

The first term on the left is the MDW momentum and the second term is

the field momentum obtained from the OCD approach. On the right, we

have the momentum of the coupled state obtained from the MP quasipar-

ticle model. The splitting of the total momentum of the light pulse into the

field and MDW parts is given in the MP quasiparticle model by Eq. (3.47)

multiplied with the photon number.

In the simulations described in Publication VIII and reviewed in Sec.4.3,

it has been found that the MP quasiparticle and the OCD model results

agree within the numerical accuracy of the simulations. This complete

agreement between the MP and OCD approaches is only obtained if the

optical force density used in the OCD approach is of the Abraham form as

given in Eq. (3.50). Therefore, one can conclude that our results provide

significant support for the Abraham force density as the only form of the

optical force density in a nondispersive medium that is fully consistent

with the covariance principle.
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4. Results and discussion

In this chapter, we review selected results obtained in this thesis. In

Sec. 4.1, we present the results of Publication I, which applied the Wigner

function formalism described in Sec. 2.2.4 to study the application of the

photon creation and annihilation operators on an electromagnetic field

in a way that leads to amplification of weak coherent fields in a proba-

bilistic amplification approach. In Sec. 4.2, we present selected results

obtained by applying the QFED formalism developed in Publications II–

VII for one- and three-dimensional geometries also including plasmonic

structures. After that, in Sec. 4.3, we describe the results of Publication

VIII in which we applied the OCD model to simulate the dynamics of the

medium atoms driven by the field–dipole forces of a light field propagat-

ing in a medium and the elastic forces that try to re-establish the mass

equilibrium in the medium.

4.1 Noiseless amplification of weak coherent fields

It is well known that quantum states cannot be perfectly cloned or am-

plified without introducing some excess noise in the process. This no-

cloning theorem formulated in 1982 [156, 157] has profound implications,

e.g., in quantum computing. The result follows from the linear and uni-

tary evolution of quantum mechanical states and it avoids the violation

of Heisenberg’s uncertainty principle. However, one can amplify signals

without adding noise by relaxing the requirement of a deterministic op-

eration. Experimental demonstrations of such probabilistic amplifiers for

weak coherent fields have been reported, e.g., in Refs. [65, 66].
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4.1.1 Amplification scheme

Nondeterministic amplifiers are usually based on adding and subtract-

ing photons to and from the light field [158–161]. In experimental im-

plementation, subtraction is typically performed using a beam splitter

and a photodetector and addition using a heralded single-photon source,

a beam splitter, and a photodetector [65–68]. In Publication I, we pro-

posed a noiseless amplification scheme where, in contrast to previous

works [65, 66], the energy required to amplify the signal did not origi-

nate from an external energy source, i.e., a single-photon source, but from

the stochastic fluctuations in the field itself. The action of an ideal noise-

less amplifier for coherent states can be described as |α0〉 → |gα0〉 where

α0 is the initial field amplitude and g is the gain of amplification. This

operation cannot be implemented by commonly used deterministic ampli-

fiers, but it can be approximated by using a probabilistic setup. Addition

and subtraction of photons correspond to the application of the creation

and annihilation operators â† and â to an arbitrary state of light.

It is previously known that the operator Ĝ = (g−2)â†â+ââ† = (g−1)n̂+1

is a good approximation of the action above for the ideal amplification

process of weak coherent fields [162]. The nominal gain g = 2 is of par-

ticular interest since the operation Ĝ becomes a sequence of photon ad-

dition and subtraction as Ĝg=2 = ââ† [160]. The action of this transfor-

mation is evident since a weak coherent field is approximately described

as |α〉 ≈ |0〉 + α|1〉 and thus one has ââ†|α〉 ≈ |0〉 + 2α|1〉. An amplifica-

tion scheme based on Ĝg=2 was experimentally demonstrated by Zavatta

et al. [65]. Since the coherent state is an eigenstate of the annihilation

operator, the same outcome is also obtained by an operator Ĝ ′
g=2 = ââ†â

implemented by the setup proposed in Publication I. This outcome is ob-

vious since the additional annihilation operator conserves coherent states

as its eigenstates.

In our scheme, introduced in Publication I and illustrated in Fig. 4.1,

the setup by Zavatta et al. [65] using a single-photon source is replaced by

a configuration where a single photon is first subtracted from the initial

coherent field by a beam splitter and detected by a QND measurement

which is followed by adding the photon back to the field by the second

beam splitter. A successful photon addition occurs if no photons are de-

tected at photodetector PD1. Finally, another photon is subtracted from
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PD1

PD2QND

Figure 4.1. Schematic illustration of a setup for noiseless amplification of weak coherent
fields as a realization of the operator ââ†â. In the successful operation, a sin-
gle photon is first subtracted from the input field |α〉 by the first beam splitter
on the left. The subtracted photon is measured by a QND measurement af-
ter which it is added back to the field at the second beam splitter. Finally
a photon is again subtracted from the field at the third beam splitter. The
resulting output field of the setup is an amplified field |gα〉. Figure adapted
from Publication I.

the field at the third beam splitter. This subtracted photon is detected at

photodetector PD2. The final output state resulting from these events is

an amplified coherent state with high fidelity.

4.1.2 Output fields of successful amplification

The output fields of our setup have been calculated using the standard

Wigner function formalism. For simplicity, in our calculations, we have

made the usual assumption that the photodetectors of the setup in Fig. 4.1

are ideal. Also the QND measurement is assumed to be ideal since mea-

surements made with QND detectors have been reported to produce single-

photon Fock states with good accuracy [163–168]. The details of the anal-

ysis of how the initial coherent state propagates through the setup in the

case of successful amplification are as follows.

The initial coherent field with a Wigner function Wcoh is described by

Eq. (2.49). The second input for the first beam splitter in our setup is

a vacuum state W|0〉〈0| given by Eq. (2.50). The interference field after

the first beam splitter is given by WBS1 following from Eqs. (2.44) and

(2.45). The transmitted field WBS1→BS2 after detecting one photon on the

reflected field of the first beam splitter can be obtained by using Eq. 2.48

with W ′ = WBS1, W ′
1 = W|1〉〈1|, and W ′

2 = WBS1→BS2.

In the second beam splitter, a single photon with a Wigner function

W|1〉〈1| emerging from the QND measurement is added back to the trans-

mitted field WBS1→BS2 of the first beam splitter. Therefore, using the in-
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put fields WBS1→BS2 and W|1〉〈1| for the second beam splitter, the interfer-

ence field WBS2 after the second beam splitter can be again calculated by

using Eqs. (2.44) and (2.45). The transmitted field WBS2→BS3 after de-

tecting no photons on the reflected field of the second beam splitter is

in turn obtained by using Eq. 2.48 with W ′ = WBS2, W ′
1 = W|0〉〈0|, and

W ′
2 = WBS2→BS3.

The input fields for the third beam splitter are WBS2→BS3 and W|0〉〈0|.

The interference field WBS3 after this last beam splitter again follows from

Eqs. (2.44) and (2.45). At the third beam splitter, one photon is subtracted

from the field. Thus the transmitted field of the third beam splitter, which

is the total output field Wout of the setup, is obtained by using Eq. 2.48

with W ′ = WBS3, W ′
1 = W|1〉〈1|, and W ′

2 = Wout.

The effective gain for the amplification setup can be defined as the ra-

tio geff = |〈âout〉|/|〈âin〉| [65] of the expectation values of the annihilation

operators of the output and input fields calculated by using Eq. (2.42) or

(2.43). Depending on the parameters of the setup, one can obtain effective

gain values lower or equal to the nominal gain of g = 2. As a result, we

obtained the effective gain, given by

geff =
t1t2t3(2 + 4|t1t2t3α|2 + |t1t2t3α|4)

1 + 3|t1t2t3α|2 + |t1t2t3α|4
, (4.1)

where ti, i = 1, 2, 3, are transmittivities of the beam splitters in the setup

that are assumed to be real-valued and to obey the relations in Eq. (2.34).

In order to quantify how much the output state differs from an ideally

amplified coherent state, we used Eq. (2.41) to calculate the fidelity of the

successfully amplified field with respect to a coherent field |geffα〉. This

coherent field is obviously closer to the true amplified output state of the

setup when compared to the ideal maximally amplified coherent field |2α〉
corresponding to the nominal gain of g = 2. The result of our calculation

is given by

Feff =
(1 + 2gefft1t2t3|α|2 + g2efft

2
1t

2
2t

2
3|α|4)e−(g2eff−t1t2t3)2|α|2

1 + 3|t1t2t3α|2 + |t1t2t3α|4
. (4.2)

In Fig. 4.2, we have plotted the effective gain, fidelity, and Wigner func-

tions for the successfully amplified fields calculated by using Eqs. (4.1)

and (4.2) above and the Wigner function formulas given in Sec. 2.2.4. The

effective gain in Fig. 4.2(a) approaches the nominal gain value g = 2 for

small values of the input field amplitude |α| and the beam splitter reflec-

tivity r, which was chosen to be equal for all beam splitters in the setup.
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Figure 4.2. (a) Effective gain as a function of the input field amplitude calculated using
beam splitter reflectivities r = 0.1 (red dashed line), r = 0.25 (green dash-
dotted line), and r = 0.5 (blue solid line). The black dotted line corresponds
to the low reflectivity approximation used by Zavatta et al. [65]. (b) Effec-
tive fidelity with respect to a coherent field |geffα〉 calculated using the three
different beam splitter reflectivities and the low reflectivity approximation.
(c) Fidelity with respect to an ideally amplified field |2α〉 calculated for com-
parison with the results obtained by Zavatta et al. [65]. (d) Contour plots of
the Wigner functions for three amplified output fields calculated using the
coherent field input amplitudes |α| = 0.1, |α| = 0.25, and |α| = 0.5 and the
beam splitter reflectivity of r = 0.4. Figure adapted from Publication I.
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Respectively, for larger values of the input field amplitude or the beam

splitter reflectivity, the gain decreases. The effective fidelity Feff calcu-

lated with respect to a coherent field |geffα〉 is shown in Fig. 4.2(b). One

can observe that the effective fidelity decreases for increasing values of

the input field amplitude. However, the decrease in the effective fidelity

can be partly compensated by increasing the beam splitter reflectivity. For

comparison with the results obtained by Zavatta et al. [65] using a setup

including a specific single-photon source, in Fig. 4.2(c), we have plotted

the fidelity calculated with respect to an ideal maximally amplified coher-

ent field |2α〉. As expected, this ideal fidelity Fideal decreases faster than

the effective fidelity Feff in Fig. 4.2(b). This follows from the fact that geff
is reduced for stronger input fields. Therefore, Feff is a better measure

for the quality of the successfully amplified output field. One can also

observe, that Fideal decreases for increasing values of the beam splitter

reflectivity whereas the opposite is true for Feff . This is another result

that follows from the reduction of the effective gain. The contour plots of

the Wigner functions for the input field amplitudes |α| = 0.1, |α| = 0.25,

and |α| = 0.50 (with |α|2 being the photon number, i.e., essentially the

intensity of the field) and for the beam splitter reflectivity r = 0.4 are

shown in Fig. 4.2(d). It can be seen that, for small values of the input field

amplitude, the output field is very close to a pure coherent field, but the

deviation from a pure coherent state becomes apparent when the input

field amplitude increases.

4.2 Quantized fluctuational electrodynamics

In Publications II–VI, we have applied the LTE approximation and the

QFED formalism reviewed in Sec. 3.1 to describe field fluctuations, pho-

ton numbers, densities of states, Poynting vector, and thermal balance

in stratified media at non-equilibrium conditions. Here we concentrate

on the selected key results of these publications regarding the position-

dependent photon numbers which, in contrast to the field quantities, have

not been previously defined in the classical FED framework. Section 4.2.1

reviews the representation of the dyadic Green’s functions for stratified

media. In Sec. 4.2.2, we describe selected one- and three-dimensional re-

sults obtained by using our position-dependent photon-number concept.

The results related to the division of the photon number into parts prop-
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agating in different directions have been described in Sec. 4.2.3. Finally,

the damping and scattering coefficients in the quantum optical RTE are

discussed in Sec. 4.2.4.

4.2.1 Green’s functions for stratified media

In order to use the formulas of Sec. 3.1 for practical modeling tasks, the

Green’s functions must be computed for the specific geometry. In our case,

we have applied the QFED formalism to stratified media, for which it is

convenient to use the plane-wave representation for the dyadic Green’s

functions. In this representation, a point in space is denoted in the Carte-

sian basis (x̂, ŷ, ẑ) by r = xx̂ + yŷ + zẑ = R + zẑ, where R = xx̂ + yŷ is

the component of the position vector r in the x-y plane. Correspondingly,

a wave vector of a plane wave is denoted by k = K+ kz sgn(z− z′)ẑ, where

K is the in-plane component and kz is given by kz =
√
k2 −K2. Here

k = nk0 = kr + iki is the wavenumber whose real and imaginary parts are

denoted by kr and ki and the square root of a complex number has been

defined so that the imaginary part is non-negative as kz,i ≥ 0.

The adopted plane-wave representation is convenient since, in the x-

y plane, the dyadic Green’s functions of stratified media depend only on

the relative in-plane coordinate R − R′. Therefore, the dyadic Green’s

functions
↔
Gjk(r, ω, r

′), with j, k ∈ {e,m}, can be written as [169, 170]

↔
Gjk(r, ω, r

′)

=
1

4π2

∫ ↔
R

T↔
gjk(z,K, ω, z′)

↔
ReiK·(R−R′)d2K. (4.3)

The terms
↔
R

T↔
gjk(z,K, ω, z′)

↔
R in Eq. (4.3) are the Fourier transforms of

↔
Gjk(r, ω, r

′) with respect to the in-plane position coordinate. The dyadic

plane-wave Greens functions
↔
gjk(z,K, ω, z′) are calculated using standard

techniques in a coordinate system where the in-plane components of the

field sources are perpendicular and parallel to K. The rotation matrix
↔
R is

used to return this convention of direction back to the coordinate system

where the direction of the field sources does not depend on K.

4.2.2 Photon numbers and densities of states

The physical implications of the position-dependent photon-number con-

cepts of the QFED framework reviewed earlier in Sec. 3.1 have been inves-

tigated in stratified media in the case of normal incidence in Publications
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II and III and in the case of general incidence in Publication VI. When

studying the case of normal incidence, we separately examine the electric

and magnetic field contributions while, in the general case, we restrict our

studies to the quantities related to the total electromagnetic field.

Normal incidence

First, we present selected results obtained for normal incidence in Pub-

lication III. As the photon-number expectation values for thermal fields

are relatively small and depend strongly on the frequency, it was found

convenient to illustrate the results by using effective field temperatures

defined in terms of the photon-number expectation values using the in-

verted Bose–Einstein distribution as

Teff,j(x, ω) =
�ω

kB ln[1 + 1/〈n̂j(x, ω)〉]
. (4.4)

We studied the properties of these effective field temperatures and the cor-

responding electric and magnetic LDOSs in the geometry of a 10-μm-wide

vacuum cavity formed between two semi-infinite media with refractive in-

dices n1 = 1.5 + 0.3i and n2 = 2.5 + 0.5i. The temperatures of these media

acting as thermal reservoirs are T1 = 400 K and T2 = 300 K.

Figure 4.3 presents the LDOSs of the electric, magnetic, and total elec-

tromagnetic fields and the corresponding effective field temperatures as

functions of the position and frequency. The electric and magnetic LDOSs

in Figs. 4.3(a) and 4.3(b) clearly oscillate in the vacuum cavity and sat-

urate to constant values in the reservoir media far from the interfaces.

This is due to the formation of standing waves as a result of the interfer-

ence. The oscillations of the electric and magnetic LDOSs inside the cavity

were found to be strongest at resonant energies �ω = 0.056 eV, �ω = 0.118

eV, and �ω = 0.180 eV corresponding to the wavelengths λ0 = 22.1 μm,

λ0 = 10.5 μm, and λ0 = 6.89 μm. The oscillations in the electric and mag-

netic LDOSs manifest the well-known electric Purcell effect [171] and the

corresponding magnetic effect. These effects are related to the position-

dependent field–matter coupling strengths of particles placed in the cav-

ity. The peaks in the electric LDOS coincide the minima in the magnetic

LDOS and vice versa. In contrast to the electric LDOS, the magnetic

LDOS reaches its maximum values within the semi-infinite media due to

the low finesse cavity and different dependence on the refractive index.

As a linear combination of the electric and magnetic LDOSs, the total

electromagnetic LDOS in Fig. 4.3(c) is constant with respect to position
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Figure 4.3. (a) Electric LDOS, (b) magnetic LDOS, (c) total electromagnetic LDOS, (d)
electric field temperature, (e) magnetic field temperature, and (f) total elec-
tromagnetic field temperature in the cavity geometry formed by two lossy
media with refractive indices n1 = 1.5 + 0.3i and n2 = 2.5 + 0.5i at temper-
atures 400 and 300 K separated by a 10-μm-wide vacuum gap. The vertical
solid lines denote the cavity boundaries and the horizontal dashed lines de-
note resonant energies of the cavity. The LDOSs are given in units of 2/(πcS).
Figure adapted from Publication III.

inside the cavity. However, the total electromagnetic LDOS is position-

dependent and oscillatory inside the reservoir media since the oscillations

of the electric and magnetic LDOSs do not cancel each other due to the ex-

istence of bound states related to the material polarizability.

The effective field temperatures defined using Eq. (4.4) are plotted for

the electric and magnetic fields in Figs. 4.3(d) and 4.3(e). These effec-

tive field temperatures are strongly position dependent as they oscillate

both in vacuum and near the interfaces inside the reservoir media. These

position dependencies originate from the nonuniform coupling to the ther-

mal reservoirs. Deep inside the reservoir media, the oscillations are then

damped and the effective electric and magnetic field temperatures satu-

rate to the reservoir temperatures. This damping depends on the photon

energy and the absorptivity of the material taking place in a distance of

the order of 10 μm in our example structure. The total electromagnetic

field temperature is plotted in Fig. 4.3(f). As the total electromagnetic

LDOS in Fig. 4.3(c), it is also constant with respect to position inside the

cavity. One can also notice that the changes of the total electromagnetic

field temperature near material interfaces are always monotonic with re-

spect to position, which is an expected result for the photon number of the

total electromagnetic field.
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Figure 4.4. Schematic illustration of the studied Ag/GaN/In0.15Ga0.85N/GaN/Al2O3 het-
erostructure. The band gap of the light emitting In0.15Ga0.85N QW is Eg =

2.76 eV and the excitation of the QW corresponds to an applied voltage of
U = 2.6 V. The background temperature of the materials and the radiation
background is T = 300 K. Note that this figure is not to scale. Figure adapted
from Publication VI.

General incidence

Next we present the results obtained by applying the QFED formalism

to the case of general incidence in a layered structure as presented in

Publication VI. In contrast to the case of normal incidence above, the de-

scription of plasmonic resonances is naturally included in the description

in the general case. Therefore, it was of interest to use QFED to the study

of the contribution of the evanescent SP modes to the position-dependent

LDOSs and the effective-field temperatures in an example plasmonic mul-

tilayer structure, which had recently been of experimental and theoretical

interest [172, 173]. This application also demonstrates the usefulness of

the QFED method to the description of photon numbers and effective field

temperatures in realistic three-dimensional layered structures.

The studied light-emitting Ag/GaN/In0.15Ga0.85N/GaN/Al2O3 multilayer

structure is illustrated in Fig. 4.4. The light emitted from this structure is

generated at the 2-nm In0.15Ga0.85N QW which has a band gap of Eg = 2.76

eV (λ = 450 nm). This emitter layer is deposited 20 nm below the 20-nm

silver layer which supports SP modes. The whole structure is deposited

on top of a sapphire substrate. In our QFED calculations, we used the

frequency-dependent refractive indices of the materials taken from liter-

ature. The refractive indices of GaN and InN were taken from Refs. [174–

179]. Based on the refractive index values of GaN and InN, the refractive

index of In0.15Ga0.85N was deduced by using Vegard’s law. The refrac-

tive index of silver was in turn calculated by using the Drude model with

plasma frequency ωp = 9.04 eV/� and damping frequency ωτ = 0.02125

eV/� taken from Ref. [180]. The refractive index of sapphire substrate
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was taken from Ref. [181].

In the QFED calculations, we compared the emission of the QW in two

cases. In the first case, the QW was assumed to be thermally excited to

temperature Tex = 350 K and, in the second case, the QW was assumed

to be electrically or optically excited to a state corresponding to a direct

excitation by a U = 2.6 V voltage source. The background temperature

of the materials was assumed to be T = 300 K meaning that all mate-

rials emit thermal radiation corresponding to this background tempera-

ture. The thermal radiation of the background materials and the radi-

ation of a thermally excited QW were modeled by using the source-field

photon-number expectation values given by the Bose–Einstein distribu-

tion as 〈η̂bg〉 = 1/(e�ω/(kBT ) − 1) and 〈η̂QW〉 = 1/(e�ω/(kBTex) − 1). This also

corresponds to applying the LTE approximation described in Sec. 3.1.1.

In the case of electrical or optical excitation, the source-field photon num-

ber of the QW was modeled using 〈η̂QW〉 = 1/(e(�ω−eU)/(kBT ) − 1) for pho-

ton energies above the band gap, �ω ≥ Eg, and the background value

〈η̂bg〉 = 1/(e�ω/(kBT ) − 1) for photon energies below the band gap, �ω ≤ Eg

[182]. The effective source-field temperature of the electrically or optically

excited QW, which is calculated from the source-field photon number by

using the inverted Bose–Einstein distribution in Eq. (4.4), ranges from

5175 K to 625 K as the photon energy ranges from 2.76 to 5 eV. Thus, the

values of 〈η̂bg〉 in the case of electrical or optical excitation above the band

gap are very large in comparison with the photon-number values of the

thermal background or the thermally excited QW.

Figure 4.5(a) presents the base-10 logarithm of the total electromagnetic

LDOS for photon energy �ω = Eg + kBT = 2.786 eV plotted as a function

of position and the in-plane component of the wave vector. The leftmost

material is the sapphire substrate while the rightmost material is air.

The light cones of the materials are defined by the values of the in-plane

component of the wave vector satisfying K < nrk0, where nr is the real

part of the refractive index of the respective material. The light cones

of sapphire, GaN, and air are clearly visible in the LDOS and denoted by

the horizontal dashed lines. The LDOS is also slightly elevated beyond the

material interfaces due to the evanescent fields. The interference patterns

resulting from the guided modes in the GaN layer between the light cones

of GaN and sapphire with 1.78 < K/k0 < 2.51 can also be seen in the

figure. The large LDOS values near z = 0 μm and K/k0 = 5.0, seen as the
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Figure 4.5. (a) The base-10 logarithm of the total electromagnetic LDOS, (b) the effective
temperature of the total electromagnetic field in the case of a thermally ex-
cited QW, and (c) the corresponding effective field temperature calculated for
an electrically or optically excited QW, where the excitation corresponds to
the application of a bias voltage of U = 2.6 V. The plots are done for photon
energy �ω = Eg + kBT = 2.786 eV as a function of position and the normal-
ized in-plane component K/k0 of the wave vector. The position of the Ag/air
interface is fixed to z = 0. The light cones of GaN, sapphire, and air are
represented by the white dashed lines. Figure adapted from Publication VI.

yellow region in the plot, are associated with the GaN/Ag SP resonance.

The air/Ag SP resonance is located near z = 0 μm and K/k0 = 1.0, but it

is not clearly visible in the figure.

Figure 4.5(b) presents the effective field temperature of the total electro-

magnetic field in the case of a thermally excited QW calculated from the

photon number by using Eq. (4.4). At high values of K, the effective field

temperature approaches the source field temperature that is Tex = 350

K in the narrow In0.15Ga0.85N layer located slightly left from z = 0 μm

and T = 300 K in other layers. Resembling the LDOS in Fig. 4.5(a), the

light cones of the materials are also visible in the effective field temper-

atures. However, one can see that the patterns related to the evanescent

fields near the material interfaces extend farther from the interfaces. The

corresponding effective field temperature in the case of an electrically or

optically excited QW is shown in Fig. 4.5(c). As expected, the values of

this effective field temperature are significantly higher than those in the

case of a thermally excited QW in Fig. 4.5(b). Otherwise, the effective field

temperatures in Figs. 4.5(b) and 4.5(c) resemble each other.

Figures 4.6(a), 4.6(b), and 4.6(c) show the base-10 logarithm of the total

electromagnetic LDOS as a function of the photon energy and the in-plane

component of the wave vector in the QW, in air at 1 nm above the struc-

ture, and in air at 1 μm above the structure, respectively. The GaN/Ag SP

resonance and GaN guided modes corresponding to the Fabry–Pérot res-

onances of the cavity are clearly visible in Figs. 4.6(a) and 4.6(b). Ag/air

SP resonance can be seen above the light cone of air in Fig. 4.6(b). The
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Figure 4.6. The base-10 logarithm of the total electromagnetic LDOS as a function of
photon energy and the normalized in-plane component K/k0 of the wave vec-
tor (a) in the QW, (b) in air at 1 nm above the surface, and (c) in air at 1

μm above the Ag/air interface. (d), (e), and (f) The effective temperatures
of the total electromagnetic field at the corresponding positions in the case
of a thermally excited QW. (g), (h), and (i) The corresponding effective field
temperatures calculated for an electrically or optically excited QW, where the
excitation corresponds to the application of a bias voltage of U = 2.6 V. Figure
adapted from Publication VI.
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resonances can be seen to disappear at photon energies above 3 eV for

which GaN becomes absorptive. At 1 μm above the structure, the LDOS

in Fig. 4.6(c) mainly consists of the propagating modes in the light cone

of air. Only a small contribution of the evanescent fields is visible at low

photon energies.

Figures 4.6(d), 4.6(e), and 4.6(f) show the effective field temperatures

corresponding to the LDOSs in Figs. 4.6(a), 4.6(b), and 4.6(c) for the case

of a thermally excited QW. The InGaN QW becomes nearly transparent

at low frequencies, and thus, the effective field temperatures reach the

background temperature in the limit of low frequencies. The peak in the

emissivity near �ω = 0.5 eV follows from the peak in the infrared absorp-

tion coefficient of the QW [179]. Due to the evanescent fields, the effective

field temperatures in Figs. 4.6(d), 4.6(e) deviate from the background tem-

perature at K values above the cone lines of the materials. However, at

very large K values, the effective field temperatures reach the source-field

temperature of the respective material layer as seen in Fig. 4.6(f). The

same behavior is present in the case of Figs. 4.6(d) and 4.6(e) but it is not

visible in the scale of these figures. When the distance to the QW becomes

larger, the contribution of the evanescent fields is reduced and the effec-

tive field temperatures are mainly contributed by the propagating modes

below the cone line of air as seen in Fig. 4.6(f).

Figures 4.6(g), 4.6(h), and 4.6(i) show the corresponding effective field

temperatures calculated in the case of an electrically or optically excited

QW. As expected, the emission starts to deviate from the background tem-

perature when the photon energy exceeds the band gap and again de-

creases to the background temperature at high frequencies well above the

band gap. The effective field temperature is also seen to increase as a

function of the optical confinement: In the case of Fig. 4.6(g), inside the

QW for the photon energy �ω = Eg + kBT = 2.786 eV, the evanescent In-

GaN modes reach effective field temperatures as high as Teff ≈ 3500 K,

whereas the modes extending into the light cone of GaN have Teff ≈ 2700

K, and the modes bound to the light cone of air reach Teff ≈ 2200 K. The

values of the effective field temperatures are somewhat lower at 1 nm

above the structure as presented in Fig. 4.6(h) and much lower when the

distance is increased to 1 μm as presented in Fig. 4.6(i). This mainly fol-

lows from the attenuation of the evanescent fields related to the increased

distance to the QW.

58



Results and discussion

Figure 4.7. Illustration of an optical cavity that consists of three homogeneous dielectric
layers with different permittivities and LDOSs. The left and right propagat-
ing field photon-number expectation values 〈n̂+〉 and 〈n̂−〉 are calculated in
each layer. Figure adapted from Publication IV.

4.2.3 Left and right propagating fields

In Publication IV, we presented how to separate the fields and photon

numbers into parts propagating in different directions in interfering struc-

tures as reviewed in Sec. 3.1.6. Below, we discuss the application of these

concepts to lossy and lossless example cavity structures described in Pub-

lication IV. The photon numbers in an optical cavity structure consisting

of three homogeneous dielectric layers with permittivities ε1, ε2, and ε3

are illustrated in Fig. 4.7.

Lossless cavity

First, we consider the case of a lossless cavity, where the left and right

propagating photon numbers are piecewise constant and only depend on

the left and right input field photon numbers 〈n̂1+〉 and 〈n̂3−〉 and the

width and materials of the cavity and cavity walls. In the left and right

semi-infinite media and inside the cavity, the propagating photon num-

bers can be written as

〈n̂1−〉 = |R1|2〈n̂1+〉+
√

ε1/ε3 |T ′
1T ′

2 |2〈n̂3−〉,

〈n̂2+〉 =
√
ε2/ε1 |T1|2〈n̂1+〉+

√
ε2/ε3 |T ′

2R′
1|2〈n̂3−〉

Re(1 + 2R′
1R2ν2e2ik2d2)

,

〈n̂2−〉 =
√
ε2/ε1 |T1R2|2〈n̂1+〉+

√
ε2/ε3 |T ′

2 |2〈n̂3−〉
Re(1 + 2R′

1R2ν2e2ik2d2)
,

〈n̂3+〉 =
√
ε3/ε1 |T1T2|2〈n̂1+〉+ |R′

2|2〈n̂3−〉, (4.5)

where d2 is the thickness of the cavity, k2 is the wave number in the cavity,

ν2 = 1/(1 + r1r2e
2ik2d2), R1 = (r1 + r2e

2ik2d2)ν2, R2 = r2, T1 = t1ν2, T2 = t2,

R′
1 = r′1, R′

2 = (r′2 + r′1e2ik2d2)ν2, T ′
1 = t′1, and T ′

2 = t′2ν2 with the single-

interface Fresnel reflection and transmission coefficients, which are given

for left incidence by ri and ti, i ∈ {1, 2}. The primed reflection coefficients
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Figure 4.8. Left and right propagating photon numbers 〈n̂−〉 and 〈n̂+〉 and the total pho-
ton number 〈n̂〉 in the vicinity of a lossy cavity at the first cavity resonance
�ω = 0.046 eV (λ = 26.9 μm). The refractive indices of the media from left to
right are n1 = 2.5 + 0.4i, n2 = 1.2 + 0.2i, and n3 = 1.5 + 0.5i, and the source-
field temperatures are T1 = 300 K, T2 = 200 K, and T3 = 100 K. Figure
adapted from Publication IV.

are those for right incidence. It can be observed that the photon-number

values inside the cavity and at the outputs in Eq. (4.5) are always between

the input field photon numbers, which ensures that all photon numbers

are equal in global thermal equilibrium and photons do not, e.g., accumu-

late inside the cavity.

Lossy cavity

In contrast to the case of a lossless cavity described above, in lossy struc-

tures, the photon numbers are no longer piecewise constant as all mate-

rial points can act as field sources or drains through the position-depen-

dent source field. In Publication IV, we have illustrated this by investi-

gating the photon numbers in a lossy dielectric cavity structure, where

the refractive indices of the media from left to right are n1 = 2.5 + 0.4i,

n2 = 1.2 + 0.2i, and n3 = 1.5 + 0.5i, The temperatures of medium layers

are T1 = 300 K, T2 = 200 K, and T3 = 100 K, respectively. They correspond

to steady-state photon numbers 0.20, 0.074, and 0.0048.

Figure 4.8 presents the total, right propagating, and left propagating

photon numbers 〈n̂〉, 〈n̂+〉, and 〈n̂−〉 as a function of position at the first

resonant energy of the cavity, given by �ω = 0.046 eV (λ = 26.9 μm). Due

to the highest source-field temperature on the left, the photon numbers

are highest on the left layer and decrease towards the right layer with

lowest source-field temperature. The discontinuities of photon numbers

at interfaces follow from reflections, while the decay inside the cavity and

60



Results and discussion

near the interfaces is due to thermalization. On the left and right, the

photon numbers eventually reach the source field temperature far from

the cavity. The total photon number can also be seen to be equal to the

average of the left and right propagating photon numbers. This is an

expected result, since the photon number describes the average photon

number in the collection of optical modes under study.

4.2.4 Quantum optical radiative transfer equation

In Publication VII, we developed the interference-exact quantum optical

RTE model discussed in Sec. 3.1.7. Here we review the application of this

model to a homogeneous space, a single-interface geometry, and a two-

interface resonator, as also presented in Publication VII.

Homogeneous space

The damping and scattering coefficients in Eqs. (3.32) and Eq. (3.33) are

in general position-dependent. Naturally, there is no position dependence

in the case of a homogeneous space where the damping and scattering

coefficients are constant and separately equal for fields that propagate

in different directions. Using the Green’s function representation of the

densities of states, the damping and scattering coefficients of our RTE

model in a homogeneous space become

α±,σ = kz,i(ψσ + ψ−1
σ ),

β±,σ = kz,i(ψσ − ψ−1
σ ), (4.6)

where the subscript σ ∈ {TE,TM} denotes the TE and TM polarizations

and the parameter ψσ is given for the TE and TM polarizations by

ψTE =
|k|2 + |kz|2 +K2

2|μ|krRe(kz/μ)
, ψTM =

|k|2 + |kz|2 +K2

2|ε|krRe(kz/ε)
. (4.7)

In any homogeneous lossless medium, the RTE coefficients in Eq. (4.6)

are all zero for propagating fields, which follows from the imaginary part

kz,i = 0 of the wave vector z-component. Instead, in lossy media, these

coefficients are typically positive and α±,σ are larger than β±,σ. In the

case of normal incidence with K = 0, the RTE coefficients for the TE and

TM polarizations are equal as expected. In a purely dielectric medium

with n =
√
ε, the damping and scattering coefficients in Eq. (4.6) simplify

for K = 0 to α± = ki
(
|n|2/n2

r + n2
r/|n|2

)
and β± = ki

(
|n|2/n2

r − n2
r/|n|2

)
.

In the limit of small losses, one can approximate |n| ≈ nr in which case
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the RTE coefficients approach the classical values α± ≈ 2ki and β± ≈ 0.

For larger losses, however, the scattering coefficients become nonzero. For

example, in the case of a dielectric material with refractive index n = 2+i,

the coefficients are given by α± = 2.05k0 and β± = 0.45k0. The damping

coefficient is still close to the classical value, but the scattering coefficient

clearly deviates from the classical result of zero. This indicates that a part

of photons is scattered backwards from the original direction.

Single-interface geometry

In order to illustrate the general position dependence of the obtained RTE

coefficients, we have also investigated how these coefficients behave in an

example single-interface geometry near the interface. The calculations

are done for photon energy �ω = 1 eV (λ = 1.24 μm) assuming normal

incidence and using refractive indices n1 =
√
ε1 = 2.5 + 0.5i and n2 =

√
ε2 = 1.5 + 0.3i for the lossy semi-infinite media.

Figure 4.9(a) shows the normalized damping coefficients α+/k0 and α−/k0

as a function of position. Near the interface, the damping coefficients

are clearly oscillatory. These oscillations originate from interference and

the related position-dependent emission and absorption rates in analogy

with the Purcell effect [171]. Far from the interface, the damping co-

efficients saturate to homogeneous field values 1.00077k0 and 0.60046k0.

These values are seen to be very close to the classical values 2k1,i = k0

and 2k2,i = 0.6k0.

Figure 4.9(b) presents the position dependence of the scattering coef-

ficients β+ and β−. At certain distances from the interface, these coef-

ficients are seen to obtain negative values, which is expected to be an

indication of a dominant role of destructive interference between propa-

gating fields. Compared to the values of the damping coefficients α+ and

α− in Fig. 4.9(a), the values of the scattering coefficients β+ and β− in

Fig. 4.9(b) are generally smaller. This is an expected result as the change

of the field propagating in one direction generally depends more on the

field itself than on the field propagating in the opposite direction assum-

ing that these fields are of equal strength. Far from the interface, the

scattering coefficients saturate to the homogeneous space values 0.03923k0
and 0.02354k0, which slightly deviate from the classical result of zero.
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Figure 4.9. (a) Normalized damping coefficients α+/k0 and α−/k0 and (b) scattering co-
efficients β+/k0 and β−/k0 for photon energy �ω = 1 eV (λ = 1.24 μm) as
a function of position near an interface between two lossy dielectric media.
The refractive indices of the left and right media are n1 = 2.5 + 0.5i and
n2 = 1.5 + 0.3i. The interface between the media is represented by the verti-
cal solid line. Figure adapted from Publication VII.

Two-interface resonator

Next we review the results obtained by applying the interference-exact

RTE model to the geometry of a dielectric slab that acts as a two-interface

resonator. The refractive index of the slab is n = 2 + 0.1i and it is placed

in vacuum. Figure 4.10(a) presents the coefficients of our RTE model as a

function of position for normal incidence in the resonator geometry. The

calculations were done for photon energy �ω = 0.46 eV (λ = 2.68 μm),

which corresponds to the second constructive interference of the field re-

flected from the slab, i.e., the intensity of the reflected field obtains its

second maximum when it is drawn as a function of frequency. The RTE

coefficients clearly oscillate in the slab and become zero in vacuum out-

side the slab, where there are no losses. Even though the RTE coefficients

have similarities with the densities of states, they are however signifi-

cantly different.

We also compared the results of our RTE model to the classical ex-

act method directly solving the fields by using Maxwell’s equations with

appropriate boundary conditions. In this comparison presented in Fig.

4.10(b), we plotted the net absorption rate, which is the negative diver-

gence of the Poynting vector, as a function of position since it is well known

to oscillate inside lossy resonant structures due to interference and the re-

lated Purcell effect. The conventional RTE model and other models that

neglect interference effects cannot describe these oscillations correctly.

The calculations were done by using the initial condition that there is

no field incident from the right. The fixed average photon numbers on the

right are 〈n̂+〉 = 1 and 〈n̂−〉 = 0. In the classical field-based method, this

boundary condition corresponds to fixing the electric and magnetic fields
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Figure 4.10. (a) Normalized damping coefficients α±/k0 and scattering coefficients β±/k0
and (b) the spectral net absorption rate as a function of position for normal
incidence in the resonator geometry, where a dielectric slab with refractive
index n = 2+0.1i is placed in vacuum. The plots are done for photon energy
�ω = 0.46 eV (λ = 2.68 μm), which corresponds to the second resonance of
the reflected field. In this configuration, the slab has a total power reflection
coefficient of R = 0.26. The boundaries of the slab are represented by the
vertical solid lines. Figure adapted from Publication VII.

on the right so that the resulting Poynting vector is the same as that in

our interference-exact RTE model. The Poynting vector is calculated from

the left and right propagating photon numbers of the RTE model by using

Eq. (3.24). Only a single graph is visible in Fig. 4.10(b) as the results of

the methods are equal within the numerical accuracy of the computations.

This result clearly demonstrates that, by using the position-dependent

damping and scattering coefficients of our method, the conventional RTE

model can be generalized to account for interference effects.

4.3 Covariant theory and mass transfer

In Publication VIII, we applied the OCD model reviewed in Sec. 3.2.3

to present numerical simulations of the mass and momentum transfer

and the related recoil effect and the relaxation of the resulting mass non-

equilibrium when a light pulse propagates in a medium. The obtained

results were then compared to the results of the MP quasiparticle model

reviewed in Sec. 3.2.2 finding full agreement within the numerical accu-

racy of the simulations.

We assumed a titanium-sapphire laser pulse with a wavelength λ0 =

800 nm (�ω0 = 1.55 eV) and the total electromagnetic energy E0 = 5 mJ.

This corresponds to the photon number of N0 = E0/�ω0 = 2.0 × 1016.

The Gaussian form of the electromagnetic wave packet was assumed to

propagate in the x direction. The simulation geometry of a cubic diamond

crystal block with anti-reflective coatings is illustrated in Fig. 4.11. The
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Figure 4.11. Illustration of the simulation geometry that consists of a cubic diamond
crystal block with refractive index n = 2.4 coated with anti-reflective coat-
ings. A Gaussian light pulse of energy E0 = 5 mJ and central wavelength
λ0 = 800 nm is normally incident to the crystal from the left and propagates
in the direction of the positive x-axis. The center of the light pulse enters
the crystal at x = y = z = 0 mm. The second interface is located at x = 100

mm. Figure adapted from Publication VIII.

first and the second interfaces of the crystal are located at x = 0 mm and

x = 100 mm. In the y and z directions, the geometry is centered so that

the trajectory of the light pulse follows the line y = z = 0 mm. As material

parameters for diamond, we used the refractive index n =
√
εr = 2.4 [183],

mass density ρ0 = 3500 kg/m3 [184], bulk modulus B = 443 GPa [185], and

shear modulus G = 478 GPa [186].

4.3.1 Mass transfer in one dimension

In the one-dimensional simulations, the simulation geometry corresponds

to a plate that is infinite in the y and z directions but has the same thick-

ness of 100 mm in the x direction as the three-dimensional block illus-

trated in Fig. 4.11. As an exact solution to Maxwell’s equations, the elec-

tric field of the one-dimensional Gaussian pulse, with energy E0 per cross-

sectional area A, is given by

E(r, t) =

√
2nΔkxE0

π1/2ε0εrA(1+e−(k0/Δkx)2)
cos

[
nk0(x−ct/n)

]
e−(nΔkx)2(x−ct/n)2/2ŷ.

(4.8)

The corresponding magnetic field is obtained by using Faraday’s law in

Eq. (2.1). Here k0 = ω0/c and Δkx are the wave number and its standard

deviation corresponding to the central frequency ω0 in vacuum. In our

simulations, we assumed that the relative spectral width of the pulse is

Δω/ω0 = Δkx/k0 = 10−5. The corresponding standard deviations of the
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pulse width in space and time are Δx = 1/(
√
2Δkx) ≈ 9 mm and Δt =

Δx/c ≈ 30 ps. The normalization factor in Eq. (4.8) was determined so

that the integral of the corresponding instantaneous energy density over

x gives E0/A. In the simulations, we assumed a very high power per unit

area as we used the small cross-sectional area given by A = (λ/2)2, where

λ = λ0/n is the wavelength in the crystal. This allowed us to attain an

order of magnitude estimate of how large atomic displacements we would

obtain if the whole vacuum energy E0 = 5 mJ of the laser pulse could

be coupled to a free-standing waveguide having a cross section (λ/2)2.

Without reducing the resulting atomic displacements in the crystal, the

high power density could also be lowered by increasing the temporal width

of the pulse.

Figure 4.12(a) presents the position dependence of the MDW when the

light pulse is propagating in the middle of the crystal. This MDW is

from the simulation where the optical force density was time-averaged

over the harmonic cycle allowing us to use a coarse space and time dis-

cretization. As described in Sec. 3.2.3, the MDW mass density is the dif-

ference of the actual and equilibrium mass densities inside the crystal as

ρMDW(r, t) = ρa(r, t)−ρ0. The MDW is found to follow the Gaussian form of

the pulse as expected. The mass density disturbance at the first interface

resulting from the interface force is not shown in the figure. The subgraph

focused near x = 55 mm shows the oscillations in the MDW obtained by

using a finer discretization and the non-time-averaged optical force den-

sity following from the exact instantaneous fields. The Gaussian envelope

of the pulse cannot be seen in the scale of this subgraph. As an integral of

the MDW mass density, one obtains the total transferred mass carried by

the MDW. In our example, we obtained the total transferred mass given

by 2.6 × 10−19 kg. This corresponds to the mass 7.4 eV/c2 per photon in

agreement with the MP quasiparticle model, where the transferred mass

is calculated by using Eq. (3.44).

Figure 4.12(b) presents the position dependence of the atomic displace-

ments obtained at the same instant of time as the MDW in Fig. 4.12(a).

The negative atomic displacement at the first interface follows from the

interface force and is required by the conservation law of momentum to

balance the momentum increase between the photon momentum in vac-

uum and the MP momentum in the medium. The atomic displacements at

the interfaces were calculated only approximatively in our simulations as
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Figure 4.12. Simulation of the mass transfer of a Gaussian light pulse in one dimension.
(a) Mass density of the MDW as a function of position when the light pulse
is propagating in the middle of the crystal. This graph is calculated by av-
eraging the optical force density over the harmonic cycle. The region of the
crystal between x = 0 mm and x = 100 mm is represented by the light blue
background. The focused subgraph shows the exact instantaneous MDW
near x = 55 mm. (b) Atomic displacements at the same moment when the
light pulse is propagating in the middle of the crystal obtained again with
time-averaging over the harmonic cycle. The focused subgraph shows the
exact atomic displacements near x = 55 mm. (c) The atomic displacements
when the light pulse has just left the crystal. Note the breaks in the scales
of the figures that are related to the larger atomic displacements at the in-
terfaces. Figure adapted from Publication VIII.
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the near interface dependence of the refractive index was not taken into

account. There is a constant positive atomic displacement of 2.7 nm on the

left from the light pulse that is propagating in the middle of the crystal.

On the right of the light pulse the atomic displacement drops to zero as the

light pulse has not yet reached these positions. Due to the difference of the

atomic displacements on the left and right of the light pulse, the atoms are

more densely spaced at the position of the light pulse, which is related to

the MDW mass density in Fig. 4.12(a). The subgraph focused near x = 55

mm presents the harmonic cycle level variations in atomic displacements

obtained by using a finer discretization and the non-time-averaged optical

force density following from the exact instantaneous fields.

Figure 4.12(c) presents the atomic displacements just after the light

pulse has left the crystal. As expected, atoms inside the crystal have

been displaced forward from their initial positions, while the atoms at

the interfaces of the crystal have been displaced outwards due to the in-

terface forces. The atomic displacements at the interfaces are changing as

a function of time as the elastic forces try to re-establish the mass equi-

librium in the crystal. This relaxation is a much slower process than the

propagation of light through the crystal as it takes place at the velocity

of sound. The relaxation will be studied in more detail in the case of the

three-dimensional simulations reviewed in Sec. 4.3.2.

4.3.2 Mass transfer of a three-dimensional pulse

Next we review the simulations performed in the full three-dimensional

geometry of Fig. 4.11. These simulations were done to give a deeper in-

sight to the strain fields and their relaxation by sound waves. The three-

dimensional simulations are computationally much more demanding com-

pared to the one-dimensional simulations reviewed above. Therefore, we

performed these simulations only by using a coarse grid and averaging

the optical force density over the light pulse. The one-dimensional simu-

lations had shown that this method is very accurate in the simulation of

the transferred mass and momentum but the interface forces are modeled

only approximately. In the three-dimensional case, a Gaussian light pulse

is also known to be only an approximative solution to Maxwell’s equations.

For a more detailed description of the light pulse and the approximations

made in these three-dimensional simulations, see Publication VIII.

Figure 4.13 presents the position dependence of the three-dimensional
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Figure 4.13. Simulation of the MDW driven by optoelastic forces of a three-dimensional
Gaussian light pulse. The figure shows the mass density of the MDW at
time t = 340 ps after the start of the simulation. The light pulse propagates
in the direction of the positive x-axis. The first interface of the crystal is
located at x = 0 mm and the second interface at x = 100 mm, not shown in
this figure. The mass density perturbance at the first interface is not drawn.
Figure adapted from Publication VIII.

MDW in the x-y plane at a specific time t = 340 ps of the simulation when

the light pulse is propagating inside the crystal. As in the case of the one-

dimensional MDW in Fig. 4.12, by integrating the MDW mass density

in Fig. 4.13 and dividing the result with the photon number of the light

pulse, we obtain the total transferred mass per photon of 7.4 eV/c2 within

the numerical accuracy of the simulation. Therefore, the MP and OCD

model results are found to be fully consistent with each other.

Figure 4.14(a) shows the position dependence of the x-component of the

atomic displacements on x axis at time t = 340 ps corresponding to the

MDW in Fig. 4.13. The constant atomic displacement after the light pulse

is 1.5× 10−17 m, which is much smaller than in the one-dimensional sim-

ulation in Fig. 4.12, where we assumed that the whole field energy prop-

agates in a small cross-sectional area A = (λ/2)2 as discussed above. The

order of magnitude of the negative atomic displacement at the interface is

10−15 m, which is not shown in the scale of the figure. In Fig. 4.14(b), the

same x-component of the atomic displacements is plotted as a function of

x and y in the plane z = 0 mm. Away from the path of the pulse along

the y-coordinate, the atomic displacement reaches zero as the optical force

density acts only in the region of the light pulse and the elastic forces have

not had time to displace atoms in this short time scale.

Figure 4.14(c) shows the atomic displacements on the x axis at a much
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Figure 4.14. Simulation of the atomic displacements due to optical and elastic forces
as a three-dimensional Gaussian light pulse propagates through a diamond
crystal. (a) The x-component of the atomic displacements as a function po-
sition on the x axis at time t = 340 ps. The dotted line represents the
position of the Gaussian light pulse whose optical force density drives the
MDW forward at velocity v = c/n. Atoms in a thin interface layer at x = 0

mm have recoiled to the left. (b) The corresponding atomic displacements
plotted in the x-y plane. (c) The same simulation at a later time t = 1.1 μs
when the light pulse has gone and the recoil of the interface atoms starts to
relax. Elastic waves propagate to the right at the velocity of sound. (d) The
corresponding atomic displacements plotted in the x-y plane. The position
of the first interface of the crystal is represented by the dashed line. The
second interface of the crystal is located at x = 100 mm, not shown in this
figure. Therefore, in (c) and (d), we see only the relaxation transient close to
the first interface of the crystal. Due to the very approximative treatment
of the near interface region, only the order of magnitude of atomic displace-
ments and the positions of the two wide wavefront are physically significant
in (c) and (d). Figure adapted from Publication VIII.
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later time t = 1.1 μs when the light pulse has left the crystal and is

far away and the non-equilibrium atomic displacements at the interfaces

have started to be relaxed by elastic forces. The simulation shows that the

atomic displacements in Fig. 4.14(c) form elastic waves that propagate to

the right at the speed of sound. Only the relaxation transient close to the

first interface of the crystal is shown as the second interface of the crystal

is at x = 100 mm. The positive constant atomic displacement inside the

crystal seen in Figs. 4.14(a) and 4.14(b) is also being relaxed but it is very

small and not visible in this scale. In Fig. 4.14(d), the same atomic dis-

placements corresponding to Fig. 4.14(c) have been plotted as a function

of x and y in the plane z = 0 mm. As the atomic displacements near the

material interfaces were computed only approximatively, only the order of

magnitude of the atomic displacements and the positions of the first and

the second wide wavefront as a function of time are physically meaning-

ful in Figs. 4.14(c) and 4.14(d). Since there does not exist any physical

mechanism to return the energy of the elastic waves in Figs. 4.14(c) and

4.14(d) back to the light pulse, the OCD approach leads to the dissipation

of the light pulse energy. In the simulations, we found that the recoil ef-

fect is the main source of the energy loss and it was roughly estimated to

be of the order of 10−11 eV for the total light pulse, which corresponds to

the fraction 10−28 of the total pulse energy, so it is very small compared to

other physical nonidealities in a highly transparent real material.
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5. Summary and conclusions

In this thesis, we have developed new models to study optical energy

and momentum transfer and photon number in lossy and lossless mi-

croscopic and macroscopic structures. These investigations were mainly

based on adopting the photon flow picture of the propagating electromag-

netic fields, in which the electromagnetic field can be described either as

waves or particles also inside resonant structures where interference ef-

fects are indispensable.

The research described in this thesis has, e.g., led to the development

of the Green’s functions-based QFED model that was shown to resolve

the previously reported anomalies in the commutation relations of the

photon ladder operators inside resonant structures. The field quantities

of the QFED approach are equal to those in the conventional FED, but

the QFED approach can be used to separate the field quantities to den-

sities of states and the position-dependent photon numbers also in non-

equilibrium conditions and in the case of fields propagating in different

directions inside interfering structures. The propagating field represen-

tation also allowed bridging the results of QFED to the conventional RTE

approach. This connection was shown to enable extending the applica-

bility of the conventional RTE model beyond its main limitation in the

description of interfering structures including near-field effects. In our

interference-exact formulation of the RTE model, the wave and particle

features associated with interference and emission in stratified geome-

tries are fully captured by position-dependent damping and scattering co-

efficients.

To the best of our present knowledge, our QFED approach is the first

and only way to consistently separate the optical fields in stratified media

into left and right propagating components. Whereas previous methods
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(FED, NOF) can be used to calculate any quantity corresponding to the

field, energy density, or Purcell factor they do not provide the necessary

information for analyzing the propagating fields without separation of the

field quantities into parts propagating in different directions. As a first

order differential equation, the derived RTE model provides an efficient

method to compute the photon numbers and the related field quantities

once the position-dependent damping and scattering coefficients of the

problem geometry have been first computed. The next step in the fur-

ther development of the interference-exact RTE model would be its exten-

sion to full three-dimensional geometries and the development of efficient

methods to compute the position dependent damping and scattering co-

efficients. In general, the quantum optical RTE model has potential to

become one of the standard approaches to model optical energy transfer

in interfering structures.

In this thesis, we also investigated how the photon flow description of

optical fields can be applied to study the momentum of light in a medium

and to resolve the related Abraham–Minkowski controversy. This led to

the derivation of the MP quasiparticle model, where light quanta in a

medium are described as covariant coupled states of the field and matter

providing a unique resolution to the Abraham–Minkowski controversy.

The MP quasiparticle model also leads to the dissipation of photon en-

ergy when it propagates through transparent materials. The propagation

of light in a medium was also studied using the OCD model, which cou-

pled the electrodynamics of continuous media to continuum mechanics

through Newton’s equation of motion. Full agreement between the MP

and OCD models was achieved within the numerical accuracy of the OCD

simulations indicating that the wave and particle models are fully equiv-

alent.

In general, the MP and OCD models provide independent but comple-

mentary views of how the covariance principle governs the propagation

of light in a medium. In addition, the light associated MDW predicted by

our theory implies a fundamental change in the understanding of light

propagation in transparent materials. Our findings are also expected to

raise new experimental interest in verifying the covariant state of light

in a medium by measuring the transferred mass of a light pulse. On the

theoretical side, the next steps include the generalization of the results

for dispersive media and the more detailed studies of the interface and
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dissipation effects. The simulations should also be performed for continu-

ous light beams and incoherent fields, in which case one must presumably

also account for the correlation properties of incoherent fields in the calcu-

lation of the optical force density and the related dynamics of the medium.

Also nonlinear effects in the case of intense fields are worth of a careful

study.

In addition to the main results above, we have studied several closely

related topics and concepts and published some of the obtained results of

these studies. The topics include the noiseless amplification of weak co-

herent fields using a beam-splitter-based setup and the Wigner function

formalism; and the formation of local thermal balance, the field emis-

sion by magnetic source terms, and the three-dimensional Green’s func-

tion representations in the QFED framework. Studying these topics has

widened our understanding of the general applicability of the formalisms

for different purposes and laid the foundation for the whole work de-

scribed in this thesis.

The physics of light has been investigated for centuries leading to a

manifold of different applications from incandescent light bulbs to mod-

ern optical communication technologies. On the theoretical side, the con-

tinuous research has led to the development of classical, quantum, and

semiclassical theories. Future progress in the development of novel ap-

plications is more and more linked with the interplay of theoretical, com-

putational, and experimental research. Therefore, transparent modeling

tools that allow in-depth understanding of the phenomena of light in a suf-

ficiently simple form are highly valuable. This thesis contributes to the

scientific knowledge by providing new methods to modeling energy and

momentum transfer in microscopic and macroscopic structures as well as

by increasing the understanding of the relations of the energy and mo-

mentum transfer in the classical, quantum, and semiclassical theories. In

particular, the results provide theoretical tools to study the wave–particle

duality that is one of the most intriguing features of the field and matter

that is deeply embedded into the foundations of quantum mechanics.
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