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Abstract

One of the most intriguing quantum phenomena of light is the wave—particle duality which is re-
lated to the inability of the classical wave and particle concepts to fully describe the behavior of
quantum objects. Theoretically, the wave features of the electromagnetic field, such as interference,
follow from the solution of Maxwell's equations while particle features are a consequence of the
field quantization, in which the electromagnetic field is described to consist of discrete energy pack-
ets, photons. Due to the wave—particle duality, for example, simultaneous description of optical
absorption, emission, and interference of propagating fields has conventionally not been consid-
ered feasible using local optical models but has required using Maxwell's equations with stochastic
source terms accounting for the wave—particle duality. Also the description of the momentum of
light in a medium has been problematic.

In the research described in this thesis, the quantized fluctuational electrodynamics (QFED)
model is derived based on combining the electromagnetic Green's functions to the field quantiza-
tion to describe the position dependence of the photon number and local thermal balance in gener-
al non-equilibrium conditions, and to separate the electromagnetic field into parts propagating in
different directions in resonant structures, which has conventionally been problematic due to inter-
ference effects. The QFED method is shown to resolve the previously found anomalies in the canon-
ical commutation relations of photon ladder operators. The QFED method is also used to derive
quantum optical field—matter interaction parameters fully capturing the interference, emission,
damping, and scattering of propagating photons in stratified media leading to an interference-exact
radiative transfer equation (RTE) model. Therefore, the derived interaction parameters solve the
problem of simultaneously describing interference and losses in the widely used RTE framework.

The particle aspects of light are also studied by directly applying the conservation laws of nature
and the special theory of relativity to show that light propagating in a medium must be described
as mass-polariton (MP) quasiparticles, covariant coupled states of the field and matter. These
quasiparticles are shown to have momentum of the Minkowski form and a nonzero mass that is
carried by a mass density wave associated with light. The field—matter interaction related to the
MP quasiparticles also leads to the dissipation of photon energy. These particle model results are
also derived using a wave-based optoelastic continuum dynamics (OCD) approach following from
the electrodynamics of continuous media and the continuum mechanics. The obtained results
verify the full agreement between the wave and particle models when they are correctly applied.
The key finding that a light pulse propagating in a medium is inevitably associated with an experi-
mentally measurable mass implies a fundamental change in the prevailing perceptions of light.
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Tiivistelma

Eris kiehtovimmista valon kvantti-ilmioista on aalto—hiukkasdualismi, joka liittyy klassisten aalto-
ja hiukkaskisitysten kykenemattomyyteen kuvata taydellisesti kvanttiobjektien kayttaytymista.
Teoreettisesti sathkomagneettisen kentin aalto-ominaisuudet, kuten interferenssi, seuraavat Max-
wellin yhtaloiden ratkaisusta kun taas hiukkasominaisuudet ovat seuraus kentin kvanttiteoriasta,
jossa sihkomagneettinen kentti kuvataan muodostuvaksi erillisistd energiapaketeista, fotoneista.
Aalto—hiukkasdualismista johtuen esimerkiksi etenevien kenttien optisen absorption, emission ja
interferenssin samanaikaista kuvausta ei ole tavanomaisesti pidetty lokaaleja optisia malleja kiyt-
tden mahdollisena vaan kuvaus on vaatinut Maxwellin yhtiléiden kéytt6a stokastisten lahdeter-
mien kanssa, jotta aalto—hiukkasdualismi tulee huomioitua. Myds valon liikeméaran kuvaaminen
valiaineessa on ollut ongelmallista.

Viitoskirjassa kuvatussa tutkimuksessa johdetaan kvanttifluktuaatioelektrodynamiikan (QFED)
malli, joka perustuu sahkomagneettisten Greenin funktioiden ja kentidn kvanttiteorian yhdistami-
seen, jotta voidaan kuvata fotonien lukumairan ja paikallisen termisen tasapainon paikkariippu-
vuutta yleisissd epatasapainotilanteissa ja erottaa sihkomagneettinen kentta eri suuntiin eteneviin
osiin resonanssirakenteissa, mika on tavanomaisesti ollut ongelmallista interferenssi-ilmi6ista joh-
tuen. QFED-menetelmén naytetdan havittdvan aiemmin 16ydetyt anomaliat fotonien tikapuuope-
raattoreiden kommutaatiorelaatioissa. QFED-menetelmié kiytetddn myds kvanttioptisten kentdn
ja aineen vuorovaikutusparametrien johtamiseen. Ndma parametrit ottavat tdysin huomioon foto-
nien interferenssin, emission, vaimenemisen ja sironnan kerroksellisissa rakenteissa johtaen inter-
ferenssin suhteen eksaktiin siteilyn siirtoyhtdl6on (RTE). Niin ollen johdetut vuorovaikutuspara-
metrit ratkaisevat interferenssin ja havididen samanaikaisen kuvaamisen ongelmat laajasti kéayte-
tyssda RTE-mallin viitekehyksessa.

Valon hiukkasominaisuuksia tutkitaan myos soveltamalla suoraan luonnon siilymislakeja ja eri-
tyista suhteellisuusteoriaa sen niyttimiseen, ettd véliaineessa eteneva valo taytyy kuvata massa-
polaritonikvasihiukkasina (MP), kovariantteina kentén ja aineen kytkettyina tiloina. Nailla kvasi-
hiukkasilla ndytetdan olevan Minkowskin muotoa oleva lilkemairi ja nollasta poikkeava massa,
jota kuljettaa valoon aineessa liittyvd massatiheysaalto. MP-kvasihiukkasiin liittyva kentén ja ai-
neen vuorovaikutus myos johtaa fotonin energian menetykseen. Nama hiukkasmallin tulokset joh-
detaan myo0s kiyttden aaltoperustaista optoelastista jatkumodynamiikan (OCD) mallia, joka seuraa
jatkuvan aineen sihkddynamiikasta ja mekaniikasta. Saadut tulokset vahvistavat aalto- ja hiukkas-
mallien tidyden yhtéapitdvyyden niité oikein kaytettaessd. Paitulos, jonka mukaan viliaineessa ete-
nevadn valopulssiin liittyy vaistamatta kokeellisesti mitattavissa oleva massa, merkitsee perusta-
vanlaatuista muutosta valoon liittyvissa vallitsevissa kasityksissa.
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1. Introduction

1.1 Motivation

The foundations of classical electrodynamics are laid upon Maxwell’s equa-
tions which describe how electric and magnetic fields depend on charges
and currents and on each other. These equations were discovered by
James Clerk Maxwell in the 1860s [1, 2]. The classical electrodynam-
ics provides an accurate description of electromagnetic phenomena when-
ever the field strengths and relevant length scales are large enough for
the quantum mechanical effects to be negligible. Instead, for low field
strengths and for small distances, the electromagnetic interactions are
known to be better described by quantum electrodynamics (QED), which
is the well-known quantum theory of electromagnetism developed between
the 1920s and 1950s by many physicists [3—12]. QED describes how the
field and matter interact at the quantum level by means of exchange of
photons. It was also the first theory where full agreement between the
special theory of relativity and quantum mechanics was achieved.

The downside of using QED is that, without approximations, it is ex-
tremely difficult to apply QED to complex systems including a huge amount
of electromagnetically interacting particles. Such a system is formed even
by an electromagnetic field and a simple dielectric medium, where there
is a huge amount of induced dipoles interacting with the electromag-
netic field. Additional inhomogeneities in the materials make the sys-
tem even more complex. Between the pure classical and quantum ap-
proaches, there exist semiclassical theories, which aim to include some
quantum features of the fields in computations, which are tractable also

in quite complex geometries. One of the most widely used semiclassi-
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cal theories is fluctuational electrodynamics (FED) originally developed
by Sergei Mikhailovich Rytov in the 1950s [13, 14]. In FED, the ther-
mal and zero-point motion of real and virtual electrically charged par-
ticles inside materials and vacuum results in a fluctuating electromag-
netic field. An essential part of FED is the application of the fluctuation—
dissipation theorem (FDT), which combines statistical physics, quantum
physics, and macroscopic electrodynamics to relate the rate of energy
dissipation in a non-equilibrium system to the spontaneous fluctuations
that occur in equilibrium systems [13, 15]. The well-known FDT relates
the spectral density of fluctuating charge density to the local tempera-
ture, and frequency-dependent relative dielectric permittivity of materi-
als [13, 15]. The essence of FED is the frequency distribution of the fluc-
tuations and its relation to the dissipation of electromagnetic waves.

The most conventional quantum approach to study the behavior of quan-
tized electromagnetic field in simple optical instruments is the mode pic-
ture and the related input—output formalism (IOF) [16, 17]. Basically,
IOF is a scattering theory approach, where the input fields are given and
the output fields of the system are computed. Consequently, IOF relates
the photon creation and annihilation operators of the input fields to the
corresponding operators of the output fields, but it does not reveal the
properties of intermediate states. In IOF, the spatial field evolution is
only included in the form of mode functions that are typically arbitrar-
ily scaled. The formalism was originally developed for dispersionless and
lossless dielectrics for the study of passive optical devices, such as res-
onatorlike cavities, beam splitters, lenses, and filters by Knéll et al. in
the 1980s [18, 19]. Soon, the formalism was also extended to describe
lossy and dispersive media by several groups [20—25] eventually leading
to a complete position-dependent noise operator formalism (NOF) [24—
26]. The resulting complete quantization procedures fully account for the
coupling between the electromagnetic field and the states of lossy dielec-
tric media highlighting that the noise and field operators in general lossy
systems became position dependent.

The electric field and vector potential operators in the above works using
IOF obeyed the well-known canonical commutation relation for an arbi-
trary choice of normal mode functions as expected [23, 24]. However, the
well-known canonical commutation relations of the ladder operators were

not found to be generally satisfied as the ladder operators were found to
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exhibit anomalies in resonant structures [27]. The anomalous commuta-
tion relations of the ladder operators were investigated in several works
[28-31] but no clear resolution for the anomalies was found apart from
reaching a consensus that the anomalies were irrelevant as long as the
classical field quantities and the commutation relations of the correspond-
ing field operators were well defined. Since then, in the studies of electro-
magnetic fields inside dielectric media, IOF has mainly been applied in
calculating the classical field quantities. Only recently it has been sug-
gested that, despite the early interpretations, the ladder operators and
their commutation relations might in fact relate to experimentally mea-
surable physical properties [32, 33]. Such a property is for example the
threshold for the second harmonic generation when it occurs inside micro-
cavities [32, 33]. The commutation relation anomalies also lead to other
problems. For example, the photon number is a useful concept in ther-
modynamics, but due to the commutation relation anomalies, it has been
difficult to consistently define the photon number in resonant structures
and in non-equilibrium conditions.

Due to the very precise explanation of a large set of phenomena in elec-
trodynamics, Maxwell’s equations are often thought to provide a complete
picture on classical electrodynamics. However, surprisingly the under-
standing of the theory of classical electromagnetic fields can still be seen
as somewhat incomplete since there have been remaining significant con-
troversies even in certain simple questions. For example, the form of the
momentum of light in transparent materials has remained as an exten-
sive scientific controversy for more than a century [34-46]. This contro-
versy is known as the Abraham—Minkowski dilemma, where there exist
two rivaling forms for the photon momentum in a medium. The angular
momentum of light forms another challenging topic that has allowed new
discoveries until these days [47]. The modern interest in the angular mo-
mentum of light started from the discovery of how the angular momentum
of light is split into the orbital and spin related parts [48, 49].

One of the main goals of this thesis has been to increase our understand-
ing of the relations between the classical, quantum, and semiclassical the-
ories and to develop practical approaches that can be used to simulate the
behavior of quantized electromagnetic field in materials. This is impor-
tant as optical energy transfer has a key role in several fields of opti-

cal technologies related, e.g., to thin-film light-emitting diodes [50, 51],
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nanoplasmonics [52-55], near-field microscopy [56, 57], metamaterials
[58, 59], photonic crystals [60, 61], optical data processing [62, 63], and ra-
diative cooling [64]. The behavior of light in microscopic systems and the
related optical phenomena also naturally lead to questions on the quan-
tum nature of light, on proper ways to quantize the electromagnetic field,
and, even more importantly, on how to correctly interpret the results of
various experiments. Related questions consider the wave—particle dual-
ity and the possibility to describe the propagating electromagnetic field
as a flow of photons. These questions have their origin in the principle of
complementarity according to which wave and particle aspects of physical
objects cannot be measured at a particular moment. The photon flow pic-
ture of the electromagnetic field is known to become especially challeng-
ing in the case of resonant structures and it is also closely related to the
mentioned Abraham—Minkowski controversy of the photon momentum in
a medium [34-46].

The research related to classical and quantum optics of microscopic sys-
tems is strongly influenced by the availability of simple and transparent
theoretical models and tools that allow in-depth understanding of the var-
ious relevant phenomena in a sufficiently simple form. Such insight has
been used, for example, in the recent experimental demonstrations and
theoretical investigations of noiseless but nondeterministic optical ampli-
fiers [65—71] and in the studies of optical properties of cavities [33, 72-74].
Simple description of the quantum aspects of energy transfer is especially
interesting and challenging in lossy microscopic systems often simulated
by the prototypical layered structures. Due to the existing challenges,
there is a growing need for transparent theoretical tools that allow mod-
eling electromagnetic fields and related quantities in a wide range of ap-

plications, especially, including lossy systems and resonant structures.

1.2 Scope and objectives

This doctoral thesis project aims at developing the physical insight needed
to describe quantum optical energy and momentum transfer and pho-
ton number in lossy and lossless microscopic structures. As fundamen-
tal starting points for our investigations, we use Maxwell’s equations, the
conventional FED, the second quantization of fields, the canonical commu-

tation relations of field and ladder operators, and the covariance principle
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of the special theory of relativity. Another goal is also to clarify our under-
standing of the relations between the classical, quantum, and semiclas-
sical theories of light propagation in a medium. In particular, we focus
on deriving and analyzing physical quantities that quantify energy and
momentum transfer in a medium in a clear and comprehensible fashion.
We also aim at bringing the insight offered by the equations towards the
practical limit where they can be adapted to engineering problems.

We started the studies of this thesis by investigating the output fields of
simple beam-splitter-based setups. In Publication I, we presented an ex-
perimental setup for noiseless amplification of weak coherent fields and
modeled it theoretically using the conventional Wigner function formal-
ism of quantum optics. The proposed setup differs from previously demon-
strated setups [65—68] by replacing the usually used single-photon source
with a quantum nondemolition (QND) measurement. The annihilation
and creation operators in these kinds of beam-splitter-based setups are
generally considered as independent of position and they naturally obey
their canonical commutation relations in any QED description.

After studying simple beam-splitter-based setups, it became natural to
investigate how the behavior of fields changes inside material structures,
where the field quantities were known to become position-dependent, and
where previous theoretical works using IOF had observed anomalies in
the commutation relations of the ladder operators. The simplest examples
of such structures are given by stratified media, which form optical cav-
ities. In Publication II, we introduced a quantized fluctuational electro-
dynamics (QFED) method to determine commutation-relation-preserving
photon ladder operators for the electric field part of the total electromag-
netic field in arbitrary dielectric structures. The main idea was to avoid
the IOF related challenges in defining the optical modes by adopting an
approach, where the canonical commutation relations are combined with
the spatial field modes directly following from Maxwell’s equations. This
starting point naturally led to unambiguous commutation relations, but
also enabled to generalize the photon-number concept to arbitrary res-
onator structures. In Publication II, we also established a simple connec-
tion relating the electric part of the photon number to thermal balance
and illustrated the results by studying the field fluctuations and photon
number in stratified media.

In Publication III, we presented how to extend the previous electric
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field based quantization introduced in Publication II to describe also the
magnetic field and the total electromagnetic field. We showed that the
photon-number parts of the electric, magnetic, and total electromagnetic
fields have different position dependencies near material interfaces at
non-equilibrium conditions. We also introduced the concept of frequency-
dependent local field temperature that describes the equilibrium temper-
ature of a resonant particle interacting with the electromagnetic field at
a single frequency. Later, in Publication IV, we adapted a photon flow pic-
ture of the propagation of light in a medium to present how to separate
the fields and photon numbers into parts propagating in different direc-
tions in interfering structures. Thus, our approach bridged QFED and
the commonly used quantum optical IOF. We also introduced the concept
of the interference density of states that was instrumental in the unam-
biguous separation of the fields and the related quantum operators into
parts propagating in different directions.

In Publication V, we described how to extend QFED field quantization
previously applied only to dielectric media to describe also magnetic me-
dia with nonunity permeability. This non-trivial generalization became
possible by using two independent noise operators that follow from the
additional degree of freedom introduced by the magnetic field-matter in-
teractions. Then, in Publication VI, we developed the QFED formalism
further to three dimensions by using the dyadic Green’s functions and
the three-dimensional noise-current operators. The extended description
allowed studying also field components that are not normal to material
interfaces in the studied layered structures. The evanescent waves and
surface plasmons (SPs) were naturally included in the description via
the dyadic Green’s functions. We also illustrated the position-dependent
effective field temperatures in a selected quantum well (QW) structure
with a metallic coating supporting SPs. Then, in Publication VII, we used
the propagating photon number concepts of Publication IV to derive the
interference-exact radiative transfer equation (RTE), which extended the
applicability of the conventional RTE [75-79] beyond its main limitation
in describing interference effects. We obtained position-dependent damp-
ing and scattering coefficients that can be used to replace the conventional
damping and scattering coefficients used in the RTE. These coefficients
account for both the nonlocal wave and local particle features in stratified

geometries providing tools to study the wave—particle duality [80].
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During studying the photon number in the QFED description in sev-
eral works, we started to investigate if and how the adapted photon flow
description of optical fields could be applied to the centennial Abraham—
Minkowski controversy of photon momentum in a medium, a puzzling
problem which had been faced by the other members of the Engineered
Nanosystems group in the previous studies on thermal cavities. The so-
lution to the Abraham-Minkowski controversy would essentially increase
our understanding of the momentum flow associated to the photon flow.
As the QFED method was not as such found to provide sufficient tools to
solve the controversy without additional assumptions on the form of the
optical force density (that was a controversial topic in the previous litera-
ture [34—41]) and the related dynamics of the medium, we decided to rely
our investigations on the most fundamental relations between energy and
momentum, namely the conservation laws and the covariance condition of
the special theory of relativity. This led us to present the foundations of
a covariant theory of light in a medium and the related resolution of the
Abraham—-Minkowski controversy in Publication VIII. The theory was de-
rived using two approaches: (1) The mass-polariton (MP) quasiparticle
picture was based only on the fundamental conservation laws of nature
and the special theory of relativity. (2) The electrodynamics of continuous
media and the continuum mechanics were coupled to form an optoelas-
tic continuum dynamics (OCD) theory of light in a medium. Our solu-
tion of the Abraham—-Minkowski controversy shows that the light wave
propagating in a medium must be described by using MP quasiparticles,
coupled states of the field and matter. We also introduced the concept of a
light associated mass density wave (MDW) and predicted the photon mass
drag effect displacing the medium along the photon flow. We also showed
that the photon mass drag effect must lead to dissipation of photon energy

when the photon propagates through transparent materials.

1.3 Organization of this thesis

This thesis is organized as follows: Chapter 2 reviews the theoretical
background for the investigations of this thesis. It covers the essential
parts from both the classical and quantum theories of electromagnetic
fields and the dynamics of field—-matter interaction. Chapter 3 presents

the new models developed in this thesis. In particular, it covers the QFED
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formalism developed in Publications II-VII and the MP and OCD models
of energy and momentum transfer in a medium developed in Publication
VIII. Chapter 4 presents selected results obtained by applying the con-
ventional models and developed tools to example structures. The results
of Publication I are discussed in Sec. 4.1, the results of Publications II-VII
are reviewed in Sec. 4.2, and the results of Publication VIII are discussed
in Sec. 4.3. Chapter 5 concludes the dissertation with a summary and

discussion of the obtained main results and future challenges.



2. Theoretical background

This chapter covers the theoretical background of electromagnetic fields
and the dynamics of field-matter interaction applied in this thesis. In
Sec. 2.1, we review the classical theory of electromagnetic fields based on
Maxwell’s equations. We also cover the solution of electromagnetic fields
in terms of Green’s functions and discuss the framework of FED. The co-
variance principle of the special theory of relativity is also described as, in
this thesis, we also directly apply this fundamental principle to describe
the coupled dynamics of the field and matter. Section 2.2 covers the quan-
tum theory. It first reviews the foundation, which is formed by the second
quantization and the canonical commutation relations of fields and ladder
operators. Then it describes the quantum optical IOF used to calculate
possible output fields of a setup when the input fields are known. It also
covers the position-dependent NOF and the Wigner function formalism

commonly used to model quantum optical experiments.

2.1 Classical theory

This section reviews the classical theory of electromagnetic fields in a
medium, which lays the foundation for the studies of this thesis. In
Sec. 2.1.1, we start the review with the frequency space Maxwell’s equa-
tions in linear and isotropic media since, in this thesis, all media are as-
sumed to be piecewise linear and isotropic. This is followed by presenting
the solution of classical electric and magnetic fields in a medium using the
Green’s function approach in Sec. 2.1.2. The Green’s function approach
also forms the basis for the solution of the fields in the classical FED for-
malism presented in Sec. 2.1.3. The covariance principle of the special

theory of relativity is described in Sec. 2.1.4.
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2.1.1 Maxwell’s equations

In classical electrodynamics, the behavior of the electromagnetic field is
completely described by Maxwell’s equations. In the macroscopic form,
Maxwell’s equations relate the electric field strength E, the magnetic field
strength H, the electric flux density D, and the magnetic flux density B
to the free electric charge density p; and the current density J; as [81]

V x E(r,t) = —78]35;’”, (2.1)
V x H(r,t) = Ji(r, t) + 6D§I’t), (2.2)
V -D(r,t) = ps(r,t), (2.3)
V. B(r,t) = 0. (2.4)

It is convenient to represent the fields in Maxwell’s equations in terms

of their Fourier transforms written, e.g., for the electric field as
oo .
E(r,t) = / E(r,w)e “'dw + c.c., (2.5)
0

where E(r,w) describes the time-harmonic component of the electric field
at angular frequency w and c.c. denotes the complex conjugate of the first
term. Similar relations apply also for the fields D, H, B and sources p¢
and J;. Note that, throughout this thesis, we use the same symbols for
the fields and their frequency components and specify the meaning with
the function arguments.

By applying the time harmonic field components defined in Eq. (2.5),
Maxwell’s equations (2.1)—(2.4) read [81]

V x E(r,w) = iwB(r,w), (2.6)
V x H(r,w) = J¢(r,w) — iwD(r,w), (2.7)
V- D(r,w) = pr(r,w), (2.8)
V- B(r,w) =0 (2.9)

Under the conditions of an approximatively linear and isotropic medium
used in this thesis, the fields and field densities are related by the consti-
tutive relations [82]
D(r,w) = gpe(r,w)E(r,w) + 6P(r,w), (2.10)
B(r,w) = MON(ruw)H(raw) +p06M(r,w)7 (2.11)

10
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where ) and p are the permittivity and permeability of vacuum, e(r,w) =
er(r,w) + dei(r,w) and p(r,w) = pr(r,w) + ipi(r,w) are the relative per-
mittivity and permeability of the medium with real and imaginary parts
denoted by subscripts r and i, and P and M are the polarization and
magnetization fields that are not linearly proportional to the respective
electric and magnetic field strengths [82, 83]. In the context of this thesis,
0P and 0M describe small noise related parts in the linear polarization

and magnetization fields as customary in the classical FED [84].

2.1.2 Solution of fields using Green’s functions

From Maxwell’s equations for time-harmonic field components in
Egs. (2.6)—(2.9) and the constitutive relations in Eqgs. (2.10) and (2.11),
it follows that the electric field obeys the well-known equation [26]

V X Er,w) E(r, w) —w? r,w)E(r,w) = iwJ(r,w)— 7Jm(r.’w)
pop(r, w) } €os(r, w)B(r,w) = dde(r, ) Vx{uou(rvw)

where J.(r,w) = J¢(r,w) — iwdP(r,w) and Jy, (r,w) = —iwugdM(r,w) repre-

V x [ } (2.12)

sent the polarization and magnetization noise currents that act as field
sources in the classical FED [85, 86]. The electric noise-current term
Je(r,w) includes contributions from both the electric currents due to free
charges, which amount to zero for insulating dielectrics, as well as polar-
ization terms associated with dipole currents and thermal dipole fluctu-
ations. The magnetic noise-current term J,,(r,w) acts as a separate field
source arising from the magnetic dipole fluctuations.

The dyadic Green’s functions are used to make the presentation of the
solution of electromagnetic problems compact [82, 87]. In short, in the
dyadic notation, the solutions of fields for three independent dipoles ori-
ented along different coordinate axes are collected into a single dyadic,
which can be presented as a matrix [88]. Formally dyadic Green’s func-
tions are solutions of vector form differential equations for delta function
sources. For the delta function source term 15 (r —1'), where 1 is the unit
dyadic and §(r —r’) is the Dirac delta function, an equation for the Green’s
function of Eq. (2.12) is written as [26, 89]

Vi X acc(r,w,r')
o oalrw)

Here ky = w/c is the wavenumber in vacuum with the vacuum velocity of

Vi X [ } - k’ga(r,w)aee(nwm’) = T&(r -r').  (2.13)

light ¢ and V. is the vector differential operator V with respect to r. In

terms of the electric Green’s function éee(r, w,r’), the solution of Eq. (2.12)

11
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is then written by integrating the product of the Green’s function and the

source terms over all the source points r’ as

E(r,w)
< ) I (r',w)
_ NS, / _v, m(I', 3 1
= Ho / Gee(rvwv r ) {LWJe(r ,UJ) vr X [uoilu(r,’w)} }d T
= iwug /aee(r,w,r/) ST (v, w)dPr + kO/aem(r,w,r/) () w)dr.

(2.14)
In the case of the second term in (2.14), we have applied Stokes’ theorem,
which results in the integration by parts formula [;, G’ - (V, x J)d =
Jv (Ve x GI) - JdP" — [,,(GI x J) - dS' for each row vector G of the ma-
trix representation of aco(r, w,r’). As the boundary condition, the Green’s
functions are assumed to go to zero when the separation between the field
point r and the source point r’ tends to infinity. Using the shorthand no-
tation a(r,w,r’) X Vp = [V x G,V x G2,V x G3]T adopted from
Ref. [26], where T denotes transpose, we have then defined the exchange
Green’s function aem(r, w,r’) in the last step in (2.14) as

Rad —
o Geo(r,w, ') X Vyp

Gem(r,w,r/) = kop,(r’ w) (215)

After solving for the electric field, the magnetic field can be solved by
using Faraday’s law in Eq. (2.6) and the constitutive relation in Eq. (2.11)

resulting in

H(r,w)
1
= 5 Jm ) r E )
iww(r’w)[ (r,w) + Vy x E(r w)}
Ve X écc(r,w,r’) , 3,
=k _— 7. ]J d
") T entewy
a ﬁ |:vr : GCIH(I"UJ’ r/) T 62(r - r,) i| . Jm(rly w)dBT‘/
whto kop(r, w) kgu(r, w)
= ko/ ame(r,w,r’) Jo(r, w)d3r + iweg / CHu‘rmm(r,w7 ) - J(r, w)d3r.

(2.16)

Here we have first substituted the expression for E(r,w) in terms of the
Green’s functions given in Eq. (2.14) and incorporated the separate source
term J,(r, w) into the integral using a suitable delta function presentation
and, in the last step, defined the exchange Green’s function ame(n% r')

<~
and the magnetic Green’s function G, (r,w,r’) as

Ve X éee(r,w,r')

Gne (1, w, 1) = kop(r, w)

) (2.17)

12
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G a / P 5 -
Gum(r,w,r’) = Ve Xk e(m(l‘,w,r) B k2(r r) '
oH r’w) OIU/(I'.‘ CU)

By using Eqs. (2.15) and (2.18), we also obtain an expression of the mag-

(2.18)

netic Green’s function amm(r, w,r’) directly in terms of the electric Green’s

End
function Gee(r,w, ') as

Ve x [acc(r,w,r’) x V] _i o(r—r')
R ja(r, ) (') Rulr,w)

6:'mm(rv w, I'/) = (219)

Even though many problems may be solved without using dyadic Green’s
functions, the symbolic simplicity offered by them makes the use of dyadic
Green’s functions attractive once one is familiar with the dyadic nota-
tion. This is especially true in complex scattering problems, in which the
physics related to the electromagnetic vector field is compactly accounted

for using the dyadic Green’s functions.

2.1.3 Fluctuational electrodynamics

In FED, the studied objects are considered to be close to equilibrium, and
the non-equilibrium behavior is described by using linear response theory.
In this regime, the fluctuation—dissipation theorem (FDT) relates the rate
of energy dissipation in a non-equilibrium system to the fluctuations that
occur spontaneously in equilibrium systems. For example, if a system is
placed in a state that is slightly out of thermal equilibrium, e.g., by a me-
chanical force acting on the system, then the system will relax back to the
initial state of thermal equilibrium. In the relaxation process, the energy
of the small perturbation is dissipated to heat on a characteristic time
scale that is related to the thermal fluctuations of the system in thermal
equilibrium. Therefore, a statistical fluctuation in thermal equilibrium
is indistinguishable from a small mechanical perturbation that puts the
system out of equilibrium.

The FDT is also needed for the understanding of fluctuating fields near
microscopic objects and optical interactions at small distances. Typically,
the FDT for the polarization current density in a dielectric medium is

written in the frequency domain as [84, 90]
(Joj(r,w) J3 (', ")) = dmwegei(r, w)O(w, T)djd(r — r')d(w —w'), (2.20)

where j,k € {z,y,z}, the brackets denote the expectation value, and
O(w,T) = hw/2+4hw/(e/*8T) _1) where his the reduced Planck constant

13



Theoretical background

and kp is Boltzmann’s constant, is the average energy of the quantum har-
monic oscillator in thermal equilibrium at an angular frequency w and at
temperature T. The Dirac delta functions §(r—r') and §(w—w') are present
due to the spatial and temporal locality of the dielectric constant and the
Kronecker symbol §;; accounts for the assumption of isotropic media [91].
The term 7w/2 in the average energy of the quantum harmonic oscilla-
tor corresponds to the zero-point energy and it is often neglected as it is
compensated by the surrounding of the body [14].

The FDT can also be applied to derive the fields radiated by a system
with an inhomogeneous temperature distribution [84, 86]. Although the
mean values of the fields are zero, their correlations corresponding to
power densities are non-zero. For example, by using the FDT, the electric
field solution in terms of the Green’s function in Eq. (2.14), and neglect-
ing the magnetization current fluctuations by setting J,,(r’, w) = 0, which
applies to a dielectric medium, the symmetrized cross-spectral correlation

function of the electric field is given by [84]

ng
(B (e, w) B ) =

6450

Sw—u) Y /si(r”,w)@(w,T(r”))
.
X Gee,jt(t,w, v )Gl gy (v w, v )dPr", (2.21)

where T'(r") is the pointwise defined local temperature of the medium.

In addition to the electric field correlations, with the help of the FDT,
it is also possible to calculate magnetic field correlations, the total elec-
tromagnetic energy density, energy flow described by the Poynting vector,
and Maxwell’s stress tensor [84]. In addition, it is possible to define the
electric and magnetic local densities of states (LDOSs) [85, 92, 93]. Since
the initiation of the theory, FED has been widely applied in the studies
of field fluctuations, radiative energy transfer, and Casimir forces [86].
However, FED has not been previously used in the context of fully quan-
tizing the electromagnetic field using position-dependent photon numbers
and commutation-relation-preserving ladder operators. Together with the
quantum-optical input—output formalism discussed in the following sub-
section, FED provides a solid background for the investigations of the

position-dependent photon-number concept developed in this thesis.
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2.1.4 Covariance principle

In the studies of the momentum of light in a medium in Publication VIII,
we have taken the covariance principle of the special theory of relativity
as one of the main starting points. The covariance principle essentially
states that the laws of physics are the same for all inertial observers. In
other words, the formulation of physical laws using certain physical quan-
tities measured in different frames of reference can be unambiguously
correlated via Lorentz transformations. The Lorentz transformation of
the energy-momentum four-vector of a particle (£, pyc, pyc, p.c), where E
is energy and p,, py, and p. are the z, y, and z components of the momen-

tum, is written in the case of motion in x direction as [94]

E' =~(E —vpy), (2.22)
pye=(pec —vE/c), (2.23)
Phye = pyc, (2.24)
ple=pac. (2.25)

Here v = 1/+/1 — v2/c? is the Lorentz factor and primed quantities denote
the quantities in the transformed reference frame.

A scalar quantity that is Lorentz invariant is the Minkowski inner prod-
uct of the energy-momentum four-vector with itself. This covariance con-
dition, which is also known as the relativistic energy-momentum relation,
is given by [94]

E? — (pc)? = (moc®)?, (2.26)

where p is the total momentum and my is the rest mass of the particle.
In the studies of this thesis in Publication VIII, we have shown that the
conventional Abraham and Minkowski models of light in a medium do not
satisfy the covariance principle in Eq. (2.26) due to the assumption that
there is not any rest mass propagating with a light pulse in a medium. As
these earlier formulations of the theory had failed to lead to a covariant
description, in Publication VIII it became natural to consider a possibility
that the light pulse is actually a coupled state of the field and matter
with a small but finite rest mass. This will be described in more detail in
Sec. 3.2.

15
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2.2 Quantum theory

This section covers the conventional quantum theory of the electromag-
netic field. Its foundation is provided by the second quantization that we
briefly review in Sec. 2.2.1. Then, in Sec. 2.2.2, we describe the quantum
optical IOF and the canonical commutation relations of fields and pho-
ton ladder operators. The noise source operators in NOF are presented
in Sec. 2.2.3. To allow practical modeling of quantum noise in the output
fields in beam splitter experiments, in Sec. 2.2.4, we also briefly review
the Wigner function formalism, the related beam splitter description, and

common quantum states of light.

2.2.1 Second quantization

In QED, like in other quantum field theories, the fields are presented as
field operators, in a manner similar to how the physical quantities, such
as position and momentum, are treated as operators in the conventional
quantum mechanics. This method is called the second quantization or
the canonical field quantization. The main underlying ideas of the sec-
ond quantization were introduced by Paul Dirac in 1927 [3], and they
were developed forward by many physicists, most notably, by Fock [95]
and Jordan [96]. The formalism of the second quantization introduces the
creation and annihilation operators that provide useful tools to the study
of the quantum many-body problems. The creation operator dL creates
and the annihilation operator a, annihilates a photon with energy fwy in
the electromagnetic field mode with wave vector k. The canonical commu-
tation relations of the creation and annihilation operators are given by
[97]

[ax, awe] = [af,al,] = 0,

[, al,] = e (2.27)

In the second quantization with the Coulomb gauge V - A(r,t) = 0,
the vector potential operator A(r,t), the electric field operator E(r,t) =
—dA(r,t)/0t, and the magnetic field operator B(r,t) = V x A(r,t) at each
point in free space are given in terms of the creation and annihilation

operators as [98]

. h o iker—i Tt ikerti
A(I‘, f) = Z ‘ngvwk ek(akelk iwyt + aLe ik +zwkt)’ (228)
k
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E(I‘, t) _ Z’L hwy ék(dkeik-rfiwkt o d}'{671',k~1[‘+iwkt)7 (2.29)
k

N h . . ) .
B(r,t)=) i k X &y (age’® Tt _ g gmikertivity (2.30)

Here éy is the polarization unit vector of mode k and V is the quantization
volume. In the expressions in Eqgs. (2.28)—(2.30), the first terms are the
positive frequency parts conventionally denoted by At (r,t), Et(r,t), and
Bt (r,t) [98]. The second terms, which are Hermitian conjugates of the
first terms, are the negative frequency parts denoted by A~ (r,t), E~(r, 1),
and B (r,#). In the case of a continuum of modes, it is convenient to
convert the summation over k to an integration by using the general sub-
stitution relation Y, — [V/(27)?] [ d3k [98].

As the ladder operators, also the field operators in Egs. (2.28)—(2.30)
obey certain commutation relations. For example, from commutation re-
lations of the ladder operators in Eq. (2.27) and from the expressions of
the vector potential and electric field operators in Eqgs. (2.28) and (2.29),
it follows that the vector potential and electric field operators obey the

canonical commutation relation given by [98, 99]
[Aj(r,t), —eo By (x',1)] = ihdr;, (r —1'). (2.31)

Here ot (r —1') is the transverse delta function, which is an operator that
maps a vector field to its transverse component defined as a part whose
divergence is zero [98]. The transverse delta function is explicitly written
as [98]
1 " kk'l ik-(r— / .
by (r =) = = / (35 = =5t )™=l (2.32)

2.2.2 Quantum optical input-output formalism

The quantum optical IOF can be introduced by studying the input and
output fields of a beam splitter, which is one of the simplest optical de-
vices. In a beam splitter, two incident beams may interfere to produce
two emerging beams. On dielectric interfaces of a beam splitter, it is also
possible to split one incident beam into two beams as a part of the field
is reflected while another part is transmitted. An ideal beam splitter is
reversible and lossless. An illustration of a beam splitter is represented

in Fig. 2.1.
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a2

~1
(s

Figure 2.1. Beam splitter. Two incident beams are represented by mode operators a; and
G2, and the emerging beams by mode operators a; and a5.

In the Heisenberg picture, the annihilation operators of the incident

fields transform as [16]

ay t1 T2
Lo =Ses| ] Ses= e (2.33)
Qg as T1 2

~/
ay

where t1, to, 71, and ry are the transmission and reflection coefficients for
the corresponding beams. In general, they are complex numbers resulting
in a unitary scattering matrix Spg that preserves the bosonic commuta-
tion relations between the mode operators. The matrix elements must

obey the relations
|T1‘ = |7’2|, |t1| = |t2|, |7’1|2 + |1§1|2 = 1, T;t1 —+ 7’1153 =0. (234)

Due to the linearity, the beam splitter scattering matrix Sgg can also be
used to obtain the vector potential, electric field, and magnetic field oper-
ators of the output fields, when the input field operators are known to be
of the form in Eqs. (2.28)—(2.30).

In the description of a single beam splitter, we do not encounter any
problems with the canonical commutation relations of the ladder opera-
tors as the commutation relations are preserved by the unitary scattering
matrix Sgs. The same is also true in the case of two beam splitters if
neither of the output fields of the second beam splitter is directed back
to the first beam splitter, i.e., there does not exist back coupling between
the beam splitters or self-interference of the fields. However, if an output
field of the second beam splitter is directed back to the first beam split-
ter resulting in feedback, then the above description leads to anomalies
in the commutation relations of the ladder operators [27]. The origin of
the anomalies has previously been identified as self-interference of the

mode whose coherence length is longer than the distance between the
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beam splitters [27]. However, as we have shown in Publications IT and IV
and as discussed in Sec. 3.1, we can completely resolve the anomalies by
adapting a different approach, which results in meaningful ladder opera-

tors and the related photon-number concept also in resonant structures.

2.2.3 Noise operator formalism

In the conventional NOF, as a starting point for the field quantization,
one uses an approach where the field quantities in the classical equations
of Secs. 2.1.1 and 2.1.2 are replaced by corresponding quantum operators
[24, 26]. The relations of the electric and magnetic field operators E* (r,w)
and ﬂ*(r,w) to the polarization and magnetization noise-current opera-

tors JI (r,w) and J;,

m

(r,w) are given by the classical forms in Egs. (2.14)
and (2.16). The forms of the polarization and magnetization noise-current
operators J (r,w) and J; (r,w) are then determined by requiring that the
resulting electric field and vector potential operators obey the well-known
canonical commutation relation in Eq. (2.31). As a result, the operators
J¥(r,w) and Ji (r,w) are written in terms of the bosonic source-field oper-
ators f.(r,w) and f,,(r,w) and normalization factors jo o (r, w) and jo (T, w)

as

J;"(r,w) = Zjo,e(rvw)élfe(raw)7 (235)
l

J;;(n“’) = Zjo,m(r7w)élf111(T,w)7 (236)
l

where the index [ ranges over the three independent coordinate directions.
The bosonic source-field operators fo(r,w) and fu,(r,w) obey the canonical

commutation relations

[f]'(rvw)v fk(r/7w,)] = [f;(r7w)7 fg(rl7w/)] = 07
[fi(r,w), fl(x',o")] = 80 (x — ')8(w — ), (2.37)

where j,k € {e,m}. These relations clearly resemble the commutation
relations of the free-space photon ladder operators in Eq. (2.27), but here
the operators are not only uncorrelated at different frequencies but also
at different positions. The normalization factors jo(r,w) and jom(r,w)
in Egs. (2.35) and (2.36) are given by jo.(r,w) = \/4mhw?epe;(r,w) and
Jom(r,w) = \/Amhw?popi(r,w) ensuring that the field commutation rela-
tion in Eq. (2.31) is satisfied [24, 26, 100].
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Substituting the polarization and magnetization noise-current opera-
tors in Eqgs. (2.35) and (2.36) into the classical expressions for the elec-
tric and magnetic fields in terms of the Green’s functions in Eqgs. (2.14)
and (2.16), we then obtain the positive frequency parts of the electric and

magnetic field operators as
B rw) =Y / [iopoio e (0, ) Ge(r,0,) - 1o )
.
+ kojo,m (', w)aem(r, w,r’)- ékfm(r/7w)] &3, (2.38)
I:I+(r,W) = Z/ [inOjO,m(r/vw)émm(rvwv r') ~ékfm(r/,w)
k

o+ Kojo.e(t', @) Gue(r,w, 1) - 61 fol0 )| 7, (2.39)

The negative frequency parts are given by Hermitian conjugates. These
field operators can be shown to result in the same cross-spectral correla-
tion functions as obtained by using FDT in Sec. 2.1.3. From this fact, it
also follows that the field fluctuations that will be presented in Sec. 3.1.4
are equal to those obtained by using the classical FED.

2.2.4 Wigner function formalism

Next, we review the standard relations of the Wigner function formalism
[101] that can be applied in cases where the ladder operators and photon
numbers are not position dependent, e.g., in the studies of the output field
of a beam splitter setup. The Wigner function theory is commonly applied
to model experiments based on optical quantum tomography [65, 102—
106].

Wigner function
A quantum phase space distribution can be constructed to calculate ob-
servable quantities in a classical-like fashion. This quantum phase space
distribution is called Wigner function according to its inventor Eugene
Wigner who developed the distribution in 1932 while studying quantum
corrections to classical mechanics [101]. A useful representation of the
Wigner function of a state corresponding to the density operator p is given
in a coherent basis by [107]

W(a) = iQ / ” / ¥ vamxaty (ﬁ eW—W>d2A, (2.40)

T ) oo J—oo e
D)

where ¢ and 4! are annihilation and creation operators obeying the canon-

ical commutation relation in Eq. (2.27) and D is the displacement operator
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which forms a coherent state from a vacuum state as D()[0) = |o) [16].

The basis variables « and o* of the coherent basis obey the relations
dla) = ala) and (alat = (aja* [107]. These variables are clearly not in-
dependent as being a complex number and its conjugate. Their relation
to the position and momentum quadrature variables z and p is given by
z = (a+a*)/(V2k) and p = —ihk(a — a*)/V/2, where & is the spring con-
stant of the field oscillator.

In many cases, it is useful to compare quantum states with each other.
A practical measure for this purpose is the fidelity, which is a measure
of closeness of two quantum states. A commonly used definition is the
Bures-Uhlmann fidelity [108, 109]. If at least one of the states is pure,
the fidelity is given by the overlap between the states as [110]

F(Wy, W) = W/OO /OO Wh(a)Wa(a) da. 2.41)

In the Wigner function formalism, the expectation value of an opera-
tor can be calculated in two ways. In the case of an operator O, the first
method is to calculate the Wigner function W («) of O by using Eq. (2.40),
where the density operator  has been replaced with O. Then, the expecta-
tion value can be calculated as an overlap between W () and the Wigner

function of the state as

(O) = / / Wy ()W (0) da. (2.42)
J—o0 J—00
Another possibility for calculating expectation values is to mirror the ac-

tion of the operator O directly on the Wigner function as follows [107]
(0) = / / DpW () d*a. (2.43)

Here D o 1s a differential operator corresponding to the operator O. For ex-
ample, an operator correspondence relation for the annihilation operator
ais given by D; = o + (1/2)9/0a* [1111.

Beam splitter description
The Wigner function of an output state of a beam splitter has four degrees
of freedom, two from each initial fields, and it can be written in terms of
the initial Wigner functions W; and W5 as [16, 17]

W'(ar, ag) = Wi(a])Wa(ad) (2.44)

with the changed variables

af a
Ul =sie| 7 ], (2.45)
I

Qo (%)
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where Sgg is the scattering matrix of a beam splitter given in Eq. (2.33).
The Wigner functions of the emerging fields, W] and Wj, can be cal-

culated as marginal distributions by integrating W’ with respect to the

mode variables of the other emerging field, a; or as depending on the

output field as
Wi (a) :/ / W', ag) d®as, (2.46)

oo oo

Wy () :/ / W/'(ay,a)d®a;. (2.47)

If one knows the initial Wigner functions and observes the Wigner func-

tion of one emerging beam in a state W7, it is possible to calculate the

Wigner function of the second output using standard relation of condi-
tional probability given by

7 [ W (a1, )W/ (a1)d?aq

Wy = .
2(0{) 7TfW’(Oz1,0z2)W1/((11)d2(11d2a2

(2.48)

The numerator describes the overlap of the Wigner functions and the de-
nominator equals the probability of observation and it renormalizes the

obtained distribution.

Quantum states of light

Coherent, Fock, and thermal states are examples of the most commonly
described quantum states of light. Coherent states are eigenstates of the
annihilation operator. They are the closest quantum states to a classical
sinusoidal wave such as a continuous laser wave. Fock states are eigen-
states of the photon-number operator, thus having a perfectly fixed pho-
ton number. Thermal states are equilibrium states for a field coupled to
a reservoir at temperature T, and their photon statistics obeys the Bose—
Einstein distribution. The Wigner functions of these states are given,

respectively, by [107]

2
Weon(a) = — exp(—2|a — ao[?), (2.49)
Wiy ni(@) = =— exp(=2laf*) Lu(4laf?), (2.50)
2 hw 9 huw
Win(a) = - tanh (m> exp [— 2|r|” tanh (mﬂ (2.51)

Here o is the displacement parameter of a coherent state and L,, denote
Laguerre polynomials, which can be defined by the Rodrigues’ formula,

given by
e d"

Lnlz) = n! dz

(efw.r”) . (2.52)
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3. Developed models

This chapter reviews the key elements of the new theory of the QFED for-
malism developed in Publications II-VII and the coupled state description
of the field and matter developed in Publication VIII. Section 3.1 describes
the consistent commutation-relation-preserving photon-ladder operators
and the related position-dependent photon-number concept of the QFED
formalism. It also reviews the related density of state concepts and the
application of the QFED method to the description of the local thermal
balance between the field and matter. The separation of the ladder oper-
ators and photon numbers into the left and right propagating parts and
the related quantum optical RTE are also described. Section 3.2 covers
our coupled state description of the field and matter. While the QFED
method mainly concentrates on describing photon numbers, in Sec. 3.2
we model light propagation in a medium as MP quasiparticles, coupled
states of the field and matter. The MP and OCD models are shown to
lead to the photon mass drag effect and the emergence of a MDW, which

is inevitably associated with a light pulse propagating in a medium.

3.1 Quantized fluctuational electrodynamics

This section reviews the QFED formalism developed in this thesis in Pub-
lications II-VII. In Sec. 3.1.1, we describe the source-field number opera-
tor. In Sec. 3.1.2, we review the derivation of the consistent commutation-
relation-preserving photon-ladder operators of the QFED formalism ap-
plicable to nonuniform structures and non-equilibrium conditions. This is
followed by the review of the density of state concepts in Sec. 3.1.3 and the
presentation of the photon numbers and field fluctuations in Sec. 3.1.4.

The application of the QFED formalism to the description of the local
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thermal balance is reviewed in Sec. 3.1.5. The separation of the lad-
der operators and photon numbers into the left and right propagating
parts is described in Sec. 3.1.6 and the related quantum optical RTE is
reviewed in Sec. 3.1.7. Here, we present certain parts of the theory in a
one-dimensional form for easier interpretation, while other parts are pre-
sented in the complete three-dimensional form as described for dielectric

and magnetic media in Publication VI.

3.1.1 Source-field number operator

As described in the one-dimensional case in Publication II, the bosonic
source-field operators fj(r, w) of Sec. 2.2.3 give the local source-field num-
ber operator 7(r,w) as 7j(r,w) = ff;(nw)f}-(r’,w’)d?’r’dw’. In the case of
thermal fields, the expectation value of the operator 7(r, w) is given by the
Bose—Einstein distribution as (7(r,w)) = 1/("/FsT®)] _ 1) in which T'(r)
is the possibly position-dependent temperature profile of the medium. In
thermal non-equilibrium conditions, the local thermal equilibrium (LTE)
approximation is often applied. The LTE approximation is justified when
the temperature gradients are small compared to a material-dependent
current-current correlation length scale, which is of the order of the atomic

scale or the phonon mean-free path [86].

3.1.2 Commutation-relation-preserving ladder operators

In any NOF description, the canonical commutation relations are satis-
fied for field quantities, i.e., Eq. (2.31) [99], but the same is not generally
true for the canonical commutation relations of the ladder operators in
Eq. (2.27). The dominant approach in evaluating the ladder operators
has been to separate the field operators obtained from QED into the left
and right propagating normal modes uy,(z,w) and ug(z,w) and the cor-
responding ladder operators ap(w) and agr(w) so that, e.g., the spectral
component of the vector potential operator of a field propagating along x
axis is written as A*(z,w) = ur(z,w)ar(w) + up(z, w)ag (w) [29, 30, 112].
This is tempting in view of the analogy with the field operators in free
space given in Egs. (2.28)—(2.30), but in most cases results in ladder oper-
ators that are not uniquely determined due to the possibility to scale the
normal modes nearly arbitrarily. More recently, physically more transpar-

ent interpretations also accounting for the noise contribution have been
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reported [31], but none of the previously reported definitions consistently
give the canonical commutation relations for the photon ladder operators.

In the QFED formalism, we adopt a different starting point that en-
sures the preservation of the canonical commutation relations of the lad-
der operators by simply writing the electric field operator as £t (z,w) =
Co(z,w)ae(x,w), where ae(x,w) is the position-dependent electric part of
the photon annihilation operator and C.(z,w) is a normalization factor
that corresponds to the classical mode function defined simultaneously for
all the source points. This simple relation between E+(z,w) and a.(z,w)
is obviously of the same form as that in free space in Eq. (2.29). The elec-
tric part of the photon annihilation operator is then given by a.(z,w) =
Et(2,w)/Co(z,w) and the normalization factor C,(z,w) can be uniquely
determined apart from the possible phase factor by requiring that the
canonical commutation relation [ac(z, w), al(z,w')] = 6(w—w'), correspond-
ing to Eq. (2.27), is fulfilled at any position.

Above, the photon annihilation operator has been normalized with re-
spect to the electric field. However, it is also possible to perform a corre-
sponding normalization with respect to the magnetic field or other suit-
able quantity like the field component propagating in a certain direction
as discussed later in Sec. 3.1.6. In the case of the normalization with
respect to the magnetic field as an(z,w) = H'(z,w)/Cu(z,w), we de-
note the magnetic part of the photon annihilation operator with a,,(z,w)
and the corresponding normalization factor with Cy,(z,w). Depending on
the normalization, we obtain in general different photon ladder operators
Ge(r,w), am(r,w), and a(r,w) and normalization factors Ce(z,w), Cpy (2, w),
and C(z,w) for the electric, magnetic, and total electromagnetic fields. As
presented in Publication III, using the explicit forms of the normalization
factors, the electric and magnetic parts of the photon annihilation opera-

tor are then given by

N ] €0 S
ac($,W)— 27r2hwpe(x,w)E (wi)v 3.1

Ho 4
727r2hwpm(:c,w)H (z,w), (3.2)

CA’fm(xa"‘)) =
where pe(z,w) and py(z,w) are, respectively, the one-dimensional elec-
tric and magnetic LDOSs and the electric and magnetic field operators
are those obtained by using NOF given in Egs. (2.38) and (2.39). The

photon annihilation operator a(x,w) for the total electromagnetic field is
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defined as a linear combination of the electric and magnetic field annihi-
lation operators as discussed in Publications III and V. As conventional,
the corresponding photon creation operators are Hermitian conjugates of
the annihilation operators.

When we substitute the electric and magnetic field operators from
Egs. (2.14) and (2.16) into Eqgs. (3.1) and (3.2), we obtain more abstract
expressions for the annihilation operators in terms of the bosonic field op-
erators fe(w,w) and fm(x, w). In terms of the three-dimensional nonlocal
densities of states (NLDOSs) described in Publication VI and reviewed be-
low, the electric and magnetic parts of the photon annihilation operators
are given by

I [P e, ) 4 fo (0, o )|
a;(r,w) = , (3.3)

\/f pnL;(r,w, r’)d3r!

where j € {e,m}. The NLDOS components pgy, ;(r,w,r’) and pyy ;(r, w,1’)
in Eq. (3.3) denote, respectively, the first and the second terms of Egs. (3.9)
and (3.10) below. An equation corresponding to Eq. (3.3) also holds for the
total annihilation operator a(r,w). In this case, the total NLDOS terms
PR (r,w,r’) and pRy (r,w,r’) are obtained by using Eq. (3.11) below with
the corresponding terms in the electric and magnetic NLDOSs.

For easy comparison with the well-known field operator relations in vac-
uum in Egs. (2.29) and (2.30), we next rewrite the time domain electric
and magnetic field operators of QFED explicitly in terms of the corre-
sponding photon annihilation operators. The time domain electric and
magnetic field operators are naturally given by taking the inverse Fourier
transforms of the frequency domain operators in Egs. (3.1) and (3.2) as
done for the electric field operator in Publication II. This results in the

one-dimensional case in relations
7 1 o ~ —iwt ~1 iwt
E(z,t) = o Co(z,w) [ac(m,w)e +al(z,w)e }dw, (3.4)
Y
. 1 . . )
H(z,t) = %/0 O (z,w) [dnl(x,w)eﬂ“t + dfn(:)c.,w)e“t] dw, (3.5)

which clearly resemble the equations for the field operators in the well-
known field quantization in free space given in Egs. (2.29) and (2.30).
However, the field operators and their prefactors are now in general both
position dependent, which is not the case with the free-space field opera-
tors in Egs. (2.29) and (2.30).
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3.1.3 Densities of states

Following the calculation performed in the three-dimensional case in Pub-
lication VI, we can define the electric, magnetic, and total electromagnetic
NLDOSs pnie(r,w,t'), pNLm (T, w, '), and pni(r,w, ') as factors that ap-
pear in the expressions for the field fluctuations. In terms of the NLDOSs,
the electric and magnetic field fluctuations and the total energy density

of the electromagnetic field are written as
A~ ] 1 3,./
/ /—pNLe r,w,r’) [(77(1' ,w)) + ﬂd r'dw, (3.6)
(H?(r,t)) / /—pNL m(r,w,r )[( A, w)) + %} d3r' dw, (3.7
17 .
(u(r, 1)) = / / o (1, 0) (308", 0) + 2] 4% (3.8)
0

As shown in Publication VI, the NLDOSs for the electric, magnetic, and
total electromagnetic fields, can be written as

3 > o1
PNLe(T,w,1') = %{Ei(r',w)Tr[Gee(r,w,r') G (r,w,1')]
T
“ o T
+ wi(r, W) Tr[Gem (1, w, T') - Gy (T, W, T )]} (3.9

3 ot

2w <,
PNLm (T, w, 1) = ﬁ{ei(r',w)Tr[Gme(r,w,r’) Gt w, )]

> HT
+ (@) TG (1, w0, 1) - Gy (1 0, r’)]}, (3.10)

e(r,w
pnL(r,w,r’) = %PNL@(R% ') +

|a(r; W)

5 PNLm(r,w,r’).  (38.11)

The LDOSS pe(r,w), pm(r,w), and p(r,w) are obtained as integrals of the
corresponding NLDOSs as

pi(r,w) = / pxt(r,w, T ), (3.12)

where j € {e,m, tot} in which the index tot denotes the quantities for the
total electromagnetic field, e.g., pni(r, w, r’) in Eq. (3.11), written through-
out this thesis without the subscript tot for brevity. It is well-known that
the electric and magnetic LDOSs p.(r,w) and p,(r,w) are given in vac-
uum by the imaginary parts of the traces of the dyadic Green’s functions
as [84, 92]

pi(r,w) = %Im{Tr[ajj(r,w,r)}}, (3.13)

where j € {e,m}. As described in Publication III, a similar relation also

applies for the normal components of the Fourier-transformed quantities

27



Developed models

in stratified media. Typically, the spatially resolved form in Eq. (3.13)
is also expected to be valid inside lossy media. However, in lossy media,
these LDOSs are generally known to become infinite due to the contribu-
tion of evanescent fields, which do not propagate in the medium as elec-
tromagnetic waves, but whose energy density is spatially concentrated in
the vicinity of the field sources [84, 92].

Next we also familiarize the concept of the interference density of states
(IFDOS) that was introduced in Publication IV and that is related to the
definition of the Poynting vector. The quantum optical Poynting vector of
an optical mode is defined as a normal-ordered operator in terms of the
positive- and negative-frequency parts of the electric and magnetic field
operators as S(r,t) = E(r,t) x H(r,t) := B~ (r,t) x H(r,t) — H (r,t) x
E*(r,t) [98]. As detailed in the three-dimensional case in Publication VI,

we obtain the Poynting vector expectation value as

(S(r,t)) = /Ooo/hwv(r,w)pIF(r,w,r')(}(r',w))dgr'dw, (3.14)

where v(r,w) = ¢/n,(r,w) is the propagation velocity of the field in the
direction of the wave vector with the real part of the refractive index de-
noted by n,(r,w). Inside the integral in Eq. (3.14), we have defined the
IFDOS pyp(r,w,r’) as

2w, (r,w)

PIF(I‘MJ‘/) = 1

e
“

o f
X (ui(r',w)hn{Tr[Gmm(r,w,r’) X Gem(r,w,r’)}}

_ gi(r’,w)lm{Tr[aee(r,w,r') x é;e(r,w,r')]}>. (3.15)

Here we have used the shorthand notation Tr[al(n w,r’) X a;(r, w,r’)] =
Zj[al(r,w,r’) - &5] % [ag(r,w,r’) - &;]T, where the result is by definition
a vector, in contrast to the conventional trace of a matrix, which is a
scalar. The integral of the IFDOS with respect to r’ is always zero, i.e.,
[ pip(r,w,r')d3" = 0, which is required by the fact that, in a medium at
thermal equilibrium, there is no net energy flow.

In Publication IV, it was found that the IFDOS concept describing in-
terference effects is instrumental in allowing an unambiguous separation
of the fields and the related quantum operators into parts propagating in

different directions. This is described further in Sec. 3.1.6.
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3.1.4 Photon numbers and field fluctuations

Using, the ladder operators presented in Sec. 3.1.2 and the source-field
photon-number expectation value given for thermal fields in Sec. 3.1.1,
the position-dependent photon-number expectation values are given for

the electric, magnetic, and total electromagnetic fields, j € {e, m, tot}, by

o [ onu(rw, ) (A, w))dr
<n] (ry w)) - f ,ONL,j (r7 UJ7 rl)dST'l . (316)

In terms of the photon-number expectation values in Eq. (3.16) and the
LDOSs in Eq. (3.12), the spectral electric and magnetic field fluctuations
and the energy density in Eqgs. (3.6)—(3.8) can be written as

(B, = 2 pulr.) (el ) + 5. 317
. oo ) |

<H2(I‘7 t)>w = Epm(ra w) [(nm(r7w)> + 5] s (3.18)
(e, 1)) = heop(e, ) [ (Ao, ) + %} (3.19)

Here the subscript w denotes the spectral component of the total quan-
tities which are obtained as integrals over positive frequencies. These
expressions are equivalent with the spectral components of the field fluc-
tuations and the energy density obtained in the classical FED. Therefore,
we can conclude that using the canonical commutation relations of the
source-field operators as a starting point automatically leads to results

that are consistent with FDT.

3.1.5 Thermal balance

An insightful view of the effective photon numbers of the QFED frame-
work in Eq. (3.16) is provided by their connection to local thermal balance
between the field and matter as detailed in Publication IT and as described
in the three-dimensional case in Publication VI. For the macroscopic de-
scription of the field—matter interaction, we first define the normal-ordered

emission and absorption operators Qem(r, t) and Qabs(r, t) as

Qem(r,t) = — :Je(r,t) - E(r,t): — :Ju(r,t) - H(r, 1), (3.20)
Qubs (13 1) = Jo abs (1, 1) - B(r, 1) : + 1Ty ans(r, 1) - H(r, 1) . (3.21)

Here je,abs(r, t) and J m,abs(L',t) are the electric and magnetic absorption-

current operators that are written in the spectral domain in terms of the
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electric and magnetic field operators as J Foe(T w) = —iwegye(r, W) Bt (r,w)
and j;;,abs(nw) = —iwpgXm(r,w)H* (r,w), where x,(r,w) = e(r,w) — 1 and

Xm(r,w) = p(r,w) — 1 are the electric and magnetic susceptibilities of the
medium.

The net emission operator Q(r,t) is defined as the difference of the
emission and absorption operators in Egs. (3.20) and (3.21) as Q(r7 t) =
Qem(r7 t) — Qabs(r7 t). It describes the total energy transfer between the

electromagnetic field and the local medium and it is given by

Qr,t) = — :Jopor(r,t) - B(r,t): — :Jmsor(r,t) - H(r,t): . (3.22)
Here Je 1ot (r, ) = Jo(r,t) + Jeaps(r, ) and T tor (1,1) = Jin (1, 1) 4+ T abs (1, 1)
are the total noise-current operators, which correspond to the classical to-
tal current densities that are sums of the classical free and bound current
densities. As presented in the three-dimensional case in Publication VI,
the spectral component of the expectation value of the net emission oper-
ator in Eq. (3.22) can be written in terms of the LDOSs and the electric
and magnetic parts of the photon number in Eq. (3.16) as

(Q(r, 1))
= m2€i(rvw)pe(r’ w)[(ﬁ(r, w)) - <’fle(1‘, w)”
+ B i (v, @) pon (1, ) (7)1, ) = (Ao (1, w))]- (3.23)

From Eq. (3.23) it follows that local thermal balance, described by the
condition (Q(r,)),, = 0, is generally reached when the source-field photon
numbers coincide with the electric and magnetic field parts of the photon
number defined in Eq. (3.16). One can also note that the expectation value
of the net emission operator in Eq. (3.23) equals the divergence of the
Poynting vector in Eq. (3.14) as (Q(r, 1)), = V - (S(r, t))e.

In the case of resonant systems, where the exchange of energy is dom-
inated by a narrow frequency band, the condition (Q(r,)),, = 0 can be
used to approximately determine the steady-state temperature of a res-
onant particle that is interacting weakly with the electromagnetic field
[113]. Therefore, in Publication II, we have suggested that the electric
field temperature is experimentally measurable by measuring the steady-
state temperature reached by a detector whose field—-matter interaction
is weak and dominated by the coupling to the electric field. Such a de-
tector is, e.g., the movable transparent intracavity photodetector studied

and demonstrated by Lazar et al. [114, 115]. In Publication III, we have
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also suggested that a similar measurement setup for the measurement of
the magnetic field related effective temperature might also be possible to
construct. In this kind of a setup, at least at microwave frequencies, one
would need to use materials whose field—matter interactions have been
engineered to be sensitive to magnetic fields instead of electric fields, us-

ing, e.g., magnetic metamaterials [116] or micro-coil sensors [117].

3.1.6 Left and right propagating fields

It is commonly known how to separate the electric and magnetic fields
into parts propagating in different directions [82, 83]. However, due to
the interference of the field components inside resonant structures, the
same is not true for all field-related quantities. Especially, in previous
literature, it has not been shown how the separation should be made for
the energy density or the photon number, which are quantities that do not
directly depend on the fields but on their squares.

In Publication IV, we have used the LDOS and photon-number con-
cepts of Publications II and III and Eq. (3.16) to separately account for
the left and right propagating fields. In the derivation of this general-
ization, we first write the left and right propagating field spectral Poynt-
ing vector expectation values (S (z,w)), and (S_(z,w))w as (St (z,w))w =
hwv(z,w)pt (z,w) [ (e (z,w)) + 5], where pi(z,w) and (fi(z,w)) are the
left and right propagating field LDOSs and photon numbers to be deter-
mined, and the term one half describes the zero-point fluctuation current.
The left and right propagating photon numbers are additionally assumed

to satisfy two equations as the total Poynting vector is given by

(8(2, 1)) = hwv(z,w)py (z,w) [(m.(x,w)) + %}

— hwv(z,w)p—(z,w) [(ﬁ,(xﬂ.u)) + %}, (3.24)

and the total energy density in Eq. (3.19) is given by

(i, ) = hiop (,0) [ (2, 0) + 3]
+ hwp_(z,0) [<ﬁ,_(m,w)> + %} (3.25)

At zero temperature, where (74 (z,w)) = (Ai—(z,w)) = 0, the Poynting vec-
tor is also zero and thus the equality of the densities of states of the left
and right propagating fields p;(z,w) = p_(z,w) follows from Eq. (3.24).
Respectively, at zero temperature, Eq. (3.25) leads to the relation p (z,w)+
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p—(z,w) = p(z,w). Together, these conditions uniquely define the left
and right propagating LDOSs in terms of the total LDOS as pi(z,w) =
p—(w,w) = pla,w)/2.

Using the LDOS relations above, we can unambiguously solve the left
and right propagating photon numbers from Egs. (3.24) and (3.25) as
(g (z,w)) = [Awp(z, w)] " [(@(x, 1))y + (S(2, 1))y /v(z,w)] — 1/2. As described
in Publication IV, in terms of the densities of states and the source-field
photon number, this corresponds to

(o () = —— / o (@, w, 27) & pre (o, w, )] (e w))da'. (3.26)
p(z,w) J oo
Equation (3.26) indicates that the propagating field photon-number ex-
pectation values are also obtained as weighted sums of the source-field
values, but the weight factors now contain an additional IFDOS related
term that describes the interference and propagation direction.

Above we have only focused on the photon-number expectation values
that are directly related to the Poynting vector and energy density. In
order to find the corresponding ladder and photon-number operators in
QFED, we investigate the forms of the photon creation and annihilation
operators dl(m, w) and a4 (z,w) that fulfill the canonical commutation re-
lations and lead to the photon-number expectation values in Eq. (3.26).
The photon annihilation operators satisfying these conditions are of the

form
d:l: ($7 w)

Svzomi

+ ei(PmEn/4) \/pﬁl‘L(:L’, w,z') £ pih(z,w, 2') fm(a, w)} dx’, (3.27)

i(¢eiﬂ/4) \/p?QL(x7 w7 'T/) i pfF(xv UJ, :B/) fe(xl7 UJ)

where p{\IL(x., w, ') and p{F(x, w, '), with j € {e, m}, denote the electric and
magnetic source related terms of the NLDOS and IFDOS in Eqgs. (3.11)
and (3.15). The phase factors ¢, and ¢, in Eq. (3.27) are in principle
arbitrary and they do not play a role in our calculations as they cancel
in the commutators. The annihilation operator a(z,w) of the total field
is given by the sum a(z,w) = %[&Jr(x,w) + a_(z,w)]. It is straightfor-
ward to verify that the annihilation operators of the left and right prop-
agating field in Eq. (3.27) also obey the commutation relation of the form
[+ (z,w), &Ti(x,w’ )] = §(w — ). However, as the reflecting interfaces cou-

ple the left and right propagating fields originating from the same source
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points, the cross-commutators become nonzero as [a+(z,w), &;((L’, w')] # 0.
This cross-commutator form is intuitively reasonable and it has not been
found to present any complications as the only commutation relations that
are expected to be directly related to physical observables are the self-

commutators.

3.1.7 Quantum optical radiative transfer equation

Next, we discuss the connection between the QFED formalism and the
well-known RTE model [75-79] whose main limitation is that it does not
capture interference effects that are crucial in the exact description of
fields in any inhomogeneous structures. The same limitation in the de-
scription of interference effects also applies to many recently developed
quantum models of light propagation in a medium [118-121]. Therefore,
establishing an interference-exact RTE model also provides means to ex-

tend the applicability of these non-interference-exact quantum models.

RTE-model parameters

Here we assume normal incidence for simplicity but, in Publication VII,
the calculations have been performed in the case of general incidence. The
connection between QFED and the RTE model is established by compar-
ing the derivative of the photon numbers in Eq. (3.26) with the RTE model

for stratified media written as

i@i(%fﬂ)) =F ax(z,w)[(Ax (2, w)) — (i(z,w))]

dx
+ B (2, w) (R (2, w)) — (A(z,w))]. (3.28)

Here we have allowed that the damping and scattering coefficients ay (z,w)
and B4 (z,w) can be in general position dependent.

Substituting the integral expressions for the photon numbers of the
QFED framework given in Eq. (3.26) into the RTE model in Eq. (3.28)
and omitting the function arguments z, 2/, and w for brevity, we obtain

< 1 0pnis 1 9p N\ g
/76>C (; or E%PNM)WWI’

_ /: { Fou [prLi ~ 8z — x’)} + 8y {pN% ~ Sz — x’)] }<7>d;c’. (3.29)

Here we have imported the source-field photon numbers 7 of Eq. (3.28)
within the integrals by using delta function representations. In order to

determine the damping and scattering coefficients o and 3., we require
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that the RTE model must be valid for arbitrary temperature distributions
of the material described by the position-dependent source-field photon
number (7). This requirement is equivalent to the condition that the in-
tegrands on the left and right hand side of Eq. (3.29) must be equal at
all positions z and 2’. Although it is not directly evident, one can find
that the integrands on the left and right in Eq. (3.29) are linearly depen-
dent functions of 2’ for 2’ # z. This enables us to separate Eq. (3.29) into
two linearly independent equations, one for + = 2’ and one for z # z'.
For x = 2/, by setting the integrands on the left and right hand side of
Eq. (3.30) equal, we obtain an equation

E / 0P oy 5 (3.30)

pJo Oz
where 2~ and 2T denote positions on the left and right infinitesimally

close to z. For = # 2/, we respectively obtain an equation

0 10
pNIji - 77p_pNLi = Fa+pns £ Btpai=- (3.31)
Ox pOx

The solutions of the pair of equations for a4 and 34, formed by Eqgs. (3.29)
and (3.30), are given by

o (z,w) = 1 <@p _ papNLi — /I+ %dx/> (3.32)
+(z, opm \ Dz oz Ll A , .
_ 1 dp OpnL+ ot Opxs ,
B:ﬁ:(fu W) = QPPIF (8IPNL:E —p O — PNL+ L_ Wdl’ ) (333)

These quantum optical light-matter interaction parameters fully capture
the interference, emission, damping and scattering of propagating pho-
tons in stratified media. To include the corrections in the conventional
RTE model, one only needs to replace the classical damping and scatter-
ing coefficients with the position-dependent parameters in Eqgs. (3.32) and
(3.33). The derived interference-exact RTE model is also expected to ex-
tend the useful range of interference-aware optical models from simple

structures to full device level simulations.

Solution of the RTE model

In order to write the photon number as a solution of the RTE model in
a general form, we first rewrite the RTE model in Eq. (3.28) as a matrix
equation

%n(aw} = —a(z,w)[n(z,w) —n(z,w)]. (3.34)

Here we have written the photon numbers of the left and right propa-

gating fields and source fields as vectors n(z,w) = [(i,(z,w)), (A_(z,w))]T

34



Developed models

and n(z,w) = [{(H(z,w)), (H(z,w))]T, and the damping and scattering coef-
ficients have been incorporated in a matrix

ay —B+
B —a_

a(z,w) = { (3.35)

With the boundary condition n(zg,w) = ng defined at = = z, the solution
to Eq. (3.34) is then given by

x ol ! x x 1 7
n(r,w)=e" Jrg ole ) de ng + / e Jor el @) A oy (3! Gm(a!, w)da!. (3.36)
T

The form of Eq. (3.36) is fully analogous with the solution of the conven-
tional RTE model whose damping coefficients are here replaced by the
matrix a(z,w). The same applies to some representations of the conven-

tional quantum optical IOF [118].

3.2 Coupled state description of the field and matter

This section reviews the coupled state description of the field and matter
in a medium described in Publication VIII. In Sec. 3.2.1, we briefly present
some background for the Abraham—Minkowski controversy of photon mo-
mentum in a medium as this controversy was one of the main motiva-
tions for the development of the coupled state description in this thesis.
In Sec. 3.2.2, we review the MP quasiparticle picture, where we consider
the light pulse as a coupled state between a single photon and matter, iso-
lated from the rest of the medium, and apply only the conservation laws
and the Lorentz invariance. In Sec. 3.2.3, we describe the corresponding
OCD model that is based on Newton’s equation of motion. The OCD model
presents an alternative derivation of the main results obtained in the MP
quasiparticle approach, and it also allows simulations of the predicted

photon mass drag effect with realistic material parameters.

3.2.1 Abraham-Minkowski controversy

The quantum hypothesis by Max Planck in 1900 [122] related the energy
E of a photon to the frequency of light as F = hiw. Since then, the mo-
mentum of a photon propagating in vacuum has been known to be given
by p = fiw/c. However, the momentum of light in a medium with refrac-
tive index n has remained a subject of an extensive scientific controversy

for more than a century [34-46, 123-132]. The controversy has culmi-
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Figure 3.1. Schematic illustration of the problem of a photon propagating through a
medium block having refractive index n. The photon emerges from vacuum
on the left. Then it couples to the atoms of the medium block forming an
MP quasiparticle, which propagates through the block. After penetrating the
medium block, the photon continues to propagate in vacuum on the right.
At the interfaces, the medium block experiences recoil forces F; and F; that
depend on the total momentum of the MP in the medium. Figure adapted
from Publication VIII.

nated in the difficulty to establish an unambiguous expression for the
photon momentum and, in particular, in formulating a consistent theory
to choose between the Abraham momentum py = fw/(nc) [133, 134] and
the Minkowski momentum py; = nhw/c [135]. Therefore, this momentum
dilemma has become known as the Abraham—Minkowski controversy. The
problem of the propagation of a light wave in a nondispersive medium is
schematically illustrated in Fig. 3.1.

Neither the Abraham nor the Minkowski momentum has previously
been proven to be fully consistent with the energy and momentum con-
servation laws, de Broglie hypothesis, Lorentz invariance, and available
experimental data. To explain the controversy, it has been previously
suggested that both forms of momenta are correct but describe differ-
ent aspects of the momentum of light [37, 38]. In some other theoretical
studies, the Abraham—Minkowski controversy has been reasoned to be re-
solved by arguing that the division of the total energy-momentum tensor
into material and electromagnetic components would be completely arbi-
trary [36, 136, 137]. On the experimental side, several different setups
have been introduced for the measurement of the momentum of light in a
medium [138-149]. However, experimental results have been interpreted
to be partly controversial, and therefore, they have not been able to con-

clusively resolve the controversy.
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Abraham model

A simple derivation of the Abraham model of light can be presented by
considering how the so-called Einstein’s box thought experiment [150,
151] is traditionally applied to determine the momentum of a photon in-
side the medium. In this approach, the starting point is Newton’s first law
generalized to account for both the fields and particles [37]. This law is
also known as the constant center of energy velocity (CEV) of an isolated
system, such as the photon and the medium block in Fig. 3.1. The con-
stant CEV for a system of a photon with energy /iw and velocity c initially
in vacuum and a medium block with mass M and energy M ¢? initially at

rest is argued to obey the equation

> B, hwe fwv + MAV
= £ = = . 3.37
Verv = SN i S R M@ T hw M 3.37)

Here the two forms on the right are written for the cases before and after
the photon has entered the medium. It is assumed that inside the medium
the initial photon energy hw propagates with velocity v = ¢/n which re-
sults in the medium block obtaining a velocity V' to be determined from
Eq. (3.37). From Eq. (3.37) we then obtain fiw/c = Iw/(nc) + MV suggest-
ing that the initial photon momentum %w/c in vacuum is split into the

Abraham momentum of a photon in a medium equal to

Tw
PA= — (3.38)

nc

and to the medium block momentum equal to MV. One might then con-
clude that the Abraham momentum would be the correct photon momen-
tum in a medium and that the Minkowski momentum would thus violate

Newton’s first law [37].

Minkowski model

The simplest theoretical derivation of the Minkowski model is provided
by the application of the de Broglie hypothesis to the state of a light wave
in a medium. According to the de Broglie hypothesis, the momentum of a

quantum State iS I‘elated tO the wav elength as
p=— 3.39
)\ I ( )

where h is the (non-reduced) Planck constant and ) is the wavelength. As
the wavelength of light is very well known to be reduced in the medium

as A = )\o/n, where )\ is the wavelength in vacuum, and )\ = 27c/w,
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we obtain that the momentum of light in the medium is given by the

Minkowski formula as

nhew (3.40)

M =

Therefore, one might conclude that the Minkowski momentum would be
the quantum mechanically correct photon momentum in a medium. Thus,
one might also conclude that there is a clear inconsistency between New-
ton’s first law in Eq. (3.37) and the de Broglie hypothesis in Eq. (3.39).
However, in Publication VIII, we show that this is not actually the case
and there exists a unique and fully transparent resolution to the contro-

versy.

3.2.2 Mass-polariton (MP) quasiparticle model

Next we review the MP quasiparticle model introduced in Publication
VIII, where light quanta are described as MP quasiparticles that are
formed by the coupled state of a photon and a mass displacement field as-
sociated with the photon. Due to the photon induced mass displacement
propagating at speed ¢/n, the MP is also shown to have a rest mass. Since
the MP does not involve a clear resonance with an internal excited state of
the medium, the polariton term here has a meaning that fundamentally
differs from its conventional use in the context of the exciton-polariton
and the phonon-polariton quasiparticles.

As the consistent description of the propagation of a light field in a
medium has appeared to be extremely difficult leading, e.g., to the Abra-
ham-Minkowski controversy, we base the MP quasiparticle model on the
most fundamental laws of energy and momentum provided by their con-
servation laws and the covariance principle of the special theory of relativ-
ity. The covariance condition in Eq. (2.26) clearly indicates that a photon
with energy hiw having either Abraham or Minkowski momentum prop-
agating in a nondispersive medium cannot be covariantly described by a
state with a zero rest mass. Therefore, we consider the possibility that the
photon forms a new quasiparticle with a nonzero mass dm, consisting of
the photon moving at speed ¢/n and a photon induced mass displacement
field that also propagates at speed ¢/n. This is equivalent to allowing that
the medium is not perfectly rigid contrasting the typical assumption in
previous works on the Abraham—Minkowski controversy. Therefore, our

model allows the formation of a mass density wave (MDW), i.e., excess
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Figure 3.2. Schematic illustration of the energy and momentum transfer of the photon,
the MP, and the medium block in the processes where the MP is created and
destroyed. Inside the block, the mass energy is transferred as a MDW illus-
trated by the bending of the lattice planes. Figure adapted from Publication
VIII.

mass density of the medium, which is associated with light as illustrated
in Fig. 3.2.

Here, in the MP quasiparticle approach, we determine the value of dm
by requiring that the MP is described by a covariant state that enables
the transfer of energy trough the medium at speed v = ¢/n. It is shown
that the determination of ém also determines the momentum of the MP.
Consequently, the energy ratio dmc?/hw and the energy-momentum ratio
E/p of the MP are internal properties of the light wave. Separate in-
terface forces in Fig. 3.1 are additionally needed to balance the possible
momentum change between the photon momentum in vacuum and the
momentum of the covariant MP state so that the total momentum is con-
served. The related recoil energies and momenta at the interfaces are

assumed to directly affect only thin material layers at the surface.

Laboratory frame (L-frame)

In L-frame, which is the initial rest frame of the medium block, the total
energy of the MP in our model is given by Eyp = hw + dmc?. It consists
of the part hw describing the energy of the field including the potential
energy of induced dipoles and the kinetic energy of MDW atoms, and the
part dmc? related to the rest energy of ém transferred as a MDW. It can
be reasoned that, in the total energy of the MP in L-frame, all other con-
tributions, but the mass energy émc?, have their origin in the field energy
of the incoming photon. In any inertial frame, all this field energy can be

exploited, for instance, in the resonance excitation of the medium atoms.
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For example, the kinetic energy of ém is included in the field energy hw
as atoms are moved by the field—dipole forces following from the presence
of the field. However, since dm is not the mass of an isolated particle in
vacuum but the mass carried by the MDW, where the total mass of con-
tributing atoms is vastly larger than ém, the kinetic energy of ém is neg-
ligible even though it is carried at the relativistic speed v = ¢/n through
the medium. In Publication VIII, this is reasoned by using the numerical
results of the OCD model and also by using simple classical energy and

momentum arguments.

MP rest frame (R-frame)

Next we transform the total L-frame energy of the MP, given by Eme =
uw + dme?, to an inertial frame moving with the velocity v’ with respect to
L-frame. Denoting the so far unknown momentum of the MP in L-frame
by pup and using the Lorentz transformation in Egs. (2.22) and (2.23), we

obtain the energy E;;, and momentum pj;, of the MP in the transformed

frame as
Eyp =7 (Bxe — V'pye) = 7' (hw — v'pyp) + 7'6mc?, (3.41)
V' E; v hw
Pwe =7 (pMP - pQMP> =7 (pMP = U/5m). (3.42)

Here +/ is the Lorentz factor corresponding to the velocity +'. In Eq. (3.41),
the last term on the right presents the transformed rest energy of the
MDW, while the first term hw’ = +/(hw — v'pyp) originates from the field
energy and it corresponds to the Doppler-shifted energy of a photon in
a medium. According to the Doppler shift [152], the field energy be-
comes zero in the reference frame moving with the velocity of light in
the medium. This condition is equivalent to the fact that photons do not
have a rest mass. Therefore, setting 7w’ — 0 in R-frame, where v' = ¢/n,
one obtains

Fw
Pap = "T (3.43)

The Doppler shift has been used to justify the Minkowski momentum also
earlier [37, 129]. However, in the earlier derivation, the Lorentz transfor-
mation in Egs. (3.41) and (3.42) was not used, and thus, the transferred

mass om carried by the MDW remained undetermined.

Transferred mass carried by the MDW and the rest mass of the MP
Since R-frame moves with the MP, the total momentum of the MP in R-

frame is zero by definition. Therefore, inserting the momentum py; of the
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MP from Eq. (3.43) into Eq. (3.42) and setting v" = ¢/n, one obtains the

transferred mass carried by the MDW as
om = (n? — 1)hw/c?. (3.44)

According to the special theory of relativity, the total energy of a particle
or any structural system with rest mass my in its rest frame can be writ-
ten as moc?. Therefore, we denote the mass of the MP in R-frame by mq
and call it the rest mass of the MP. Inserting pyp and dm from Egs. (3.43)
and (3.44) into Eq. (3.41) and setting v' = ¢/n, we can solve the rest mass
of the MP as

mo =nvn2 —1hw/c. (3.45)

For the energy and momentum of the MP, one then obtains in L-frame

Fyp = fymoc2 = n2hw,

Pyp = YMOU = @ (3.46)
It can be directly observed that the energy and momentum of the MP in
Eq. (3.46) and the rest mass in Eq. (3.45) fulfill the covariance condition
in Eq. (2.26). Note that although knowing dm is enough to understand
the mass transfer associated with the MP, m is useful for transparent
understanding of the covariant MP state of light in a medium.

The rest mass of the MP, the transferred mass carried by the MDW,
and the Minkowski form of the MP momentum were found to be direct
consequences of the Lorentz transformation, Doppler shift, and the fun-
damental conservation laws of nature. This is in contrast with earlier
explanations of the Minkowski momentum, where the transferred mass
carried by the MDW has been neglected.

Momenta of the field and matter parts of the MP

The covariant energy-momentum ratio E/p = c?/v following from the
Lorentz transformation in Eqgs. (3.41)—(2.25) allows splitting the total MP
momentum in Eq. (3.46) into parts corresponding to the electromagnetic
energy hw and the MDW energy dmc?. As a result, one obtains the field

and MDW momenta given in L-frame by

hw
Pfield = —,
ne
1\ hw
Pypw = (n — *) —. (3.47)
n/ c
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Therefore, one can observe that the field’s share of the total MP momen-
tum is of the Abraham form while the MDW’s share is given by the dif-
ference of the Minkowski and Abraham momenta. However, due to the
coupling, only the total momentum of the MP and the transferred mass

are expected to be directly measurable.

Einstein’s box thought experiment revised

Our results in Eqgs. (3.45) and (3.46) show that the MP rest mass m( has
not been taken properly into account in Einstein’s box thought experiment
discussed above. Accounting for the rest mass of the MP, we can write the
constant CEV law in Eq. (3.37) before and after the photon has entered
the medium as

Ve — Y Ewi  hwe  ymoctv + MoV,
CVTISE T hw+ M T ymod + Myc?

where M, = M — dm and V; = (1 — n)hw/(M;c). The equality of the de-

; (3.48)

nominators corresponds to the conservation of energy and the equality
of the numerators divided by ¢? corresponds to the momentum conser-
vation. Equation (3.48) directly shows that the mass-polariton with the
Minkowski momentum obeys the constant CEV motion and explains why
earlier derivations of the Minkowski momentum assuming zero rest mass
for the propagating light pulse lead to violation of the constant CEV mo-
tion [37, 38].

3.2.3 Optoelastic continuum dynamics (OCD)

Newton’s equation of motion and optoelastic forces

Next we briefly review the essence of the OCD model that corresponds
to the MP model above, but is an independent and complementary ap-
proach to the same problem of light propagation in a medium. In the
OCD model introduced in Publication VIII, we apply Newtonian formula-
tion of the continuum mechanics to show that the field—dipole forces give
rise to the MDW, which propagates with the light field in a medium. The
MDW effect disturbs the mass density of the medium from its equilibrium
value pg. Another related effect is the recoil effect, which exists only at
material interfaces, where the refractive index changes. The total dis-
turbed atomic mass density of the medium, in the OCD model, becomes
palr,t) = po + prec(r,t) + puow(r,t), where prec(r,t) is the mass density

disturbance due to the recoil effect and pypw(r,t) is the mass density of
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MDW. The mass density disturbances related to the recoil and MDW ef-
fects become spatially well separated after the light pulse has penetrated
in the medium. While the recoil effect exists only at material interfaces,
the MDW effect follows the light pulse inside the medium. As the veloci-
ties of atoms are nonrelativistic in the inertial reference frame where the
medium is initially at rest, we can write Newton’s equation of motion for

the mass density of the medium as

e )0 g )+ (), (3.49)
where r,(r, t) is the atomic displacement field of the medium and £, (r, t)
and f(r, t) are the optical and elastic force densities.

The optical force density f,,;(r,t) has its origin in the interaction be-
tween the induced dipoles and the electromagnetic field. It has remained
as a controversial topic related to the Abraham-Minkowski controversy
[36, 40, 41, 149]. In the OCD model, we use the force density correspond-
ing to the conventional Abraham model given by [41, 153]

n?—19
= §S(r, t). (3.50)

fop (r,1) = f%OEZ(r, £)Vn? +

The displacement of atoms from their equilibrium positions due to the
optical force in Eq. (3.50) gives rise to the elastic force density f(r,¢)
following from Hooke’s law. In the simulations in Publication VIII, we as-
sume a homogeneous isotropic elastic medium, in which case the stiffness
tensor in Hooke’s law has only two independent entries described in terms
of the bulk modulus B and the shear modulus G [154]. The elastic force
density is then given by [155]

fu(r,t) = (B+ 3G)V[V - ra(r,t)] — GV x [V X 1a(r, 1)]. (3.51)

In the special case of non-viscous fluids, one could set the shear modulus
G to zero, in which case Eq. (3.51) is simplified so that only the first term
remains.

In the OCD model, Newton’s equation of motion in Eq. (3.49) with the
optical and elastic force densities in Eqgs. (3.50) and (3.51) can be solved
by time integration using appropriate space and time discretization. To
verify the correspondence with the MP quasiparticle model reviewed in
Sec. 3.2.2, the OCD model has been applied to simulate the optical and
elastic forces and the resulting mass and momentum transfer as a func-

tion of time when a Gaussian light pulse propagates through a diamond
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crystal block in Publication VIII. The results of these simulations are re-

viewed in Sec. 4.3.

3.2.4 Comparison of the MP and OCD approaches

For the light pulse of energy Ey = Nyhwy, where Ny is the number of
photons and wy is the central frequency of the pulse, the total mass carried

by the MDW can be written as
oM = / pyow (1, 1)d3r = (n? — 1) Nohwo /2. (3.52)

The integral expression is the result obtained from the OCD model of
Sec. 3.2.3 and the right hand side is the result obtained from the MP
quasiparticle model of Sec. 3.2.2. The total momentum of the coupled
state of the field and matter is a sum of the momenta of the field and the
MDW, and it is given by

Pwr = / pova(r, t)d®r + / S(;’ t) gy — N0 o (3.53)

C

The first term on the left is the MDW momentum and the second term is
the field momentum obtained from the OCD approach. On the right, we
have the momentum of the coupled state obtained from the MP quasipar-
ticle model. The splitting of the total momentum of the light pulse into the
field and MDW parts is given in the MP quasiparticle model by Eq. (3.47)
multiplied with the photon number.

In the simulations described in Publication VIII and reviewed in Sec.4.3,
it has been found that the MP quasiparticle and the OCD model results
agree within the numerical accuracy of the simulations. This complete
agreement between the MP and OCD approaches is only obtained if the
optical force density used in the OCD approach is of the Abraham form as
given in Eq. (3.50). Therefore, one can conclude that our results provide
significant support for the Abraham force density as the only form of the
optical force density in a nondispersive medium that is fully consistent

with the covariance principle.
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4. Results and discussion

In this chapter, we review selected results obtained in this thesis. In
Sec. 4.1, we present the results of Publication I, which applied the Wigner
function formalism described in Sec. 2.2.4 to study the application of the
photon creation and annihilation operators on an electromagnetic field
in a way that leads to amplification of weak coherent fields in a proba-
bilistic amplification approach. In Sec. 4.2, we present selected results
obtained by applying the QFED formalism developed in Publications I1-
VII for one- and three-dimensional geometries also including plasmonic
structures. After that, in Sec. 4.3, we describe the results of Publication
VIII in which we applied the OCD model to simulate the dynamics of the
medium atoms driven by the field—dipole forces of a light field propagat-
ing in a medium and the elastic forces that try to re-establish the mass

equilibrium in the medium.

4.1 Noiseless amplification of weak coherent fields

It is well known that quantum states cannot be perfectly cloned or am-
plified without introducing some excess noise in the process. This no-
cloning theorem formulated in 1982 [156, 157] has profound implications,
e.g., in quantum computing. The result follows from the linear and uni-
tary evolution of quantum mechanical states and it avoids the violation
of Heisenberg’s uncertainty principle. However, one can amplify signals
without adding noise by relaxing the requirement of a deterministic op-
eration. Experimental demonstrations of such probabilistic amplifiers for

weak coherent fields have been reported, e.g., in Refs. [65, 66].
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4.1.1 Amplification scheme

Nondeterministic amplifiers are usually based on adding and subtract-
ing photons to and from the light field [158-161]. In experimental im-
plementation, subtraction is typically performed using a beam splitter
and a photodetector and addition using a heralded single-photon source,
a beam splitter, and a photodetector [65—-68]. In Publication I, we pro-
posed a noiseless amplification scheme where, in contrast to previous
works [65, 66], the energy required to amplify the signal did not origi-
nate from an external energy source, i.e., a single-photon source, but from
the stochastic fluctuations in the field itself. The action of an ideal noise-
less amplifier for coherent states can be described as |ag) — |gag) where
oy is the initial field amplitude and g is the gain of amplification. This
operation cannot be implemented by commonly used deterministic ampli-
fiers, but it can be approximated by using a probabilistic setup. Addition
and subtraction of photons correspond to the application of the creation
and annihilation operators a' and a to an arbitrary state of light.

It is previously known that the operator G = (g—2)ata+aal = (9—1)a+1
is a good approximation of the action above for the ideal amplification
process of weak coherent fields [162]. The nominal gain g = 2 is of par-
ticular interest since the operation (¢ becomes a sequence of photon ad-
dition and subtraction as égzz = gaf [160]. The action of this transfor-
mation is evident since a weak coherent field is approximately described
as |a) ~ |0) + a|1) and thus one has aaf|a) ~ |0) + 2a|1). An amplifica-
tion scheme based on GQZ? was experimentally demonstrated by Zavatta
et al. [65]. Since the coherent state is an eigenstate of the annihilation
operator, the same outcome is also obtained by an operator ¢ =2 = aata
implemented by the setup proposed in Publication I. This outcome is ob-
vious since the additional annihilation operator conserves coherent states
as its eigenstates.

In our scheme, introduced in Publication I and illustrated in Fig. 4.1,
the setup by Zavatta et al. [65] using a single-photon source is replaced by
a configuration where a single photon is first subtracted from the initial
coherent field by a beam splitter and detected by a QND measurement
which is followed by adding the photon back to the field by the second
beam splitter. A successful photon addition occurs if no photons are de-

tected at photodetector PD1. Finally, another photon is subtracted from
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Implementation Implementation
of a'a PD1 of @
|0) |0) |0)
|ax) lga)
1) 1) 1)
QND

Figure 4.1. Schematic illustration of a setup for noiseless amplification of weak coherent
fields as a realization of the operator aa'a. In the successful operation, a sin-
gle photon is first subtracted from the input field |«) by the first beam splitter
on the left. The subtracted photon is measured by a QND measurement af-
ter which it is added back to the field at the second beam splitter. Finally
a photon is again subtracted from the field at the third beam splitter. The
resulting output field of the setup is an amplified field |ga). Figure adapted
from Publication I.

the field at the third beam splitter. This subtracted photon is detected at
photodetector PD2. The final output state resulting from these events is
an amplified coherent state with high fidelity.

4.1.2 Output fields of successful amplification

The output fields of our setup have been calculated using the standard
Wigner function formalism. For simplicity, in our calculations, we have
made the usual assumption that the photodetectors of the setup in Fig. 4.1
are ideal. Also the QND measurement is assumed to be ideal since mea-
surements made with QND detectors have been reported to produce single-
photon Fock states with good accuracy [163—-168]. The details of the anal-
ysis of how the initial coherent state propagates through the setup in the
case of successful amplification are as follows.

The initial coherent field with a Wigner function W, is described by
Eq. (2.49). The second input for the first beam splitter in our setup is
a vacuum state Wy given by Eq. (2.50). The interference field after
the first beam splitter is given by Wgg; following from Egs. (2.44) and
(2.45). The transmitted field Wgg;_. g after detecting one photon on the
reflected field of the first beam splitter can be obtained by using Eq. 2.48
with W/ = Wggy, W] = Wiiyq)> and W4 = Was1-,Bs2-

In the second beam splitter, a single photon with a Wigner function
W1y emerging from the QND measurement is added back to the trans-

mitted field Wgs1_,Bs2 of the first beam splitter. Therefore, using the in-
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put fields Wgg1_,5s2 and Winay for the second beam splitter, the interfer-
ence field Wyg, after the second beam splitter can be again calculated by
using Eqgs. (2.44) and (2.45). The transmitted field Wggo_,pss after de-
tecting no photons on the reflected field of the second beam splitter is
in turn obtained by using Eq. 2.48 with W’ = Wgsy, W] = Wg) (o), and
W5 = Was2-Bs3-

The input fields for the third beam splitter are Wgss_,5s3 and Wioyo|-
The interference field Wgg3 after this last beam splitter again follows from
Eqgs. (2.44) and (2.45). At the third beam splitter, one photon is subtracted
from the field. Thus the transmitted field of the third beam splitter, which
is the total output field W, of the setup, is obtained by using Eq. 2.48
with W/ = Wggs, W] = Wiiyq)> and Wi = Wout-

The effective gain for the amplification setup can be defined as the ra-
tio ger = |{Gout)|/|{@in)| [65] of the expectation values of the annihilation
operators of the output and input fields calculated by using Eq. (2.42) or
(2.43). Depending on the parameters of the setup, one can obtain effective
gain values lower or equal to the nominal gain of ¢ = 2. As a result, we
obtained the effective gain, given by

. t1t2t3(2 —+ 4|t1t2t30¢|2 + |t1t2t3a|4)
off = 1 =+ 3‘t1t2t30¢‘2 + ‘t1t2t55a|4

; (4.1)

where t;, i = 1,2, 3, are transmittivities of the beam splitters in the setup
that are assumed to be real-valued and to obey the relations in Eq. (2.34).

In order to quantify how much the output state differs from an ideally
amplified coherent state, we used Eq. (2.41) to calculate the fidelity of the
successfully amplified field with respect to a coherent field |gega). This
coherent field is obviously closer to the true amplified output state of the
setup when compared to the ideal maximally amplified coherent field |2«)
corresponding to the nominal gain of ¢ = 2. The result of our calculation

is given by

Fog = (14 2gestitats|al® + gezﬁ't%t%t%\a\4)e’(9§ﬂ-*t1i2t3)2\a\z ' 42
¢ 1+ 3|titatsa|? + |t1tatsa|? ’

In Fig. 4.2, we have plotted the effective gain, fidelity, and Wigner func-
tions for the successfully amplified fields calculated by using Egs. (4.1)
and (4.2) above and the Wigner function formulas given in Sec. 2.2.4. The
effective gain in Fig. 4.2(a) approaches the nominal gain value g = 2 for
small values of the input field amplitude |a| and the beam splitter reflec-

tivity r, which was chosen to be equal for all beam splitters in the setup.
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Figure 4.2. (a) Effective gain as a function of the input field amplitude calculated using
beam splitter reflectivities » = 0.1 (red dashed line), » = 0.25 (green dash-
dotted line), and » = 0.5 (blue solid line). The black dotted line corresponds
to the low reflectivity approximation used by Zavatta et al. [65]. (b) Effec-
tive fidelity with respect to a coherent field |gera) calculated using the three
different beam splitter reflectivities and the low reflectivity approximation.
(c) Fidelity with respect to an ideally amplified field |2a) calculated for com-
parison with the results obtained by Zavatta et al. [65]. (d) Contour plots of
the Wigner functions for three amplified output fields calculated using the
coherent field input amplitudes |a| = 0.1, |a| = 0.25, and |a| = 0.5 and the
beam splitter reflectivity of » = 0.4. Figure adapted from Publication I.
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Respectively, for larger values of the input field amplitude or the beam
splitter reflectivity, the gain decreases. The effective fidelity F.4 calcu-
lated with respect to a coherent field |gegra) is shown in Fig. 4.2(b). One
can observe that the effective fidelity decreases for increasing values of
the input field amplitude. However, the decrease in the effective fidelity
can be partly compensated by increasing the beam splitter reflectivity. For
comparison with the results obtained by Zavatta et al. [65] using a setup
including a specific single-photon source, in Fig. 4.2(c), we have plotted
the fidelity calculated with respect to an ideal maximally amplified coher-
ent field |2«). As expected, this ideal fidelity Fije. decreases faster than
the effective fidelity Feo¢ in Fig. 4.2(b). This follows from the fact that g.g
is reduced for stronger input fields. Therefore, F.z is a better measure
for the quality of the successfully amplified output field. One can also
observe, that Fjq.. decreases for increasing values of the beam splitter
reflectivity whereas the opposite is true for F.g. This is another result
that follows from the reduction of the effective gain. The contour plots of
the Wigner functions for the input field amplitudes |a| = 0.1, |a] = 0.25,
and |a| = 0.50 (with |a|?> being the photon number, i.e., essentially the
intensity of the field) and for the beam splitter reflectivity » = 0.4 are
shown in Fig. 4.2(d). It can be seen that, for small values of the input field
amplitude, the output field is very close to a pure coherent field, but the
deviation from a pure coherent state becomes apparent when the input

field amplitude increases.

4.2 Quantized fluctuational electrodynamics

In Publications II-VI, we have applied the LTE approximation and the
QFED formalism reviewed in Sec. 3.1 to describe field fluctuations, pho-
ton numbers, densities of states, Poynting vector, and thermal balance
in stratified media at non-equilibrium conditions. Here we concentrate
on the selected key results of these publications regarding the position-
dependent photon numbers which, in contrast to the field quantities, have
not been previously defined in the classical FED framework. Section 4.2.1
reviews the representation of the dyadic Green’s functions for stratified
media. In Sec. 4.2.2, we describe selected one- and three-dimensional re-
sults obtained by using our position-dependent photon-number concept.

The results related to the division of the photon number into parts prop-
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agating in different directions have been described in Sec. 4.2.3. Finally,
the damping and scattering coefficients in the quantum optical RTE are

discussed in Sec. 4.2.4.

4.2.1 Green’s functions for stratified media

In order to use the formulas of Sec. 3.1 for practical modeling tasks, the
Green’s functions must be computed for the specific geometry. In our case,
we have applied the QFED formalism to stratified media, for which it is
convenient to use the plane-wave representation for the dyadic Green’s
functions. In this representation, a point in space is denoted in the Carte-
sian basis (X,y,z) by r = 2% + yy + 22 = R + 22, where R = zx + yy is
the component of the position vector r in the z-y plane. Correspondingly,
a wave vector of a plane wave is denoted by k = K + k. sgn(z — 2’)z, where
K is the in-plane component and k. is given by k. = k2 — K2. Here
k = nko = k; + ik; is the wavenumber whose real and imaginary parts are
denoted by %, and k; and the square root of a complex number has been
defined so that the imaginary part is non-negative as k. ; > 0.

The adopted plane-wave representation is convenient since, in the z-
y plane, the dyadic Green’s functions of stratified media depend only on
the relative in-plane coordinate R — R/. Therefore, the dyadic Green’s

functions ajk(r7w7 r’), with j, k € {e,m}, can be written as [169, 170]

ajk(r7w7r,)
1 ‘_’T<—> o ,

=2 /R gn(z, K,w, 2 ) Re® BRI (4.3)
Iy

The terms ﬁTEjk(z,K,w, z’)f{ in Eq. (4.3) are the Fourier transforms of
ajk(r, w,r’) with respect to the in-plane position coordinate. The dyadic
plane-wave Greens functions Ejk(z, K,w,?') are calculated using standard
techniques in a coordinate system where the in-plane components of the
field sources are perpendicular and parallel to K. The rotation matrix Ris
used to return this convention of direction back to the coordinate system

where the direction of the field sources does not depend on K.

4.2.2 Photon numbers and densities of states

The physical implications of the position-dependent photon-number con-
cepts of the QFED framework reviewed earlier in Sec. 3.1 have been inves-

tigated in stratified media in the case of normal incidence in Publications

51



Results and discussion

IT and IIT and in the case of general incidence in Publication VI. When
studying the case of normal incidence, we separately examine the electric
and magnetic field contributions while, in the general case, we restrict our

studies to the quantities related to the total electromagnetic field.

Normal incidence

First, we present selected results obtained for normal incidence in Pub-
lication III. As the photon-number expectation values for thermal fields
are relatively small and depend strongly on the frequency, it was found
convenient to illustrate the results by using effective field temperatures
defined in terms of the photon-number expectation values using the in-
verted Bose—Einstein distribution as

huw
kg In[l + 1/(f;(z,w))]’

We studied the properties of these effective field temperatures and the cor-

(4.4)

T j(z,w) =

responding electric and magnetic LDOSs in the geometry of a 10-um-wide
vacuum cavity formed between two semi-infinite media with refractive in-
dices n; = 1.5 4+ 0.3i and ny = 2.5 + 0.5:. The temperatures of these media
acting as thermal reservoirs are 77 = 400 K and 75, = 300 K.

Figure 4.3 presents the LDOSs of the electric, magnetic, and total elec-
tromagnetic fields and the corresponding effective field temperatures as
functions of the position and frequency. The electric and magnetic LDOSs
in Figs. 4.3(a) and 4.3(b) clearly oscillate in the vacuum cavity and sat-
urate to constant values in the reservoir media far from the interfaces.
This is due to the formation of standing waves as a result of the interfer-
ence. The oscillations of the electric and magnetic LDOSs inside the cavity
were found to be strongest at resonant energies fiw = 0.056 eV, fuww = 0.118
eV, and fiw = 0.180 eV corresponding to the wavelengths \g = 22.1 um,
Ao = 10.5 pm, and Ay = 6.89 um. The oscillations in the electric and mag-
netic LDOSs manifest the well-known electric Purcell effect [171] and the
corresponding magnetic effect. These effects are related to the position-
dependent field—-matter coupling strengths of particles placed in the cav-
ity. The peaks in the electric LDOS coincide the minima in the magnetic
LDOS and vice versa. In contrast to the electric LDOS, the magnetic
LDOS reaches its maximum values within the semi-infinite media due to
the low finesse cavity and different dependence on the refractive index.
As a linear combination of the electric and magnetic LDOSs, the total

electromagnetic LDOS in Fig. 4.3(c) is constant with respect to position
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Figure 4.3. (a) Electric LDOS, (b) magnetic LDOS, (c) total electromagnetic LDOS, (d)
electric field temperature, (e) magnetic field temperature, and (f) total elec-
tromagnetic field temperature in the cavity geometry formed by two lossy
media with refractive indices n1 = 1.5 + 0.3i and no = 2.5 + 0.5¢ at temper-
atures 400 and 300 K separated by a 10-um-wide vacuum gap. The vertical
solid lines denote the cavity boundaries and the horizontal dashed lines de-
note resonant energies of the cavity. The LDOSs are given in units of 2/(wcS).
Figure adapted from Publication III.

inside the cavity. However, the total electromagnetic LDOS is position-
dependent and oscillatory inside the reservoir media since the oscillations
of the electric and magnetic LDOSs do not cancel each other due to the ex-
istence of bound states related to the material polarizability.

The effective field temperatures defined using Eq. (4.4) are plotted for
the electric and magnetic fields in Figs. 4.3(d) and 4.3(e). These effec-
tive field temperatures are strongly position dependent as they oscillate
both in vacuum and near the interfaces inside the reservoir media. These
position dependencies originate from the nonuniform coupling to the ther-
mal reservoirs. Deep inside the reservoir media, the oscillations are then
damped and the effective electric and magnetic field temperatures satu-
rate to the reservoir temperatures. This damping depends on the photon
energy and the absorptivity of the material taking place in a distance of
the order of 10 um in our example structure. The total electromagnetic
field temperature is plotted in Fig. 4.3(f). As the total electromagnetic
LDOS in Fig. 4.3(c), it is also constant with respect to position inside the
cavity. One can also notice that the changes of the total electromagnetic
field temperature near material interfaces are always monotonic with re-
spect to position, which is an expected result for the photon number of the

total electromagnetic field.
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Figure 4.4. Schematic illustration of the studied Ag/GaN/Ing.15Gao.s5N/GaN/Al;O3 het-
erostructure. The band gap of the light emitting Ing.15Gag.ssN QW is £, =
2.76 eV and the excitation of the QW corresponds to an applied voltage of
U = 2.6 V. The background temperature of the materials and the radiation
background is 7' = 300 K. Note that this figure is not to scale. Figure adapted
from Publication VI.

General incidence

Next we present the results obtained by applying the QFED formalism
to the case of general incidence in a layered structure as presented in
Publication VI. In contrast to the case of normal incidence above, the de-
scription of plasmonic resonances is naturally included in the description
in the general case. Therefore, it was of interest to use QFED to the study
of the contribution of the evanescent SP modes to the position-dependent
LDOSs and the effective-field temperatures in an example plasmonic mul-
tilayer structure, which had recently been of experimental and theoretical
interest [172, 173]. This application also demonstrates the usefulness of
the QFED method to the description of photon numbers and effective field
temperatures in realistic three-dimensional layered structures.

The studied light-emitting Ag/GaN/Ing 15Gag g5 N/GaN/Al;O3 multilayer
structure is illustrated in Fig. 4.4. The light emitted from this structure is
generated at the 2-nm Ing 15Gag ssN QW which has a band gap of £, = 2.76
eV (A = 450 nm). This emitter layer is deposited 20 nm below the 20-nm
silver layer which supports SP modes. The whole structure is deposited
on top of a sapphire substrate. In our QFED calculations, we used the
frequency-dependent refractive indices of the materials taken from liter-
ature. The refractive indices of GaN and InN were taken from Refs. [174—
179]. Based on the refractive index values of GaN and InN, the refractive
index of Ingp15GapssN was deduced by using Vegard’s law. The refrac-
tive index of silver was in turn calculated by using the Drude model with
plasma frequency w, = 9.04 eV/h and damping frequency w, = 0.02125
eV/h taken from Ref. [180]. The refractive index of sapphire substrate
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was taken from Ref. [181].

In the QFED calculations, we compared the emission of the QW in two
cases. In the first case, the QW was assumed to be thermally excited to
temperature T,, = 350 K and, in the second case, the QW was assumed
to be electrically or optically excited to a state corresponding to a direct
excitation by a U = 2.6 V voltage source. The background temperature
of the materials was assumed to be 7' = 300 K meaning that all mate-
rials emit thermal radiation corresponding to this background tempera-
ture. The thermal radiation of the background materials and the radi-
ation of a thermally excited QW were modeled by using the source-field
photon-number expectation values given by the Bose—Einstein distribu-
tion as (fg) = 1/(e"/*8T) — 1) and (fiqw) = 1/(e™/(*8Tex) — 1), This also
corresponds to applying the LTE approximation described in Sec. 3.1.1.
In the case of electrical or optical excitation, the source-field photon num-
ber of the QW was modeled using (ijqw) = 1/(e™~V)/(ksT) _ 1) for pho-
ton energies above the band gap, iw > E,, and the background value
(fvg) = 1/(e™/(k8T) — 1) for photon energies below the band gap, w < E,
[182]. The effective source-field temperature of the electrically or optically
excited QW, which is calculated from the source-field photon number by
using the inverted Bose—Einstein distribution in Eq. (4.4), ranges from
5175 K to 625 K as the photon energy ranges from 2.76 to 5 eV. Thus, the
values of (7,) in the case of electrical or optical excitation above the band
gap are very large in comparison with the photon-number values of the
thermal background or the thermally excited QW.

Figure 4.5(a) presents the base-10 logarithm of the total electromagnetic
LDOS for photon energy fuw = E; + kgT = 2.786 eV plotted as a function
of position and the in-plane component of the wave vector. The leftmost
material is the sapphire substrate while the rightmost material is air.
The light cones of the materials are defined by the values of the in-plane
component of the wave vector satisfying K < n,ky, where n, is the real
part of the refractive index of the respective material. The light cones
of sapphire, GaN, and air are clearly visible in the LDOS and denoted by
the horizontal dashed lines. The LDOS is also slightly elevated beyond the
material interfaces due to the evanescent fields. The interference patterns
resulting from the guided modes in the GaN layer between the light cones
of GaN and sapphire with 1.78 < K/ky < 2.51 can also be seen in the
figure. The large LDOS values near z = 0 um and K/ky = 5.0, seen as the
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Figure 4.5. (a) The base-10 logarithm of the total electromagnetic LDOS, (b) the effective
temperature of the total electromagnetic field in the case of a thermally ex-
cited QW, and (c) the corresponding effective field temperature calculated for
an electrically or optically excited QW, where the excitation corresponds to
the application of a bias voltage of U = 2.6 V. The plots are done for photon
energy hw = E4 + kgT = 2.786 eV as a function of position and the normal-
ized in-plane component K/ko of the wave vector. The position of the Ag/air
interface is fixed to z = 0. The light cones of GaN, sapphire, and air are
represented by the white dashed lines. Figure adapted from Publication VI.

yellow region in the plot, are associated with the GalN/Ag SP resonance.
The air/Ag SP resonance is located near z = 0 yum and K/ky = 1.0, but it
is not clearly visible in the figure.

Figure 4.5(b) presents the effective field temperature of the total electro-
magnetic field in the case of a thermally excited QW calculated from the
photon number by using Eq. (4.4). At high values of K, the effective field
temperature approaches the source field temperature that is T.x = 350
K in the narrow Ing 15Gags;N layer located slightly left from z = 0 um
and 7' = 300 K in other layers. Resembling the LDOS in Fig. 4.5(a), the
light cones of the materials are also visible in the effective field temper-
atures. However, one can see that the patterns related to the evanescent
fields near the material interfaces extend farther from the interfaces. The
corresponding effective field temperature in the case of an electrically or
optically excited QW is shown in Fig. 4.5(c). As expected, the values of
this effective field temperature are significantly higher than those in the
case of a thermally excited QW in Fig. 4.5(b). Otherwise, the effective field
temperatures in Figs. 4.5(b) and 4.5(c) resemble each other.

Figures 4.6(a), 4.6(b), and 4.6(c) show the base-10 logarithm of the total
electromagnetic LDOS as a function of the photon energy and the in-plane
component of the wave vector in the QW, in air at 1 nm above the struc-
ture, and in air at 1 ym above the structure, respectively. The GaN/Ag SP
resonance and GaN guided modes corresponding to the Fabry—Pérot res-
onances of the cavity are clearly visible in Figs. 4.6(a) and 4.6(b). Ag/air

SP resonance can be seen above the light cone of air in Fig. 4.6(b). The
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Figure 4.6. The base-10 logarithm of the total electromagnetic LDOS as a function of
photon energy and the normalized in-plane component K /ko of the wave vec-
tor (a) in the QW, (b) in air at 1 nm above the surface, and (c) in air at 1
pm above the Ag/air interface. (d), (e), and (f) The effective temperatures
of the total electromagnetic field at the corresponding positions in the case
of a thermally excited QW. (g), (h), and (i) The corresponding effective field
temperatures calculated for an electrically or optically excited QW, where the
excitation corresponds to the application of a bias voltage of U = 2.6 V. Figure
adapted from Publication VI.
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resonances can be seen to disappear at photon energies above 3 eV for
which GaN becomes absorptive. At 1 um above the structure, the LDOS
in Fig. 4.6(c) mainly consists of the propagating modes in the light cone
of air. Only a small contribution of the evanescent fields is visible at low
photon energies.

Figures 4.6(d), 4.6(e), and 4.6(f) show the effective field temperatures
corresponding to the LDOSs in Figs. 4.6(a), 4.6(b), and 4.6(c) for the case
of a thermally excited QW. The InGaN QW becomes nearly transparent
at low frequencies, and thus, the effective field temperatures reach the
background temperature in the limit of low frequencies. The peak in the
emissivity near fiw = 0.5 eV follows from the peak in the infrared absorp-
tion coefficient of the QW [179]. Due to the evanescent fields, the effective
field temperatures in Figs. 4.6(d), 4.6(e) deviate from the background tem-
perature at K values above the cone lines of the materials. However, at
very large K values, the effective field temperatures reach the source-field
temperature of the respective material layer as seen in Fig. 4.6(f). The
same behavior is present in the case of Figs. 4.6(d) and 4.6(e) but it is not
visible in the scale of these figures. When the distance to the QW becomes
larger, the contribution of the evanescent fields is reduced and the effec-
tive field temperatures are mainly contributed by the propagating modes
below the cone line of air as seen in Fig. 4.6(f).

Figures 4.6(g), 4.6(h), and 4.6(i) show the corresponding effective field
temperatures calculated in the case of an electrically or optically excited
QW. As expected, the emission starts to deviate from the background tem-
perature when the photon energy exceeds the band gap and again de-
creases to the background temperature at high frequencies well above the
band gap. The effective field temperature is also seen to increase as a
function of the optical confinement: In the case of Fig. 4.6(g), inside the
QW for the photon energy fuww = E; + kpT = 2.786 eV, the evanescent In-
GaN modes reach effective field temperatures as high as T, ~ 3500 K,
whereas the modes extending into the light cone of GaN have T.g ~ 2700
K, and the modes bound to the light cone of air reach T,z ~ 2200 K. The
values of the effective field temperatures are somewhat lower at 1 nm
above the structure as presented in Fig. 4.6(h) and much lower when the
distance is increased to 1 ym as presented in Fig. 4.6(i). This mainly fol-
lows from the attenuation of the evanescent fields related to the increased
distance to the QW.
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Figure 4.7. Illustration of an optical cavity that consists of three homogeneous dielectric
layers with different permittivities and LDOSs. The left and right propagat-
ing field photon-number expectation values (74) and (n_) are calculated in
each layer. Figure adapted from Publication IV.

4.2.3 Left and right propagating fields

In Publication IV, we presented how to separate the fields and photon
numbers into parts propagating in different directions in interfering struc-
tures as reviewed in Sec. 3.1.6. Below, we discuss the application of these
concepts to lossy and lossless example cavity structures described in Pub-
lication IV. The photon numbers in an optical cavity structure consisting
of three homogeneous dielectric layers with permittivities 1, €2, and e3

are illustrated in Fig. 4.7.

Lossless cavity

First, we consider the case of a lossless cavity, where the left and right
propagating photon numbers are piecewise constant and only depend on
the left and right input field photon numbers (7,4) and (73_) and the
width and materials of the cavity and cavity walls. In the left and right
semi-infinite media and inside the cavity, the propagating photon num-

bers can be written as

(in-) = [Ra* (i) + Ver/e3 [TI TS (Rz-),

(n) = Ver/et[Til (i) + Vea/es [TIRY* (s
2+ Re(1 + 2R} Rovge?ikada) ’

Ve et TR () + Voo /o3 | T3 (s )

(o) = Re(1 4 2R} Ravqe?ik2dz) ’
(31) = V/es/e1 |TiTal*(Any) + [RS[* (Rz-),

(4.5)

where ds is the thickness of the cavity, k9 is the wave number in the cavity,
vy = 1/(1 4 rirge?®2d2) Ry = (r| + r9e?*2%2) 1y Ry = 19, T1 = ty1n, To = ta,
=1, Ry = (rh + rie?ked2)yy T = ), and T = thvs with the single-
interface Fresnel reflection and transmission coefficients, which are given

for left incidence by r; and ¢;, i € {1,2}. The primed reflection coefficients
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Figure 4.8. Left and right propagating photon numbers (7_) and (7) and the total pho-
ton number () in the vicinity of a lossy cavity at the first cavity resonance
hw = 0.046 €V (A = 26.9 um). The refractive indices of the media from left to
right are n; = 2.5 + 0.44, no = 1.2 4+ 0.24, and n3 = 1.5 + 0.54, and the source-
field temperatures are 77 = 300 K, 7> = 200 K, and 75 = 100 K. Figure
adapted from Publication IV.

are those for right incidence. It can be observed that the photon-number
values inside the cavity and at the outputs in Eq. (4.5) are always between
the input field photon numbers, which ensures that all photon numbers
are equal in global thermal equilibrium and photons do not, e.g., accumu-

late inside the cavity.

Lossy cavity

In contrast to the case of a lossless cavity described above, in lossy struc-
tures, the photon numbers are no longer piecewise constant as all mate-
rial points can act as field sources or drains through the position-depen-
dent source field. In Publication IV, we have illustrated this by investi-
gating the photon numbers in a lossy dielectric cavity structure, where
the refractive indices of the media from left to right are n; = 2.5 + 0.44,
no = 1.2 4+ 0.2, and ng = 1.5 + 0.5, The temperatures of medium layers
are 71 = 300 K, T, = 200 K, and T3 = 100 K, respectively. They correspond
to steady-state photon numbers 0.20, 0.074, and 0.0048.

Figure 4.8 presents the total, right propagating, and left propagating
photon numbers (), (1), and (7_) as a function of position at the first
resonant energy of the cavity, given by fiw = 0.046 eV (A = 26.9 ym). Due
to the highest source-field temperature on the left, the photon numbers
are highest on the left layer and decrease towards the right layer with
lowest source-field temperature. The discontinuities of photon numbers

at interfaces follow from reflections, while the decay inside the cavity and
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near the interfaces is due to thermalization. On the left and right, the
photon numbers eventually reach the source field temperature far from
the cavity. The total photon number can also be seen to be equal to the
average of the left and right propagating photon numbers. This is an
expected result, since the photon number describes the average photon

number in the collection of optical modes under study.

4.2.4 Quantum optical radiative transfer equation

In Publication VII, we developed the interference-exact quantum optical
RTE model discussed in Sec. 3.1.7. Here we review the application of this
model to a homogeneous space, a single-interface geometry, and a two-

interface resonator, as also presented in Publication VII.

Homogeneous space

The damping and scattering coefficients in Eqgs. (3.32) and Eq. (3.33) are
in general position-dependent. Naturally, there is no position dependence
in the case of a homogeneous space where the damping and scattering
coefficients are constant and separately equal for fields that propagate
in different directions. Using the Green’s function representation of the
densities of states, the damping and scattering coefficients of our RTE

model in a homogeneous space become

Ot 0 = kz,i(q/% + 1/);1)7
Bio = kai(Ve — 5 h), (4.6)

where the subscript 0 € {TE, TM} denotes the TE and TM polarizations
and the parameter v, is given for the TE and TM polarizations by

" _ R+ R+ K2 _ R+ R+ K2
" 2fulkRe(ks /) M 2%elkRe(k./2)

In any homogeneous lossless medium, the RTE coefficients in Eq. (4.6)

4.7

are all zero for propagating fields, which follows from the imaginary part
k.; = 0 of the wave vector z-component. Instead, in lossy media, these
coefficients are typically positive and o , are larger than Si,. In the
case of normal incidence with K = 0, the RTE coefficients for the TE and
TM polarizations are equal as expected. In a purely dielectric medium
with n = /¢, the damping and scattering coefficients in Eq. (4.6) simplify
for K = 0 to ax = ki(|n|*/n? + n?/|n|?) and B+ = ki(|n|?/nZ — nZ/n|?).

In the limit of small losses, one can approximate |n| ~ n, in which case
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the RTE coefficients approach the classical values a4 ~ 2k; and S+ ~ 0.
For larger losses, however, the scattering coefficients become nonzero. For
example, in the case of a dielectric material with refractive index n = 2+i,
the coefficients are given by a+ = 2.05k; and S+ = 0.45ky;. The damping
coefficient is still close to the classical value, but the scattering coefficient
clearly deviates from the classical result of zero. This indicates that a part

of photons is scattered backwards from the original direction.

Single-interface geometry

In order to illustrate the general position dependence of the obtained RTE
coefficients, we have also investigated how these coefficients behave in an
example single-interface geometry near the interface. The calculations
are done for photon energy fiw = 1 eV (A = 1.24 ym) assuming normal
incidence and using refractive indices n; = (/1 = 2.5 + 0.5 and ny =
V€2 = 1.5 + 0.3i for the lossy semi-infinite media.

Figure 4.9(a) shows the normalized damping coefficients o /ko and a_ / kg
as a function of position. Near the interface, the damping coefficients
are clearly oscillatory. These oscillations originate from interference and
the related position-dependent emission and absorption rates in analogy
with the Purcell effect [171]. Far from the interface, the damping co-
efficients saturate to homogeneous field values 1.00077ky and 0.60046k.
These values are seen to be very close to the classical values 2k1; = ko
and 2ky; = 0.6ko.

Figure 4.9(b) presents the position dependence of the scattering coef-
ficients 8. and 3_. At certain distances from the interface, these coef-
ficients are seen to obtain negative values, which is expected to be an
indication of a dominant role of destructive interference between propa-
gating fields. Compared to the values of the damping coefficients «; and
a_ in Fig. 4.9(a), the values of the scattering coefficients 3. and 5_ in
Fig. 4.9(b) are generally smaller. This is an expected result as the change
of the field propagating in one direction generally depends more on the
field itself than on the field propagating in the opposite direction assum-
ing that these fields are of equal strength. Far from the interface, the
scattering coefficients saturate to the homogeneous space values 0.03923k,

and 0.02354kg, which slightly deviate from the classical result of zero.
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Figure 4.9. (a) Normalized damping coefficients a4 /ko and a_/ko and (b) scattering co-
efficients 5 /ko and - /ko for photon energy hiw = 1 eV (A = 1.24 um) as
a function of position near an interface between two lossy dielectric media.
The refractive indices of the left and right media are n; = 2.5 + 0.5 and
nz = 1.5 + 0.3¢. The interface between the media is represented by the verti-
cal solid line. Figure adapted from Publication VII.

Two-interface resonator

Next we review the results obtained by applying the interference-exact
RTE model to the geometry of a dielectric slab that acts as a two-interface
resonator. The refractive index of the slab is n = 2 + 0.1¢ and it is placed
in vacuum. Figure 4.10(a) presents the coefficients of our RTE model as a
function of position for normal incidence in the resonator geometry. The
calculations were done for photon energy hw = 0.46 eV (A = 2.68 um),
which corresponds to the second constructive interference of the field re-
flected from the slab, i.e., the intensity of the reflected field obtains its
second maximum when it is drawn as a function of frequency. The RTE
coefficients clearly oscillate in the slab and become zero in vacuum out-
side the slab, where there are no losses. Even though the RTE coefficients
have similarities with the densities of states, they are however signifi-
cantly different.

We also compared the results of our RTE model to the classical ex-
act method directly solving the fields by using Maxwell’s equations with
appropriate boundary conditions. In this comparison presented in Fig.
4.10(b), we plotted the net absorption rate, which is the negative diver-
gence of the Poynting vector, as a function of position since it is well known
to oscillate inside lossy resonant structures due to interference and the re-
lated Purcell effect. The conventional RTE model and other models that
neglect interference effects cannot describe these oscillations correctly.
The calculations were done by using the initial condition that there is
no field incident from the right. The fixed average photon numbers on the
right are (i) = 1 and (n_) = 0. In the classical field-based method, this

boundary condition corresponds to fixing the electric and magnetic fields
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Figure 4.10. (a) Normalized damping coefficients a4 /ko and scattering coefficients 3+ /ko
and (b) the spectral net absorption rate as a function of position for normal
incidence in the resonator geometry, where a dielectric slab with refractive
index n = 2+0.1: is placed in vacuum. The plots are done for photon energy
hw = 0.46 eV (A = 2.68 pm), which corresponds to the second resonance of
the reflected field. In this configuration, the slab has a total power reflection
coefficient of R = 0.26. The boundaries of the slab are represented by the
vertical solid lines. Figure adapted from Publication VII.

on the right so that the resulting Poynting vector is the same as that in
our interference-exact RTE model. The Poynting vector is calculated from
the left and right propagating photon numbers of the RTE model by using
Eq. (3.24). Only a single graph is visible in Fig. 4.10(b) as the results of
the methods are equal within the numerical accuracy of the computations.
This result clearly demonstrates that, by using the position-dependent
damping and scattering coefficients of our method, the conventional RTE

model can be generalized to account for interference effects.

4.3 Covariant theory and mass transfer

In Publication VIII, we applied the OCD model reviewed in Sec. 3.2.3
to present numerical simulations of the mass and momentum transfer
and the related recoil effect and the relaxation of the resulting mass non-
equilibrium when a light pulse propagates in a medium. The obtained
results were then compared to the results of the MP quasiparticle model
reviewed in Sec. 3.2.2 finding full agreement within the numerical accu-
racy of the simulations.

We assumed a titanium-sapphire laser pulse with a wavelength \g =
800 nm (Awy = 1.55 eV) and the total electromagnetic energy Ey = 5 md.
This corresponds to the photon number of Ny = FEy/hwy = 2.0 x 106,
The Gaussian form of the electromagnetic wave packet was assumed to
propagate in the = direction. The simulation geometry of a cubic diamond

crystal block with anti-reflective coatings is illustrated in Fig. 4.11. The
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Figure 4.11. Illustration of the simulation geometry that consists of a cubic diamond
crystal block with refractive index n = 2.4 coated with anti-reflective coat-
ings. A Gaussian light pulse of energy Ey = 5 mJ and central wavelength
Ao = 800 nm is normally incident to the crystal from the left and propagates
in the direction of the positive xz-axis. The center of the light pulse enters
the crystal at + = y = z = 0 mm. The second interface is located at x = 100
mm. Figure adapted from Publication VIII.

first and the second interfaces of the crystal are located at x = 0 mm and
2 = 100 mm. In the y and z directions, the geometry is centered so that
the trajectory of the light pulse follows the line y = z = 0 mm. As material
parameters for diamond, we used the refractive index n = /e, = 2.4 [183],
mass density py = 3500 kg/m? [184], bulk modulus B = 443 GPa [185], and
shear modulus G = 478 GPa [186].

4.3.1 Mass transfer in one dimension

In the one-dimensional simulations, the simulation geometry corresponds
to a plate that is infinite in the y and z directions but has the same thick-
ness of 100 mm in the x direction as the three-dimensional block illus-
trated in Fig. 4.11. As an exact solution to Maxwell’s equations, the elec-
tric field of the one-dimensional Gaussian pulse, with energy E, per cross-

sectional area A, is given by

- ZTLA/@UEO
E(I'7 t) = \/ﬂl/zsosrA(l+6_(k0/Akz)2)

cos nko(m—ct/n)} e~ (nBka)(z—ct/n)*/2g

(4.8)
The corresponding magnetic field is obtained by using Faraday’s law in
Eq. (2.1). Here ky = wy/c and Ak, are the wave number and its standard
deviation corresponding to the central frequency wy in vacuum. In our
simulations, we assumed that the relative spectral width of the pulse is

Aw/wy = Aky/ky = 107°. The corresponding standard deviations of the
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pulse width in space and time are Az = 1/(v2Ak,) ~ 9 mm and At =
Az /c =~ 30 ps. The normalization factor in Eq. (4.8) was determined so
that the integral of the corresponding instantaneous energy density over
x gives Ey/A. In the simulations, we assumed a very high power per unit
area as we used the small cross-sectional area given by A = ()\/2)?, where
A = X\g/n is the wavelength in the crystal. This allowed us to attain an
order of magnitude estimate of how large atomic displacements we would
obtain if the whole vacuum energy Ey; = 5 md of the laser pulse could
be coupled to a free-standing waveguide having a cross section (\/2)2.
Without reducing the resulting atomic displacements in the crystal, the
high power density could also be lowered by increasing the temporal width
of the pulse.

Figure 4.12(a) presents the position dependence of the MDW when the
light pulse is propagating in the middle of the crystal. This MDW is
from the simulation where the optical force density was time-averaged
over the harmonic cycle allowing us to use a coarse space and time dis-
cretization. As described in Sec. 3.2.3, the MDW mass density is the dif-
ference of the actual and equilibrium mass densities inside the crystal as
pvow (T, 1) = pa(r, t) — po. The MDW is found to follow the Gaussian form of
the pulse as expected. The mass density disturbance at the first interface
resulting from the interface force is not shown in the figure. The subgraph
focused near z = 55 mm shows the oscillations in the MDW obtained by
using a finer discretization and the non-time-averaged optical force den-
sity following from the exact instantaneous fields. The Gaussian envelope
of the pulse cannot be seen in the scale of this subgraph. As an integral of
the MDW mass density, one obtains the total transferred mass carried by
the MDW. In our example, we obtained the total transferred mass given
by 2.6 x 10719 kg. This corresponds to the mass 7.4 eV/c? per photon in
agreement with the MP quasiparticle model, where the transferred mass
is calculated by using Eq. (3.44).

Figure 4.12(b) presents the position dependence of the atomic displace-
ments obtained at the same instant of time as the MDW in Fig. 4.12(a).
The negative atomic displacement at the first interface follows from the
interface force and is required by the conservation law of momentum to
balance the momentum increase between the photon momentum in vac-
uum and the MP momentum in the medium. The atomic displacements at

the interfaces were calculated only approximatively in our simulations as
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Figure 4.12. Simulation of the mass transfer of a Gaussian light pulse in one dimension.
(a) Mass density of the MDW as a function of position when the light pulse
is propagating in the middle of the crystal. This graph is calculated by av-
eraging the optical force density over the harmonic cycle. The region of the
crystal between £ = 0 mm and z = 100 mm is represented by the light blue
background. The focused subgraph shows the exact instantaneous MDW
near r = 55 mm. (b) Atomic displacements at the same moment when the
light pulse is propagating in the middle of the crystal obtained again with
time-averaging over the harmonic cycle. The focused subgraph shows the
exact atomic displacements near x = 55 mm. (c¢) The atomic displacements
when the light pulse has just left the crystal. Note the breaks in the scales
of the figures that are related to the larger atomic displacements at the in-
terfaces. Figure adapted from Publication VIII.
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the near interface dependence of the refractive index was not taken into
account. There is a constant positive atomic displacement of 2.7 nm on the
left from the light pulse that is propagating in the middle of the crystal.
On the right of the light pulse the atomic displacement drops to zero as the
light pulse has not yet reached these positions. Due to the difference of the
atomic displacements on the left and right of the light pulse, the atoms are
more densely spaced at the position of the light pulse, which is related to
the MDW mass density in Fig. 4.12(a). The subgraph focused near = = 55
mm presents the harmonic cycle level variations in atomic displacements
obtained by using a finer discretization and the non-time-averaged optical
force density following from the exact instantaneous fields.

Figure 4.12(c) presents the atomic displacements just after the light
pulse has left the crystal. As expected, atoms inside the crystal have
been displaced forward from their initial positions, while the atoms at
the interfaces of the crystal have been displaced outwards due to the in-
terface forces. The atomic displacements at the interfaces are changing as
a function of time as the elastic forces try to re-establish the mass equi-
librium in the crystal. This relaxation is a much slower process than the
propagation of light through the crystal as it takes place at the velocity
of sound. The relaxation will be studied in more detail in the case of the

three-dimensional simulations reviewed in Sec. 4.3.2.

4.3.2 Mass transfer of a three-dimensional pulse

Next we review the simulations performed in the full three-dimensional
geometry of Fig. 4.11. These simulations were done to give a deeper in-
sight to the strain fields and their relaxation by sound waves. The three-
dimensional simulations are computationally much more demanding com-
pared to the one-dimensional simulations reviewed above. Therefore, we
performed these simulations only by using a coarse grid and averaging
the optical force density over the light pulse. The one-dimensional simu-
lations had shown that this method is very accurate in the simulation of
the transferred mass and momentum but the interface forces are modeled
only approximately. In the three-dimensional case, a Gaussian light pulse
is also known to be only an approximative solution to Maxwell’s equations.
For a more detailed description of the light pulse and the approximations
made in these three-dimensional simulations, see Publication VIII.

Figure 4.13 presents the position dependence of the three-dimensional
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Figure 4.13. Simulation of the MDW driven by optoelastic forces of a three-dimensional
Gaussian light pulse. The figure shows the mass density of the MDW at
time ¢ = 340 ps after the start of the simulation. The light pulse propagates
in the direction of the positive xz-axis. The first interface of the crystal is
located at z = 0 mm and the second interface at z = 100 mm, not shown in
this figure. The mass density perturbance at the first interface is not drawn.
Figure adapted from Publication VIII.

MDW in the z-y plane at a specific time ¢ = 340 ps of the simulation when
the light pulse is propagating inside the crystal. As in the case of the one-
dimensional MDW in Fig. 4.12, by integrating the MDW mass density
in Fig. 4.13 and dividing the result with the photon number of the light
pulse, we obtain the total transferred mass per photon of 7.4 eV/c? within
the numerical accuracy of the simulation. Therefore, the MP and OCD
model results are found to be fully consistent with each other.

Figure 4.14(a) shows the position dependence of the z-component of the
atomic displacements on x axis at time ¢ = 340 ps corresponding to the
MDW in Fig. 4.13. The constant atomic displacement after the light pulse
is 1.5 x 10~!7 m, which is much smaller than in the one-dimensional sim-
ulation in Fig. 4.12, where we assumed that the whole field energy prop-
agates in a small cross-sectional area A = (\/2)? as discussed above. The
order of magnitude of the negative atomic displacement at the interface is
10~ m, which is not shown in the scale of the figure. In Fig. 4.14(b), the
same z-component of the atomic displacements is plotted as a function of
z and y in the plane » = 0 mm. Away from the path of the pulse along
the y-coordinate, the atomic displacement reaches zero as the optical force
density acts only in the region of the light pulse and the elastic forces have
not had time to displace atoms in this short time scale.

Figure 4.14(c) shows the atomic displacements on the z axis at a much
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Figure 4.14. Simulation of the atomic displacements due to optical and elastic forces
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as a three-dimensional Gaussian light pulse propagates through a diamond
crystal. (a) The z-component of the atomic displacements as a function po-
sition on the z axis at time ¢ = 340 ps. The dotted line represents the
position of the Gaussian light pulse whose optical force density drives the
MDW forward at velocity v = ¢/n. Atoms in a thin interface layer at = 0
mm have recoiled to the left. (b) The corresponding atomic displacements
plotted in the z-y plane. (c) The same simulation at a later time ¢t = 1.1 us
when the light pulse has gone and the recoil of the interface atoms starts to
relax. Elastic waves propagate to the right at the velocity of sound. (d) The
corresponding atomic displacements plotted in the z-y plane. The position
of the first interface of the crystal is represented by the dashed line. The
second interface of the crystal is located at 2 = 100 mm, not shown in this
figure. Therefore, in (c) and (d), we see only the relaxation transient close to
the first interface of the crystal. Due to the very approximative treatment
of the near interface region, only the order of magnitude of atomic displace-
ments and the positions of the two wide wavefront are physically significant
in (c) and (d). Figure adapted from Publication VIII.
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later time ¢ = 1.1 us when the light pulse has left the crystal and is
far away and the non-equilibrium atomic displacements at the interfaces
have started to be relaxed by elastic forces. The simulation shows that the
atomic displacements in Fig. 4.14(c) form elastic waves that propagate to
the right at the speed of sound. Only the relaxation transient close to the
first interface of the crystal is shown as the second interface of the crystal
is at * = 100 mm. The positive constant atomic displacement inside the
crystal seen in Figs. 4.14(a) and 4.14(b) is also being relaxed but it is very
small and not visible in this scale. In Fig. 4.14(d), the same atomic dis-
placements corresponding to Fig. 4.14(c) have been plotted as a function
of z and y in the plane z = 0 mm. As the atomic displacements near the
material interfaces were computed only approximatively, only the order of
magnitude of the atomic displacements and the positions of the first and
the second wide wavefront as a function of time are physically meaning-
ful in Figs. 4.14(c) and 4.14(d). Since there does not exist any physical
mechanism to return the energy of the elastic waves in Figs. 4.14(c) and
4.14(d) back to the light pulse, the OCD approach leads to the dissipation
of the light pulse energy. In the simulations, we found that the recoil ef-
fect is the main source of the energy loss and it was roughly estimated to
be of the order of 107! eV for the total light pulse, which corresponds to
the fraction 10728 of the total pulse energy, so it is very small compared to

other physical nonidealities in a highly transparent real material.
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5. Summary and conclusions

In this thesis, we have developed new models to study optical energy
and momentum transfer and photon number in lossy and lossless mi-
croscopic and macroscopic structures. These investigations were mainly
based on adopting the photon flow picture of the propagating electromag-
netic fields, in which the electromagnetic field can be described either as
waves or particles also inside resonant structures where interference ef-
fects are indispensable.

The research described in this thesis has, e.g., led to the development
of the Green’s functions-based QFED model that was shown to resolve
the previously reported anomalies in the commutation relations of the
photon ladder operators inside resonant structures. The field quantities
of the QFED approach are equal to those in the conventional FED, but
the QFED approach can be used to separate the field quantities to den-
sities of states and the position-dependent photon numbers also in non-
equilibrium conditions and in the case of fields propagating in different
directions inside interfering structures. The propagating field represen-
tation also allowed bridging the results of QFED to the conventional RTE
approach. This connection was shown to enable extending the applica-
bility of the conventional RTE model beyond its main limitation in the
description of interfering structures including near-field effects. In our
interference-exact formulation of the RTE model, the wave and particle
features associated with interference and emission in stratified geome-
tries are fully captured by position-dependent damping and scattering co-
efficients.

To the best of our present knowledge, our QFED approach is the first
and only way to consistently separate the optical fields in stratified media

into left and right propagating components. Whereas previous methods

73



Summary and conclusions

(FED, NOF) can be used to calculate any quantity corresponding to the
field, energy density, or Purcell factor they do not provide the necessary
information for analyzing the propagating fields without separation of the
field quantities into parts propagating in different directions. As a first
order differential equation, the derived RTE model provides an efficient
method to compute the photon numbers and the related field quantities
once the position-dependent damping and scattering coefficients of the
problem geometry have been first computed. The next step in the fur-
ther development of the interference-exact RTE model would be its exten-
sion to full three-dimensional geometries and the development of efficient
methods to compute the position dependent damping and scattering co-
efficients. In general, the quantum optical RTE model has potential to
become one of the standard approaches to model optical energy transfer
in interfering structures.

In this thesis, we also investigated how the photon flow description of
optical fields can be applied to study the momentum of light in a medium
and to resolve the related Abraham—-Minkowski controversy. This led to
the derivation of the MP quasiparticle model, where light quanta in a
medium are described as covariant coupled states of the field and matter
providing a unique resolution to the Abraham-Minkowski controversy.
The MP quasiparticle model also leads to the dissipation of photon en-
ergy when it propagates through transparent materials. The propagation
of light in a medium was also studied using the OCD model, which cou-
pled the electrodynamics of continuous media to continuum mechanics
through Newton’s equation of motion. Full agreement between the MP
and OCD models was achieved within the numerical accuracy of the OCD
simulations indicating that the wave and particle models are fully equiv-
alent.

In general, the MP and OCD models provide independent but comple-
mentary views of how the covariance principle governs the propagation
of light in a medium. In addition, the light associated MDW predicted by
our theory implies a fundamental change in the understanding of light
propagation in transparent materials. Our findings are also expected to
raise new experimental interest in verifying the covariant state of light
in a medium by measuring the transferred mass of a light pulse. On the
theoretical side, the next steps include the generalization of the results

for dispersive media and the more detailed studies of the interface and
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dissipation effects. The simulations should also be performed for continu-
ous light beams and incoherent fields, in which case one must presumably
also account for the correlation properties of incoherent fields in the calcu-
lation of the optical force density and the related dynamics of the medium.
Also nonlinear effects in the case of intense fields are worth of a careful
study.

In addition to the main results above, we have studied several closely
related topics and concepts and published some of the obtained results of
these studies. The topics include the noiseless amplification of weak co-
herent fields using a beam-splitter-based setup and the Wigner function
formalism; and the formation of local thermal balance, the field emis-
sion by magnetic source terms, and the three-dimensional Green’s func-
tion representations in the QFED framework. Studying these topics has
widened our understanding of the general applicability of the formalisms
for different purposes and laid the foundation for the whole work de-
scribed in this thesis.

The physics of light has been investigated for centuries leading to a
manifold of different applications from incandescent light bulbs to mod-
ern optical communication technologies. On the theoretical side, the con-
tinuous research has led to the development of classical, quantum, and
semiclassical theories. Future progress in the development of novel ap-
plications is more and more linked with the interplay of theoretical, com-
putational, and experimental research. Therefore, transparent modeling
tools that allow in-depth understanding of the phenomena of light in a suf-
ficiently simple form are highly valuable. This thesis contributes to the
scientific knowledge by providing new methods to modeling energy and
momentum transfer in microscopic and macroscopic structures as well as
by increasing the understanding of the relations of the energy and mo-
mentum transfer in the classical, quantum, and semiclassical theories. In
particular, the results provide theoretical tools to study the wave—particle
duality that is one of the most intriguing features of the field and matter

that is deeply embedded into the foundations of quantum mechanics.
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