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List of abbreviations and symbols  
 

The abbreviations and main symbols and notations used in the text are summarized below in 

alphabetical order.  
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Chapter 1  
 
 
Introduction 
 
 
Background 
 

An increased emphasis on product quality, productivity, faster deliveries, and process optimization 

has been the driving force in paper industry behind the interest in automation and process controls. 

Quality and productivity are currently the key attributes that directly measure the effectiviness and 

cost of manufacturing processes. Productivity is closely linked to quality because there is an 

optimum rate of production when considering the principal manufacturing variables: raw material, 

process, and automation system used. Quality, on the other hand, is the judgment of the properties 

of the final output of the production process. Multible properties define the quality of the paper 

web. These include weight per unit area, moisture, thickness, gloss, physical properties and 

appearance. All of these properties can be affected by appropriate use of automation system and 

process controls. Variability of these properties in paper machine is controlled in both the machine 

direction (MD) and the cross-direction (CD) by quality controls. Today, improved control of paper 

production line by using efficient MD and CD quality controls can mean notable fiber savings, 

reduced quality variations, greater production rates, reduced sheet brakes, and significant energy 

savings (Fadum, 1989), (Wallace, 1986). 

 
By applying current modern technologies in feedback control, along with developing new 

algorithms to handle open issues, a significant contribution can be made to quality improvements in 

papermaking. Current CD control methods for sheet processes do not take full advantage of 

modern control theory, and there is a clear interest in improving existing control strategies. Among 

other startegies, model predictive control (MPC) technology has been applied to a range of control 

applications in papermaking. The power of MPC, including its ability to handle constraints, makes 

this technology an attractive candidate for industrial implementation. However, specific 

characteristics of the sheet processes have limited an extensive use of MPC for CD control 
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problems. Such characteristics include inaccurate spatial CD response models, large number of 

actuators and sensing locations, significant time delays, noisy sensors, actuator constraints, 

equipment faults, and uncertain disturbances. Numerical difficulties associated in handling large 

dimensional CD processes and uncertainty characteristics of the process have been the essential 

reasons for slow progress of MPC technology (Featherstone and Braatz, 2000). The main objective 

of this work is to attack the current inadequacies in papermaking and provide a robust MPC CD 

strategy, which takes into account the inaccuracies of the process model and thus enables 

implementation on real paper machines.  

 

Modeling and control of CD processes 
 
Modern CD controls are model-based controls. A model is created in order to describe how the 

process will respond to the control actions. However, it is impossible to generate an accurate  

process model because of lack of complete understanging of the underlying physical phenomena, 

inaccurate values for the physical parameters of the process, and several unknown disturbances. 

Therefore, in practical CD control application a linear, multivariable process model is used to 

describe cross-directional profile systems (Wilhelm and Fjeld, 1983), (Chen and Wilhelm, 1986). 

Actually this is an approximation of the real web forming process, which can be considered as a 

complex distributed parameter system (Duncan, 1989). In this kind of simplified approach, it is 

assumed that the response of actuators is separable, and it can be expressed as a product of a spatial 

(CD) response and a scalar dynamic term. Therefore, CD profile system may be presented as a 

sampled data lumped parameter system, which describes a finite number of actuators and a finite 

number of measuring points (Duncan ,1989), (Duncan et al., 1996). 

 
Usually the spatial CD response model is identified from input-output data by on-line or off-line 

identification methods. Several modern methods exist to accomplish this estimation (Wilhelm, 

1982), (Wellstead et al., 1998). Due to the inherent characteristics of the papermaking processes, 

the response model often has a structure of Toeplitz symmetric matrix, in which the same constant 

element is repeated along each diagonal (Laughlin et al., 1993). Commonly CD process responds 

quite fast to the changes in the actuator settings. Therefore most of the system dynamics are 

attributed to the actuators, which are generally modeled as first-order-plus-dead-time (Laughlin et 

al., 1993), (Kristinsson and Dumont, 1996). However, in practice the sampling rate for CD profiles 

is much slower the process dynamics, and therefore dynamics are ignored in most of the cases. 

 
In practical CD applications several facts can cause imperfections to the CD process models. There 

will be uncertainty associated with the estimation procedure of the response shape. Although the 
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shape of the response is not assumed to vary in the cross-direction, in practice the paper sheet may 

wander or shrink over time, leading to alignment error and mismatch between the true location of 

actuator’s effect and its predicted location (Heaven et al., 1993b). In a paper machine operating 

conditions may also vary in broad limits. In addition, the type of CD actuators affects on the form 

of model errors. For instance, mechanical coupling, clamping and backlash problems are common 

to all spindle actuators and electric motor applications (Cutshall, 1991). All characteristics of the 

uncertain CD process are connected to the response model. It is evident that response model 

uncertainty should be taken into account in the control strategy. In theory, model uncertainty can be 

either unstructured or structured (Skogestad and Postlethwaite, 1996). Both approaches have been 

used in CD control literature. Featherstone and Braatz (1998, 2000), Stewart et al. (2000) and 

Duncan (1994a) used unstructured model uncertainty, while Laughlin (1988) and Laughlin et al. 

(1993) applied a structured model uncertainty in their CD modeling work. In this thesis a separable 

CD response model approach is adopted and a linear, multivariable process model with first-order-

plus-dead-time actuator dynamics is used. Structured model uncertainty, which takes into account 

the main characteristics of the process, is incorporated into the CD response model.   

 
A wide variety of CD control strategies for papermaking processes appear in the literature. Two 

popular CD control schemes reported in the literature before late 1980s were linear-quadratic-

optimal (LQ) and model inverse-based control (Boyle, 1977), (Chen et al., 1986). Mostly steady 

state models were used. One weakness of these linear control approaches is that constraints can be 

satisfied only by sufficiently penalizing control actions in the objective function, producing rather 

sluggish control movements. Another concern in this method is closely related to numerical 

problems and ill-conditioned response models (Wilhelm and Fjeld, 1983). Following the works of 

Laughlin (1988) and Duncan (1989), who studied robustness of CD control systems, several 

methods have been suggested for designing robust CD controllers. However, many of these 

approaches utilize a special structure of the CD response model matrices in the controller design 

(Laughlin, 1988), (Laughlin et al., 1993), (Stewart, 2000), which limits the applicability of these 

methods. Similarly, numerous model predictive control (MPC) approaches have been proposed for 

CD control problem (Campbell and Rawlings, 1998), (Backström et al., 2000), (Dave et al., 1997, 

1999), (Barlett et al., 2002). All these methods contain the basic features of MPC method, but thus 

do not explicitly address model inaccuracies. Therefore, for the time being robust constrained MPC 

has not been implemented in real time large scale CD processes because of heavy on-line 

computations needed. In this thesis, an efficient robust MPC strategy is proposed in order to solve 

this real time problem.     
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Analysis of CD model structure 
 
A conventional approach to evaluate spatial CD response model is to study its condition number 

(Laughlin et al, 1993). Response models are commonly considered poorly conditioned and difficult 

to control if their condition numbers are large (Skogestad et al., 1988). Laughlin et al. (1993) have 

shown that not only the process characteristics, but the size of the process, affect the value of the 

condition number, and that large dimensional matrices seem to be more poorly conditioned. This 

phenomenon has also been noticed in practice, because the majority of industrial CD processes are 

truly ill-conditioned (Featherstone and Braatz, 2000), (Laughlin et al., 1993). However, the 

condition number is scaling dependent and it depends on the choices of units of the inputs and 

outputs. Therefore it should not be used as a measure of inherent ill-conditioning of the process. 

(Skogestad and Postlethwaite, 1996). In this thesis, we suggest that a better measure in this respect 

for the CD process is relative gain array (RGA) analysis, which is independent of scaling and takes 

into consideration the implicit characteristics of the CD process. Such characteristics contain 

especially the diagonal type input uncertainty of actuators, which is always present in a CD 

process. In addition, we suggest that RGA analysis combined with the concept of decentralized 

integral controllable (DIC) system (Skogestad and Morari, 1992) will provide more information 

about the behaviour of CD response model and controller design that pure condition number 

analysis. In this thesis, we will consider RGA and DIC as practical analysis and screening tools to 

select the controller structure for the process. 

 

Robust model predictive CD control 
 
Applications of model predictive control (MPC) have been increasingly used for paper machine 

control during last years. A notable advantage of MPC method is its ability to handle hard 

constraints on the actuators. However, its large scale nature and several model uncertainty 

characteristics have limited the availability of MPC for paper machine CD control. One approach 

to solve a large scale CD problem is to reduce the size of the model, and thus reduce the 

complexity of on-line computations. Haznedar and Arkun (2002) applied the principal component 

analysis method for model reduction and identification. VanAntwerb and Braatz (2000a) designed 

a fast MPC algorithm, which utilizes the iterated ellipsoid method, and is based on off-line singular 

value decomposition.  

 
One of the main drawbacks of a standard MPC method is its inability to consider model 

uncertainties. However, robust MPC theory provides a method to take modeling errors into account 

in controller design. A min-max optimization approach with finite impulse response models has 
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been an extensively used in robust MPC literature, e.g. (Campo and Morari, 1987), (Zafiriou, 

1990),  (Zheng and Morari, 1993). The same method has also been applied to discrete state-space 

models with polytopic model uncertainty (Lee and Yu, 1996). Recently, a robust MPC technique 

using linear matrix inequality (LMI) technique has been developed (Kothare et al., 1996), (Lu and 

Arkun, 2000). In this method a robust infinite horizon MPC problem with constraints and model 

uncertainty can be reformulated to a convex optimization problem containing LMIs. An important 

advantage of this approach is that the stability of the robust MPC controller is guaranteed if the 

optimization problem is feasible. 

 
The practicality of MPC has been limited by the difficulty to solve optimization problems in real 

time. To tackle these problems fast computation solutions have been introduced. Lee and 

Kouvaritakis (2000) presented a receding horizon dual-mode MPC algorithm, which uses a LP 

method to reduce computational complexity. Bemporad et al. (2002) suggested a state-feedback 

solution to finite and infinite horizon LQ control problems, which does not require time-consuming 

on-line QP solvers.  VanAntwerb and Braatz (2000a) applied a fast MPC algorithm to CD control 

problem. They used truncated singular value method and iterated ellipsoid algorithm to minimize 

computing load. Wan and Kothare (2003) modified the robust MPC algorithm developed by 

Kothare et al. (1996), and introduced a concept of asymptotically stable invariant ellipsoid, which 

guarantees robust stability without the requirement of finding an optimum of the system. A 

significant benefit of this approach is that it gives off-line a set of stabilizing state feedback laws, 

and no optimization is required except a straightforward bisection search. The on-line computation 

time of robust MPC algorithm is thus considerably reduced. In this thesis, we will show that robust 

MPC methods developed by Kothare et al. (1996) and Wan and Kothare (2003) are efficiently 

applicable to the CD control problem, and they provide a new approach to this classical control 

problem.  

 

Research objectives 
 
This thesis focuses on ways to improve existing CD control methods to increase quality and 

productivity in papermaking. The objectives may be divided into the following main categories: 

 
• To investigate ways to find out a practical method to evaluate the complexity of industrial CD 

response models 

 
• To create a robust model predictive (MPC) CD control strategy, which will take into account 

uncertain characteristics of the process.  
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• To develop computationally efficient robust MPC CD algorithms, which may be implemented 

on real paper machines. 

            

Layout of the Thesis 
 

This thesis consists of seven chapters and it is organized as follows: 

 
Chapter 1 is the introduction.  

 
Chapter 2 presents first a paper machine cross-direction process and typical CD control systems. 

Basis weight, moisture and caliper controls are treated briefly. Then, characteristics of the CD 

process including scanning measurements, constrained actuators and complex high dimensional 

uncertain system are addressed. After this, a short review to the industrial CD control structure is 

presented. 

 
Chapter 3 introduces cross-directional response models and clarifies how an approximated linear 

multivariable system description is derived. Model attributes and related process dynamics are also 

presented. Then, model uncertainties in terms of process characteristics, operating point and 

appearing actuator errors are introduced to derive the structure of the utilized uncertain response 

model. After that, an overview of reported control strategies is presented. The survey covers both 

the early history of CD control and modern model predictive and robust control approaches.  

 
Response model analysis is the topic of Chapter 4. The relative gain array (RGA) method is 

introduced and its applicability to CD response analysis is evaluated in terms of diagonal type input 

uncertainty. Then, a concept of decentralized integral controllable (DIC) system model is presented 

and necessary conditions for DIC are defined to be used with steady state response models. 

Applicability of steady state inverse-based CD controller is studied, and RGA analysis is 

accomplished for a set of experimental or proposed CD response models. Observations and 

conclusions are given for demonstrating the usability of the proposed analysis.  

 
Chapter 5 describes the robust model predictive CD control algorithm using linear matrix 

inequalities (LMI). First a brief description of linear matrix inequalities, linear time-varying (LTV) 

uncertain polytopic systems and basics of model predictive control is given. This supporting 

material will then be used to formulate a primary robust constrained MPC CD control problem with 

a state-feedback as a LMI problem. Then, several simulated examples based on industrial paper 
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machine CD processes are given for illustrating the applicability of robust MPC approach. 

Selection of simulated response models is done based on RGA analysis. 

 
Chapter 6 deals with an efficient robust LMI based MPC CD algorithm with guaranteed robust 

stability of the closed-loop system for polytopic model uncertainty description. First it is shown, 

that the algorithm provides the off-line a sequence of stabilizing state feedback laws, which consist 

in invariant ellipsoids one inside another in the state space.  After this, closed loop performance is 

studied with simulations using large scale CD processes with realistic description of interaction 

matrices and general uncertainty structures. The performance of the fast robust MPC CD algorithm 

is compared both to the primary algorithm presented in Chapter 5 and to the standard, off-the-self 

MPC CD algorithm. Simulation results show that the fast robust MPC CD algorithm can reduce the 

on-line computation of robust constrained MPC considerably, with a little loss of performance. 

 
Chapter 7 summarizes the main results of this study and makes some suggestions for further 

research. 

 

Contributions 
 

The main contributions of this thesis are: 

 
• Complexity of cross-direction (CD) response model is evaluated based on relative gain array 

(RGA) analysis as distinct from conventional condition number approach. 

 
• Relative gain array (RGA) analysis and the concept of decentralized integral controllable (DIC) 

system are introduced as a practical screening tool to select controller structure for CD 

processes. 

 
• A linear time-varying (LTV) system with polytopic uncertainty structure is suggested in an 

unpresented way to describe uncertain CD processes. 

            
• A concept of primal robust model predictive (MPC) CD algorithm is applied in a novel way 

and its applicability is proven with realistic industrial CD response model simulations.    

 
• For the first time a computationally efficient robust MPC CD algorithm is presented and its 

efficiency is compared with the primal algorithm. Comparison reveals that the loss of 

performance is minimal and the advantage in on-line computation is over four orders of 

magnitude.   
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Chapter 2  
 
 
Paper Machine Cross-Directional Processes 
 
 
The paper machine, invented in the year 1799 by a French Nicolas-Louis Robert, has been 

constantly improved over the years. It has became wider and faster, and today modern paper 

machines make hundreds of tons of paper per day. Increased production rates and stricter quality, 

economic and environmental requirements, have set new demands to paper machine control. The 

complexity of the process, the scale of operation and production speed leave little room for error or 

mulfunction. Modern papermaking would not be possible without a great variety of technologies, 

and in particulat advanced process control and diagnostic. The following description of paper 

machine’s operations is very brief and simplified, a more detailed discussion of this complex 

process may be found e.g. in (Gullichsen and Paulapuro, 1999).  
 
The first section of the paper machine is called the wet end, see Fig. 2.1. This is the area where the 

stock first comes into contact with the paper machine. In paper production fiber suspension 

consisting of wood fibers, additives and water, is mixed with white liquor and pumped into the 

headbox. The function of the headbox is to distribute the fiber suspension with approximately 0.2% 

- 1.0% consistency such that the fibers are evenly distributed over the width of the flow area. 

Several type of headboxes have been planned depending on the paper machine design: open 

headboxes, air-cushion headboxes, hydraulic headboxes and diffuser headboxes. After headbox the 

sheet-forming is taking place and the fiber suspension is fed onto the moving forming belt, which 

today may be rotating even 1800m/min. Depending on the machine lay-out various drainage units 

such as forming board, blades, suction boxes or rolls and hydrofoils are used to remove remarkable 

amount of water. Thus, when paper sheet leaves the wet end its consistency is approximately 20%.  

 
The next phase of the paper machine is the press section where the sheet is both heated by steam 

boxes and more dewatered by mechanical compression in a nip formed by two rolls or a roll and a 

shoe. After press section, just before the dryer section, the solids content of the paper sheet has 

increased to 33% - 55% depending on the paper grade and press section design. The dryer section 
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of the process starts with a series of very large-diameter, rotating steam heated cylinders. These 

cylinders remove most of the reamaining water. However, a small amount of water (5%-9%) 

remains in the paper even after the dryer section. Most drainage on a paper machine therefore 

occurs mechanically on the wire and press sections. After the dryer section, at the dry end, the 

paper is passed throught a series of calender rolls, where the paper sheet thickness and surface 

properties are being controlled. At the end of paper machine the sheet is wound up onto the reel. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Wide view of modern paper machine (Courtesy of Metso Paper). 

 
Depending on the paper machine design, after the dry end, there might nowadays exist a separate, 

off-machine paper finishing unit, consisting of coating machine or a soft calender. On the other 

hand, if the finishing units are included in the paper machine, an on-machine construction is 

considered. Off-machine coating machine is composed of coating stations, dryers and un-wind and 

wind-up units. Coating stations, either on-machine or off-machine, apply a thin layer of pigment-

based coating colour to one or both surfaces of the sheet. The objective of coating is to improve 

appearance and printability of the paper.  

 
The direction of sheet travel is known in the paper making industry as the machine-direction (MD), 

and the direction perpendicular to machine-direction is called cross-direction (CD). In paper 

production, the three most important quality properties of the sheet are: the sheet weight per unit 

area (g/m2), the sheet moisture content (%) and the thickness or caliper of the sheet (µm). 

Regarding to paper finishing the coat weigh per unit area (g/m2) is also a quality property worth 

mentioning. Quality properties are measured by a scanning sensor, installed typically at the end of 

the machine. The scanner traverses the moving sheet back and forth in the cross-direction (CD), 

measuring sheet quality properties even as fine as 10 mm wide. Because the scanning head 

traverses the moving sheet, it forms a diagonal path along the sheet, and thus the measurement 
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Headbox

Reel-up
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profile comprises both MD and CD variations. In paper machine and also in paper finishing control 

applications these variations are commonly controlled separately. Thus, paper machines have two 

main control objectives. One is the maintenance of the average sheet property, which is referred to 

as the machine-direction (MD) control problem. The other is the maintenance of flat profiles across 

the machine web, referred to as the cross-directional (CD) control problem. We will not handle the 

extensive MD control problem in our work, we will focus on the CD control issues instead.   

 
 
2.1  Paper machine CD control systems 
 
The cross-direction (CD) control problem in paper manufacturing has been known since early 

1950s when the problem of basis weight variation was officially noticed (Burkhard and Wrist, 

1954). Actually in the 1960s the paper industry really discovered how bad the CD variation was 

when on-machine traversing weight and moisture gauges became commercially available (Beecher 

and Bareiss, 1970). The goal of quality control is to increase uniformity of manufactured product. 

However, this task is not necessarily the easiest in the paper manufacturing. It requires a great deal 

of process knowledge, consideration of suitable measurements and measurement processing, 

adequate actuators and suitable control algorithms. The objective of CD control is to minimize 

deviations of process variables from the setpoint across the width of the paper (Tong, 1975). Basis 

weight, moisture, caliper, and coat weight are examples of important sheet properties. Variations in 

these properties can result in paper that will not fulfill the quality requirements. On the other hand, 

successful CD control of these properties can mean significant reduction in raw material 

consumption and improvements in quality (Fadum, 1989). In each of these cases the variations are 

controlled adjusting the set points of an array of actuators. In most cases, paper machines have at 

least one actuator array for controlling each of the important sheet properties. Usually different 

sheet properties are controlled by separate and independent control systems. Current trend in the 

paper industry is to have larger and faster paper machines and the number of actuators in the array 

can vary from few up to more than hundred. 

 
 
2.1.1 Basis weight control 
 
Basis weight is an essential property of the paper sheet, which has also a signifigant influence to 

the other sheet properties. Depending on the paper machine desing basis weight values may vary 

widely from 35 g/m2 for a light weigh paper grades even to 450 g/m2 for board sheets (Gullichsen 

and Paulapuro, 1999). The function of CD basis weight actuators is to distribute the fibers evenly 

over the width of headbox. Two type of actuators are utilized for controlling CD basis weight: slice 
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lip actuators and dilution actuators. Use of a slice lip actuators is a traditional way of controlling 

the CD profile of basis weight. The fiber suspension streams out from the headbox through a slice 

opening, which is as wide as the paper machine but only a couple of centimeters high. The amount 

of fiber suspension exiting the headbox is controlled by locally changing the height of the slice 

opening by deflecting the upper lip. The bending of the upper lip is controlled by an array of 

thermal, hydraulic or motorized actuators (Cutshall, 1991). The spacing of the actuators dependens 

on the installation, and may vary from 75 mm to 100 mm. The response of the basis weight profile 

to the slice lip actuators varies widely. For light grade papers the response width of a single 

actuator is quite narrow, covering only a couple of actuators. For heavy grades it may cover even a 

quarter of the entire width of the paper machine.   

 
A modern method for basis weight control is consistency profiling or dilution control. In this 

method the basis weight profile is changed by locally altering the consentration of  fibres in the 

headbox (Vyse et al., 1996). This is done by an array of dilution actuators distributed across the 

headbox. Dilution zones are commonly 40-60 mm wide. The consistency of the pulp stock is 

changed by diluting it with a flow of low consistency water as it enters to the headbox. An increase 

in the flow of a dilution actuator reduces the local consentration of fibres and thus locally reduces 

the basis weight. The advantage of dilution actuators, in comparison to the slice lip actuators, is a 

smaller actuator spacing, a narrower spatial response and much better bandwitdth for control of 

basis weight profiles. However, it requires a more accurate mapping information. 

 
 
2.1.2  Moisture control 
 
Moisture content of the paper is also a major quality property, which has an important influence on 

the paper strength. Normally moisture content varies from 5 % to 9 % of the total weight of the 

paper sheet. On the other hand, overdrying of the paper may reduce its strength and cause damages 

in the fibre structure. Analogous to CD basis weigh control, moisture CD profile control influneces 

several paper sheet properties like web structure, caliper and surface smoothness (Gullichsen and 

Paulapuro, 1999). It affects also the local CD dry content of the sheet. This may result in local 

changes in stress and strain and can create curl problems in the final product. In addition, an 

uncorrected moisture disturbance will appear in the caliper profile. 

 
CD moisture profile control in the press section may use various kind of moisture actuators: zone 

controlled rolls to obtain a required line force profile to the press nip; steam boxes that heat the 

paper to improve the local mechanical dewatering; rewet shower actuators to prevent over drying 



 12

of the sheet and to correct dry streaks. The use of segmented infrared heaters is also possible. On 

the other hand, infrared heaters are common in coating machines for CD moisture control. The 

actuator spacing of steam boxes, rewet showers and infrared heaters is usually between 75-150 

mm, and for zone controlled rolls somewhat wider. Rewet showers and zone controlled rolls are 

fast actuators with a time constant less than 30 s, while steam boxes and infrared heaters are 

generally quite slow with a time constant of couple of minutes. 

 
 
2.1.3 Caliper control 
 
Usually calender stack is located at the dry end of the paper machine, or in the off-machine 

construction after it, as a separate unit. Calendering is papermaker's last chance to reduce caliper 

variations along the length and width of the finished paper sheet. A smoother sheet results in 

improved print quality, while more uniform caliper profiles improve the winding process and 

reduce sheet breaks in printing presses. Almost all paper and board is at least slightly hard nip 

calendered in order to control overall thickness and to even out cross-direction caliper non-

uniformities. Calendering reduces paper caliper and roughness by pressing the sheet between two 

or more large cast-iron or soft-covered rolls. The high loads produced in a nip between two smooth 

calender rolls flatten high spots in the rough sheet by permanently deforming wood fibers on the 

surface of the sheet, thus reducing the roughness of the sheet. 

 
Regardless of the calender construction, three main technologies for control of paper caliper are 

available; induction heating systems, confined air showers and zone controlled CD rolls. Induction 

heating and confined air showers externally heat the roll to increase the diameters which in turn 

increases the nip load. Zone controlled CD rolls vary the nip pressure by mechanically deflecting 

the roll shell. Introduction heating system heats directly the roll by applying an alternating 

magnetic field. On the other hand, magnetic field induces eddy currents into the roll surface, which 

in turn produce heating. System consists of a number of magnetic-induction coils shaped to 

conform closely to the contour of a roll. The coils are encapsulated in a flameproof and isolating 

resin compound. The center-to-center distance of the coils is typically 76.2 mm (Burma et al., 

1996). A major disadvantage of induction heating system is a low speed of response and high 

energy consumption. 

 
Air showers are based on a convection heating technology to transfer heat from a resistive heater to 

the roll surface. CD caliper control is done by changing the diameters of the roll through zone 

heating and cooling. Modern air showers use infrared units to heat constantly operating air jets that 
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are directed at the roll surface. This kind of system can provide a narrow  (38 mm) zone resolution 

of actuators, and with heaters at full power (79 kW/m), the air jet temperature rises to 450 °C 

(Impact Systems, 1994). However, this heating capability would not normally provide the CD 

control range or temperature increase required for soft nip calender applications. As a result, air 

shower applications are usually limited to hard nip stacks. 

 
Nowadays, zone controlled CD rolls are commonly used as actuators for caliber control (Svenka 

and Minkenberg, 1995).  The zone resolution of these actuators is at minimum 150-250 mm. 

Because of the stiffness of zone controlled roll shells, profile shape adjustment can be made over a 

bandwidth of 400-800 mm. An apparent advantage of the zone controlled CD rolls is that the 

control actions by hydraulic pressure can be accomplished in a few seconds, providing a fast speed 

of response. 

 
 
2.1.4 Coat weight control 
 
The coater is located at the dry end of the paper machine. In the off-machine construction it is a 

separate unit like calender stack. Paper is coated in order to improve its appearance and printability. 

Good printing characteristics demand a surface, which has an even ink absorbtion, adequate 

smoothness, good optical properties, and high surface strength. The coating result depends on the 

quality of the base paper, type of coating and the process used to apply the coating. Coating results 

a dense and homogenous surface that allows a high image definition. By coating the quality level 

of paper can be increased noticeably, and only coated paper can provide the high quality colour 

reproduction demanded by advertisers and customers. Various methods are used to apply and 

smooth the coating colour to final surfaces for different printing. However, the blade coating is the 

most important coating method for paper. In blade coating, the right amount of colour is metered 

onto the paper sheet surface, and the surface is levelled with a revising blade. Coat weight control 

is based on the surface roughness volume of the paper. This volume is controlled regulating the 

compression force on the coater blade (Luomi, 1991). 

 
CD coat weight control is done by controlling an array of motor-driven spindles, which affect 

locally to the compression force of the blade. When a spindle is operated, a fast, local change in the 

displacement of the blade with respect to the backing roll is effected. This leads to a change in the 

blade load and, consequently, in the local coat weight level. Spacing of the coat weight actuators 

varies normally from 75 mm to 150 mm. In principle, CD coat weight system is similar to the CD 

basis weight control with slice lip actuators. However, certain process characteristics like wearing 
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of the blade, critical dependence on the blade angle (Ellilä, 1994), less demanding mapping 

requirements and a shorter process delay make it distinct.  

 
 
2.2 Process characteristics 

 

The objective of CD control is to minimize deviations of process variables from the setpoints 

across the width of the paper sheet. Almost all cross-directional control systems consist of three 

basic components (Duncan, 1999), see Fig. 2.2. A sensing system which measures the variations 

across the full width of the web, an array of constrained actuators, and a control algorithm that uses 

the measurements from the sensing system to determine the inputs to the actuators. The control 

actions must always satisfy the constraint limits. When an actuator is manipulated sheet properties 

change for some distance on either side of the position of the actuator. These interactions are 

typically incorporated into the CD response model with a number of constant interaction 

parameters. The CD control problem is to calculate actuator actions based upon the measurement 

of the quality profile. 

 
 

Figure 2.2: Cross-directional control problem. 
 

Next we will describe some features of the CD process that make its control especially challenging. 

 
 
2.2.1 Scanning measurements  
 
Continuous on-line measurements are necessary for precise and reliable CD process control. 

However, existing scanning measurement systems can not measure the whole sheet; only a portion 
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of the sheet is sampled and this is presumed to represent the entire product. Another difficulty is 

that some variations occur beyond the measurement capability of sensors. Because the gauge can 

not record wavelengths shorter than its frequency response limit, some faster variations can not be 

observed (Pfeifer, 1984). Next to measurement accuracy, the most critical factor is the processing 

of sensor data into profiles with high resolution. Today the total number of measurement points or 

data boxes in a measurement profile can easily be over one thousand depending on the width of the 

paper sheet. Perhaps the most important reason for having high profile resolution is to get a good 

mapping of the area of influence of a CD actuator (Dolphin,1988). Good CD control depends on 

knowing how actuator positions interact. In addition, high resolution profiles are necessary in 

identifying actuator response characteristics. A good determination of the proper response shape 

and size provides more confidence in the control strategy. 

 
However, practical CD control systems have been restricted to controlling variations of the sheet 

based on the measurements which have been sampled in either the cross-directional (CD) or the 

machine-direction (MD) or both. When a sensor scans the sheet, it forms a diagonal path, 

measuring a new profile, which includes both MD and CD variations and a random component 

called residual (Beecher and Bareiss, 1970). One problem with the random component is that it can 

not be measured directly. It has to be estimated by subtracting the MD and CD from the total. 

Several modern methods have been presented to solve this MD/CD separation problem (Chen, 

1992), (Duncan, 1994b). A conventional procedure to remove the MD variability from the 

measured profile is an exponential multiple-scan trending. In this method the removal of undesired 

MD variability from the profile is done by weighting the measurement at each cross direction 

position with the long-term historical value (Seborg et al.,1989). Another popular method is a 

moving-average filter, which averages a specified number of past data points by giving equal 

weight to each data point. The moving-average is usually less effective than the exponential filter, 

which gives more weight to the most recent data. To obtain a full profile information, use of an 

estimation algorithm, like a linear Kalman filter, is necessary to calculate missing measurements of 

the CD profile (Chen, 1988). However, even then the lack of profile information makes MD/CD 

separation difficult, even impossible for those MD and CD variations that have similar power 

spectrum. Also Dumont et al. (1993) and Wang et al. (1993a) used Kalman filter approach together 

with exponential forgetting and least squares algorithm to estimate basis weight and moisture 

content from scanned measurements. However, even if the MD or CD component is eliminated by 

a control system, the random component will not be reduced and it still remains in the process.  

 
Another practical way to remove the MD variations from the CD profile is to scan more slowly to 

increase the averaging time for each cross-direction measurement zone and to reduce the amount of 
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high-frequency MD variability. Therefore, in practice the result is often a compromise between the 

scan speed and the accuracy. Ideally the best scan is one that is instantaneous. This would eliminate 

all machine direction variation components. Such a technology is currently forthcoming and 

sensors, which simultaneously measure the CD profile have been introduced (ABB, 1998). 

However, also present measuring systems can be utilized in different modes. A sensor operating at 

fixed position can be used to estimate the MD component and herewith to compensate a scanning 

measurement to obtain a true CD measurement (Duncan, 1994b). Alternatively, a subscanning 

procedure may be used. This approach provides a way to scan some parts of the sheet more than 

once in each full traverse. Method gives a better MD resolution over part of the sheet, and provides 

estimation of the actual MD variation to frequencies higher than scanning frequency. More detailed 

discussion of this method and other cross-machine measurements may be found in Shakespeare 

(2001). However, for most of the existing measurement systems an appropriate scan speed must be 

defined to produce a good cross machine resolution. Thus, the traversing speed of existing 

measuring gauges varies typically from 250 mm to 500 mm per second, and therefore the scanning 

time in modern 10 meter wide paper machine may range between 20 and 50 seconds. Another issue 

related partly to the measurement system is the process delay, which is mainly determined by the 

distance between the actuators and scanning sensor, machine speed and the speed of traversing 

head. As a result, in modern paper machine it may vary from one scan to up to 6-8 scans, 

depending on the machine and scanning system design. In off-machine constructions the delay is 

significantly shorter. 

 
 
2.2.2 Constrained actuators 
 
In reality CD actuators are always constrained. There are upper and lower limits on the positions 

and often on movement of each actuator. The constraints in a real-time CD profile automatic 

control system include the available range of control adjustment, physical limits on the actuators, 

and possibly broken or manually controlled actuators. For instance in the case of headbox slice 

spindles to control the basis weight profile on a paper machine, there are high and low limits on the 

actuator positions as well as mechanical deformation or bending stress limit on the slice itself. 

Similar situation exists also in coating machines and calenders. Sometimes process as such dictates 

constraints because excessive control actions may compromise the integrity and strength of the 

sheet. Three typical sets of constraints may be presented as follows (Chen et al.,1986), (Chen and 

Wilhelm, 1986): (i) The available range of control adjustments ui is constrained, that is, umin ≤ ui ≤ 

umax, for i = 1,…,n. These are known as min-max constraints. (ii) The difference between adjacent 

actuator positions ui may be limited, that is, |δui| = |ui+1 - ui| ≤ |δu|max, for i = 1,…,n-1. These 
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constraints are often called first order bending moment constraints. (iii) A difference between 

adjacent actuator positions ui may be limited if control actions are made in opposite directions, that 

is, |δ2ui|  = |ui+2 - 2ui+1  + ui| ≤ |δ2u|max, for i = 1,…,n-2. These bending stress constraints are also called 

second order bending moment constraints.  

 
In CD control applications actuator constraints can be handled in different ways. Boyle (1977) and 

Chen and Wilhelm (1986) have shown that the optimal control subject to above shown constraints 

can be obtained with quadratic programming. However, this method expands the dimension of the 

problem considerably and is very sensitive to the condition of the process model. In linear CD 

control approach constraints may also be taken into account by defining additional vector 

inequality conditions and augmented performance index. An optimal solution of this new 

constrained optimization problem can be found by using quadratic programming (Wilhelm, 1986). 

A slightly more general technique reported by Braatz et al. (1992) is to include each constraint type 

with own weighting in the objective function. A solution is found by tuning the weightings to 

guarantee that the constraints are not violated. 

 
Constraints can also be added explicitly to the linear quadratic control algorithm. Then the 

constrained control problem will be the unconstrained control problem plus the additional 

constraints (i) – (iii). Also this is a quadratic programming problem that must be solved at each 

time step for the optimal actuator movements (Braatz, 1993). A more convenient explicit approach 

is the model predictive control (MPC), which provides a way to explicitly handle constraints on the 

inputs and outputs of the system. However, heavy online computation load of MPC method in CD 

control applications has restricted direct use of this method (Featherstone and Braatz, 2000). We 

will discuss MPC method in more details later.    

 
 
2.2.3 A complex high dimensional system 
 
In theory, cross-directional control of paper machines is a distributed parameter control problem, 

which should be solved using partial differential equations (Duncan, 1989). However, in practical 

CD control applications this complex system is reduced to a lumped parameter system, which can 

easier be used for control purposes. A common assumption is that the CD process has a separable 

dynamical and spatial response, which simplifies the modeling problem distinctly (Duncan, 1989). 

We will discuss CD response modeling more in details in Chapter 3. However, in terms of spatial 

responses, CD process and its characteristics may vary significantly depending on the process 

conditions, operating point and produced grades. Spatial response to a single actuator can be as 
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narrow as a few centimeters for the basis weight control by use of dilution actuators, or as wide as a 

couple of meters for the slice lip basis weight control on heavy grade papers. In addition, as pointed 

out earlier, some actuators may have a very fast, almost instantaneous response, while some others 

are extremely slow. Similarly, the process delay may change considerably at different production 

conditions.   

 
Another problem is related to the high dimension of the CD control system (Featherstone and 

Braatz, 2000). A current trend in paper industry is to have smaller actuator spacing between 

adjacent actuators and adjacent sensing locations. Narrower process disturbances should be 

observed and eliminated (Wallace, 1986). Thus, existing industrial CD control systems may easily 

have over one hundred actuators in a single array, and over one thousand measurement values in a 

high resolution profile. The high dimension and increasing paper machine speeds put actual 

requirements on the time of on-line computation for the control algorithms. In addition, process 

models of large dimension may have poorly conditioned system matrices, which may lead to 

serious control problems (Skogestad et al., 1988).  

 
 
2.2.4 A poorly conditioned uncertain system 
 
A traditional method to consider the characteristics of the CD response model is to examine its 

condition number (Laughlin et al., 1993), which describes the ratio between the largest and the 

smallest singular value of the response matrix. A matrix is said to be ill-conditioned if its condition 

number is large. In addition, the gain of the CD process response is dependent on the singular value 

directions of the process. Thus, a large condition number means that the system depends strongly 

on the input directions (Skogestad and Postlethwaite, 1996). In practice, majority of uncertain 

industrial CD processes are highly ill-conditioned (Featherstone and Braatz, 2000), (Laughlin et al., 

1993), because their condition number values can reach into hundreds. This is a clear indication of 

expected critical control problems, such as sensitivity to the model uncertainty. In spite of its 

benefits, condition number is perhaps not the best possible index to measure inherent ill-

conditioning of the process. We will propose in Chapter 4, that a better measure in this respect 

would be a relative gain array (RGA), (Skogestad and Postlethwaite, 1996). Another noteworthy 

matter is that the ill-conditioned characteristic of the response matrix affects the design of CD 

controllers. In several practical cases it excludes traditional CD control approaches and obliges to 

choose more advanced control methods. We will show in Chapter 4 that this is especially true in 

the case of decentralized integral CD controller.     
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Another important characteristic of practical CD control system is that a significant model 

uncertainty is related to it. Several facts can cause imperfections to the defined CD process models. 

There will be uncertainty associated with the identification procedure of the response models, 

which are commonly defined from uncertain data. Although the shape of the response is not 

assumed to vary in the cross-direction, in practice the paper sheet may wander or shrink over time, 

leading to the alignment and mapping error and mismatch between the true location of an 

actuator’s effect and its predicted location (Shakespeare, 2001). In addition, a general assumption 

made when modeling CD process is that the response of the measured paper sheet properties to the 

actuators is described by a linear, time-invariant transfer matrix of low dynamic order (Duncan, 

1989). However, this assumption is only an approximation of the complex CD process. In paper 

machine the operating conditions vary also between broad limits. In addition, the type of CD 

actuators and measurements affect the form of the model error. All the characteristics of the CD 

process are connected to the uncertain response model. We will return to these issues in Chapter 3. 

 
 
2.2.5 Industrial paper machine CD control systems 
 
Today industrial paper machine CD control applications are commonly implemented in a 

distributed control system (DCS), which have an open architecture and which can provide several 

benefits to the users (Ranta et al.,1992). Centralized operations, improved process performance 

through a higher level of control, cost-effective digitizing of data for use by information system, 

and distribution of risk into smaller modules with higher uptime and faster repairs are typical 

benefits. Of all these benefits, the most important ones are improved process control and improved 

process performance (Wallace et al., 1992). 

 
A typical example of modern CD control application is a consistency profiling system for CD basis 

weight (Vyse et al., 1996). A block diagram, indicating the data flow in this control application, is 

presented in Fig. 2.3. A scanning sensor measures the sheet properties, producing a high-resolution 

raw measurement profile. After each scan, measured signal is dynamically filtered in order to 

separate machine-direction (MD) and cross-direction (CD) components of the profle. An 

antialiasing filter is used to remove uncontrollable variations, before the profile is mapped to the 

actuator zones by an adaptive alignment algorithm. Applied filter is a digital finite impulse 

response (FIR) filter (Powell et al., 1996). In this application the adaptive alignment algorithm can 

take care of nonlinear, asymmetric shrinkage profiles and uneven actuator spacing. The algorithm 

uses information from the scanner regarding the location of the sheet edges to update the mapping 
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automatically. An on-line tool (AutoMap) is used to verify the alignment and determine the 

shrinkage profile based on automatic response tests. 

 
Once the profile is aligned to the actuators, an adaptive estimation algorithm is used to extract the 

true CD profile from the measured profile. This algorithm adjusts the amount of averaging applied 

to each region of the sheet, based on the measurement and process noise. For example, if the edges 

of the sheet have more random process variability, the amount of averaging is automatically 

increased, rejecting the random variation. The multiple frequency actuator control (MFAC) block 

provides a means of coordinating multiple sets of actuators. MFAC uses digital spatial filters to 

split the control profile into frequency components, which can be in a best way controlled by each 

actuator set. The resulting control profile is compared to the target profile and the error from target 

is determined. The error is then passed through decoupling blocks to compensate for any spatial 

interaction across the web of the sheet. A grade-dependent, model based de-coupling is also 

possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 2.3: CD basis weight control strategy block diagram (Vyse et al., 1996). 
 

In this application an adaptive predictive controller determines the actuator positions or setpoint 
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them at the scanner. A model of the process, obtained with an on-line tuning tool (AutoTune), 

determines the system delay time constant and gains. The controller adjusts automatically the 

closed-loop time constants, which are defined based on the nature of the profile variation. Once the 

changes to the actuator setpoints are defined, the overall setpoint average is adjusted. This can be 

used to ensure that the average of the profiling actuators is high enough to provide adequate control 

range in both directions. Actuator setpoints are sent to the I/O interface unit (Profile Manager) 

across an Ethernet local area network (LAN), and finally, the Profile Manager transmits new 

setpoints to the actuators.  
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Chapter 3  
 
 
 
Modeling and Control of Cross-Directional Processes 
 

Process models are used to describe different kinds of physical and chemical phenomena in the 

form of mathematical presentation. A mathematical model can be considered to be a group of 

equations, which represent the physical system and describe the connection between the system 

variables. Models in general can be classified in many ways. There are probabilistic and 

deterministic models, empirical and mechanistic, discrete and continuous, lumped and distributed. 

However, the main objective of mathematical modeling is to find a presentation that characterizes 

the real world phenomenon accurately enough. On the other hand, too complicated models should 

be avoided because the practical application of cumbersome models might prove to be 

troublesome. Models provide efficient, sometimes the only means of evaluation the results of 

alternative choices; for instance, a model is essential in cases where experimentation with the real 

world system is too expensive, dangerous, or even impossible (Denn, 1986). 

 
The design of feedback controllers is always model-based in one form or another. A model is 

created in order to get a view how the process will respond to the control actions. Due to process 

complexity and absence of physical modeling, the CD process models are usually identified from 

measured input-output data (Chen, 1992). The spatial and dynamic models of the CD process are 

commonly assumed as a constant transfer matrix combined with linear low-order transfer function 

models (Duncan, 1989), (Laughlin et al.,1993). However, this assumption is only an approximation 

of the real industrial CD process, and in reality a high degree of uncertainty is related to the 

response models of actuators. 

 
Another reason for the model mismatch is the process disturbances. In paper production many 

process disturbances can appear, which affect directly to the quality of CD profiles. These 

disturbances may be either steady-state or dynamically varying. Typical examples of CD 
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disturbances are uneven flow of stock across the headbox, moisture streaks, sheet wraps on dryer 

cans and uneven nip pressure. A more thorough examination of process disturbances may be found 

in (Gullichsen and Paulapuro, 1999).  

 
In this chapter we will first define a cross-directional control problem and present a category of CD 

response models, which will be used throughout the thesis. Model uncertainties in the CD process 

are discussed in terms of operating point, actuators and structure of model errors. After that a brief 

survey to the early history of CD control and reported CD control strategies is presented. Linear 

quadratic, model predictive and robust CD controls are reviewed.  

 
 
3.1 Cross-directional response models 
 

All sheet-forming processes can be considered as distributed parameter systems, where the output 

variables  change over time and place. A mathematical solution of this kind of problem requires a 

solution of a partial differential equation (Duncan, 1989). If the parameters of the distributed 

process are assumed to be constant and if the process is assumed to behave linearly within a 

reasonable operating region, the process may be characterized by a linear partial differential 

equation with constant parameters over its domain of definition. However, even in this case the 

general solution may be very complex for control purposes. One problem with this method is that a 

partial differential equation formulation of the response has to be acquired from the physics of the 

process and in practice there are always uncertainties associated with this formulation. The 

response is usually different for different operating points of the process during grade change. In 

addition, the partial differential equations tend to be very complex, and demanding computation 

can be required to produce the desired control actions (Duncan et al.,1996). 

    

3.1.1 An approximated model 
 
In practical CD control applications the distributed parameter response model is often reduced to an 

approximated model by using an interaction matrix based approach. In this approach, it is assumed 

that the response of the actuators is separable, in the sense that the response can be expressed as the 

product of a fixed spatial (CD) response and a scalar dynamic term. (Duncan, 1989), (Duncan et 

al.,1996). This separation of the actuator response means that when a change is applied to the set 

point of an actuator, the CD shape of the response remains fixed and the actuator dynamics simply 

change the amplitude of this CD shape. Commonly it is also assumed that the response of the full 

array of actuators can be presented as the product of a scalar dynamic term and the steady-state 

spatial responses of each of the actuators. This description of the system is infinite-dimensional, but 



 24

by expressing the spatial response in terms of a basis function expansion and truncating the higher 

order terms, a finite-dimensional description of the system is obtained. The simplest method of 

reducing the problem to finite dimensions is to divide the sheet into a number of zones with one 

zone for each actuator, and then to average the measured response over each zone. It is convenient 

to assume that the actuators are equally spaced and that they all have the same shape of response 

and identical dynamics (Duncan, 1989), (Wilhelm and Fjeld, 1983). This assumption reflects the 

arrangement of most practical cross-directional control systems, which consist of an array of 

equally spaced, identical actuators (Chen and Wilhelm, 1986). The only exception from this 

assumption occurs when some of the actuators, usually those at the edges of the web, have a 

different shape of response due to the constraints of the process (Kniivilä, 2003), (Chen and 

Wilhelm, 1986). 

  
Sensor measurements are taken after some form of processing and they are located at certain 

distance down the machine-direction from the actuation. The normal mode of operation in most 

practical CD control systems is to take a measurement of the web and then to use this profile to 

calculate the new set points for the actuators. The actuator set points remain fixed until the next 

profile measurement is taken and new set points are calculated. This kind of approach means that 

continuous variations in the web profile are sampled in two directions and operation produces 

responses, which are discontinuous in the time domain, but continuous in the spatial domain. 

Therefore the original distributed parameter system model may be reduced to a system model 

which is discrete in both the cross-directional (CD) spatial domain and the time (MD) domain 

(Duncan, 1989), (Duncan et al.,1996). This kind of system can be represented as a sampled data 

lumped parameter system, which characterizes the response between a finite number of actuators 

and a finite number of measuring points. If it is assumed that there are m measuring points and n 

actuators, then the response of the actuator array is given by a discrete-time model (Duncan, 1989), 

(Duncan and Bryant, 1997), (Heath, 1996). 
 
                 y(z) =  G(z)u(z),      G(z)= ga(z)Go                                 (3.1) 
 
where  y(z) ∈ Rm is the vector of measurements in z-domain, u(z) ∈ Rn is the vector of actuator set 

points in z-domain, ga(z) is the scalar function describing the dynamics of each of the actuators and 

Go ∈ Rmxn is a constant steady-state impulse response matrix whose ijth element contains the 

response of the ith actuator. This equation describes a linear multivariable system. Similar 

presentation can be derived for a continuous time model, which is commonly used in the literature 

(Wilhelm and Fjeld, 1983), (Chen and Wilhelm, 1986), (Gräser and Neddermeyer, 1986). Process 

disturbances like MD variations, CD variations and gauge noise may be connected to the model as 
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uncorrelated white noise (Duncan, 1994b), (Duncan and Corscadden, 1996). It should be noted that 

the assumption about each of the actuators having identical dynamics allows to define ga(z) as a 

scalar, so that the impulse matrix contains only real values. In practice, it is likely that this 

assumption is not necessarily true because individual actuators age and deteriorate at different 

rates. In the impulse response matrix Go, the partial gij represents the static gain between the control 

adjustment at the ith CD actuator and the profile change at the corresponding CD location. The 

partials, gij for j ≠ i, are the spatial coupling gains between the control action at the jth actuator and 

the profile change at the ith CD position (Chen and Wilhelm, 1986). Since the shape of the response 

of each of the actuators is assumed to be the same, the shape of each of the columns is the same, 

except that the center of each response is shifted. 

 

3.1.2 Model characteristics 
 

The impulse matrix Go, also known as a response model, interaction matrix or process transfer 

function (Chen and Wilhelm, 1986), (Featherstone and Braatz, 2000) is in practice seldom known 

beforehand. Therefore the partials must be estimated with on-line or off-line identification 

methods. There are many ways to accomplish this estimation (Chen et al., 1986), (Wilhelm, 1982), 

(Corscadden and Duncan, 1996), (Wang et al., 1993a), (Featherstone and Braatz, 1995), (Wellstead 

et al., 1998). Basically it involves perturbing several actuators and using least-squares estimation or 

correlation studies to find the steady state gain from the actuators to the measurements over an area 

of the measured profile corresponding to the perturbed actuators. One convenient way to determine 

the response of actuators is to observe the effect of a bump test as outlined in Fig. 3.1.  

 

 
                             Figure 3.1: A scene of uncertain response of an actuator 
 
A step is applied to the setpoint of a single actuator, while CD system is running in open loop so 

that the setpoints of all other actuators remain fixed. For a single actuator, several estimations 

might have to be run, one for each measurement, and then from those estimations the response 
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shape can be obtained. The experiments are then repeated for several actuators across the machine. 

The response shapes from those several actuators are generally averaged to get a single response 

shape to represent the response to any actuator across the machine. 

 
The complexity and the difficulty of the CD profile control are related to the nonzero spatial 

coupling partials (Chen and Wilhelm, 1986). The spatial coupling for each actuator usually spreads 

over a certain width in the cross-machine direction and has negligible effects on the rest of the 

profile. Thus, the process model Go is a band-diagonal matrix as shown in equation (3.2). The 

partials beyond the certain width from the diagonal are all zero. Go as its name suggests, represents 

the spatial influence of each actuator on the system outputs. This kind of model follows from the 

assumption that changes observed downstream from one actuator caused by adjustment at nearest 

neighboring actuator is independent of position across the machine. This model structure is the 

most often found in the literature (Laughling et al.,1993).  

                                                                                                                                      

One of the major problems with band-diagonal matrices is that they can easily approach singularity 

- their condition number can grow infinity (Wilhelm and Fjeld, 1983), (Laughling et al.,1993). 

Processes with high condition number can be difficult to control, especially in the presence of 

uncertainty in the interaction matrix. Because of the uncertainty, the direction of a large input 

signals may be much larger than expected from the model. In the limit as the Go matrix becomes 

singular, the plant is uncontrollable, as the actuator settings can not be determined based on the 

measurements (Skogestad et al., 1988). 

 
3.1.3 A square response model 
 
Square CD models have been used commonly in the CD control literature (Laughling et al.,1993), 

(Stewart, 2000), (Stewart et al.,2003), (Hovd and Skogestad, 1994), (Hovd et al., 1997). Also in 

this work a square response model Go is considered. Use of square response model can be argued 

for a concept of controllable subspace. Duncan (1989) has shown that the space of completely 
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controllable profiles is equal to the dimension of actuator responses. All uncontrollable high 

frequency components of profile measurements should be lowpass filtered before sampling, so that 

the profile signal could be sampled at intervals equal to the distance between actuators. A more 

profound theory behind this statement is based on the concept of almost spatially-invariant 

processes (Duncan, 1989), (Duncan and Bryant, 1997). If the number of actuators is assumed to be 

large, the output profile of the CD process can be obtained using convolution of the input profile 

and response of a single actuator (Duncan and Bryant, 1997). Further, the output profile can be 

transferred from the spatial domain into the spatial frequency domain by the Fourier transform, and 

the spatial bandwidth of the whole array of actuators depends on the spatial frequency response of a 

single actuator. As a result, spatial frequency approach provides a method to separate the 

controllable and uncontrollable components of the CD disturbances in the spatial frequency 

domain. 

 
In several practical CD control applications a square response model is very common (Chen and 

Wilhelm, 1986). Although a high-resolution profile with hundreds of measurement points is 

available for control, in practice this profile is anyway mapped down to the actuator resolution by 

using constant mapping matrix (Stewart et al., 2000), (Heaven et al.,1993a). Thus the number of 

actuators is equal to the profile measurements and a square model is applied. However, there are 

two main problems associated with this matrix form that are also typical for a non-square Go 

matrix. The most serious problem is the mapping, that is, determining which actuator belongs to 

which measurements data boxes of the profile (Carey et al., 1975), (McFarlin, 1983), (Amyot and 

Nuyan, 1989). Another problem is how to model the edges (Kniivilä, 2003). If the edges are not 

accounted for, the model might show some edge effect, that are not present in the real process. The 

edges of the interaction matrix might have to be identified separately otherwise the model might 

create some phantom ripples at the ends of the profile. 

 
Due to the symmetric inherent in the physical architecture of the web forming processes, the 

interaction matrix Go usually has the structure of a Toeplitz symmetric matrix (Laughling et 

al.,1993), in which the same constant element is repeated along each diagonal of the matrix. 

However, centrosymmetric and circulant symmetric interaction matrices have also been reported 

(Laughling et al.,1993), (Stewart, 2000).  

 
The matrix T is said to be a Toeplitz matrix if the scalars (c-p+1, …, co, …, cp-1) are such that the 

(i,j)th element of matrix T is cj-i. The matrix shown in (3.3) can be expressed as T = Toeplitz (c-p+1, 

…, co, …, cp-1).  In general, the Toeplitz matrix is not a symmetric matrix. However, in a special 

case when c-i = ci, it is a symmetric matrix (Gray, 2002).  
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For example, the constant square band-diagonal interaction matrix Gn,n with m independent spatial 

coupling partials in equation (3.2) can be expressed as a Toeplitz symmetric matrix: Gn,n = 

Toeplitzn(0, ... ,0, g1, g2, … , gm,0, … ,0). This matrix structure will occur repeatedly throughout the 

text, and therefore is abbreviated using notation adopted from the software literature (Matlab, 

1996). 

   Gn,n = toeplitzn{g1, … , gm,0, … ,0}                                                 (3.4) 
 

3.1.4 Process dynamics 
 
The process dynamics in (3.1) is attributed to the actuators ga(z), which are usually represented as 

low order, stable and minimum phase except for the transport delay. A continuous time model of 

the actuator dynamics is generally presented with a first-order-plus-dead-time model, which is 

defined in terms of gain, time-delay and a single negative pole (Laughling et al.,1993), (Stewart, 

2000), (Bergh and MacGregor, 1987). 

 

ga(s) = 
1+

−
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τ

;   τ > 0,  τa >  0                                                                          (3.5)

     
The discrete time model of the actuators has a similar form of a first order transfer function with a 

delay (Kristinsson and Dumont, 1996), (Backström et al., 2000), (Haznedar and Arkun, 2002), 

(Rigopoulos, 1999). 
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z d

                                                                           (3.6) 

 
In regard to the physics of the paper production process, the delay is usually significant since there 

is distance between the location of the actuators and the array of sensors. Typically the delay d, 

presented now in terms of sampling rate, is in the range 0 ≤ d ≤ 4 and the pole 0 ≤ a ≤ 1. Equations 

(3.5) and (3.6) give the transfer function representation of the dynamics of a single actuator. 

However, since all actuators in a single bank of actuators are assumed to be identical, the same 
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transfer function is used for each actuator. In many cases it has been assumed that the spatial 

responses of the actuators do not have any dynamic response (Chen and Wilhelm, 1986). This 

allows the use of spatial responses, which are independent of time. If the lengths of the transient of 

the dynamic response of the spatial responses are less than the sampling rate, then the 

measurements do not observe the dynamics, which mean that the assumption is valid, when the 

sampled model is used. If the length of the transients is longer than the sampling rate, then it is 

necessary to take the dynamics into account. 

 

3.2 Model uncertainties in the CD process 
 
In practical applications several facts can cause imperfections to the CD process models. There will 

be uncertainty associated to the estimation procedure, and it is likely that the shape of the response 

will change during processing, particularly when changing to a different grade of material. A 

standard procedure is to make a series of step response or bump tests with a set of selected 

actuators and record the observed responses to the quality variables. Tests can be made manually or 

automatically. The position of the CD actuator is changed in order to get change in a corresponding 

measured profile (Heaven et al., 1993b). However, there is no guarantee that the responses of the 

unmeasured actuators will be the same as those that are tested. Especially at the sheet edges the CD 

response shape may be very different (Kniivilä, 2003).  

    
An especially critical factor to the success for a CD control is the spatial relationship between the 

measurements taken at the scanner and the actuators used to control the profile. Due to shrinkage, 

sheet wander, and the physical distance between actuators and sensors, this relationship is 

surprisingly difficult to determine with the required precision. The center of the produced CD 

response in the profile is the mapping position of the actuator. A major difficulty with 

implementing a CD control system is determining the CD location of the effect of an actuator 

movement (Carey et al.,1975). (McFarlin, 1983), (Amyot and Nuyan, 1989). Using the results from 

bump tests on a few actuators is a relatively crude method to determine the mapping of the whole 

array of actuators. The shape of the response is assumed not to vary in the cross-direction. 

However, in practice the paper sheet may wander or shrink over time, leading to alignment error 

and mismatch between the true location of an actuator’s effect and its predicted location. Trim 

squirt measurement error, edge measurement error, mapping error, and error from web wandering 

during one scan will affect to the accuracy of mapping, and in the worst case the total error can be 

centimeters. 
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On the other hand the MD-CD cross coupling is another source of model error (Tong, 1975), 

(Chen, 1992). The scanning sensor is traversing back and forth across the moving paper tracing a 

diagonal path on the sheet. Therefore, in addition to the usual measurement noise, the sensor will 

alias certain MD variations into the CD profiles which are generally not identifiable and 

controllable (Shakespeare, 2001). The amplitude of the response may also vary. In the case of basis 

weight variables like total dilution ratio, consistencies and profile dry weight average affect to the 

amplitude of the response. The procedure is very much operating point and grade dependent and 

usually the step response is performed to different grades in order to calculate relative gains to 

different reference grades. 

 

3.2.1 Role of operating point 
 
Typically a paper machine, calender and coating machine are designed to produce a very wide 

range of products. The heaviest grade is often twice or more heavier than the lighter grades of 

paper. In paper machine the operating conditions, such as machine speed, slice opening and 

headbox consistency, may range between broad limits (Gullichsen and Paulapuro, 1999). Actually 

the most distinct characteristic is the varying profile response to the slice screws on headbox. The 

profile response shape and response width of the slice screw is highly dependent on the machine 

speed and the dewatering process on the wire. Edge profile problems are also very common for 

almost all paper machines. For heavier weight paper machines, the edge profile problems are 

significantly worse. On the other hand, at soft calender process conditions like linear load, roll 

temperature and machine speed with soft cover material properties and used actuators define the 

shape, width and amplitude of the CD response (Vyse et al.,1993), (Svenka and Minkenberg, 

1995), (Gullichsen and Paulapuro, 1999). In coating machine the blade angle, blade load, properties 

of the coating colour and machine speed affect properties of the CD response (Ellilä, 1994). 

 
All the characteristics of the process are connected to the process response model, which quantifies 

the change in the CD profile to the change in actuator position. Process dynamics, rise time and 

transport delay change over time, with changing process conditions. Because the grade range can 

be large, unique process response models must be determined for each grade and operating point. 

Therefore if for a specific grade the operating conditions of the machine change, the process model 

should also change or to be updated. Several methods to accomplish this identification of the 

response model have been presented in the literature (Wilhelm, 1982), (Chen, 1988), (Wang et 

al.,1993b), (Wellstead et al., 1998). In practical paper machine control applications grade and 

operating point specific process model and controller parameters are pre-tuned and stored in a 
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recipe data base, from where they are obtained with an on-line tool (Vyse et al., 1996) or with a 

grade change application software. A detailed description of the grade change on a paper machine 

can be found in Viitamäki (2004).   

 
3.2.2 Model errors caused by actuators 
 
A wide selection of actuators is available for CD control purposes depending on the object of the 

controlled process. A traditional way of performing CD basis weight control is to change the 

position of the slice lip of the headbox in the cross machine direction. Several methods exist: 

motors, thermal and hydraulic actuators and motorized robots (Cutshall, 1991). In modern dilution 

headboxes the basis weight control is done by using dilution valves and white water injection to 

change the composition of material (Vyse et al.,1996). Use of dilution to control the dry weight 

profile does not guarantee good fiber orientation profile. Thermal deformations and minor defects 

can vary with operating conditions. Jet misalignment leads to fiber orientation problems especially 

at low rush to drag values. In coating machine CD coat weight control is done by adjusting rods 

similar to slice screws in paper machine headboxes to modify coating blade pressure at intervals 

across the web (Ellilä, 1994), (Hoeke, 1990), (Sollinger, 1990). With super and soft calenders for 

the control of paper CD thickness three main technologies are available: induction heating systems, 

confined air showers, and hydraulic zone-controlled CD rolls. For the control of paper smoothness 

and gloss, steam shower technology has established its position as a leading method. Modern steam 

profilers use electromechanical actuators with synchronous motors and feedback signals for 

accurate positioning. However, the type of the CD actuators affects on the possible forms of the 

model error. Inaccurate calibration of actuator electronics and position feedback sensors like LVDT 

sensors are well known sources of the errors. Mechanical coupling, clamping and backlash 

problems are common to all spindle actuators and electric motor applications (Cutshall, 1991). An 

insufficient cooling of electronics at high temperatures can cause a drifting problem of 

measurement values and other serious malfunctions. Unstable zero points with constant calibration 

procedures are common to many hydraulic systems. In practice, a possible actuator failure should 

also be taken into account. In industrial process an uneven wear or tear is common and can easily 

lead to the actuator nonlinearities.  

 

3.2.3 Appearance of the model errors  
  

We may conclude that in practice a notable uncertainty is related to the CD response models and it 

should be taken into account in the control strategy. Generally model uncertainty is presented by 

describing the process model as a set of plants Gp, given by a nominal model G and a set of norm 
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bounded perturbations ∆. Model uncertainty can be either unstructured or structured (Skogestad 

and Postlethwaite, 1996). Unstructured uncertainty is defined as a full complex perturbation ∆, 

while structured uncertainty usually means that the perturbations can be arranged into block 

diagonal form ∆ = diag(∆i). In the literature usually six major types of multivariable uncertainty 

descriptions are presented: additive, multiplicative input, multiplicative output, inverse additive, 

inverse multiplicative input and inverse multiplicative output (Zhou et al.,1996). Additive and 

multiplicative output uncertainties are the most commonly used to represent unmodeled process 

dynamics. Additive uncertainty, which typically represents unmodeled process dynamics is 

presented as a full matrix, whereas multiplicative uncertainties are presented as being either full or 

diagonal. Diagonal uncertainty can be represented as having diagonal elements that are 

independent scalars or repeated scalars. 

 
Featherstone and Braatz (1998), (2000) used an additive unstructured model uncertainty based on 

uncertain pseudo-singular values in their CD controller study. Stewart et al. (2000) and Duncan 

(1994a) utilized a similar uncertainty structure to describe a paper machine plant-model mismatch. 

Stewart et al. (2000) applied this approach also to two industrial CD process cases. Laughlin 

(1988) and Laughlin et al. (1993) applied a structured model uncertainty description in their CD 

modeling work. The authors addressed the parameter uncertainty for both dynamic response and 

spatial response. Gorinevsky and Stein (2001) used similarly a structured uncertainty representation 

for a process model, which was described by rational transfer functions of spatial and dynamic 

variables.  

 
Gorinevsky and Heaven (1997) studied also the model uncertainty structure in terms of typical CD 

response shapes by defining an empirical expression for a continuous response shape. Their 

expression describes well the majority of practically encountered CD responses. The parameterized 

structure models the effect of an actuator on the continuous paper profile. In their presentation four 

scalar parameters are used to describe the shape of the response. These CD model parameters are: 

the gain parameter, the attenuation parameter, the width parameter and the divergence parameter 

for describing the spatial response shape. The influence of these parameters is depicted in Fig. 3.2, 

which shows the nominal steady-state responses to a single actuator and the responses with 

parameter uncertainties in the spatial domain. In Fig. 3a-d, only one parameter has uncertainty. The 

effect of the gain parameter uncertainty, which affects directly the amplitude of the response, is 

shown in Fig. 3a. The attenuation parameter, as shown in Fig. 3b, changes the size of the negative 

lobes of the response. For large parameter values these lobes are not observable, for smaller ones, 

they are more profound. The width parameter, as it’s name expresses, affects the width of the 
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response, especially at the bottom lobes of the response, as shown in Fig. 3c. On the other hand, the 

divergence parameter, as presented in Fig. 3d, defines the presence of two maxima. This kind of 

behaviour is especially typical for heavy grade papers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Influence of the uncertainty parameters on the shape of response. The nominal spatial 

response (solid + dotted) and its corresponding one with uncertainty (solid + circle): (a) the gain 

parameter uncertainty; (b) the attenuation parameter uncertainty; (c) the width parameter 

uncertainty and (d) the divergence parameter uncertainty.   

 
We will use this presentation to illustrate the uncertainty structure of our response model. If we 

consider the row structure of the CD actuator system it is clear that in reality each manipulated CD 

actuator is a source of the input uncertainty. As shown by Duncan (1994a) an independent diagonal 

uncertainty description would be more adequate for characterizing inaccuracies in the CD actuator 

models because each actuator is expected to have a slightly different dynamic response. On the 

other hand, a repeated diagonal uncertainty description may be appropriate for modeling 

inaccuracies in the sensor model, because the sensor is usually of the traversing type and the same 

sensor is used for all measurements. Due to the physical structure of the CD control system, we 
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may say that, diagonal input and output uncertainties are always present in the real CD control 

system. Diagonal input uncertainty represents inaccuracies associated with the actuators and 

diagonal output uncertainty represents inaccuracies associated with the measurement devices.  

 
We assume that the true CD process response belongs to a set of possible response models 

(Laughlin et al., 1993), described in continuous form by  

 
          nnnn GsgsG ,, )()( =                                                                           (3.7) 

where the elements gi of the constant interaction matrix nnG ,  are constrained as in 
[ ]maxmin , iii ggg ∈ , and g(s) is defined by the first order actuator dynamics ga(s) and time-delay gd(s) 
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[ ]maxmin , aaa kkk ∈ , [ ]maxmin , aaa τττ ∈ , [ ]maxmin ,τττ ∈  

 
Each real parameter in the actuator dynamics in (3.8) is permitted to vary between the specified 

upper and lower bounds independent of the other real parameters. Uncertainty in actuator scalar 

dynamics is described by the bounds for ka and τa; time-delay uncertainty by the bounds for τ. This 

kind of description of the CD model uncertainty covers the structured model uncertainty and 

especially block diagonal input and output uncertainties. Therefore the previously mentioned 

uncertainties related to identification method, operating point and actuators are included into the 

approach. Structured model uncertainty is also called parametric uncertainty, because the structure 

of the model is known, but some of the parameters are uncertain. Alternative approach for 

parametric uncertainty is to assume a probabilistic distribution of the parameters, and apply the 

average response. However, this kind of stochastic uncertainty is difficult to analyze (Skogestad 

and Postlethwaite, 1996). Another well applicable approach for parametric uncertainty is the multi-

model approach in which a finite set of alternative models is considered. In this approach the 

performance is measured in terms of the worst-case or some average of these models’ responses. 

We will discover that the multi-model approach is applicable to describe a set of uncertain CD 

response models.    

 

3.3 Reported CD control strategies 
 
Control systems for regulation of cross-machine (CD) paper sheet properties have been on-line in 

the paper mills for over two decades. Several control schemes and algorithms are applied and 



 35

reported in the literature. According to Dumont (1986) the pulp and paper industry is, in general, 

conservatively using well established control methods. Therefore, it is not surprising that very 

traditional controllers, like PI controllers with output de-coupling features, are still extensively used 

for CD control purposes in the paper industry Heaven et al., (1993a). In this section we will discuss 

the main CD control methods presented in the literature. The survey does not cover the whole topic 

but will give an overview to the matter.  

 

3.3.1 Early history of CD control 
 
CD control first became possible with the invention of sensors to measure the paper across the 

sheet. Burkhard and Wrist (1954) were the first to classify basis weight variations into three 

components. Initial efforts at reducing variations concentrated on the control of MD variations, 

mainly because CD sensors were not available and more computer power was required for control 

of cross-directional variations. In 1967 Åström published one of the early papers on computer 

control of paper machines (Åström, 1967). This paper concerned the machine direction control of 

basis weight and a minimum variance controller was designed by use of linear stochastic control 

theory. Two years later Dahlin (1969) presented an algorithm based on exponential filtering to 

extract the MD and CD components from raw data and gave a description of the sensors used for 

basis weight and moisture measurements.  

 
A simple model structure of CD response (3.1) suggests that the system could easily de-coupled by 

introducing an inverse of G in the controller definition. Carey and co-workers (Carey et al.,1975) 

utilized this observation and reported a reduction in fibre usage following installation of a CD 

control system, which used the interaction matrix approach. Two years later Boyle (1977) showed 

that the interaction matrix approach could result in extensive bending or displacement of the slice 

lip and that the solution may well be infeasible. To avoid the bending problems two methods were 

introduced to limit bending and displacement of the lip. The first method, quadratic programming, 

minimized variations subject to hard limits on the actuator movements. However, it was found to 

be computationally intensive (Boyle, 1978). The second method, minimization of quadratic 

objective function, penalized actuators moves or bending of the slice. Boyle (1977) described a 

quadratic programming formulation for simulation and observed that computational considerations 

limit the applicability of the method to only a few actuators. In Wilkinson and Hering (1983), a 

linear quadratic optimal design using on line identification of the interaction matrix was used in 

industrial settings. After these work several applications based on the quadratic programming have 

been introduced. Due to popularity of linear CD control we will study it more in details.  
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3.3.2 Linear CD control 
 
A linear-quadratic (LQ) optimization represents a very traditional mathematical programming 

manner to solve a multivariable constrained steady-state optimization problem, and minimizing or 

maximizing a quadratic performance index yields a straightforward linear control law. The basic 

control objective in design methods based on quadratic cost functions is to force the CD profile to 

some desired shape. An obvious approach is to try to choose the actuator setting to minimize the 

mean square deviation from the desired profile. Therefore, the performance index is directly 

proportional to the variance of the profile deviation (Wilhelm and Fjeld, 1983), (Chen and 

Wilhelm, 1986). If the process model is accurate, the optimal control corrects totally the profile 

deviation. However, an accurate model is normally not available and in practice the control actions 

are always limited by the constraints.  

 
Constraints in steady-state CD control problem can be taken into account by defining additional 

vector inequality conditions and augmented performance index. An optimal solution of this new 

constrained optimization problem can be found by using a quadratic programming (QP). Chen and 

Wilhelm (1986) presented that the Kuhn-Tucker optimality conditions can be used to convert the 

problem into a linear complementary problem, which can be solved with a complementary pivoting 

algorithm. An optimal solution of the problem can be obtained with a finite number of pivots. 

However, the pivoting calculation is very sensitive to modeling errors if the process model G is ill-

conditioned. Another way to solve the constrained optimization problem is to use quadratic penalty 

function (QPF) approach, which provides a sub-optimal solution (Chen and Wilhelm, 1986). Also 

in this method the original performance index is modified and a constrained optimization problem 

is converted to non-constrained minimization of modified performance index with a proper choice 

of defined penalties. The choice of penalties is done iteratively and an appropriate searching 

procedure with constraint-checking logic and repeated calculation of control is used. The achieved 

value for performance index is nearly minimal subject to the constraints. Chen et al. (1986) 

extended studies of quadratic programming (QP) and quadratic penalty function (QPF) methods. 

Even if QP gives an optimal solution, the time and memory requirements of this approach prohibit 

it’s use in real-time control, and therefore the authors turned to QPF. 

 
Also Wilhelm and Fjeld (1983) reviewed some control algorithms for CD control in their study. 

They formulated control methods for both the inverse interaction matrix approach and for quadratic 

optimal design. They noted that strong coupling in the interaction matrix could result in the matrix 

being singular and therefore not invertible. They suggested that strong coupling simply represented 

a poor choice of actuator spacing. The problem could be avoided by controlling groups of actuators 
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together or computing the control based on a wide spacing of actuators and then using interpolation 

to calculate the settings of the remaining actuators. Bergh and MacGregor (1987) used LQG 

(Linear Quadratic Gaussian) control theory to jointly control MD and CD moisture variations using 

spatially distributed actuators. They modeled the disturbances for a web forming process as a 

multivariate time series. Similarly LQG control with recursive identification to sequentially adjust 

the slice lip actuators with a traversing robot is presented by Halouskova et al. (1993). 

 

3.3.3 Model predictive CD control 
 
Model predictive control (MPC) is currently the most widely implemented advanced process 

control technology in process industry (Qin and Badgwell, 1997). While model predictive control 

is very popular in process industry it is less common in paper machine CD or other web forming 

process control. The reason for this is related to the large scale nature and uncertainty 

characteristics of CD processes. However, the main reasons for MPC favor in process industry is 

that it can easily handle multi-input multi-output systems and it provides a way to explicitly handle 

constraints on inputs and possibly outputs of the system. In MPC the control objective is optimized 

on-line subject to constraints and a linear or quadratic optimization is solved at each sampling 

instance. MPC strategies have been formulated using finite pulse or step response models, as well 

state space models (Maciejowski, 2001). Morari and Lee (1999) give a recent overview of the 

state-of-the-art in the field as well the issues that are still open. Characteristics of MPC will be 

discussed further in Chapters 5 and 6.  

 
A limitation of MPC has traditionally been due to the enormous online computation load and its 

sensitivity to model uncertainty (Featherstone and Braatz, 2000). MPC CD optimization problems 

can be very large – over 200 variables and constraints for steady-state control of medium size web 

process. Solving an MPC CD problem is similar to solving a linear (LP) or quadratic program (QP) 

of size mn, where m is the control horizon and n is the number of decision variables. Typically n is 

the same as the number of actuators. The fastest QP algorithm (Nesterov and Nemirovskii, 1994) 

requires O((mn)3) flops to solve an MPC problem. A lot of efforts have been directed towards 

reducing the solution time for these large optimization problems and advances in computing power 

coupled with theoretical work in model reduction and robustness are beginning to make MPC 

techniques possible. One way to solve large scale CD problems is to reduce the size of the model. 

A general way to implement a model reduction is to use different kinds of basis functions to 

approximate the output and input profiles. Halouskova et al. (1993) used first order spline functions 

to describe the web profiles. Kristinsson and Dumont (1996) and Heath (1996) used Gram 
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polynomials or discrete Chebyshev coefficients for model reduction. This method provides a 

convenient way to avoid inverses of large interaction matrices and reduces greatly computational 

requirements. Duncan and Bryant (1997) showed that the web profile of finite width can be 

separated into controllable and uncontrollable parts. Fourier transform is used to represent the 

controllable subspace in terms of spatial frequencies.  

 
The other way to overcome the large scale characteristic of CD process is to use either quadratic 

programming (QP) or linear programming (LP) solvers. Campbell and Rawlings (1998) reduced 

the computational time of the QP problem by utilizing the characteristic of state-space matrices. 

Barlett et al. (2002) developed a fast QP solver, which uses the Schur complement algorithm. 

Backström et al. (2000) reported the use of MPC for CD control on a linerboard machine to control 

both CD weight and CD moisture. Their approach uses a fast QP solver and utilizes the sparse 

structure of CD process models. Achieved control performance and computational time of the MPC 

optimization were satisfactory. Dave et al. (1997), (1999) developed a linear programming MPC 

algorithm which may be used for large scale CD control problems in real time. Their algorithm is 

based on the fast computing of an approximate control action that is close to optimality. Once an 

approximate solution is obtained, it is used to initialize the basis of the original problem to obtain 

an exact solution. 

 

3.3.4 Robust CD control 
 
Robust control is a new modern sophisticated control method, which provides a way to incorporate 

model inaccuracies to the control strategy (Morari and Zafiriou, 1989). Robust control approach 

can be used in CD controller design by utilizing the special structure of CD response model 

matrices. Because most of the CD models are Toeplitz symmetric matrices, this special model 

structure can be used to reduce the computational expense associated with robust control. In 

addition, circulant matrix theory can been utilized to develop methods for designing conservative 

robust multivariable controllers based on the design of only one single loop (SISO) controller. 

Laughlin presented this kind of approach already in 1988. He suggested a MIMO (multiple input 

multiple output) robust control scheme based on internal model control (Laughlin, 1988). He was 

able to guarantee both robust stability and robust performance by assuming knowledge of the 

parameter uncertainty. A major drawback with this scheme was that the gain matrix describing the 

relationship between actuators and sensors had to be positive definite. Furthermore he did not take 

into account the constraints of the slice lip, so the control action from this scheme could not be 

realized. Laughlin et al. (1993) utilized circulant matrix theory to develop conservative robust 
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multivariable controllers based on the design of only one single loop controller. Circulant 

symmetric, Toeplitz symmetric and centrosymmetric models were covered by the theory. However, 

the controllers were restricted to be either decentralized or decentralized controllers in series with a 

constant decoupler matrix. Another method presented also in (Laughlin et al. 1993) was a model-

inverse-based control. However, this technique requires a well-conditioned interaction matrix, 

which is often impossible to guarantee in practice (Laughlin et al. 1993), (Heath, 1996).   

 
One way to handle numerical difficulties related to the inverse of interaction matrix G, is to use a 

singular value decomposition (SVD) of matrix G, see Appendix 1. For plants where the singular 

vector directionality is independent of frequency, singular value decomposition method can be used 

to decouple a system into nominally independent subsystems of lower dimensions (Hovd, 1992), 

(Hovd et al., 1997). Because the CD response model (3.1) is expressed as a product of spatial 

response Go and a dynamic term ga(z), it is clearly suitable for singular value decomposition. 

Duncan developed a robust controller design algorithm for sheet process with arbitrary interactions 

across the machine based on this approach (Duncan, 1989), (Duncan, 1994a). Sufficient conditions 

for robust performance with multiplicative input and output uncertainties were derived in terms of 

satisfying robust performance for SISO subsystems. The controller satisfied Nyquist stability 

requirements for all control modes based on limits on maximum and minimum singular values. 

Braatz and VanAntwerp (1996) and Featherstone and Braatz (1997), (1998) proposed a 

modification of the singular value decomposition called pseudo-SVD, where the elements of 

diagonal matrix, referred to as pseudo singular values, are transfer functions and they have a sign. 

In (Braatz and VanAntwerp, 1996) a reduced order pseudo-SVD controller was suggested. 

Controller is based on the certainty of each pseudo singular value. Robustness of the controller is 

ensured by controlling only those directions whose corresponding pseudo-singular values’ signs are 

known with sufficient certainty.  

 
A robust loop shaping CD controller has been proposed Stewart (2000) and Stewart et al. (1999a), 

(1999b), (2003). The CD process is modeled as a linear, quadratic, circulant symmetric system with 

a norm bounded additive unstructured uncertainty. This method is related to the SVD approach and 

it is based on the eigenvalue-eigenvector decomposition of a symmetric matrix. The method is 

efficient when G is circulant, since any circulant matrix has a complete set of independent 

eigenvectors. In addition, every circulant matrix of the same order can be diagonalized by the same 

eigenvector matrix, namely the Fourier matrix (Davis, 1979). When the circulant matrix is 

symmetric, the analysis can be simplified further, because the associated eigenvector matrix can be 

chosen to be a real Fourier matrix. This is based on the fact that the eigenvalues of the circulant 

matrix appear in pairs and the corresponding eigenvectors can be chosen to be real (Stewart, 2000). 
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3.3.5 Two-dimensional CD control 
  
Heath (1992) and Wellstead and Heath (1992) proposed to handle paper properties as a two-

dimensional dynamic system with the cross and machine direction parts as two mutually dependent 

dynamic processes. In this approach, the response of both the actuators and disturbances are 

presented in terms of rational two-dimensional polynomials. The quality variations are modeled 

using two-dimensional ARMA models. The proper selection of the order of the two-dimensional 

models is included into the approach and similarly a recursive updating of the ARMA parameters.  

The advantage of this method is that it provides a convenient way of formulating the response of 

the system, without assumption of general separability. Present theory of two-dimensional systems 

covers methods for estimating responses (Heath, 1992), designing controllers (Heath, 1992), 

(Zarrop and Troyas, 1994), and determining optimal measurement (Gacon and Zarrop, 1996). 

However, as pointed out by Duncan (1999), controllers based on two-dimensional approach have 

not been implemented, because in practice the assumption of separability has to taken into account 

because of the sluggishness of the system.   
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Chapter 4  
 
 
 
Use of RGA and DIC in Analysing Cross-Directional Control 

Systems 
 
 
Since Bristol (1966) first proposed the relative gain array (RGA) as a means to choose pairing 

between inputs and outputs for decentralized control, the technique has gained considerable 

practical utilization. It is one of the most widely used techniques in the design of control systems 

for multivariable plants. Relative gain analysis is based on a relative gain array, which is a matrix 

of interaction measures for all possible single-input single-output (SISO) pairings of the variables 

considered. Thus RGA indicates the preferable variable pairings in decentralized control systems 

based on interaction considerations. Because only steady-state gain matrix is required, RGA 

analysis is usable for many practical process applications.  

 
Originally, RGA was defined only at steady-state, but it is straightforward to include also 

dynamics. Further developments have shown that the RGA is much more than a simple measure of 

interactions. The RGA provides information about fundamental properties such as closed-loop 

stability, controllability and robustness with respect to modeling errors and input uncertainty. 

However, a frequency-dependent RGA can provide more detailed information than the steady state, 

especially regarding control performance. Main advantage of the RGA approach is that it is easy to 

use and only the process gains, which can be determined from a steady-state response model G(0), 

are required. In addition it is scaling independent. Despite of its considerable popularity, the RGA 

has some shortcomings. It does not take into account the dynamics of the system and control loops 

may interact both in the steady state and dynamically, even if the RGA suggests that there is little 

interaction (Friedley, 1984). To deal with the deficiencies of the RGA, a number of complementing 

measures and procedures have been proposed. The block relative gain (BRG) and Niederlinski 
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index (NI) are two measures of similar simplicity as the RGA. BRG is used to analyze the 

feasibility of a block-decentralized control structure and NI gives, among other things, a necessary 

condition for closed-loop stability of a block decentralized control system. However, we will use it 

with RGA to evaluate the applicability of integral control to the decentralized CD control problem.    

 
Decentralized integral controllability (DIC) is a plant dependent characteristic, which defines the 

applicability of a diagonal integral control (Skogestad and Morari, 1992). The concept DIC is based 

on the demand that if a negative feedback is used under integral control, the sign of the plant gain 

must be known. Typically DIC analysis of the steady-state systems G(0) has been used, like RGA 

analysis, to choose pairing between inputs and outputs for decentralized control. However, DIC 

approach has some special features, which can be utilized to classify CD control problems. 

 
In this chapter steady-state based RGA and DIC approaches are used to analyze the behavior of 

cross-directional (CD) control system in terms of complexity of the response model G(0) and 

applicability of the controller structure. As far as the author knows this kind of an analysis has not 

been applied to the CD control problems earlier. Almost all practical CD control algorithms are 

based on steady-state response models G(0), which provides a good basis for the RGA and DIC 

analysis. The approach in this chapter is as follows. First basic definitions and characteristics of the 

methods are presented. Then, the applicability of methods for CD control problem is evaluated and 

a brief review to diagonal CD controller and general decentralized integral controllable (DIC) plant 

is done. Analyses are especially focused on the models with diagonal type of input uncertainty. 

After that, some ideas of applicability of the inverse-based steady-state controller for the CD 

control problem in terms of RGA analysis is presented. Finally, CD response complexity analysis 

based on RGA and DIC is done for some typical CD models and general observations regarding 

RGA and CD controller structure are presented.  

 
 
4.1 Definitions and basic properties 
 

4.1.1 Condition number and singular value decomposition 
 

The matrix G is said to be ill-conditioned if its condition number is large. The condition number of 

a matrix is defined as the ratio between the maximum and minimum singular values, see Appendix 

A. 
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Therefore a system is ill-conditioned if some combinations of the inputs have a strong effect on the 

outputs, whereas other combinations have a weak effect on the outputs. For a non-singular (square) 

matrixσ (G) = 1/σ (G-1), so γ(G) = σ (G)σ (G-1). A large condition number means that the system 

depends strongly on the input direction and it may cause serious control problems (Skogestad and 

Postlethwaite, 1996). Large condition number may be caused by a small value of minimum 

singular value, which should always be avoided. On the other hand, large condition number may 

express that the plant has large relative gain array (RGA)- elements or that the system is sensitive 

to full-block input uncertainty.   

 
Because the condition number represents the maximum amount by which any relative uncertainty 

in G will be amplified and transmitted to the output, it is clearly a measure of error sensitivity. 

Similarly it is also a ratio between the gains in the strong and weak directions, which can be 

defined by using singular value decomposition. On the other hand, the minimum singular value of 

the system σ (G), calculated as a function of frequency, is a useful measure for evaluating the 

feasibility of achieving acceptable control. On the other hand, if the inputs and outputs have been 

scaled properly, then with a manipulated input of unit magnitude we can achieve an output 

magnitude of at least σ (G) in any output direction. Therefore the minimum singular value σ (G) 

indicates to which value we are able to track the reference changes without reaching input 

constraints (Skogestad and Postlethwaite, 1996).  Generally σ (G) is required to be as large as 

possible. 

 
The condition number is scaling dependent, i.e. dependent on the choices of units of the inputs and 

outputs. Therefore it should not be used as a measure of the inherent ill-conditioning of a process. 

A better measure in this respect is the relative gain array (RGA), which is independent of scaling 

(Skogestad and Postlethwaite, 1996).  Another important issue related to the condition number is 

that it is a function of the system dimension. When the dimension of the matrix G increases, a 

system with originally a relatively low condition number may become singular, i.e. γ(G) → ∞ 

because the model may be singular (Laughlin et al., 1993). 

 
The concept of process directionality is generally analyzed by using singular value decomposition 

(SVD), (Skogestad and Postlethwaite, 1996), see in details Appendix A. SVD analysis shows that 
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the largest gain for any input direction is equal to the maximum singular valueσ (G). SVD analysis 

shows also that the input singular vector relating to the maximum singular valueσ (G) corresponds 

to the input direction with largest amplification, and the output singular vector relating to the σ (G) 

corresponds to the output direction in which the inputs are most effective. Similarly, least 

important, weak or low-gain directions of input singular vector and output singular vector are 

associated with σ (G). In addition, the high-gain direction is orthogonal to the low-gain gain 

direction. 

 
 
4.1.2 Relative gain array 
 

We will consider a linear nxn system described by the model   

 
  y(s) = G(s)u(s)                                         (4.2) 
 
where G(s) is stable and strictly proper matrix and the steady-state gain matrix G = G(0) is 

nonsingular. The open loop gain from input uj to output yi is gij(s) when all other outputs y are 

uncontrolled. Writing equation (4.2) as 

 
  u(s) = G-1(s)y(s)            (4.3) 

 
it can be seen that the gain from uj to yi  is 1/[G-1(s)]ji when all other y’s are perfectly controlled. 

The relative gain is the ratio of these open-loop and closed-loop gains. Thus the relative gains, the 

RGA matrix, can be computed using formula 

 
      Λ(s) = G(s)⊗(G(s)-1)T                          (4.4) 

 
where the ⊗ symbol denotes element by element multiplication (Hadamard or Schur product). A 

steady state RGA is obtained when the transfer functions are evaluated at s = 0. In this work only 

the steady-state RGA is considered. 

 
Equation (4.4) implies that the open-loop gain Gij between yi and uj will change by the factor λij

-1 

when the other control loops are closed. This means that variable pairings corresponding to positive 

relative gains as close to unity as possible should be preferred. Negative relative gains or relative 

gains much larger than unity should be avoided and large negative gains are especially undesirable. 

A more detailed description of RGA, its interpretations and properties is presented in Appendix A. 
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4.1.3 Decentralized integral controllability 
 
A fundamental control system design requirement is that a negative feedback is needed to 

guarantee stability under integral control. If the sign of the system model gain between a specific 

system model input and output changes as the other loops are closed, integral control is not 

possible. Therefore the sign of the system plant gain must be known in advance. One aspect, which 

is related to the diagonal CD controller is the concept of decentralized integral controllability, see 

Fig. 4.1. 

 
Decentralized Integral Controllability. A plant G (corresponding to a given pairing) is defined to 

be decentralized integral controllable (DIC), if it is possible to design a diagonal controller which 

(i) has integral action,  (ii) yields stable individual loops, (iii) is such that the system remains stable 

when all loops are closed simultaneously and (iv) has the property that each loop gain may be 

detuned independently by a factor εi (0 ≤  εi  ≤ 1) without affecting the closed loop stability 

(Skogestad and Morari, 1992), (Morari and Zafiriou, 1989). 

 
 
 
 
 
 
 
 
 
 
                                 Figure 4.1: Decentralized CD control structure. 

 
 
DIC implies that any of the control loops can be detuned or taken out of service without 

introducing any instability to the rest of the system. In terms of CD control applications this kind of 

requirement is very justified and reasonable, because commonly some actuators, especially those at 

the edges, are tuned separately. An important characteristic of DIC is that it depends only on the 

plant, i.e. it is independent of the choice of the controller. Therefore, we may say that it is an 

inherent property of the plant. A reason for this is that we are permitting each loop gain to be 

reduced independently, which is the same as allowing any ratio between elements in the controller. 

Thus, all potential diagonal controllers (at least at steady state) are considered (Skogestad and 

Morari, 1992). 
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4.2 RGA and DIC as analysis tools for CD control problem 
 

As was shown in Chapter 3.1 we are considering cross-directional (CD) response models, which 

are presented as a linear multivariable system  

 
y(s) = ga(s)G(0)u(s)                                  (4.5) 

 
where  y(s) ∈ Rn is the vector of measurements, u(s) ∈ Rn is the vector of actuator set points, ga(s) 

is a scalar function describing dynamics of the actuators, and G(0) ∈ Rnxn is a constant steady-state 

response matrix. This presentation is directly applicable to the RGA and DIC analyses, because we 

are interested in events, which are observed in the steady-state. However, we will not use RGA and 

DIC to choose pairing between inputs and outputs, instead are we interested in applying them for 

the complexity analysis of CD response models and applicability of the controller structure.  

 
 
4.2.1 Role of model uncertainty  
 

RGA is perhaps best known as a way to choose pairing between inputs and outputs for 

decentralized control. However, it has also an important application as an indicator of sensitivity to 

uncertainty. Let us consider the effect of uncertainties to the behavior of the CD control system. 

Skogestad and Morari (1987) have considered how especially a diagonal type input uncertainty 

affects the multivariable control system. We will utilize a similar approach and assume that each 

manipulated input is a source of the input uncertainty. Let uci(s) represent the desired value of the ith 

manipulated input as computed by the controller, and let ∆i denote the relative uncertainty 

associated with this input. The input in the vector form is u(s) = uc(s)(I + ∆I), where ∆I = diag{∆i} 

depicts the diagonal input uncertainty. The perturbed plant is   

 
 Gp(s) = G(s)(I + ∆I)  ∆I = diag{∆i}                                               (4.6) 
 
Let us consider the diagonal uncertainty in terms of loop transfer matrix as presented in Fig. 4.2.  

 

 

 

 

            Figure 4.2: Closed loop control  
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The loop transfer matrix, Gp(s)C(s), is related to the performance of control loop because of the 

identity y(s) =(I+Gp(s)C(s))-1d(s). Gp(s)C(s) may be written in terms of the nominal G(s)C(s) and 

error terms C-1(s)∆IC(s) or G(s)∆IG-1(s), as follows 

 

 Gp(s)C(s) = G(s)C(s)(I + C-1(s)∆IC(s))            (4.7) 

 Gp(s)C(s) = (I + G(s)∆IG-1(s))G(s)C(s)                                                                  (4.8) 
 

For multivariable systems the effect of the input uncertainty on Gp(s)C(s) may be amplified 

significantly as shown by Skogestad and Morari (1987). For nxn plants the diagonal elements of 

the error terms C-1(s)∆IC(s) and G(s)∆IG-1(s) may be written as 

 

                    (C-1(s)∆IC(s))ii = ∑
=

∆
n

j
jji C

1

)(λ        (G(s)∆IG-1(s))ii = ∑
=

∆
n

j
jij G

1

)(λ                   (4.9) 

where λij = λij(G) denotes the RGA elements of the plant. Controllers and systems with large RGA 

elements will indicate large elements in the matrices C-1(s)∆IC(s) and G(s)∆IG-1(s). Large elements 

in either of these matrices will lead to large elements in Gp(s)C(s) and therefore unfavorable 

performance when input uncertainty is related. Equations (4.9) can be used as an analysis tool to 

evaluate the feasibility of the CD control structure. For example, the worst case combination of the 

input uncertainty can be found from the RGA. For an inverse-based controller the error term 

G(s)∆IG-1(s) is directly related to the change in G(s)C(s). This kind of approach can be used in the 

simulation studies of the controller structure to evaluate its applicability for the problem. The 

approach contains characteristics of the RGA and it takes into account diagonal input uncertainty. 

 
Chen and Seborg (2002) have also studied the influence of the process model uncertainty on the 

RGA analysis. They have shown that analytical worst-case bounds for RGA uncertainty can be 

derived in terms of a prescribed degree of uncertainty in square nominal steady-state gain matrix. 

Their approach covers also correlated uncertainties in elements of the gain matrix. In authors’ study 

also a method for statistical uncertainty bounds is presented. Worst-case bounds can be used to 

analyze the maximum allowed degree of uncertainty in the model that will not influence to the 

controller pairing. Especially in the case of steady-state models it gives information about how 

much the operating conditions can vary before the chosen controller structure becomes inactive. 

This guarantees the robustness of the control structure for the whole uncertainty range of the plant 

model.    
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4.2.2 Diagonal CD controller 
 
As it was pointed out in Chapter 3 a diagonal, fully decentralized controller has commonly been 

applied to the CD control problem (Heaven et al., 1993a), (Laughlin et al., 1993). We will study 

now this controller structure more closely. Generally we can say that a diagonal controller has one 

special property, namely λii(C) = 1, therefore the error term (4.9) will get a form C-1(s)∆IC(s) = ∆I. 
In this special case, the input uncertainty has only a light influence to the response. This justifies 

the use of diagonal controller in many practical CD control cases.  

 
However, a diagonal controller is able to produce only a limited correction for the directionality of 

the system and γ(GC) may be rather large. Therefore the response is dependent on the direction of 

the disturbance d on the output. Diagonal controllers do not usually correct for directionality of the 

system. Generally γ(GC) is large when Λ(G) has large elements. The model G with large RGA 

values always has large γ(GC) values, and therefore a diagonal controller will produce a poor 

control performance. This is especially true when set-point changes are considered. However, as 

shown by Skogestand and Morari (1987), there is one special case when a diagonal controller can 

produce an acceptable performance for an ill-conditioned system with large condition number γ(G). 

Namely when the system is naturally decoupled at the input, i.e. when the input singular vectors are 

equal to identity vector (V = I), see SVD description in Appendix A. Then the RGA elements Λ(G) 

of the system are always less than 1 in magnitude. We may conclude that a diagonal, fully 

decentralized CD controller is insensitive or even robust with respect to input uncertainty, but it 

will be unable to compensate for strong couplings, as expressed by the large RGA elements, and 

therefore it will, even nominally, yield a poor performance. Therefore, it is not a surprise that the 

robust decentralized CD control approaches presented in the literature (Laughlin, 1988), (Laughlin 

et al., 1993), (Duncan, 1994a), have confirmed this statement.   

 
 
4.2.3 Necessary conditions for DIC 
 
Definition of decentralized integral controllability (DIC) was presented earlier in section 4.1, next 

we will study some other important properties of DIC. Skogestad and Morari (1992) have derived 

necessary conditions for DIC to avoid input-output pairing where the plant gain may change sign. 

In terms of CD response and controller analysis, these conditions are extremely useful, because 

violating such a condition means that DIC is not possible for corresponding CD response model. 
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This follows because we are not trying to influence the choice of input-output pairings, which are 

already fixed by the design of actuator spacing and measurement mapping. Thus, necessary DIC 

conditions indicate if a decentralized integral controller can be applied to the chosen CD response 

model. 

 
All necessary conditions, presented here as rules for DIC, are based on the fact that a negative 

feedback is required to guarantee stability under integral control. The proof of these conditions can 

be found from Skogestad and Morari (1992). 

 
RGA- rule 
 
Assume that C(s) is a diagonal controller and G(s)C(s) is proper, then 

 
RGAii(G(0)) < 0 for some i ⇒ not DIC                                                        (4.10) 
 

Here RGAii(G) denotes the i’th diagonal element of the RGA of G(0). If the sign of this gain 

changes as we change or close other loops, then we are not able to apply negative feedback in all 

cases, and the plant is not DIC. 

 
Niederlinski Index (NI) – rule 

 

ii

n

i
g

G

1

))0(det(

=
Π

 < 0  ⇒ not DIC                                                                                 (4.11) 

where ∏
=

n

i
iig

1

  is the product of the diagonal elements of G(0). We  should  not  use  decentralized  

control  on   pairings which have the sign of the plant (given in terms of its determinant) different 

from the product of the plant gains for the loops. This is a condition for avoiding the use of positive 

feedback. 

 

Morari Index of Integral Controllability (MIC)  -rule 

))}0((Re{min +Gii
λ < 0  ⇒ not DIC                                                                 (4.12) 

Here G+(0) denotes a plant steady-state gain matrix with the signs adjusted so that all diagonal 

elements have positive signs and Re{λi} is the real part of eigenvalues. MIC -rule advises us to 

eliminate pairing with negative MIC index. 
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Skogestad- Morari (i) (SM(i)) –rule  

Re {λ(E(0))} < -1 ⇒ not DIC                                                                              (4.13) 

where  E(0) = (G(0) – G(0)diag) 1−
diagG (0) is an interaction matrix. Here G(0)diag denotes plant steady-

state matrix consisting of only diagonal elements. SM(i) -rule advises us to eliminate pairing with 

negative values less than -1.   

 
Skogestad- Morari (ii) (SM(ii)) -rule  

Re {λ(G+(0)K)} < 0   ⇒ not DIC                                                                         (4.14) 
 
SM(ii) -rule advises us to eliminate pairing for which there exists a controller K(s) (diagonal matrix 

with positive entries) which yields negative values. 

 
Skogestad and Morari (1992) have shown that NI -rule is redundant, because MIC -rule implies NI 

as a special case. However, none of rules RGA, MIC or SM(i) is mutually redundant, and all of 

them are applicable. MIC - and SM(i) -rules are special cases of SM(ii). They can be derived from 

SM(ii) -rule by choosing K(s) equal to identity matrix I and 1)0( −+
diagG  respectively. SM(ii) -rule is 

difficult to test, and because it requires specifying a controller, it is not very useful for practical 

purposes. However, all above presented necessary conditions have to be met for a plant to be truly 

DIC. This means that a plant that does not pass these tests is not DIC, but there may be other plants 

that pass the tests, but still turn not to be DIC. 

 
Skogestad and Morari (1992) have also derived sufficient and necessary and sufficient conditions 

for DIC. A sufficient condition is presented in terms of the structured singular value (Doyle, 1982) 

µ of E(0) as follows: 

 
µ(E(0)) –rule 
 

µ(E(0)) < 1 ⇒ DIC                                                                                               (4.15) 

 
where interaction matrix E(0) is as defined earlier. µ(E(0)) -rule can not be used to eliminate 

variable pairings, but it indicates that DIC is satisfied for a particular pairing. If the condition 

µ(E(0)) <1 is satisfied, then the controllers for each loop may be designed independently. 
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A necessary and sufficient condition for DIC is presented in terms of finding a diagonal controller 

matrix K(s) with real, positive (nonzero) entries. A system is DIC if the following condition is 

satisfied:   

 )})0((Re{minmin KGiiK

+λ > 0 ⇔ DIC                                                             (4.16) 

However, as pointed out by the authors, this condition is difficult to test, and it is not very useful 

for practical analysis. Authors have developed a numerical optimization method to test this 

condition. 

 
Another common issue, related also to the diagonal controller, is the concept of Integral 

Controllability (IC) of the system. Definition of IC is very similar to DIC (Grosdidier et al., 1985).  

 
Integral Controllability. A system (plant and controller) is integral controllable (IC) if (i) the 

controller has integral action, (ii) the overall system is stable, and (iii) all controller gains may be 

reduced by the same factor ε (0 < ε  < 1) without introducing instability. 

 
We can observe that for IC all the gains are reduced by the same degree, while for DIC each loop 

may be operated separately. Thus IC is a property that depends on both the plant and controller C. 

As pointed out by Skogestad and Morari (1992), if a certain decentralized controller satisfies IC, it 

does not mean that the plant with these input-output pairings will satisfy DIC. However, the 

reverse, with any decentralized controller with positive loop gains, is true that DIC ⇒ IC.  

 
Skogestad and Morari (1992) have derived a sufficient condition for IC, which is based on the 

calculation of spectral radius of the interaction matrix ρ(E(0)). 

 
 ρ(E(0)) < 1 ⇒ IC                                                                                                 (4.17) 

For CD response and controller structure analysis IC is not as convenient as DIC, but in control 

literature it has been used quite commonly. Yu and Luyben (1987) combined IC with RGA analysis 

and defined a perturbation equation, which gives an upper limit on the maximum change in a single 

process gain element that will guarantee integral controllability. They specified this property as an 

integral robustness array (IRA), which defines a quantitative measure of system’s robustness to 

integral controllability. They emphasized that IRA criterion is applicable to any controller with 

integral action including multi-loop SISO controllers, Internal Model Control, Dynamic Matrix 

Control, etc. Also Grosdidier et al. (1985) studied the problem of integral controllability. They 
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derived a general result for integral controllability in terms of RGA and model errors. They 

formulated an inequality equation, which guarantees the closed-loop stability of the system under 

integral control. 

 

4.2.4   Applicability  of   inverse-based   controller  for  the   steady-state   CD   control          

           problems 
 
As previously mentioned an inverse-based controller has been one of the typical controller 

structures for steady-state CD control problem (Carey et al., 1975), (Boyle, 1977), (Boyle, 1978). 

We will study now more closely the applicability of this controller for the CD control problem in 

terms of RGA. An inverse-based controller C(s) = G-1(s)K(s), where K(s) is a diagonal controller, is 

often a desirable solution for many process control purposes. One special case of the inverse-based 

controller is a decoupler (Skogestad and Morari, 1987), Skogestad and Postlethwaite, 1996). An 

ideal dynamic decoupler is D(s) = G-1(s)Gdiag(s), where Gdiag(s) denotes the matrix consisting of 

diagonal elements in G(s). The basic idea of using a decoupler is that a decoupler takes care of the 

multivariable aspects. Tuning of the control system is then reduced to a series of single-loop 

problems. Let the diagonal matrix K(s) denote these single loop controllers. The overall controller 

C(s) including the decoupler is C(s) = D(s)K(s). A constant steady-state decoupling is obtained 

with D = G(0)-1. With C(s) = G-1(s)K(s), it can be shown that Λ(C) = Λ(G-1K) =  Λ(G-1) = Λ(GT). 

Thus, if the elements of Λ(G) are large, so will be the elements of Λ(C) and high sensitivity to 

input uncertainty is expected. The physical reason for the problems with the inverse-based 

controller is that the controller tries to apply large input signals in certain directions to match weak 

directions in the plant. The input uncertainty changes these directions and ruins the design match.  

We see from equation  

 
 Gp(s)C(s) =  K(s)(I +G(s)∆IG-1(s)) = K(s)(I +C-1(s)∆IC(s))                                  (4.18) 
 
that large elements in G(s)∆IG-1(s) indicate that loop transfer matrix Gp(s)C(s) differs from the 

nominal one G(s)C(s) = K(s). Poor response, instability and serious robustness problems may be 

expected if ∆I ≠ 0. In this case G(s)C(s) = K(s) has no directionality that could guarantee Gp(s)C(s) 

remain small. We may say that the inverse-based CD controller, that corrects the interactions of the 

plant, may yield excellent nominal performance, but will be very sensitive to input uncertainty, and 

will not yield robust performance. Skogestad and Morari (1987) have shown that the most 

important reason for the robustness problems encountered with decouplers is probably not 
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decoupler errors but the previously mentioned input uncertainty. Any controller of the form C(s) = 

G-1(s)K(s) is sensitive to input uncertainty if the plant has large RGA elements. Decouplers are 

generally of this form and they should therefore not be used for CD response systems with large 

RGA elements.  

 
Let us study next more closely the steady-state linear quadratic (LQ) optimization method 

mentioned in Chapter 3. The basic control objective in CD control methods based on quadratic cost 

function is to force the profile to some desired shape. An obvious approach is to try to choose the 

actuator setting to minimize the mean square deviation from the desired profile. Usually weighting 

factors are included to allow increased significance on some areas of the profile (Wilhelm and 

Fjeld, 1983). Thus the minimized cost function is: 

 

 J = 1/2 (y - yr)TQ (y - yr)  =  1/2 eTQe                           (4.19) 

where: 

 e = y - yr is the deviation of y from the desired profile yr 

 yr is often flat, typically all elements are equal to zero 

 Q is a diagonal matrix of weighting factors 

 
This performance index is directly proportional to the variance of the profile deviation if the 

weighting matrix Q is the identity matrix. The optimal solution of this unconstrained steady-state 

minimization problem is (Wilhelm, 1986), (Wilhelm and Fjeld, 1983): 

 
 u = -(GT(0)QG(0))-1GT(0)Q(yo - yr) + uo                                                         (4.20) 

 
where yo and uo represent the profile and the control setting respectively before the control 

adjustment. If the process model is accurate, the optimal control corrects totally the profile 

deviation yo-yr. If we assume that the response matrix G(0) is square and Q = qI then we get that u 

= -G-1(0)(yo - yr) + uo. This solution is based on the fact that for a square matrix G(0) its 

pseudoinverse is identical to G-1(0). This is a clear decoupling solution to the steady-state LQ 

problem. Decoupling solution can be interpreted as a special case of the general steady-state LQ 

optimal control solution. A practical LQ solution for CD control problem follows very often this 

kind of approach (Wilhelm and Fjeld, 1986), (Gräser and Neddermeyer, 1986), (Wilhelm, 1986). 

Almost constantly the response matrix G(0) is assumed to be square which leads to the decoupling 

solution and actually to the inverse-based controller C(s) = G-1(0)K(s). It is evident that this kind of 

CD controller can not be the best possible solution if input uncertainty is expected. 
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4.3 CD response model analysis 
 
4.3.1 Studied response models 
 
We will apply next RGA and DIC analysis for some typical CD response models presented in the 

literature. Laughlin et al. (1993) and Featherstone and Braatz (2000) have studied a set of 

experimental or proposed CD basis weight response models in their work. We will use these CD 

response models as general examples in our study. Response models are presented in Table 4.1 

using the Toeplitz notation (3.4) and adjusted from narrower to the wider. We will use a notation 

Gk, (k = 1,…,12) to indicate these models. Selected models represent nicely typical CD basis weight 

responses for newsprint, kraft sack paper and paper board. However, similar CD responses can be 

found widely in the literature. For example response models like G1 and G2 are typical for air 

showers and rewetting actuators, induction coils (Vyse et al., 1993) and deflection compensated 

rolls (Svenka and Minkenberg, 1996). Similarly, response models like G3 and G6 are typical for 

modern consistency profiling systems. 

 
Studied models have been normalized so that the response magnitude at position g1 is equal to 1.0. 

Values of the interaction parameters may vary, but the bell shape of the response is very 

characteristic. Negative CD response elements can be found in many of the models reflecting the 

observations that efforts to increase the basis weight downstream from one actuator position may 

actually decrease it on either side of that position. Strong interaction leads to large positive and 

negative off-diagonal elements in the G matrix. 

 
TABLE 4.1: Reported Toeplitz CD response models (Laughlin et al., 1993), (Featherstone and 

Braatz, 2000). 

 
Model g1  g2  g3 g4 g5  g6 g7 g8 g9 g10 
   1 1.0 0.2         

    2 1.0 0.4         

    3 1.0 0.1 -0.3        

    4 1.0 0.45 -  -0.55        

    5 1.0 0.5 -0.5        

    6 1.0  -0.15  0.03 -0.01       

    7 1.0 0.4 -0.5 0.05       

    8 1.0 0.2 -0.1 -0.1       

    9 1.0 0.4 -0.2 -0.4 -0.2      

   10 1.0 1.3  0.8 -0.6 -0.3  0.0 -0.1    

   11 1.0 1.2  0.6 -0.4 -0.9 -0.2 -0.2    

   12 1.0 0.9  0.7 0.8  1.0  0.6 -0.5 -0.4 -0.2 -0.2 
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Graphical illustration of  responses G2, G7, G10 and G12 is presented in Chapter 5. It is surprising 

that a graphical plot describes the behavior of the CD response very poorly. Usually the width and 

the shape are depicted. Some indication numbers can be calculated based on the width or area of 

the response, but they are more related to the mapping and tuning of the CD controller than for the 

analysis of the system. We will consider a response model of size G86,86 that will represent a typical 

CD response rather well. The number of actuators (86) may be considered normal for web widths 

between 6 to 10 meters depending on the spacing of the actuators, typically from 75 mm to 150 

mm.  

 

4.3.2 Some observations of the condition number and singular values 

 
In Table 4.2 a condition number γ(G), a minimum and maximum singular value σ (G) and both 

minimum and maximum element value Λ of RGA of the studied response models are presented.  

 
TABLE 4.2: Condition number γ(G), min-max singular values σ(G), min-max RGA element values 

Λ, and results of RGA-, MIC-, SM(i)-, DIC-, µ(E(0))- and IC- rules of studied response models 

G86,86.    

 
Model   γ(G) σ (G)  σ (G)   Λmin   Λmax  RGA   MIC  SM(i)   DIC  µ(E(0))    IC 

     1     2.33 0.600 1.399 -0.045 1.091 Yes Yes Yes Yes Yes Yes 
     2     8.97 0.201 1.799 -0.333 1.666 Yes Yes Yes Yes Yes Yes 
     3     7.96 0.202 1.607 -0.165 1.406 Yes Yes Yes Yes Yes Yes 
     4   90.36 0.024 2.189 -0.571 0.549 No No No No No No 
     5  132.55 0.016 2.123 -0.460 1.741 Yes No No No No No 
     6     1.86 0.740 1.379 -0.023 1.046 Yes Yes Yes Yes Yes Yes 
     7   93.26 0.022 2.029 -0.237 1.451 Yes No No No No No 
     8     2.71 0.552 1.498 -0.054 1.145 Yes Yes Yes Yes Yes Yes 
     9   13.28 0.201 2.671 -0.407 2.326 Yes Yes Yes Yes No No 
    10 315.50 0.015 4.608 -2.706 2.996 Yes No No No No No 
    11 346.69 0.016 5.728 -3.141 2.853 No No No No No No 
    12 631.44 0.011 7.051 -2.865 4.577 No No No No No No 

 

As can be seen the condition number γ(G) alternates very widely from 1.86 to 631.44. Generally 

large condition number means that the plant depends strongly on the input direction and system is 

sensitive to unstructured input uncertainties. From the control point of view high condition number 

of the CD response model means that a strong control action is required to dampen disturbances 

entering the process in the direction of the left singular vector corresponding to the minimum 

singular value σ (G). Strong control action taken in the wrong direction can lead to instability or 
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poor performance. Therefore it is difficult to design an acceptable controller based on CD response 

models with high condition number, when input uncertainty is also present. On the other hand, the 

minimum singular value σ (G) indicates also to which value we are able to track the reference 

changes without reaching input constraints. Therefore from the control point of view response 

models like G4, G5, G7, G10, G11 and G12 are undesired because they have large condition numbers 

and relatively small minimum singular values. 

 
Especially models G5, G10, G11 and G12 indicate how a large condition number may be caused by a 

small value of σ (G) that is generally regarded undesirable. Generally negative values of the CD 

response are not a problem. This can be seen from models G3, G6 and G8. On the other hand, very 

small changes in the element values can produce a significant alteration to the condition number. 

Response models G4 and G5 indicate how an incremental change (∆=0.05) of the element value 

may increase the condition number unexpectedly. As can be seen the maximums of singular value 

σ (G) are almost the same in magnitude but the minimums differ sufficiently to affect the condition 

number. This example indicates how sensitive the response model can be to the modeling errors 

and how important the robustness and RGA study of the model actually is. It also shows that purely 

a visual observation of responses based on graphical plotting will never tell or even hint at the 

latent control problem. A wide response, as in models G10, G11 and G12, indicates strong 

interactions between adjacent profile zones. Typically this leads to a very high condition number 

and obvious control problems. For instance, response model G12 was originally presented by 

Karlsson et al. (1985) who found out that wider responses imply inherently limited possibilities for 

CD basis weight control on the board machines. 

   

4.3.3 Some observations of the RGA                    
 
RGA analysis was done for all studied response examples. Calculations were done using Matlab 

(1996) software. In Appendix B 11x16 first elements of studied RGA86,86 matrices are presented. 

We observe that all in Appendix A mentioned RGA alternatives are represented: from negative 

values to quite high RGA element values. Therefore some control loops interact with other loops, 

some closed-loop systems are very sensitive to parameter changes, some inverse response events 

are expected and some control loops depend entirely on the other control loops.  

 
As can be seen CD response models G1, G2, G3, G6 and G8 represent rather simple and acceptable 

cases. All condition numbers are less than 10, RGA matrices are diagonal dominant with positive 
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relative gains quite close to unity. Especially models G1 and G6 seem to be very appropriate for 

decentralized control. Although in the model G6 the width of the response is four elements and 

some of these elements are even negative, the RGA calculation implies that this kind of response 

model would inherently fulfill almost optimal variable pairing. Because the maximum values of 

RGA gains in our case are close to unity and all off-diagonal elements are rather insignificant, it is 

obvious that for this kind of CD response model even a traditional decentralized PI controller 

would give an acceptable control result. Therefore it is not surprising that decentralized PI 

controllers have been used for some CD applications rather successfully.  

 
Strong interactions between adjacent zones in response models result in higher RGA values as can 

be seen by comparing model G1 to G2 and models G6 and G8 to G7. However, this result can not be 

generalized and RGA values of response model G4 are a practical indication of that. We can 

observe that RGA elements of model G4 are less than 1 in magnitude. Therefore, G4 represents a 

naturally decoupled system with a rather large condition number, and as pointed out by Skogestad 

and Morari (1987), a diagonal controller would produce a reasonable performance in this special 

case. However, as we can see the controller can not be based on integral control. We will discuss 

controller selection more in the next section.  

 
When the response is wide enough and the interactions are dominating RGA elements will achieve 

relative high values. Studied model G12 represents the most complex response example with large 

RGA element values. On the other hand, from models G5, G7, G10, G11 and G12 we can see that the 

large negative RGA values are attached to the cases with high condition numbers and small 

minimum of singular values. We may decide that large RGA elements of these response models 

indicate fundamental control problems because only very small uncertainties in the elements are 

allowed without impaired performance of the control loop (4.8). In these cases a special attention 

should be focused on the selection of the controller structure.  

 

4.3.4 Some observations of the controller structure and DIC applicability 
 
Complexity of the CD response models in terms of controller structure was evaluated by using DIC 

analysis. Results of the individual RGA-, MIC- and SM(i)- rules, equations (4.10), (4.12) and 

(4.13) respectively, are presented in Table 4.2. Defined results are combined to form an estimate of 

those CD response models, which are DIC. This total result is marked with a column notation DIC. 

NI- rule (4.11) was excluded because it is redundant, and calculation of SM(ii)- rule (4.14) was 



                                                  
 

  58

omitted impractical. First of all, we may notice that condition number is a good suggestive index to 

indicate control difficulties of the system, but it does not advise in the selection of the control 

structure. Secondly, we can observe that RGA- rule alone produces an incomplete DIC estimate for 

the CD response models. If we compare results of RGA -rule to the combined DIC, we can 

discover that RGA- rule concludes three times to the false outcome, while MIC- and SM(i)- rules 

seem to be more accurate.  

 
However, one important practical advantage of RGA- rule is that it is very simple to compute. On 

the other hand, MIC- and SM(i)- rules require only a calculation of eigenvalues of the steady-state 

matrices, which is similarly a straightforward operation. DIC analysis, based on the necessary 

conditions, excluding SM(ii)- rule, produces an estimate that CD response models G4, G5, G7, G10, 

G11 and G12 are not decentralized integral controllable. However, consideration of sufficient 

condition (4.15) for DIC corrects this estimate slightly. Computation of structured singular value µ 

of interaction matrix E(0) for all CD response models adds also G9 to this set of not DIC models. 

However, definition of structured singular value µ requires special numerical algorithms (Chiang 

and Safonov, 1992), which might limit the usability of this method. For DIC analysis, in terms of 

CD response complexity, condition (4.15) is very powerful because it indicates directly if DIC is 

satisfied. We may conclude that DIC analysis and the sufficient condition (4.15) provide us enough 

information to evaluate complexity of the CD response model in terms of controller structure. 

 
On the other hand, if we accept that all gains of the integral controller may be changed by the same 

degree, and apply the IC- rule (4.17) for analysis, we can observe that it produces, in our cases, 

precisely the same results as DIC condition (4.15). In addition, calculation of spectral radius of 

steady-state interaction matrix E(0) is much more easier than using the structured singular value.           

Integral controllability (IC) of the CD systems can also be studied by using methods presented by 

Grosdidier et al. (1985) and Yu and Luyben (1987). Their approaches provide tools to calculate 

estimates for the maximum degree of uncertainty in the CD response model, i.e. they show how 

much variation in the response model parameters is tolerated before the system becomes 

uncontrollable in terms of IC. Also Laughlin et el. (1993) concluded, that integral controller is 

applicable only to such CD response models, which have all eigenvalues in the right half plane.  

 

4.3.5. Conclusions of the CD response model analysis 
 
Commonly RGA and DIC analyses are used to choose pairing between inputs and outputs for 

decentralized control. We have shown that they can be applied efficiently for complexity analysis 
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of the CD response models G(0) and applicability of the controller structure. RGA analysis 

together with singular values, condition number and DIC analysis is a suitable tool to study the 

properties of the CD process. The main reason for this is that almost all practical CD control 

applications are based on steady-state response models G(0). We can say that in general a CD 

process model with large RGA elements is difficult to control. However, if the RGA values of the 

model are large, but there exists a controller with small RGA elements, which produces an 

appropriate response for all major disturbances in favorable directions, the statement is not 

absolutely valid. This implies that the CD process model is not ill-conditioned for the predictable 

disturbances. Similarly, we can say that the CD process model with a large condition number is not 

necessarily always difficult to control. Because it is the RGA, rather than the condition number, 

which defines the sensitivity of the CD process to the diagonal input uncertainty. Similarly, the 

worst case combination of the input uncertainty can easily be found with the RGA analysis. 

 
RGA analysis with DIC study reveals directly when a diagonal integral controller is unsuitable for 

CD purposes. RGA analysis gives a clear indicator of sensitivity to model uncertainty, especially 

when uncertainty on each manipulated input is considered. It gives also information about 

applicability of the inverse-based controller for CD control problem. CD control system is always 

sensitive to input uncertainty if an inverse-based CD controller is used for process models with 

large RGA elements. On the other hand, we know that the decentralized CD control system is 

insensitive to input uncertainty if a diagonal controller is used, but its closed-loop performance will 

be poor. Perhaps RGA is not in general an absolute indicator of the system’s sensitivity to the input 

uncertainty, but for practical CD controller design purposes it is a very adequate method. 

Especially CD control applications which are based on the steady-state linear quadratic (LQ) 

optimization should be analyzed carefully, because in practice they often reduce to the inverse-

based controllers, which have been shown to be sensitive to the input uncertainty.  

 
For evaluation of the CD control structure DIC analysis appears to be quite suitable. Especially, its 

ability to consider and classify inherent properties of the CD response models G(0) makes it very 

useful. Although it advises only on the applicability of decentralized integral controller, it provides 

an unambiguous and transparent indication of system complexity. DIC analysis can be utilized to 

classify CD response models in different categories based on sophistication. Together with RGA 

analysis it can be used as a practical screening method to select controller structure for the CD 

processes. It shows clearly when a traditional CD control approach is inappropriate and a more 

advanced control technology is required. 
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RGA and DIC analyses can also be used as a designing tool to evaluate the applicability of CD 

actuator structure. Based on RGA and DIC analyses we know what kind of CD response is 

desirable, robust and easy to control. The next task is just to develop that kind of actuator or 

machine part that fulfils these requirements. In practice, several methods exist to accomplish this 

task. Realization of desirable response characteristics may be done based on mathematical 

modeling (Duncan et al., 2000) and simulation (Tarvainen and Rouhiainen, 2001), experimental 

trials on pilot machine (Ellilä, 1994) or even on production machine. This knowledge can be 

combined with the modern machine design to generate required implementation (Tarvainen and 

Rouhiainen, 2001). 
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Chapter 5   
 
 
Robust Constrained Model Predictive CD Control using Linear 

Matrix Inequalities 
 
 
Model Predictive Control, also known as Moving Horizon Control (MHC) or Receding Horizon 

Control (RHC) is a popular technique used in industrial process control. MPC solves an on-line 

optimization problem at each step  to compute an optimal control profile over finite horizon of 

future time. Typically a sequence of predicted control moves will be calculated, but only the first 

one is implemented. At the next sampling time, the optimization problem is solved again with new 

measurements, and the control input is updated. This control technique is very popular since it is 

possible to handle constraints on input and output signals during the design and implementation of 

the controller (Morari and Lee, 1997), (Maciejowski, 2001). However, one of the main drawbacks 

of standard MPC is the difficulty to incorporate plant model uncertainties explicitly. The reason is 

that MPC is in principle a computational approach, and an analytic expression for the controller is 

generally not available. This limits further the study of closed-loop stability which is based on such 

information. Standard MPC schemes virtually have no guaranteed robustness because they use 

nominal models and perform finite horizon optimization. Therefore in the presence of model 

mismatch, this type of algorithm can behave poorly.  

 
Robust MPC is an MPC theory that increases the effectiveness of the control actions when 

modeling errors are present by explicitly taking in to account the modeling errors in the controller 

design procedure. Instead of using one process model in predicting the system behavior as in MPC, 

robust MPC forecasts system behavior for every model in the uncertainty set. The optimal control 

actions are defined by a min-max optimization that minimizes the deviations of the forecasted 

behavior from the desired behavior for the model with the largest deviation. Campo and Morari 
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(1987), Zafiriou (1990) and Zheng and Morari (1993) proposed using min-max optimization in 

MPC with finite impulse response models. Lee and Yu (1996) proposed using min-max 

optimization on discrete state-space models with polytopic model uncertainty. Generally the on-

line min-max optimization is computationally very demanding.  

 
In the design of MPC, robust stability is an important issue. The aim is to design a controller that is 

stable independent of the operating conditions, which usually affect to the process model. For the 

nominal case, where only the most probable model is handled by the controller, several methods to 

obtain a stable MPC are available. A popular approach to obtain a stable MPC is based on an 

infinite output horizon (Rawlings and Muske, 1993). For stable systems, the infinite horizon open 

loop cost can be expressed as a finite cost with the inclusion of a terminal state penalty, which is 

computed by solving a Lyapunov equation. The extension of this approach to the robust multi-

model MPC was proposed by Badgwell (1997), with the inclusion of contracting constraints for the 

costs associated with the possible plants. In that method, it was assumed that, for the computed 

input sequence, the state goes to zero at infinite time for all possible plant models. Morari and 

Zafiriou (1989) discussed how to improve the robust stability of MPC in framework of internal 

model control (IMC) by tuning IMC filters. By modifying the optimization problem to "min-max" 

problem, Campo and Morari (1987) studied "worst-case" performance over all model uncertainties 

and formulated the constrained robust stabilization problem as a linear programming (LP) problem. 

Zafiriou (1990) and his coworkers (Zafiriou and Marchal, 1991) analyzed the effect of 

incorporating constraints to the model predictive controller using the contraction mapping 

principle, and developed some necessary/sufficient conditions for robust stability of MPC. As 

pointed out in (Zafiriou, 1990), the existence of hard constraints can largely deteriorate the 

performance and stability property, which is even worse in the case of model-plant mismatch.  

 
Recently, the robust MPC technique using linear matrix inequality (LMI) technique has been 

developed by Kothare et al. (1996). In this method, the authors formulate an infinite horizon MPC 

problem with input and output constraints and plant uncertainty as a convex optimization problem 

involving LMIs. The LMI formulation is suitable to deal with uncertain systems and input – output 

constraints. Using the "worst-case" performance index with respect to plant perturbations over a 

moving infinite prediction horizon, they considered the state-feedback robust MPC problem for 

affine uncertain linear systems. The synthesis problem was formulated as an on-line optimization 

problem, subject to input and output constraints. Sufficient solvability conditions in terms of LMI 

optimization were also derived. In this method linear matrix inequalities (LMI) are actually used to 
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solve a state feedback control problem u(t) = Kx(t) for the gain K that minimizes the model in the 

polytope with the largest deviation from the origin. The LMI -based optimization is done on-line to 

determine the gain K at every sampling time. A nice property of their MPC scheme is that the 

stability of robust model predictive controller is guaranteed if the optimization problem is feasible. 

We will study this approach more in details in Chapter 5.3. Lu and Arkun (2000) extended this 

technique to polytopic linear parameter-varying systems for the scheduling MPC problem.  

   
In this chapter we will examine the robust infinite horizon model preditive control problem. First 

we present some background material such as linear matrix inequalities, model of systems with 

special type of uncertainties and basics of model predictive control (MPC). We will use this 

supplementary material to formulate a robust constrained model predictive CD control problem 

with a state-feedback as a linear matrix inequality problem. Uncertain discrete-time linear time-

varying CD systems with time-delays are also considered. After that performance of the robust 

MPC algorithm for cross-directional (CD) control problem is investigated by performing a number 

of simulations. Studied CD response models represent a realistic description of the interactions 

across the paper machine. Selection of simulated CD response models is done based on the RGA 

and DIC analyses. But next we will discuss about linear matrix inequalities and a special type of 

systems called polytopic uncertain systems. 

 

5.1 Linear matrix inequalities 
 
A wide variety of problems in system and control theory can be reduced to a standard convex  

optimization problems that involve linear matrix inequalities or LMIs. The form of an LMI can be 

very general; linear inequalities, quadratic inequalities, matrix norm inequalities, and various 

constraints from control theory such as Lyapunov and Riccati inequalities. Also optimal LQG 

control and H∞ control problems can be formulated by using LMIs. Morover, multiple LMIs can 

always be written as a single LMI of larger dimension. Further applications of LMIs arise in 

estimation, identification, optimal design, structural design and matrix scaling (Boyd et al.,1994a). 

The main strength of LMI formulation is the ability to combine various design constraints and 

objectives in a numerically effective way. For a few special cases there are analytical solutions to 

LMI optimization problems, but usually they can be solved numerically very efficiently. Actually 

the growing popularity of LMI optimization for control purposes can be counted on the recent 

developments in the interior point-point methods for LMI optimization.  
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Next we will give a brief description of linear matrix inequalities and some optimization problems 

based on LMIs. Especially, we summarize a number of terms and results which will be used in the 

rest of the thesis. A detailed discussussion of the extensive literature on LMIs is beyond the scope 

of this thesis and can be found in the book of Boyd et al.(1994a). 

 

5.1.1 Definition and properties of linear matrix inequalities 
 
Here we define the LMI and some of its basic properties (VanAntwerp and Braatz, 2000b). 

 
A linear matrix inequality or LMI has the form 
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where x ∈ Rm , x = [x1 ,…, xm] are the variables, and symmetric matrices Fi = Fi
T ∈ Rnxn are given. 

F(x) > 0 means that F(x) is positive definite, that is   

 
   zTF(x)z > 0, ∀ z ≠ 0, z ∈ Rn             (5.2) 

Linear matrix inequality is a constraint on the variable x. Thus, F(x) is an affine function of the 

elements of x. The LMI (5.1) is equivalent to n polynomial inequalities because a matrix is positive 

definite if and only if each leading principal minor of F(x) is nonnegative.  

 
An important property of LMIs is that the set {x|F(x) > 0} is convex, that is, the LMI forms a 

convex constraint on x. Equation (5.1) is a strict LMI. Requiring that F(x) be positive semidefinite 

is referred to as a nonstrict LMI. The strict LMI is feasible if the set {x|F(x) > 0} is nonempty.  

 
Multiple LMIs can be expressed as the single LMI. Consider a set defined by p LMIs: 

F1(x)>0; F2(x)>0; … ; Fp(x)>0 

Then the equivalent single LMI is given  by 
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where  
   Fi = diag{(Fi

1, Fi
2, … ,Fi

p}, ∀i = 0, …, m 
 
and diag{X1, X2, … , Xp} is a block diagonal matrix with blocks X1, X2, … , Xp. This statement can 

be proved based on the knowledge that the eigenvalues of a block diagonal matrix are equal to the 
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union of the eigenvalues of the blocks, or from the definition of positive definiteness (VanAntwerp 

and Braatz, 2000b). Therefore we will make no distiction between a set of LMIs and a single LMI. 

 
Convex nonlinear inequalities are converted to LMI form using Schur complements. Let Q(x) = 

Q(x)T, R(x) = R(x)T, and S(x) depend affinely on x. Then the LMI 
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is equivalent to the matrix inequalities 

 
   R(x) > 0, Q(x) – S(x)R(x)-1S(x)T > 0 

   Q(x) > 0, R(x) – S(x)TQ(x)-1S(x) > 0            (5.5) 
 

The proof of the Schur complement lemma is based on the straightforward elementary calculus. 

See in details (VanAntwerp and Braatz, 2000b). 

 
Several traditional control problems can be formulated to LMIs. Typical examples are eigenvalue 

problems, singular value problems and Lyapunov stability of linear time invariant (LTI) and time 

varying (LTV) systems (Boyd et al.,1994a). An important LMI-based problem to this work is that 

of minimizing a linear objective subject to LMI constraints: 

 
   minimize  cTx              (5.6) 

   subject to F(x) > 0 

where F is a symmetric matrix that depends affinely on the optimization variable x, and c is a real 

vector of required size. This is a convex nonsmooth optimization problem (Boyd et al., 1994a). 

 

5.1.2 Solving LMI-based problems 
 

A large number of control problems are reducible to LMI-based convex optimization problems. 

Over the past few years efficient algorithms for numerically solving these optimization problems 

have been developed (Boyd et al., 1994b). The most important practical implementation is that 

these algorithms can rapidly compute the global optimum, with non-heuristic stopping criteria, and 

prove that the optimum really has been obtained to within some prespecified accuracy. In general, 

LMI problems can be solved in polynomial-time, which means that they have low computational 
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complexity. In these problems the exact time required to solve the problem is bounded by a single 

function, which is polynomial in the amount of data needed to define the problem. Computational 

LMI problems which are solvable in polynomial-time include both the linear and convex quadratic 

optimization problems. On the other hand, computational problems which are defined as NP-hard 

cannot be computed in polynomial-time in the worst case, because in these cases the computation 

grows exponentially with the problem size. 

 

The simplest algorithm for solving convex LMI problems is the ellipsoid algorithm which has a 

polynomial-time complexity. The algorithm works well for smaller problems but can be rather slow 

when the size of the problem is large. The basic idea of the algorithm is as follows. In the first step 

an ellipsoid that is guaranteed to contain an optimal point is calculated. Next a cutting plane that 

passes throught the centre of this ellipsoid is computed. Boyd et al. (1994a) have shown an 

analytical formulation to define a cutting plane for each of the standard LMI problems. Next a 

bisected half-ellipsoid contains an optimal point and a new ellipsoid of minimum volume that 

contains this bisected half-ellipsoid is defined. The procedure is repeated until the algorithm 

converges to the optimal solution 

 

In practice a more efficient method for solving LMI problems is the interior-point algorithm. This 

method is based on the early work of Nesterov and Nemirovsky in 1988 (Boyd et al.,1994a, 

1994b). The development of interior point methods has meant that many problems in system and 

control theory for which no analytical solution has been found, can today be solved by reducing 

them to LMI problems. The key element in this method is the knowledge of a barrier function with 

a certain property called self-concordance. Linear matrix inequalities represent a class of convex 

constraints for which easily computable self-concordant barrier functions are known. Interior-point 

algorithm proceeds as follows: In the first step a specific logarithmic barrier function which is 

convex within the feasible set and becomes infinite outside it is defined based on the system 

constraints. Then the primal objective function is augmented to contain this barrier function. Next 

the original constrained optimization problem is replaced with an unconstrained optimization 

problem. Optimization is solved applying Newton’s method with appropriate step length. An 

analytic center of the LMI is defined to represent the point which minimizes the unconstrained 

optimiztion problem. A scalar parameter in the objective to the unconstrained optimization problem 

is repeated until the analytic center of the LMI is optimal for the original optimization problem 

(Boyd et al.,1994a). 
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5.1.3. Software for solving LMI problems 
 
Several  research groups have made numerical software packages available for solving LMI 

problems.  Nowadays optimization problems with convex objective functions and LMI constraints 

can be solved efficiently with powerful off-the-shelf software algorithms. Gahinet and Nemirovskii 

developed a software package called LMI-Lab (Gahinet and Nemirovski, 1993), which is based on 

the Nemirovskii’s projective interior-point algorithm (Nesterov and Nemirovsky, 1994), 

(Nemirovsky and Gahinet, 1994). LMI-Lab allows the user to describe an LMI problem in a high-

level symbolic form. Matlab’s LMI Control Toolbox (Gahinet et al., 1996) is based on the same 

algorithm, and offers a graphical user interface and extensive support for control applications. The 

control applications are built around the LMI-Lab and allow for the treatment of various robust 

control problems. Toolbox includes also tools for classical Riccati-based H∞ control (Gahinet et al., 

1994). VanDenberghe and Boyd (1994) wrote the code SP which is based on a primal-dual 

potential reduction method for semidefinite programming with Nesterov and Todd scaling. The 

code is written in C with calls to BLAS and LAPACK library programs and SP includes an 

interface to Matlab. Software packages SDPSOL (Wu and Boyd, 1996) and LMITOOL (Elghanoui 

et al., 1995) offer user-friendly interfaces to SP that simplify the specifications of semidefinite 

programming problems where the variables have a matrix structure. SDPSOL is a parser solver that 

calls SP code. SDPSOL can run without Matlab and it enables the user to specify the problem in a 

high level leanguage. The Induced-Norm Control Toolbox (Beran, 1995) is a Matlab toolbox for 

robust and optimal control. It is in turn based on LMITOOL. 

 

5.2 Polytopic systems  
 
In this section we describe a model of systems with uncertainties called polytopic systems which 

are commonly used in many modeling and estimation approaches. In general, polytopic systems 

form a special class of Linear Fractional Representation (LFR) of the uncertain systems. For these 

systems, a lot of research has been done on analysis and synthesis using quadratic Lyapunov 

functions (Boyd et al.,1994a). Polytopic systems can be presented as a linear time-varying (LTV) 

system   

  x(k+1)  =  A(k)x(k) + B(k)u(k) 
       y(k) =  Cx(k) 

      [A(k)  B(k)] ∈   Ω              (5.7) 
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where u(k) ∈ unR  is the control input, x(k) ∈ xnR  is the state of the plant and y(k) ∈ ynR is the plant 

output, R is a set of real numbers and Ω is some prespecified set. 

 
For polytopic systems, the set Ω is a polytope 
 

  Ω = Co{[A1 B1],[A2 B2],…,[AL BL]}            (5.8) 
 
where Co refers to convex hull. If [A B] ∈ Ω, then for some nonnegative λ1, λ2 ,…, λL summing to 

one will give 

   [A B] [ ]∑
=

=
L

i
iii BA

1
λ  

 
When L = 1 a linear time-invariant (LTI) system without plant-model mismatch will occur. 

Graphical presentation of polytopic uncertainty is shown in Figure 5.1. 

 

 
                                         Figure 5.1: Polytopic uncertainty. 
 

Polytopic multi-model systems can be derived as follows (Boyd et al., 1994a). Suppose we have a 

real system that is rather well modeled as a linear system. We collect several sets of input-output 

measurements at different operating points and at different times, so that the measurement data 

characterizes comprehensivly all plant variations that can be expected. For each data set we 

develop a linear system model of the plant which will always contain the same accessible state 

vector. We suggest to model the system as a polytopic system (5.7) with the vertices (5.8) given by 

the measured or estimated linear system models. Thus, we model the plant as a time-varying linear 

system, with system matrices that are allowed to alternate among all of the multi-models we 

defined. Alternatively, a nonlinear system can be approximated by a polytopic uncertain linear 

time-varying system using a global linearization approach presented by Liu (1968). 

[A(k) B(k)]

[A   B ]1 1

[A   B ]2 2

[A   B ]i i

[A   B ]L L
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The development of polytopic multi-models is in principle similar to the traditional parametric 

identification techniques such as least squares, maximum likelihood and instrumental variable 

methods, which utilize a pseudo-random binary sequence (PRBS) technique to excite the process in 

determining the process dynamics, unknown parameters and imposing interactions. Also these 

approaches provide a method to define e.g. a CD response model based on the input-output data 

from the varying process (Heaven et al., 1993b). Similarly, parametric identification methods 

enable the evaluation of parameter validity range in terms of statistical confidence. 

  
Other type of uncertainties or perturbations can also be connected to the linear system models. 

Kothare et al. (1996) have shown how a structured uncertainty in a feedback loop with linear time-

invariant systems can be developed. This method provides a way to handle repeated scalar block or 

a full block uncertainty models. However, later we will see that the polytopic uncertain systems can 

very conveniently be applied to the CD processes. 

 

5.3 Model predictive control 
 
Model predictive control (MPC) techniques are widely used in industrial process control. Its 

general structure is shown in Fig. 5.2. At each sampling time, MPC solves a trajectory optimization 

problem, typically a linear or quadratic program to compute optimal control inputs over a fixed 

future time horizon, using a plant model to predict future plant outputs. All MPC systems rely on 

the idea of generating values for process inputs as solutions of the on-line optimization problem. 

The underlying principle of MPC is that a model can be used to predict the effects of past and 

future inputs on the future system outputs. Although more than one optimal control input is 

generally calculated, only the first one is implemented. At the next sampling time, the optimization 

problem is reformulated with the horizon shifted forward by one time step and solved utilizing the 

new measurement information obtained from the system. Thus, the process measurements provide 

the feedback element in the MPC structure. The main advantage of MPC is its ability to explicitly 

handle constraints on both the input and output variables. However, due to the on-line optimization 

involved, the application of MPC is restricted to slow processes, which allow the on-line 

computation to be completed between two sampling instances. MPC is probably the only 

methodology currently available, which can explicitly handle constraints on the manipulated and 

output variables systematically during the design and implementation of the controller 

(Maciejowski, 2001). 
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                                            Figure 5.2: General structure of MPC. 

 
Model predictive control is an open-loop control design procedure where at each sampling time k, 

plant measurement ym of the output y is obtained, as shown in Fig. 5.2.  

 
      Figure 5.3:  Basic principle of MPC. 

 

This measurement and knowledge of the plant input u(k) at the current sampling time are used by 

the observer  to define an estimate )(ˆ kx of the plant state x. This state estimate )(ˆ kx  and a model 
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of the plant are used to predict future states and outputs x̂ (k+i|k), ŷ (k+i|k), i = 1,…, p of the 

system over the future time prediction horizon p, see Fig. 5.3. At the same time the manipulated 

input û (k+i|k), i = 0,1,…, m-1 is changed over the future time control horizon m. 

 
MPC optimizer computes a sequence of m control moves û (k+i|k), i = 0,1,…,m-1 such that the 

predicted output follows the specified target or set-point as defined. Inequality constraints on the 

inputs and outputs are taken into account in the optimization. The sequence of control moves are 

computed by minimizing an objective function  Jp(k) over the prediction horizon p as follows  

 
   )(min

1,...,1,0),|(ˆ
kJ pmikiku −=+

              (5.9) 

subject to constraints on the control input û (k+i|k), i = 0,1,…,m-1 and possibly also on the state 

x̂ (k+i|k) and the output ŷ (k+i|k),i=0,1,…,p. Here 

 
x̂ (k+i|k), ŷ (k+i|k)         :  state and output respectively, at time k+i, predicted  based    

                                                    on the measurements at time k; x(k|k) and y(k|k) refer  

                                                    respectively to state and output measured at time k. 

û (k+i|k)           : control move at time k+i, computed by the optimization 

problem at time k; u(k|k) is the control move to be 

implemented at time k.  

p                      :              prediction horizon 

m                     :              control horizon  

It is assumed that the control action is not changed after time k+m-1, i.e., û (k+i|k) = û (k+i-1|k), i 

≥ m. Similarly for state regulation problems, û (k+i|k) = 0, i≥m. Thus, although more than one 

optimal control input is calculated, only the first computed control action u(k|k) is implemented and 

the rest of the control sequence is discarded. At the next sampling time k+1, new measurents 

)1(ˆ +ky are received from the plant and a new estimate )1(ˆ +kx  of the plant state x̂ (k+i|k) is 

received from the observer. Next, predictions of the plant state and output x̂ (k+1+i|k+1), 

ŷ (k+1+i|k), i = 1,…, p can be defined over a shifted prediction horizon from k+1+1 to k+1+p, and 

the optimization is resolved again using these predictions to recompute m optimal control moves 

û (k+1+i|k+1), i = 0,1,…, m-1. Therefore, both the control horizon m and the prediction horizon p 

move ahead by one step as time moves ahead by one step. The advantage of using new 
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measurements at each time step is to diminish the significance of unmeasured disturbances and 

model inaccuracies in the MPC structure (Maciejowski, 2001). 

 
In this study we assume that an exact measurement of the state is available at each sampling time k, 

i.e., x(k|k) = x(k). We will also assume that the specified objective function Jp(k) is quadratic 
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where Q1 > 0 and R > 0 are symmetric weighting matrices.  We will adopt the approach of Kothare 

et al. (1996) and consider an infinite horizon MPC technique (p = ∞). The main benefit to use 

infinite horizon approach is that it guarantees better nominal stability than finite horizon control 

laws and it does not require any parameter tuning for stability. When the control horizon and the 

prediction horizon both approach infinity, and when there are no constraints, we obtain a standard 

Linear Quadratic Regulator (LQR) problem. 

 
In this study the input and output constraints are defined as component-wise peak bounds: 
 
   

max,)|(ˆ jj ukiku ≤+ , k,i  ≥  0,             j = 1,2,…, nu                    (5.11) 

   
max,)|(ˆ jj ykiky ≤+ , k ≥  0, i ≥  1 j = 1,2,…, ny        (5.12) 

 
Notice that because the current output cannot be affected by the current or future control actions, 

the output constraints are defined strictly over the future horizon (i.e., i ≥ 1) and not at the current 

time (i.e, i = 0). In addition, constraints on the input are usually hard constraints, because they are 

physical limitations of the process equipments like actuators. On the other hand, constraints on the 

output are often performance specifications which can be softened by allowing them to make ymax 

as small as possible, subject to the input constraints. 

 
 
5.4 Robust constrained model predictive CD control algorithm using   

linear matrix inequalities 
 
In this section, we consider a robust infinite horizon MPC problem. First we discuss the 

minimization of a worst-case objective function with input and output constraints. A linear 

objective minimization problem is solved and a required state feedback matrix is defined. Then a 
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system with delays are considered. We will see that the derived robust MPC algorithm is applicable 

to the cross-directional (CD) control problem.       

 
We assume that the system is described by the equation (5.7) with the uncertainty set Ω. Similar to 

the approach from linear robust control, the nominal objective function in equation (5.10) is 

replaced by the minimization of a robust performance objective. For notational clarity, we have 

omitted the indication of predictions, because they are clearly shown by time indexes. At each 

sampling time k minimization of the worst case infinite horizon quadratic objective function is 

performed (Kothare et al., 1996). 

 
     

[ ]
)(maxmin

0,)()(,...,1,0),|(
kJ

iikBikAmikiku ∞≥Ω∈++=+
                          (5.13) 

                   where     ( )∑
∞

=
∞ +++++=

0
1 )|()|()|()|()(

i

TT kikRukikukikxQkikxkJ . 

With Q1  > 0,  R > 0, subject to polytopic uncertainty set Ω in (5.8) and component-wise peak input 

- output constraints  

   
max,)|( jj ukiku ≤+ , k,i  ≥  0,             j = 1,2,…, nu                    (5.14) 

   
max,)|( jj ykiky ≤+ , k ≥  0, i ≥  1 j = 1,2,…, ny        (5.15) 

 
Euclidean norm type of constraints are also handled in Kothare et al. (1996). The problem as stated 

above is a typical ”min-max” problem. We address this problem by first deriving an upper bound 

on the robust performance objective )(kJ∞ . The maximization is done over the set Ω thus that the 

time-varying plant [A(k+i) B(k+i)] ∈ Ω, i≥ 0 will give the worst-case value of  )(kJ∞ among all 

plants in the set Ω. This upper bound value of )(kJ∞ , over present and future control actions 

u(k+i|k), i=0,1,…,m, is then minimized with a constant feedback control law u(k+i|k) = Kx(k+i|k), 

i≥ 0. 

 
In equation (5.13) the state feedback law u(k+i|k) = Kx(k+i|k) is used at each sampling time to 

minimize the worst case value of )(kJ∞ . Next we derive an upper bound on )(kJ∞ . At sampling 

time k, define a quadratic function V(x) = xTPx, P > 0. For any [A(k+i) B(k+i)] ∈ Ω, i≥ 0, suppose 

V(x) satisfies the following robust stability constraint: 

 
          V(x(k+i+1|k) – V(x(k+i|k) ≤ -(x(k+i|k)TQ1x(k+i|k) + u(k+i|k)TRu(k+i|k))           (5.16) 
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Summing up the above inequality from i = 0 to ∞  and requiring x(∞ |k) = 0 or V(x(∞ |k)) = 0, we 

get  

                          
[ ]

γ≤≤∞≥Ω∈++
))|(()(max

0,)()(
kkxVkJ

iikBikA
                        (5.17) 

 
Equations (5.16) and (5.17) give an upper bound on )(kJ∞ , which is defined as γ. The condition 

γ≤))|(( kkxV  in (5.17) can be expressed equivalently as LMIs  
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where  Q = γ P(k)-1 . The robust stability constraint (5.16) for system (5.7) is satisfied if for each 

vertex of Ω. 
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where, Q = γ P(k)-1 and K(k) is expressed by K = YQ-1. Thus we want to minimize the upper bound 

of the equation (5.17) 

   
YQ,,

min
γ

γ               (5.20) 

                          subject to (5.18) and (5.19) 

This defines our unconstrained linear objective minimization problem. For notational convenience, 

we have excluded the time index k in the above optimization. Actually, the variables should be 

expressed by Qk, Fk, Yk etc., to indicate that they are computed at time k.   

 
The corresponding robust stability and feasibility for the system (5.7) can be found in Kothare et al. 

(1996) and is omitted here for brevity. For nominal case, (L=1), it can be shown that a standard 

discrete-time Linear Quadratic Regulator (LQR) solution is obtained.  

 
The limits on the control signal can be incorporated into the robust MPC algorithm as sufficient 

LMI constraints. At sampling time k, consider the component-wise peak constraint (5.14). The 
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constraint is imposed on the present and the entire horizon of future manipulated variables if there 

exists a symmetric matrix X such that the linear matrix inequality holds 

 

   0≥⎥
⎦

⎤
⎢
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⎡
QY
YX

T     with  Xrr  ≤ 2
max,ru  r = 1,2, …, nu                                 (5.21) 

 
This is an LMI in X,Y and Q. Inequality represents sufficient LMI constraints which guarantee that 

the specified constraints (5.14) on the manipulated variables are satisfied.  

 
Similarly, output constraints can be defined as LMIs. At sampling time k, consider the component-

wise peak constraint (5.15). This is the worst-case constraint over the set Ω and it is imposed over 

the future prediction horizon (i≥ 1). The output constraints are satisfied if there exists a symmetric 

matrix Z such that for each vertex of Ω the LMI  
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with Zrr ≤ 2

max,ry , r = 1,2, …, ny  holds. Condition (5.22) represents a set of LMIs in Z,Y and Q > 0 

for the polytopic uncertainty model. 

 
We can now define the robust constrained MPC algorithm which will be the basis for our primal 

robust MPC CD algorithm. 

 
Algorithm 5.1  Constrained linear objective minimization problem (Kothare et al., 1996) 

For the system (5.7), at sampling time k, the state feedback matrix K(k) in the control law u(k+i|k) 

= Kx(k+i|k), i ≥ 0, which mimimizes the upper bound γ on the worst case MPC objective function 

)(kJ∞ , is given by K(k) = YQ-1 where Q > 0 and Y are obtained from the solution (if it exists) of 

the following linear objective minimization problem:  

    
ZYXQ ,,,,

min
γ

γ   

    subject to (5.18), (5.19), (5.21) and (5.22) 
 
This MPC algorithm, if initially feasible, robustly asymptotically stabilizes the closed-loop system. 

 
Thus, the goal of the primal robust MPC CD algorithm is at each sampling time k, define a constant 

state-feedback control law u(k+i|k) = Kx(k+i|k) to minimize the upper bound V(x(k|k)). Only the 
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first computed input u(k|k) = Kx(k|k) is implemented. At the next sampling time, the state x(k+1) is 

measured and the optimization is repeated to recompute K. The robust MPC CD controller 

stabilizes all matrices within the matrix polytope Ω.  

 
The derived robust constrained MPC algorithm can be extended in several ways. Kothare et al. 

(1996) have shown how optimal tracking problems, constant set-poit tracking and disturbance 

rejection problems can be treated with the robust MPC algorithm. They have also proved how 

process delays can be incorporated into the algorithm. We will study next this subject.      

 

5.4.1  Systems with delays 
 
Delays can be taken into account in the robust MPC algorithm as follows. Consider the following 

uncertain discrete-time linear time-varying system with delays: 

  x(k+1) = Ao(k)x(k) + ∑
=

−
m

i
ii kxkA

1
)()( τ  + B(k)u(k-τ)     

  y(k) = Cx(k) 

 with     [Ao(k) A1(k) … Am(k) B(k)] ∈ Ω                                    (5.23) 
 
We assume that the discrete delaysτi can be organized 0 < τ < τ1 < … < τm. At sampling time k ≥ τ, 

we would like to formulate a state-feedback control law u(k+i-τ|k) = Kx(k+i-τ|k), i ≥ 0, and 

minimize the modified infinite horizon robust objective function   
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      (5.24) 
subject to input and output constraints. An augmented state is defined as 
 
  w(k) = [x(k)T x(k-1)T … x(k-τ)T … x(k-τ1)T … x(k-τm)T]T                     (5.25) 
 
If the augmented state is assumed to be measurable at each time k ≥ τ, an upper bound on the 

robust objective function (5.24) can be derived. The constrained minimization problem of the upper 

bound with the state-feedback control law u(k+i-τ|k) = Kx(k+i-τ|k), k ≥ τ, i ≥ 0, can be formulated 

as the linear objective minimization in Algorithm 5.1. These details can be derived 

straightforwardly. As pointed out by authors (Kothare et al.,1996) the specified choice of the 

function V(w(k)) which satisfy the condition (5.16) is  

V(w(k)) = x(k)TPox(k)+ )()(
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                  =  w(k)TPw(k)              (5.26) 
 
where P is properly defined in terms of Po, Pτ , Pτ1, … Pτm. This kind of modified choice of V(w(k)) is 

closely related to the Modified Lyapunov-Krasovskii (MLK) functional (Feron et al.,1992). 

 

5.4.2 Disturbance rejection 

 
The presence of disturbances is one of the main reasons for using control, because in all practical 

applications some disturbances enter to the system. It is customary to distinguish among different 

types of disturbances, such as load disturbances, measurement errors and parameter variations. In 

process control load disturbances are typically quality variations which vary slowly or periodically. 

Four different types of disturbances – impulse, step, ramp and sinusoid – are commonly used in 

analyzing control systems. However, we will use only impulse and step disturbances in our CD 

study. The impulse is a simple idealization of sudden disturbance of short duration. It may 

represent load disturbances as well measurement errors. On the other hand, the step disturbances 

are typically used to represent load disturbances or offsets in a measurement.   

 
Kothare et al. (1996) have shown how disturbance rejection problems can be treated with the 

robust MPC algorithm. Impulse disturbances can directly be handled with the robust MPC 

algorithm. Regarding load disturbances, one traditional way to approach this problem is to estimate 

them and use feed-forward from the estimated disturbance. In classical design, steady-state errors 

are eliminated introducing integrators if an unknown constant additive disturbance is acting at the 

output of the plant, see Fig. 4.2. One way to introduce an integrator is to define a new state that 

integrates the error between plant output and measured output ym. However, in our case the 

augmentation would increase the dimension of the system and lead to serious computation 

problems. Thus it is an inadvisable approach. Another way to eliminate steady-state output errors 

or load disturbances, without use of integral action, is based on the same method used for offset-

free tracking of constant set-points (Kothare et al. 1996). Basically this method utilizes the fact that 

currently estimated disturbance will persist at the same level also into the future and it will continue 

to act throughout the whole prediction horizon. As pointed out by Maciejowski (2002) this 

approach is commonly used in several commercial MPC software applications.  

  
Let us consider (5.7), which we will now assume to represent an uncertain linear time-invariant 

system i.e., [A B] ∈  Ω are constant unknown matrices. Suppose that the system output y is required 
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to eliminate the constant load disturbance yd or in the case of set-point tracking to track the target 

vector yd, by moving the system to the set-point xs, us where 

 
   xs = Axs + Bus , yd = Cxs                                                                         (5.27) 
 

We assume that xs, us, yd are feasible, i.e., they satisfy the imposed constraints. The choice of 

)(kJ∞ for the robust load disturbance rejection or set-point tracking objective in the optimization 

(5.13) is the following: 
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                                                                                                                                                      (5.28) 
where Q1 > 0, R > 0.                                                                                                                      
 
As discussed in (Kothare et al. 1996), we can define a shifted state x~ = x(k) - xs , a shifted input 

u~ = u(k) - us and a shifted output y~ = y(k) – yd to reduce the problem to the standard form as shown 

earlier in this chapter. Component-wise peak bounds on the control signal u can be translated to 

constraints on u~  as follows: 

 
       

max,jj uu ≤   ⇔   
max,,

~
jjsj uuu ≤+  ⇔  -uj,max – us,j  ≤  ju~  ≤ uj,max – us,j                      (5.29) 

 
Constraints on the deviation y(k) from the value yd can be incorporated in a similar way. We will 

use this approach to eliminate step disturbances at the output of the robust MPC CD system and 

refer it to the modification of primal robust MPC CD algorithm. 

 
 
5.5 Simulation of the primal robust MPC CD algorithm 
 
At present simulation is a widely applied method in pulp and paper industry, and applications vary 

from process control and production planning to economic evaluation. Simulation has been 

commonly used in troubleshooting, production and energy control and operator training 

(Woodward et al., 1988).  Modeling and simulation are traditionally used in process studies and 

optimization and in defining and testing the process control strategies. By off-line simulation, 

alternative operation strategies, sensitivity studies and optimization methods can easily be tested 

without disturbing the actual process. However, this kind of approach requires a clear knowledge of 

the process behaviour and relatively accurate process models.  
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The performance of the implementation of the proposed primal robust MPC algorithm for cross-

directional control problem was investigated by performing a number of simulations. The results of 

these inverstigations are presented in this section. A LMI Control Toolbox (Gahinet et al.,1996)  

software in Matlab 5.2 environment was used in the simulations to compute the solution of the 

linear objective minimization problem. 

 

5.5.1 Simulated CD response model 
 
In our simulation study we will apply a CD response model to design a robust MPC CD controller 

for the system with interactions. The interaction matrix is a Toeplitz symmetric matrix Gn,n = 

toeplitzn{g1, g2, … , gm,0, … ,0} with uncertainty bounds for each element. Uncertainty in the CD 

interaction matrix Gn,n is expressed by gi ∈ [gimin, gimax] in the CD response model (3.1). This kind of 

correlated coefficient uncertainty in Gn,n indicates observed deviations in experimentally measured 

CD response interactions (Laughlin et al., 1993). In our study we use uncertainty bound values 

which represent 25 % errors from the nominal values of g in the response Table 4.1 presented in 

Chapter 4. Elements of the response model vary randomly between specified bounds gi ∈ [gimin, 

gimax]. The uncertainty bounds are equal for all elements, excluding the diagonal elements that 

represent the center of the response and stay unchanged. Of course element specific bounds can be 

defined, but they increase the number of vertexes of Ω and affect to the equations (5.19) and (5.22).  

 
Due to clarity of description we will use the continuous time model of first-order actuator dynamics 

(3.5) with uncertain model parameters and a constant time-delay in the simulation:  

           ga(s) = 
1+

−

s
ek

a

s
a

τ

τ

                        (5.30) 

      ka ∈ [0.9, 1.1];   τa ∈ [6.0, 10.0];  τ∈ Z 

 
The time-delay τ is assumed to be an integer number of sample times {τ ∈Z}. The gain ka and the 

time constant τa are allowed to vary randomly and independently between the specified upper and 

lower bounds. In the simulation a process generator describing the uncertain CD process produces 

the randomly varying elements of the response model Gn,n and actuator parameters.  

 
We assume that the number of actuators is 20 and the actuator spacing is 150 mm, thus the width of 

the sheet is roughly 3000 mm. If the traversing speed of the measuring head is 500 mm per second, 

a scanning time of 6 sec for the profile measurement is achieved. This is our sampling time for the 
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simulation. Thus we assume that the sampling rate is less or equal than the lengths of the transient 

of the dynamic response of spatial responses, and therefore the measurements will observe the 

dynamics. Tustin's method is used to accomplish the transformation from s-domain to z-domain. 

Simulated discrete-time response model (3.1) will be of the form 

 
    y(z) = G(z)u(z) ,     G(z) = ga(z)Go              

where the elements of the transfer matrix G(z) are given by  
 

Gi(z) = C[zI – Ai ]-1Bi z -τ , i = 1,2,…,L         (5.31) 

and (Ai, Bi, C) are defined in (5.7) and (5.8). In addition a steady-state assumption (Rawlings and 

Chien, 1996) is presumed, see also Chapter 3.1. We assume that the discrete-time the CD response 

model is defined from specified input/output data set at different operating points and it will take 

into account the uncertainty bounds. From each data set a discrete-time linear state-space model is 

defined and prespecified set of CD models is expressed as a disctrete-time time-varying linear 

system as presented in equation (5.7). The operating point dependent set Ω is a polytope as 

depicted in Fig. 5.1. Because we have three pairs of varying parameters: gi ∈ [gimin, gimax], ka ∈ [kamin, 

kamax] and τa ∈ [τamin, τamax], thus L = 6 and the multi-model polytope will be Ωsim = Co{[A1 B1],[A2 

B2],…,[A6 B6]}. An example of the discrete-time response model is presented in Appendix C. 

 
We assume that the state vector x(k) i.e mapped CD profile of the uncertain system will allways be 

the same and measured at each sampling time k. Therefore the state observer in Fig.5.2 is just a 

calculation block in terms of general structure of the MPC. This assumption simplifies our 

approach considerably. We want to define a constant state-feedback CD control law u(k+i|k) = 

Kx(k+i|k) to minimize the upper bound V(x(k|k)) in equation (5.17) and simultaneously take into 

account constraints (5.14) and (5.15). This requirement is expressed equivalently as equation (5.20) 

and LMI equations (5.18, 5.19, 5.21, 5.22). These equations, the discrete-time linear polytopic 

system model (5.7) and polytope Ωsim define our primal robust MPC CD simulation problem. 

Regarding rejection of step disturbances, modification of primal robust MPC CD algorithm is used 

as defined in Chapter 5.4.2. 

 

5.5.2 Studied CD response models  
 

We will apply robust MPC control approach for selected CD response models presented earlier in 

the Chapter 4.3. For the simulations response models have been normalized such that the 
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magnitude of the response at the center position is one. In the simulations a quadratic response 

model of size G20,20 is considered. The size of model is selected based on the reasonable 

computation time. This issue is discussed more in details later. However, the selected size can be 

seen to bring out the basic behavior of the CD response.  

 
We will use four different kinds of disturbances in the simulation either to characterice impulse or 

step disturbances. This approach is partly similar to Laughlin et al. (1993) apart from we will use 

impulse disturbances and also a typical unit disturbance d4 to characterise clearly load disturbances. 

Disturbance like d2 enters with a large component in the direction of the vector corresponding to 

the minimum singular value and is therefore difficult to reject. Disturbances d1 and d3 enter the 

system in different, more favorable directions and are therefore easier to handle. 

 
d1 = [1.0,0.8,0.4,-0.4,-0.8,-1.0,-0.8,-0.4,0.4,0.8,1.0,0.8,0.4,-0.4,-0.8,-1.0,-0.8,-0.4,0.4,0.8] 

d2 = [1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1,-1.0,01.0,-1.0]         (5.32) 
d3 = [1.0,0.9,0.7,0.4,0.0,-1.0,1.0,-1.0,-0.7,-.3,0.3,0.7,1.0,-1.0,1.0,0.0,-0.4,-0.7,-0.9,-1.0] 
d4 = [0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.0,0.0,0.0] 

 

The behavior of the DC responses is analyzed by using the RGA and DIC analysis methods 

presented in Chapter 4. In Table 5.1 the condition number γ(G), the minimum and maximum 

singular value, and both the minimum and maximum element value Λ of RGA of studied CD 

response models G20,20 are presented. Similarly results of the DIC rules are shown.  

 
TABLE 5.1: Condition number γ(G), min-max singular values σ(G), min-max RGA element values 

Λ, and results of RGA-, MIC-, SM(i)-, DIC-, µ(E(0))- and IC- rules of studied response models 

G20,20. 

 
Model   γ(G) σ (G)  σ (G)   Λmin   Λmax  RGA   MIC  SM(i)   DIC  µ(E(0))    IC 

     1     2.31 0.604 1.395 -0.045 1.091 Yes Yes Yes Yes Yes Yes 
     2     8.57 0.208 1.791 -0.333 1.666 Yes Yes Yes Yes Yes Yes 
     3     6.98 0.227 1.586 -0.165 1.405 Yes Yes Yes Yes Yes Yes 
     4   11.38 0.189 2.153 -0.046 0.798 No No No No No No 
     5    15.82 0.132 2.089 -0.099 1.052 Yes No No No No No 
     6     1.85 0.743 1.372 -0.023 1.046 Yes Yes Yes Yes Yes Yes 
     7   33.27 0.060 1.995 -1.105 0.668 No No No No No No 
     8     2.64 0.560 1.479 -0.054 1.145 Yes Yes Yes Yes Yes Yes 
     9   12.01 0.213 2.563 -0.407 2.308 Yes Yes Yes Yes No No 
    10   23.43 0.191 4.464 -0.662 0.623 No No No No No No 
    11 145.40 0.036 5.329 -3.529 4.464 No No No No No No 
    12 464.37 0.014 6.676 -9.271 7.182 No No No No No No 
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As can be seen the condition number γ(G) alternates widely from 1.84 to 464.37. By comparing 

these values to Table 4.2 we may observe that the condition number is really dependent on the 

dimension of the system. Based on the condition number we may say that, from control point of 

view, responses like G4, G5, G7, G9, G10, G11 and G12 are undesired, because they have rather large 

condition numbers and relatively small minimum singular values. Especially models G7, G11 and 

G12 indicate how the large condition number may be caused by a small value of σ (G). On the other 

hand, RGA analysis indicates that CD response models G1, G2, G3, G6 and G8 represent less 

complex cases, and like in the case of model size G86,86 , also now RGA matrices are diagonal 

dominant with positive gains rather close to unity. Similarly, all these CD response models are 

decentralized controllable. In regard to the response model G4 the same phenomenon that was 

observed already in Chapter 4 can be verified, i.e., G4 represents a naturally decoupled system. 

Similarly, response models G7, G10,G11 and G12 represent the most complex CD cases, and it is not 

a surprise, that traditional decentralized integral controllers should not be applied to these CD 

response models. Therefore, a more sophisticated controller is required. 

 
From Table 5.1we may conclude that those CD response models, which are not decentralized 

integral controllable, and which also have large RGA element values, and a high condition number 

are primary candidates for our simulation study. Therefore, we will use response models G2, G7, 

G10 and G12 in the simulation, and as we can see only G2 is DIC. Graphical illustration of these 

responses is presented in Fig. 5.4. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: Toeplitz symmetric CD response models G2, G7, G10 and G12 from Table 4.1. 
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Studied response G2 represents a CD model with strong decouplings (Wilhelm and Fjeld, 1983), 

while the model G7 (Wilkinson and Hering, 1983) is a typical example of CD response of the basis 

weight to the slice lip actuator. On the other hand, models G10 and G12 describe examples of much 

wider and complex CD responses from the sack paper and board machines (Karslsson et al., 1985). 

 

5.5.3 Simulation of CD models without delays 
 

In the first simulations we assume that the delay is not present (τ = 0). Responses of the closed-

loop system to the disturbances are shown in Figs. 5.5, 5.6. and 5.7. All CD response models were 

analyzed and similarly all disturbance options were studied. However, only the results of the 

selected CD response models, based on the RGA and DIC response analyses, are presented. In Fig. 

5.5  the response and control actions of the closed-loop system to the impulse disturbance d2 is 

shown. 

 
 

 

 

                                                                                        

 

 

                                                                                                                                                        
Figure 5.5: Response and control actions of the closed-loop system to the impulse disturbance d2. 
CD model G12. 
 
CD response model G12 was used because it represents the most demanding and complex case from 

the control point of view. Large condition number (464.37) and unfavorable negative RGA 

elements indicate major control problems. Simulation parameters were R = 0.000001I and Q = I and 

all control actions ⏐u(k)⏐≤ 1max and outputs ⏐y(k)⏐≤ 1max were limited to the same value. We see the 

robust MPC CD controller rejects impulse disturbances effectively and stabilizes the closed loop 

system quite well in spite of the complexity of the model.  

 
In Fig. 5.6  the response and control actions of the closed-loop system to the step disturbance d2 is 

shown. Now the robust MPC CD controller is formulated as presented in Chapter 5.4.2. As 

expected the step disturbance d2 is difficult to handle and the number of iteration loops increses 

easily over forty. Anyhow, the MPC CD controller operates effectively within defined bounds of 

constraints. 
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Figure 5.6: Response and control actions of the closed-loop system to the step disturbance d2. CD 

model G12. 

 
It is clear that behavior of the closed-loop response is dependent on the selected CD model and 

type of disturbances. More complex and more demanding CD responses require aggressive control 

actions and more time for controller to stabilize the system. When the complexity of the CD model 

decreased it is easier for the controller to perform the control task. This can be seen from Fig. 5.7 

where the response of the closed-loop system is presented for CD models G7 and G2, which have 

quite moderate condition numbers and acceptable RGA element values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 5.7: Responses of the closed-loop system. Above CD model G7 with step disturbances d1 

and d3. Below CD model G2 with step disturbances d2 and d4. 
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Four different kinds of step disturbances were used. Simulation parameters were the same as 

before. It is obvious that the controller can perform the control task faster when the complexity of 

CD model is not high. However, the type of the disturbance affects clearly to the performance of 

the controller. Disturbance d2 is really difficult to reject, which can be observed from the response 

of model G2.  

 
The weight factors Q and R in the cost function J affect to the behaviour of the CD control 

algorithm as expected; weighting either states or controls. During the simulation following values 

were used Q = I and R varied in the range from 0.01I to 0.000001I. The increase of value R restricts 

the use of large control actions which affects to the gain K. Behaviour of the gain matrix K is 

presented in Fig. 5.8. As can be seen the matrix is diagonal if the interactions between adjacent 

zones are small as in the CD response model G2. When the complexity of the response model 

increases (model G12) widens the gain matrix K in a similar way. 

 

 
 
 

 

 

 

 

 
Figure 5.8: Gain matrix K for CD response models G2 and G12. 

 
In Fig. 5.9 the norm of K as function of iterations for the robust MPC CD controller is shown. As 

can be noticed, to meet the constraint )()( kKxku =  for small k, K must be small because x(k) is 

large for small k. 

 

 
 

 

 

 

 

Figure 5.9: Norm of the feedback matrix K as a function of iterations. CD response model G12. 
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But as x(k) approaches zero, K can be made larger while still meeting the input constraint. This 

favourable use of the control constraint is possible only if K is recomputed at each time k, as in the 

robust MPC CD controller. 

 
Next we will study how a nominal MPC CD controller behaves. Previously we have assumed that 

the multi-model polytope will have equal importance all over the uncertainty set Ω. Let us assume 

that our confidence of CD model is based on the most reliable observations of a single model and 

the rest of set is ignored. Let us define L = 1, which corresponds to the case when there is no plant-

model mismatch and the model polytope is reduced to Ωsim = Co{[A1 B1]}. As mentioned earlier 

for the nominal case a standard discrete-time Linear Quadratic Regulator (LQR) solution is 

obtained. This solution is based on the minimization of nominal performance objective function 

like (5.10).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Above the response and control actions of the closed-loop system to step disturbance 

d4. Below the development of standard deviation of robust (solid + circle) versus nominal (solid + 

dotted) MPC CD control and development of norm of the feedback matrix K as a function of 

iterations. CD model G2. 

 
Let us choose the CD response model G2 which represents an easy case from control point of view. 

All the simulation parameters are now the same as previously. Nominal CD model G2 is as defined 
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in Table 4.1 and the actuator parameters (5.30) are constants with nominal values: ka =1, τa = 8. In 

Fig. 5.10  the response and control actions of the closed-loop system to the step disturbance d4 is 

shown. Similarly the development of standard deviation of robust versus nominal MPC CD control 

and development of norm of the feedback matrix K is shown. Robust MPC CD control and model 

G2 with step disturbance d4  was shown earlier in Fig. 5.7. We can see that the response of nominal 

MPC CD controller is about three times slower than the response of robust MPC CD controller. 

This slowness can be understood if we consider the development of norm of the feedback matrix K.  

In both cases the receding horizon controller recomputes the feedback matrix K at each time k, but 

only in the case of robust MPC controller it is done based on minimization of real robust 

performance objective (5.13). The maximization of the “min-max” problem (5.13) is done over the 

multi-model polytope Ωsim = Co{[A1 B1],[A2 B2],…,[A6 B6]} and it corresponds to choosing that 

time-varying plant which would lead to the largest value of )(kJ∞ among all plants in Ωsim. While 

this worst-case value is minimized over present and future control moves with a constant state 

feedback control law )()( kKxku = , the feedback matrix K is allowed to enlarge optimally 

within bounds of constraints, as x(k) approaches zero. 

 
Studied impulse response models converge from initial values in 4 - 6 iteration loops to the 

acceptable accuracy tolerances. However, in the case of step disturbances the convergence speed 

was much slower because of active contraints. The type of disturbances influenced crucially the 

convergence speed of the closed loop response. Likewise complexity of the response model 

affected the computation time but its maximum result was only about 15 to 20 per cent. Times 

required to compute the closed loop responses were about 120-180 seconds per sample, on a 3 GHz 

Pentium 4 PC with 2 GB of RAM using Matlab 5.2 code. For step disturbances values were higher 

than for simple impulse disturbances. However, no attempt was made to optimize the computation 

time, and therefore the times required for the computation of the closed-loop responses only 

indicate the status of the present LMI solvers. In the simulation most of the time was required to 

solve the LMI optimization at each sampling time. Constraints and initial values affect to the 

converge and computation time, but the influence is minimal.  
 
5.5.4 Simulation of CD models with delays 
 
Next we will study the case where the time-delays are taken in to account in the MPC CD 

algorithm. In our simulation we assume that the time-delay τ is an integer number of sample times 

and τ = 2. The state space presentation (5.23) becomes 
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  x(k+1) = Ao(k)x(k) + B(k)u(k-2)      

      y(k) = Cx(k) 

                 [Ao(k) B(k)] ∈ Ω                          (5.33) 

The state-feedback control law is u(k+i-2|k) = Kx(k+i-2|k), k ≥ 2, i ≥ 0 and the modified infinite 

horizon robust performance objective is 

 

[ ] 0,)()(
max

≥Ω∈++ iikBikA
( )∑

∞

=

−+−++++=
0

1 )|2()|2()|()|()(
i

TT
p kikRukikukikxQkikxkJ                         

                                                                                                                                                      (5.34) 

As in the standard non-delayed system, only the first computed input u(k-2|k) = Kx(k-2|k),  is 

implemented. At the next sampling time, the state x(k+1) is measured and the optimization is 

repeated to recompute K. The augmented state vector (5.25) is expressed as w(k) = [x(k)T x(k-1)T 

x(k-2)T]T and the function V(w(k)) in the equation (5.26) will be V(w(k)) =  x(k)TPox(k) + x(k-

1)TPτx(k-1) + x(k-2)TPτx(k-2). Augmentation increases the computational dimension of the LMI 

optimization problem from original 20 to 60. Naturally it has also an effect to the computation 

time.  

 
In Fig. 5.11  the response and control actions of the delayed closed-loop system to the impulse 

disturbance d1 is shown. Simulated CD response model was G7, and the simulation parameters and 

input-output constraints were the same as previously with the model size 20. Because the profile 

measurements are not available before time k ≥ τ, the process model is not used to predict the 

future outputs of the system before that time.    

 
 

 

 

 

 
 

 

Figure 5.11: Response and control actions of the delayed closed-loop system to the impulse 

disturbance d1. CD model G7 

 
Studied delayed model converges from initial impulse response values in 5 - 8 iterations to the 

acceptable accuracy tolerances. However, the time required to compute the closed loop response 
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was long, 25.20 hours per sample. Especially this simulation showed how critically the size of the 

response model affected to the computation time.  

 

5.5.5. Conclusions of the CD simulations  
 
Several simulation examples have been presented to demonstrate the performance of the new 

robust MPC CD controller. Robust MPC CD algorithm was applied to a simulated paper machine, 

which has a realistic description of interactions across the machine. Simulated CD response models 

were selected based on the RGA and DIC analysis shown earlier in the Chapter 4 and some of the 

chosen models represented extremely complex cases with large RGA element values and high 

condition numbers. 

 
Simulation results show that the control strategy yields acceptable steady-state performance when 

remarkable polytopic model uncertainty is present. Study of the nominal MPC CD controller 

revealed that this kind of controller has significantly slower closed-loop performance than robust 

MPC CD controller, which allows the optimal use of feedback matrix K.  This kind of sluggish 

behaviour is a result of using nearly a static state-feedback controller. In addition, the basic primal 

robust MPC CD controller is able to handle sudden disturbances like impulses inherently, but load 

disturbances like steps require additional modifications of the algorithm. This kind of extension of 

algorithm increases the computation time, but only slightly when the number of states is low. 

However, both algorithms acted consistently and effectively and we may state that they are suitable 

for complex and demanding CD response models, which are not controllable by using traditional 

decentralized CD controllers based on integral control.  

 
On the other hand, simulations revealed clearly the complexity of the large scale robust CD control 

problem and also the limitation of the existing off-the-shelf LMI optimization software (Gahinet et 

al.,1996). The importance of the size and dimension of the response model can be noticed by 

considering the used LMI Matlab algorithm. The fastest interior point algorithms show O(MN3) 

growth in computation (Gahinet et al.,1996) where M is the total row size of the LMI system and N 

is the total number of scalar decision variables. Because M is proportional to L, which is the 

number of vertices of uncertain model and N ≈  n2
s/2 + nsnc, where ns is the number of state 

variables and nc the number of manipulated variables, it can be seen that the size of the response 

model defines clearly the computation time.  
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In the simulations this appeared especially when the delayed model was studied. However, the 

maximum number of state variables (ns = 60) did not cause any memory problems on a 3 GHz 

Pentium 4 PC with 2 GB of RAM. Concerning computation, no action was made to optimize the 

computation time, and in all simulations default values for the LMI functions and control 

parameters of the LMI optimization algorithm were used. Feasibility of the solution to the given 

system of LMIs was computed during each simulation loop, and in the LMI optimization also a QR 

factorization was allowed to solve the least-squares problem, see in details Gahinet et al. (1996). 

However, LMI optimization algorithm did not have to use it, and computation was based on the 

default Cholesky factorization.  

 
Although the achieved computation times of the robust MPC CD algorithm are too high for real 

time applications, the method itself seems to be very developable. In the next chapter we will 

present such a solution for the robust CD control problem that the computation drawbacks are 

solved and the developed robust MPC CD algorithm is applicable to the real time CD control 

problem. 
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Chapter 6 
 
 
 
An Efficient Robust MPC Algorithm for CD Processes 
 
 
One of the main drawbacks of MPC method is the high on-line computation requirement which 

limits the applicability of MPC to reduced scale processes with slow dynamics. To overcome these 

problems many researchers have started to develop fast computational solutions to the optimization 

problems related to MPC. Lee and Kouvaritakis (2000) introduced a receding horizon dual-mode 

algorithm for constrained systems with polyhedral model uncertainty. Computational complexity 

was reduced through the use of LP method. For constrained MPC, Bemporad et al. (2002) 

presented the explicit state-feedback solution to finite and infinite horizon LQ optimal control 

problem. A piece-wise linear and continuous solution is provided and on-line QP solvers are no 

more required which decreases considerably the computational complexity. 

 
On the other hand, regarding the control of cross-machine (CD) paper sheet properties several 

control schemes and algorithms have been applied and reported in the literature. However, 

concerning the MPC method the large scale nature and several model uncertainty characteristics of 

the CD process have limited the availability of MPC in paper machine CD control. As pointed out 

earlier one way to solve the large scale problem of CD process is to reduce the size of the model 

and herewith intensify the on-line computation. Haznedar and Arkun (2002) used principal 

component analysis method for model reduction and identification. VanAntwerb and Braatz 

(2000a) designed a fast MPC algorithm for CD control problem to avoid exciting uncontrollable 

plant directions. They applied truncated singular value method to maintain robustly controllable 

components in the admissible set of models. They used an iterated ellipsoid algorithm, which is 

based on an off-line singular value decomposition of the model. In this method an ellipsoid is 

applied to approximate the polytopic input constraint set in an off-line calculation and the size of 

ellipsoid is optimized on-line during calculation. 
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Regarding robust control, after Laughlin (1988) and Duncan (1989) who in late 1980s studied the 

robustness of CD control systems, several methods have been suggested for designing robust CD 

controllers. Similarly, as pointed out earlier, numerous model predictive control (MPC) approaches 

have been proposed that contain actuator limitations but do not explicitely address model 

inaccuracies. For the time being, the robust constrained MPC has not been implementable in real- 

time large scale CD processes because of the heavy on-line computation.  

 
In this chapter, an efficient LMI based robust model predictive controller is proposed in order to 

control the CD processes. First the proposed robust MPC strategy, which incorporates directly 

actuator limitations and model uncertanties into the control algorithm, is introduced. We will see 

that the control algorithm  guarantees the robust stability of the closed-loop system for polytopic 

uncertainty descriptions, and it provides off-line a sequence of stabilizing state feedback laws, 

which consist in invariant ellipsoids one inside another in the state space. After this, the control 

algorithms closed-loop performance is studied with simulations by using a large scale CD 

processes with realistic description of interaction matrices and general uncertainty structures. 

Similarly a simulation comparison with the standard off-the-self MPC CD algorithm is performed. 

Simulation results will show that the performance of the robust MPC CD algorithm is efficient and 

algorithm is applicable to the complex CD response models.  

 

6.1 Fast robust constrained MPC CD algorithm 
 
In this section we present a fast robust constrained MPC algorithm based on the concept of the 

asymptotically stable invariant ellipsoid. Presentation follows closely the structure shown by Wan 

and Kothare (2003) and Wan (2003). Developed algorithm will be used later for polytopic CD 

response systems to illustrate efficiency of the approach.    

 
Definition (Wan and Kothare, 2003) 

Given a discrete dynamical system x(k+1) = f(x(k)), a subset ξ ={x∈ xnR |xTQ-1x ≤ 1} of the state 

space xnR is said to be an asymptotically stable invariant ellipsoid, if it has the property that, 

whenever x(k1)∈ξ, then x(k) ∈ξ for all times k ≥ k1 and x(k) → 0 as k → ∞. 

 
If we consider a closed-loop system consisting of (5.7) and a state feedback controller u(k) = YQ-

1x(k), where Y and Q-1 are achieved by applying the robust constrained MPC algorithm of the linear 

objective minimization problem from Chapter 5 to a system state x0. Then the subset  ξ = 
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{x∈ xnR |xTQ-1x ≤ 1} of the state space xnR is an asymptotically stable invariant ellipsoid. Within an 

asymptotically stable invariant ellipsoid ξ ={x∈ xnR |xTQ-1x ≤ 1}, we define the distance between 

the state x and the origin as a weighted norm 1−Q
x  ≡ xQxT 1− . For an input constrained system we 

know that when the state is approaching  the origin, less constraints on the choice of the feedback 

matrix will be focused (Kothare et al., 1996). If we apply the linear objective minimization problem 

from Chapter 5 to a state far from the origin, the resulting asymptotically stable invariant ellipsoid 

has a more constrained feedback matrix. However, we do not have to keep this feedback matrix 

constant while the state is converging to the origin (Kothare et al., 1996). It is possible to formulate 

inside the ellipsoid another asymptotically stable invariant ellipsoid, which is based on a new state 

closer to the origin. Therefore, by repeating this procedure, we have more possibilities to construct 

acceptable feedback matrices based on the distance between the state and the origin.  

 
Algorithm 6.1  Off-line robust constrained MPC algorithm (Wan and Kothare, 2003) 

 

Consider an uncertain system (5.7) subject to input and output constraints (5.14) and (5.15). Off-

line, given an initial feasible state x1, process a sequence of minimizers, γi, Qi , Xi , Yi and Zi  (i = 

1,…,N) as follows.  

Set i : = 1. 

1. Compute the minimizer γi, Qi , Xi , Yi , Zi  at xi  as defined in the linear objective minimization 

problem in Chapter 5.4 with additional constraint Qi-1 > Qi  (ignored at  i = 1), store Qi
-1 , 

Ki (=Yi Qi
-1), Xi , Yi in a data base             

2. If i < N, choose a state xi+1 satisfying 2
1 1−+

iQix < 1.  

Set  i : = i +1, return to step 1 
 

On-line given an initial state x(0) satisfying 2
1)0( −

iQ
x  ≤ 1, let the sate x(k) at time k. Execute a 

bisection search over Qi
-1 in the data base to find the largest index i or equivalently the smallest 

ellipsoid ξi ={x∈ xnR |xTQi
-1x ≤ 1} such that 2

1)( −
iQ

kx ≤ 1. Apply the control law u(k) = Kix(k). 

 
Wan and Kothare (2003) have shown that the first step in the off-line processing algorithm is 

always feasible for i > 1, if it is assumed that it is feasible for i = 1. Likewise, they have shown that 
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for a given dynamical system (5.7) and the initial state x(0) satisfying 2
1)0( −

iQ
x ≤ 1, the off-line 

processing MPC algorithm robustly asymptotically stabilizes the closed-loop system. As pointed 

out previously, the optimal robust MPC law and the equivalent asymptotically stable invariant 

ellipsoid are dependent on the state. Although the control law can be applied to all states within the 

ellipsoid, it is not necessarily optimal. However, it provides a stable suboptimal solution and 

reduces substantially the on-line computation time. 

 
The sequence of state feedback matrices, generated in the off-line algorithm, is constant between 

two adjacent asymptotically stable invariant ellipsoids, and discontinuous on the boundary of each 

ellipsoid. However, this can be overcome and a continuous feedback matrix over the state space 

can be constructed by utilizing the following algorithm. 

 
Algorithm 6.2  Design of continuous feedback matrix (Wan and Kothare, 2003) 

 
Consider the data base generated by the off-line part of Algorithm 6.1. If for each xi  (i = 1,…,N-1)  
 

Qi
-1 – (Aj + Bj Ki+1)T Qi

-1(Aj + Bj Ki+1) > 0 , j = 1,…,L                 (6.1) 
 
is satisfied, then on-line, given an initial state x(0) satisfying 2

1)0( −
iQ

x ≤ 1 and the current state x(k) 

at time k, perform a bisection search over Qi
-1 in the data base to find the largest index i or 

equivalently the smallest ellipsoid ξi such that 2
1)( −

iQ
kx ≤ 1.  

If i ≠ N, solve x(k)T(αiQi
-1 + (1 - αi)Qi+1

-1)x(k) = 1 for αi  and apply the control law  

u(k) = (αiKi  + (1 - αi)Ki+1)x(k).  

If i = N, apply  u(k) = KNx(k). 

For a given dynamical LTV system (5.7) and the initial state x(0) satisfying 2
1)0( −

iQ
x ≤ 1, the off-

line processing robust constrained MPC algorithm robustly asymptotically stabilizes the closed-

loop system, and similarly the feedback matrix K implemented in the off-line processing algorithm 

is a continuous function of the state x. Both above presented algorithms represent a general 

approach to construct a Lyapunov function for uncertain and constrained systems. Even if this 

function is not necessarily continuous on the boundary of each asymptotically stable invariant 

ellipsoid, it is monotonically decreasing within the smallest ellipsoid and within each ring region 

between two adjacent ellipsoids. This guarantees the stability of the closed-loop system (Wan and 

Kothare, 2003). 
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In both Algorithms 6.1 and 6.2, the choice of the state xi+1, which satisfy 
2

1 1−+
iQix < 1 is arbitrary. 

Therefore, Wan and Kothare (2003) suggest to choose an arbitrary one-dimensional subspace ℑ = 

{αxmax |1 ≥ α > 0, α ∈ R, xmax ∈ xnR }, where the chosen state xmax should be far enough from the 

origin and still preserve the feasibility of the problem. This can be accomplished by discretizing the 

chosen set and constructing a set of discrete points, ℑd = {αixmax |1 ≥ α1 > … > αN, αi ∈ R, xmax ∈ 

xnR }. Since the asymptotically stable invariant ellipsoid constructed for each discrete point 

actually passes through that point, 
2max

1 1−+
iQi xα < 

2max
1−

iQi xα = 1 is satisfied. To cover a sufficient 

dimension of the state space a logarithmic scale discretization of the one-dimensional subspace is 

suggested. This enables the reduction of the number of discretization points and keeps the size of 

the data base reasonable. In addition, it is always possible to find a new feasible set of minimizers 

in Algorithm 6.2 by readjusting the discretization.  

 
If the LMI minimization problem is solved by using an interior point method, a set of strictly 

convex unconstrained minimization problems are used to solve a convex constrained minimization 

problem. In addition, for a strictly convex unconstrained minimization problem is characteristic 

that the objective function and all the minimizers are unique. Thus, the optimal solutions for the 

optimizations in the off-line part of Algorithm 6.1 are assumed to be unique. Therefore, it is always 

possible to find the feasible set of minimizers for Algorithm 6.2 if the discretization is done tight 

enough. Actually, condition (6.1) becomes trivial if xi+1 is chosen to be sufficiently close to xi. 
 
For the fast robust MPC algorithm the on-line calculation time is defined by the bisection search 

from the data base in which the Qi
-1 matrixes are stored. An array of S stored Qi

-1 requires log2S 

searches, because the discretization of the subspace is based the logarithmic scale. The matrix-

vector multiplication in one search obeys square-law O(n2
s) in the number of flops, with ns the 

number of state variables. Therefore the total number of flops required to calculate a control action 

is O( Sns 2
2 log ), (Wan and Kothare, 2003). This value can be compared with the fastest interior 

point algorithm presented by Gahinet et al. (1996) which has O(M{n2
s/2 + nsnc}3) growth in 

computation. M is the total row size of the LMI system and the expression in the brackets 

represents the total number of scalar decision variables. M is proportional to the number of vertices 

of the uncertain model and nc represents the number of manipulated variables. It is evident that the 

bisection search method of the off-line approach can reduce signifigantly the on-line computation 

of the robust MPC algorithm. In the next section we will show by CD process simulations how 

notable this can be. 



 96

6.2 Simulation of the fast robust MPC CD algorithm 
 
In this section, the proposed fast robust MPC control algorithm is applied to the sheet forming 

processes and its closed loop performance is studied by performing a number of simulations. Also 

in these simulations A LMI Control Toolbox software (Gahinet et al., 1996) in Matlab 5.2 

environment is used to compute the solution of the control problem.   

 

6.2.1 Simulated CD response models 
 

In the simulation we will apply the fast robust MPC control algorithm for the same CD response 

models as presented in Chapter 4. Our interaction matrix is a Toeplitz symmetric matrix Gn,n  = 

toeplitzn{g1, g2, … , gm,0, … ,0} with uncertainty bounds for each element gi ∈[gimin, gimax]. We will 

use three complex CD response models from the Table 4.1, and four step disturbances for the 

simulation, see equation (5.32). Simulated CD models are as follows: 

 
                          nnG ,

7   = toeplitzn{1.0, 0.4 , -0.5, 0.05, 0, … ,0} 

                      nnG ,
10   = toeplitzn{1.0, 1.3 , 0.8, -0.6,-0.3,0.0,-0.1, 0, … ,0} 

                       nnG ,
12   = toeplitzn{1.0, 0.9 , 0.7, 0.8,1.0,0.6,-0.5,-0.4,-0.2,-0.2, 0, … ,0} 

 
Like in the previous simulations in Chapter 5, the amplitude of the uncertainty is 25 % from the 

nominal value of each element gi. However, as before all diagonal elements remain unchangeable. 

First-order actuator dynamics with uncertain process model parameters is used, see equation (5.30). 

Now the time delay is excluded (τ = 0), but the limits of the parameters are as previously. The 

continuous CD response model is transformed to the discrete-time form (5.31) based on input-

output data set, as shown in Chapter 5. The achieved set of CD models is expressed as a disctrete-

time time-varying linear system (5.7). Model uncertainties are incorporated by utilizing the 

polytopic uncertainty description (5.8) and taking into account the varying parameter limits: gi ∈ 

[gimin, gimax], ka ∈ [kamin, kamax] and τa ∈ [τamin, τamax]. The structure of the polytope will be Ωsim = 

Co{[A1 B1],[A2 B2],…,[A6 B6]}. The robust performance objective function J∞(k), subject to input 

⏐u(k+i|k)⏐≤ 1, i ≥0 and output constraints ⏐y(k+i|k)⏐≤ 1, i ≥1 is as defined in Chapter 5, see 

equations (5.11), (5.12) and (5.13). As regards to the rejection of step disturbances and 

modification of the robust MPC CD algorithm, see equation (5.28). Weighting matrices of the 

objective function are R = 0.000001I and Q = I.  These parameters are the same in all simulations. 
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6.2.2 Comparison with the primal robust MPC CD algorithm  
 
In order to test the effectiveness of the fast robust MPC algorithm it is compared to the primal 

robust MPC CD algorithm, which was studied earlier in Chapter 5. The fast robust MPC CD 

algorithm is comprised of the off-line robust processing algorithm (Algorithm 6.1) and the 

continuous feedback matrix algorithm (Algorithm 6.2). We choose the x1 -axis as an one-

dimensional subspace, and discretize it into thirteen points x1
set = [1, 0.9, 0.75, 0.65, 0.52, 0.4, 0.28, 

0.18, 0.1, 0.05, 0.02, 0.01, 0.001]. In the Algorithm 6.1 the minimizers γi, Qi , Xi , Yi , Zi at xi  are 

calculated off-line based on the discretization of the subspace x1 (i = 1,…,13) and saved into the 

data base. In the on-line part of the Algorithm 6.1, the control law is defined after the acceptance of 

initial state x(0) and implementation of the bisection search over Qi
-1 in the data base. The 

additional constraint (6.1) in the Algorithm 6.2 ensures that the defined feedback matrix is 

continuous. Algorithm 6.1 comprises also the modification of primal robust MPC CD algorithm, 

which is used for rejection of step disturbances as defined in Chapter 5.4.2. Structure of the fast 

robust MCP CD algorithm is presented in Fig. 6.1. 

 

                                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Figure 6.1: Structure of the fast robust MPC CD algorithm 
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In the first simulation the number of actuators is 20, thus the response matrix is G20,20. Actuator 

spacing is 150 mm, and as previously mentioned no delay is present (τ = 0). The width of the sheet 

is 3000 mm. The traversing speed of the measuring head is assumed to be 500 mm per sec. Thus a 

scanning time of 6 sec for the profile measurement is achieved. This is the sampling time for the 

simulation. Tustin's method is used to accomplish the transformation from s-domain to z-domain.  

 
In Fig. 6.2 the comparison of the primal MPC CD algorithm with the fast MPC CD algorithm is 

presented. The response and control actions of the closed-loop systems to the step disturbance d4 

are shown. Similarly the development of standard deviation is presented. Simulated model is the 

CD response model G12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Response, control actions and development of standard deviation of the closed-loop 

system to step disturbance d4. CD response model G12. Left the primal robust MPC CD algorithm. 

Right the fast robust MPC CD algorithm.  
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The condition number of this model is very high 464.37 and the system is not decentralized integral 

controllable, see Table 5.1. We can see that the fast robust MPC CD controller gives nearly the 

same performance as the primal robust MPC CD controller. As can be seen the control actions of 

primal robust MPC CD algorithm are more aggressive and extensive concluding to slightly better 

control performance. On the other hand, the fast robust MPC CD controller acts consistently but 

less aggressively. However, it works rather successfully decreasing the standard deviation of the 

profile acceptably, which mean that the control actions have been effective and actuator profile 

throughout the simulation has been physically realistic by the use of actuator constraints. However, 

a slight overshoot of control actions can be seen in the beginning of procedure. An apparent reason 

for difference in the control performance of algorithms results from the harsh discretization of state 

subspace of the fast robust MPC CD algorithm only into thirteen points.  

 
Of course the results of the simulations can not be exactly the same, because the applied process 

disturbances during the simulation are generated randomly. The development of standard deviation 

indicates that in terms of efficiency the difference between algorithms is minor. However, as 

regards to the performance both algorithms could be slightly faster. In terms of computation time 

the fast robust MPC CD algorithm is superior to the primal algorithm. On a 3 GHz Pentimum 4 PC 

with 2 GB of RAM the average time for the fast robust MPC CD algorithm to compute a feedback 

gain for our reference model was 1.0-1.4 seconds. This is about 100 times faster than the 120-160 

seconds it takes for the primal robust MPC CD algorithm. 

 

In Fig. 6.3 the response of the closed-loop system to the step disturbances d1 and d3 is shown. 

Simulated response model is now G10. The condition number of this CD model is also rather high 

23.43 and element values of RGA are large and negative. In addition, the response model G10 is not 

decentralized integral controllable. Simulation parameters were the same as in the previous 

simulation and control actions and outputs were limited.  

 
We can see that the fast robust MPC CD controller works analogously with the primal robust MPC 

CD controller and the performance of controllers is quite similar. However, as in the case of primal 

robust MPC CD algorithm, the behavior of the closed-loop response is dependent on the selected 

CD model type and the type of disturbances. It is obvious that complex and demanding CD 

responses like model G10 need aggressive controls and more time steps to stabilize step 

disturbances. However, the complexity of the response model does not affect significantly to the 

computation time. 
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Figure 6.3: Response of the closed-loop system to step disturbances d1 and d3 respectively. CD 

response model G10. Above the primal robust MPC CD algorithm. Below the fast robust MPC CD 

algorithm. 

 
In Fig. 6.4 the norm of K as function of iterations for the fast robust MPC CD controller is shown. 

Simulated response model was G10 and the disturbance profile was d2. We can see that in the 

beginning K must be small because x(k) is large for small k. But as x(k) approaches zero, K can be 

made larger while still meeting the input constraint )()( kKxku = . Although the changes of the 

norm of K are moderate they clearly indicate functioning of the CD algorithm. 

 

 

 

 

 

 

 

               Figure 6.4: Norm of the feed back matrix K as a function of time steps. 
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comparison of the primal robust MPC CD algorithm with the fast robust MPC CD algorithm was 

accomplished for the response model G12 with the impulse disturbance d1. In this simulation the 

number of actuators was 86, actuator spacing 100 mm and web width 8600 mm. The sampling time 

for the simulation was likewise the same 6 seconds as before, because we wanted to use equal 

actuator dynamics as earlier. In practice sampling time of 6 seconds for web width of 8.6 meter is 

unrealistic but for comparative simulation purposes it is justified. Also now the Tustin's method 

was used to accomplish the transformation from s-domain to z-domain. Simulation parameters and 

constraints are as defined earlier.  

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Response of the closed-loop system of size G86,86 to impulse disturbance d3. Response 

model G12. Above the primal robust MPC CD algorithm. Below the fast robust MPC CD algorithm. 
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remained into the profile, even with the impulse disturbance. Anyhow, the fast robust MPC CD 

algorithm was over 24000 times quicker than the original robust MPC CD algorithm. 

 
The behavior of the model size G86,86 was also studied with response models G10 and G7 which 

represent less complex cases than model G12. In Fig.6.6 the response of closed-loop system to step 

disturbances d4 and d1 is shown.  

 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Response, control actions and development of standard deviation of the closed-loop 

system. Left response model G10 with step disturbance d4. Right response model G7 with step 

disturbance d1. 
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surprise that the fast robust MPC CD algorithm was able to handle also these less complex cases 

consistently. This can also be seen from the improvement of standard deviation during simulation. 

However, a characteristic feature seemed to be that the fast robust MPC CD algorithm could not 

completely eliminate step disturbances. Control actions remained too faint and they did not even 

reach their limits at the end of simulation run. Anyhow, for the CD response model G10 the average 

time to compute the response was 11.32 seconds per sample and for the model G7 only 9.85 

seconds. We may observe that the complexity of the CD response model affects to some extent the 

computation time. Also the selection of profile disturbance has an influence to the computation 

time, but it is less significant that the complexity of the model. 

 
It is obvious that actual time spent for closed-loop simulations will be completely dependent on the 

computer system that is being used. Fig.6.7 shows how the computation time per sample for the 

robust MPC CD algorithm grows as function of the number of actuators. Simulated response was 

model G12 and the time values were defined at three different points. Number of discretization 

points was in every simulation the same (N = 13).  As we can see the slope follows the rule of 

quadratic growth based on the formulation of the total number of flops required to calculate one 

control action O( Sns 2
2 log ). Therefore we may say that the size of the model defines the 

computation time of the algorithm and the number of discretization points is more like a constant 

tuning parameter.       

 

 

 

 

 

 

 
Figure 6.7: Computation time per sample for the fast robust MPC CD algorithm as function of the 

number of actuators. 
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guarantee system robustness in the presence of model mismatch. Also these simulations will take 

place in Matlab 5.2 environment and we will use the previous large scale models in the simulations. 

 
Model Predictive Control Toolbox (Morari and Ricker, 1994) provides several efficient functions 

and methods for analysis and design of standard MPC systems. However, basis of this approach is 

slightly different than ours and MPC Toolbox assumes that the quadratic objective function, which 

consists of two additive terms, does not penalize particular values of the input vector u(k), but only 

changes of the input vector, ∆u(k). This approach is very typical in the majority of the predictive 

control literature. In addition, the second quadratic term of the objective function is a difference 

between predicted outputs and future reference values. However, MPC Toolbox enables a 

convenient way to simulate closed-loop systems with hard bounds on manipulated variables and 

outputs. MPC Control Toolbox’s cmpc -function can be used to simulate performance of the 

closed-loop CD system. This function solves a quadratic programming problem to accomplish the 

simulation and it enables a possibility to incorporate model mismatch to the simulated CD system 

by using a different model for controller design and for plant design.  

 
We will utilize these features to construct our standard MPC CD simulation application for the 

discrete-time state-space model description. Standard MPC CD controller is constructed based on 

the nominal model of Table 4.1 and fixed constant parameter values (ka = 1.0 and τa = 8.0) of 

actuator dynamics in the equation (5.30). Sampling time is as before 6 seconds. This nominal 

model is used for the state estimation in standard MPC CD controller, see also Fig. 5.2. However, 

structure of the MPC Toolbox’s function requires that the model mismatch is constant during 

simulation while in the previous fast robust MPC CD simulation it was changed randomly by the 

process generator at each sampling time. Therefore we have to use fixed values for all varying 

parameters: gi ∈ [gimin, gimax], ka ∈ [kamin, kamax] and τa ∈ [τamin, τamax]. We will choose maximum 

values for these parameters. Thus the uncertainty is equal (25%) for all elements gi, excluding the 

diagonal elements that represent the center of the response and stay unchanged. For actuator 

dynamics ka ∈ [0.9, 1.1] and τa ∈ [6, 10], we will choose the maximum values of the range, see 

equation (5.30). This model is used to represent the plant, and it incorporates the model mismatch 

to the standard MPC CD simulation. Therefore the simulation will take place at the corner point of 

the multi-model polytope set Ωsim.  

 
We will use default values for all parameters of the cmpc –function. Thus the prediction horizon is 

infinite and only one control move is calculated and implemented. In the objective function, equal 
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unity weighting for all outputs over the entire prediction horizon is used. Similarly zero weighting 

to the changes of the controls is used. Future reference value is zero and all control actions ⏐u(k)⏐≤ 

1max and outputs ⏐y(k)⏐≤ 1max are limited to the same value. In addition the rate of change of the input 

vector ∆u(k) is unbounded. The step disturbance is connected to the matrix of disturbances to the 

plant and no noise filtering is used. See in details (Morari and Ricker, 1994). 

 
In the simulation we will apply the standard MPC CD control algorithm for the same CD response 

models as presented in Chapter 4.  As previously, we will use CD response models from the Table 

4.1 and four step disturbances for the simulation, see equation (5.32). In Fig. 6.8 behavior of states 

of the standard MPC CD control system is presented in the case when the complexity of the 

response model G86,86 is low or none model mismatch is included to the system.  

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Standard MPC CD control algorithm. Left response of the closed-loop system with 

model mismatch. CD model G2 with step disturbance d4. Right response of the closed-loop system 

without model mismatch. CD model G12 with step disturbance d2. 

 
All CD response models of size G86,86 were analyzed and likewise all step disturbance options were 

studied. Simulations indicated that irrespective of the step disturbance, CD response models G1, G2, 

G3, G6, G8 and G9 behaved in a similar way. In these cases the standard MPC CD algorithm was 

able to overcome the control task effectively and quickly in spite of the defined model mismatch. 

Similarly, if no model mismatch was present, the standard MPC CD algorithm was able to solve all 

CD response model control tasks. Time required to compute the closed-loop responses was less 

than 9 seconds per sample. The complexity of the response model affected the computation time, 

but anyhow the standard MPC CD algorithm turned out to be fast.                               
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On the other hand, in Fig. 6.9 behavior of states and control actions of the standard MPC CD 

algorithm are presented in the case when the complexity of the response model G86,86 is high.  

 
 
 

 

 

 

 

 

 

 

Figure 6.9: Standard MPC CD control algorithm. Response of the closed-loop system with model 

mismatch. CD model G10 with step disturbance d4.  

 
All complex CD response models G4, G5, G7, G10, G11 and G12 behaved similarly and the type of 

step disturbance had a minimal effect on performance. In the beginning the standard MPC CD 

control algorithm worked effectively and was almost able to eliminate disturbances. However, soon 

controls reached their minimum or maximum limits and were saturated to these values. Behavior of 

the fast robust MPC CD control with response model G10 and step disturbance d4 was shown earlier 

in Fig. 6.6. As a remark may be highlighted that the fast robust MPC CD control behaved similarly 

also with these fixed model mismatch values which were now used for standard MPC CD 

simulation.  

 
If we look back to the values of Table 4.2 we observe that all badly behaved CD response models 

have high condition numbers and large element values of RGA. In addition both DIC analysis and 

µ(E(0)) rule indicate that the decentralized integral controllability requirement is not satisfied with 

these CD response models. Only exception is CD response model G9 which is DIC but not µ(E(0)) 

rule compatible. It is clear that the strong interaction between adjacent zones in the complex 

response models is a reason for higher RGA values. Similarly only small uncertainties in the 

elements of G86,86 are allowed without worsening performance of the control. Therefore this 

simulation confirms our previous claim that the inherent property of the plant G86,86 has a crucial 

influence on the controllability of the uncertain CD system. If we increase the value of fixed 

uncertainty of varying elements of G86,86 from 25%  to 50% and maintain the error of actuator 

dynamics at the same values as before, the set of not badly behaving standard MPC CD response 
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models will reduce to G1, G3, G6 and G8. From Table 4.2 and Appendix B we see that they 

represent less complex, diagonal dominant models with reasonable RGA values and rather 

insignificant off-diagonal elements. On the other hand, if we reduce the value of fixed uncertainty 

of varying elements of G86,86, the set of not badly behaving models will be wider that the original 

six models. Naturally, if we continue this procedure we will end up to the CD response models 

without mismatch.  

 
Based on straightforward simulations, it seems that the standard MPC CD algorithm is able to 

handle less complex CD response models with realistic uncertainty effectively and fast, at least 

when the size of the model G86,86 is moderate. On the other hand, when the complexity of the model 

is high and interactions between adjacent zones are strong the algorithm went of the course and it 

could not guarantee system robustness in the presence of model mismatch and similarly it could not 

fulfill satisfactorily the control task.   

 
 
6.2.5 Conclusions of the CD simulations 
 
Numerous simulations were performed to demonstrate the efficiency of the new fast robust MPC 

CD control strategy. Algorithm was applied to the large scale CD processes with general, realistic 

uncertainty structures. The fast robust MPC CD algorithm is successful at controlling all the above 

examples with time-varying uncertainties and input and output constraints. The new robust MPC 

CD algorithm increases the tolerance of the controller to the model uncertainty conveniently and 

concurrently provides that the decrease in the nominal performance is relatively small. Simulation 

results of the closed-loop system show that the fast robust MPC CD algorithm achieves acceptable 

steady-state performance when extensive model uncertainty is present.  

 
In spite of the achieved good results some additional observations may be enounced. Although the 

calculation of minimizers γi, Qi , Xi , Yi , Zi at discretization points was done off-line, it required 

considerably CPU time. This was especially true for the large scale G86,86 models. Because the 

calculation of minimizers is based on the LMI Matlab algorithm (Gahinet et al., 1996), the 

limitations of LMI optimization software are present. Therefore the average computation time for 

one large scale minimizer set, with a priori values for the LMI functions of the used primal robust 

MPC algorithm, was approximately 24 hours on a 3 GHz Pentium 4 PC with 2 GB of RAM in 

Matlab 5.2 environment. Definition of a priori values for the LMI functions is possible after 

calculation of the first feasible set of minimizer, see in details Gahinet et al. (1996). In spite of all, 
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the computation time of the whole subspace x1 (i = 1,…,13), for one CD response model, was 

almost 2 weeks. As regards to the minimizers calculated by using the modification of primal robust 

MPC algorithm, the average computation time of one set was actually over 150 hours. Although 

the use of 2.2 GHz AMD Athlon 64 Dual Core 4400 PC with 2 GB of RAM in Matlab 7.1 

environment bisected this computation time, it was an extensive task to accomplish. In addition, 

attempts to increase the dimension of the large scale CD response model G86,86 led immediately to 

the memory problems, as could be expected with the used hardware. Anyhow, for practical 

applications the computation of minimizers can surely be arranged by using more powerful 

computers or by using several CPUs for the task. 

 
Comparison of the fast robust MPC CD algorithm with the primal robust MPC CD algorithm 

revealed that the loss of performance was minor and the advantage in on-line computation was over 

four orders of magnitude. However, a characteristic feature of the present fast robust MPC CD 

algorithm was that it could not completely eliminate step disturbances even during long-lasting 

simulation. An apparent reason for this is the harsh logarithmic scale discretization of state 

subspace x1 into fixed thirteen points and applied search method. Increased number of points would 

definitely improve accuracy and performance of the algorithm. On the other hand, it would also 

increase search time of the used bisection method, which turned out to be straightforward and 

reliable but not necessarily extremely fast. Thus a consideration of more powerful search methods 

would evidently offer better results (Press et al. 1992). Worthwhile would also be the method 

proposed by Kothare et al. (1996), which influences to the minimum decay rate of the states x: 

||x(k)||  ≤  cρk ||x(0)|| and to the speed of closed-loop response by defining an additional tuning 

parameter ρ and a set of new LMIs. Anyhow, we have shown for quadratic CD response systems 

with up to six models in the uncertainty set and models up to 86 states and inputs, that the fast 

robust MPC CD algorithm can be applied on-line in a reasonable amount of time. 

 
On the other hand, study of the standard MPC CD algorithm with fixed uncertainty values for all 

varying parameters indicated that the current MPC algorithms (Morari and Ricker, 1994) are fast 

and efficient when the complexity of the CD response model of size G86,86  is low or none model 

mismatch is present. Thus the development work which has been done during the last decades in 

this field has not been fruitless. However, when the complexity of the uncertain models was high 

the standard MPC algorithm could not guarantee system robustness and execute the control task 

well. First indication of this was already seen in Chapter 4 from the results of RGA and DIC 

analysis, which implied to the fundamental control problems with these complex CD response 
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models and suggested carefulness in the selection of controller structure. On the other hand, if we 

would accept integral controllability (IC) to our control criterion, we could use the IRA method 

proposed by Yu and Luyben (1987) to analyse how much variation in the CD response model 

parameters can be tolerated before the system becomes uncontrollable in terms of IC. As referred in 

Chapter 4, the IRA approach is applicable to any controller with integral action, including also 

Dynamic Matrix Controller. Anyhow, it seems that the standard MPC CD algorithm is applicable 

to less complex CD response models. Likewise it is clear that more complex and demanding CD 

models require other advanced control methods such as the robust MPC CD controller or some 

kind of adaptation mechanism to be connected to the standard MPC CD algorithm.     

 
We may conclude, that in simulations the new fast robust MPC CD algorithm provided robustness 

to model uncertainties and computation efficiency in under 20 CPU sec, which is in order of 

magnitude identical to sampling time for the real-time control algorithms. The developed new CD 

algorithm looks very promising and efficient enough to be implemented on real paper machines, 

even those of high dimensionality and complex CD response model structures. 
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Chapter 7  
 
 
Conclusions and Further Research 
 
 
 
This work has concentrated on the analysis and design of industrial robust model predictive control 

(MPC) for paper machine cross-directional (CD) processes, which are known as large scale, ill-

conditioned, and inherently uncertain. Addressing model uncertainty for these processes is essential 

because model mismatch can cause the closed loop system to perform poorly. An approach was 

developed which exploits the structure of generic sheet process models to design a robust MPC 

controller for uncertain CD processes. First, we studied the paper machine CD process, its 

characteristics, and existing CD control applications. Then we derived a structure of CD response 

model uncertainty, and proposed a new method to evaluate complexity of the response models. 

After that we presented the robust model predictive CD control algorithm using linear matrix 

inequalities (LMIs). This method was utilized to formulate the fast robust MPC CD algorithm.The 

following is a summary of our main results. 

 
Traditionally, the complexity of the steady state CD response model is evaluted by using its 

condition number. Response models are generally considered ill-conditioned and difficult to 

control if their condition numbers are large. However, taking into account inherent characteristics 

of the CD process, such as diagonal type input uncertainty of actuators, a better indicator to 

describe model complexity is the relative gain array (RGA) method. Together with the concept of 

decentralized integral controllable (DIC) system RGA provides a functional analysis and screening 

method to classify CD responses and controller structures. By applying these methods to the 

practical industrial CD response models we have shown that clear classification can be done, and 

approach may be used further for controller design analysis.  

 
In practical CD applications several reasons may cause errors to the CD response models. For 

instance, such reasons include process disturbances, errors in the response estimation procedure, 
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varying operating conditions in the paper machine, actuator failures, and MD-CD cross coupling 

errors in the measurements. All these features of the uncertain process are connected to the CD 

response model. We proposed a structured CD response model uncertainty, and use of linear time-

varying (LTV) system with polytopic uncertainty description (Kothare et al.,1996) to the solution 

of this problem. 

 
We adopted the MPC approach to develop present inadequate CD control strategies, and combined 

it with a general polytopic uncertainty to formulate a new robust CD control strategy. We 

formulated an infinite horizon MPC problem with input and output constraints and system 

uncertainty as a convex optimization problem involving linear matrix inequalities (LMIs). The on-

line optimization involved the solution of an LMI-based linear objective minimization. The 

resulting time-varying state-feedback control law minimized, at each time-step, an upper bound on 

the robust performance objective, subject to input and output constraints. The feasible receding 

horizon control algorithm robustly asymptotically stabilized the set of uncertain CD models under 

consideration, which was verified performing several simulations based on the industrial paper 

machine models. Because the achieved computation times of the developed primal robust MPC CD 

algorithm were too high for the real-time applications, a computationally efficient approach was 

adopted (Wan and Kothare, 2003). 

 
We developed an efficient robust constrained state feedback MPC CD algorithm for linear time-

varying (LTV) systems, which produces a series of explicit control laws corresponding to a series 

of controlled invariant ellipsoids calculated off-line one within another in the state space. We 

suggested an off-line robust constrained MPC CD algorithm with guaranteed robust stability of 

closed-loop system for the polytopic uncertainty description. The concept of an asymptotically 

stable invariant ellipsoid enabled us to provide robust stability without the demand of finding an 

optimum of the system at each sampling time. In addition, the formulation of a series of 

asymptotically stable invariant ellipsoids one within another in state space provided more degree of 

freedom to improve control performance. The clear advantage of this algorithm is that it gives off-

line a set of stabilizing state feedback laws, and because no optimization is required except a 

simple bisection search, the on-line computation time of the robust MPC CD algorithm is 

significantly reduced. We applied the fast robust MPC CD algorithm to selected industrial large 

scale CD processes and verified the efficiency of the algorithm by numerous simulations. We 

compared the fast algorithm with the primal robust MPC CD algorithm and addressed that the loss 

of performance was minor, and the benefit in on-line computation was over four orders of 

magnitude. In the simulations algorithm provided robustness to model uncertainties and 

computational efficiency in under 20 CPU sec. The fast robust MPC CD algorithm is highly 
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promising and efficient enough to be implemented on real paper machines with complex CD 

response models and similar decentralized processes. 

 

Further research 
 

There are numerous ways in which this research may be continued. All of the presented ideas are 

examined by simulations; therefore an obvious step in the near future would be an implementation 

on real production machines. However, before that some practical and also theoretical issues may 

be necessary to investigate. In the following, some examples of important further work are 

presented, hopefully encouraging continued efforts in the area of robust MPC CD control and 

implementations in the near future. 

 
Mapping errors are not taken into account in the robust MPC CD simulation algorithm, and 

similarly they are not included into the defined polytopic uncertainty description. However, this 

shortcoming is easy to solve by extending the set of polytope with required minimum and 

maximum limits and updating the number of vertexes in the equations (5.19) and (5.22).   

 
One interesting theoretical subject, which should be studied, is the variable delay. In addition, 

constant delay should be incorporated into the fast robust MPC CD algorithm, because for the 

meantime it is excluded. A distinct reason for this is the formulation of augmented state and 

expanded dimension of the LMI optimization problem. With the present off-the-shelf LMI 

optimization software (Gahinet et al., 1996) a convenient solution to this limitation is the utilization 

of more powerful hardware for the off-line calculation of minimizers used in Algorithm 6.1.  

 
On the other hand, as regards the computation, advanced computer technology or more specified 

LMI optimization solvers would fairly provide means to overcome problems related to the 

computation time of proposed large scale robust CD algorithm. This is an entirely unexplored field 

of research, and it is anticipated that rather fast results could be achieved with a reasonable 

contribution.      

 
Apart from the application to CD control, the method proposed here has more general applicability, 

since the same kind of problems arise in a variety of process industry. Cross-directional models 

represent general plants with dynamics multiplied by a constant response matrix. Similar model 

formulations can easily be found from elsewhere process industry. For instance, a simplified 

distillation column studied by Skogestad et al. (1988) has exactly the same model structure. 
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Therefore, it might be worthwhile to evaluate the applicability of developed efficient robust MPC 

algorithm for these processes.   

 
This study is still in an early stage and much more work is required before proceeding to practical 

implementation. However, the fast robust MPC CD control strategy provides a very potential 

method to improve the control of CD processes, and to increase product quality of paper 

manufacturing. Therefore this subject should prove to be very fruitful for research in the coming 

years.  
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Appendix A  
 
 
Mathematics 
 
This appendix summarizes some results from mathematics.  

 
 
A.1 Relative gain array (RGA) 
 
According to Bristol (1966) relative gain array (RGA) is a tool for pairing controlled and 

manipulated variables in decentralized (multi-loop SISO) control systems. We will consider a 

linear nxn system described by the model 

 
  y(s) = G(s)u(s)                               (A.1-1) 

 
Where u(s) and y(s) are n-dimensional vectors of inputs and outputs, respectively, and G(s) is a 

matrix of transfer functions. It is assumed that G(s) is stable and strictly proper matrix, and the 

steady-state gain matrix G = G(0) is nonsingular.  

 
RGA defines how an apparent transfer function between a given output variable (yi) and a given 

input variable (uj) is affected by control of other output variables. This measure is expressed as the 

ratio (λij) of the transfer function between the two variables with all other outputs uncontrolled, and 

the transfer function between the same variables when all other outputs are perfectly controlled 

(Skogestad and Postlethwaite, 1996). Mathematically, the relative gain is expressed as  
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The relative gains λij for all possible variable pairings define a matrix, the Relative Gain Array 

(RGA), Λ. The partial derivatives in Eq. (A.1-2) can be related to the open-loop transfer functions 

of a system. From the definition of the relative gain, Eq. (A.1-2), it follows that the RGA for the 

system can be expressed as  

 
  Λ(s) = G(s)⊗(G(s)-1)T                   (A.1-3) 

 
where ⊗ is the Hadamard of Schur product, which denotes element-by-element multiplication. A 

steady state RGA is obtained when the transfer functions are evaluated at s = 0. A frequency-

dependent dynamic version of the RGA is obtained when s = jω.  

 
 
A.1.1  Interpretations and properties of the RGA 
 
 
The RGA matrix (A.1-2) has some interesting interpretations and properties. Interpretations 

(Häggblom, 1995) may be listed as follows: 

 
If  0 < λij < 1, the control loop will interact with other loops.  

 

If  λij = 1 the relative gain indicates a desirable variable pairing since interaction does 

not affect the open-loop gain between yi and uj. This is often interpreted so that the 

loop yi-uj does not interact with the rest of the system. 

 

If λij > 1, the open-loop gain between yi and uj will decrease when the other loops are 

closed. If the RGA contains values λij  » 1, the closed-loop system is very sensitive to 

parameter changes. Such a system may be uncontrollable. 

 

If λij < 0, the sign of the open-loop gain between yi and uj is changed when the other 

control loops are closed. Normally this results in an inverse response of yi to changes 

in uj.  

 

If λij = 0, the relative gain does not indicate whether the corresponding variable 

pairing is feasible or not. Control depends entirely on the other control loops.  

 



                                                  
 

  116

Properties of the RGA may be analyzed as follows. RGA-elements (A.1-2) can be written in the 

following form 

 λij = gij · jiĝ  = gij G
cij

det
 = (-1)i+j

G
Gg ij

ij

det
det

                                            (A.1-4) 

 
where jiĝ denotes the ji’th element of the matrix Ĝ  =̂  G-1, Gij denotes a matrix G with row i and 

column j deleted, and cij = (-1)i+jdetGij is the ij’th cofactor of the matrix G. 

 
For any non-singular nxn matrix G, the following algebraic properties hold (Skogestad and 

Postlethwaite, 1996). 

 

1. Λ(G-1) = Λ(GT) = Λ(G)T 

 

2. The sum of the elements of each row and each column of the relative gain array is 

always unity. That is ∑
=

n

ii
ijλ = 1 and ∑

=

n

j
ij

1

λ = 1.  

 

3. Any permutation of rows and columns in transfer matrix G results in the same 

permutation in the RGA. Mathematically, if Λ = RGA(G), and P1 and P2 are 

permutation matrices, and if Λ’ = RGA(P1GP2), then Λ’ = P1 ΛP2. 

 

4. The RGA is invariant under input and output scaling. Thus Λ(D1GD2) = Λ(G) 

where D1 and D2 are diagonal matrices. 

 

5. Λ(G) = I if and only if G is a lower or upper triangular matrix; and in particular 

the RGA of a diagonal matrix is the identity matrix. 

 

6. RGA is a measure of sensitivity to relative element-by-element uncertainty in the 

matrix. Matrix G becomes singular if a single element in G is perturbed from gij  

to g’ij = gij (1- 
ijλ

1
). 
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A.2  Singular value decomposition (SVD) 
 
 
Singular Value Decomposition (SVD) is an important tool in analyzing multivariable systems. It is 

a key to the formulation of robust multivariable control problems, and it provides information on 

system gain and measures of input and output interactions. In mathematics, SVD provides a 

sensible method of dealing with the concept of matrix rank. An important result of the SVD is the 

condition number, which describes how near the system is to singularity (Skogestad and 

Postlethwaite, 1996). 

 
Singular Value Decomposition. For any complex nxm matrix G, there exist unitary matrices 

 
 U = [u1 u2 … un] ∈ C nxn                                (A.2-1) 

and 
 V = [v1 v2 … vm] ∈ C mxm                                                                                   (A.2-2) 

 
such that 

 G  =  UΣVT  = ∑
=

r

i

T
iii vuG

1
)(σ ;   r = rank(G) ≤ min{m,n}                                (A.2-3) 

  

where Σ  =  ⎥
⎦

⎤
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⎡Σ
00
01  ∈ R nxm                                (A.2-4) 

 
and Σ1 is a diagonal matrix   

Σ1 = diag{ σ1, σ2,  ... , σr }         (A.2-5)  
 
containing the ordered non-negative singular values of G, as  

 
σσσσσ ≡≥≥≥≡ r...21         (A.2-6) 

 

 
U is a unitary matrix referred to as the output rotation matrix, V is a unitary matrix referred to as 

the input rotation matrix, and ui and vi are referred to as the ith output and input singular vector, 

respectively. Because U and V are unitary, G transforms an input vector vi  into a vector with gain 

σi in the direction of ui. Following (A.2-3), this can be written for i = 1,2, …, r as 

 
 Gvi  = σiui     or equivalently   GTui  = σivi.                       (A.2-7) 
 

The condition number of a nxn matrix G is defined as  
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  γ(G) ≡ 
nσ

σ 1                                 (A.2-8) 

 
Geometric interpretation of SVD (Featherstone, 1997) is that the singular values of the matrix G 

are precisely the lengths of the semi-axes of the hyperellipsoid E defined by 

 
 E = {y⏐y = Gx, x ∈ C m, x  = 1}.        (A.2-9) 

Therefore an input in the direction v1 results in the largest y  for all x  = 1; while an input in the 

direction vm results in the smallest y  for all x  = 1. In terms of the input and output, v1 (vm) is the 

maximum (minimum) gain input direction, while u1 (um) is the maximum (minimum) gain output 

direction. 
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Appendix B  
 
 
RGA Tables of the CD Response Models 
 
This appendix describes relative gain array (RGA) tables of the studied CD response models. 

Original size of the RGA matrix is (86x86). Presented dimension of the tables depicts (11x16) first 

elements of the RGA matrix. 
 
 
 
 
 
 
RGA table of CD model 1 
 

1,044 -0,044 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,044 1,089 -0,045 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 -0,045 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,046 1,091 -0,046 0,000 0,000 0,000 0,000

 
 
RGA table of CD mode2 
 

1,250 -0,250 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,250 1,563 -0,313 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 -0,313 1,641 -0,328 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,328 1,660 -0,332 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,332 1,665 -0,333 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,333 1,666 -0,333 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,333 1,667 -0,333 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,333 1,667 -0,333 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,333 1,667 -0,333 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,333 1,667 -0,333 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,333 1,667 -0,333 0,000 0,000 0,000 0,000
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RGA table of CD model 3 
 

1,150 -0,020 -0,130 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,020 1,185 -0,028 -0,137 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,130 -0,028 1,348 -0,033 -0,157 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 -0,137 -0,033 1,366 -0,035 -0,160 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,157 -0,035 1,392 -0,037 -0,163 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,160 -0,037 1,398 -0,037 -0,164 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,163 -0,037 1,403 -0,037 -0,165 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,164 -0,037 1,404 -0,038 -0,165 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,165 -0,038 1,405 -0,038 -0,165 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,165 -0,038 1,406 -0,038 -0,165 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,165 -0,038 1,406 -0,038 -0,165 0,000 0,000 0,000

 
 
RGA table of CD model 4 
 

0,197 0,344 0,459 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,344 -0,285 0,520 0,421 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,459 0,520 -0,571 0,428 0,164 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,421 0,428 0,097 0,142 -0,089 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,164 0,142 0,487 0,113 0,093 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,089 0,113 0,157 0,385 0,434 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,093 0,385 -0,443 0,548 0,417 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,434 0,548 -0,429 0,368 0,079 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,417 0,368 0,194 0,107 -0,086 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,079 0,107 0,492 0,153 0,168 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,086 0,153 0,029 0,438 0,466 0,000 0,000 0,000

 
 
RGA table of CD model 5 
 

1,741 -0,460 -0,280 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,460 1,457 -0,192 0,195 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,280 -0,192 0,737 0,265 0,471 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,195 0,265 0,208 0,208 0,124 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,471 0,208 0,832 -0,247 -0,264 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,124 -0,247 1,654 -0,411 -0,119 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,264 -0,411 1,346 -0,018 0,346 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,119 -0,018 0,418 0,316 0,402 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,346 0,316 0,308 0,069 -0,039 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,402 0,069 1,189 -0,373 -0,288 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,039 -0,373 1,687 -0,320 0,044 0,000 0,000 0,000

 
 
RGA table of CD model 6 
 

1,023 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,023 1,046 -0,023 0,000 0,000 0,000 0,000
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RGA table of CD model 7 
 

1,450 -0,237 -0,227 0,013 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,237 1,203 -0,096 0,089 0,041 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,227 -0,096 0,756 0,166 0,347 0,054 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,013 0,089 0,166 0,247 0,229 0,229 0,026 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,041 0,347 0,229 0,442 0,027 -0,086 -0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,054 0,229 0,027 1,101 -0,195 -0,220 0,005 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,026 -0,086 -0,195 1,356 -0,147 0,010 0,037 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,001 -0,220 -0,147 0,900 0,108 0,306 0,054 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,005 0,010 0,108 0,307 0,244 0,292 0,034 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,037 0,306 0,244 0,335 0,089 -0,014 0,003 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,054 0,292 0,089 0,948 -0,160 -0,223 0,000 0,000 0,000

 
 
RGA table of CD model 8 
 

1,068 -0,048 -0,014 -0,006 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,048 1,121 -0,054 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,014 -0,054 1,140 -0,052 -0,012 -0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,006 -0,013 -0,052 1,144 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 -0,007 -0,012 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 0,000 -0,007 -0,013 -0,053 1,145 -0,053 -0,013 -0,007 0,000 0,000

 
 
RGA table of CD model 9 
 

1,572 -0,301 -0,111 -0,157 -0,003 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,301 1,932 -0,407 -0,074 -0,154 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,111 -0,407 2,129 -0,352 -0,075 -0,164 -0,020 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,157 -0,074 -0,352 2,227 -0,350 -0,078 -0,197 -0,019 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-0,003 -0,154 -0,075 -0,350 2,227 -0,350 -0,079 -0,197 -0,019 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,004 -0,164 -0,078 -0,350 2,230 -0,344 -0,079 -0,198 -0,020 0,000 0,000 0,000 0,000 0,000 0,000
0,000 0,000 -0,020 -0,197 -0,079 -0,344 2,300 -0,346 -0,083 -0,210 -0,022 0,000 0,000 0,000 0,000 0,000
0,000 0,000 0,000 -0,019 -0,197 -0,079 -0,346 2,300 -0,346 -0,082 -0,210 -0,022 0,000 0,000 0,000 0,000
0,000 0,000 0,000 0,000 -0,019 -0,198 -0,083 -0,346 2,305 -0,343 -0,083 -0,210 -0,023 0,000 0,000 0,000
0,000 0,000 0,000 0,000 0,000 -0,020 -0,210 -0,082 -0,343 2,317 -0,341 -0,083 -0,213 -0,023 0,000 0,000
0,000 0,000 0,000 0,000 0,000 0,000 -0,022 -0,210 -0,083 -0,341 2,318 -0,341 -0,084 -0,214 -0,024 0,000

 
 
RGA table of CD model 10 
 

1,940 -2,384 0,894 0,816 -0,421 0,000 0,155 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
-2,384 2,349 -1,351 1,106 1,228 -0,060 0,000 0,111 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,894 -1,351 0,407 -0,517 1,036 0,370 0,175 0,000 -0,015 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,816 1,106 -0,517 0,575 -1,155 0,301 -0,245 0,065 0,000 0,053 0,000 0,000 0,000 0,000 0,000 0,000

-0,421 1,228 1,036 -1,155 1,282 -0,277 -0,566 -0,288 0,093 0,000 0,068 0,000 0,000 0,000 0,000 0,000
0,000 -0,060 0,370 0,301 -0,277 0,755 -0,699 0,359 0,344 -0,128 0,000 0,035 0,000 0,000 0,000 0,000
0,155 0,000 0,175 -0,245 -0,566 -0,699 1,984 -1,697 0,941 1,131 -0,309 0,000 0,131 0,000 0,000 0,000
0,000 0,111 0,000 0,065 -0,288 0,359 -1,697 0,983 -0,547 1,112 0,785 0,103 0,000 0,015 0,000 0,000
0,000 0,000 -0,015 0,000 0,093 0,344 0,941 -0,547 0,203 -0,845 0,709 0,026 0,086 0,000 0,007 0,000
0,000 0,000 0,000 0,053 0,000 -0,128 1,131 1,112 -0,845 1,354 -1,179 -0,280 -0,421 0,086 0,000 0,117
0,000 0,000 0,000 0,000 0,068 0,000 -0,309 0,785 0,709 -1,179 1,038 0,071 -0,302 -0,005 0,093 0,000
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RGA table of CD model 11 
 

0,413 0,853 -0,012 0,410 -0,541 -0,053 -0,070 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,853 -2,432 2,853 -0,110 0,236 -0,445 0,276 -0,231 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

-0,012 2,853 -3,141 2,109 0,024 0,146 -1,275 0,331 -0,035 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,410 -0,110 2,109 -1,231 0,604 -0,240 0,138 -0,842 -0,033 0,195 0,000 0,000 0,000 0,000 0,000 0,000

-0,541 0,236 0,024 0,604 -0,445 0,971 -0,135 0,047 0,303 -0,172 0,108 0,000 0,000 0,000 0,000 0,000
-0,053 -0,445 0,146 -0,240 0,971 -0,351 0,866 -0,045 0,201 0,039 -0,174 0,086 0,000 0,000 0,000 0,000
-0,070 0,276 -1,275 0,138 -0,135 0,866 -1,297 1,390 0,203 0,082 0,861 -0,227 0,188 0,000 0,000 0,000
0,000 -0,231 0,331 -0,842 0,047 -0,045 1,390 -1,381 0,619 0,291 -0,127 0,887 -0,232 0,295 0,000 0,000
0,000 0,000 -0,035 -0,033 0,303 0,201 0,203 0,619 0,184 -0,856 0,296 0,062 -0,045 -0,173 0,273 0,000
0,000 0,000 0,000 0,195 -0,172 0,039 0,082 0,291 -0,856 0,780 -0,215 0,381 0,201 0,355 -0,153 0,072
0,000 0,000 0,000 0,000 0,108 -0,174 0,861 -0,127 0,296 -0,215 -0,013 0,185 -0,023 -0,193 0,334 0,017

 
 
RGA table of CD model 12 
 

2,700 -2,865 0,976 -0,872 1,895 -0,722 0,075 -0,261 0,342 -0,269 0,000 0,000 0,000 0,000 0,000 0,000
-2,865 4,578 -1,533 0,959 -2,042 1,909 -0,124 0,697 -1,010 0,411 0,020 0,000 0,000 0,000 0,000 0,000
0,976 -1,533 0,094 -0,077 0,744 -0,666 0,464 0,554 1,019 -0,458 0,003 -0,120 0,000 0,000 0,000 0,000

-0,872 0,959 -0,077 -0,380 -0,280 0,398 -0,159 -0,132 0,908 0,855 -0,097 0,120 -0,243 0,000 0,000 0,000
1,895 -2,042 0,744 -0,280 0,632 -0,520 0,087 0,364 -1,273 1,167 0,530 -0,522 0,480 -0,262 0,000 0,000

-0,722 1,909 -0,666 0,398 -0,520 0,115 0,094 -0,366 0,887 -0,939 0,584 0,853 -0,801 0,227 -0,052 0,000
0,075 -0,124 0,464 -0,159 0,087 0,094 -0,236 0,249 -0,255 0,391 -0,453 0,517 0,566 -0,287 0,062 0,009

-0,261 0,697 0,554 -0,132 0,364 -0,366 0,249 -0,200 -0,156 0,194 0,209 -0,064 -0,072 0,013 -0,039 0,026
0,342 -1,010 1,019 0,908 -1,273 0,887 -0,255 -0,156 0,874 -0,837 0,018 -0,573 1,832 -0,604 -0,131 -0,057

-0,269 0,411 -0,458 0,855 1,167 -0,939 0,391 0,194 -0,837 0,717 -0,038 0,531 -1,324 0,890 -0,087 0,095
0,000 0,020 0,003 -0,097 0,530 0,584 -0,453 0,209 0,018 -0,038 0,044 0,127 -0,067 0,132 -0,274 0,167
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Appendix C  
 
 
An Example of the Discrete-time CD Response Model  
 
This appendix presents, as an example, a simulated discrete-time response model of the Toeplitz 

symmetric matrix 20,20
2G  = toeplitz20{1.0, 0.4, 0, …, 0}.  

 
First-order actuator dynamics with uncertain model parameters and a constant time-delay are used:  

ga(s) = 
1+

−

s
ek

a

s
a

τ

τ

      

ka ∈ [0.9, 1.1];   τa ∈ [6.0, 10.0];  τ∈ Z                                                              (C.1-1) 

 
The time-delay τ is an integer number of sample times {τ ∈Z}. However, in this example it is not 

used (τ = 0). The gain ka and the time constant τa are allowed to vary randomly and independently 

between the specified upper and lower bounds.  

 
A steady-state assumption is presumed and Tustin's method is used to accomplish the 

transformation from s-domain to z-domain. Sampling time is 6 sec. We have three pairs of varying 

parameters: gi ∈ [gimin, gimax], ka ∈ [kamin, kamax] and τa ∈ [τamin, τamax], therefore L = 6 and the multi-

model polytope is Ωsim = Co{[A1 B1],[A2 B2],…,[A6 B6]}. Discrete-time response model will be of 

the form 

 
y(z) = G(z)u(z) ,     G(z) = ga(z) 20,20

2G              (C.1-2) 

where the elements of the transfer matrix G(z) are given by  
 
  Gi(z) = C[zI – Ai ]-1Bi z -τ , i = 1,2,…,6        (C.1-3) 
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and (Ai, Bi, C) are defined in equations (5.7) and (5.8). Discrete-time state space matrices are 

 

 
 
 

ia1  ∈ [0.3333  0.5384],   i = 1,2,…,6                                  
i

b1  ∈ [0.5455  0.6667] 
                                                                          

i
b2  ∈ [0.1636  0.2727],   i = 1,2,…,6 

 
 
 

i
c1  =  1,   i = 1,2,…,6 

 
where the elements of the matrices Ai and Bi vary between the defined upper and lower limits 

depending on the multi-model polytope Ωsim = Co{[A1 B1],[A2 B2],…,[A6 B6]}. 
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