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List of abbreviationsand symbols

The abbreviations and main symbols and notations used in the text are summarized below in
a phabetical order.

Abbreviations

ARMA Auto-Regressive Moving Average
CD Cross Direction

DIC Decentralized Integral Controllability
IC Integral Controllability

LMI Linear Matrix Inequdity

LP Linear Programming

LQ Linear Quadratic

LTI Linear Time Invariant

LTV Linear Time Varying

LVDT Linear Variable Displacement Transducer
MD Machine Direction

MIC Morari Index of Integral Controllability
MIMO Multi Input Multi Output

MPC Model Predictive Control

NI Niederlinksi Index

Pl Proportional Integral

QP Quadratic Programming

QPF Quadratic Penalty Function

RGA Relative Gain Array

SISO Single Input Single Output

SM Skogestad Morari Rule

SvD Singular Value Decomposition



Symbols and notations

A Coefficient matrix in state-space representation

Ao, AL A Coefficient matricesin state-space representation for polytopic systems
B Coefficient matrix in state-space representation

B, By, By, ... Coefficient matricesin state-space representation for polytopic systems
C Coefficient matrix in state-space representation

C(s) Laplace domain controller

Co Convex hull

c Element of Toeplitz matrix

D(s) L aplace domain decoupling matrix

dy, da, ds Step disturbances

E(0) Steady-state interaction matrix

e Profile deviation

F Symmetric LMI matrix

G(9) Laplace domain transfer function

Gp(9) Laplace domain perturbed plant

G(2 Discrete time transfer function

G(0), G, Steady-state response matrix

G'(0) Steady-state response matrix with positive diagonal elements
Gaiag(0) Steady-state response matrix consisting only diagonal elements
G"" Toeplitz symmetric response matrix

G, ,G, .G, ... Steady-state CD response matrices

g Static gain

0a(9) Laplace domain actuator transfer function

0d(s) Laplace domain time delay transfer function

] Index, time index

J Objective function

Jp Objective function

Jo Objective function

K(s) L aplace domain diagonal controller

K Gain matrix

k Time, discrete

Ka Actuator gain

M Total row size of the LMI system
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Control horizon

Total number of scalar decision variables
Number of state variables
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Positive weight matrix

Positive weight matrices for modified objective function
Prediction horizon

Symmetric weight matrix

Symmetric weight matrix

LMI matrix variable

Symmetric weight matrix

LMI matrix variable

Size of an array

LMI matrix variable

Toeplitz matrix

Output rotation matrix in the SVD decomposition
Vector of manipulated inputs

Vector of desired inputs

Vector of predicted inputs

Vector of shifted inputs

Input rotation matrix in the SVD decomposition
Quadratic Lyapunov function

LMI variable

Block diagona matrix

LMI variable

Vector of state variables

Discretized one-dimensional subspace
Vector of predicted states

Vector of shifted states

Vector of outputs

Vector of predicted outputs

Vector of shifted outputs

LMI variable



w Vector of augmented states

a; Scalar weight factor

r Time delay

Ta Time constant

A(9) Relative Gain Array

Arin Minimum RGA element value
Arrex Maximum RGA e ement value

A Relative gain, eigenvalue

) Singular value
c Singular value maximum
e Singular value minimum

Y Condition number, LMI variable
§ Asymptotically stableinvariant ellipsoid
€ Tuning factor for gain

u Structured singular value

p Spectral radius

Q Polytopic set

Qgim Simulated polytopic set

A Diagonal input uncertainty

Re{ A4} Real part of the eigenvalue

-1l Euclidean vector norm, 2 -norm
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Chapter 1

| ntroduction

Background

An increased emphasis on product quality, productivity, faster deliveries, and process optimization
has been the driving force in paper industry behind the interest in automation and process controls.
Quality and productivity are currently the key attributes that directly measure the effectiviness and
cost of manufacturing processes. Productivity is closely linked to quality because there is an
optimum rate of production when considering the principal manufacturing variables: raw material,
process, and automation system used. Quality, on the other hand, is the judgment of the properties
of the fina output of the production process. Multible properties define the quality of the paper
web. These include weight per unit area, moisture, thickness, gloss, physical properties and
appearance. All of these properties can be affected by appropriate use of automation system and
process controls. Variability of these properties in paper machine is controlled in both the machine
direction (MD) and the cross-direction (CD) by quality controls. Today, improved control of paper
production line by using efficient MD and CD quality controls can mean notable fiber savings,
reduced quality variations, greater production rates, reduced sheet brakes, and significant energy
savings (Fadum, 1989), (Wallace, 1986).

By applying current modern technologies in feedback control, along with developing new
agorithms to handle open issues, a significant contribution can be made to quality improvementsin
papermaking. Current CD control methods for sheet processes do not take full advantage of
modern control theory, and there is a clear interest in improving existing control strategies. Among
other startegies, model predictive control (MPC) technology has been applied to arange of control
applications in papermaking. The power of MPC, including its ability to handle constraints, makes
this technology an attractive candidate for industrial implementation. However, specific

characteristics of the sheet processes have limited an extensive use of MPC for CD control



problems. Such characteristics include inaccurate spatial CD response models, large number of
actuators and sensing locations, significant time delays, noisy sensors, actuator constraints,
equipment faults, and uncertain disturbances. Numerical difficulties associated in handling large
dimensional CD processes and uncertainty characteristics of the process have been the essentia
reasons for dow progress of MPC technology (Featherstone and Braatz, 2000). The main objective
of this work is to attack the current inadequacies in papermaking and provide a robust MPC CD
strategy, which takes into account the inaccuracies of the process model and thus enables

implementation on real paper machines.

Modeling and control of CD processes

Modern CD controls are model-based controls. A model is created in order to describe how the
process will respond to the control actions. However, it is impossible to generate an accurate
process model because of lack of complete understanging of the underlying physical phenomena,
inaccurate values for the physical parameters of the process, and several unknown disturbances.
Therefore, in practical CD control application a linear, multivariable process model is used to
describe cross-directional profile systems (Wilhelm and Fjeld, 1983), (Chen and Wilhelm, 1986).
Actually this is an approximation of the real web forming process, which can be considered as a
complex distributed parameter system (Duncan, 1989). In this kind of simplified approach, it is
assumed that the response of actuatorsis separable, and it can be expressed as a product of a spatial
(CD) response and a scalar dynamic term. Therefore, CD profile system may be presented as a
sampled data lumped parameter system, which describes a finite number of actuators and a finite
number of measuring points (Duncan ,1989), (Duncan et al., 1996).

Usually the spatial CD response model is identified from input-output data by on-line or off-line
identification methods. Several modern methods exist to accomplish this estimation (Wilhelm,
1982), (Wdllstead et al., 1998). Due to the inherent characteristics of the papermaking processes,
the response model often has a structure of Toeplitz symmetric matrix, in which the same constant
element is repeated aong each diagonal (Laughlin et al., 1993). Commonly CD process responds
quite fast to the changes in the actuator settings. Therefore most of the system dynamics are
attributed to the actuators, which are generally modeled as first-order-plus-dead-time (Laughlin et
al., 1993), (Kristinsson and Dumont, 1996). However, in practice the sampling rate for CD profiles

is much slower the process dynamics, and therefore dynamics are ignored in most of the cases.

In practical CD applications several facts can cause imperfections to the CD process models. There
will be uncertainty associated with the estimation procedure of the response shape. Although the



shape of the response is not assumed to vary in the cross-direction, in practice the paper sheet may
wander or shrink over time, leading to alignment error and mismatch between the true location of
actuator’s effect and its predicted location (Heaven et al., 1993b). In a paper machine operating
conditions may also vary in broad limits. In addition, the type of CD actuators affects on the form
of model errors. For instance, mechanical coupling, clamping and backlash problems are common
to al spindle actuators and electric motor applications (Cutshall, 1991). All characterigtics of the
uncertain CD process are connected to the response model. It is evident that response model
uncertainty should be taken into account in the control strategy. In theory, model uncertainty can be
either unstructured or structured (Skogestad and Postlethwaite, 1996). Both approaches have been
used in CD control literature. Featherstone and Braatz (1998, 2000), Stewart et al. (2000) and
Duncan (1994a) used unstructured model uncertainty, while Laughlin (1988) and Laughlin et al.
(1993) applied a structured model uncertainty in their CD modeling work. In thisthesis a separable
CD response model approach is adopted and a linear, multivariable process model with first-order-
plus-dead-time actuator dynamics is used. Structured model uncertainty, which takes into account
the main characteristics of the process, isincorporated into the CD response model.

A wide variety of CD control strategies for papermaking processes appear in the literature. Two
popular CD control schemes reported in the literature before late 1980s were linear-quadratic-
optimal (LQ) and model inverse-based control (Boyle, 1977), (Chen et al., 1986). Mostly steady
state models were used. One weakness of these linear control approaches is that constraints can be
satisfied only by sufficiently penalizing control actions in the objective function, producing rather
sluggish control movements. Another concern in this method is closely related to numerical
problems and ill-conditioned response models (Wilhelm and Fjeld, 1983). Following the works of
Laughlin (1988) and Duncan (1989), who studied robustness of CD control systems, severa
methods have been suggested for designing robust CD controllers. However, many of these
approaches utilize a specia structure of the CD response model matrices in the controller design
(Laughlin, 1988), (Laughlin et al., 1993), (Stewart, 2000), which limits the applicability of these
methods. Similarly, numerous model predictive control (MPC) approaches have been proposed for
CD control problem (Campbell and Rawlings, 1998), (Backstrom et al., 2000), (Dave et al., 1997,
1999), (Barlett et al., 2002). All these methods contain the basic features of MPC method, but thus
do not explicitly address model inaccuracies. Therefore, for the time being robust constrained MPC
has not been implemented in real time large scale CD processes because of heavy on-line
computations needed. In this thesis, an efficient robust MPC strategy is proposed in order to solve

thisreal time problem.



Analysis of CD model structure

A conventional approach to evaluate spatial CD response model is to study its condition number
(Laughlin et al, 1993). Response models are commonly considered poorly conditioned and difficult
to control if their condition numbers are large (Skogestad et al., 1988). Laughlin et al. (1993) have
shown that not only the process characteristics, but the size of the process, affect the value of the
condition number, and that large dimensional matrices seem to be more poorly conditioned. This
phenomenon has also been noticed in practice, because the majority of industrial CD processes are
truly ill-conditioned (Featherstone and Braatz, 2000), (Laughlin et al., 1993). However, the
condition number is scaling dependent and it depends on the choices of units of the inputs and
outputs. Therefore it should not be used as a measure of inherent ill-conditioning of the process.
(Skogestad and Postlethwaite, 1996). In this thesis, we suggest that a better measure in this respect
for the CD process is relative gain array (RGA) analysis, which isindependent of scaling and takes
into consideration the implicit characteristics of the CD process. Such characteristics contain
especidly the diagonal type input uncertainty of actuators, which is aways present in a CD
process. In addition, we suggest that RGA analysis combined with the concept of decentralized
integral controllable (DIC) system (Skogestad and Morari, 1992) will provide more information
about the behaviour of CD response model and controller design that pure condition number
analysis. In this thesis, we will consider RGA and DIC as practical analysis and screening tools to
select the controller structure for the process.

Robust model predictive CD control

Applications of model predictive control (MPC) have been increasingly used for paper machine
control during last years. A notable advantage of MPC method is its ability to handle hard
constraints on the actuators. However, its large scale nature and several model uncertainty
characteristics have limited the availability of MPC for paper machine CD control. One approach
to solve a large scale CD problem is to reduce the size of the model, and thus reduce the
complexity of on-line computations. Haznedar and Arkun (2002) applied the principal component
analysis method for model reduction and identification. VanAntwerb and Braatz (2000a) designed
afast MPC algorithm, which utilizes the iterated ellipsoid method, and is based on off-line singular

value decomposition.

One of the main drawbacks of a standard MPC method is its inability to consider model
uncertainties. However, robust MPC theory provides a method to take modeling errors into account

in controller design. A min-max optimization approach with finite impulse response models has



been an extensively used in robust MPC literature, e.g. (Campo and Morari, 1987), (Z&firiou,
1990), (Zheng and Morari, 1993). The same method has aso been applied to discrete state-space
models with polytopic model uncertainty (Lee and Yu, 1996). Recently, a robust MPC technique
using linear matrix inequality (LMI) technique has been developed (Kothare et al., 1996), (Lu and
Arkun, 2000). In this method a robust infinite horizon MPC problem with constraints and model
uncertainty can be reformulated to a convex optimization problem containing LMIs. An important
advantage of this approach is that the stability of the robust MPC controller is guaranteed if the

optimization problem isfeasible.

The practicality of MPC has been limited by the difficulty to solve optimization problems in real
time. To tackle these problems fast computation solutions have been introduced. Lee and
Kouvaritakis (2000) presented a receding horizon dual-mode MPC algorithm, which uses a LP
method to reduce computational complexity. Bemporad et al. (2002) suggested a state-feedback
solution to finite and infinite horizon LQ control problems, which does not require time-consuming
on-line QP solvers. VanAntwerb and Braatz (2000a) applied afast MPC agorithm to CD control
problem. They used truncated singular value method and iterated elipsoid algorithm to minimize
computing load. Wan and Kothare (2003) modified the robust MPC agorithm developed by
Kothare et al. (1996), and introduced a concept of asymptotically stable invariant ellipsoid, which
guarantees robust stability without the requirement of finding an optimum of the system. A
significant benefit of this approach is that it gives off-line a set of stabilizing state feedback laws,
and no optimization is required except a straightforward bisection search. The on-line computation
time of robust MPC agorithm is thus considerably reduced. In this thesis, we will show that robust
MPC methods developed by Kothare et al. (1996) and Wan and Kothare (2003) are efficiently
applicable to the CD control problem, and they provide a new approach to this classical control
problem.

Resear ch objectives

This thesis focuses on ways to improve existing CD control methods to increase quality and

productivity in papermaking. The objectives may be divided into the following main categories:

o Toinvestigate ways to find out a practical method to evaluate the complexity of industrial CD

response models

e To create arobust model predictive (MPC) CD control strategy, which will take into account

uncertain characteristics of the process.



e To develop computationally efficient robust MPC CD agorithms, which may be implemented

on real paper machines.

L ayout of the Thesis
Thisthesis consists of seven chaptersand it is organized asfollows:
Chapter 1 istheintroduction.

Chapter 2 presents first a paper machine cross-direction process and typical CD control systems.
Basis weight, moisture and caliper controls are treated briefly. Then, characteristics of the CD
process including scanning measurements, constrained actuators and complex high dimensional
uncertain system are addressed. After this, a short review to the industrial CD control structure is
presented.

Chapter 3 introduces cross-directional response models and clarifies how an approximated linear
multivariable system description is derived. Model attributes and related process dynamics are aso
presented. Then, model uncertainties in terms of process characteristics, operating point and
appearing actuator errors are introduced to derive the structure of the utilized uncertain response
model. After that, an overview of reported control strategies is presented. The survey covers both

the early history of CD control and modern model predictive and robust control approaches.

Response model analysis is the topic of Chapter 4. The relative gain array (RGA) method is
introduced and its applicability to CD response anaysisis evaluated in terms of diagonal type input
uncertainty. Then, a concept of decentralized integral controllable (DIC) system model is presented
and necessary conditions for DIC are defined to be used with steady state response models.
Applicability of steady state inverse-based CD controller is studied, and RGA analysis is
accomplished for a set of experimental or proposed CD response models. Observations and
conclusions are given for demonstrating the usability of the proposed analysis.

Chapter 5 describes the robust model predictive CD control algorithm using linear matrix
inequalities (LMI). First a brief description of linear matrix inequalities, linear time-varying (LTV)
uncertain polytopic systems and basics of model predictive control is given. This supporting
materia will then be used to formulate a primary robust constrained MPC CD control problem with
a state-feedback as a LMI problem. Then, several smulated examples based on industria paper



machine CD processes are given for illustrating the applicability of robust MPC approach.
Selection of simulated response modelsis done based on RGA analysis.

Chapter 6 deals with an efficient robust LMI based MPC CD algorithm with guaranteed robust
stability of the closed-loop system for polytopic model uncertainty description. First it is shown,
that the algorithm provides the off-line a sequence of stabilizing state feedback laws, which consist
in invariant ellipsoids one inside another in the state space. After this, closed loop performance is
studied with simulations using large scale CD processes with redistic description of interaction
matrices and general uncertainty structures. The performance of the fast robust MPC CD algorithm
is compared both to the primary algorithm presented in Chapter 5 and to the standard, off-the-self
MPC CD algorithm. Simulation results show that the fast robust MPC CD algorithm can reduce the

on-line computation of robust constrained MPC considerably, with alittle loss of performance.

Chapter 7 summarizes the main results of this study and makes some suggestions for further
research.

Contributions

The main contributions of thisthesis are:

o Complexity of cross-direction (CD) response model is evaluated based on relative gain array
(RGA) analysis as distinct from conventional condition number approach.

o Relative gain array (RGA) analysis and the concept of decentralized integral controllable (DIC)
system are introduced as a practical screening tool to select controller structure for CD

processes.

o A linear time-varying (LTV) system with polytopic uncertainty structure is suggested in an
unpresented way to describe uncertain CD processes.

e A concept of primal robust model predictive (MPC) CD agorithm is applied in a novel way
and its applicability is proven with redlistic industrial CD response model simulations.

o For the first time a computationally efficient robust MPC CD algorithm is presented and its
efficiency is compared with the prima algorithm. Comparison reveas that the loss of
performance is minima and the advantage in on-line computation is over four orders of

magnitude.



Chapter 2

Paper Machine Cross-Directional Processes

The paper machine, invented in the year 1799 by a French Nicolas-Louis Robert, has been
constantly improved over the years. It has became wider and faster, and today modern paper
machines make hundreds of tons of paper per day. Increased production rates and stricter quality,
economic and environmental requirements, have set hew demands to paper machine control. The
complexity of the process, the scale of operation and production speed leave little room for error or
mulfunction. Modern papermaking would not be possible without a great variety of technologies,
and in particulat advanced process control and diagnostic. The following description of paper
machine’s operations is very brief and ssmplified, a more detailed discussion of this complex

process may be found e.g. in (Gullichsen and Paulapuro, 1999).

The first section of the paper machine is called the wet end, see Fig. 2.1. Thisis the area where the
stock first comes into contact with the paper machine. In paper production fiber suspension
consisting of wood fibers, additives and water, is mixed with white liquor and pumped into the
headbox. The function of the headbox is to distribute the fiber suspension with approximately 0.2%
- 1.0% consistency such that the fibers are evenly distributed over the width of the flow area
Severa type of headboxes have been planned depending on the paper machine design: open
headboxes, air-cushion headboxes, hydraulic headboxes and diffuser headboxes. After headbox the
sheet-forming is taking place and the fiber suspension is fed onto the moving forming belt, which
today may be rotating even 1800m/min. Depending on the machine lay-out various drainage units
such as forming board, blades, suction boxes or rolls and hydrofoils are used to remove remarkable
amount of water. Thus, when paper sheet leaves the wet end its consistency is approximately 20%.

The next phase of the paper machine is the press section where the sheet is both heated by steam
boxes and more dewatered by mechanical compression in a nip formed by two rollsor aroll and a
shoe. After press section, just before the dryer section, the solids content of the paper sheet has
increased to 33% - 55% depending on the paper grade and press section design. The dryer section



of the process starts with a series of very large-diameter, rotating steam heated cylinders. These
cylinders remove most of the reamaining water. However, a small amount of water (5%-9%)
remains in the paper even after the dryer section. Most drainage on a paper machine therefore
occurs mechanically on the wire and press sections. After the dryer section, at the dry end, the
paper is passed throught a series of calender rolls, where the paper sheet thickness and surface

properties are being controlled. At the end of paper machine the sheet is wound up onto the reedl.

Dry End

Headbox

2~ __ Calender
VN

Wet End

Reel-up
7

Figure 2.1: Wide view of modern paper machine (Courtesy of Metso Paper).

Depending on the paper machine design, after the dry end, there might nowadays exist a separate,
off-machine paper finishing unit, consisting of coating machine or a soft calender. On the other
hand, if the finishing units are included in the paper machine, an on-machine construction is
considered. Off-machine coating machine is composed of coating stations, dryers and un-wind and
wind-up units. Coating stations, either on-machine or off-machine, apply a thin layer of pigment-
based coating colour to one or both surfaces of the sheet. The objective of coating is to improve
appearance and printability of the paper.

The direction of sheet travel is known in the paper making industry as the machine-direction (MD),
and the direction perpendicular to machine-direction is called cross-direction (CD). In paper
production, the three most important quality properties of the sheet are: the sheet weight per unit
area (g/m?), the sheet moisture content (%) and the thickness or caliper of the sheet (um).
Regarding to paper finishing the coat weigh per unit area (g/n7) is also a quality property worth
mentioning. Quality properties are measured by a scanning sensor, installed typically at the end of
the machine. The scanner traverses the moving sheet back and forth in the cross-direction (CD),
measuring sheet quality properties even as fine as 10 mm wide. Because the scanning head

traverses the moving sheet, it forms a diagona path along the sheet, and thus the measurement



profile comprises both MD and CD variations. In paper machine and also in paper finishing control
applications these variations are commonly controlled separately. Thus, paper machines have two
main control objectives. One is the maintenance of the average sheet property, which is referred to
as the machine-direction (M D) control problem. The other is the maintenance of flat profiles across
the machine web, referred to as the cross-directional (CD) control problem. We will not handle the

extensive MD control problem in our work, we will focus on the CD control issuesinstead.

2.1 Paper machine CD control systems

The cross-direction (CD) control problem in paper manufacturing has been known since early
1950s when the problem of basis weight variation was officially noticed (Burkhard and Wridt,
1954). Actuadly in the 1960s the paper industry really discovered how bad the CD variation was
when on-machine traversing weight and moisture gauges became commercially available (Beecher
and Bareiss, 1970). The goal of quality control is to increase uniformity of manufactured product.
However, this task is not necessarily the easiest in the paper manufacturing. It requires a great deal
of process knowledge, consideration of suitable measurements and measurement processing,
adequate actuators and suitable control algorithms. The objective of CD control is to minimize
deviations of process variables from the setpoint across the width of the paper (Tong, 1975). Basis
weight, moisture, caliper, and coat weight are examples of important sheet properties. Variationsin
these properties can result in paper that will not fulfill the quality requirements. On the other hand,
successful CD control of these properties can mean significant reduction in raw materia
consumption and improvements in quality (Fadum, 1989). In each of these cases the variations are
controlled adjusting the set points of an array of actuators. In most cases, paper machines have at
least one actuator array for controlling each of the important sheet properties. Usually different
sheet properties are controlled by separate and independent control systems. Current trend in the
paper industry is to have larger and faster paper machines and the number of actuators in the array
can vary from few up to more than hundred.

2.1.1 Basisweight control

Basis weight is an essentia property of the paper sheet, which has also a signifigant influence to
the other sheet properties. Depending on the paper machine desing basis weight values may vary
widely from 35 g/m? for alight weigh paper grades even to 450 g/m? for board sheets (Gullichsen
and Paulapuro, 1999). The function of CD basis weight actuators is to distribute the fibers evenly
over the width of headbox. Two type of actuators are utilized for controlling CD basis weight: slice
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lip actuators and dilution actuators. Use of a dice lip actuators is a traditional way of controlling
the CD profile of basis weight. The fiber suspension streams out from the headbox through a slice
opening, which is as wide as the paper machine but only a couple of centimeters high. The amount
of fiber suspension exiting the headbox is controlled by locally changing the height of the dice
opening by deflecting the upper lip. The bending of the upper lip is controlled by an array of
thermal, hydraulic or motorized actuators (Cutshall, 1991). The spacing of the actuators dependens
on the ingtallation, and may vary from 75 mm to 100 mm. The response of the basis weight profile
to the dice lip actuators varies widely. For light grade papers the response width of a single
actuator is quite narrow, covering only a couple of actuators. For heavy grades it may cover even a

guarter of the entire width of the paper machine.

A modern method for basis weight control is consistency profiling or dilution control. In this
method the basis weight profile is changed by locally altering the consentration of fibres in the
headbox (Vyse et al., 1996). This is done by an array of dilution actuators distributed across the
headbox. Dilution zones are commonly 40-60 mm wide. The consistency of the pulp stock is
changed by diluting it with aflow of low consistency water as it enters to the headbox. An increase
in the flow of a dilution actuator reduces the local consentration of fibres and thus locally reduces
the basis weight. The advantage of dilution actuators, in comparison to the dlice lip actuators, is a
smaller actuator spacing, a narrower spatial response and much better bandwitdth for control of

basis weight profiles. However, it requires a more accurate mapping information.

2.1.2 Moisture control

Moisture content of the paper is aso a major quality property, which has an important influence on
the paper strength. Normally moisture content varies from 5 % to 9 % of the total weight of the
paper sheet. On the other hand, overdrying of the paper may reduce its strength and cause damages
in the fibre structure. Analogous to CD basis weigh control, moisture CD profile control influneces
several paper sheet properties like web structure, caliper and surface smoothness (Gullichsen and
Paulapuro, 1999). It affects also the local CD dry content of the sheet. This may result in local
changes in stress and strain and can create curl problems in the final product. In addition, an

uncorrected moisture disturbance will appear in the caliper profile.

CD moisture profile contral in the press section may use various kind of moisture actuators: zone
controlled rolls to obtain a required line force profile to the press nip; steam boxes that heat the

paper to improve the local mechanical dewatering; rewet shower actuators to prevent over drying
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of the sheet and to correct dry streaks. The use of segmented infrared heaters is also possible. On
the other hand, infrared heaters are common in coating machines for CD moisture control. The
actuator spacing of steam boxes, rewet showers and infrared heaters is usually between 75-150
mm, and for zone controlled rolls somewhat wider. Rewet showers and zone controlled rolls are
fast actuators with a time constant less than 30 s, while steam boxes and infrared heaters are

generally quite ow with atime constant of couple of minutes.

2.1.3 Caliper control

Usually calender stack is located at the dry end of the paper machine, or in the off-machine
construction after it, as a separate unit. Calendering is papermaker's last chance to reduce caliper
variations aong the length and width of the finished paper sheet. A smoother sheet results in
improved print quality, while more uniform caliper profiles improve the winding process and
reduce sheet breaks in printing presses. Almost all paper and board is at least slightly hard nip
calendered in order to control overall thickness and to even out cross-direction caliper non-
uniformities. Calendering reduces paper caliper and roughness by pressing the sheet between two
or more large cast-iron or soft-covered rolls. The high loads produced in a nip between two smooth
calender rolls flatten high spots in the rough sheet by permanently deforming wood fibers on the
surface of the sheet, thus reducing the roughness of the sheet.

Regardless of the calender construction, three main technologies for control of paper caliper are
available; induction heating systems, confined air showers and zone controlled CD rolls. Induction
heating and confined air showers externally heat the roll to increase the diameters which in turn
increases the nip load. Zone controlled CD rolls vary the nip pressure by mechanically deflecting
the roll shell. Introduction heating system heats directly the roll by applying an aternating
magnetic field. On the other hand, magnetic field induces eddy currents into the roll surface, which
in turn produce heating. System consists of a number of magnetic-induction coils shaped to
conform closely to the contour of aroll. The coils are encapsulated in a flameproof and isolating
resin compound. The center-to-center distance of the coils is typicaly 76.2 mm (Burma et al.,
1996). A major disadvantage of induction heating system is a low speed of response and high

energy consumption.

Air showers are based on a convection heating technology to transfer heat from a resistive heater to
the roll surface. CD caliper control is done by changing the diameters of the roll through zone

heating and cooling. Modern air showers use infrared units to heat constantly operating air jets that
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are directed at the roll surface. Thiskind of system can provide a narrow (38 mm) zone resolution
of actuators, and with heaters at full power (79 kW/m), the air jet temperature rises to 450 °C
(Impact Systems, 1994). However, this heating capability would not normally provide the CD
control range or temperature increase required for soft nip calender applications. As a result, air

shower applications are usually limited to hard nip stacks.

Nowadays, zone controlled CD rolls are commonly used as actuators for caliber control (Svenka
and Minkenberg, 1995). The zone resolution of these actuators is at minimum 150-250 mm.
Because of the stiffness of zone controlled roll shells, profile shape adjustment can be made over a
bandwidth of 400-800 mm. An apparent advantage of the zone controlled CD rolls is that the
control actions by hydraulic pressure can be accomplished in afew seconds, providing a fast speed

of response.

2.1.4 Coat weight control

The coater is located at the dry end of the paper machine. In the off-machine construction it is a
separate unit like calender stack. Paper is coated in order to improve its appearance and printability.
Good printing characteristics demand a surface, which has an even ink absorbtion, adequate
smoothness, good optical properties, and high surface strength. The coating result depends on the
quality of the base paper, type of coating and the process used to apply the coating. Coating results
a dense and homogenous surface that allows a high image definition. By coating the quality level
of paper can be increased noticeably, and only coated paper can provide the high quality colour
reproduction demanded by advertisers and customers. Various methods are used to apply and
smooth the coating colour to final surfaces for different printing. However, the blade coating is the
most important coating method for paper. In blade coating, the right amount of colour is metered
onto the paper sheet surface, and the surface is levelled with arevising blade. Coat weight control
is based on the surface roughness volume of the paper. This volume is controlled regulating the

compression force on the coater blade (Luomi, 1991).

CD coat weight control is done by controlling an array of motor-driven spindles, which affect
locally to the compression force of the blade. When a spindle is operated, afast, local changein the
displacement of the blade with respect to the backing roll is effected. This leads to a change in the
blade load and, consequently, in the local coat weight level. Spacing of the coat weight actuators
varies normally from 75 mm to 150 mm. In principle, CD coat weight system is similar to the CD

basis weight control with dice lip actuators. However, certain process characteristics like wearing
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of the blade, critical dependence on the blade angle (Ellilg, 1994), less demanding mapping
requirements and a shorter process delay make it distinct.

2.2 Process characteristics

The objective of CD control is to minimize deviations of process variables from the setpoints
across the width of the paper sheet. Almost al cross-directional control systems consist of three
basic components (Duncan, 1999), see Fig. 2.2. A sensing system which measures the variations
across the full width of the web, an array of constrained actuators, and a control algorithm that uses
the measurements from the sensing system to determine the inputs to the actuators. The control
actions must always satisfy the constraint limits. When an actuator is manipulated sheet properties
change for some distance on either side of the position of the actuator. These interactions are
typically incorporated into the CD response model with a number of constant interaction
parameters. The CD contral problem is to calculate actuator actions based upon the measurement

of the quality profile.
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Figure 2.2: Cross-directional control problem.

Next we will describe some features of the CD process that make its control especially challenging.

2.2.1 Scanning measur ements

Continuous on-line measurements are necessary for precise and reliable CD process control.
However, existing scanning measurement systems can not measure the whole sheet; only a portion
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of the sheet is sampled and this is presumed to represent the entire product. Another difficulty is
that some variations occur beyond the measurement capability of sensors. Because the gauge can
not record wavelengths shorter than its frequency response limit, some faster variations can not be
observed (Pfeifer, 1984). Next to measurement accuracy, the most critical factor is the processing
of sensor data into profiles with high resolution. Today the total number of measurement points or
data boxes in a measurement profile can easily be over one thousand depending on the width of the
paper sheet. Perhaps the most important reason for having high profile resolution is to get a good
mapping of the area of influence of a CD actuator (Dolphin,1988). Good CD control depends on
knowing how actuator positions interact. In addition, high resolution profiles are necessary in
identifying actuator response characteristics. A good determination of the proper response shape

and size provides more confidence in the control strategy.

However, practical CD control systems have been restricted to controlling variations of the sheet
based on the measurements which have been sampled in either the cross-directional (CD) or the
machine-direction (MD) or both. When a sensor scans the shest, it forms a diagona path,
measuring a new profile, which includes both MD and CD variations and a random component
called residual (Beecher and Bareiss, 1970). One problem with the random component is that it can
not be measured directly. It has to be estimated by subtracting the MD and CD from the total.
Severa modern methods have been presented to solve this MD/CD separation problem (Chen,
1992), (Duncan, 1994b). A conventional procedure to remove the MD variability from the
measured profile is an exponential multiple-scan trending. In this method the removal of undesired
MD variability from the profile is done by weighting the measurement at each cross direction
position with the long-term historical value (Seborg et al.,1989). Another popular method is a
moving-average filter, which averages a specified number of past data points by giving equa
weight to each data point. The moving-average is usually less effective than the exponential filter,
which gives more weight to the most recent data. To obtain a full profile information, use of an
estimation algorithm, like alinear Kalman filter, is necessary to cal culate missing measurements of
the CD profile (Chen, 1988). However, even then the lack of profile information makes MD/CD
separation difficult, even impossible for those MD and CD variations that have similar power
spectrum. Also Dumont et al. (1993) and Wang et al. (1993a) used Kalman filter approach together
with exponential forgetting and least squares algorithm to estimate basis weight and moisture
content from scanned measurements. However, even if the MD or CD component is eliminated by

acontrol system, the random component will not be reduced and it still remainsin the process.

Another practical way to remove the MD variations from the CD profile is to scan more slowly to

increase the averaging time for each cross-direction measurement zone and to reduce the amount of
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high-frequency MD variability. Therefore, in practice the result is often a compromise between the
scan speed and the accuracy. Ideally the best scan is one that is instantaneous. This would eliminate
al machine direction variation components. Such a technology is currently forthcoming and
sensors, which smultaneously measure the CD profile have been introduced (ABB, 1998).
However, also present measuring systems can be utilized in different modes. A sensor operating at
fixed position can be used to estimate the MD component and herewith to compensate a scanning
measurement to obtain a true CD measurement (Duncan, 1994b). Alternatively, a subscanning
procedure may be used. This approach provides a way to scan some parts of the sheet more than
once in each full traverse. Method gives a better MD resolution over part of the sheet, and provides
estimation of the actual MD variation to frequencies higher than scanning frequency. More detailed
discussion of this method and other cross-machine measurements may be found in Shakespeare
(2001). However, for most of the existing measurement systems an appropriate scan speed must be
defined to produce a good cross machine resolution. Thus, the traversing speed of existing
measuring gauges varies typically from 250 mm to 500 mm per second, and therefore the scanning
time in modern 10 meter wide paper machine may range between 20 and 50 seconds. Another issue
related partly to the measurement system is the process delay, which is mainly determined by the
distance between the actuators and scanning sensor, machine speed and the speed of traversing
head. As a result, in modern paper machine it may vary from one scan to up to 6-8 scans,
depending on the machine and scanning system design. In off-machine constructions the delay is
significantly shorter.

2.2.2 Constrained actuators

In reality CD actuators are always constrained. There are upper and lower limits on the positions
and often on movement of each actuator. The constraints in a rea-time CD profile automatic
control system include the available range of control adjustment, physical limits on the actuators,
and possibly broken or manualy controlled actuators. For instance in the case of headbox slice
spindles to control the basis weight profile on a paper machine, there are high and low limits on the
actuator positions as well as mechanical deformation or bending stress limit on the dice itself.
Similar situation exists also in coating machines and calenders. Sometimes process as such dictates
constraints because excessive control actions may compromise the integrity and strength of the
sheet. Three typical sets of constraints may be presented as follows (Chen et al.,1986), (Chen and
Wilhem, 1986): (i) The available range of control adjustments u; is constrained, that is, Upi, < U, <
Umax, fOr i = 1,...,n. These are known as min-max constraints. (ii) The difference between adjacent

actuator positions u; may be limited, that is, [su| = |uis1 - W] < |8Ulmax, fOr i = 1,...,n-1. These
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constraints are often called first order bending moment constraints. (iii) A difference between
adjacent actuator positions u; may be limited if control actions are made in opposite directions, that
IS, [8%U| = |Uisz- 2U + U < |8°Umax, fOr i = 1,...,n-2. These bending stress constraints are also called

second order bending moment constraints.

In CD control applications actuator constraints can be handled in different ways. Boyle (1977) and
Chen and Wilhelm (1986) have shown that the optimal control subject to above shown constraints
can be obtained with quadratic programming. However, this method expands the dimension of the
problem considerably and is very sensitive to the condition of the process model. In linear CD
control approach constraints may also be taken into account by defining additional vector
inequality conditions and augmented performance index. An optimal solution of this new
constrained optimization problem can be found by using quadratic programming (Wilhelm, 1986).
A dlightly more general technique reported by Braatz et al. (1992) isto include each constraint type
with own weighting in the objective function. A solution is found by tuning the weightings to

guarantee that the constraints are not violated.

Constraints can also be added explicitly to the linear quadratic control algorithm. Then the
constrained control problem will be the unconstrained control problem plus the additional
constraints (i) — (iii). Also this is a quadratic programming problem that must be solved at each
time step for the optimal actuator movements (Braatz, 1993). A more convenient explicit approach
isthe model predictive control (MPC), which provides away to explicitly handle constraints on the
inputs and outputs of the system. However, heavy online computation load of MPC method in CD
control applications has restricted direct use of this method (Featherstone and Braatz, 2000). We
will discuss MPC method in more details later.

2.2.3 A complex high dimensional system

In theory, cross-directiona control of paper machines is a distributed parameter control problem,
which should be solved using partia differential equations (Duncan, 1989). However, in practical
CD control applications this complex system is reduced to a lumped parameter system, which can
easier be used for control purposes. A common assumption is that the CD process has a separable
dynamical and spatial response, which simplifies the modeling problem distinctly (Duncan, 1989).
We will discuss CD response modeling more in details in Chapter 3. However, in terms of spatial
responses, CD process and its characteristics may vary significantly depending on the process

conditions, operating point and produced grades. Spatia response to a single actuator can be as
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narrow as afew centimeters for the basis weight control by use of dilution actuators, or aswide asa
couple of metersfor the slice lip basis weight control on heavy grade papers. In addition, as pointed
out earlier, some actuators may have a very fast, dmost instantaneous response, while some others
are extremely slow. Similarly, the process delay may change considerably at different production

conditions.

Ancther problem is related to the high dimension of the CD control system (Featherstone and
Braatz, 2000). A current trend in paper industry is to have smaller actuator spacing between
adjacent actuators and adjacent sensing locations. Narrower process disturbances should be
observed and eliminated (Wallace, 1986). Thus, existing industrial CD control systems may easily
have over one hundred actuators in a single array, and over one thousand measurement valuesin a
high resolution profile. The high dimension and increasing paper machine speeds put actual
requirements on the time of on-line computation for the control algorithms. In addition, process
models of large dimension may have poorly conditioned system matrices, which may lead to
serious control problems (Skogestad et al., 1988).

2.2.4 A poorly conditioned uncertain system

A traditional method to consider the characteristics of the CD response model is to examine its
condition number (Laughlin et al., 1993), which describes the ratio between the largest and the
smallest singular value of the response matrix. A matrix is said to be ill-conditioned if its condition
number islarge. In addition, the gain of the CD process response is dependent on the singular value
directions of the process. Thus, a large condition number means that the system depends strongly
on the input directions (Skogestad and Postlethwaite, 1996). In practice, majority of uncertain
industrial CD processes are highly ill-conditioned (Featherstone and Braatz, 2000), (Laughlin et al .,
1993), because their condition number values can reach into hundreds. Thisis a clear indication of
expected critical control problems, such as sensitivity to the model uncertainty. In spite of its
benefits, condition number is perhaps not the best possible index to measure inherent ill-
conditioning of the process. We will propose in Chapter 4, that a better measure in this respect
would be a relative gain array (RGA), (Skogestad and Postlethwaite, 1996). Another noteworthy
matter is that the ill-conditioned characteristic of the response matrix affects the design of CD
controllers. In several practical cases it excludes traditional CD control approaches and obliges to
choose more advanced control methods. We will show in Chapter 4 that this is especialy true in

the case of decentralized integral CD controller.
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Another important characteristic of practica CD control system is that a significant model
uncertainty is related to it. Several facts can cause imperfections to the defined CD process models.
There will be uncertainty associated with the identification procedure of the response models,
which are commonly defined from uncertain data. Although the shape of the response is not
assumed to vary in the cross-direction, in practice the paper sheet may wander or shrink over time,
leading to the alignment and mapping error and mismatch between the true location of an
actuator’s effect and its predicted location (Shakespeare, 2001). In addition, a general assumption
made when modeling CD process is that the response of the measured paper sheet properties to the
actuators is described by a linear, time-invariant transfer matrix of low dynamic order (Duncan,
1989). However, this assumption is only an approximation of the complex CD process. In paper
machine the operating conditions vary also between broad limits. In addition, the type of CD
actuators and measurements affect the form of the model error. All the characteristics of the CD

process are connected to the uncertain response model. We will return to these issues in Chapter 3.

2.2.5Industrial paper machine CD control systems

Today industrial paper machine CD control applications are commonly implemented in a
distributed contral system (DCS), which have an open architecture and which can provide severa
benefits to the users (Ranta et al.,1992). Centralized operations, improved process performance
through a higher level of control, cost-effective digitizing of data for use by information system,
and distribution of risk into smaller modules with higher uptime and faster repairs are typical
benefits. Of all these benefits, the most important ones are improved process control and improved

process performance (Wallace et al., 1992).

A typical example of modern CD control application is a consistency profiling system for CD basis
weight (Vyse et al., 1996). A block diagram, indicating the data flow in this control application, is
presented in Fig. 2.3. A scanning sensor measures the sheet properties, producing a high-resolution
raw measurement profile. After each scan, measured signal is dynamically filtered in order to
separate machine-direction (MD) and cross-direction (CD) components of the profle. An
antialiasing filter is used to remove uncontrollable variations, before the profile is mapped to the
actuator zones by an adaptive alignment algorithm. Applied filter is a digital finite impulse
response (FIR) filter (Powell et al., 1996). In this application the adaptive alignment algorithm can
take care of nonlinear, asymmetric shrinkage profiles and uneven actuator spacing. The algorithm

uses information from the scanner regarding the location of the sheet edges to update the mapping
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automatically. An on-line tool (AutoMap) is used to verify the alignment and determine the
shrinkage profile based on automatic response tests.

Once the profile is aligned to the actuators, an adaptive estimation algorithm is used to extract the
true CD profile from the measured profile. This algorithm adjusts the amount of averaging applied
to each region of the sheet, based on the measurement and process noise. For example, if the edges
of the sheet have more random process variability, the amount of averaging is automatically
increased, rejecting the random variation. The multiple frequency actuator control (MFAC) block
provides a means of coordinating multiple sets of actuators. MFAC uses digital spatial filters to
split the control profile into frequency components, which can be in a best way controlled by each
actuator set. The resulting control profile is compared to the target profile and the error from target
is determined. The error is then passed through decoupling blocks to compensate for any spatial
interaction across the web of the sheet. A grade-dependent, model based de-coupling is aso

possible.
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Figure 2.3: CD basis weight control strategy block diagram (Vyse et al., 1996).

In this application an adaptive predictive controller determines the actuator positions or setpoint

changes. Controller compensates for the delay between actions taken and the time it takes to see
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them at the scanner. A model of the process, obtained with an on-line tuning tool (AutoTune),
determines the system delay time constant and gains. The controller adjusts automatically the
closed-loop time constants, which are defined based on the nature of the profile variation. Once the
changes to the actuator setpoints are defined, the overall setpoint average is adjusted. This can be
used to ensure that the average of the profiling actuatorsis high enough to provide adequate control
range in both directions. Actuator setpoints are sent to the I/O interface unit (Profile Manager)
across an Ethernet local area network (LAN), and finaly, the Profile Manager transmits new

setpoints to the actuators.
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Chapter 3

Modeling and Control of Cross-Directional Processes

Process models are used to describe different kinds of physical and chemica phenomena in the
form of mathematical presentation. A mathematical model can be considered to be a group of
equations, which represent the physical system and describe the connection between the system
variables. Moddls in generd can be classified in many ways. There are probabilistic and
deterministic models, empirical and mechanistic, discrete and continuous, lumped and distributed.
However, the main objective of mathematical modeling is to find a presentation that characterizes
the real world phenomenon accurately enough. On the other hand, too complicated models should
be avoided because the practical application of cumbersome models might prove to be
troublesome. Models provide efficient, sometimes the only means of evaluation the results of
aternative choices; for instance, a model is essential in cases where experimentation with the real

world system istoo expensive, dangerous, or even impossible (Denn, 1986).

The design of feedback controllers is always model-based in one form or another. A model is
created in order to get a view how the process will respond to the control actions. Due to process
complexity and absence of physical modeling, the CD process models are usualy identified from
measured input-output data (Chen, 1992). The spatial and dynamic models of the CD process are
commonly assumed as a constant transfer matrix combined with linear low-order transfer function
models (Duncan, 1989), (Laughlin et al.,1993). However, this assumption is only an approximation
of the real industrial CD process, and in reality a high degree of uncertainty is related to the

response models of actuators.

Another reason for the model mismatch is the process disturbances. In paper production many
process disturbances can appear, which affect directly to the quality of CD profiles. These
disturbances may be either steady-state or dynamicaly varying. Typica examples of CD
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disturbances are uneven flow of stock across the headbox, moisture streaks, sheet wraps on dryer
cans and uneven nip pressure. A more thorough examination of process disturbances may be found
in (Gullichsen and Paulapuro, 1999).

In this chapter we will first define a cross-directional control problem and present a category of CD
response models, which will be used throughout the thesis. Model uncertainties in the CD process
are discussed in terms of operating point, actuators and structure of model errors. After that a brief
survey to the early history of CD control and reported CD control strategies is presented. Linear
quadratic, model predictive and robust CD controls are reviewed.

3.1 Cross-directional response models

All sheet-forming processes can be considered as distributed parameter systems, where the output
variables change over time and place. A mathematical solution of this kind of problem requires a
solution of a partia differentia equation (Duncan, 1989). If the parameters of the distributed
process are assumed to be constant and if the process is assumed to behave linearly within a
reasonable operating region, the process may be characterized by a linear partial differentia
eguation with constant parameters over its domain of definition. However, even in this case the
genera solution may be very complex for control purposes. One problem with this method is that a
partial differential equation formulation of the response has to be acquired from the physics of the
process and in practice there are always uncertainties associated with this formulation. The
response is usually different for different operating points of the process during grade change. In
addition, the partial differential equations tend to be very complex, and demanding computation

can be required to produce the desired control actions (Duncan et al.,1996).

3.1.1 An approximated model

In practical CD control applications the distributed parameter response model is often reduced to an
approximated model by using an interaction matrix based approach. In this approach, it is assumed
that the response of the actuatorsis separable, in the sense that the response can be expressed as the
product of a fixed spatia (CD) response and a scalar dynamic term. (Duncan, 1989), (Duncan et
al.,1996). This separation of the actuator response means that when a change is applied to the set
point of an actuator, the CD shape of the response remains fixed and the actuator dynamics simply
change the amplitude of this CD shape. Commonly it is also assumed that the response of the full
array of actuators can be presented as the product of a scalar dynamic term and the steady-state
spatial responses of each of the actuators. This description of the system is infinite-dimensional, but
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by expressing the spatial response in terms of a basis function expansion and truncating the higher
order terms, a finite-dimensional description of the system is obtained. The simplest method of
reducing the problem to finite dimensions is to divide the sheet into a number of zones with one
zone for each actuator, and then to average the measured response over each zone. It is convenient
to assume that the actuators are equally spaced and that they all have the same shape of response
and identical dynamics (Duncan, 1989), (Wilhelm and Fjeld, 1983). This assumption reflects the
arrangement of most practical cross-directional control systems, which consist of an array of
equally spaced, identical actuators (Chen and Wilhelm, 1986). The only exception from this
assumption occurs when some of the actuators, usually those at the edges of the web, have a
different shape of response due to the congraints of the process (Kniivild, 2003), (Chen and
Wilhelm, 1986).

Sensor measurements are taken after some form of processing and they are located at certain
distance down the machine-direction from the actuation. The normal mode of operation in most
practical CD control systems is to take a measurement of the web and then to use this profile to
calculate the new set points for the actuators. The actuator set points remain fixed until the next
profile measurement is taken and new set points are calculated. This kind of approach means that
continuous variaions in the web profile are sampled in two directions and operation produces
responses, which are discontinuous in the time domain, but continuous in the spatial domain.
Therefore the origina distributed parameter system model may be reduced to a system model
which is discrete in both the cross-directional (CD) spatial domain and the time (MD) domain
(Duncan, 1989), (Duncan et al.,1996). This kind of system can be represented as a sampled data
lumped parameter system, which characterizes the response between a finite number of actuators
and a finite number of measuring points. If it is assumed that there are m measuring points and n
actuators, then the response of the actuator array is given by a discrete-time model (Duncan, 1989),
(Duncan and Bryant, 1997), (Heath, 1996).

Y@= Gu@), G(9= g.(2Go 1)

where y(z) € R"is the vector of measurements in z-domain, u(z) € R"is the vector of actuator set
points in z-domain, g.(2) is the scalar function describing the dynamics of each of the actuators and
G, € R™ is a constant steady-state impulse response matrix whose ij"™ element contains the
response of the i"™ actuator. This equation describes a linear multivariable system. Similar
presentation can be derived for a continuous time model, which is commonly used in the literature
(Wilhelm and Fjeld, 1983), (Chen and Wilhelm, 1986), (Graser and Neddermeyer, 1986). Process
disturbances like MD variations, CD variations and gauge noise may be connected to the model as
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uncorrelated white noise (Duncan, 1994b), (Duncan and Corscadden, 1996). It should be noted that
the assumption about each of the actuators having identical dynamics allows to define g4(z) as a
scalar, so that the impulse matrix contains only real values. In practice, it is likely that this
assumption is not necessarily true because individual actuators age and deteriorate at different
rates. In the impulse response matrix G,, the partia g;; represents the static gain between the control
adjustment at the i CD actuator and the profile change at the corresponding CD location. The
partials, g; for j =i, are the spatial coupling gains between the control action at the j"™ actuator and
the profile change at thei™ CD position (Chen and Wilhelm, 1986). Since the shape of the response
of each of the actuators is assumed to be the same, the shape of each of the columns is the same,

except that the center of each responseis shifted.

3.1.2 Model characteristics

The impulse matrix G,, also known as a response model, interaction matrix or process transfer
function (Chen and Wilhelm, 1986), (Featherstone and Braatz, 2000) is in practice seldom known
beforehand. Therefore the partidls must be estimated with on-line or off-line identification
methods. There are many ways to accomplish this estimation (Chen et al., 1986), (Wilhelm, 1982),
(Corscadden and Duncan, 1996), (Wang et al., 1993a), (Featherstone and Braatz, 1995), (Wellstead
et al., 1998). Basically it involves perturbing several actuators and using |east-squares estimation or
correlation studies to find the steady state gain from the actuators to the measurements over an area
of the measured profile corresponding to the perturbed actuators. One convenient way to determine
the response of actuatorsisto observe the effect of abump test asoutlined in Fig. 3.1.

Amplitude

N4 N3 N2 N1 N N+#1 N+2 N+3 N+4
Actuator

Figure 3.1: A scene of uncertain response of an actuator

A step is applied to the setpoint of a single actuator, while CD system is running in open loop so
that the setpoints of al other actuators remain fixed. For a single actuator, several estimations
might have to be run, one for each measurement, and then from those estimations the response
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shape can be obtained. The experiments are then repeated for several actuators across the machine.
The response shapes from those several actuators are generally averaged to get a single response
shape to represent the response to any actuator across the machine.

The complexity and the difficulty of the CD profile control are related to the nonzero spatia
coupling partials (Chen and Wilhelm, 1986). The spatial coupling for each actuator usually spreads
over a certain width in the cross-machine direction and has negligible effects on the rest of the
profile. Thus, the process model G, is a band-diagonal matrix as shown in equation (3.2). The
partias beyond the certain width from the diagonal are al zero. G, as its name suggests, represents
the spatial influence of each actuator on the system outputs. This kind of model follows from the
assumption that changes observed downstream from one actuator caused by adjustment at nearest
neighboring actuator is independent of position across the machine. This model structure is the
most often found in the literature (Laughling et al.,1993).

g, 9, ... 9, O .. .. O
92 9 9 - On
o O, O O, e
G, = 99 - 9, .« . .. 09, O (32)
0O 9, « « « O .. 0,
9 O 9 -
: - 9w - 92 O1 O
o . . 0 g, - 9 0,

One of the major problems with band-diagonal matrices is that they can easily approach singularity
- their condition number can grow infinity (Wilhelm and Fjeld, 1983), (Laughling et al.,1993).
Processes with high condition number can be difficult to control, especialy in the presence of
uncertainty in the interaction matrix. Because of the uncertainty, the direction of a large input
signals may be much larger than expected from the model. In the limit as the G, matrix becomes
singular, the plant is uncontrollable, as the actuator settings can not be determined based on the
measurements (Skogestad et al., 1988).

3.1.3 A squar e response model

Square CD models have been used commonly in the CD control literature (Laughling et al.,1993),
(Stewart, 2000), (Stewart et al.,2003), (Hovd and Skogestad, 1994), (Hovd et al., 1997). Also in
this work a square response model G, is considered. Use of sguare response model can be argued
for a concept of controllable subspace. Duncan (1989) has shown that the space of completely
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controllable profiles is equal to the dimension of actuator responses. All uncontrollable high
frequency components of profile measurements should be lowpass filtered before sampling, so that
the profile signal could be sampled at intervals equal to the distance between actuators. A more
profound theory behind this statement is based on the concept of amost spatially-invariant
processes (Duncan, 1989), (Duncan and Bryant, 1997). If the number of actuators is assumed to be
large, the output profile of the CD process can be obtained using convolution of the input profile
and response of a single actuator (Duncan and Bryant, 1997). Further, the output profile can be
transferred from the spatial domain into the spatial frequency domain by the Fourier transform, and
the spatial bandwidth of the whole array of actuators depends on the spatial frequency response of a
single actuator. As a result, spatial frequency approach provides a method to separate the
controllable and uncontrollable components of the CD disturbances in the spatial frequency

domain.

In several practical CD control applications a sguare response model is very common (Chen and
Wilhelm, 1986). Although a high-resolution profile with hundreds of measurement points is
available for control, in practice this profile is anyway mapped down to the actuator resolution by
using constant mapping matrix (Stewart et al., 2000), (Heaven et al.,1993a). Thus the number of
actuators is equa to the profile measurements and a square model is applied. However, there are
two main problems associated with this matrix form that are also typical for a non-sguare G,
matrix. The most serious problem is the mapping, that is, determining which actuator belongs to
which measurements data boxes of the profile (Carey et al., 1975), (McFarlin, 1983), (Amyot and
Nuyan, 1989). Another problem is how to model the edges (Kniivild, 2003). If the edges are not
accounted for, the model might show some edge effect, that are not present in the real process. The
edges of the interaction matrix might have to be identified separately otherwise the model might
create some phantom ripples at the ends of the profile.

Due to the symmetric inherent in the physical architecture of the web forming processes, the
interaction matrix G, usually has the structure of a Toeplitz symmetric matrix (Laughling et
al.,1993), in which the same constant element is repeated along each diagonal of the matrix.
However, centrosymmetric and circulant symmetric interaction matrices have also been reported
(Laughling et al.,1993), (Stewart, 2000).

The matrix T is said to be a Toeplitz matrix if the scalars (Cpu, ---s Co, ---, Cp1) @€ such that the
(i,))" element of matrix T is Ci.i. The matrix shown in (3.3) can be expressed as T = Toeplitz (C.ps1,
.oty Coy ..., Cpa). IN general, the Toeplitz matrix is not a symmetric matrix. However, in a special
case when ¢, = ¢, it isasymmetric matrix (Gray, 2002).
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For example, the constant square band-diagonal interaction matrix G™" with m independent spatial
coupling partials in equation (3.2) can be expressed as a Toeplitz symmetric matrix: G™" =
Toeplitz,(O, ... ,0, 91, G2, --- , Gm,0, ... ,0). Thismatrix structure will occur repeatedly throughout the
text, and therefore is abbreviated using notation adopted from the software literature (Matlab,
1996).

G"" = toeplitz{{gs, ... , gm0, ... ,0} (3.4)

3.1.4 Process dynamics

The process dynamics in (3.1) is attributed to the actuators g4(z), which are usually represented as
low order, stable and minimum phase except for the transport delay. A continuous time model of
the actuator dynamics is generally presented with a first-order-plus-dead-time model, which is
defined in terms of gain, time-delay and a single negative pole (Laughling et al.,1993), (Stewart,
2000), (Bergh and MacGregor, 1987).

oS = f; 5120, 5> 0 (35)

a

The discrete time model of the actuators has a similar form of afirst order transfer function with a
delay (Kristinsson and Dumont, 1996), (Backstrom et al., 2000), (Haznedar and Arkun, 2002),
(Rigopoulos, 1999).

942 = (3.6)

1-az™
In regard to the physics of the paper production process, the delay is usually significant since there
is distance between the location of the actuators and the array of sensors. Typically the delay d,
presented now in terms of sampling rate, isin the range 0 < d < 4 and the pole 0 < a< 1. Equations
(3.5) and (3.6) give the transfer function representation of the dynamics of a single actuator.

However, since dl actuators in a single bank of actuators are assumed to be identical, the same
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transfer function is used for each actuator. In many cases it has been assumed that the spatial
responses of the actuators do not have any dynamic response (Chen and Wilhelm, 1986). This
allows the use of spatial responses, which are independent of time. If the lengths of the transient of
the dynamic response of the spatia responses are less than the sampling rate, then the
measurements do not observe the dynamics, which mean that the assumption is valid, when the
sampled model is used. If the length of the transients is longer than the sampling rate, then it is

necessary to take the dynamics into account.

3.2 Model uncertaintiesin the CD process

In practical applications several facts can cause imperfections to the CD process models. There will
be uncertainty associated to the estimation procedure, and it is likely that the shape of the response
will change during processing, particularly when changing to a different grade of material. A
standard procedure is to make a series of step response or bump tests with a set of selected
actuators and record the observed responses to the quality variables. Tests can be made manually or
automatically. The position of the CD actuator is changed in order to get change in a corresponding
measured profile (Heaven et al., 1993b). However, there is no guarantee that the responses of the
unmeasured actuators will be the same as those that are tested. Especially at the sheet edges the CD
response shape may be very different (Kniivilg, 2003).

An especially critical factor to the success for a CD control is the spatial relationship between the
measurements taken at the scanner and the actuators used to control the profile. Due to shrinkage,
sheet wander, and the physical distance between actuators and sensors, this relationship is
surprisingly difficult to determine with the required precison. The center of the produced CD
response in the profile is the mapping position of the actuator. A major difficulty with
implementing a CD control system is determining the CD location of the effect of an actuator
movement (Carey et al.,1975). (McFarlin, 1983), (Amyot and Nuyan, 1989). Using the results from
bump tests on a few actuators is a relatively crude method to determine the mapping of the whole
array of actuators. The shape of the response is assumed not to vary in the cross-direction.
However, in practice the paper sheet may wander or shrink over time, leading to alignment error
and mismatch between the true location of an actuator’s effect and its predicted location. Trim
squirt measurement error, edge measurement error, mapping error, and error from web wandering
during one scan will affect to the accuracy of mapping, and in the worst case the total error can be

centimeters.
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On the other hand the MD-CD cross coupling is another source of model error (Tong, 1975),
(Chen, 1992). The scanning sensor is traversing back and forth across the moving paper tracing a
diagonal path on the sheet. Therefore, in addition to the usual measurement noise, the sensor will
dias certain MD variations into the CD profiles which are generaly not identifiable and
controllable (Shakespeare, 2001). The amplitude of the response may also vary. In the case of basis
weight variables like total dilution ratio, consistencies and profile dry weight average affect to the
amplitude of the response. The procedure is very much operating point and grade dependent and
usually the step response is performed to different grades in order to calculate relaive gains to

different reference grades.

3.2.1 Role of operating point

Typicaly a paper machine, calender and coating machine are designed to produce a very wide
range of products. The heaviest grade is often twice or more heavier than the lighter grades of
paper. In paper machine the operating conditions, such as machine speed, dice opening and
headbox consistency, may range between broad limits (Gullichsen and Paulapuro, 1999). Actually
the most distinct characteristic is the varying profile response to the slice screws on headbox. The
profile response shape and response width of the slice screw is highly dependent on the machine
speed and the dewatering process on the wire. Edge profile problems are also very common for
amost all paper machines. For heavier weight paper machines, the edge profile problems are
significantly worse. On the other hand, at soft calender process conditions like linear load, roll
temperature and machine speed with soft cover material properties and used actuators define the
shape, width and amplitude of the CD response (Vyse et al.,1993), (Svenka and Minkenberg,
1995), (Gullichsen and Paulapuro, 1999). In coating machine the blade angle, blade load, properties
of the coating colour and machine speed affect properties of the CD response (Ellil, 1994).

All the characteristics of the process are connected to the process response model, which quantifies
the change in the CD profile to the change in actuator position. Process dynamics, rise time and
transport delay change over time, with changing process conditions. Because the grade range can
be large, unigue process response models must be determined for each grade and operating point.
Therefore if for a specific grade the operating conditions of the machine change, the process model
should also change or to be updated. Several methods to accomplish this identification of the
response model have been presented in the literature (Wilhelm, 1982), (Chen, 1988), (Wang et
al.,1993b), (Wellstead et al., 1998). In practical paper machine control applications grade and

operating point specific process model and controller parameters are pre-tuned and stored in a
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recipe data base, from where they are obtained with an on-line tool (Vyse et al., 1996) or with a
grade change application software. A detailed description of the grade change on a paper machine
can be found in Viitaméki (2004).

3.2.2Modd errorscaused by actuators

A wide selection of actuators is available for CD control purposes depending on the object of the
controlled process. A traditional way of performing CD basis weight control is to change the
position of the dlice lip of the headbox in the cross machine direction. Several methods exist:
motors, thermal and hydraulic actuators and motorized robots (Cutshall, 1991). In modern dilution
headboxes the basis weight control is done by using dilution valves and white water injection to
change the composition of material (Vyse et al.,1996). Use of dilution to control the dry weight
profile does not guarantee good fiber orientation profile. Thermal deformations and minor defects
can vary with operating conditions. Jet misalignment leads to fiber orientation problems especially
at low rush to drag values. In coating machine CD coat weight control is done by adjusting rods
similar to slice screws in paper machine headboxes to modify coating blade pressure at intervals
across the web (Ellil4, 1994), (Hoeke, 1990), (Sollinger, 1990). With super and soft calenders for
the control of paper CD thickness three main technologies are available: induction heating systems,
confined air showers, and hydraulic zone-controlled CD rolls. For the control of paper smoothness
and gloss, steam shower technology has established its position as a leading method. Modern steam
profilers use electromechanical actuators with synchronous motors and feedback signals for
accurate positioning. However, the type of the CD actuators affects on the possible forms of the
model error. Inaccurate calibration of actuator el ectronics and position feedback sensorslike LVDT
sensors are well known sources of the errors. Mechanical coupling, clamping and backlash
problems are common to all spindle actuators and electric motor applications (Cutshal, 1991). An
insufficient cooling of electronics a high temperatures can cause a drifting problem of
measurement values and other serious malfunctions. Unstable zero points with constant calibration
procedures are common to many hydraulic systems. In practice, a possible actuator failure should
also be taken into account. In industrial process an uneven wear or tear is common and can easily
lead to the actuator nonlinearities.

3.2.3 Appearance of themodel errors

We may conclude that in practice a notable uncertainty is related to the CD response models and it
should be taken into account in the control strategy. Generaly model uncertainty is presented by
describing the process model as a set of plants G, given by a nominal model G and a set of norm
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bounded perturbations A. Model uncertainty can be either unstructured or structured (Skogestad
and Postlethwaite, 1996). Unstructured uncertainty is defined as a full complex perturbation A,
while structured uncertainty usually means that the perturbations can be arranged into block
diagona form A = diag(A;). In the literature usually six major types of multivariable uncertainty
descriptions are presented: additive, multiplicative input, multiplicative output, inverse additive,
inverse multiplicative input and inverse multiplicative output (Zhou et al.,1996). Additive and
multiplicative output uncertainties are the most commonly used to represent unmodeled process
dynamics. Additive uncertainty, which typically represents unmodeled process dynamics is
presented as a full matrix, whereas multiplicative uncertainties are presented as being either full or
diagonal. Diagona uncertainty can be represented as having diagona eements that are
independent scalars or repeated scalars.

Featherstone and Braatz (1998), (2000) used an additive unstructured model uncertainty based on
uncertain pseudo-singular values in their CD controller study. Stewart et al. (2000) and Duncan
(19944) utilized a similar uncertainty structure to describe a paper machine plant-model mismatch.
Stewart et al. (2000) applied this approach also to two industriadl CD process cases. Laughlin
(1988) and Laughlin et al. (1993) applied a structured model uncertainty description in their CD
modeling work. The authors addressed the parameter uncertainty for both dynamic response and
gpatia response. Gorinevsky and Stein (2001) used similarly a structured uncertainty representation
for a process model, which was described by rational transfer functions of spatial and dynamic

variables.

Gorinevsky and Heaven (1997) studied also the model uncertainty structure in terms of typica CD
response shapes by defining an empirical expression for a continuous response shape. Their
expression describes well the majority of practically encountered CD responses. The parameterized
structure models the effect of an actuator on the continuous paper profile. In their presentation four
scalar parameters are used to describe the shape of the response. These CD model parameters are:
the gain parameter, the attenuation parameter, the width parameter and the divergence parameter
for describing the spatial response shape. The influence of these parameters is depicted in Fig. 3.2,
which shows the nominal steady-state responses to a single actuator and the responses with
parameter uncertaintiesin the spatial domain. In Fig. 3a-d, only one parameter has uncertainty. The
effect of the gain parameter uncertainty, which affects directly the amplitude of the response, is
shown in Fig. 3a. The attenuation parameter, as shown in Fig. 3b, changes the size of the negative
lobes of the response. For large parameter values these lobes are not observable, for smaller ones,

they are more profound. The width parameter, as it's name expresses, affects the width of the
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response, especially at the bottom lobes of the response, as shown in Fig. 3c. On the other hand, the
divergence parameter, as presented in Fig. 3d, defines the presence of two maxima. This kind of

behaviour is especially typical for heavy grade papers.
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Figure 3.2: Influence of the uncertainty parameters on the shape of response. The nominal spatial
response (solid + dotted) and its corresponding one with uncertainty (solid + circle): (a) the gain
parameter uncertainty; (b) the attenuation parameter uncertainty; (¢) the width parameter

uncertainty and (d) the divergence parameter uncertainty.

We will use this presentation to illustrate the uncertainty structure of our response model. If we
consider the row structure of the CD actuator system it is clear that in reality each manipulated CD
actuator is a source of the input uncertainty. As shown by Duncan (1994a) an independent diagonal
uncertainty description would be more adequate for characterizing inaccuracies in the CD actuator
models because each actuator is expected to have a dightly different dynamic response. On the
other hand, a repeated diagona uncertainty description may be appropriate for modeling
inaccuracies in the sensor model, because the sensor is usualy of the traversing type and the same

sensor is used for all measurements. Due to the physical structure of the CD control system, we
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may say that, diagonal input and output uncertainties are always present in the real CD control
system. Diagonal input uncertainty represents inaccuracies associated with the actuators and
diagonal output uncertainty represents inaccuracies associated with the measurement devices.

We assume that the true CD process response belongs to a set of possible response models
(Laughlin et al., 1993), described in continuous form by

G™"(s) = g(s)G"" (3.7)

where the elements g of the congtant interaction matrix G™" are constrained as in
g € [gi mins i max] , and g(s) is defined by the first order actuator dynamics gq(s) and time-delay gq(s)

—7S

ke
7,5+1

9(s) = 9.(5)94(9) = (38)

ka € [kamin ! kamax]’ Ta € [Tamin’Tamax]' [ [Tmin 1 Tmax ]

Each rea parameter in the actuator dynamics in (3.8) is permitted to vary between the specified
upper and lower bounds independent of the other real parameters. Uncertainty in actuator scalar
dynamics is described by the bounds for k, and z,; time-delay uncertainty by the bounds for z. This
kind of description of the CD model uncertainty covers the structured model uncertainty and
especialy block diagona input and output uncertainties. Therefore the previousy mentioned
uncertainties related to identification method, operating point and actuators are included into the
approach. Structured model uncertainty is also called parametric uncertainty, because the structure
of the model is known, but some of the parameters are uncertain. Alternative approach for
parametric uncertainty is to assume a probabilistic distribution of the parameters, and apply the
average response. However, this kind of stochastic uncertainty is difficult to analyze (Skogestad
and Postlethwaite, 1996). Another well applicable approach for parametric uncertainty is the multi-
model approach in which a finite set of dternative models is considered. In this approach the
performance is measured in terms of the worst-case or some average of these models' responses.
We will discover that the multi-model approach is applicable to describe a set of uncertain CD

response models.

3.3 Reported CD control strategies

Control systems for regulation of cross-machine (CD) paper sheet properties have been on-line in
the paper mills for over two decades. Several control schemes and agorithms are applied and
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reported in the literature. According to Dumont (1986) the pulp and paper industry is, in general,
conservatively using well established control methods. Therefore, it is not surprising that very
traditional controllers, like Pl controllers with output de-coupling features, are still extensively used
for CD control purposesin the paper industry Heaven et al., (1993a). In this section we will discuss
the main CD control methods presented in the literature. The survey does not cover the whole topic

but will give an overview to the matter.

3.3.1 Early history of CD controal

CD control first became possible with the invention of sensors to measure the paper across the
sheet. Burkhard and Wrist (1954) were the first to classify basis weight variations into three
components. Initial efforts at reducing variations concentrated on the control of MD variations,
mainly because CD sensors were not available and more computer power was required for control
of cross-directional variations. In 1967 Astrém published one of the early papers on computer
control of paper machines (Astrém, 1967). This paper concerned the machine direction control of
basis weight and a minimum variance controller was designed by use of linear stochastic control
theory. Two years later Dahlin (1969) presented an algorithm based on exponentia filtering to
extract the MD and CD components from raw data and gave a description of the sensors used for
basis weight and moi sture measurements.

A ssimple model structure of CD response (3.1) suggests that the system could easily de-coupled by
introducing an inverse of G in the controller definition. Carey and co-workers (Carey et al.,1975)
utilized this observation and reported a reduction in fibre usage following installation of a CD
control system, which used the interaction matrix approach. Two years later Boyle (1977) showed
that the interaction matrix approach could result in extensive bending or displacement of the dice
lip and that the solution may well be infeasible. To avoid the bending problems two methods were
introduced to limit bending and displacement of the lip. The first method, quadratic programming,
minimized variations subject to hard limits on the actuator movements. However, it was found to
be computationally intensive (Boyle, 1978). The second method, minimization of quadratic
objective function, penaized actuators moves or bending of the dlice. Boyle (1977) described a
quadratic programming formulation for simulation and observed that computational considerations
limit the applicability of the method to only a few actuators. In Wilkinson and Hering (1983), a
linear quadratic optimal design using on line identification of the interaction matrix was used in
industrial settings. After these work several applications based on the quadratic programming have

been introduced. Due to popularity of linear CD control we will study it more in details.
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3.3.2Linear CD control

A linear-quadratic (LQ) optimization represents a very traditional mathematical programming
manner to solve a multivariable constrained steady-state optimization problem, and minimizing or
maximizing a quadratic performance index yields a straightforward linear control law. The basic
control objective in design methods based on quadratic cost functions is to force the CD profile to
some desired shape. An obvious approach is to try to choose the actuator setting to minimize the
mean square deviation from the desired profile. Therefore, the performance index is directly
proportional to the variance of the profile deviation (Wilhelm and Fjeld, 1983), (Chen and
Wilhem, 1986). If the process model is accurate, the optimal control corrects totaly the profile
deviation. However, an accurate model is normally not available and in practice the control actions

are always limited by the constraints.

Constraints in steady-state CD control problem can be taken into account by defining additional
vector inequality conditions and augmented performance index. An optimal solution of this new
constrained optimization problem can be found by using a quadratic programming (QP). Chen and
Wilhelm (1986) presented that the Kuhn-Tucker optimality conditions can be used to convert the
problem into a linear complementary problem, which can be solved with a complementary pivoting
agorithm. An optimal solution of the problem can be obtained with a finite number of pivots.
However, the pivoting calculation is very sensitive to modeling errors if the process model Gisill-
conditioned. Another way to solve the constrained optimization problem isto use quadratic penalty
function (QPF) approach, which provides a sub-optimal solution (Chen and Wilhelm, 1986). Also
in this method the original performance index is modified and a constrained optimization problem
is converted to non-constrained minimization of modified performance index with a proper choice
of defined penalties. The choice of pendlties is done iteratively and an appropriate searching
procedure with constraint-checking logic and repeated calculation of control is used. The achieved
value for performance index is nearly minimal subject to the constraints. Chen et al. (1986)
extended studies of quadratic programming (QP) and quadratic penalty function (QPF) methods.
Even if QP gives an optimal solution, the time and memory requirements of this approach prohibit
it'susein rea-time control, and therefore the authors turned to QPF.

Also Wilhelm and Fjeld (1983) reviewed some control agorithms for CD control in their study.
They formulated control methods for both the inverse interaction matrix approach and for quadratic
optimal design. They noted that strong coupling in the interaction matrix could result in the matrix
being singular and therefore not invertible. They suggested that strong coupling ssimply represented
apoor choice of actuator spacing. The problem could be avoided by controlling groups of actuators
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together or computing the control based on awide spacing of actuators and then using interpolation
to calculate the settings of the remaining actuators. Bergh and MacGregor (1987) used LQG
(Linear Quadratic Gaussian) control theory to jointly control MD and CD moisture variations using
spatialy distributed actuators. They modeled the disturbances for a web forming process as a
multivariate time series. Similarly LQG control with recursive identification to sequentialy adjust

the dicelip actuators with atraversing robot is presented by Halouskova et al. (1993).

3.3.3 Mode predictive CD control

Modd predictive control (MPC) is currently the most widely implemented advanced process
control technology in process industry (Qin and Badgwell, 1997). While model predictive control
is very popular in process industry it is less common in paper machine CD or other web forming
process control. The reason for this is related to the large scae nature and uncertainty
characteristics of CD processes. However, the main reasons for MPC favor in process industry is
that it can easily handle multi-input multi-output systems and it provides a way to explicitly handle
constraints on inputs and possibly outputs of the system. In MPC the control objective is optimized
on-line subject to constraints and a linear or quadratic optimization is solved at each sampling
instance. MPC strategies have been formulated using finite pulse or step response models, as well
state space models (Macigjowski, 2001). Morari and Lee (1999) give a recent overview of the
state-of-the-art in the field as well the issues that are still open. Characteristics of MPC will be
discussed further in Chapters 5 and 6.

A limitation of MPC has traditionally been due to the enormous online computation load and its
sengitivity to model uncertainty (Featherstone and Braatz, 2000). MPC CD optimization problems
can be very large — over 200 variables and constraints for steady-state control of medium size web
process. Solving an MPC CD problem is similar to solving alinear (LP) or quadratic program (QP)
of size mn, where mis the control horizon and n is the number of decision variables. Typicaly nis
the same as the number of actuators. The fastest QP algorithm (Nesterov and Nemirovskii, 1994)
requires O((mn)°) flops to solve an MPC problem. A lot of efforts have been directed towards
reducing the solution time for these large optimization problems and advances in computing power
coupled with theoretical work in model reduction and robustness are beginning to make MPC
techniques possible. One way to solve large scale CD problems is to reduce the size of the model.
A general way to implement a modd reduction is to use different kinds of basis functions to
approximate the output and input profiles. Halouskova et al. (1993) used first order spline functions
to describe the web profiles. Kristinsson and Dumont (1996) and Heath (1996) used Gram
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polynomials or discrete Chebyshev coefficients for model reduction. This method provides a
convenient way to avoid inverses of large interaction matrices and reduces greatly computational
requirements. Duncan and Bryant (1997) showed that the web profile of finite width can be
separated into controllable and uncontrollable parts. Fourier transform is used to represent the

controllable subspace in terms of spatial frequencies.

The other way to overcome the large scale characteristic of CD process is to use either quadratic
programming (QP) or linear programming (LP) solvers. Campbell and Rawlings (1998) reduced
the computational time of the QP problem by utilizing the characteristic of state-space matrices.
Barlett et al. (2002) developed a fast QP solver, which uses the Schur complement agorithm.
Backstrom et al. (2000) reported the use of MPC for CD control on alinerboard machine to control
both CD weight and CD moisture. Their approach uses a fast QP solver and utilizes the sparse
structure of CD process models. Achieved control performance and computational time of the MPC
optimization were satisfactory. Dave et al. (1997), (1999) developed a linear programming MPC
agorithm which may be used for large scale CD control problemsin real time. Their agorithm is
based on the fast computing of an approximate control action that is close to optimality. Once an
approximate solution is obtained, it is used to initialize the basis of the original problem to obtain

an exact solution.

3.3.4 Robust CD control

Robust control is a new modern sophisticated control method, which provides away to incorporate
model inaccuracies to the control strategy (Morari and Zafiriou, 1989). Robust control approach
can be used in CD controller design by utilizing the specid structure of CD response model
matrices. Because most of the CD models are Toeplitz symmetric matrices, this specia model
structure can be used to reduce the computational expense associated with robust control. In
addition, circulant matrix theory can been utilized to develop methods for designing conservative
robust multivariable controllers based on the design of only one single loop (SISO) controller.
Laughlin presented this kind of approach aready in 1988. He suggested a MIMO (multiple input
multiple output) robust control scheme based on internal model control (Laughlin, 1988). He was
able to guarantee both robust stability and robust performance by assuming knowledge of the
parameter uncertainty. A major drawback with this scheme was that the gain matrix describing the
relationship between actuators and sensors had to be positive definite. Furthermore he did not take
into account the constraints of the dice lip, so the control action from this scheme could not be

redized. Laughlin et al. (1993) utilized circulant matrix theory to develop conservative robust
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multivariable controllers based on the design of only one single loop controller. Circulant
symmetric, Toeplitz symmetric and centrosymmetric models were covered by the theory. However,
the controllers were restricted to be either decentralized or decentraized controllersin series with a
constant decoupler matrix. Another method presented also in (Laughlin et al. 1993) was a model-
inverse-based control. However, this technique requires a well-conditioned interaction matrix,
which is often impossible to guarantee in practice (Laughlin et al. 1993), (Heath, 1996).

One way to handle numerical difficulties related to the inverse of interaction matrix G, isto use a
singular value decomposition (SVD) of matrix G, see Appendix 1. For plants where the singular
vector directiondity isindependent of frequency, singular value decomposition method can be used
to decouple a system into nominally independent subsystems of lower dimensions (Hovd, 1992),
(Hovd et al., 1997). Because the CD response model (3.1) is expressed as a product of spatial
response G, and a dynamic term g4(2), it is clearly suitable for singular value decomposition.
Duncan developed arobust controller design algorithm for sheet process with arbitrary interactions
across the machine based on this approach (Duncan, 1989), (Duncan, 19944). Sufficient conditions
for robust performance with multiplicative input and output uncertainties were derived in terms of
satisfying robust performance for SISO subsystems. The controller satisfied Nyquist stability
requirements for dl control modes based on limits on maximum and minimum singular values.
Braatz and VanAntwerp (1996) and Featherstone and Braatz (1997), (1998) proposed a
modification of the singular value decomposition called pseudo-SVD, where the eements of
diagonal matrix, referred to as pseudo singular values, are transfer functions and they have a sign.
In (Braatz and VanAntwerp, 1996) a reduced order pseudo-SVD controller was suggested.
Controller is based on the certainty of each pseudo singular value. Robustness of the controller is
ensured by controlling only those directions whose corresponding pseudo-singular values' signs are
known with sufficient certainty.

A robust loop shaping CD controller has been proposed Stewart (2000) and Stewart et al. (1999a),
(1999b), (2003). The CD processis modeled as alinear, quadratic, circulant symmetric system with
anorm bounded additive unstructured uncertainty. This method is related to the SVD approach and
it is based on the eigenvalue-eigenvector decomposition of a symmetric matrix. The method is
efficient when G is circulant, since any circulant matrix has a complete set of independent
eigenvectors. In addition, every circulant matrix of the same order can be diagonalized by the same
eigenvector matrix, namely the Fourier matrix (Davis, 1979). When the circulant matrix is
symmetric, the analysis can be simplified further, because the associated eigenvector matrix can be
chosen to be areal Fourier matrix. This is based on the fact that the eigenvalues of the circulant

matrix appear in pairs and the corresponding el genvectors can be chosen to bereal (Stewart, 2000).
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3.3.5 Two-dimensional CD control

Heath (1992) and Wellstead and Heath (1992) proposed to handle paper properties as a two-
dimensiona dynamic system with the cross and machine direction parts as two mutually dependent
dynamic processes. In this approach, the response of both the actuators and disturbances are
presented in terms of rationa two-dimensional polynomials. The quality variations are modeled
using two-dimensional ARMA models. The proper selection of the order of the two-dimensional
models is included into the approach and similarly a recursive updating of the ARMA parameters.
The advantage of this method is that it provides a convenient way of formulating the response of
the system, without assumption of general separability. Present theory of two-dimensional systems
covers methods for estimating responses (Heath, 1992), designing controllers (Heath, 1992),
(Zarrop and Troyas, 1994), and determining optimal measurement (Gacon and Zarrop, 1996).
However, as pointed out by Duncan (1999), controllers based on two-dimensional approach have
not been implemented, because in practice the assumption of separability has to taken into account

because of the duggishness of the system.
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Chapter 4

Use of RGA and DIC in Analysing Cross-Directional Control
Systems

Since Bristol (1966) first proposed the relative gain array (RGA) as a means to choose pairing
between inputs and outputs for decentralized control, the technique has gained considerable
practical utilization. It is one of the most widely used techniques in the design of control systems
for multivariable plants. Relative gain analysis is based on a relative gain array, which is a matrix
of interaction measures for all possible single-input single-output (SISO) pairings of the variables
considered. Thus RGA indicates the preferable variable pairings in decentralized control systems
based on interaction considerations. Because only steady-state gain matrix is required, RGA

analysis is usable for many practical process applications.

Originally, RGA was defined only at steady-state, but it is straightforward to include also
dynamics. Further developments have shown that the RGA is much more than a simple measure of
interactions. The RGA provides information about fundamental properties such as closed-loop
stability, controllability and robustness with respect to modeling errors and input uncertainty.
However, a frequency-dependent RGA can provide more detailed information than the steady state,
especially regarding control performance. Main advantage of the RGA approach is that it is easy to
use and only the process gains, which can be determined from a steady-state response model G(0),
are required. In addition it is scaling independent. Despite of its considerable popularity, the RGA
has some shortcomings. It does not take into account the dynamics of the system and control loops
may interact both in the steady state and dynamically, even if the RGA suggests that there is little
interaction (Friedley, 1984). To deal with the deficiencies of the RGA, a number of complementing

measures and procedures have been proposed. The block relative gain (BRG) and Niederlinski
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index (NI) are two measures of similar simplicity as the RGA. BRG is used to analyze the
feasibility of a block-decentralized control structure and NI gives, among other things, a necessary
condition for closed-loop stability of a block decentralized control system. However, we will use it

with RGA to evaluate the applicability of integral control to the decentralized CD control problem.

Decentralized integral controllability (DIC) is a plant dependent characteristic, which defines the
applicability of a diagonal integral control (Skogestad and Morari, 1992). The concept DIC is based
on the demand that if a negative feedback is used under integral control, the sign of the plant gain
must be known. Typically DIC analysis of the steady-state systems G(0) has been used, like RGA
analysis, to choose pairing between inputs and outputs for decentralized control. However, DIC

approach has some special features, which can be utilized to classify CD control problems.

In this chapter steady-state based RGA and DIC approaches are used to analyze the behavior of
cross-directional (CD) control system in terms of complexity of the response model G(0) and
applicability of the controller structure. As far as the author knows this kind of an analysis has not
been applied to the CD control problems earlier. Almost all practical CD control algorithms are
based on steady-state response models G(0), which provides a good basis for the RGA and DIC
analysis. The approach in this chapter is as follows. First basic definitions and characteristics of the
methods are presented. Then, the applicability of methods for CD control problem is evaluated and
a brief review to diagonal CD controller and general decentralized integral controllable (DIC) plant
is done. Analyses are especially focused on the models with diagonal type of input uncertainty.
After that, some ideas of applicability of the inverse-based steady-state controller for the CD
control problem in terms of RGA analysis is presented. Finally, CD response complexity analysis
based on RGA and DIC is done for some typical CD models and general observations regarding

RGA and CD controller structure are presented.

4.1 Definitions and basic properties
4.1.1 Condition number and singular value decomposition

The matrix G is said to be ill-conditioned if its condition number is large. The condition number of
a matrix is defined as the ratio between the maximum and minimum singular values, see Appendix

A.
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Therefore a system is ill-conditioned if some combinations of the inputs have a strong effect on the
outputs, whereas other combinations have a weak effect on the outputs. For a non-singular (square)
matrix o (G) = 1/5(G™), s0 (G) = 5 (G) 5 (G ™). A large condition number means that the system
depends strongly on the input direction and it may cause serious control problems (Skogestad and
Postlethwaite, 1996). Large condition number may be caused by a small value of minimum
singular value, which should always be avoided. On the other hand, large condition number may
express that the plant has large relative gain array (RGA)- elements or that the system is sensitive

to full-block input uncertainty.

Because the condition number represents the maximum amount by which any relative uncertainty
in G will be amplified and transmitted to the output, it is clearly a measure of error sensitivity.
Similarly it is also a ratio between the gains in the strong and weak directions, which can be
defined by using singular value decomposition. On the other hand, the minimum singular value of

the system o (G), calculated as a function of frequency, is a useful measure for evaluating the
feasibility of achieving acceptable control. On the other hand, if the inputs and outputs have been
scaled properly, then with a manipulated input of unit magnitude we can achieve an output
magnitude of at least ¢ (G) in any output direction. Therefore the minimum singular value o (G)
indicates to which value we are able to track the reference changes without reaching input
constraints (Skogestad and Postlethwaite, 1996). Generally o (G) is required to be as large as

possible.

The condition number is scaling dependent, i.e. dependent on the choices of units of the inputs and
outputs. Therefore it should not be used as a measure of the inherent ill-conditioning of a process.
A better measure in this respect is the relative gain array (RGA), which is independent of scaling
(Skogestad and Postlethwaite, 1996). Another important issue related to the condition number is
that it is a function of the system dimension. When the dimension of the matrix G increases, a
system with originally a relatively low condition number may become singular, i.e. y(G) —

because the model may be singular (Laughlin et al., 1993).

The concept of process directionality is generally analyzed by using singular value decomposition

(SVD), (Skogestad and Postlethwaite, 1996), see in details Appendix A. SVD analysis shows that
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the largest gain for any input direction is equal to the maximum singular value & (G). SVD analysis
shows also that the input singular vector relating to the maximum singular value o (G) corresponds
to the input direction with largest amplification, and the output singular vector relating to the o (G)
corresponds to the output direction in which the inputs are most effective. Similarly, least

important, weak or low-gain directions of input singular vector and output singular vector are
associated with ¢ (G). In addition, the high-gain direction is orthogonal to the low-gain gain

direction.

4.1.2 Relative gain array

We will consider a linear nxn system described by the model

¥(s) = G(s)u(s) (4.2)

where G(s) is stable and strictly proper matrix and the steady-state gain matrix G = G(0) is
nonsingular. The open loop gain from input U; to output Y; is g;(s) when all other outputs y are

uncontrolled. Writing equation (4.2) as

u(s) =G (s)y(s) (4.3)

it can be seen that the gain from U, to y; is 1/[G'1(s)]ji when all other y’s are perfectly controlled.
The relative gain is the ratio of these open-loop and closed-loop gains. Thus the relative gains, the

RGA matrix, can be computed using formula
A(s) = G(5)®(G(s) ™)' (4.4)

where the ® symbol denotes element by element multiplication (Hadamard or Schur product). A
steady state RGA is obtained when the transfer functions are evaluated at S= 0. In this work only

the steady-state RGA is considered.

Equation (4.4) implies that the open-loop gain G; between Y; and U; will change by the factor Xij'l
when the other control loops are closed. This means that variable pairings corresponding to positive
relative gains as close to unity as possible should be preferred. Negative relative gains or relative
gains much larger than unity should be avoided and large negative gains are especially undesirable.

A more detailed description of RGA, its interpretations and properties is presented in Appendix A.
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4.1.3 Decentralized integral controllability

A fundamental control system design requirement is that a negative feedback is needed to
guarantee stability under integral control. If the sign of the system model gain between a specific
system model input and output changes as the other loops are closed, integral control is not
possible. Therefore the sign of the system plant gain must be known in advance. One aspect, which
is related to the diagonal CD controller is the concept of decentralized integral controllability, see

Fig. 4.1.

Decentralized Integral Controllability. A plant G (corresponding to a given pairing) is defined to
be decentralized integral controllable (DIC), if it is possible to design a diagonal controller which
(i) has integral action, (ii) yields stable individual loops, (iii) is such that the system remains stable
when all loops are closed simultaneously and (iv) has the property that each loop gain may be
detuned independently by a factor g (0 < g < 1) without affecting the closed loop stability
(Skogestad and Morari, 1992), (Morari and Zafiriou, 1989).

Controller Process

V'\<

Figure 4.1: Decentralized CD control structure.

DIC implies that any of the control loops can be detuned or taken out of service without
introducing any instability to the rest of the system. In terms of CD control applications this kind of
requirement is very justified and reasonable, because commonly some actuators, especially those at
the edges, are tuned separately. An important characteristic of DIC is that it depends only on the
plant, i.e. it is independent of the choice of the controller. Therefore, we may say that it is an
inherent property of the plant. A reason for this is that we are permitting each loop gain to be
reduced independently, which is the same as allowing any ratio between elements in the controller.
Thus, all potential diagonal controllers (at least at steady state) are considered (Skogestad and

Morari, 1992).
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4.2 RGA and DIC asanalysistoolsfor CD control problem

As was shown in Chapter 3.1 we are considering cross-directional (CD) response models, which

are presented as a linear multivariable system

¥(s) = Gu(s)G(0)u(s) (4.5)

where Y(s) € R'is the vector of measurements, U(s) € R" is the vector of actuator set points, gs(s)
is a scalar function describing dynamics of the actuators, and G(0) € R™ is a constant steady-state
response matrix. This presentation is directly applicable to the RGA and DIC analyses, because we
are interested in events, which are observed in the steady-state. However, we will not use RGA and
DIC to choose pairing between inputs and outputs, instead are we interested in applying them for

the complexity analysis of CD response models and applicability of the controller structure.

4.2.1 Role of modd uncertainty

RGA is perhaps best known as a way to choose pairing between inputs and outputs for
decentralized control. However, it has also an important application as an indicator of sensitivity to
uncertainty. Let us consider the effect of uncertainties to the behavior of the CD control system.
Skogestad and Morari (1987) have considered how especially a diagonal type input uncertainty
affects the multivariable control system. We will utilize a similar approach and assume that each
manipulated input is a source of the input uncertainty. Let Ug(s) represent the desired value of the i"
manipulated input as computed by the controller, and let A; denote the relative uncertainty
associated with this input. The input in the vector form is U(s) = U.(s)(I + A;), where A; = diag{A;}

depicts the diagonal input uncertainty. The perturbed plant is

Gy(s) = G(s)(I + Ay) A = diag (A} (4.6)

Let us consider the diagonal uncertainty in terms of loop transfer matrix as presented in Fig. 4.2.

d
r . +
C u G aé——»

- +

A 4

Figure 4.2: Closed loop control
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The loop transfer matrix, G,(s)C(s), is related to the performance of control loop because of the
identity y(s) =(I+Gp(s)C(s))'1d(s). G,(s)C(s) may be written in terms of the nominal G(s)C(s) and
error terms C'(s)AC(s) or G(s)A|G ' (s), as follows

Gy(s)C(s) = G(s)C(s)(I + C'(5)AIC(S)) 4.7)
Gy(s)C(s) = (I + G($)AIG(5))G(s)C(s) (4.8)

For multivariable systems the effect of the input uncertainty on G,(s)C(s) may be amplified
significantly as shown by Skogestad and Morari (1987). For nxn plants the diagonal elements of
the error terms C'(s)A|C(s) and G(s)A/G™'(s) may be written as

(C'(5)ACEH))i = _Z;ﬂ,-i (©)A, (G(S)AG' (5)i = _Z;ii,- (G)A, (4.9)
1= 1=

where A;; = A;j(G) denotes the RGA elements of the plant. Controllers and systems with large RGA
elements will indicate large elements in the matrices C"'(s)A|C(s) and G(s)A/G’'(s). Large elements
in either of these matrices will lead to large elements in G,(s)C(s) and therefore unfavorable
performance when input uncertainty is related. Equations (4.9) can be used as an analysis tool to
evaluate the feasibility of the CD control structure. For example, the worst case combination of the
input uncertainty can be found from the RGA. For an inverse-based controller the error term
G(s)A/G'(s) is directly related to the change in G(s)C(s). This kind of approach can be used in the
simulation studies of the controller structure to evaluate its applicability for the problem. The

approach contains characteristics of the RGA and it takes into account diagonal input uncertainty.

Chen and Seborg (2002) have also studied the influence of the process model uncertainty on the
RGA analysis. They have shown that analytical worst-case bounds for RGA uncertainty can be
derived in terms of a prescribed degree of uncertainty in square nominal steady-state gain matrix.
Their approach covers also correlated uncertainties in elements of the gain matrix. In authors’ study
also a method for statistical uncertainty bounds is presented. Worst-case bounds can be used to
analyze the maximum allowed degree of uncertainty in the model that will not influence to the
controller pairing. Especially in the case of steady-state models it gives information about how
much the operating conditions can vary before the chosen controller structure becomes inactive.
This guarantees the robustness of the control structure for the whole uncertainty range of the plant

model.
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4.2.2 Diagonal CD controller

As it was pointed out in Chapter 3 a diagonal, fully decentralized controller has commonly been
applied to the CD control problem (Heaven et al., 1993a), (Laughlin et al., 1993). We will study
now this controller structure more closely. Generally we can say that a diagonal controller has one
special property, namely A;(C) = 1, therefore the error term (4.9) will get a form C'(s)A|IC(s) = A,.
In this special case, the input uncertainty has only a light influence to the response. This justifies

the use of diagonal controller in many practical CD control cases.

However, a diagonal controller is able to produce only a limited correction for the directionality of
the system and y(GC) may be rather large. Therefore the response is dependent on the direction of
the disturbance d on the output. Diagonal controllers do not usually correct for directionality of the
system. Generally y(GC) is large when A(G) has large elements. The model G with large RGA
values always has large y(GC) values, and therefore a diagonal controller will produce a poor
control performance. This is especially true when set-point changes are considered. However, as
shown by Skogestand and Morari (1987), there is one special case when a diagonal controller can
produce an acceptable performance for an ill-conditioned system with large condition number y(G).
Namely when the system is naturally decoupled at the input, i.e. when the input singular vectors are
equal to identity vector (V = 1), see SVD description in Appendix A. Then the RGA elements A(G)
of the system are always less than 1 in magnitude. We may conclude that a diagonal, fully
decentralized CD controller is insensitive or even robust with respect to input uncertainty, but it
will be unable to compensate for strong couplings, as expressed by the large RGA elements, and
therefore it will, even nominally, yield a poor performance. Therefore, it is not a surprise that the
robust decentralized CD control approaches presented in the literature (Laughlin, 1988), (Laughlin
et al., 1993), (Duncan, 1994a), have confirmed this statement.

4.2.3 Necessary conditionsfor DIC

Definition of decentralized integral controllability (DIC) was presented earlier in section 4.1, next
we will study some other important properties of DIC. Skogestad and Morari (1992) have derived
necessary conditions for DIC to avoid input-output pairing where the plant gain may change sign.
In terms of CD response and controller analysis, these conditions are extremely useful, because

violating such a condition means that DIC is not possible for corresponding CD response model.
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This follows because we are not trying to influence the choice of input-output pairings, which are
already fixed by the design of actuator spacing and measurement mapping. Thus, necessary DIC
conditions indicate if a decentralized integral controller can be applied to the chosen CD response

model.

All necessary conditions, presented here as rules for DIC, are based on the fact that a negative
feedback is required to guarantee stability under integral control. The proof of these conditions can

be found from Skogestad and Morari (1992).

RGA- rule

Assume that C(s) is a diagonal controller and G(s)C(s) is proper, then
RGA(G(0)) < 0 for some i = not DIC (4.10)

Here RGA;;(G) denotes the i’th diagonal element of the RGA of G(0). If the sign of this gain
changes as we change or close other loops, then we are not able to apply negative feedback in all

cases, and the plant is not DIC.

Niederlinski Index (NI) —rule

det(G(0))
ilEII Qi

<0 = not DIC 4.11)

where Hgni is the product of the diagonal elements of G(0). We should not use decentralized
i=l

control on pairings which have the sign of the plant (given in terms of its determinant) different
from the product of the plant gains for the loops. This is a condition for avoiding the use of positive
feedback.
Morari Index of Integral Controllability (MIC) -rule

minRe{4 (G"(0))}<0 = not DIC (4.12)
Here G'(0) denotes a plant steady-state gain matrix with the signs adjusted so that all diagonal

elements have positive signs and Re{\;} is the real part of eigenvalues. MIC -rule advises us to

eliminate pairing with negative MIC index.
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Kogestad- Morari (i) (SM(i)) —rule
Re {ME(0))} < -1 = not DIC (4.13)

where E(0) = (G(0) — G(0)giag) G&;g (0) is an interaction matrix. Here G(0)qag denotes plant steady-
state matrix consisting of only diagonal elements. SM(i) -rule advises us to eliminate pairing with

negative values less than -1.

Skogestad- Morari (ii) (SM(ii)) -rule
Re {MG'(0)K)} <0 = not DIC (4.14)

SM(ii) -rule advises us to eliminate pairing for which there exists a controller K(s) (diagonal matrix

with positive entries) which yields negative values.

Skogestad and Morari (1992) have shown that NI -rule is redundant, because MIC -rule implies NI
as a special case. However, none of rules RGA, MIC or SM(i) is mutually redundant, and all of
them are applicable. MIC - and SM(i) -rules are special cases of SM(ii). They can be derived from
SM(ii) -rule by choosing K(s) equal to identity matrix | and G, (0)™" respectively. SM(ii) -rule is
difficult to test, and because it requires specifying a controller, it is not very useful for practical
purposes. However, all above presented necessary conditions have to be met for a plant to be truly

DIC. This means that a plant that does not pass these tests is not DIC, but there may be other plants
that pass the tests, but still turn not to be DIC.

Skogestad and Morari (1992) have also derived sufficient and necessary and sufficient conditions
for DIC. A sufficient condition is presented in terms of the structured singular value (Doyle, 1982)
1 of E(0) as follows:
H(E(0)) —rule

H(E(0)) <1 = DIC (4.15)
where interaction matrix E(0) is as defined earlier. 1#(E(0)) -rule can not be used to eliminate

variable pairings, but it indicates that DIC is satisfied for a particular pairing. If the condition

H(E(0)) <1 is satisfied, then the controllers for each loop may be designed independently.
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A necessary and sufficient condition for DIC is presented in terms of finding a diagonal controller
matrix K(s) with real, positive (nonzero) entries. A system is DIC if the following condition is

satisfied:

mKin miin Re{1 (G (0)K)}> 0 < DIC (4.16)

However, as pointed out by the authors, this condition is difficult to test, and it is not very useful
for practical analysis. Authors have developed a numerical optimization method to test this

condition.

Another common issue, related also to the diagonal controller, is the concept of Integral

Controllability (IC) of the system. Definition of IC is very similar to DIC (Grosdidier et al., 1985).

Integral Controllability. A system (plant and controller) is integral controllable (IC) if (i) the
controller has integral action, (ii) the overall system is stable, and (iii) all controller gains may be

reduced by the same factor ¢ (0 < ¢ < 1) without introducing instability.

We can observe that for IC all the gains are reduced by the same degree, while for DIC each loop
may be operated separately. Thus IC is a property that depends on both the plant and controller C.
As pointed out by Skogestad and Morari (1992), if a certain decentralized controller satisfies IC, it
does not mean that the plant with these input-output pairings will satisfy DIC. However, the

reverse, with any decentralized controller with positive loop gains, is true that DIC = IC.

Skogestad and Morari (1992) have derived a sufficient condition for IC, which is based on the

calculation of spectral radius of the interaction matrix p(E(0)).

AE0) <1=1C 4.17)

For CD response and controller structure analysis IC is not as convenient as DIC, but in control
literature it has been used quite commonly. Yu and Luyben (1987) combined IC with RGA analysis
and defined a perturbation equation, which gives an upper limit on the maximum change in a single
process gain element that will guarantee integral controllability. They specified this property as an
integral robustness array (IRA), which defines a quantitative measure of system’s robustness to
integral controllability. They emphasized that IRA criterion is applicable to any controller with
integral action including multi-loop SISO controllers, Internal Model Control, Dynamic Matrix

Control, etc. Also Grosdidier et al. (1985) studied the problem of integral controllability. They
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derived a general result for integral controllability in terms of RGA and model errors. They
formulated an inequality equation, which guarantees the closed-loop stability of the system under

integral control.

4.2.4 Applicability of inverse-based controller for the steady-state CD control

problems

As previously mentioned an inverse-based controller has been one of the typical controller
structures for steady-state CD control problem (Carey et al., 1975), (Boyle, 1977), (Boyle, 1978).
We will study now more closely the applicability of this controller for the CD control problem in
terms of RGA. An inverse-based controller C(s) = G'(s)K(s), where K(s) is a diagonal controller, is
often a desirable solution for many process control purposes. One special case of the inverse-based
controller is a decoupler (Skogestad and Morari, 1987), Skogestad and Postlethwaite, 1996). An
ideal dynamic decoupler is D(s) = G'l(s)Gdiag(s), where Ggiye(s) denotes the matrix consisting of
diagonal elements in G(s). The basic idea of using a decoupler is that a decoupler takes care of the
multivariable aspects. Tuning of the control system is then reduced to a series of single-loop
problems. Let the diagonal matrix K(s) denote these single loop controllers. The overall controller
C(s) including the decoupler is C(s) = D(s)K(s). A constant steady-state decoupling is obtained
with D = G(0)". With C(s) = G'(s)K(s), it can be shown that A(C) = A(G'K) = A(G") = A(G).
Thus, if the elements of A(G) are large, so will be the elements of A(C) and high sensitivity to
input uncertainty is expected. The physical reason for the problems with the inverse-based
controller is that the controller tries to apply large input signals in certain directions to match weak
directions in the plant. The input uncertainty changes these directions and ruins the design match.

We see from equation

Gy(5)C(s) = K(s)I +G(s)AG ' (s)) = K(s)(T +C'(s)AC(s)) (4.18)

that large elements in G(s)AG'(s) indicate that loop transfer matrix G,(s)C(s) differs from the
nominal one G(s)C(s) = K(s). Poor response, instability and serious robustness problems may be
expected if A; # 0. In this case G(s)C(s) = K(s) has no directionality that could guarantee G,(s)C(s)
remain small. We may say that the inverse-based CD controller, that corrects the interactions of the
plant, may yield excellent nominal performance, but will be very sensitive to input uncertainty, and
will not yield robust performance. Skogestad and Morari (1987) have shown that the most

important reason for the robustness problems encountered with decouplers is probably not

52



decoupler errors but the previously mentioned input uncertainty. Any controller of the form C(s) =
G'(s)K(s) is sensitive to input uncertainty if the plant has large RGA elements. Decouplers are
generally of this form and they should therefore not be used for CD response systems with large

RGA elements.

Let us study next more closely the steady-state linear quadratic (LQ) optimization method
mentioned in Chapter 3. The basic control objective in CD control methods based on quadratic cost
function is to force the profile to some desired shape. An obvious approach is to try to choose the
actuator setting to minimize the mean square deviation from the desired profile. Usually weighting
factors are included to allow increased significance on some areas of the profile (Wilhelm and

Fjeld, 1983). Thus the minimized cost function is:

J=12(-¥)'"Q(y-y) = 12€'Qe (4.19)
where:

e=yY -V, is the deviation of y from the desired profile y;

Y, is often flat, typically all elements are equal to zero

Q is a diagonal matrix of weighting factors

This performance index is directly proportional to the variance of the profile deviation if the
weighting matrix Q is the identity matrix. The optimal solution of this unconstrained steady-state

minimization problem is (Wilhelm, 1986), (Wilhelm and Fjeld, 1983):

u=-~(G'(0)QG(0))'G'(0)Q(Yo - Y1) + U (4.20)

where Y, and U, represent the profile and the control setting respectively before the control
adjustment. If the process model is accurate, the optimal control corrects totally the profile
deviation Y,-Y,. If we assume that the response matrix G(0) is square and Q = gl then we get that u
= -G'(0)(Y, - Yi) + U,. This solution is based on the fact that for a square matrix G(0) its
pseudoinverse is identical to G'(0). This is a clear decoupling solution to the steady-state LQ
problem. Decoupling solution can be interpreted as a special case of the general steady-state LQ
optimal control solution. A practical LQ solution for CD control problem follows very often this
kind of approach (Wilhelm and Fjeld, 1986), (Griaser and Neddermeyer, 1986), (Wilhelm, 1986).
Almost constantly the response matrix G(0) is assumed to be square which leads to the decoupling
solution and actually to the inverse-based controller C(s) = G (0)K(s). It is evident that this kind of

CD controller can not be the best possible solution if input uncertainty is expected.
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4.3 CD response model analysis

4.3.1 Studied response models

We will apply next RGA and DIC analysis for some typical CD response models presented in the
literature. Laughlin et al. (1993) and Featherstone and Braatz (2000) have studied a set of
experimental or proposed CD basis weight response models in their work. We will use these CD
response models as general examples in our study. Response models are presented in Table 4.1
using the Toeplitz notation (3.4) and adjusted from narrower to the wider. We will use a notation
Gy, (k=1,...,12) to indicate these models. Selected models represent nicely typical CD basis weight
responses for newsprint, kraft sack paper and paper board. However, similar CD responses can be
found widely in the literature. For example response models like G, and G, are typical for air
showers and rewetting actuators, induction coils (Vyse et al., 1993) and deflection compensated
rolls (Svenka and Minkenberg, 1996). Similarly, response models like G; and Gg are typical for

modern consistency profiling systems.

Studied models have been normalized so that the response magnitude at position g; is equal to 1.0.
Values of the interaction parameters may vary, but the bell shape of the response is very
characteristic. Negative CD response elements can be found in many of the models reflecting the
observations that efforts to increase the basis weight downstream from one actuator position may
actually decrease it on either side of that position. Strong interaction leads to large positive and

negative off-diagonal elements in the G matrix.

TABLE 4.1: Reported Toeplitz CD response models (Laughlin et al., 1993), (Featherstone and
Braatz, 2000).

Model | g, f25) 23 84 gs g6 g7 g8 g9 g0
1 1.0 0.2
2 1.0 0.4
3 1.0 0.1 -0.3
4 1.0 0.45 -0.55
5 1.0 0.5 -0.5
6 1.0 -0.15 0.03 -0.01
7 1.0 0.4 -0.5 0.05
8 1.0 0.2 -0.1 -0.1
9 1.0 04 -0.2 -0.4 -0.2
10 1.0 1.3 0.8 -0.6 -0.3 0.0 -0.1
11 1.0 1.2 0.6 -0.4 -09 -0.2 -0.2
12 1.0 0.9 0.7 0.8 1.0 0.6 -0.5 -0.4 -0.2 -0.2
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Graphical illustration of responses G,, G;, Giy and G, is presented in Chapter 5. It is surprising
that a graphical plot describes the behavior of the CD response very poorly. Usually the width and
the shape are depicted. Some indication numbers can be calculated based on the width or area of
the response, but they are more related to the mapping and tuning of the CD controller than for the
analysis of the system. We will consider a response model of size G*** that will represent a typical
CD response rather well. The number of actuators (86) may be considered normal for web widths
between 6 to 10 meters depending on the spacing of the actuators, typically from 75 mm to 150

mm.

4.3.2 Some observations of the condition number and singular values

In Table 4.2 a condition number y(G), a minimum and maximum singular value o (G) and both

minimum and maximum element value A of RGA of the studied response models are presented.

TABLE 4.2: Condition number y(G), min-max singular values o(G), min-max RGA element values
A, and results of RGA-, MIC-, SM(i)-, DIC-, £(E(0))- and IC- rules of studied response models
G86,86.

Model [ vG) [ o(G)| o(G) | Amn Ame | RGA | MIC [ SM() | DIC [E(0))] IC

2.33 | 0.600 | 1.399 | -0.045 1.091 | Yes Yes Yes Yes Yes Yes
8.97 10.201 | 1.799 | -0.333 1.666 | Yes Yes Yes Yes Yes Yes
7.96 ]0.202 | 1.607 | -0.165 1.406 | Yes Yes Yes Yes Yes Yes
90.36 | 0.024 | 2.189 | -0.571 0.549 | No No No No No No
132.55 ] 0.016 | 2.123 | -0.460 1.741 | Yes No No No No No
1.86 | 0.740 | 1.379 | -0.023 1.046 | Yes Yes Yes Yes Yes Yes
93.26 | 0.022 | 2.029 | -0.237 1.451 | Yes No No No No No
271 | 0.552 | 1.498 | -0.054 1.145 | Yes Yes Yes Yes Yes Yes
13.28 | 0.201 | 2.671 | -0.407 | 2.326 | Yes Yes Yes Yes No No
315.50 | 0.015 | 4.608 | -2.706 | 2.996 | Yes No No No No No
346.69 | 0.016 | 5.728 | -3.141 2.853 | No No No No No No
631.44 | 0.011 | 7.051 | -2.865 | 4.577 | No No No No No No

pl=|ale|oR|an v w|N|—

As can be seen the condition number y(G) alternates very widely from 1.86 to 631.44. Generally
large condition number means that the plant depends strongly on the input direction and system is
sensitive to unstructured input uncertainties. From the control point of view high condition number
of the CD response model means that a strong control action is required to dampen disturbances
entering the process in the direction of the left singular vector corresponding to the minimum

singular value ¢ (G). Strong control action taken in the wrong direction can lead to instability or

55



poor performance. Therefore it is difficult to design an acceptable controller based on CD response
models with high condition number, when input uncertainty is also present. On the other hand, the

minimum singular value ¢ (G) indicates also to which value we are able to track the reference

changes without reaching input constraints. Therefore from the control point of view response
models like G,, Gs, G7, Gyo, G;; and Gy, are undesired because they have large condition numbers

and relatively small minimum singular values.

Especially models Gs, Gy, G;; and Gy, indicate how a large condition number may be caused by a

small value of o (G) that is generally regarded undesirable. Generally negative values of the CD

response are not a problem. This can be seen from models Gz, G¢ and Gg. On the other hand, very
small changes in the element values can produce a significant alteration to the condition number.
Response models G, and Gs indicate how an incremental change (A=0.05) of the element value
may increase the condition number unexpectedly. As can be seen the maximums of singular value
o (G) are almost the same in magnitude but the minimums differ sufficiently to affect the condition
number. This example indicates how sensitive the response model can be to the modeling errors
and how important the robustness and RGA study of the model actually is. It also shows that purely
a visual observation of responses based on graphical plotting will never tell or even hint at the
latent control problem. A wide response, as in models Gy, G;; and Gy, indicates strong
interactions between adjacent profile zones. Typically this leads to a very high condition number
and obvious control problems. For instance, response model G;, was originally presented by
Karlsson et al. (1985) who found out that wider responses imply inherently limited possibilities for

CD basis weight control on the board machines.

4.3.3 Some observations of the RGA

RGA analysis was done for all studied response examples. Calculations were done using Matlab
(1996) software. In Appendix B 11x16 first elements of studied RGA®*® matrices are presented.
We observe that all in Appendix A mentioned RGA alternatives are represented: from negative
values to quite high RGA element values. Therefore some control loops interact with other loops,
some closed-loop systems are very sensitive to parameter changes, some inverse response events

are expected and some control loops depend entirely on the other control loops.

As can be seen CD response models G;, G,, G;, G and Gy represent rather simple and acceptable

cases. All condition numbers are less than 10, RGA matrices are diagonal dominant with positive
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relative gains quite close to unity. Especially models G, and G¢ seem to be very appropriate for
decentralized control. Although in the model G4 the width of the response is four elements and
some of these elements are even negative, the RGA calculation implies that this kind of response
model would inherently fulfill almost optimal variable pairing. Because the maximum values of
RGA gains in our case are close to unity and all off-diagonal elements are rather insignificant, it is
obvious that for this kind of CD response model even a traditional decentralized PI controller
would give an acceptable control result. Therefore it is not surprising that decentralized PI

controllers have been used for some CD applications rather successfully.

Strong interactions between adjacent zones in response models result in higher RGA values as can
be seen by comparing model G, to G, and models Gg and Gg to G;. However, this result can not be
generalized and RGA values of response model G, are a practical indication of that. We can
observe that RGA elements of model G, are less than 1 in magnitude. Therefore, G4 represents a
naturally decoupled system with a rather large condition number, and as pointed out by Skogestad
and Morari (1987), a diagonal controller would produce a reasonable performance in this special
case. However, as we can see the controller can not be based on integral control. We will discuss

controller selection more in the next section.

When the response is wide enough and the interactions are dominating RGA elements will achieve
relative high values. Studied model G, represents the most complex response example with large
RGA element values. On the other hand, from models Gs, G, Gy, G;; and G;, we can see that the
large negative RGA values are attached to the cases with high condition numbers and small
minimum of singular values. We may decide that large RGA elements of these response models
indicate fundamental control problems because only very small uncertainties in the elements are
allowed without impaired performance of the control loop (4.8). In these cases a special attention

should be focused on the selection of the controller structure.

4.3.4 Some observations of the controller structure and DIC applicability

Complexity of the CD response models in terms of controller structure was evaluated by using DIC
analysis. Results of the individual RGA-, MIC- and SM(i)- rules, equations (4.10), (4.12) and
(4.13) respectively, are presented in Table 4.2. Defined results are combined to form an estimate of
those CD response models, which are DIC. This total result is marked with a column notation DIC.

NI- rule (4.11) was excluded because it is redundant, and calculation of SM(ii)- rule (4.14) was
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omitted impractical. First of all, we may notice that condition number is a good suggestive index to
indicate control difficulties of the system, but it does not advise in the selection of the control
structure. Secondly, we can observe that RGA- rule alone produces an incomplete DIC estimate for
the CD response models. If we compare results of RGA -rule to the combined DIC, we can
discover that RGA- rule concludes three times to the false outcome, while MIC- and SM(i)- rules

seem to be more accurate.

However, one important practical advantage of RGA- rule is that it is very simple to compute. On
the other hand, MIC- and SM(i)- rules require only a calculation of eigenvalues of the steady-state
matrices, which is similarly a straightforward operation. DIC analysis, based on the necessary
conditions, excluding SM(ii)- rule, produces an estimate that CD response models G, Gs, G7, Gy,
Gy and G;, are not decentralized integral controllable. However, consideration of sufficient
condition (4.15) for DIC corrects this estimate slightly. Computation of structured singular value u
of interaction matrix E(0) for all CD response models adds also Gy to this set of not DIC models.
However, definition of structured singular value p requires special numerical algorithms (Chiang
and Safonov, 1992), which might limit the usability of this method. For DIC analysis, in terms of
CD response complexity, condition (4.15) is very powerful because it indicates directly if DIC is
satisfied. We may conclude that DIC analysis and the sufficient condition (4.15) provide us enough

information to evaluate complexity of the CD response model in terms of controller structure.

On the other hand, if we accept that all gains of the integral controller may be changed by the same
degree, and apply the IC- rule (4.17) for analysis, we can observe that it produces, in our cases,
precisely the same results as DIC condition (4.15). In addition, calculation of spectral radius of
steady-state interaction matrix E(0) is much more easier than using the structured singular value.
Integral controllability (IC) of the CD systems can also be studied by using methods presented by
Grosdidier et al. (1985) and Yu and Luyben (1987). Their approaches provide tools to calculate
estimates for the maximum degree of uncertainty in the CD response model, i.e. they show how
much variation in the response model parameters is tolerated before the system becomes
uncontrollable in terms of IC. Also Laughlin et €. (1993) concluded, that integral controller is

applicable only to such CD response models, which have all eigenvalues in the right half plane.

4.3.5. Conclusions of the CD response model analysis

Commonly RGA and DIC analyses are used to choose pairing between inputs and outputs for

decentralized control. We have shown that they can be applied efficiently for complexity analysis
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of the CD response models G(0) and applicability of the controller structure. RGA analysis
together with singular values, condition number and DIC analysis is a suitable tool to study the
properties of the CD process. The main reason for this is that almost all practical CD control
applications are based on steady-state response models G(0). We can say that in general a CD
process model with large RGA elements is difficult to control. However, if the RGA values of the
model are large, but there exists a controller with small RGA elements, which produces an
appropriate response for all major disturbances in favorable directions, the statement is not
absolutely valid. This implies that the CD process model is not ill-conditioned for the predictable
disturbances. Similarly, we can say that the CD process model with a large condition number is not
necessarily always difficult to control. Because it is the RGA, rather than the condition number,
which defines the sensitivity of the CD process to the diagonal input uncertainty. Similarly, the

worst case combination of the input uncertainty can easily be found with the RGA analysis.

RGA analysis with DIC study reveals directly when a diagonal integral controller is unsuitable for
CD purposes. RGA analysis gives a clear indicator of sensitivity to model uncertainty, especially
when uncertainty on each manipulated input is considered. It gives also information about
applicability of the inverse-based controller for CD control problem. CD control system is always
sensitive to input uncertainty if an inverse-based CD controller is used for process models with
large RGA elements. On the other hand, we know that the decentralized CD control system is
insensitive to input uncertainty if a diagonal controller is used, but its closed-loop performance will
be poor. Perhaps RGA is not in general an absolute indicator of the system’s sensitivity to the input
uncertainty, but for practical CD controller design purposes it is a very adequate method.
Especially CD control applications which are based on the steady-state linear quadratic (LQ)
optimization should be analyzed carefully, because in practice they often reduce to the inverse-

based controllers, which have been shown to be sensitive to the input uncertainty.

For evaluation of the CD control structure DIC analysis appears to be quite suitable. Especially, its
ability to consider and classify inherent properties of the CD response models G(0) makes it very
useful. Although it advises only on the applicability of decentralized integral controller, it provides
an unambiguous and transparent indication of system complexity. DIC analysis can be utilized to
classify CD response models in different categories based on sophistication. Together with RGA
analysis it can be used as a practical screening method to select controller structure for the CD
processes. It shows clearly when a traditional CD control approach is inappropriate and a more

advanced control technology is required.
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RGA and DIC analyses can also be used as a designing tool to evaluate the applicability of CD
actuator structure. Based on RGA and DIC analyses we know what kind of CD response is
desirable, robust and easy to control. The next task is just to develop that kind of actuator or
machine part that fulfils these requirements. In practice, several methods exist to accomplish this
task. Realization of desirable response characteristics may be done based on mathematical
modeling (Duncan et al., 2000) and simulation (Tarvainen and Rouhiainen, 2001), experimental
trials on pilot machine (Ellil4, 1994) or even on production machine. This knowledge can be
combined with the modern machine design to generate required implementation (Tarvainen and

Rouhiainen, 2001).
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Chapter 5

Robust Constrained Model Predictive CD Control using Linear

Matrix Inequalities

Model Predictive Control, also known as Moving Horizon Control (MHC) or Receding Horizon
Control (RHC) is a popular technique used in industrial process control. MPC solves an on-line
optimization problem at each step to compute an optimal control profile over finite horizon of
future time. Typically a sequence of predicted control moves will be calculated, but only the first
one isimplemented. At the next sampling time, the optimization problem is solved again with new
measurements, and the control input is updated. This control technique is very popular since it is
possible to handle constraints on input and output signals during the design and implementation of
the controller (Morari and Lee, 1997), (Macigjowski, 2001). However, one of the main drawbacks
of standard MPC is the difficulty to incorporate plant model uncertainties explicitly. The reason is
that MPC isin principle a computational approach, and an analytic expression for the controller is
generally not available. This limits further the study of closed-loop stability which is based on such
information. Standard MPC schemes virtualy have no guaranteed robustness because they use
nominal models and perform finite horizon optimization. Therefore in the presence of model

mismatch, this type of algorithm can behave poorly.

Robust MPC is an MPC theory that increases the effectiveness of the control actions when
modeling errors are present by explicitly taking in to account the modeling errors in the controller
design procedure. Instead of using one process model in predicting the system behavior asin MPC,
robust MPC forecasts system behavior for every model in the uncertainty set. The optimal control
actions are defined by a min-max optimization that minimizes the deviations of the forecasted

behavior from the desired behavior for the model with the largest deviation. Campo and Morari
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(1987), Zafiriou (1990) and Zheng and Morari (1993) proposed using min-max optimization in
MPC with finite impulse response models. Lee and Yu (1996) proposed using min-max
optimization on discrete state-space models with polytopic model uncertainty. Generaly the on-
line min-max optimization is computationally very demanding.

In the design of MPC, robust stability is an important issue. The aim is to design a controller that is
stable independent of the operating conditions, which usually affect to the process model. For the
nominal case, where only the most probable model is handled by the controller, several methods to
obtain a stable MPC are available. A popular approach to obtain a stable MPC is based on an
infinite output horizon (Rawlings and Muske, 1993). For stable systems, the infinite horizon open
loop cost can be expressed as a finite cost with the inclusion of a termina state penalty, which is
computed by solving a Lyapunov equation. The extension of this approach to the robust muilti-
model MPC was proposed by Badgwell (1997), with the inclusion of contracting constraints for the
costs associated with the possible plants. In that method, it was assumed that, for the computed
input sequence, the state goes to zero at infinite time for all possible plant models. Morari and
Zafiriou (1989) discussed how to improve the robust stability of MPC in framework of internal
model control (IMC) by tuning IMC filters. By modifying the optimization problem to "min-max"
problem, Campo and Morari (1987) studied "worst-case" performance over all model uncertainties
and formul ated the constrained robust stabilization problem as a linear programming (LP) problem.
Zafiriou (1990) and his coworkers (Zafiriou and Marchal, 1991) anadyzed the effect of
incorporating constraints to the model predictive controller using the contraction mapping
principle, and developed some necessary/sufficient conditions for robust stability of MPC. As
pointed out in (Zafiriou, 1990), the existence of hard constraints can largely deteriorate the
performance and stability property, which is even worse in the case of model-plant mismatch.

Recently, the robust MPC technique using linear matrix inequality (LMI) technigue has been
developed by Kothare et al. (1996). In this method, the authors formulate an infinite horizon MPC
problem with input and output constraints and plant uncertainty as a convex optimization problem
involving LMIs. The LMI formulation is suitable to deal with uncertain systems and input — output
constraints. Using the "worst-case”" performance index with respect to plant perturbations over a
moving infinite prediction horizon, they considered the state-feedback robust MPC problem for
affine uncertain linear systems. The synthesis problem was formulated as an on-line optimization
problem, subject to input and output constraints. Sufficient solvability conditions in terms of LMI
optimization were also derived. In this method linear matrix inequalities (LMI) are actually used to
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solve a state feedback control problem u(t) = Kx(t) for the gain K that minimizes the model in the
polytope with the largest deviation from the origin. The LMI -based optimization is done on-line to
determine the gain K at every sampling time. A nice property of their MPC scheme is that the
stability of robust model predictive controller is guaranteed if the optimization problem is feasible.
We will study this approach more in details in Chapter 5.3. Lu and Arkun (2000) extended this

technique to polytopic linear parameter-varying systems for the scheduling MPC problem.

In this chapter we will examine the robust infinite horizon model preditive control problem. First
we present some background material such as linear matrix inequalities, model of systems with
special type of uncertainties and basics of model predictive control (MPC). We will use this
supplementary material to formulate a robust constrained model predictive CD control problem
with a state-feedback as a linear matrix inequality problem. Uncertain discrete-time linear time-
varying CD systems with time-delays are also considered. After that performance of the robust
MPC agorithm for cross-directiona (CD) control problem is investigated by performing a number
of simulations. Studied CD response models represent a redistic description of the interactions
across the paper machine. Selection of simulated CD response models is done based on the RGA
and DIC analyses. But next we will discuss about linear matrix inequalities and a specia type of

systems called polytopic uncertain systems.

5.1 Linear matrix inequalities

A wide variety of problems in system and control theory can be reduced to a standard convex
optimization problems that involve linear matrix inequalities or LMIs. The form of an LMI can be
very generd; linear inequalities, quadratic inequalities, matrix norm inequalities, and various
constraints from control theory such as Lyapunov and Riccati inequalities. Also optimal LQG
control and H., control problems can be formulated by using LMIs. Morover, multiple LMIs can
aways be written as a single LMI of larger dimension. Further applications of LMIs arise in
estimation, identification, optimal design, structural design and matrix scaling (Boyd et al.,19944).
The main strength of LMI formulation is the ability to combine various design constraints and
objectives in a numerically effective way. For a few special cases there are analytical solutions to
LMI optimization problems, but usually they can be solved numerically very efficiently. Actually
the growing popularity of LMI optimization for control purposes can be counted on the recent

developments in the interior point-point methods for LMI optimization.

63



Next we will give a brief description of linear matrix inequalities and some optimization problems
based on LMIs. Especially, we summarize a number of terms and results which will be used in the
rest of the thesis. A detailed discussussion of the extensive literature on LMIs is beyond the scope
of thisthesis and can be found in the book of Boyd et al.(19944).

5.1.1 Definition and properties of linear matrix inequalities
Here we define the LMI and some of its basic properties (VanAntwerp and Braatz, 2000b).

A linear matrix inequality or LMI has the form

F(x):FO+Zm:xiFi >0 (5.1)

i=1
wherex € R™, X = [X,..., X,] are the variables, and symmetric matrices F; = F;' € R™" are given.
F(X) > 0 means that F(x) is positive definite, that is
ZF(X)z>0,Vz#0,ze R’ (5.2)

Linear matrix inequality is a constraint on the variable x. Thus, F(X) is an affine function of the
elements of x. The LMI (5.1) is equivalent to n polynomial inequalities because amatrix is positive

definiteif and only if each leading principal minor of F(X) is nonnegative.

An important property of LMIs is that the set {x|F(x) > 0} is convex, that is, the LMI forms a
convex constraint on x. Equation (5.1) is a strict LMI. Requiring that F(X) be positive semidefinite
isreferred to asanonstrict LMI. The strict LMI isfeasibleif the set {x|F(x) > 0} is nonempty.
Multiple LMIs can be expressed asthe single LMI. Consider a set defined by p LMIs:

FY(X)>0; F4(x)>0; ... ; F(x)>0

Then the equivalent single LMI isgiven by

F(X)=F, + Zm:xi F =diag{F'(x),F*(X),...F?(X)} >0 (5.3)

where
Fi=diag{(F, F? ... F},Vi=0,....m

and diag{ X1, Xz, ... , X} isablock diagonal matrix with blocks X, Xy, ... , X,. This statement can
be proved based on the knowledge that the eigenvalues of a block diagonal matrix are equal to the
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union of the eigenvalues of the blocks, or from the definition of positive definiteness (VanAntwerp
and Braatz, 2000b). Therefore we will make no distiction between aset of LMIsand asingle LMI.

Convex nonlinear inequalities are converted to LMI form using Schur complements. Let Q(x) =
Q()", R(x) = R(X)", and S(x) depend affinely on x. Then the LMI

[QQ SW}O 54
S(x)"  R(X)
is equivalent to the matrix inequalities

R(¥) >0, Q(x) - S(R(X)"S(x)" > 0

Q(x) >0, R(¥) — S(x)'Q()*S(x) > 0 (5.5)

The proof of the Schur complement lemma is based on the straightforward elementary calculus.
See in details (VanAntwerp and Braatz, 2000b).

Several traditional control problems can be formulated to LMIs. Typical examples are eigenvalue
problems, singular value problems and Lyapunov stability of linear time invariant (LTI) and time
varying (LTV) systems (Boyd et al.,1994a). An important LMI-based problem to this work is that

of minimizing a linear objective subject to LMI constraints:

minimize c'x (5.6)
subject to F(x)>0

where F is a symmetric matrix that depends affinely on the optimization variable x, and cisared

vector of required size. Thisis aconvex nonsmooth optimization problem (Boyd et al., 1994a).

5.1.2 Solving LM I-based problems

A large number of control problems are reducible to LMI-based convex optimization problems.
Over the past few years efficient algorithms for numerically solving these optimization problems
have been developed (Boyd et al., 1994b). The most important practical implementation is that
these algorithms can rapidly compute the global optimum, with non-heuristic stopping criteria, and
prove that the optimum really has been obtained to within some prespecified accuracy. In general,
LMI problems can be solved in polynomial-time, which means that they have low computational
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complexity. In these problems the exact time required to solve the problem is bounded by a single
function, which is polynomial in the amount of data needed to define the problem. Computational
LMI problems which are solvable in polynomial-time include both the linear and convex quadratic
optimization problems. On the other hand, computational problems which are defined as NP-hard
cannot be computed in polynomial-time in the worst case, because in these cases the computation

grows exponentially with the problem size.

The simplest algorithm for solving convex LMI problems is the ellipsoid algorithm which has a
polynomial-time complexity. The algorithm works well for smaller problems but can be rather slow
when the size of the problem is large. The basic idea of the algorithm is as follows. In the first step
an dlipsoid that is guaranteed to contain an optimal point is calculated. Next a cutting plane that
passes throught the centre of this ellipsoid is computed. Boyd et al. (1994a) have shown an
analytical formulation to define a cutting plane for each of the standard LMI problems. Next a
bisected half-ellipsoid contains an optimal point and a new ellipsoid of minimum volume that
contains this bisected half-ellipsoid is defined. The procedure is repeated until the algorithm
converges to the optimal solution

In practice a more efficient method for solving LMI problems is the interior-point algorithm. This
method is based on the early work of Nesterov and Nemirovsky in 1988 (Boyd et al.,1994a,
1994b). The development of interior point methods has meant that many problems in system and
control theory for which no analytical solution has been found, can today be solved by reducing
them to LMI problems. The key element in this method is the knowledge of a barrier function with
a certain property called self-concordance. Linear matrix inequalities represent a class of convex
constraints for which easily computable self-concordant barrier functions are known. Interior-point
algorithm proceeds as follows: In the first step a specific logarithmic barrier function which is
convex within the feasible set and becomes infinite outside it is defined based on the system
constraints. Then the primal objective function is augmented to contain this barrier function. Next
the original constrained optimization problem is replaced with an unconstrained optimization
problem. Optimization is solved applying Newton's method with appropriate step length. An
analytic center of the LMI is defined to represent the point which minimizes the unconstrained
optimiztion problem. A scalar parameter in the objective to the unconstrained optimization problem
is repeated until the analytic center of the LMI is optimal for the original optimization problem
(Boyd et al.,1994a).
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5.1.3. Softwarefor solving LMI problems

Several research groups have made numerical software packages available for solving LMI
problems. Nowadays optimization problems with convex objective functions and LMI constraints
can be solved efficiently with powerful off-the-shelf software algorithms. Gahinet and Nemirovskii
developed a software package called LMI-Lab (Gahinet and Nemirovski, 1993), which is based on
the Nemirovskii's projective interior-point agorithm (Nesterov and Nemirovsky, 1994),
(Nemirovsky and Gahinet, 1994). LMI-Lab allows the user to describe an LMI problem in a high-
level symbolic form. Matlab’s LMI Control Toolbox (Gahinet et al., 1996) is based on the same
algorithm, and offers a graphica user interface and extensive support for control applications. The
control applications are built around the LMI-Lab and allow for the treatment of various robust
control problems. Toolbox includes also tools for classical Riccati-based H.. control (Gahinet et al.,
1994). VanDenberghe and Boyd (1994) wrote the code SP which is based on a primal-dual
potential reduction method for semidefinite programming with Nesterov and Todd scaling. The
code is written in C with calls to BLAS and LAPACK library programs and SP includes an
interface to Matlab. Software packages SDPSOL (Wu and Boyd, 1996) and LMITOOL (Elghanoui
et al., 1995) offer user-friendly interfaces to SP that simplify the specifications of semidefinite
programming problems where the variables have a matrix structure. SDPSOL is a parser solver that
calls SP code. SDPSOL can run without Matlab and it enables the user to specify the problemin a
high level leanguage. The Induced-Norm Control Toolbox (Beran, 1995) is a Matlab toolbox for
robust and optimal control. It isin turn based on LMITOOL.

5.2 Polytopic systems

In this section we describe a model of systems with uncertainties called polytopic systems which
are commonly used in many modeling and estimation approaches. In general, polytopic systems
form a special class of Linear Fractional Representation (LFR) of the uncertain systems. For these
systems, a lot of research has been done on analysis and synthesis using quadratic Lyapunov
functions (Boyd et al.,1994a). Polytopic systems can be presented as a linear time-varying (LTV)
system

x(k+1) = A(K)x(k) + B(k)u(k)
y(k) = Cx(k)
[A(k) B(K)] Q (5.7)

m
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where u(k) e R™ isthe control input, x(k) <« R™ isthe state of the plant and y(k) ¢ R™ is the plant
output, Ris aset of real numbers and €2 is some prespecified set.

For polytopic systems, the set Q is a polytope
Q = Cof[A1B4],[A2B],....[AL BL]} (5.8

where Co refersto convex hull. If [A B] € Q, then for some nonnegative A4, A ,..., AL summing to

one will give

[AB] =iﬂi[Ai B ]

i=1

When L = 1 a linear time-invariant (LTI) system without plant-model mismatch will occur.

Graphical presentation of polytopic uncertainty isshownin Figure 5.1.

[ALB] [A, B]
o [A(K) B(K)] (A, B
. A, B]

Figure 5.1: Polytopic uncertainty.

Polytopic multi-model systems can be derived as follows (Boyd et al., 19944). Suppose we have a
real system that is rather well modeled as a linear system. We collect severa sets of input-output
measurements at different operating points and at different times, so that the measurement data
characterizes comprehensivly al plant variations that can be expected. For each data set we
develop a linear system model of the plant which will aways contain the same accessible state
vector. We suggest to model the system as a polytopic system (5.7) with the vertices (5.8) given by
the measured or estimated linear system models. Thus, we model the plant as a time-varying linear
system, with system matrices that are alowed to dternate among al of the multi-models we
defined. Alternatively, a nonlinear system can be approximated by a polytopic uncertain linear

time-varying system using a global linearization approach presented by Liu (1968).
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The development of polytopic multi-models is in principle similar to the traditional parametric
identification techniques such as least squares, maximum likelihood and instrumental variable
methods, which utilize a pseudo-random binary sequence (PRBS) technique to excite the processin
determining the process dynamics, unknown parameters and imposing interactions. Also these
approaches provide a method to define e.g. a CD response model based on the input-output data
from the varying process (Heaven et al., 1993b). Similarly, parametric identification methods

enable the evaluation of parameter validity range in terms of statistical confidence.

Other type of uncertainties or perturbations can also be connected to the linear system models.
Kothare et al. (1996) have shown how a structured uncertainty in a feedback loop with linear time-
invariant systems can be developed. This method provides away to handle repeated scalar block or
afull block uncertainty models. However, later we will see that the polytopic uncertain systems can

very conveniently be applied to the CD processes.

5.3 Model predictive control

Model predictive control (MPC) techniques are widely used in industrial process control. Its
general structure is shown in Fig. 5.2. At each sampling time, MPC solves a trgjectory optimization
problem, typically a linear or quadratic program to compute optimal control inputs over a fixed
future time horizon, using a plant model to predict future plant outputs. All MPC systems rely on
the idea of generating values for process inputs as solutions of the on-line optimization problem.
The underlying principle of MPC is that a model can be used to predict the effects of past and
future inputs on the future system outputs. Although more than one optimal control input is
generally calculated, only the first one isimplemented. At the next sampling time, the optimization
problem is reformulated with the horizon shifted forward by one time step and solved utilizing the
new measurement information obtained from the system. Thus, the process measurements provide
the feedback element in the MPC structure. The main advantage of MPC is its ability to explicitly
handle constraints on both the input and output variables. However, due to the on-line optimization
involved, the application of MPC is restricted to slow processes, which allow the on-line
computation to be completed between two sampling instances. MPC is probably the only
methodology currently available, which can explicitly handle constraints on the manipulated and
output variables systematically during the design and implementation of the controller
(Macigjowski, 2001).
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Figure 5.2: General structure of MPC.

Modéd predictive control is an open-loop control design procedure where at each sampling time k,

plant measurement y,, of the output y is obtained, as shown in Fig. 5.2.

past futire .
e% target output or set point
""""""""""""""""""""""""" ....‘.0
Predicted .
Measured future .
past outputs .
outputs LA
A Manipulated variable
I A(kH[K), 1=0,1,...m-1
*
L]
. ‘ ‘ . * L * ‘ ‘
Sampling
time k k1 kt+m-1 kt+p
«— Prediction horizon p —_— >
«— conrclhorizonm  ——>

Figure 5.3: Basic principle of MPC.

This measurement and knowledge of the plant input u(k) at the current sampling time are used by

the observer to define an estimate X(k) of the plant state x. This state estimate X(k) and a model
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of the plant are used to predict future states and outputs X (k+i[k), ¥ (k+i|k), i = 1,..., p of the
system over the future time prediction horizon p, see Fig. 5.3. At the same time the manipulated

input U (k+i]K), i =0,1,..., m1 is changed over the future time control horizon m.

MPC optimizer computes a sequence of m control moves U (k+i|k), i = 0,1,...,m-1 such that the
predicted output follows the specified target or set-point as defined. Inequality constraints on the
inputs and outputs are taken into account in the optimization. The sequence of control moves are

computed by minimizing an objective function Jy(k) over the prediction horizon p as follows
G(k+i|k§p1(?1,...,m—l ) p (k) (5.9)
subject to constraints on the control input U (k+i|k), i = 0,1,...,m-1 and possibly also on the state

X (k+i|k) and the output Y (k+i|K),i=0,1,...,p. Here

X (k+i|K), Y (k+i]|K) ; state and output respectively, at time k+i, predicted based
on the measurements at time k; x(k|k) and y(k|k) refer
respectively to state and output measured at time k.
U (k+i]K) : control move at time k+i, computed by the optimization
problem at time k; u(k|k) is the control move to be
implemented at time k.
p : prediction horizon

m : control horizon

It is assumed that the control action is not changed after time k+m-1, i.e., U (k+i|K) = U (k+i-1[K), i
>m. Similarly for state regulation problems, U (k+i|k) = 0, i >m. Thus, athough more than one
optimal control input is calculated, only the first computed control action u(k|Kk) isimplemented and
the rest of the control sequence is discarded. At the next sampling time k+1, new measurents
y(k +1) are received from the plant and a new estimate X(k +1) of the plant state X (k+i|K) is
received from the observer. Next, predictions of the plant state and output X (k+1+i|k+1),
Y (k+1+i|K), i = 1,..., p can be defined over a shifted prediction horizon from k+1+1 to k+1+p, and
the optimization is resolved again using these predictions to recompute m optimal control moves

U (k+1+ilk+1),i =0,1,..., m-1. Therefore, both the control horizon m and the prediction horizon p

move ahead by one step as time moves ahead by one step. The advantage of using new
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measurements at each time step is to diminish the significance of unmeasured disturbances and
model inaccuraciesin the MPC structure (Macig owski, 2001).

In this study we assume that an exact measurement of the state is available at each sampling time k,
I.e., X(k|K) = x(K). We will also assume that the specified objective function Jy(K) is quadratic

J3,(k) = i(i(kﬂ 1K) QuR(K +i | K)+ Gk +i | k)T Ra(k +i | k) (5.10)

where Q; > 0 and R > 0 are symmetric weighting matrices. We will adopt the approach of Kothare
et al. (1996) and consider an infinite horizon MPC technique (p = «). The main benefit to use
infinite horizon approach is that it guarantees better nominal stability than finite horizon control
laws and it does not require any parameter tuning for stability. When the control horizon and the
prediction horizon both approach infinity, and when there are no constraints, we obtain a standard
Linear Quadratic Regulator (LQR) problem.

In this study the input and output constraints are defined as component-wise peak bounds:

G (k+i]k)|<u; . ki>0, j=12...n, (5.11)
g+l <y, k= 0i>1 j=12..,n (5.12)

Notice that because the current output cannot be affected by the current or future control actions,
the output congtraints are defined strictly over the future horizon (i.e., i > 1) and not at the current
time (i.e, i = 0). In addition, constraints on the input are usually hard constraints, because they are
physical limitations of the process equipments like actuators. On the other hand, constraints on the
output are often performance specifications which can be softened by allowing them to make Y

as small as possible, subject to the input constraints.

5.4 Robust constrained model predictive CD control algorithm using

linear matrix inequalities

In this section, we consider a robust infinite horizon MPC problem. First we discuss the
minimization of a worst-case objective function with input and output constraints. A linear

objective minimization problem is solved and a required state feedback matrix is defined. Then a
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system with delays are considered. We will see that the derived robust MPC agorithm is applicable
to the cross-directiona (CD) control problem.

We assume that the system is described by the equation (5.7) with the uncertainty set Q. Similar to
the approach from linear robust control, the nominal objective function in equation (5.10) is
replaced by the minimization of a robust performance objective. For notational clarity, we have
omitted the indication of predictions, because they are clearly shown by time indexes. At each
sampling time k minimization of the worst case infinite horizon quadratic objective function is
performed (Kothare et al., 1996).

min max J_ (k) (5.13)

u(k+i[k),i=0,1,...,m[A(k+i)B(k+i)]eQ,i>0
where J_(K) = Z(x(k+ i [K)"QX(K+i|K)+u(k+i|k)"Ru(k +i| k)).
i=0
With Q; >0, R> 0, subject to polytopic uncertainty set Q in (5.8) and component-wise peak input
- output constraints
u (k+i[K)<u; . ki>0, i=12,....n, (5.14)
lyj(k+ilK)[<y, . k=0i>1 [=12..,n (5.15)

Euclidean norm type of constraints are also handled in Kothare et al. (1996). The problem as stated

above is a typical "min-max” problem. We address this problem by first deriving an upper bound

on the robust performance objective J_ (K) . The maximization is done over the set Q thus that the
time-varying plant [A(k+i) B(k+i)] € ©Q, i>0 will give the worst-case value of J_ (k) among all
plants in the set Q. This upper bound value of J_(K), over present and future control actions

u(k+ilk), i=0,1,...,m, is then minimized with a constant feedback control law u(k+i|k) = Kx(k+i|k),

i=0.

In equation (5.13) the state feedback law u(k+ilk) = Kx(k+i|K) is used at each sampling time to
minimize the worst case value of J_ (K) . Next we derive an upper bound on J_ (K) . At sampling

time k, define a quadratic function V(x) = X'Px, P > 0. For any [A(k+i) B(k+i)] € Q, i >0, suppose
V(X) satisfies the following robust stability constraint:

V(x(k+i+ 1]K) — Vx(k+[K) < -(x(keti[K)TQux(k+i[K) + uke+i[K)TRu(k+i[K)) (5.16)
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Summing up the above inequality fromi = 0 to oo and requiring x(oc [K) = 0 or V(x( ¢ [K)) = 0, we
get
J, (K) <V (x(k|Kk)) <y (5.17)

max
[A(k+i)B(k+i)]eQ,i>0

Equations (5.16) and (5.17) give an upper bound on J_ (K) , which is defined as y. The condition
V (x(k |k)) <y in(5.17) can be expressed equivalently as LMIs

T
{ L xklk) }20,Q>0 (5.18)
x(k | k) Q
where Q =y P(K)™* . The robust stability constraint (5.16) for system (5.7) is satisfied if for each
vertex of Q.
_ B 17
Q QAJ.T +Y' BjT QQ? Y'R2?
AQ+BY Q 0 0
. >0,j=12,..,L (519
QrQ 0 A 0
1
| R2Y 0 0 A

where, Q =y P(k)™* and K(K) is expressed by K = YQ™. Thus we want to minimize the upper bound
of the equation (5.17)
miny (5.20)

7.QY

subject to (5.18) and (5.19)

This defines our unconstrained linear objective minimization problem. For notational convenience,
we have excluded the time index k in the above optimization. Actually, the variables should be
expressed by Qy, F, Yk €tc., to indicate that they are computed at time k.

The corresponding robust stability and feasibility for the system (5.7) can be found in Kothare et al.
(1996) and is omitted here for brevity. For nomina case, (L=1), it can be shown that a standard
discrete-time Linear Quadratic Regulator (LQR) solution is obtained.

The limits on the control signal can be incorporated into the robust MPC agorithm as sufficient

LMI constraints. At sampling time k, consider the component-wise peak constraint (5.14). The

74



constraint isimposed on the present and the entire horizon of future manipulated variables if there
exists a symmetric matrix X such that the linear matrix inequality holds

XY . )
>0 with X, <u’,

=12, ...,n, 5.21
v o r n (5.20)

1aX

Thisisan LMI in XY and Q. Inequality represents sufficient LMI constraints which guarantee that
the specified congraints (5.14) on the manipulated variables are satisfied.

Similarly, output constraints can be defined as LMIs. At sampling time k, consider the component-
wise peak constraint (5.15). This is the worst-case constraint over the set Q and it isimposed over
the future prediction horizon (i > 1). The output constraints are satisfied if there exists a symmetric

matrix Z such that for each vertex of Q the LMI

£ CIAQ+EY) >0,j=12,..,L (5.22)
(AQ+B,Y)'C’ Q - e

with Z,, < yf’max , =12, ..., n, holds. Condition (5.22) represents a set of LMIsinZ,Yand Q>0
for the polytopic uncertainty model.

We can now define the robust constrained MPC algorithm which will be the basis for our primal
robust MPC CD agorithm.

Algorithm 5.1 Constrained linear objective minimization problem (Kothare et al., 1996)

For the system (5.7), at sampling time k, the state feedback matrix K(k) in the control law u(k+i|k)
= Kx(k+i|Kk), i >0, which mimimizes the upper bound » on the worst case MPC objective function
J_(K), isgiven by K(k) = YQ* where Q > 0 and Y are obtained from the solution (if it exists) of
the following linear objective minimization problem:
miny
7,Q,X.Y,Z

subject to (5.18), (5.19), (5.21) and (5.22)

This MPC algorithm, if initially feasible, robustly asymptotically stabilizes the closed-loop system.

Thus, the goal of the primal robust MPC CD algorithm is at each sampling time k, define a constant
state-feedback control law u(k+ilk) = Kx(k+ilk) to minimize the upper bound V(x(klk)). Only the
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first computed input u(klk) = Kx(k|k) is implemented. At the next sampling time, the state x(k+1) is
measured and the optimization is repeated to recompute K. The robust MPC CD controller
stabilizes all matrices within the matrix polytope Q.

The derived robust constrained MPC agorithm can be extended in several ways. Kothare et al.
(1996) have shown how optimal tracking problems, constant set-poit tracking and disturbance
rejection problems can be treated with the robust MPC agorithm. They have also proved how
process delays can be incorporated into the algorithm. We will study next this subject.

5.4.1 Systemswith delays

Delays can be taken into account in the robust MPC algorithm as follows. Consider the following

uncertain discrete-time linear time-varying system with delays:

(k1) = AKX + " A (K)x(k - 7,) + BRu(k-0)
y(K) = Cx(K) 7
with  [AgK) Au(K) ... An(K) BK)] € Q (5.23)

We assume that the discrete delaysr can be organized 0 <t <11 < ... < 1, At sampling time k > r,
we would like to formulate a state-feedback control law u(k+i-tlk) = Kx(k+i-t|k), i > 0, and
minimize the modified infinite horizon robust objective function

max Jw(k):i(x(kﬂ|k)TQ1x(k+i|k)+u(k+i—r|k)TRu(k+i—r|k))

[A(k+i)B(k+i)]eQ,i>0 =

(5.24)
subject to input and output constraints. An augmented state is defined as

W(K) = XK XKD ... x(k) o x(ket) " e x(keT) ] (5.25)

If the augmented state is assumed to be measurable at each time k > 1, an upper bound on the
robust objective function (5.24) can be derived. The constrained minimization problem of the upper
bound with the state-feedback control law u(k+i-t[k) = Kx(k+i-t|k), k > 7, i > O, can be formulated
as the linear objective minimization in Algorithm 5.1. These details can be derived
straightforwardly. As pointed out by authors (Kothare et al.,1996) the specified choice of the
function V(w(Kk)) which satisfy the condition (5.16) is

V(w(K)) :x(k)TPox(k)+Zr: x(k—i)"P.x(k—i)+ ix(k— i)"P x(k—i)+ ..+ ix(k)T P. x(k)

i=1 i=7+1 i=7_1+1
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= w(k)"Pw(k) (5.26)

where P is properly defined in terms of P, P, , P, ... P... Thiskind of modified choice of V(w(k)) is
closely related to the Modified Lyapunov-Krasovskii (MLK) functional (Feron et al.,1992).

5.4.2 Disturbanceregjection

The presence of disturbances is one of the main reasons for using control, because in al practica
applications some disturbances enter to the system. It is customary to distinguish among different
types of disturbances, such as load disturbances, measurement errors and parameter variations. In
process control load disturbances are typicaly quality variations which vary slowly or periodically.
Four different types of disturbances — impulse, step, ramp and sinusoid — are commonly used in
analyzing control systems. However, we will use only impulse and step disturbances in our CD
study. The impulse is a simple idealization of sudden disturbance of short duration. It may
represent load disturbances as well measurement errors. On the other hand, the step disturbances
are typicaly used to represent load disturbances or offsets in a measurement.

Kothare et al. (1996) have shown how disturbance rejection problems can be treated with the
robust MPC agorithm. Impulse disturbances can directly be handled with the robust MPC
agorithm. Regarding load disturbances, one traditional way to approach this problem isto estimate
them and use feed-forward from the estimated disturbance. In classical design, steady-state errors
are eliminated introducing integrators if an unknown constant additive disturbance is acting at the
output of the plant, see Fig. 4.2. One way to introduce an integrator is to define a new state that
integrates the error between plant output and measured output y, However, in our case the
augmentation would increase the dimension of the system and lead to serious computation
problems. Thus it is an inadvisable approach. Another way to eliminate steady-state output errors
or load disturbances, without use of integral action, is based on the same method used for offset-
free tracking of constant set-points (Kothare et al. 1996). Basically this method utilizes the fact that
currently estimated disturbance will persist at the same level also into the future and it will continue
to act throughout the whole prediction horizon. As pointed out by Macigowski (2002) this

approach is commonly used in several commercial MPC software applications.

Let us consider (5.7), which we will now assume to represent an uncertain linear time-invariant

systemi.e, [AB] € 2 areconstant unknown matrices. Suppose that the system output y is required
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to eiminate the constant load disturbance yy or in the case of set-point tracking to track the target
vector yg, by moving the system to the set-point xs, us where

Xs = AXs + Bug, Vg = CxXs (5.27)

We assume that xs, Us, Vg are feasible, i.e., they satisfy the imposed constraints. The choice of
J_, (k) for the robust load disturbance rejection or set-point tracking objective in the optimization

(5.13) isthe following:

J, (k)= i((Cx(kH |k)—CxS)TQ1(Cx(k+i | k) —Cx,) + (u(k +i |k)—us)T R(u(k +i |k)—us))
(5.28)
where Q;>0, R>0.

As discussed in (Kothare et al. 1996), we can define a shifted state X = x(K) - xs , a shifted input
U = u(k) - us and a shifted output Yy = y(k) —y to reduce the problem to the standard form as shown
earlier in this chapter. Component-wise peak bounds on the control signal u can be trandated to

constraintson U asfollows:

‘Uj‘ S‘Uj‘max‘ = ‘Uj +Ug

SUj S Upmax—Usj < Uj < Ujrax— Us (5.29)

Constraints on the deviation y(k) from the value y4 can be incorporated in a similar way. We will
use this approach to eliminate step disturbances at the output of the robust MPC CD system and
refer it to the modification of primal robust MPC CD algorithm.

5.5 Simulation of the primal robust MPC CD algorithm

At present simulation is a widely applied method in pulp and paper industry, and applications vary
from process control and production planning to economic evaluation. Simulation has been
commonly used in troubleshooting, production and energy control and operator training
(Woodward et al., 1988). Modeling and simulation are traditionally used in process studies and
optimization and in defining and testing the process control strategies. By off-line simulation,
aternative operation strategies, sensitivity studies and optimization methods can easily be tested
without disturbing the actual process. However, this kind of approach requires a clear knowledge of

the process behaviour and relatively accurate process models.
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The performance of the implementation of the proposed primal robust MPC agorithm for cross-
directiona control problem was investigated by performing a number of simulations. The results of
these inverstigations are presented in this section. A LMI Control Toolbox (Gahinet et al.,1996)
software in Matlab 5.2 environment was used in the simulations to compute the solution of the

linear objective minimization problem.

5.5.1 Simulated CD response model

In our simulation study we will apply a CD response model to design arobust MPC CD controller
for the system with interactions. The interaction matrix is a Toeplitz symmetric matrix G™" =
toeplitz{ g1, U2, ... , Om:0, ... ,0} with uncertainty bounds for each element. Uncertainty in the CD
interaction matrix G™" is expressed by gi € [Gimin Jima iN the CD response model (3.1). Thiskind of
correlated coefficient uncertainty in G™" indicates observed deviations in experimentally measured
CD response interactions (Laughlin et al., 1993). In our study we use uncertainty bound values
which represent 25 % errors from the nominal values of g in the response Table 4.1 presented in
Chapter 4. Elements of the response model vary randomly between specified bounds g € [Qimin,
Omad- The uncertainty bounds are equa for al eements, excluding the diagonal e ements that
represent the center of the response and stay unchanged. Of course element specific bounds can be

defined, but they increase the number of vertexes of Q2 and affect to the equations (5.19) and (5.22).

Dueto clarity of description we will use the continuous time model of first-order actuator dynamics

(3.5) with uncertain model parameters and a constant time-delay in the simulation:

7S

ke
7,S+1

9a(9) = (5.30)

ko€ [0.9, 1.1]; 7z e[6.0,10.0]; re Z

Thetime-delay 7is assumed to be an integer number of sample times{r €z}. The gain k, and the
time constant z, are allowed to vary randomly and independently between the specified upper and
lower bounds. In the simulation a process generator describing the uncertain CD process produces
the randomly varying elements of the response model G™" and actuator parameters.

We assume that the number of actuatorsis 20 and the actuator spacing is 150 mm, thus the width of
the sheet is roughly 3000 mm. If the traversing speed of the measuring head is 500 mm per second,
a scanning time of 6 sec for the profile measurement is achieved. Thisis our sampling time for the
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simulation. Thus we assume that the sampling rate is less or equal than the lengths of the transient
of the dynamic response of spatia responses, and therefore the measurements will observe the
dynamics. Tustin's method is used to accomplish the transformation from s-domain to z-domain.
Simulated discrete-time response model (3.1) will be of the form

¥(2=G(u@, G2 =09(9Go
where the elements of the transfer matrix G(2) are given by
G(@=Clzl-A]'Biz",i=12...L (5.31)

and (A, B;, C) are defined in (5.7) and (5.8). In addition a steady-state assumption (Rawlings and
Chien, 1996) is presumed, see aso Chapter 3.1. We assume that the discrete-time the CD response
model! is defined from specified input/output data set at different operating points and it will take
into account the uncertainty bounds. From each data set a discrete-time linear state-space model is
defined and prespecified set of CD models is expressed as a disctrete-time time-varying linear
system as presented in equation (5.7). The operating point dependent set  is a polytope as
depicted in Fig. 5.1. Because we have three pairs of varying parameters: g € [Giminy Gimaxl» Ka € [Kaming
Kamad @Nd 73 € [ Zaminy Zamad,» thus L = 6 and the multi-model polytope will be Qgm = Co{[A; B1],[A:
B.],...,[As Bg]}. An example of the discrete-time response model is presented in Appendix C.

We assume that the state vector x(k) i.e mapped CD profile of the uncertain system will always be
the same and measured at each sampling time k. Therefore the state observer in Fig.5.2 is just a
calculation block in terms of genera structure of the MPC. This assumption simplifies our
approach considerably. We want to define a constant state-feedback CD control law u(k+i|k) =
Kx(k+i|K) to minimize the upper bound V(x(k|k)) in equation (5.17) and simultaneoudly take into
account constraints (5.14) and (5.15). Thisrequirement is expressed equivalently as equation (5.20)
and LMI equations (5.18, 5.19, 5.21, 5.22). These equations, the discrete-time linear polytopic
system model (5.7) and polytope Qg define our primal robust MPC CD simulation problem.
Regarding rejection of step disturbances, modification of primal robust MPC CD algorithm is used
as defined in Chapter 5.4.2.

5.5.2 Studied CD response models

We will apply robust MPC control approach for selected CD response models presented earlier in
the Chapter 4.3. For the simulations response models have been normalized such that the
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magnitude of the response at the center position is one. In the simulations a quadratic response
model of size G**® is considered. The size of model is selected based on the reasonable
computation time. This issue is discussed more in details later. However, the selected size can be
seen to bring out the basic behavior of the CD response.

We will use four different kinds of disturbances in the simulation either to characterice impulse or
step disturbances. This approach is partly similar to Laughlin et al. (1993) apart from we will use
impul se disturbances and also a typical unit disturbance d, to characterise clearly load disturbances.
Disturbance like d, enters with a large component in the direction of the vector corresponding to
the minimum singular value and is therefore difficult to reject. Disturbances d; and d; enter the
system in different, more favorable directions and are therefore easier to handle.

d; =[1.0,0.8,0.4,-0.4,-0.8,-1.0,-0.8,-0.4,0.4,0.8,1.0,0.8,0.4,-0.4,-0.8,-1.0,-0.8,-0.4,0.4,0.8]
d,=[1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0,1,-1.0,01.0,-1.0] (5.32)
d; =[1.0,0.9,0.7,0.4,0.0,-1.0,1.0,-1.0,-0.7,-.3,0.3,0.7,1.0,-1.0,1.0,0.0,-0.4,-0.7,-0.9,-1.0]

d, =[0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.0,0.0,0.0]

The behavior of the DC responses is analyzed by using the RGA and DIC analysis methods
presented in Chapter 4. In Table 5.1 the condition number y(G), the minimum and maximum
singular value, and both the minimum and maximum element value A of RGA of studied CD

response models G**% are presented. Similarly results of the DIC rules are shown.

TABLE 5.1: Condition number y(G), min-max singular values o(G), min-max RGA element values

A, and results of RGA-, MIC-, SM(i)-, DIC-, 1(E(0))- and IC- rules of studied response models
GZO,ZO'

Model v(G) o (G) E(G) Anin Amx | RGA | MIC | SM(i) | DIC |(E(0))| IC

231 [ 0604 | 1.395 | -0.045 |1.091 | Yes Yes Yes Yes Yes Yes
857 0208 | 1.791 | -0.333 | 1.666 | Yes Yes Yes Yes Yes Yes
6.98 | 0.227 | 1586 | -0.165 | 1405 | Yes Yes Yes Yes Yes Yes
11.38 | 0.189 | 2.153 | -0.046 | 0.798 | No No No No No No
1582 | 0.132 | 2.089 | -0.099 | 1.052 | Yes No No No No No
1.85 | 0.743 | 1.372 | -0.023 | 1.046 | Yes Yes Yes Yes Yes Yes
33.27 | 0.060 | 1.995 | -1.105 | 0.668 | No No No No No No
264 0560 | 1479 | -0.054 | 1.145 | Yes Yes Yes Yes Yes Yes
12.01 | 0.213 | 2563 | -0.407 | 2.308 | Yes Yes Yes Yes No No
2343 10191 | 4464 | -0.662 | 0.623 | No No No No No No
14540 | 0.036 | 5.329 | -3.529 | 4.464 | No No No No No No
464.37 | 0.014 | 6.676 | -9.271 | 7.182 | No No No No No No

B
BlEIB|o|o|~|o|u|swih-
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As can be seen the condition number ©(G) aternates widely from 1.84 to 464.37. By comparing
these values to Table 4.2 we may observe that the condition humber is really dependent on the
dimension of the system. Based on the condition number we may say that, from control point of
view, responses like G4, Gs, G7, Gg, G1o, G11 and Gy, are undesired, because they have rather large
condition numbers and relatively small minimum singular values. Especialy models G;, G1; and

Gy indicate how the large condition number may be caused by a small value of & (G). On the other

hand, RGA analysis indicates that CD response models G;, G,, Gs, Gs and Gg represent less
complex cases, and like in the case of model size G¥®% | also now RGA matrices are diagonal
dominant with positive gains rather close to unity. Similarly, all these CD response models are
decentralized controllable. In regard to the response model G, the same phenomenon that was
observed aready in Chapter 4 can be verified, i.e., G4 represents a naturally decoupled system.
Similarly, response models G;, G10,G1; and Gy, represent the most complex CD cases, and it is not
a surprise, that traditional decentralized integral controllers should not be applied to these CD
response models. Therefore, a more sophisticated controller is required.

From Table 5.1we may conclude that those CD response models, which are not decentralized
integral controllable, and which also have large RGA element values, and a high condition number
are primary candidates for our simulation study. Therefore, we will use response models G,, G,
Gy and Gy, in the simulation, and as we can see only G; is DIC. Graphical illustration of these
responsesis presented in Fig. 5.4.
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Figure 5.4: Toeplitz symmetric CD response models G,, G;, Gypand G, from Table 4.1.
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Studied response G, represents a CD model with strong decouplings (Wilhelm and Fjeld, 1983),
while the model G, (Wilkinson and Hering, 1983) is atypical example of CD response of the basis
weight to the dlice lip actuator. On the other hand, models G, and Gy, describe examples of much
wider and complex CD responses from the sack paper and board machines (Kardlsson et al., 1985).

5.5.3 Simulation of CD models without delays

In the first simulations we assume that the delay is not present (z = 0). Responses of the closed-
loop system to the disturbances are shown in Figs. 5.5, 5.6. and 5.7. All CD response models were
analyzed and similarly all disturbance options were studied. However, only the results of the
selected CD response models, based on the RGA and DIC response analyses, are presented. In Fig.
5.5 the response and control actions of the closed-loop system to the impulse disturbance d; is

shown.

Robust MPC CD Control: States Robust MPC CD Control: Controls

Deviation in Profile
Magnitude of Control Action

! ° i 0
D Position 0 Sample Time €D Position 0 Sample Time

Figure 5.5: Response and control actions of the closed-loop system to the impulse disturbance d,.
CD mode Gg..

CD response model Gy, was used because it represents the most demanding and complex case from
the control point of view. Large condition number (464.37) and unfavorable negative RGA
elements indicate major control problems. Simulation parameters were R = 0.0000011 and Q = | and
all control actions |u(k) | < 1, and outputs |y(K)| < 1. were limited to the same value. We see the
robust MPC CD controller rejects impulse disturbances effectively and stabilizes the closed loop
system quite well in spite of the complexity of the model.

In Fig. 5.6 the response and control actions of the closed-loop system to the step disturbance d,is
shown. Now the robust MPC CD controller is formulated as presented in Chapter 5.4.2. As
expected the step disturbance d, is difficult to handle and the number of iteration loops increses
easily over forty. Anyhow, the MPC CD controller operates effectively within defined bounds of

constraints.
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Robust MPC CD Contral: States Rohust MPC CD Contral: Controls
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Figure 5.6: Response and control actions of the closed-loop system to the step disturbance d,. CD
model Gy,.

It is clear that behavior of the closed-loop response is dependent on the selected CD model and
type of disturbances. More complex and more demanding CD responses require aggressive control
actions and more time for controller to stabilize the system. When the complexity of the CD model
decreased it is easier for the controller to perform the control task. This can be seen from Fig. 5.7
where the response of the closed-loop system is presented for CD models G; and G,, which have
quite moderate condition numbers and acceptable RGA element values.

Robust MPC CD Cantrol: States Robust MPC CD Control: States
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Figure 5.7: Responses of the closed-loop system. Above CD model G; with step disturbances d;
and ds. Below CD model G, with step disturbances d, and d,.
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Four different kinds of step disturbances were used. Simulation parameters were the same as
before. It is obvious that the controller can perform the control task faster when the complexity of
CD model is not high. However, the type of the disturbance affects clearly to the performance of
the controller. Disturbance d; is redly difficult to reject, which can be observed from the response
of model G..

The weight factors Q and R in the cost function J affect to the behaviour of the CD control
algorithm as expected; weighting either states or controls. During the simulation following values
were used Q = | and R varied in the range from 0.01l to 0.000001I. The increase of value R restricts
the use of large control actions which affects to the gain K. Behaviour of the gain matrix K is
presented in Fig. 5.8. As can be seen the matrix is diagonal if the interactions between adjacent
zones are small as in the CD response model G,. When the complexity of the response model

increases (model G;,) widens the gain matrix K in asimilar way.

Figure 5.8: Gain matrix K for CD response models G, and G,.

In Fig. 5.9 the norm of K as function of iterations for the robust MPC CD controller is shown. As
can be noticed, to meet the constraint |u(k)| = |Kx(K)| for small k, K must be small because x(K) is

large for small k.

Robust MPC CD Control: Norm of K

1 2 3 4 5 6 7 8
Sample Time

Figure 5.9: Norm of the feedback matrix K as afunction of iterations. CD response model Gi,.
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But as x(k) approaches zero, K can be made larger while still meeting the input constraint. This
favourable use of the control constraint is possible only if K is recomputed at each time k, asin the
robust MPC CD controller.

Next we will study how anominal MPC CD controller behaves. Previously we have assumed that
the multi-model polytope will have equal importance all over the uncertainty set €2. Let us assume
that our confidence of CD model is based on the most reliable observations of a single model and
therest of set isignored. Let us define L = 1, which corresponds to the case when there is no plant-
model mismatch and the model polytope is reduced to Qgm = Co{[A; Bi]}. As mentioned earlier
for the nominal case a standard discrete-time Linear Quadratic Regulator (LQR) solution is
obtained. This solution is based on the minimization of nominal performance objective function
like (5.10).
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Figure 5.10: Above the response and control actions of the closed-loop system to step disturbance
d;. Below the development of standard deviation of robust (solid + circle) versus nominal (solid +
dotted) MPC CD control and development of norm of the feedback matrix K as a function of
iterations. CD model G.,.

L et us choose the CD response model G, which represents an easy case from control point of view.

All the simulation parameters are now the same as previously. Nominal CD model G; is as defined
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in Table 4.1 and the actuator parameters (5.30) are constants with nominal values: k, =1, 7, = 8. In
Fig. 5.10 the response and control actions of the closed-loop system to the step disturbance d, is
shown. Similarly the development of standard deviation of robust versus nominal MPC CD control
and development of norm of the feedback matrix K is shown. Robust MPC CD control and model
G, with step disturbance d, was shown earlier in Fig. 5.7. We can see that the response of hominal
MPC CD controller is about three times slower than the response of robust MPC CD controller.
This slowness can be understood if we consider the development of norm of the feedback matrix K.
In both cases the receding horizon controller recomputes the feedback matrix K at each time k, but
only in the case of robust MPC controller it is done based on minimization of real robust
performance objective (5.13). The maximization of the “min-max” problem (5.13) is done over the
multi-model polytope Qgm = Co{[A: B1],[A2 B2],....[As Bg]} and it corresponds to choosing that
time-varying plant which would lead to the largest value of J_ (k) among al plantsin Qg While

this worst-case value is minimized over present and future control moves with a constant state

feedback control law |u(k)| = |Kx(k)|, the feedback matrix K is allowed to enlarge optimally

within bounds of constraints, as x(k) approaches zero.

Studied impulse response models converge from initiad values in 4 - 6 iteration loops to the
acceptable accuracy tolerances. However, in the case of step disturbances the convergence speed
was much slower because of active contraints. The type of disturbances influenced crucially the
convergence speed of the closed loop response. Likewise complexity of the response model
affected the computation time but its maximum result was only about 15 to 20 per cent. Times
required to compute the closed |oop responses were about 120-180 seconds per sample, on a3 GHz
Pentium 4 PC with 2 GB of RAM using Matlab 5.2 code. For step disturbances values were higher
than for simple impulse disturbances. However, no attempt was made to optimize the computation
time, and therefore the times required for the computation of the closed-loop responses only
indicate the status of the present LMI solvers. In the simulation most of the time was required to
solve the LMI optimization at each sampling time. Constraints and initial values affect to the

converge and computation time, but the influence is minimal.
5.5.4 Simulation of CD modelswith delays

Next we will study the case where the time-delays are taken in to account in the MPC CD
agorithm. In our simulation we assume that the time-delay ris an integer number of sample times

and 7= 2. The state space presentation (5.23) becomes
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X(k+1) = Ag(K)X(K) + B(K)u(k-2)
y(K) = Cx(K)
[Ao(k) B(K)] € © (5.33)

The state-feedback control law is u(k+i-2|k) = Kx(k+i-2[k), k > 2, i > 0 and the modified infinite

horizon robust performance objectiveis

[A(k+i)gr(lka+>i§]€9’i20 J, (k)= ;(x(k +i k) Qx(k+i|k)+u(k+i-2]k)"Ru(k+i-2]| k))

i (5.34)
As in the standard non-delayed system, only the first computed input u(k-2|k) = Kx(k-2|k), is
implemented. At the next sampling time, the state x(k+1) is measured and the optimization is
repeated to recompute K. The augmented state vector (5.25) is expressed as w(k) = [x(K)" x(k-1)"
x(k-2)"]" and the function V(w(k)) in the equation (5.26) will be V(w(K)) = x(k)"Px(k) + x(k-
1)'Px(k-1) + x(k-2)"P.x(k-2). Augmentation increases the computational dimension of the LMI
optimization problem from original 20 to 60. Naturaly it has aso an effect to the computation

time.

In Fig. 5.11 the response and control actions of the delayed closed-loop system to the impulse
disturbance d; is shown. Simulated CD response model was G, and the simulation parameters and
input-output constraints were the same as previously with the model size 20. Because the profile
measurements are not available before time k > 7, the process model is not used to predict the

future outputs of the system before that time.

Delayed Robust MPC CD Control: States Delayed Robust MPC CD Control: Controls

Deviation in Profile
Magnitude of Control Action

Sampling Time CD Position 0 o

Sampling Time

Figure 5.11: Response and control actions of the delayed closed-loop system to the impulse
disturbance d;. CD model G,

Studied delayed model converges from initial impulse response values in 5 - 8 iterations to the

acceptable accuracy tolerances. However, the time required to compute the closed loop response
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was long, 25.20 hours per sample. Especialy this smulation showed how critically the size of the
response model affected to the computation time.

5.5.5. Conclusions of the CD simulations

Several simulation examples have been presented to demonstrate the performance of the new
robust MPC CD controller. Robust MPC CD algorithm was applied to a simulated paper machine,
which has arealistic description of interactions across the machine. Simulated CD response models
were selected based on the RGA and DIC analysis shown earlier in the Chapter 4 and some of the
chosen models represented extremely complex cases with large RGA element values and high

condition numbers.

Simulation results show that the control strategy yields acceptable steady-state performance when
remarkable polytopic model uncertainty is present. Study of the nomina MPC CD controller
revealed that this kind of controller has significantly slower closed-loop performance than robust
MPC CD controller, which allows the optimal use of feedback matrix K. This kind of sluggish
behaviour is aresult of using nearly a static state-feedback controller. In addition, the basic primal
robust MPC CD controller is able to handle sudden disturbances like impulses inherently, but load
disturbances like steps require additional modifications of the algorithm. This kind of extension of
algorithm increases the computation time, but only dightly when the number of states is low.
However, both algorithms acted consistently and effectively and we may state that they are suitable
for complex and demanding CD response models, which are not controllable by using traditional

decentralized CD controllers based on integral control.

On the other hand, simulations revealed clearly the complexity of the large scale robust CD control
problem and also the limitation of the existing off-the-shelf LMI optimization software (Gahinet et
al.,1996). The importance of the size and dimension of the response model can be noticed by
considering the used LMI Matlab algorithm. The fastest interior point agorithms show O(MN?)
growth in computation (Gahinet et al.,1996) where M is the total row size of the LMI systemand N
is the total number of scalar decision variables. Because M is proportiona to L, which is the
number of vertices of uncertain model and N ~ n?J2 + ng,, where ng is the number of state
variables and n; the number of manipulated variables, it can be seen that the size of the response
model defines clearly the computation time.

89



In the simulations this appeared especially when the delayed model was studied. However, the
maximum number of state variables (ns = 60) did not cause any memory problems on a 3 GHz
Pentium 4 PC with 2 GB of RAM. Concerning computation, no action was made to optimize the
computation time, and in al simulations default values for the LMI functions and control
parameters of the LMI optimization algorithm were used. Feasibility of the solution to the given
system of LMIs was computed during each simulation loop, and in the LMI optimization also a QR
factorization was alowed to solve the least-squares problem, see in details Gahinet et al. (1996).
However, LMI optimization algorithm did not have to use it, and computation was based on the

default Cholesky factorization.

Although the achieved computation times of the robust MPC CD agorithm are too high for real
time applications, the method itself seems to be very developable. In the next chapter we will
present such a solution for the robust CD control problem that the computation drawbacks are
solved and the developed robust MPC CD agorithm is applicable to the real time CD control

problem.
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Chapter 6

An Efficient Robust MPC Algorithm for CD Processes

One of the main drawbacks of MPC method is the high on-line computation requirement which
limits the applicability of MPC to reduced scale processes with dow dynamics. To overcome these
problems many researchers have started to develop fast computational solutions to the optimization
problems related to MPC. Lee and Kouvaritakis (2000) introduced a receding horizon dual-mode
agorithm for constrained systems with polyhedral model uncertainty. Computational complexity
was reduced through the use of LP method. For constrained MPC, Bemporad et al. (2002)
presented the explicit state-feedback solution to finite and infinite horizon LQ optimal control
problem. A piece-wise linear and continuous solution is provided and on-line QP solvers are no

more required which decreases considerably the computational complexity.

On the other hand, regarding the control of cross-machine (CD) paper sheet properties several
control schemes and algorithms have been applied and reported in the literature. However,
concerning the MPC method the large scale nature and several model uncertainty characteristics of
the CD process have limited the availability of MPC in paper machine CD control. As pointed out
earlier one way to solve the large scale problem of CD process is to reduce the size of the model
and herewith intensify the on-line computation. Haznedar and Arkun (2002) used principal
component analysis method for model reduction and identification. VanAntwerb and Braatz
(2000a) designed a fast MPC algorithm for CD control problem to avoid exciting uncontrollable
plant directions. They applied truncated singular value method to maintain robustly controllable
components in the admissible set of models. They used an iterated ellipsoid algorithm, which is
based on an off-line singular value decomposition of the model. In this method an ellipsoid is
applied to approximate the polytopic input constraint set in an off-line calculation and the size of
elipsoid is optimized on-line during calculation.
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Regarding robust control, after Laughlin (1988) and Duncan (1989) who in late 1980s studied the
robustness of CD control systems, several methods have been suggested for designing robust CD
controllers. Similarly, as pointed out earlier, numerous model predictive control (MPC) approaches
have been proposed that contain actuator limitations but do not explicitely address model
inaccuracies. For the time being, the robust constrained MPC has not been implementable in real-

time large scale CD processes because of the heavy on-line computation.

In this chapter, an efficient LMI based robust model predictive controller is proposed in order to
control the CD processes. First the proposed robust MPC strategy, which incorporates directly
actuator limitations and model uncertanties into the control algorithm, is introduced. We will see
that the control algorithm guarantees the robust stability of the closed-loop system for polytopic
uncertainty descriptions, and it provides off-line a sequence of stabilizing state feedback laws,
which consist in invariant ellipsoids one inside another in the state space. After this, the control
agorithms closed-loop performance is studied with simulations by using a large scale CD
processes with redistic description of interaction matrices and general uncertainty structures.
Similarly a simulation comparison with the standard off-the-self MPC CD algorithm is performed.
Simulation results will show that the performance of the robust MPC CD algorithm is efficient and
algorithm is applicable to the complex CD response models.

6.1 Fast robust constrained MPC CD algorithm

In this section we present a fast robust constrained MPC algorithm based on the concept of the
asymptotically stable invariant ellipsoid. Presentation follows closely the structure shown by Wan
and Kothare (2003) and Wan (2003). Developed algorithm will be used later for polytopic CD
response systemsto illustrate efficiency of the approach.

Definition (Wan and Kothare, 2003)

Given a discrete dynamical system x(k+1) = f(x(k)), a subset £={xe R™ |x'Q"x < 1} of the state
space R™ is said to be an asymptotically stable invariant ellipsoid, if it has the property that,

whenever x(k;) €&, then x(k) e&for all timesk >k; and x(k) - 0ask — .

If we consider a closed-loop system consisting of (5.7) and a state feedback controller u(k) = YQ
x(k), where Y and Q™" are achieved by applying the robust constrained MPC algorithm of the linear
objective minimization problem from Chapter 5 to a system state X,. Then the subset § =
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{xe R™ X'Q'x < 1} of the state space R™ is an asymptotically stable invariant ellipsoid. Within an
asymptotically stable invariant ellipsoid & ={xe R™ [x'Q"x < 1}, we define the distance between

the state x and the origin as aweighted norm ||x||_, =,/x"Q"x . For an input constrained system we

ot
know that when the state is approaching the origin, less constraints on the choice of the feedback
matrix will be focused (Kothare et al., 1996). If we apply the linear objective minimization problem
from Chapter 5 to a state far from the origin, the resulting asymptotically stable invariant elipsoid
has a more constrained feedback matrix. However, we do not have to keep this feedback matrix
constant while the state is converging to the origin (Kothare et al., 1996). It is possible to formulate
inside the ellipsoid another asymptotically stable invariant ellipsoid, which is based on a new state
closer to the origin. Therefore, by repeating this procedure, we have more possibilities to construct
acceptabl e feedback matrices based on the distance between the state and the origin.

Algorithm 6.1 Off-line robust constrained MPC agorithm (Wan and Kothare, 2003)

Consider an uncertain system (5.7) subject to input and output constraints (5.14) and (5.15). Off-
ling, given an initial feasible state x;, process a sequence of minimizers, , Q , X, Yyand Z (i =
1,...,N) asfollows.
Seti:=1
1. Computetheminimizer %, Qi , X, Y, Z at x asdefined in the linear objective minimization
problem in Chapter 5.4 with additional constraint Q.; > Q, (ignored at i = 1), store Q"
Ki (=Y;Q™), X, Y, in adata base

2.1fi < N, choose a state x;., satisfying |

2
Xi+1 Qi*1 <1

Seti:=i+1returntostepl

2

o <1, let the sate x(k) at time k. Execute a

On-line given an initial state x(0) satisfying [Xx(0)|

bisection search over Q" in the data base to find the largest index i or equivalently the smallest

dlipsoid &={xe R™ |X'Q"x <1} such that (k)|

o1 =1 Apply the control law u(k) = Kix(K).

Wan and Kothare (2003) have shown that the first step in the off-line processing algorithm is
awaysfeasiblefori > 1, if it isassumed that it is feasible for i = 1. Likewise, they have shown that
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for a given dynamical system (5.7) and the initial state x(0) satisfying HX(O)HZ—lé 1, the off-line

processing MPC algorithm robustly asymptotically stabilizes the closed-loop system. As pointed
out previoudy, the optima robust MPC law and the equivalent asymptotically stable invariant
elipsoid are dependent on the state. Although the control law can be applied to all states within the
ellipsoid, it is not necessarily optimal. However, it provides a stable suboptimal solution and
reduces substantially the on-line computation time.

The sequence of state feedback matrices, generated in the off-line algorithm, is constant between
two adjacent asymptotically stable invariant ellipsoids, and discontinuous on the boundary of each
ellipsoid. However, this can be overcome and a continuous feedback matrix over the state space
can be constructed by utilizing the following algorithm.

Algorithm 6.2 Design of continuous feedback matrix (Wan and Kothare, 2003)

Consider the data base generated by the off-line part of Algorithm 6.1. If for each x; (i = 1,...,N-1)
Q' —(A+B K1) QA+ BK.)>0,j=1,..L (6.2)
is satisfied, then on-line, given an initial state x(0) satisfying HX(O)H; <1 and the current state x(k)

at time k, perform a bisection search over Q" in the data base to find the largest index i or

equivalently the smallest dlipsoid & such that Hx(k)H;Sl'
Ifi =N, solve x(K) (a4 Q*+ (1 - &)Qi+1)x(K) = 1for ¢ and apply the control law
uk) = (aKi + (1 - a)Kir)x(K).
Ifi = N, apply U(k) = Knx(K).

For a given dynamical LTV system (5.7) and the initial state x(0) satisfying Ix©)[5.< 1. the off-

2
Q*
line processing robust constrained MPC algorithm robustly asymptotically stabilizes the closed-
loop system, and similarly the feedback matrix K implemented in the off-line processing algorithm
is a continuous function of the state x. Both above presented agorithms represent a general
approach to construct a Lyapunov function for uncertain and constrained systems. Even if this
function is not necessarily continuous on the boundary of each asymptotically stable invariant
ellipsoid, it is monotonically decreasing within the smallest ellipsoid and within each ring region
between two adjacent ellipsoids. This guarantees the stability of the closed-loop system (Wan and
Kothare, 2003).
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Xi +1

In both Algorithms 6.1 and 6.2, the choice of the state x.;, which satisfy 2Q < lis arbitrary.

Therefore, Wan and Kothare (2003) suggest to choose an arbitrary one-dimensional subspace 5 =

{ox™ 1> 0 >0, o € R X™ e R™}, where the chosen state x™ should be far enough from the
origin and still preserve the feasibility of the problem. This can be accomplished by discretizing the

chosen set and constructing a set of discrete points, 3% = {oX™ 1> 0y > ... > ay, 0 € R X™ ¢

R™}. Since the asymptotically stable invariant ellipsoid constructed for each discrete point

max
ai+1x

actually passes through that point, Z< lex™|..= 1 is satisfied. To cover a sufficient

dimension of the state space a logarithmic scale discretization of the one-dimensional subspace is
suggested. This enables the reduction of the number of discretization points and keeps the size of
the data base reasonable. In addition, it is always possible to find a new feasible set of minimizers
in Algorithm 6.2 by readjusting the discretization.

If the LMI minimization problem is solved by using an interior point method, a set of strictly
convex unconstrained minimization problems are used to solve a convex constrained minimization
problem. In addition, for a strictly convex unconstrained minimization problem is characteristic
that the objective function and al the minimizers are unique. Thus, the optimal solutions for the
optimizations in the off-line part of Algorithm 6.1 are assumed to be unique. Therefore, it is always
possible to find the feasible set of minimizers for Algorithm 6.2 if the discretization is done tight

enough. Actually, condition (6.1) becomes trivid if X1 is chosen to be sufficiently closeto x;.

For the fast robust MPC agorithm the on-line calculation time is defined by the bisection search
from the data base in which the Q™ matrixes are stored. An array of S stored Q™ requires log,S
searches, because the discretization of the subspace is based the logarithmic scale. The matrix-
vector multiplication in one search obeys square-law O(n?%) in the number of flops, with ng the
number of state variables. Therefore the total number of flops required to calculate a control action
is O(n?log, S), (Wan and Kothare, 2003). This value can be compared with the fastest interior

point algorithm presented by Gahinet et al. (1996) which has O(M{n’J2 + nqng>) growth in
computation. M is the total row size of the LMI system and the expression in the brackets
represents the total number of scalar decision variables. M is proportional to the number of vertices
of the uncertain model and n. represents the number of manipulated variables. It is evident that the
bisection search method of the off-line approach can reduce signifigantly the on-line computation
of the robust MPC algorithm. In the next section we will show by CD process simulations how
notabl e this can be.
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6.2 Simulation of the fast robust MPC CD algorithm

In this section, the proposed fast robust MPC control algorithm is applied to the sheet forming
processes and its closed loop performance is studied by performing a number of simulations. Also
in these smulations A LMI Control Toolbox software (Gahinet et al., 1996) in Matlab 5.2

environment is used to compute the solution of the control problem.

6.2.1 Simulated CD response models

In the simulation we will apply the fast robust MPC control algorithm for the same CD response
models as presented in Chapter 4. Our interaction matrix is a Toeplitz symmetric matrix G™" =
toeplitz{ g1, 92, --- » Om,0, ... ,0} with uncertainty bounds for each element g €[Gimin» Jimad - WeE Will
use three complex CD response models from the Table 4.1, and four step disturbances for the
simulation, see equation (5.32). Simulated CD models are as follows:

GM = toeplitz,{1.0,0.4,-0.5,0.05,0, ... .0}
GL" = toeplitz,{ 1.0, 1.3, 0.8, -0.6,-0.3,0.0,-0.1, 0, ... ,0}

G2 = toeplitz,{ 1.0, 0.9, 0.7, 0.8,1.0,0.6,-0.5,-0.4,-0.2,-0.2, 0, ... ,0}

Like in the previous simulations in Chapter 5, the amplitude of the uncertainty is 25 % from the
nominal value of each element g;. However, as before al diagonal elements remain unchangeable.
First-order actuator dynamics with uncertain process model parametersis used, see equation (5.30).
Now the time delay is excluded (7 = 0), but the limits of the parameters are as previoudy. The
continuous CD response model is transformed to the discrete-time form (5.31) based on input-
output data set, as shown in Chapter 5. The achieved set of CD models is expressed as a disctrete-
time time-varying linear system (5.7). Modd uncertainties are incorporated by utilizing the
polytopic uncertainty description (5.8) and taking into account the varying parameter limits. g; €
[Gimins Gimax» Ka € [Kaminy Kama] @D 72 € [ Zaminy Zama]- The structure of the polytope will be Qg =
Co{[A1 B],[A2 Bj],...,[As Bg]}. The robust performance objective function J..(k), subject to input
|u(k+ik) | < 1, i >0 and output constraints |y(k+i[K)|< 1, i >1 is as defined in Chapter 5, see
equations (5.11), (5.12) and (5.13). As regards to the rgection of step disturbances and
modification of the robust MPC CD algorithm, see equation (5.28). Weighting matrices of the

objective function are R = 0.000001l and Q = |. These parameters are the samein all simulations.
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6.2.2 Comparison with the primal robust MPC CD algorithm

In order to test the effectiveness of the fast robust MPC algorithm it is compared to the primal
robust MPC CD algorithm, which was studied earlier in Chapter 5. The fast robust MPC CD
algorithm is comprised of the off-line robust processing algorithm (Algorithm 6.1) and the
continuous feedback matrix algorithm (Algorithm 6.2). We choose the x; -axis as an one
dimensional subspace, and discretize it into thirteen points x,** =[1, 0.9, 0.75, 0.65, 0.52, 0.4, 0.28,
0.18, 0.1, 0.05, 0.02, 0.01, 0.001]. In the Algorithm 6.1 the minimizers %, Q;, X, Yi, Z a x are
calculated off-line based on the discretization of the subspace x; (i = 1,...,13) and saved into the
data base. In the on-line part of the Algorithm 6.1, the control law is defined after the acceptance of
initial state x(0) and implementation of the bisection search over Q™ in the data base. The
additional constraint (6.1) in the Algorithm 6.2 ensures that the defined feedback matrix is
continuous. Algorithm 6.1 comprises also the modification of primal robust MPC CD algorithm,
which is used for regjection of step disturbances as defined in Chapter 5.4.2. Structure of the fast
robust MCP CD agorithm is presented in Fig. 6.1.

Fast Robust MPC CD Algorithm

...................................

Off-line agorithm : : On-line algorithm
Discretize state Check state | Update state ! Measurement
XD ; : X0 XK i
(= LN) ; ; [Xiaflgr <1
A i : v
- o H Data base for H
Define minimizers i . : Execute bisection search
! minimizers “ T
76 Qn X0 Y, Z; ; Ay : over Q7 tofind
. ' Vi QI xl ’ Yi s Zi . 2
use algorithm5.1 : » HXMHQI <1
A A
Check continuity Solve
use equation 6.1 x(K) (@ Q" +@1-e)Q)x(K) =1
for «;
A : T (= 1..N)
Save minimizers H : v
7Qi XY, Z, i Apply control law
to data base u(k) = (@ Ki + (- a)Ki 1) x(K)
: H ! or
S ' | u(k) = Kyx(k)

| CD process |7

Figure 6.1: Structure of the fast robust MPC CD algorithm
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In the first simulation the number of actuators is 20, thus the response matrix is G%. Actuator
spacing is 150 mm, and as previously mentioned no delay is present (z = 0). The width of the sheet
is 3000 mm. The traversing speed of the measuring head is assumed to be 500 mm per sec. Thus a
scanning time of 6 sec for the profile measurement is achieved. This is the sampling time for the

simulation. Tustin's method is used to accomplish the transformation from s-domain to z-domain.

In Fig. 6.2 the comparison of the primal MPC CD algorithm with the fast MPC CD algorithm is
presented. The response and control actions of the closed-loop systems to the step disturbance d,
are shown. Similarly the development of standard deviation is presented. Simulated model is the

CD response model G,,.
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Figure 6.2: Response, control actions and development of standard deviation of the closed-loop
system to step disturbance ds. CD response model G,,. Left the primal robust MPC CD algorithm.
Right the fast robust MPC CD agorithm.
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The condition number of this model is very high 464.37 and the system is not decentralized integral
controllable, see Table 5.1. We can see that the fast robust MPC CD controller gives nearly the
same performance as the primal robust MPC CD controller. As can be seen the control actions of
primal robust MPC CD agorithm are more aggressive and extensive concluding to dightly better
control performance. On the other hand, the fast robust MPC CD controller acts consistently but
less aggressively. However, it works rather successfully decreasing the standard deviation of the
profile acceptably, which mean that the control actions have been effective and actuator profile
throughout the simulation has been physically realistic by the use of actuator constraints. However,
adlight overshoot of control actions can be seen in the beginning of procedure. An apparent reason
for difference in the control performance of algorithms results from the harsh discretization of state

subspace of the fast robust MPC CD algorithm only into thirteen paints.

Of course the results of the simulations can not be exactly the same, because the applied process
disturbances during the simulation are generated randomly. The development of standard deviation
indicates that in terms of efficiency the difference between algorithms is minor. However, as
regards to the performance both algorithms could be dightly faster. In terms of computation time
the fast robust MPC CD algorithm is superior to the primal algorithm. On a 3 GHz Pentimum 4 PC
with 2 GB of RAM the average time for the fast robust MPC CD a gorithm to compute a feedback
gain for our reference model was 1.0-1.4 seconds. This is about 100 times faster than the 120-160
seconds it takes for the primal robust MPC CD agorithm.

In Fig. 6.3 the response of the closed-loop system to the step disturbances d; and ds is shown.
Simulated response model is now G;,. The condition number of this CD model is also rather high
23.43 and element values of RGA are large and negative. In addition, the response model Gy is not
decentralized integral controllable. Simulation parameters were the same as in the previous
simulation and control actions and outputs were limited.

We can see that the fast robust MPC CD controller works anal ogously with the primal robust MPC
CD controller and the performance of controllersis quite similar. However, as in the case of primal
robust MPC CD algorithm, the behavior of the closed-loop response is dependent on the selected
CD model type and the type of disturbances. It is obvious that complex and demanding CD
responses like model Gjo need aggressive controls and more time steps to stabilize step
disturbances. However, the complexity of the response model does not affect significantly to the

computation time.
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Figure 6.3: Response of the closed-loop system to step disturbances d; and ds respectively. CD
response model G,o. Above the primal robust MPC CD algorithm. Below the fast robust MPC CD
agorithm.

In Fig. 6.4 the norm of K as function of iterations for the fast robust MPC CD controller is shown.
Simulated response model was G,, and the disturbance profile was d,. We can see that in the

beginning K must be small because x(k) is large for small k. But as x(K) approaches zero, K can be
made larger while still meeting the input constraint |u(k)| = |Kx(K)| . Although the changes of the

norm of K are moderate they clearly indicate functioning of the CD algorithm.
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Figure 6.4: Norm of the feed back matrix K as afunction of time steps.

6.2.3 Simulation of the large scale response models

The size of the CD response model is an important factor affecting to the computation time. Thisis

examined in Fig.6.5 where the closed-loop simulation of model size G**% is presented. The
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comparison of the primal robust MPC CD algorithm with the fast robust MPC CD algorithm was
accomplished for the response model Gy, with the impulse disturbance d;. In this smulation the
number of actuators was 86, actuator spacing 100 mm and web width 8600 mm. The sampling time
for the simulation was likewise the same 6 seconds as before, because we wanted to use equa
actuator dynamics as earlier. In practice sampling time of 6 seconds for web width of 8.6 meter is
unredistic but for comparative simulation purposes it is justified. Also now the Tustin's method
was used to accomplish the transformation from s-domain to z-domain. Simulation parameters and

constraints are as defined earlier.
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Figure 6.5: Response of the closed-loop system of size G*%

model G,,. Above the primal robust MPC CD algorithm. Below the fast robust MPC CD algorithm.

to impulse disturbance ds. Response

The condition number of this response model is 631.44 and DIC analysisin Chapter 4 reveaed that
model is not decentralized integral controllable. The time for the primal robust MPC CD algorithm
to compute the closed-loop response, with default values for al LMI functions, was 85.16 hours
per sample and the full simulation took time over four weeks on a 3 GHz 4 Pentium PC with 2 GB
of RAM. This was also the main reason to use impulse disturbance in this comparative simulation
because algorithm modifications required by step disturbance regjection approach would have
doubled the computation time. For the fast robust MPC CD algorithm the average time to compute

the same response was only 12.95 seconds per sample. However, as can be seen a dight offset
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remained into the profile, even with the impulse disturbance. Anyhow, the fast robust MPC CD
algorithm was over 24000 times quicker than the original robust MPC CD agorithm.

The behavior of the model size G¥® was also studied with response models G, and G; which
represent less complex cases than model Gy,. In Fig.6.6 the response of closed-loop system to step

disturbances d, and d; is shown.
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Figure 6.6: Response, control actions and development of standard deviation of the closed-loop
system. Left response model Gy, with step disturbance d;. Right response model G; with step
disturbance d;.

In this smulation the general simulation parameters and constraints were the same as before and
the modification of system and objective function was done as defined in Chapter 5.4.2. The
condition number of matrixes Gyo and G; is 315.50 and 93.26 respectively. Therefore it is not a
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surprise that the fast robust MPC CD agorithm was able to handle also these less complex cases
consistently. This can also be seen from the improvement of standard deviation during simulation.
However, a characteristic feature seemed to be that the fast robust MPC CD agorithm could not
completely eliminate step disturbances. Control actions remained too faint and they did not even
reach their limits at the end of simulation run. Anyhow, for the CD response modd G, the average
time to compute the response was 11.32 seconds per sample and for the model G; only 9.85
seconds. We may observe that the complexity of the CD response model affects to some extent the
computation time. Also the selection of profile disturbance has an influence to the computation

time, but it isless significant that the complexity of the model.

It is obvious that actual time spent for closed-loop simulations will be completely dependent on the
computer system that is being used. Fig.6.7 shows how the computation time per sample for the
robust MPC CD algorithm grows as function of the number of actuators. Simulated response was
model Gy, and the time values were defined at three different points. Number of discretization
points was in every simulation the same (N = 13). As we can see the slope follows the rule of
quadratic growth based on the formulation of the total humber of flops required to calculate one

control action O(n?log, S). Therefore we may say that the size of the model defines the

computation time of the algorithm and the number of discretization points is more like a constant

tuning parameter.

Fast Robust MPC CD Algorithm
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Figure 6.7: Computation time per sample for the fast robust MPC CD algorithm as function of the
number of actuators.

6.2.4 Some observations of the standard MPC CD algorithm
Next we will study how a standard, off-the-self MPC algorithm can handle our uncertain CD

control problem. Our intention is just to clarify applicability of these algorithms, because as
previousy mentioned these algorithms are based on nominal models, which do not necessarily
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guarantee system robustness in the presence of model mismatch. Also these simulations will take
placein Matlab 5.2 environment and we will use the previous large scale modelsin the simulations.

Modd Predictive Control Toolbox (Morari and Ricker, 1994) provides severa efficient functions
and methods for analysis and design of standard MPC systems. However, basis of this approach is
dlightly different than ours and MPC Toolbox assumes that the quadratic objective function, which
consists of two additive terms, does not penalize particular values of the input vector u(k), but only
changes of the input vector, Au(k). This approach is very typical in the majority of the predictive
control literature. In addition, the second quadratic term of the objective function is a difference
between predicted outputs and future reference values. However, MPC Toolbox enables a
convenient way to simulate closed-loop systems with hard bounds on manipulated variables and
outputs. MPC Control Toolbox’'s cmpc -function can be used to smulate performance of the
closed-loop CD system. This function solves a quadratic programming problem to accomplish the
simulation and it enables a possibility to incorporate model mismatch to the ssmulated CD system

by using a different model for controller design and for plant design.

We will utilize these features to construct our standard MPC CD simulation application for the
discrete-time state-space model description. Standard MPC CD controller is constructed based on
the nominal model of Table 4.1 and fixed constant parameter values (k, = 1.0 and 7, = 8.0) of
actuator dynamics in the equation (5.30). Sampling time is as before 6 seconds. This nominal
model is used for the state estimation in standard MPC CD controller, see also Fig. 5.2. However,
structure of the MPC Toolbox’s function requires that the model mismatch is constant during
simulation while in the previous fast robust MPC CD simulation it was changed randomly by the
process generator at each sampling time. Therefore we have to use fixed values for all varying
parameters. g € [Gimin Gimads Ka € [Kamine Kamad @A 72 € [ Zamine Zamad - VW€ Will choose maximum
values for these parameters. Thus the uncertainty is equal (25%) for all elements g;, excluding the
diagona elements that represent the center of the response and stay unchanged. For actuator
dynamics k, € [0.9, 1.1] and 7, € [6, 10], we will choose the maximum values of the range, see
eguation (5.30). This model is used to represent the plant, and it incorporates the model mismatch
to the standard MPC CD simulation. Therefore the simulation will take place at the corner point of

the multi-model polytope set Qgm.

We will use default values for al parameters of the cmpc —function. Thus the prediction horizon is

infinite and only one control move is calculated and implemented. In the objective function, equal
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unity weighting for al outputs over the entire prediction horizon is used. Similarly zero weighting
to the changes of the controls is used. Future reference value is zero and al control actions |u(k) | <
1max @0d oULPULS |y(K) | < 1, are limited to the same value. In addition the rate of change of the input
vector Au(k) is unbounded. The step disturbance is connected to the matrix of disturbances to the

plant and no noisefiltering is used. See in details (Morari and Ricker, 1994).

In the simulation we will apply the standard MPC CD control algorithm for the same CD response
models as presented in Chapter 4. As previously, we will use CD response models from the Table
4.1 and four step disturbances for the simulation, see equation (5.32). In Fig. 6.8 behavior of states
of the standard MPC CD control system is presented in the case when the complexity of the

response model G¥® islow or none model mismatch is included to the system.
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Figure 6.8: Standard MPC CD control agorithm. Left response of the closed-loop system with
model mismatch. CD model G, with step disturbance d,. Right response of the closed-loop system
without model mismatch. CD model G;, with step disturbance d,.

All CD response models of size G were analyzed and likewise al step disturbance options were
studied. Simulations indicated that irrespective of the step disturbance, CD response models G; G,
Gs, Gs, Gg and Gy behaved in a similar way. In these cases the standard MPC CD algorithm was
able to overcome the control task effectively and quickly in spite of the defined model mismatch.
Similarly, if no model mismatch was present, the standard MPC CD algorithm was able to solve all
CD response model control tasks. Time required to compute the closed-loop responses was less
than 9 seconds per sample. The complexity of the response model affected the computation time,
but anyhow the standard MPC CD algorithm turned out to be fast.
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On the other hand, in Fig. 6.9 behavior of states and control actions of the standard MPC CD
algorithm are presented in the case when the complexity of the response model G**# is high.

Standard MPC CD Contral: States Standard MPC CD Control: Contrals

Deviation in Profile
Magnitude of Control Action
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Figure 6.9: Standard MPC CD control algorithm. Response of the closed-loop system with model
mismatch. CD model Gy, with step disturbance d,.

All complex CD response models G, Gs, Gy, Gyo, G11 and Gy, behaved similarly and the type of
step disturbance had a minimal effect on performance. In the beginning the standard MPC CD
control agorithm worked effectively and was almost able to eliminate disturbances. However, soon
controls reached their minimum or maximum limits and were saturated to these values. Behavior of
the fast robust MPC CD control with response model G, and step disturbance d, was shown earlier
in Fig. 6.6. Asaremark may be highlighted that the fast robust MPC CD control behaved smilarly
also with these fixed model mismatch values which were now used for standard MPC CD

simulation.

If we look back to the values of Table 4.2 we observe that all badly behaved CD response models
have high condition numbers and large element values of RGA. In addition both DIC analysis and
L(E(0)) rule indicate that the decentralized integral controllability requirement is not satisfied with
these CD response models. Only exception is CD response model Gy which is DIC but not z(E(0))
rule compatible. It is clear that the strong interaction between adjacent zones in the complex
response models is a reason for higher RGA values. Similarly only small uncertainties in the
elements of G*% are allowed without worsening performance of the control. Therefore this
simulation confirms our previous claim that the inherent property of the plant G**® has a crucia
influence on the controllability of the uncertain CD system. If we increase the value of fixed
uncertainty of varying elements of G¥® from 25% to 50% and maintain the error of actuator
dynamics at the same values as before, the set of not badly behaving standard MPC CD response
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models will reduce to Gy, Gs, Gg and Gg. From Table 4.2 and Appendix B we see that they
represent less complex, diagonal dominant models with reasonable RGA values and rather
insignificant off-diagonal elements. On the other hand, if we reduce the value of fixed uncertainty
of varying elements of G**%, the set of not badly behaving models will be wider that the original
six models. Naturaly, if we continue this procedure we will end up to the CD response models

without mismatch.

Based on straightforward simulations, it seems that the standard MPC CD algorithm is able to
handle less complex CD response models with realistic uncertainty effectively and fast, at least

when the size of the model G

is moderate. On the other hand, when the complexity of the model
is high and interactions between adjacent zones are strong the algorithm went of the course and it
could not guarantee system robustness in the presence of model mismatch and similarly it could not

fulfill satisfactorily the control task.

6.2.5 Conclusions of the CD simulations

Numerous simulations were performed to demonstrate the efficiency of the new fast robust MPC
CD control strategy. Algorithm was applied to the large scale CD processes with general, realistic
uncertainty structures. The fast robust MPC CD algorithm is successful at controlling all the above
examples with time-varying uncertainties and input and output constraints. The new robust MPC
CD agorithm increases the tolerance of the controller to the model uncertainty conveniently and
concurrently provides that the decrease in the nominal performance is relatively small. Simulation
results of the closed-loop system show that the fast robust MPC CD algorithm achieves acceptable
steady-state performance when extensive model uncertainty is present.

In spite of the achieved good results some additional observations may be enounced. Although the
calculation of minimizers », Q; , Xi, Yi, Z at discretization points was done off-line, it required
considerably CPU time. This was especialy true for the large scale G**® models. Because the
calculation of minimizers is based on the LMI Matlab algorithm (Gahinet et al., 1996), the
limitations of LMI optimization software are present. Therefore the average computation time for
one large scale minimizer set, with a priori values for the LMI functions of the used primal robust
MPC agorithm, was approximately 24 hours on a 3 GHz Pentium 4 PC with 2 GB of RAM in
Matlab 5.2 environment. Definition of a priori values for the LMI functions is possible after
calculation of the first feasible set of minimizer, see in details Gahinet et al. (1996). In spite of all,
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the computation time of the whole subspace x; (i = 1,...,13), for one CD response model, was
amost 2 weeks. As regards to the minimizers calculated by using the modification of primal robust
MPC algorithm, the average computation time of one set was actually over 150 hours. Although
the use of 2.2 GHz AMD Athlon 64 Dua Core 4400 PC with 2 GB of RAM in Matlab 7.1
environment bisected this computation time, it was an extensive task to accomplish. In addition,
attempts to increase the dimension of the large scale CD response model G*#° |ed immediately to
the memory problems, as could be expected with the used hardware. Anyhow, for practica
applications the computation of minimizers can surely be arranged by using more powerful

computers or by using several CPUs for the task.

Comparison of the fast robust MPC CD agorithm with the prima robust MPC CD algorithm
revealed that the loss of performance was minor and the advantage in on-line computation was over
four orders of magnitude. However, a characteristic feature of the present fast robust MPC CD
algorithm was that it could not completely eliminate step disturbances even during long-lasting
simulation. An apparent reason for this is the harsh logarithmic scale discretization of state
subspace x; into fixed thirteen points and applied search method. Increased number of points would
definitely improve accuracy and performance of the algorithm. On the other hand, it would also
increase search time of the used bisection method, which turned out to be straightforward and
reliable but not necessarily extremely fast. Thus a consideration of more powerful search methods
would evidently offer better results (Press et al. 1992). Worthwhile would aso be the method
proposed by Kothare et al. (1996), which influences to the minimum decay rate of the states x:
XK < ¢ |IX(O)|| and to the speed of closed-loop response by defining an additional tuning
parameter p and a set of new LMIs. Anyhow, we have shown for quadratic CD response systems
with up to six models in the uncertainty set and models up to 86 states and inputs, that the fast

robust MPC CD agorithm can be applied on-line in areasonable amount of time.

On the other hand, study of the standard MPC CD algorithm with fixed uncertainty values for all
varying parameters indicated that the current MPC algorithms (Morari and Ricker, 1994) are fast
and efficient when the complexity of the CD response model of size G** islow or none model
mismatch is present. Thus the development work which has been done during the last decades in
this field has not been fruitless. However, when the complexity of the uncertain models was high
the standard MPC algorithm could not guarantee system robustness and execute the control task
well. First indication of this was aready seen in Chapter 4 from the results of RGA and DIC

analysis, which implied to the fundamental control problems with these complex CD response
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models and suggested carefulness in the selection of controller structure. On the other hand, if we
would accept integral controllability (IC) to our control criterion, we could use the IRA method
proposed by Yu and Luyben (1987) to analyse how much variation in the CD response model
parameters can be tolerated before the system becomes uncontrollablein terms of IC. Asreferredin
Chapter 4, the IRA approach is applicable to any controller with integral action, including also
Dynamic Matrix Controller. Anyhow, it seems that the standard MPC CD algorithm is applicable
to less complex CD response models. Likewise it is clear that more complex and demanding CD
models require other advanced control methods such as the robust MPC CD controller or some
kind of adaptation mechanism to be connected to the standard MPC CD algorithm.

We may conclude, that in simulations the new fast robust MPC CD algorithm provided robustness
to model uncertainties and computation efficiency in under 20 CPU sec, which is in order of
magnitude identical to sampling time for the real-time control algorithms. The developed new CD
algorithm looks very promising and efficient enough to be implemented on real paper machines,

even those of high dimensionality and complex CD response model structures.
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Chapter 7

Conclusions and Further Research

Thiswork has concentrated on the analysis and design of industrial robust model predictive control
(MPC) for paper machine cross-directional (CD) processes, which are known as large scale, ill-
conditioned, and inherently uncertain. Addressing model uncertainty for these processesis essential
because model mismatch can cause the closed loop system to perform poorly. An approach was
developed which exploits the structure of generic sheet process models to design a robust MPC
controller for uncertain CD processes. First, we studied the paper machine CD process, its
characteristics, and existing CD control applications. Then we derived a structure of CD response
model uncertainty, and proposed a new method to evaluate complexity of the response models.
After that we presented the robust model predictive CD control algorithm using linear matrix
inequalities (LMIs). This method was utilized to formulate the fast robust MPC CD algorithm. The

following is a summary of our main results.

Traditionally, the complexity of the steady state CD response model is evaluted by using its
condition number. Response models are generdly considered ill-conditioned and difficult to
control if their condition numbers are large. However, taking into account inherent characteristics
of the CD process, such as diagonal type input uncertainty of actuators, a better indicator to
describe model complexity is the relative gain array (RGA) method. Together with the concept of
decentralized integral controllable (DIC) system RGA provides a functional analysis and screening
method to classify CD responses and controller structures. By applying these methods to the
practical industrial CD response models we have shown that clear classification can be done, and

approach may be used further for controller design analysis.

In practical CD applications several reasons may cause errors to the CD response models. For

instance, such reasons include process disturbances, errors in the response estimation procedure,
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varying operating conditions in the paper machine, actuator failures, and MD-CD cross coupling
errors in the measurements. All these features of the uncertain process are connected to the CD
response model. We proposed a structured CD response model uncertainty, and use of linear time-
varying (LTV) system with polytopic uncertainty description (Kothare et al.,1996) to the solution

of this problem.

We adopted the MPC approach to develop present inadequate CD control strategies, and combined
it with a general polytopic uncertainty to formulate a new robust CD control strategy. We
formulated an infinite horizon MPC problem with input and output constraints and system
uncertainty as a convex optimization problem involving linear matrix inequalities (LMIs). The on-
line optimization involved the solution of an LMI-based linear objective minimization. The
resulting time-varying state-feedback control law minimized, at each time-step, an upper bound on
the robust performance objective, subject to input and output constraints. The feasible receding
horizon control algorithm robustly asymptotically stabilized the set of uncertain CD models under
consideration, which was verified performing severa simulations based on the industrial paper
machine models. Because the achieved computation times of the developed primal robust MPC CD
algorithm were too high for the real-time applications, a computationaly efficient approach was
adopted (Wan and Kothare, 2003).

We developed an efficient robust constrained state feedback MPC CD algorithm for linear time-
varying (LTV) systems, which produces a series of explicit control laws corresponding to a series
of controlled invariant dlipsoids caculated off-line one within another in the state space. We
suggested an off-line robust constrained MPC CD algorithm with guaranteed robust stability of
closed-loop system for the polytopic uncertainty description. The concept of an asymptotically
stable invariant ellipsoid enabled us to provide robust stability without the demand of finding an
optimum of the system at each sampling time. In addition, the formulation of a series of
asymptotically stable invariant ellipsoids one within another in state space provided more degree of
freedom to improve control performance. The clear advantage of this algorithm is that it gives off-
line a set of stabilizing state feedback laws, and because no optimization is required except a
simple bisection search, the on-line computation time of the robust MPC CD algorithm is
significantly reduced. We applied the fast robust MPC CD agorithm to selected industrial large
scale CD processes and verified the efficiency of the agorithm by numerous simulations. We
compared the fast algorithm with the primal robust MPC CD algorithm and addressed that the loss
of performance was minor, and the benefit in on-line computation was over four orders of
magnitude. In the simulations algorithm provided robustness to model uncertainties and
computational efficiency in under 20 CPU sec. The fast robust MPC CD algorithm is highly
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promising and efficient enough to be implemented on rea paper machines with complex CD
response models and similar decentralized processes.

Further research

There are numerous ways in which this research may be continued. All of the presented ideas are
examined by simulations; therefore an obvious step in the near future would be an implementation
on real production machines. However, before that some practical and aso theoretical issues may
be necessary to investigate. In the following, some examples of important further work are
presented, hopefully encouraging continued efforts in the area of robust MPC CD control and

implementations in the near future.

Mapping errors are not taken into account in the robust MPC CD simulation algorithm, and
similarly they are not included into the defined polytopic uncertainty description. However, this
shortcoming is easy to solve by extending the set of polytope with required minimum and

maximum limits and updating the number of vertexes in the equations (5.19) and (5.22).

One interesting theoretical subject, which should be studied, is the variable delay. In addition,
constant delay should be incorporated into the fast robust MPC CD algorithm, because for the
meantime it is excluded. A distinct reason for this is the formulation of augmented state and
expanded dimension of the LMI optimization problem. With the present off-the-shelf LMI
optimization software (Gahinet et al., 1996) a convenient solution to this limitation is the utilization

of more powerful hardware for the off-line cal culation of minimizers used in Algorithm 6.1.

On the other hand, as regards the computation, advanced computer technology or more specified
LMI optimization solvers would fairly provide means to overcome problems related to the
computation time of proposed large scale robust CD algorithm. Thisis an entirely unexplored field
of research, and it is anticipated that rather fast results could be achieved with a reasonable

contribution.

Apart from the application to CD control, the method proposed here has more genera applicability,
since the same kind of problems arise in a variety of process industry. Cross-directional models
represent general plants with dynamics multiplied by a constant response matrix. Similar model
formulations can easily be found from elsewhere process industry. For instance, a simplified
digtillation column studied by Skogestad et al. (1988) has exactly the same model structure.
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Therefore, it might be worthwhile to evaluate the applicability of developed efficient robust MPC
algorithm for these processes.

This study is still in an early stage and much more work is required before proceeding to practica
implementation. However, the fast robust MPC CD control strategy provides a very potential
method to improve the control of CD processes, and to increase product quality of paper
manufacturing. Therefore this subject should prove to be very fruitful for research in the coming
years.
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Appendix A

M athematics

This appendix summarizes some results from mathematics.

A.1 Relativegain array (RGA)

According to Bristol (1966) relative gain array (RGA) is a tool for pairing controlled and
manipulated variables in decentralized (multi-loop SISO) control systems. We will consider a

linear Nxn system described by the model

y(s) = G(s)u(s) (A.1-1)

Where u(s) and y(s) are n-dimensional vectors of inputs and outputs, respectively, and G(s) is a
matrix of transfer functions. It is assumed that G(s) is stable and strictly proper matrix, and the

steady-state gain matrix G = G(0) is nonsingular.

RGA defines how an apparent transfer function between a given output variable (y;) and a given
input variable (u;) is affected by control of other output variables. This measure is expressed as the
ratio (A;) of the transfer function between the two variables with all other outputs uncontrolled, and
the transfer function between the same variables when all other outputs are perfectly controlled

(Skogestad and Postlethwaite, 1996). Mathematically, the relative gain is expressed as

-1
PO A 8
ou, ou.

J U ke J Y ki

(A.1-2)
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The relative gains A;; for all possible variable pairings define a matrix, the Relative Gain Array
(RGA), A. The partial derivatives in Eq. (A.1-2) can be related to the open-loop transfer functions
of a system. From the definition of the relative gain, Eq. (A.1-2), it follows that the RGA for the

system can be expressed as
A) = G(E)(GE) ' (A.1-3)

where ® is the Hadamard of Schur product, which denotes element-by-element multiplication. A
steady state RGA is obtained when the transfer functions are evaluated at s = 0. A frequency-

dependent dynamic version of the RGA is obtained when s = jo.

A.1.1 Interpretationsand propertiesof the RGA

The RGA matrix (A.1-2) has some interesting interpretations and properties. Interpretations

(Héaggblom, 1995) may be listed as follows:
If 0 <A <1, the control loop will interact with other loops.

If Ajj =1 the relative gain indicates a desirable variable pairing since interaction does
not affect the open-loop gain between y; and u;. This is often interpreted so that the

loop yi-u; does not interact with the rest of the system.

If A > 1, the open-loop gain between y; and u; will decrease when the other loops are
closed. If the RGA contains values A;; » 1, the closed-loop system is very sensitive to

parameter changes. Such a system may be uncontrollable.
If A < 0, the sign of the open-loop gain between y; and u; is changed when the other
control loops are closed. Normally this results in an inverse response of y; to changes

m uj.

If Aj = 0, the relative gain does not indicate whether the corresponding variable

pairing is feasible or not. Control depends entirely on the other control loops.
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Properties of the RGA may be analyzed as follows. RGA-elements (A.1-2) can be written in the
following form

C, g; detG’

Ai=gir G =g —a— = (-])T A.l-4
Y gJ gjl gJ detG ( ) detG ( )

where §; denotes the ji’th element of the matrix G 2 G, GY denotes a matrix G with row i and

column j deleted, and ¢;; = (-1)™detGY is the ij’th cofactor of the matrix G.

For any non-singular nxn matrix G, the following algebraic properties hold (Skogestad and
Postlethwaite, 1996).

1. A(GH)=AG"H =AG)"

2. The sum of the elements of each row and each column of the relative gain array is

n n
always unity. That is 2/1”- =1 and Z/lij =1.
= =

3. Any permutation of rows and columns in transfer matrix G results in the same
permutation in the RGA. Mathematically, if A = RGA(G), and P, and P, are
permutation matrices, and if A’ = RGA(P,GP,), then A =P, AP,.

4. The RGA is invariant under input and output scaling. Thus A(D;GD,) = A(G)

where D; and D, are diagonal matrices.

5. A(G) =1 if and only if G is a lower or upper triangular matrix; and in particular

the RGA of a diagonal matrix is the identity matrix.

6. RGA is a measure of sensitivity to relative element-by-element uncertainty in the
matrix. Matrix G becomes singular if a single element in G is perturbed from g;;

1
2

1

to g7 = g (1- )-
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A.2 Singular value decomposition (SVD)

Sngular Value Decomposition (SVD) is an important tool in analyzing multivariable systems. It is
a key to the formulation of robust multivariable control problems, and it provides information on
system gain and measures of input and output interactions. In mathematics, SVD provides a
sensible method of dealing with the concept of matrix rank. An important result of the SVD is the
condition number, which describes how near the system is to singularity (Skogestad and

Postlethwaite, 1996).

Sngular Value Decomposition. For any complex nxm matrix G, there exist unitary matrices

U=[uu..u]eC™ (A.2-1)
and
V=[vivs...vy] € C™" (A.2-2)
such that
G = UzV' = > 5,(G)uV ; r=rank(G) < min{m,n} (A.2-3)
i1
% 0
where Y= e R™ (A.2-4)
0 0

and X, is a diagonal matrix
¥, =diag{ 0, 0, ...,0,} (A.2-5)

containing the ordered non-negative singular values of G, as

0=0,20,2..20,=0 (A.2-6)

r

U is a unitary matrix referred to as the output rotation matrix, V is a unitary matrix referred to as
the input rotation matrix, and u; and v; are referred to as the ith output and input singular vector,
respectively. Because U and V are unitary, G transforms an input vector v; into a vector with gain

o; in the direction of u;. Following (A.2-3), this can be written fori= 1,2, ..., r as
Gv; —ou; orequivalently G'u; —oyv; (A.2-7)

The condition number of a nxn matrix G is defined as
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O,
"G)= 2 (A.2-8)

n

Geometric interpretation of SVD (Featherstone, 1997) is that the singular values of the matrix G
are precisely the lengths of the semi-axes of the hyperellipsoid E defined by

E= {y|y:Gx,Xe cn,

x| =13 (A.2-9)

Therefore an input in the direction v, results in the largest ||y|| for all ||X|| = 1; while an input in the

direction vy, results in the smallest ||y|| for all”X” = 1. In terms of the input and output, v; (vy,) is the

maximum (minimum) gain input direction, while u; (uy,) is the maximum (minimum) gain output

direction.
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Appendix B

RGA Tablesof the CD Response Models

This appendix describes relative gain array (RGA) tables of the studied CD response models.
Original size of the RGA matrix is (86x86). Presented dimension of the tables depicts (11x16) first
elements of the RGA matrix.

RGA table of CD mode! 1

1,044
-0,044
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,044
1,089
-0,045
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
-0,045
1,091
-0,046
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
-0,046
1,001
-0,046
0,000
0,000
0,000
0,000
0,000
0,000

RGA table of CD mode2

1,250
-0,250
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,250
1,563
-0,313
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
-0,313
1,641
-0,328
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
-0,328
1,660
-0,332
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
-0,046
1,091
-0,046
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
-0,332
1,665
-0,333
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
-0,046
1,091
-0,046
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
-0,333
1,666
-0,333
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
-0,046
1,091
-0,046
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
-0,333
1,667
-0,333
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
-0,046
1,001
-0,046
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
-0,333
1,667
-0,333
0,000
0,000
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0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
-0,046 0,000
1,091 -0,046
-0,046 1,091
0,000 -0,046

0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
-0,333 0,000
1,667 -0,333
-0,333 1,667
0,000 -0,333

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,046
1,091

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,333
1,667

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,046

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,333

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



RGA table of CD model 3

1,150
-0,020
-0,130

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

-0,020
1,185
-0,028
-0,137
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,130
-0,028
1,348
-0,033
-0,157
0,000
0,000
0,000
0,000
0,000
0,000

0,000
-0,137
-0,033

1,366
-0,035
-0,160

0,000

0,000

0,000

0,000

0,000

RGA table of CD model 4

0,197
0,344
0,459
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,344
-0,285
0,520
0,421
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,459
0,520
-0,571
0,428
0,164
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,421
0,428
0,097
0,142
-0,089
0,000
0,000
0,000
0,000
0,000

RGA table of CD model 5

1,741
-0,460
-0,280

0,000

0,000

0,000

0,000

0,000

0,000

0,000

0,000

-0,460
1,457
-0,192
0,195
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,280
-0,192
0,737
0,265
0,471
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,195
0,265
0,208
0,208
0,124
0,000
0,000
0,000
0,000
0,000

RGA table of CD model 6

1,023
-0,023
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

-0,023
1,046
-0,023
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
-0,023
1,046
-0,023
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
-0,023
1,046
-0,023
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
-0,157
-0,035
1,392
-0,037
-0,163
0,000
0,000
0,000
0,000

0,000
0,000
0,164
0,142
0,487
0,113
0,093
0,000
0,000
0,000
0,000

0,000
0,000
0,471
0,208
0,832
-0,247
-0,264
0,000
0,000
0,000
0,000

0,000
0,000
0,000
-0,023
1,046
-0,023
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
-0,160
-0,037
1,398
-0,037
-0,164
0,000
0,000
0,000

0,000
0,000
0,000
-0,089
0,113
0,157
0,385
0,434
0,000
0,000
0,000

0,000
0,000
0,000
0,124
-0,247
1,654
-0,411
-0,119
0,000
0,000
0,000

0,000
0,000
0,000
0,000
-0,023
1,046
-0,023
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
-0,163
-0,037
1,403
-0,037
-0,165
0,000
0,000

0,000
0,000
0,000
0,000
0,093
0,385
-0,443
0,548
0,417
0,000
0,000

0,000
0,000
0,000
0,000
-0,264
-0,411
1,346
-0,018
0,346
0,000
0,000

0,000
0,000
0,000
0,000
0,000
-0,023
1,046
-0,023
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
-0,164
-0,037
1,404
-0,038
-0,165
0,000

0,000
0,000
0,000
0,000
0,000
0,434
0,548
-0,429
0,368
0,079
0,000

0,000
0,000
0,000
0,000
0,000
-0,119
-0,018
0,418
0,316
0,402
0,000

0,000
0,000
0,000
0,000
0,000
0,000
-0,023
1,046
-0,023
0,000
0,000
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0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
-0,165 0,000
-0,038 -0,165
1,405 -0,038
-0,038 1,406
-0,165 -0,038

0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,417 0,000
0,368 0,079
0,194 0,107
0,107 0,492
-0,086 0,153

0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,346 0,000
0,316 0,402
0,308 0,069
0,069 1,189
-0,039 -0,373

0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
0,000 0,000
-0,023 0,000
1,046 -0,023
-0,023 1,046
0,000 -0,023

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,165
-0,038
1,406

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,086
0,153
0,029

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,039
-0,373
1,687

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,023
1,046

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,165
-0,038

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,168
0,438

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,288
-0,320

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,023

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,165

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,466

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,044

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000



RGA table of CD model 7

1,450
-0,237
-0,227

0,013

0,000

0,000

0,000

0,000

0,000

0,000

0,000

-0,237
1,203
-0,096
0,089
0,041
0,000
0,000
0,000
0,000
0,000
0,000

-0,227
-0,096
0,756
0,166
0,347
0,054
0,000
0,000
0,000
0,000
0,000

0,013
0,089
0,166
0,247
0,229
0,229
0,026
0,000
0,000
0,000
0,000

RGA table of CD model 8

1,068
-0,048
-0,014
-0,006

0,000

0,000

0,000

0,000

0,000

0,000

0,000

-0,048
1121
-0,054
-0,013
-0,007
0,000
0,000
0,000
0,000
0,000
0,000

-0,014
-0,054
1,140
-0,052
-0,012
-0,007
0,000
0,000
0,000
0,000
0,000

-0,006
-0,013
-0,052
1,144
-0,053
-0,013
-0,007
0,000
0,000
0,000
0,000

RGA table of CD model 9

1,572
-0,301
-0,111
-0,157
-0,003

0,000

0,000

0,000

0,000

0,000

0,000

-0,301
1,932
-0,407
-0,074
-0,154
0,004
0,000
0,000
0,000
0,000
0,000

-0,111
-0,407
2,129
-0,352
-0,075
-0,164
-0,020
0,000
0,000
0,000
0,000

-0,157
-0,074
-0,352
2,227
-0,350
-0,078
-0,197
-0,019
0,000
0,000
0,000

RGA table of CD model 10

1,940
-2,384
0,894
0,816
-0,421
0,000
0,155
0,000
0,000
0,000
0,000

-2,384
2,349
-1,351
1,106
1,228
-0,060
0,000
0,111
0,000
0,000
0,000

0,894
-1,351
0,407
-0,517
1,036
0,370
0,175
0,000
-0,015
0,000
0,000

0,816
1,106
-0,517
0,575
-1,155
0,301
-0,245
0,065
0,000
0,053
0,000

0,000
0,041
0,347
0,229
0,442
0,027
-0,086
-0,001
0,000
0,000
0,000

0,000
-0,007
-0,012
-0,053

1,145
-0,053
-0,013
-0,007

0,000

0,000

0,000

-0,003
-0,154
-0,075
-0,350

2,227
-0,350
-0,079
-0,197
-0,019

0,000

0,000

-0,421
1,228
1,036

-1,155
1,282

-0,277

-0,566

-0,288
0,093
0,000
0,068

0,000
0,000
0,054
0,229
0,027
1,101
-0,195
-0,220
0,005
0,000
0,000

0,000
0,000
-0,007
-0,013
-0,053
1,145
-0,053
-0,013
-0,007
0,000
0,000

0,000
0,004
-0,164
-0,078
-0,350
2,230
-0,344
-0,079
-0,198
-0,020
0,000

0,000
-0,060
0,370
0,301
-0,277
0,755
-0,699
0,359
0,344
-0,128
0,000

0,000
0,000
0,000
0,026
-0,086
-0,195
1,356
-0,147
0,010
0,037
0,000

0,000
0,000
0,000
-0,007
-0,013
-0,053
1,145
-0,053
-0,013
-0,007
0,000

0,000

0,000
-0,020
-0,197
-0,079
-0,344

2,300
-0,346
-0,083
-0,210
-0,022

0,155
0,000
0,175
-0,245
-0,566
-0,699
1,984
-1,697
0,941
1,131
-0,309

0,000
0,000
0,000
0,000
-0,001
-0,220
-0,147
0,900
0,108
0,306
0,054

0,000
0,000
0,000
0,000
-0,007
-0,013
-0,053
1,145
-0,053
-0,013
-0,007

0,000
0,000
0,000
-0,019
-0,197
-0,079
-0,346
2,300
-0,346
-0,082
-0,210

0,000
0,111
0,000
0,065
-0,288
0,359
-1,697
0,983
-0,547
1,112
0,785
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0,000
0,000
0,000
0,000
0,000
0,005
0,010
0,108
0,307
0,244
0,292

0,000
0,000
0,000
0,000
0,000
-0,007
-0,013
-0,053
1,145
-0,053
-0,013

0,000
0,000
0,000
0,000
-0,019
-0,198
-0,083
-0,346
2,305
-0,343
-0,083

0,000
0,000
-0,015
0,000
0,093
0,344
0,941
-0,547
0,203
-0,845
0,709

0,000
0,000
0,000
0,000
0,000
0,000
0,037
0,306
0,244
0,335
0,089

0,000
0,000
0,000
0,000
0,000
0,000
-0,007
-0,013
-0,053
1,145
-0,053

0,000
0,000
0,000
0,000
0,000
-0,020
-0,210
-0,082
-0,343
2,317
-0,341

0,000
0,000
0,000
0,053
0,000
-0,128
1,131
1,112
-0,845
1,354
-1,179

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,054
0,292
0,089
0,948

0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,007
-0,013
-0,053
1,145

0,000
0,000
0,000
0,000
0,000
0,000
-0,022
-0,210
-0,083
-0,341
2,318

0,000
0,000
0,000
0,000
0,068
0,000
-0,309
0,785
0,709
-1,179
1,038

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,034
-0,014
-0,160

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,007
-0,013
-0,053

0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,022
-0,210
-0,083
-0,341

0,000
0,000
0,000
0,000
0,000
0,035
0,000
0,103
0,026
-0,280
0,071

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,003
-0,223

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,007
-0,013

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,023
-0,213
-0,084

0,000
0,000
0,000
0,000
0,000
0,000
0,131
0,000
0,086
-0,421
-0,302

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,007

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,023
-0,214

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,015
0,000
0,086
-0,005

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
-0,024

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,007
0,000
0,093

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,117
0,000



RGA table of CD model 11

0,413
0,853
-0,012
0,410
-0,541
-0,053
-0,070
0,000
0,000
0,000
0,000

0,853
-2,432
2,853
-0,110
0,236
-0,445
0,276
-0,231
0,000
0,000
0,000

-0,012
2,853
-3,141
2,109
0,024
0,146
-1,275
0,331
-0,035
0,000
0,000

0,410
-0,110
2,109
-1,231
0,604
-0,240
0,138
-0,842
-0,033
0,195
0,000

RGA table of CD model 12

2,700
-2,865
0,976
-0,872
1,895
-0,722
0,075
-0,261
0,342
-0,269
0,000

-2,865
4,578
-1,533
0,959
-2,042
1,909
-0,124
0,697
-1,010
0,411
0,020

0,976
-1,533
0,004
-0,077
0,744
-0,666
0,464
0,554
1,019
-0,458
0,003

-0,872
0,959
-0,077
-0,380
-0,280
0,398
-0,159
-0,132
0,908
0,855
-0,097

-0,541
0,236
0,024
0,604

-0,445
0,971

-0,135
0,047
0,303

-0,172
0,108

1,895
-2,042
0,744
-0,280
0,632
-0,520
0,087
0,364
-1,273
1,167
0,530

-0,053
-0,445
0,146
-0,240
0,971
-0,351
0,866
-0,045
0,201
0,039
-0,174

-0,722
1,909
-0,666
0,398
-0,520
0,115
0,094
-0,366
0,887
-0,939
0,584

-0,070
0,276
-1,275
0,138
-0,135
0,866
-1,297
1,390
0,203
0,082
0,861

0,075
-0,124
0,464
-0,159
0,087
0,094
-0,236
0,249
-0,255
0,391
-0,453

0,000
-0,231
0,331
-0,842
0,047
-0,045
1,390
-1,381
0,619
0,291
-0,127

-0,261
0,697
0,554

-0,132
0,364

-0,366
0,249

-0,200

-0,156
0,194
0,209
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0,000
0,000
-0,035
-0,033
0,303
0,201
0,203
0,619
0,184
-0,856
0,296

0,342
-1,010
1,019
0,908
-1,273
0,887
-0,255
-0,156
0,874
-0,837
0,018

0,000
0,000
0,000
0,195
-0,172
0,039
0,082
0,291
-0,856
0,780
-0,215

-0,269
0,411
-0,458
0,855
1,167
-0,939
0,391
0,194
-0,837
0,717
-0,038

0,000
0,000
0,000
0,000
0,108
-0,174
0,861
-0,127
0,296
-0,215
-0,013

0,000
0,020
0,003
-0,097
0,530
0,584
-0,453
0,209
0,018
-0,038
0,044

0,000
0,000
0,000
0,000
0,000
0,086
-0,227
0,887
0,062
0,381
0,185

0,000
0,000
-0,120
0,120
-0,522
0,853
0,517
-0,064
-0,573
0,531
0,127

0,000
0,000
0,000
0,000
0,000
0,000
0,188
-0,232
-0,045
0,201
-0,023

0,000
0,000
0,000
-0,243
0,480
-0,801
0,566
-0,072
1,832
-1,324
-0,067

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,295
-0,173
0,355
-0,193

0,000
0,000
0,000
0,000
-0,262
0,227
-0,287
0,013
-0,604
0,890
0,132

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,273
-0,153
0,334

0,000
0,000
0,000
0,000
0,000
-0,052
0,062
-0,039
-0,131
-0,087
-0,274

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,072
0,017

0,000
0,000
0,000
0,000
0,000
0,000
0,009
0,026
-0,057
0,095
0,167



Appendix C

An Example of the Discrete-time CD Response M odel

This appendix presents, as an example, a simulated discrete-time response model of the Toeplitz

symmetric matrix G2*% = toeplitzx{ 1.0, 0.4, 0, ..., O}

First-order actuator dynamics with uncertain model parameters and a constant time-delay are used:

k.e™
() = =
%9 7,S+1
ko€ [0.9, 11]; 7z e[6.0,10.0]; re Z (C.1-1)

The time-delay ris an integer number of sample times { r €Z}. However, in this example it is not
used (t = 0). The gain k, and the time constant z, are allowed to vary randomly and independently
between the specified upper and lower bounds.

A steady-state assumption is presumed and Tustin's method is used to accomplish the
transformation from s-domain to z-domain. Sampling time is 6 sec. We have three pairs of varying
parameters. gi € [Giminy Jimaxl» Ka € [Kamins Kamax] @Nd % € [ Zamin, Zamax], therefore L = 6 and the multi-
model polytope is Qgm = Co{[A1 B1],[A2 By, ...,[As Bg]}. Discrete-time response model will be of
theform

YD =Gu?, G@ =0(2G** (C.1-2)
where the elements of the transfer matrix G(2) are given by

G@=Clz21-A]"Bz7",i=12,...6 (C.1-3)
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and (A, B;, C) are defined in equations (5.7) and (5.8). Discrete-time state space matrices are

a, 0 0O 0 O 0 b b, 0O 0 O 0
0 a 0 O 0 b, b b 0 .. 0
0 0 a 0 O 0 O b b b O 0
0 0 0 & . .. 0O B 0 0 b b . .. 0O
A= 0O O 0O 0 O 10 0 b, 0 O
0 0a 0 O 0 b, b b 0
0 .0 0 a4 O 0 . 0 b b b
0 0000 ! 20x20 0 0 0 0 bzl bl' 20x20
a, €[0.3333 05384], i=12,...6 b, € [0.5455 0.6667]
b, €[0.1636 02727], i=12,...6
c, 0 0 0 O 0
0O ¢, 0 O 0
0 0 ¢ 0O 0
O 0 O e . 0O
C = E
0O O 0O 0 O
0 0Oc O O
0 . 0 0 ¢ O
O O O O O C]* 20x20

C, =1 i=12..6

where the dements of the matrices A, and B; vary between the defined upper and lower limits
depending on the multi-model polytope Qgm = Co{[A1 B1],[A2 B2],....[As Be]}-
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	Abstract: This study is concerned with the analysis and design of industrial robust model predictive control (MPC) for paper machine cross-directional (CD) processes, taking into account inherent uncertainty characteristics of the process. Paper machine CD control systems belong to the set of large scale, complex multivariable control systems, which are well known as ill-conditioned processes. 

In this thesis, the concepts of structured model uncertainty and linear time-varying (LTV) systems with polytopic multi-models are exploited for describing uncertainty characteristics of the CD process. Complexity of the CD response system in terms of controller structure and inherent characteristics of the response model are evaluated based on the relative gain array (RGA) and the decentralized integral controllability (DIC). Results of the evaluation are utilized to select accurate CD response models for analysis of the primal robust MPC CD control strategy. An infinite horizon MPC problem with input and output constraints and polytopic system uncertainty is formulated as a convex optimization problem involving linear matrix inequalities (LMIs). The resulting time-varying state-feedback control law minimizes, at each time-step, an upper bound on the robust performance objective, subject to constraints. 

Because the computation time of the primal robust MPC CD algorithm is too high for real time applications, a computationally efficient approach is adopted. The developed fast robust constrained state feedback MPC CD algorithm is based on a series of explicit control laws corresponding to a series of controlled invariant ellipsoids, calculated off-line, one within another in the state space. The concept of asymptotically stable invariant ellipsoid enables to provide robust stability without the demand of finding an optimum of the system at each sampling time. The advantage of this algorithm is that it gives off-line a set of stabilizing state feedback laws. Because no optimization is required, except a simple bisection search, the on-line computation time of the robust MPC CD algorithm is significantly reduced. The fast robust MPC CD algorithm is applied to the selected industrial large scale CD processes, and its efficiency is verified with numerous simulations and comparisons with the primal robust MPC CD algorithm. Simulations indicate that the loss of performance is minor and the benefit in on-line computation is over four orders of magnitude.
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