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1. Introduction

1.1 Computational personalized medicine

The fundamental goal of personalized medicine is to identify individualized

therapies that maximize effectiveness with minimal side-effects. The

effectiveness, however, depends on a variety of factors such as genetic,

molecular, and environmental, and much of this information remains

unknown. A promising approach is then to learn computational models

using the available genomic and molecular profiles of the patient samples

and the responses they elicit when exposed to a spectrum of drugs. The

models serve in two ways: (1) predicting responses for a new sample and

(2) identifying features predictive of drug responses. These predictions

can then be used to generate hypotheses on choosing therapies that are

potentially effective for the individual patient.

Drug response prediction is valuable in treating many diseases and

is especially plausible for cancer, where the genetic heterogeneity of the

cells has a significant impact on the response. The development of compu-

tational models has been made possible through recent large-scale high-

throughput screening studies [1, 2], providing genomic, transcriptomic (or

molecular) as well as drug response measurements on preclinical human

models of cancers (commonly known as “cell lines”). Importantly, these

benchmark studies showed that computational models could be learned to

gain mechanistic and therapeutic insights.

However, the modeling task is difficult and poses computational chal-

lenges that raise the need for developing new and robust models. A key

challenge underlying drug response modeling is the “small n, large p”

problem. Compared to the very high dimensionality of the ‘-omics’ features,

which are often highly correlated as well, small sample sizes offer limited

11



Introduction

statistical power, leading to highly uncertain predictions. Moreover, the

cancer types are inherently heterogeneous, thus making the robust infer-

ence even harder. This thesis addresses a fundamental research question

in personalized medicine: how to improve the drug response prediction in

cancer given the aforementioned computational challenges. The ultimate

goal would be to develop models that provide better predictions, a step

towards finding a personalized cure in cancer. Here, a key assumption is

that genome affects the response, and we want to learn that.

The main idea in computational personalized medicine is very simple:

given the genome-wide features of the cell lines as input (also known as

independent variables or covariates) and drug responses as the target

(output or dependent variable), learn a model of the drug response. The

model could predict responses to previously unseen cell lines and could

help interpret features relevant to the prediction task. Alternatively, given

the chemical and structural data of the drugs as input and their responses

on a single cell line (output or dependent variable), learn a predictive model

of the drug response. The model could predict responses to untested drugs

and compounds. It is commonly known as a quantitative structure-activity

relationship (QSAR) task in pharmaceuticals and has wide applicability in

drug design and discovery [3].

Machine learning models, commonly used to solve these tasks, could

broadly be grouped into two categories: linear and nonlinear. Multivariate

regression, partial least squares (PLS), and principal component regression

(PCR) are some of the frequently used linear models, while kernels methods

(such as kernelized regression), neural networks, and random forest are

well-known examples of nonlinear counterparts (Chapter 2 presents these

models briefly).

While there are several advantages and disadvantages, linear models

neglect the relevant nonlinear structure in the data and only consider

the linear relationships between the variables. Commonly, these models

are used to predict for a target variable only [1, 2]. In practice, for each

drug, a separate model is learned. When the data are scarce, a natural

motive would be to gain statistical strength by gathering evidence from

multiple sources, for instance, the use of response measurements of multi-

ple drugs and the integration of multiple ‘-omics’ data sources. However,

the features encoded in the genomic and transcriptomic data may provide

varying levels of information about the functional activities in the cell. For

example, a mutated gene present in the genomic data may show up or

12
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down-regulation of its expression in the transcriptomic data. Many exist-

ing models do not offer any approach to exploit this information among

the features of different data sources systematically, other than treating

them as independent covariates in a predictive model. There is a need to

develop new methods that can integrate these various types of features in a

principled way, effectively learning the relationship between them and all

the target variables simultaneously. The thesis adopts a multi-disciplinary

strategy and combines three different research fields: machine learning,

bioinformatics, and personalized medicine.

1.2 Contribution

This thesis proposes novel machine learning methods for improving the

accuracy of predicting drug responses in cancer cells1. Specifically, the

contributions of the thesis are two-fold:

1. The thesis presents multi-view and multi-task methods to improve

the drug response predictions by efficiently addressing the underlying

computational challenges. Computational methods, commonly referred

to as multi-view, aim to effectively integrate multiple data sources,

yielding an increased signal-to-noise ratio in the parameter space. Here,

a key assumption is that a joint modeling of the features from multiple

data sources reveal hidden statistical relationships, which may not be

obvious from the data itself and are relevant for the drug response

prediction. Another closely related class of methods, commonly known

as multi-task, allows for the learning of a task from other related tasks.

For example, predicting one drug response alone can be considered as an

individual task, whereas two drugs whose responses are highly correlated

can provide the statistical boost when learned together. These models

are especially beneficial when the number of samples is small, or when

the samples come from a diverse collection of cancers.

2. The thesis introduces novel ways of incorporating prior biological knowl-

edge. Due to the small sample sizes, the data-driven task requires

additional information to improve drug response predictions. A valu-

able source is prior knowledge in public databases (or from biomedical

1This thesis uses both these terms ”cancer cells” or “cancer cell lines” interchange-
ably.
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experts), readily available to be utilized in a biologically meaningful way.

Publication I presents a novel multi-view multi-task kernelized proba-

bilistic regression method to predict drug responses on previously unseen

cancer cell lines. Unlike the classical personalized medicine task of pre-

dicting a drug response for the new cell line, the proposed method predicts

responses to multiple drugs simultaneously. The results demonstrate that

nonlinear modeling, multi-task and multi-view learning supplemented

with the prior biological knowledge significantly improve the drug response

predictions. Publication IV extends the scope of the model in a disease

other than cancer. The prediction task is to predict the drug responses in

cells derived from rheumatoid arthritis patients.

Publication II introduces a new multi-view multi-task kernelized prob-

abilistic matrix factorization method for drug response prediction. The fac-

torization is needed to automatically differentiate the underlying distinct

drug responses across and within different cancer types. The publication

studies novel applications of drug response prediction, made possible by

the proposed model. The multi-view matrix factorization allows for the

inclusion of input data sources for both cell lines and drugs simultaneously,

making it possible to solve the difficult task of predicting response to an

entirely new drug on a previously unseen cell line.

Publication III proposes a flexible formulation for the multi-view part

of the model introduced in Publication II, additionally proposing a new

way to incorporate prior biological knowledge. The results show that

the combination of new model formulation and prior knowledge improves

drug response analysis in comparison to existing approaches (including

its predecessor proposed in Publication II). Also, Publication III proposes

interpretable relationships between the groups of molecular features and

drug responses.

Publication V presents an R package that implements Group Factor

Analysis (GFA), a linear multi-view factor analysis model. Unlike kernel

methods, GFA searches for linear relationships between the genome-wide

features of the cell lines and their drug response profiles. Interpreting

these feature-response relationships could be useful in several clinical

applications. The R package provides a complete data analysis pipeline to

study drug response predictions in future studies.

Publication VI introduces an approach to extracting and using prior

knowledge from an expert in drug response modeling. Publication I, II
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and III incorporate prior knowledge from public databases; however, an-

other useful source of knowledge is an expert (a clinician or biomedical

researcher) who could provide information on the importance of the fea-

tures. Specifically, Publication VI presents an approach to extracting prior

knowledge from an expert efficiently, and the results demonstrate that

this approach significantly improves drug response predictions in “small n,

large p” problem setting.

1.3 Organization of the thesis

Chapter 2 presents computational models that are commonly used to

predict drug responses. Chapter 3 discusses the drug response data, the

genomic, transcriptomic, and other genome-wide features of the cell lines,

and the chemical as well as structural properties of drugs in addition to the

notion of prior biological knowledge. Chapter 4 describes the multi-view

and multi-task learning that form the basis of this thesis. In particular,

the chapter presents the relevant theoretical knowledge for “learning from

multiple data sources”. Chapter 5 presents the main contributions of the

thesis, describing the new multi-view and multi-task methods for drug

response prediction. Chapter 6 concludes the thesis and suggests directions

for further research.
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2. Computational models for drug
response prediction

In drug response analysis, two complementary approaches exist that ex-

ploit high-throughput drug screening data from cancer cells. First, person-

alized medicine approach: given genome-wide features of a cell, predict the

cell’s responses to a priori known set of drugs. Second, QSAR approach:

given chemical features of a drug, predict the response of this drug in

apriori known set of cells. The idea of computational modeling for these

approaches consists of two steps. The first step is to learn a model that de-

scribes the relationship between drug responses and genomic (or chemical)

features. Next, the model predicts for new data with unknown response

values. This chapter briefly describes the commonly used computational

models for both approaches.

2.1 Linear regression

Consider X ∈ R
n×p, the matrix of ‘-omics’ data and y ∈ R

n×1, the vector of

drug responses. Where n denotes the number of samples (here cell lines or

patients) and p represents the number of features.

Linear regression assumes that the drug responses y have been generated

from a linear combination of unknown weight vector w ∈ R
1×p and the

features in X, corrupted with a noise ε (usually known as an error term).

Mathematically, the model can be expressed as

y = XwT + ε. (2.1)

The machine learning goal is then to learn w such that y − XwT

is minimized, or more intuitively the sum of squared errors
∑n

i=1 ε
2
i is

minimized. Once the w are learned, they can be used for two purposes: (1)

to gain biological insights from important features and (2) to predict drug
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response for a new sample x∗, by

y∗ = x∗wT . (2.2)

The classical ordinary least squares approach infers w such that∑n
i=1C(w, xi, yi) =

∑n
i=1 ε

2
i = (y−Xw)T (y−Xw) is minimized. In genomic

and molecular data, since the number of features is often much higher than

the number of samples, the inference becomes ill-posed and suffers from

over-fitting. A frequent solution is to introduce a regularization term in the

cost function. The regularization penalizes the complexity of the regression

model by adding penalty terms, ||w||1 and ||w||2 norms to the cost function.

Recently, Zou et al [4] have proposed the elastic net regularization, as

follows:

min
w

n∑
i=1

C(w, xi, yi) + λ
(
α||w||1 + (1− α)

2
||w||22

)
. (2.3)

Here λ > 0 is the penalty parameter that controls the amount of

regularization and shrinking of the weight vector w. The penalty reduces

to the ridge regression [5] when α = 0 and, the lasso regression [6] when

α = 1, while for all α ∈ (0, 1) is the combination of the ridge and lasso

regression.

A striking characteristic of the elastic net regularization is that it

can select groups of correlated features while favoring automatic feature

selection and continuous shrinkage. The “grouped selection” property of the

elastic net penalty gives an advantage over the lasso penalty for selecting

the features (in this case genes) whose expressions are predictive of drug

responses. Typically, for those genes sharing the same biological process,

the correlations among them can be very high. The lasso regression only

selects at most n genes out of p candidates (while p >> n). Whereas, with

the elastic net regression, when a gene is selected, the whole group of

correlating genes is included into the model.

Owing to these nice properties of feature selection, elastic net regres-

sion has become a popular computational model in drug response analysis

and, has been applied in numerous benchmark studies to identify genes

predictive of drug responses in cancer cells [1, 2, 7, 8].

Principal Component Regression (PCR) performs a two-step approach. In

the first step, top principal components Z (also known as latent factors)

of the genomic data X are obtained. In the second step, a linear model

between the y and Z is learned using ordinary least squares. The inferred

weight vector w in the transformed space, is then mapped back into the

original space to obtain biological interpretations.
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Partial Least Squares (PLS) Regression. While the main idea is similar

to PCR, PLS [9] regression additionally exploits the output y to construct

the latent factors Z. A key motivation is that these factors capture the

underlying noise-free true signal, which may be substantial for the mo-

del. It is commonly assumed that using the subset of latent factors for

learning the regression model behaves like a regularization and avoids

over-fitting [10]. Multiple studies have used both PCR and PLS for drug

response analysis [11, 12, 13].

2.2 Kernel methods

In contrast to the linear counterparts, kernel methods can model the non-

linear relationships in the data by choosing a suitable similarity measure

between the samples. The main idea of a kernel-based formulation is

to learn a decision function in the feature space where data points are

implicitly mapped to using a kernel function [14].

Consider y ∈ R
n×1, the vector of drug responses and X ∈ R

n×p, the ma-

trix of genomic data containing n independent and identically distributed

samples {xi ∈ X}ni=1 . The decision function that is used to predict the

drug response of a new sample x∗ can be written as

f(x∗) = wTk∗ + b (2.4)

where w denotes the unknown weight vector for the samples and b repre-

sents the error term (also called as bias). And k∗ = [k(x1,x∗).....k(xn,x∗)]T

where k : X ×X → R is the kernel function (usually known as kernels in

machine learning community) that gives similarities between the samples.

Intuitively, a regression framework that uses a kernel as input can be

termed as kernelized regression.

Several drug response studies have used kernelized regression, for

example to predict drug responses in cancer cells [2, 11, 15] as well as

to predict drug side effects from chemical structures and target informa-

tion [16]. A closely related concept in the Bayesian domain is known as

Gaussian Process (GP) regression [17]. Likewise, GP regression uses a

kernel to define the covariance of a prior distribution over the decision

function.
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Kernel function

In machine learning, kernels are used to change the input space of the

data using a mapping function. In other words, any method whose formu-

lation has the input data always in dot-product form, can be kernelized

by replacing these dot-product terms by a mapping function, called a ker-

nel; however, that should satisfies certain mathematical properties [18].

Kernelizing a method has several advantages, such as obtaining a richer

feature representation, which yields better learning abilities.

When kernelizing a method, a central question is how to assure wheth-

er the chosen kernel corresponds to a dot product on a higher-dimensional

vector space, in other words, whether a kernel is valid. Two concepts are

essential for assuring the validity of a kernel: Gram matrix and positive

semi-definiteness (see [18] for a more detailed explanation and mathe-

matical proofs). According to the Mercer’s Theorem [19] and Reproducing

Kernel Hilbert Space (RKHS) [20, 18], any positive semi-definite matrix

that is represented as a dot product of two functions on the RKHS, spanned

by the kernel. In this way, a kernel can be treated as a similarity measure

for pairs of samples.

Gaussian kernel. The Gaussian kernel (also known as Radial Basis Func-

tion RBF) between two samples x and x∗ is defined as

k(x,x∗) = exp
(‖x− x∗‖2

2σ2

)
. (2.5)

Where σ is a hyperparameter referred to as the length scale. It determines

the smoothness of the decision boundary imposed by the kernel. The larger

σ is, the smoother the decision surface is. The kernel is called Gaussian

since its formula is proportional to the PDF of the normal distribution.

Gaussian is one of the most widely used kernels due to its simplicity,

interpretability, and ability to capture nonlinear relationships.

2.3 Random forest and ensemble methods

The random forest method [21] works on two principles: (1) It generates

several regression trees based on random selection of samples and random

selection of features. (2) It provides the prediction of the new sample by

averaging the predictions of several regression trees.

For each tree, a random subset of samples is selected using a bootstrap

sampling of the observed samples, and the features to be selected at each
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branch are a random subset of the full set of features. Essentially, a random

subset of samples, as well as a random subset of features, is selected to

generate each random tree, thus forming a random forest. Because of

this two-step selection at random, the generated regression trees are

decorrelated, and thus, averaging their prediction responses reduces the

variance of the error. As the random forest regression is built on the

ensemble approach, it is expected to provide high prediction accuracy, but

the biological interpretability is limited.

Though the method can handle a large number of features, the number

of regression trees needed to model the data would also be very high,

hence raising potential scalability and complexity challenges. Nonetheless,

random forest regression has frequently been used for predicting drug

responses in multiple studies [15, 22, 23, 24].

2.4 Deep learning and neural networks

Representation learning takes to input the raw data and automatically

learns the representations needed for robust prediction. Deep learning,

in particular, deep neural networks, are representation learning meth-

ods with multiple layers of representation, obtained by defining simple

but nonlinear functions that each transform the representation at one

layer (beginning from the raw input data features) into a representation

at a higher, slightly more abstract layer. Eventually, defining enough

such transformations supports learning complex functions. Deep learning

models do not require designing these layers of representations manually.

Instead, these are learned from data using a general-purpose learning

algorithm [25].

Usually, neural networks (consisting of one layer) have been applied to

solve classical QSAR problems [26], as well as to predict drug responses in

cancer cells [27]. However, due to high-dimensional data, these shallow

neural networks are limited in their applicability and depends on appro-

priate preselection of features. However, more recently, deep learning

methods have been proposed that utilize high-dimensional chemical and

structural features to predict drug responses [28].

A beneficial aspect of the linear models is that they are easier to

interpret and provide a straightforward analysis of the relationship be-

tween the genomic and molecular features and drug responses. However,
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the linear models neglect the relevant nonlinear structure in the data

which may result in a bad prediction accuracy. On the contrary, nonlinear

method provide improved prediction performance, however compromise

the interpretability.
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3. Multiple data sources

Thanks to recent large-scale high-throughput screening efforts that have

generated, not only the genomic and molecular data but also the response

measurements of hundreds of anti-cancer drugs against several hundreds

of human cancer cell lines [1, 2]. Figure 3.1 explains the various types of

data sources that are potentially available in drug response analysis (not

always in practice) and, this chapter presents them briefly.

Figure 3.1. There are available multiple types of high-throughput data sources for drug
response analysis. Cells are derived from cancer patients and cultured in a
laboratory. On the one hand, the cells are subjected to genomic and transcrip-
tomic profiling to measure their mutational statuses, copy number variants,
gene expression levels and similar other molecular features. On the other
hand, the same cells are treated with anti-cancer drugs and their growth in re-
sponse to the given concentrations is summarized with a drug response curve.
Moreover, a drug’s activity can be characterized by chemical and structural
features (known as descriptors) using chemo-informatics tools. Additionally,
much prior knowledge about the features is readily available, for instance,
MSigDB contains a collection of gene sets and pathways which can be used to
extract pathway-based groups of features (here genes).
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3.1 Genomic and transcriptomic profiles

Gene expression is the process of transcribing a gene (essentially a DNA

sequence) into RNA. The expression level of a particular gene indicates

the approximate number of RNA copies present in a cell and generally

correlates with the abundance of the corresponding proteins produced in

the cell. Thus, the expression of a gene characterizes its activity under

certain normal or disease conditions in cells. Recent technologies such

as microarray [29] and RNA sequencing [30], have enabled measuring

the activities of several thousand of genes simultaneously (hence named

high-throughput). Mainly, the gene expression measurements characterize

the genome-wide transcriptomic profiles that may be indicative of the par-

ticular response patterns and helps in identification of molecular targets

predictive of drug responses in cancer cells.

A simple mutation defines a change in a genome on a small scale

affecting one or a few nucleotides. Mutations can arise from a change of a

single nucleotide (i.e., point mutation), insertion or deletion of one or more

extra nucleotides. Such simple mutations (referred to as genomic features)

occurring in the coding regions of the genome alter the protein product,

resulting in the change of functionality of that particular protein. These

mutations can contribute to cancer development. The widely known p53,

is a tumor suppressor gene and is critical for protection against cancer;

mutation in the p53 gene alters the normal functioning of the gene and

can lead to the development of cancer. Hence, the analysis of cancer cells

to identify the status of genomic features as mutated or not mutated is

essential.

Copy Number Variations (CNVs) are a form of structural variation

in the genome that produces an unusual number of copies of one or more

genomic regions. In contrast to point mutations described above, CNVs

affect larger genome regions. Deletions of such larger genome regions

reduce the copy number whereas duplications increase the copy number

compared to the normal level. Studies have shown that CNVs can greatly

affect cancer development. For example, the EFGR gene amplification

can contribute to the development of certain types of non-small lung can-

cer [31].

Another type of genome rearrangements is translocations. They also

play a role in cancer, for instance, the translocation of EWS-FLI1 gene is
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the cause of Ewing’s cancer [1].

Exome sequencing [32] is a new technique that aims to capture se-

quence variation in the form of mutations and indels (insertion/deletions)

in all coding regions of the genome. This approach requires a hybridiza-

tion step to capture all exons and a sequencing step to identify sequence

variation in the exons.

In addition to these transcriptomic and genomic profiles, other high-

throughput technologies measure the epigenome and proteome level chang-

es as well. A technology by Bibikova et al [33] monitors DNA methylation

process at the epigenetic level by counting the number of methyl-groups

attached to the DNA. At the proteome level, reverse phase protein array

(RPPA) technique measures the abundance of proteins in the cell [34].

3.2 Drug response measurements

In cancer studies, a drug response measurement is a measure of the

effectiveness of a drug inhibiting cell viability. Growing cell cultures are

treated with different concentrations of a particular drug, and after a

fixed time period the number of cells in the culture is measured by a

fluorescent signal. These measurements result in a drug dose-response

curve, where the x-axis denotes the drug concentrations and the y-axis the

corresponding cell viability (Figure 3.1 shows an example curve). Typically

the curve is fitted using a small number of measurement points. It is

a common practice to summarize the curve by the IC50 value, which is

defined as a quantitative measure indicating the dose of a particular drug

needed to inhibit the biological activity by half. Other characteristic values

reported in the literature are GI50 (concentration required to inhibit 50% of

maximal cell growth) [35, 36], IC25 (inhibit the biological activity by 25%),

IC75 (inhibit the biological activity by 75%) and AUC [1, 2, 7].

3.3 Drug descriptors and targets

Chemo-informatics tools link the chemical and structural properties of

drugs to their biological efficacy. The most traditional chemical properties

are 2D structural descriptors considering the number of atoms & bonds

(such as the number of non-H atoms & rotatable bonds), number of each

functional group, the number of carbon chains, the presence of rings and
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ring sizes. These descriptors are well suited for investigating a variety of

absorption, distribution, metabolism, and excretion (i.e., ADME) properties

and to generate predictive models of bio-activity of the drugs.

Beyond that, 3D MIFs have been studied extensively. They describe

the interaction energies between the drug molecules and standardized

probes (representing functional groups) and have been shown to be useful

in pharmacokinetics, drug discovery, and drug design [37, 38]. Modern

software tools extract relevant numerical descriptors such as Volsurf and

Pentacle using the MIFs. Volsurf calculates the volume and the surface

of the interaction contours at predefined energy values [39], whereas

Pentacles selects informative points from MIFs based on energy value

distributions. The resulting descriptors are represented independently of

the original 3D coordinates by an auto-correlation transform. Hence, these

are called GRIND, GRID Independent Descriptors [40, 41].

3.4 Prior biological knowledge

To address “small n, large p” problem, a perspective direction is to incorpo-

rate informative prior biological knowledge. The underlying assumption is

that prior biological knowledge introduces additional structure and infor-

mation that is valuable for the modeling task. There are several ways of

including additional biological knowledge.

For instance, much prior knowledge about the molecular and genomic

features is readily available in public databases. For example, Molecular

Signature Database MSigDB [42] contains a collection of gene sets and

pathways which can be used to derive pathway-based groups of features.

Other the other hand, COSMIC database [43] maintains a list of features

frequently implicated in cancer, and these features can potentially be

used to give emphasis during the modeling task. In many cases, primary

therapeutic targets of the drugs are also known, that can be used to

extract potential relevant data from the public databases, to be used as

complementary information in the model. Moreover, new data sources

denoting the gene set summaries and activities of pathways can also be

computed using the tool PARADIGM [44] and biological knowledge stored

in the public databases. This thesis makes use of prior knowledge for the

modeling task and also explores various ways of incorporating meaningful

biological information in the form of prior knowledge.

Table 3.1 indicates (with a tick mark) the various types of inputs
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such as gene expression, mutations, copy number variations, drug descrip-

tors and prior knowledge-based data sources that have been used in the

publications reported in this thesis.

Table 3.1. Summary of the genomic, transcriptomic, drug descriptors and prior knowledge
based data sources used in the publications presented in this thesis

Pub. Gene Copy Number Mutations Prior Drug

Expression Variations knowledge Descriptors

I � � � �
II � � � � �
III � �
IV � �
V �
VI � �
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4. Learning from multiple data sources

One of the prime goals of learning from multiple data sources in machine

learning is to integrate multiple views systematically, yielding increased

prediction accuracy. A key assumption is that the integration of several

data sources extracts more relevant information and structure from the

data that is valuable for the prediction task. Specifically, in “small n,

Figure 4.1. The figure conceptualizes the learning from multiple data sources for the drug
response prediction. Computationally, the data sources are encoded as data
matrices of size n-by-p, where n is the number of samples and p is the number
of features. The thesis abbreviates the data matrix with a keyword ‘view’ and,
as there are multiple views, multi-view learning aims to effectively integrate
the views, yielding an increased signal-to-noise ratio in the parameter space.
The drug response matrix consists of measurements from multiple drugs.
Hence multi-task learning allows joint modeling of all the drugs, making
it possible to gather statistical evidence across multiple drugs. Essentially,
multi-view multi-task learning can learn an integrated model using a set of
samples whose responses to drugs have been observed previously. The model
can then predict the response of the drugs on a new sample or predict the
response of the samples to a new drug or predict the response of a new drug
on a new sample (personalized QSAR task).
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large p” problem setting, combining multiple data sources can be beneficial

for two reasons. First, the modeling exploits the additional information

that naturally arises from the integration. Second, relevant information

present across multiple sources obviously provides statistical strength

when learned jointly. For example, the gene expression patterns of multiple

pathways may be linked to drug responses, or a mutated gene present in

one view may show up- or down-regulation of its expression in the other

views.

A fundamental methodological challenge involves determining what is

the ‘relevant information’ to extract and developing models for predicting

drug responses given the other ‘-omics’ data sources. A naive approach

would integrate different sources into one data source and learn a set

of potentially predictive features by explicitly optimizing a cost function.

However, it may result in too simple approach requiring strong regulariza-

tion to eliminate the false positives, and it may be difficult to incorporate

prior knowledge about the relevant information adequately.

A likely solution addressing these limitations is a generative proba-

bilistic approach, that models each data source by a set of latent variables.

Multi-view learning can then extends the latent variable modeling to

integrate multiple data sources and jointly learn the hidden statistical

relationships within and between data sources, which may not be obvious

from the data itself and are relevant for the prediction task.

In particular, Figure 4.1 conceptualizes the learning from multiple

data sources for drug response analysis. With the blend of these powerful

machine learning approaches, it is possible to address several challenging

and novel prediction tasks such as personalized medicine and QSAR.

4.1 Probabilistic machine learning

In drug response analysis, gene expression and similar other ‘-omics’ data

sources are highly noisy due to the measurement techniques, and addition-

ally contain irrelevant information due to the complexity of the biological

system. Moreover, the small sample sizes offer limited statistical power

leading to high uncertainty in the predictions. Use of probabilistic machine

learning is beneficial, since it provides principled ways to handle uncer-

tainties by assuming suitable probability distributions for the unobserved

data (in the form of priors) [45].

Given the observed data, the posterior of the model parameter (unob-
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served data) can be obtained using the Bayes theorem:

p(θ|y) = p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

The probabilistic model can be defined by specifying the joint probability

distribution p(θ, y) for the model parameters θ and the observed data y.

This can be written as the product of the prior distribution p(θ) and the

likelihood function p(y|θ): p(θ, y) = p(θ)p(y|θ). Bayes’ rule then provides

the conditional probability of θ given y, called the posterior distribution.

The marginal p(y) is a constant which normalizes the posterior such that

it integrates to one.

In other words, these simple mathematical expressions express the es-

sential core of probabilistic machine learning: define the model p(θ, y) and

perform the necessary computations, known as inference, to summarise

p(θ|y) in appropriate ways (or the inference of the unobserved data) [45].

The posterior probabilities p(θ|y) can be seen as likelihood p(y|θ) weighted

by the prior p(θ), where the prior increases or decreases the impact of like-

lihood in the posterior. Hence, the modeling favors the solutions matching

the prior. The prior may be used to encode our belief or expert knowl-

edge into the model. Moreover, it can even assume a “non-informative

setting”, which enforces minimal assumptions so that the data can guide

the posterior.

Given the model, the inference task requires computing the posterior

distribution of the parameters θ. However, except for only the simplest

models, the exact computation of the posterior is intractable and requires

approximate methods, which fall into two broad categories, deterministic

and sampling [46].

Sampling draws values of θ from some approximate distributions,

and then correct those draws to better approximate the true posterior

distribution p(θ|y). The samples are drawn sequentially, with a distribution

of the samples drawn previously. Given infinite computational resources,

sampling methods can infer the true posterior distribution. However, only

a finite number of samples can be drawn practically.

On the other hand, Variational Bayesian (VB) approximation, is a

widely used deterministic approach for inferring the posterior which is

computationally too intensive to sample [46]. In VB, the posterior distribu-

tion p(θ|y) is approximated by a variational distribution q(θ): p(θ|y) ≈ q(θ),

where q is chosen as a simpler distribution than the original posterior. The

goal is then to make q as close to p as possible, using the Kullback-Leibler

divergence [45].
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Latent variable models

Latent variable modeling has emerged as a power tool for data analysis

in Bayesian machine learning [47, 48]. A latent variable model provides

a flexible way of modeling dependencies between the high-dimensional

data variables x ∈ R
p by assuming that the data is generated by a set of

underlying low-dimensional variables z = {z1, z2, . . . zR} (also termed as

factors or components). Since these components are not observed, they

are called latent. The latent components present a concise and denoised

summary of the underlying processes that have generated the data and can

be used to create hypotheses about the dependencies between the variables

or to predict the unobserved variables. The number of latent components

is typically much smaller than the observed data dimensionality R << p,

while each component follows a simpler distribution.

Matrix factorization

Matrix factorization has evolved as a fundamental approach to machine

learning with many applications such as missing value prediction, di-

mensionality reduction, and data visualization [49, 50, 51]. Among other

motivations, matrix factorization is commonly used to decompose the high-

dimensional observed data into multiple low-dimensional latent factors.

The underlying assumption is that the combination of multiple latent

factors has generated the observed data, however, each combination has

generated some parts of the data. A wide variety of approaches has been

studied to factorize matrices, while optimizing different criteria [52, 53].

For factorization of a single matrix, Factor Analysis (FA) [54] is a

well-studied method. FA assumes that the data matrix Y ∈ R
n×p can

be modeled by a latent factor formulation such that the factor capture

dependencies between the variables. Mathematically, FA is expressed as

Y = ZWT +E. (4.1)

Where the columns of Z are the R latent factors, W ∈ R
n×R contains their

loadings, and E is residual noise, respectively.

In Bayesian domain, the factor analysis model can be defined by choos-

ing suitable probability distributions (as priors) for Z, W and E [55].
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4.2 Multi-view learning

In several applications, data from multiple, related sources are available

providing complementary information about the problem under study.

Especially in drug response analysis, examples mentioned in Chapter 3

include various types of genomic and transcriptomic data, drug response,

and the descriptor data. Thus, it is practical to define a joint probabilistic

model for all available data sources.

In the machine learning domain, learning from multiple data sources

with paired samples is called multi-view learning, where a ‘view’ refers

to a single data source (or data matrix). A classical two-view method

for modeling linear dependencies between two data sources is canonical

correlation analysis (CCA) [56, 57].

Multiple kernel learning

When the task is to learn a composite representation of the available

data, Multiple Kernel Learning (MKL) [58] provides a principled solution.

MKL can integrate multiple data sources, effectively yielding an increased

signal-to-noise ratio in the parameter space. The data sources are encoded

in the form of kernels, hence model nonlinear relationships as well.

Mercer’s Theorem [19] assures that combining valid kernels using sim-

ple operations, such as addition and element-wise multiplication produces

a valid kernel. This theorem provides the opportunity to obtain composite

kernels from simple ones, facilitating to capture, more complex proper-

ties of data, in addition to integrating data sources with incompatible

representations. These benefits result in improved model performance.

MKL algorithms basically replace the kernel in Equation 2.4 with a

combined kernel calculated as a function of the input kernels (also termed

as base kernels). The most common combination is to use a weighted sum

of P kernels

{km : X ×X → R}Pm=1:

f(x∗) = wT

(
Px∑

m=1

emKx∗,m

)
︸ ︷︷ ︸
composite kernel

+ b. (4.2)

where the vector of kernel weights is denoted by e, kernels by Kx∗ , the

unknown weight vector of samples by w and, bias term by b respectively.

The methods can formulate different MKL algorithms by assuming con-

traints on the kernel weights e.g., arbitrary weights, nonnegative weights
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or weights on a simplex (see [58, 59], for a more detailed explanation on

MKL methods).

4.3 Multi-task learning

Multi-task learning is an approach to machine learning that learns a

task together with other related tasks at the same time using a shared

representation [60]. MTL often leads to a better model for the all the tasks,

as it allows the model to use the commonalities among the tasks [61, 62].

In drug response analysis, predicting one drug response alone can be

considered as an individual task, whereas two drugs whose responses are

highly correlated can provide a statistical boost when learned together.

It is especially beneficial when the number of samples is small, or when

the samples come from a diverse collection such as in the pan-cancer

scenario. Additionally, multi-task learning may yield better predictive

accuracy by diminishing the impact of ‘off-target effects’ and drug-specific

experimental noise. Moreover, methods that jointly model response profiles

across multiple drugs may yield insights into groups of drugs targeting

similar pathways or having similar mechanisms of action.

Mathematically, the multi-task learning can be expressed for joint

modeling of multiple drug responses (or relevant tasks) as a linear combi-

nations of features and the unknown weights as:

Y = XWT + ε. (4.3)

Here, in contrast to Equation 2.1, Y ∈ R
n×t is the matrix with the columns

representing t drug responses (or learning tasks) and the rows n denoting

the number of samples (cell lines or patients). Also, W ∈ R
t×p is the matrix

of unknown weights (or co-efficients), where wt ∈ R
p is the unknown

weight vector for each task. And, X ∈ R
n×p denotes the matrix of ‘-omics’

data consisting of p features.

Several approaches have been proposed to infer w jointly while learn-

ing multiple tasks [63, 64, 65]. Inferring wt independently with l1 regular-

ization would yield the following cost function [64]:

min
wt

1

nt

nt∑
i=1

Ct(wt, xti, y
t
i) + λ||wt||1. (4.4)

Here λ > 0 is the penalty parameter that controls the amount of regulariza-

tion and shrinking of the weight vector w. Assuming λ is the same across

the tasks, inferring each of the wt is equivalent to inferring W globally
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obtained by summing the cost functions [64]:

min
W

T∑
t=1

1

nt

nt∑
i=1

Ct(wt, xti, y
t
i) + λ

T∑
t=1

||wt||1. (4.5)

Essentially, Equation 4.5 implies task-specific selection of the features. In

other words, features are selected predictive of each task individually.

However, the ultimate goal of multi-task learning in drug response

prediction could be to prefer regrularization scheme that favors feature

selection with shared pattern of response predictiveness. For example,

when learning personalized models for predicting responses of multiple

drugs, even though individual responses can vary. There could be a com-

mon subset of genomic features shared across drugs. Considering the

entire block of coefficients associated with a feature across tasks as a unit,

encouraging regrularization at the block level, leads to infer weights with

several blocks of coefficients are set to zero.

Thus, in order to select features common across tasks, an alternatively

regularization scheme would be [64, 65]:

min
W

T∑
t=1

1

nt

nt∑
i=1

Ct(wt, xti, y
t
i) + λ

p∑
j=1

||wj ||2, (4.6)

where
p∑

j=1

||wj ||2 =
p∑

j=1

( T∑
t=1

|wtj |2
) 1

2
. (4.7)

Notably, compared to Equation 4.5, the regularization in Equation 4.6 is a

two-step approach. In the first step, the l2− norms of the feature-specific

coefficient vectors are penalized followed by the l1− norm of the vector. In

other words, non-relevant features that are common across tasks are set to

zeros collectively. In a Bayesian approach, assuming a appropriate prior on

the features would help regularize the model and learn predictive features

common across the tasks.

Likewise, multi-task MKL have shown to be useful in many kernel

based formulations [66, 67, 68, 69], here a obvious goal is to predict the

output variables (e.g., the drug responses) rather than the feature selection.

The key idea is to formulate multi-task learning as that of learning a

composite kernel, obtained by combining a given set of input (or base)

kernels, in order to improve predictions for all the tasks simultaneously.

In other words, multi-task MKL can also be seen as an extension of the

MKL framework, to the case of multiple tasks. However, the primary

objective in MKL is indeed to learn a composite kernel best suited for

a given task by combining the individual kernels optimally. Since MKL
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learns the weights of the input kernels in a data-driven way, there are two

alternatives proposed for the multi-task MKL approach in the literature.

The first approach assumes a separate set of kernel weights for each task

and regularizes them globally [69]. The second approach assumes that

tasks share a common set of kernel weights that jointly optimizes all the

tasks [68].

In this thesis, Publication I and Publication II assume a common set

of kernel weights across tasks. In this way, the weights would then reflect

the individual contribution of the kernels (or data sources) in predicting

the responses of all the drugs jointly. Whereas, Publication III assumes

a seperate set of kernel weights for each task, in other words the multi-

task MKL model learns the task-specific kernel weights. Resultantly, the

weights would then give the selective contribution of the individual kernels

(or data sources) in predicting the responses for particular groups of drugs

(or tasks).

Table 4.1. The combinations of approaches used in the publications included in this thesis,
to apply or develop novel machine learning methods in drug response prediction.
The methods are described in Chapter 5

Pub. Kernelized Matrix Multi-view Multi-task

regression factorization learning learning

I � � �
II � � �
III � � �
IV � � �
V � � �
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5. Multi-view and multi-task methods
for drug response prediction

Given multiple types of data sources (described in Chapter 3) and the

technical machinery (discussed in Chapter 4), it can now be possible to

build novel computational models for predicting drug responses in cancer

cells. The modeling task is extremely challenging due to the “small n,

large p” problem. Specifically, the thesis advances in two complementary

directions.

1. Methodological: combine multi-view and multi-task approach to learn

an integrative model, that can naturally exploit the benefit of more data.

2. Biological: incorporate additional prior knowledge in a biologically mean-

ingful way to solve the modeling task better.

The aim here is then to show that multi-view multi-task learning sup-

plemented with prior biological knowledge provides better drug response

predictions, compared to existing computational models (explained in

Chapter 2).

5.1 Bayesian multi-task multiple kernel learning

Publication I proposes a novel Bayesian multi-task multiple kernel learn-

ing (or MT MKL) method to predict drug responses in cancer cells.

Bayesian MT MKL (illustrated in Figure 5.1) combines four modeling

principles: kernelized regression, multi-view learning, multi-task learning

and Bayesian inference. While kernels denote the input data sources and

tasks represent the columns of the observed output matrix (shown as Y

in Figure 5.1), the main idea is a two-step algorithm. In the first step,

for each task, estimate intermediate variables from the kernels using a
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fixed set of weight parameters of samples. In the second step, combine the

intermediate variables using the kernel weights to estimate the output

matrix. Similar to classical regression models, Bayesian MT MKL uses the

input data corresponding to the rows of the output matrix. Whereas, the

proposed method goes beyond commonly used computational methods in

drug response analysis in several aspects.

Figure 5.1. Flow diagram of the Bayesian MT MKL method. Each of the input data
sources is transformed into a kernel matrix that denotes the pairwise simi-
larities between the cells in the training data Kx,1...Kx,Px ). For each task t

(here a drug), the model assumes intermediate variables Gt,1...Gt,Px obtained
from each kernel. A weighted combination of the matrices Gt,1...Gt,Px param-
eterized by the weight vector ek (one weight coefficient per kernel) yields the
composite kernel matrix K∗. Cell line weight vector at is specific to each drug,
while ek shared across all drugs.

The kernelized regression predicts drug responses from similarities

between cell lines. In contrast, other methods such as linear regression,

random forests, and neural networks use input features to predict drug

responses. The kernel representation provides two benefits: First, the

number of model parameters reduces to match the number of samples and

not the number of features. It helps to control over-fitting especially in

the case of “small n, large p” setup. Secondly, kernels can model nonlin-

ear relationships between genomic and molecular features and, the drug

responses.

Multi-view learning enables integration of heterogeneous data sources

into a single model. Essentially, multi-view not only helps to integrate

genomic and transcriptomic data sources but also allows to include various

representations of the same data sources. Many computational models do

not facilitate such systematic integration. For example, in linear regression,

one way to use multiple sources would be to concatenate them in one data

matrix (which is also called early fusion in data science). Moreover, the

multi-view approach capitalizes prior biological knowledge in the form of
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additional data sources (examples shown in Figure 5.1:“Learning Data”).

In contrast to classical kernelized regression model where the predictive

performance depends on the choice of a suitable kernel (i.e., choosing

the functional form and its parameters), MKL learns a combination of

different kernel weights to obtain a similarity measure that best matches

the underlying problem. The kernel weights reflect the importance of each

data source for predicting the drug responses.

Multi-task learning allows simultaneous modeling of responses and

sharing of information across all the drugs. Specifically, kernel weights

are shared between all the drugs, while the model learns the parameters

related to the kernelized regression, specific to each drug (box “Multi- Task

Learning” in Figure 5.1). Conversely, existing computational methods

study drug-specific models only. Notably, the Bayesian inference and

regularizations are used to handle uncertainty in the model parameters

that resulted due to the small sample sizes.

Importantly, Bayesian MT MKL won the NCI-DREAM drug sensitiv-

ity prediction challenge organized by NCI and the DREAM project. The

main goal of the challenge was to identify and benchmark the top perform-

ing methods in predicting drug responses from genomic, transcriptomic,

epigenomic, and proteomic data sources in breast cancer cell lines. In the

challenge, the Bayesian MT MKL method provided better drug response

predictions, outperforming 43 sets of predictions from state-of-the-art pre-

dictive models including kernel methods, nonlinear regression (such as

random forests), sparse linear regression (for instance lasso and elastic

net) and, PLS or PCR.

In addition to six ‘omics’ data sources, Bayesian MT MKL integrated

three types of additional data based on prior biological knowledge into

the model (as shown in Figure 5.1: “Learning Data”), while predicting

responses to all drugs simultaneously. First, gene set views aggregated

summaries across functionally related genes as defined in C2 and CP

collections from MSigDB. Second, combination views merged gene expres-

sion with CNV and DNA methylation to compute pathway activity scores

from the PARADIGM tool and gene-wise product of the individual sources.

Third, discretized views transformed real valued data sources (for instance

gene expression) into binary valued sources, denoting either the gene is

expressed or not expressed.

The results demonstrate that modeling nonlinearity in the data es-

sentially provided improved predictions, and incorporating biologically
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relevant additional data further increases the prediction performance.

Since, MKL learned the importance of each source in a data-driven way,

the gene expression and prior knowledge-based data derived from gene ex-

pression were found to be the most predictive, nevertheless the integration

of all the views provided the best performance.

Publication IV applied Bayesian MT MKL in the context of person-

alized medicine, however in a disease different than cancer. The predic-

tion task was to predict the response to anti-TNF (tumor necrosis factor)

treatment in Rheumatoid Arthritis (RA) patients. Specifically, the study

intended to assess the utility of SNP1 data in predicting the anti-TNF

treatment efficacy. For this purpose, the biologically relevant SNPs have

been extracted in various ways such as association tests using �DAS282

and EULAR non-response3, the earlier published literature [72], eQTL

and differential gene expression analysis. The findings demonstrate that

no significant genetic contribution to prediction accuracy was found, de-

spite there was evidence of a significant genetic heritability estimate of

treatment non-response trait. The results also confirm the expectations of

the RA community that standard clinical features were more predictive as

compared to the SNPs, hence emphasizing to use other genome-wide data

in future studies.

5.2 Kernelized Bayesian matrix factorization

Bayesian MT MKL takes input the multiple data sources for rows only.

Next, it is extended to incorporate data sources, also for columns of the

drug response matrix.

Publication II proposes a kernelized Bayesian matrix factorization

(KBMF) method to predict drug responses on human cancer cells of mul-

tiple types. KBMF simultaneously utilizes both ‘-omics’ and descriptor

data as input to learn a joint model of drug responses. Essentially, KBMF

factorizes a matrix by leveraging additional information from multiple

data sources, as a weighted combination of these sources while learning

the weights in a data-driven way. In other words, the method combines

1a type of mutations that denote the variation in a single nucleotide occuring at a
particular position in genome
2absolute change in disease activity score in 28 joints following 3–6 months of
anti-TNF treatment [70]
3EULAR response is calculated based on the pre- and post-treatment disease
activity score and is widely used in clinical research and practice [71]
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Bayesian matrix factorization with MKL to solve the drug response predic-

tion problem (as shown in Figure 5.2).

KBMF, similar to Bayesian MT MKL, uses kernels to denote the input

data sources. Whereas, the probabilistic generative model specifies a low

dimensional factorization of the observed output matrix, in three steps. In

the first step, kernel-based nonlinear dimensionality reduction projects

each kernel onto the low-dimensional factors (or components) to obtain

kernel-specific latent factors. In the second step, MKL integrates the

kernel-specific factors with the weights to get composite latent factors

(Hx or Hz). In the third step, the product of the composite latent factor

generates the observed matrix (matrix factorization).

Figure 5.2. Flow diagram of kernelized Bayesian matrix factorization with multiple ker-
nel learning. Each of the input data sources is converted into a kernel ma-
trix Kx,1...Kx,Px ). The model assumes a low-dimensional representation
Gx,1...Gx,Px obtained from each kernel (kernel-specific components via non-
linear dimensionality reduction). A weighted combination of the matrices
Gx,1...Gx,Px parameterized by the weight vector ex (one weight coefficient per
kernel) yields the latent factors Hx (MKL). Similarly, the latent factors Hz for
the columns can be obtained (not shown). The output matrix Y (here, denoting
drug responses) is calculated as a product of latent factors Hx and Hz (matrix
factorization).

The Bayesian MT MKL method uses a kernelized regression approach

that combines multi-task and multi-view learning and can be viewed as

an extension of single-view single-task kernelized regression. The KBMF

method can then be seen, extending Bayesian MT MKL from kernelized re-

gression to kernelized matrix factorization. All the benefits of the Bayesian

MT MKL method are naturally inherited in KBMF while an additional

and intriguing benefit is the assumption of multiple latent components (or

factors). In contrast to Bayesian MT MKL, KBMF components take the

role of tasks such that similar tasks (here drugs) are modeled with one

component. Primarily, Bayesian MT MKL is a flexible method modeling
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each task with a separate set of latent factors (the intermediate variables

in Figure 5.1). And, KBMF further adopts the modeling assumptions,

where two or more similar tasks can be modeled with one component,

assuming fewer parameters, without compromising the generalizability

and accuracy.

The factorization of the drug response matrix (where columns of the

matrix, i.e., drugs denote separate tasks) into latent components, while

integrating multiple data sources for both the rows and columns provides

unprecedented flexibility in modeling. On the one hand, KBMF can capture

distinct response patterns decomposed into components. This is especially

advantageous to model responses to multiple drugs over multiple cells

having diverse cancer types. Many other simpler computational models

may not model the diverse and distinct responses with improved accuracy.

On the other hand, KBMF can exploit several relevant prediction tasks.

For instance, (1) predicting responses of known drugs to new cells, (2)

predicting responses of new drugs on existing cells and (3) predicting

responses of new drugs on new cells (visualized in Figure 4.1).

In other words, the blend of these powerful machine learning tools

makes it possible to combine personalized medicine with QSAR in Publi-

cation II and address two novel drug response prediction tasks. First, an

integrative QSAR task to predict the response of a new drug on multiple

cells rather than to predict the response to a single cell as done in the clas-

sical studies. Second, a personalized QSAR task to predict the response of

an entirely new drug on a previously unseen cell. KBMF showed increased

predictive performance compared to the existing methods, for instance,

neural networks, PLS, and ensembles on five out of eight benchmark QSAR

data sets.

KBMF solved the new prediction tasks (stated above), on the GDSC

data set comprising of 116 anti-cancer drugs and 650 cancer cell lines of

diverse types. As prior knowledge, the method exploited known primary

targets of the drugs in a biologically meaningful approach, in addition

to multiple ‘-omics’ data sources, chemical, and structural descriptors

collectively, to learn a model of the drug responses.

The results substantiate that simultaneous use of both ‘-omics’ and

drug data sources improved the prediction performance. In particular,

integrating all the data yielded better drug response predictions than

descriptors or targets alone. Furthermore, the high performance in predict-

ing missing values by the KBMF method empowered the reconstruction of
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a global map of complete drug responses. The map was then explored to

assess the treatment potential of therapeutically interesting anti-cancer

drugs.

Kernelized Bayesian Matrix Factorization with component-wise
multiple kernel learning (cwKBMF)

Publication III extends KBMF to model the complex relationships between

a large number of multiple data sources (given as inputs) and the latent

component space of the output matrix. This new formulation of KBMF

allows component-wise multiple kernel learning (MKL), referred to as

cwKBMF for brevity and is illustrated in Figure 5.3. The new method is

similar to KBMF in two aspects: the kernel-based dimensionality reduction

and matrix factorization, whereas cwKBMF proposes a novel formulation

of multiple kernel learning.

Figure 5.3. Flow diagram of kernelized matrix factorization with component-wise multiple
kernel learning. This model assumes a weighted combination of the matrices
Gx,1...Gx,Px parameterized by the weight vector e1×R

x,. spanning the number of
components R, yielding the latent factors Hx (component-wise multiple kernel
learning). Likewise, the latent factors Hz for the columns can be obtained (not
shown). The output matrix Y (here, containing drug responses) is calculated
as a product of the latent factors Hx and Hz (matrix factorization).

The component-wise MKL benefits in learning the latent components

Hx as a combination of kernel-specific components {Gx,m ∈ R
nx×R}Px

m=1

while segregating between kernels that are component-specific and those

which are shared across all components. The new model formulation in-

troduces component-specific kernel weights {ex,m ∈ R
1×R}Px

m=1 that control

the activity of each kernel in each component. This extension allows the

method to effectively learn the underlying structure for identifying the

relationship between kernels and components.
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KBMF, the predecessor method (shown in Figure 5.2), integrates mul-

tiple data sources assuming that a source is either relevant for all drugs or

none and lacks to identify the component-specific relationships between

the data sources and the drugs. On the contrary, cwKBMF solves the

prediction task by gathering evidence from multiple sources, selectively,

for each of the drug groups. The extension can be perceived as multi-task

learning by matrix factorization, however with selective data integration.

A key assumption is that component-wise MKL allows the method to ex-

ploit the data sources better. Hence, the model advances in two ways: i)

improve the predictive power, and ii) identify the component-specific latent

relationships between the data sources and the drug responses.

The pathway information from MSigDB can be utilized in several

biologically relevant ways. For example, one way is to split the ‘-omics’ data

into groups of genes where each group denotes one pathway. Intuitively,

the groups would then represent the multiple data sources and cwKBMF

would model the nonlinear interactions between genes of each pathway.

Since, the pathways linked to the known primary targets of the drugs

are biologically meaningful, these are used to learn the drug response

relationships with the cwKBMF method in Publication III.

The results summarized several significant findings. First, the

cwKBMF method quantitatively outperformed the state-of-art methods

(including KBMF and Bayesian MT MKL) on predicting drug responses

in two publicly available drug response data sets (i.e., GDSC and CTRP).

Second, the results generalized previous findings (for instance, reported

in Publication I), that nonlinear models provide better drug response

predictions and incorporating prior biological knowledge improves the

prediction performance. Third, systematically modeling the relationships

between pathway-based data sources and drug responses with cwKBMF,

provided significantly better predictions compared to existing methods.

Fourth, the use of prior knowledge not only improved the prediction per-

formance but also helped to infer pathway-drug response relationships

by cwKBMF, becoming the first kernelized method that made it possi-

ble to study such relationships. As a proof-of-concept, positive controls,

pathway-response associations learned by the model for the well known

EGFR and MEK inhibitors provided biologically meaningful interpreta-

tions. Finally, the predictive power of the cwKBMF method was confirmed

on additional data set (fully-blinded) using the experimental validation,

performed independently in the lab.
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5.3 Multi-view factor analysis

The machine learning method presented in this thesis so far have demon-

strated improved prediction accuracy, while modeling nonlinear relation-

ships in the data. However, the biological interpretability of the methods is

limited for several translational applications, where the goal is to identify

features that are predictive of the drug responses. In this realm, lin-

ear models are easier to interpret and a natural choice. The thesis next

discusses a linear multi-view model for drug response modeling.

Group Factor Analysis (GFA) is a generalization of the factor analysis

model from a single data source to multiple sources [73, 74]. Specifically,

GFA is a model designed to capture relationships by reducing the collection

of data sources into a combined set of low-dimensional factors (or latent

components). A component can be active in one or more of the sources,

capturing the hidden relationships between the variables of the corre-

sponding data sources only. For example, a component active in all the

sources captures the shared relationship structure between all the data

sources while a component active in a single source identifies features

specific to that particular source only. In drug response prediction, the

component active in the genomic, transcriptomic and drug response data

sources, represents relationships between the genome-wide features and

drug responses, yielding predictability from genes to drugs.

Publication V presents an R package that implements a full Bayesian

formulation of the GFA model with a Gibbs sampling approach. Specifically,

the package defines sparse priors for the latent factors to tackle “small

n, large p” problem as well as to improve the biological interpretations.

Another related challenge is to infer the number of components (model

complexity), needed to explain the relationships in the data. The GFA

priors can detect the true model complexity automatically. Publication V

demonstrates the model complexity selection mechanism using the GDSC

data set. The package supports optimization of the model complexity se-

lection by assuming apriori particular signal-to-noise ratio. The package

also facilitates to obtain a set of robust components that occur across mul-

tiple factorizations, whose interpretations are likely to be more biologically

plausible and statistically significant. Lastly, the GFA package provides

functionality to explore and visualize the component activities that define

the factorization of the data sources. In summary, the package provides

a complete data analysis pipeline to support drug response analysis in
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future studies.

5.4 Incorporating prior knowledge from experts

In Sections 5.1 and 5.2, the thesis proposes methods that incorporate prior

knowledge extracted from public databases, such as known cancer genes

and pathways or gene sets. This use of prior knowledge has shown to

provide better drug response predictions in the “small n, large p” setting.

However, when the sample sizes are remarkably small, the data-driven

prediction task becomes progressively harder and requires more informa-

tion. A valuable source could be an expert (in this case a clinician or a

researcher), who could provide useful information on the relevance of the

features for the prediction task. However, extracting relevance information

for thousands of features (here genes) from the expert is not practically

feasible.

Publication VI presents an approach to efficiently extract prior knowl-

edge from the expert by asking feedback on a limited set of genomic fea-

tures. The study compared three strategies to identify the most important

features on which to ask expert feedback. The first strategy selected fea-

tures at random, while the second strategy chose the features based on

their largest absolute values. Whereas, the third strategy selected the top

features to ask expert feedback, whose ranks were determined based on the

largest point-wise product of the features and their estimated regression

coefficients. Experiments performed with simulated experts, and drug

response dataset from GDSC demonstrate that the third strategy provided

the best performance, while the differences in performances increases as

the expert gave more feedback.

The results signify that the prior knowledge, efficiently extracted from

the experts, provides improved accuracy for predicting drug responses.

The proposed approach intends to be a simple proof-of-concept study and a

starting point for developing advanced approaches to extract and incorpo-

rate prior knowledge from experts.
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6. Discussion and conclusion

Returning to the research question raised at the beginning of this the-

sis: how to improve drug response predictions, given the computational

challenge of “small n, large p” in personalized medicine. It is now pos-

sible to answer that drug response predictions can be improved using

multi-view multi-task methods supplemented with prior knowledge. The

methods proposed in this thesis can effectively integrate multiple data

sources and apply a joint model of all the drugs, yielding better predic-

tions as compared to commonly used methods. Specifically, this thesis

presents three novel, multi-view multi-task methods, each for different but

increasingly complex and novel formulations of the drug response predic-

tion problem. It can be claimed explicitly that the multi-view models can

extract useful, shared information from multiple sources, which individual

data source alone cannot provide.

The thesis demonstrates that the proposed methods provide better

drug response predictions while they progress in the hierarchy. For in-

stance, cwKBMF outperforms both KBMF and Bayesian multi-task MKL

in predicting drug responses of new cells. Another significant finding of

the thesis is that modeling nonlinear relationships in the form of kernels

provides improved drug response predictions. In particular, kernelized re-

gression, combined with multi-task and multiple-kernel learning, showed

increased predictive performance as compared to the other widely used

methods. This finding opens doors to a new line of research in the personal-

ized medicine domain. Notably, the fully-blinded experimental validation

presented in Publication III confirms the predictive power of cwKBMF. The

experimental validation builds confidence that in-silico predictions can be

reasonably robust and may be used to explore the spectrum of therapeutic

choices in future studies.

One of the more significant and novel findings to emerge from this
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thesis is the use of prior biological knowledge to improve drug response

predictions. The thesis shows several data-driven ways of incorporating

prior biological knowledge into computational models extracted from public

databases. On the machine learning front, a simple approach has also

been presented that explores ways to extract prior knowledge from experts.

The results support the need for incorporating experts’ knowledge in the

modeling loop (Publication VI). Incorporating prior knowledge not only

gives better predictions but also allows identifying potential relationships

between pathways and drugs, which is predictive of responses in cancer

cells. Essentially, the use of appropriate prior biological knowledge helps to

tackle the “small n, large p” problem. In addition to other related findings,

gene expressions and prior knowledge-based data sources derived from

gene expressions provide the best predictive accuracy.

Consequently, the methods presented in this thesis could possibly be

adopted to assist clinicians in choosing effective therapies for individual pa-

tients. The drug response predictions generated by the proposed methods

could be useful to medical researchers, both to pre-select potential drugs

for further screening and to enhance their understanding of the functional

mechanisms of the drugs. In summary, this research takes us a step closer

to achieving the personalized and targeted interventions of drugs. This

thesis demonstrates progress in both machine learning and personalized

medicine, emphasizing that interdisciplinary research plays an important

role, not only in achieving mutual goals, but also in generating ideas for sci-

entific advances within each discipline. In particular, the release of source

codes and an R-package is beneficial to both communities. On the medical

side, researchers can use the package to identify potential biomarkers

when analyzing relationships between genomic and molecular features

and the drug responses. On the other hand, machine learners can utilize

the freely available code to make advancements on the modeling side.

However, the thesis also identifies areas of application where the pro-

posed methods do not improve the drug response predictions. In particular,

those applications that use SNP-based genotype data (Publication IV and

[75]). It can be argued that either the data is not suitable for studying such

problems, or there is a need to develop a more appropriate methodology to

study the problem correctly. The SNP data is extremely high-dimensional

(∼ 2 billion features) and essentially discrete in nature (0, 1, and 2 count

data). With the kernelized methods, the employed kernel functions may

simply not be enough to correctly model the relationships between the
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samples.

This thesis reveals several possibilities for future research, both in

applications and methods development. Any other domain, in which sys-

tematic integration of multiple, related data sources is of interest, can

benefit from the proposed multi-view and multi-task methods. For ex-

ample, recommender engines where multiple data sources are available

nowadays. As the methods can integrate multiple data sources, challeng-

ing prediction tasks such as out-of-matrix prediction can effectively be

addressed. Practically, the methods can predict ratings for a new movie

or can recommend new items to a customer, in addition to predicting the

missing ratings or recommendations. In comparison to many conventional

rating prediction algorithms, the proposed methods may provide improved

predictions, however may compromise the scalability.

While the thesis proposes kernel-based methods, the limited inter-

pretability in the feature space is a key factor hindering their usabilities

in translational studies. The thesis creates new opportunities in drug

response prediction, for developing methods that are interpretable in the

original feature spaces; finding a suitable trade-off between linear and

nonlinear models. Moreover, certain topics in drug response prediction

have not been explored in this thesis and could be investigated in future

studies. For example, the effect of the differences in the drug response mea-

surements arising from the different experimental protocols [76, 77, 78]

and the effect of ‘-omics’-based quantitative analysis using the cell line

data on predictions. Though the use of cancer cell lines primarily serves

as good preclinical models, the patterns of sensitivity in cell lines may be

different from a drug’s response in vivo, offering a limited understanding

of the human pharmacology [79]. Since increasing amounts of data are

becoming available especially emerging from ex-vivo patient samples, the

proposed methods could be used to predict drug responses; a step closer to

clinical applications in future.

This thesis also creates new directions for the current research ques-

tions in personalized medicine. For instance, it would be interesting to

explore the abilities to predict drug combinations by the proposed methods.

Alternatively, when the sample size approaches to n = 1 of a completely

personalized scenario (e.g., predicting treatment outcome of an individual

patient), use of prior knowledge becomes inevitable. Assuming all the prior

knowledge available in public databases has already been incorporated,

a remaining source of information is an expert; however, the knowledge
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Discussion and conclusion

is often tacit and uncertain for any specific patient. There is a need to

develop new interactive machine learning methods that combine principles

of human-computer interaction and multi-view learning. The interactive

methods effectively elicit tacit knowledge from the expert as well as si-

multaneously improve model predictions while incorporating the elicited

prior knowledge [80]. Furthermore, it can be interesting to explore the

new design formulations for incorporating pathway and target knowledge.

A plausible way may be to develop informative prior to integrating the

knowledge. This approach could potentially support generating the biologi-

cal hypotheses for the data-driven analysis. Also, the technical choices and

sparsity assumptions of the model may be improved further, as required

by an application.

In summary, the thesis contributes Bayesian multi-view multi-task

methods for predicting drug response in cancer cells. The thesis is a

valuable scientific advancement because predicting such responses can

significantly enhance our understanding of the action mechanism of anti-

cancer drugs and may ultimately assist in personalizing treatments for

individual patients.
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