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Abstract

In the speech recognition of highly inflecting or compounding languages, the traditional word-based lan-
guage modeling is problematic. As the number of distinct word forms can grow very large, it becomes dif-
ficult to train language models that are both effective and cover the words of the language well. In the
literature, several methods have been proposed for basing the language modeling on sub-word units instead
of whole words. However, to our knowledge, considerable improvements in speech recognition perfor-
mance have not been reported.

In this article, we present a language-independent algorithm for discovering word fragments in an unsu-
pervised manner from text. The algorithm uses the Minimum Description Length principle to find an inven-
tory of word fragments that is compact but models the training text effectively. Language modeling and
speech recognition experiments show that n-gram models built over these fragments perform better than
n-gram models based on words. In two Finnish recognition tasks, relative error rate reductions between
12% and 31% are obtained. In addition, our experiments suggest that word fragments obtained using gram-
matical rules do not outperform the fragments discovered from text. We also present our recognition sys-
tem and discuss how utilizing fragments instead of words affects the decoding process.
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1. Introduction

In certain natural languages, there are interesting key problems that have not been much stud-
ied in developing large vocabulary continuous speech recognition (LVCSR) for English. One ma-
jor problem is related to the number of distinct word forms that appear in every-day use. The
conventional way of building statistical language models has been to collect co-occurrence statis-
tics on words, such as n-grams. If the language can be covered well by a lexicon of reasonable size,
it is possible to train statistical models using available toolkits, given enough training data and
computational resources.

In many languages, however, the word-based approach has some disadvantages. In highly
inflecting languages, such as Finnish and Hungarian, there may be thousands of different word
forms of the same root, which makes the construction of a fixed lexicon for any reasonable cov-
erage hardly feasible. Also in compounding languages, such as German, Swedish, Greek and
Finnish, complex concepts can be expressed in a single word, which considerably increases the
number of possible word forms. This leads to data sparsity problems in n-gram language
modeling.

1.1. Related work

During the recent years, some approaches have been proposed to deal with the problem of
vocabulary growth in large vocabulary speech recognition for different languages. Geutner
et al. (1998) presented a two-pass recognition approach for increasing the vocabulary adaptively.
In the first pass, a traditional word lexicon was used to create a word lattice for each speech seg-
ment, and before the second pass, the inflectional forms of the words were added to the lattice. In
a Serbo-Croatian task, they reported word accuracy improvement from 64.0% to 69.8%. McTait
and Adda-Decker (2003), on the other hand, reported that the recognition performance in a Ger-
man task could be improved by increasing the lexicon size. The use of a lexicon of 300,000 words
instead of 60,000 words lowered the word error rate from 20.4% to 18.5%.

Factored language models (Bilmes and Kirchhoff, 2003; Kirchhoff et al., 2003) have recently
been proposed for incorporating morphological knowledge in the modeling of inflecting
languages. Instead of conditioning probabilities on a few preceding words, the probabilities are
conditioned on sets of features derived from words. These features (or factors) can include, for
example, morphological, syntactic and semantic information. Vergyri et al. (2004) present exper-
iments on Arabic speech recognition and report minor word error rate reductions.

Another promising direction has been to abandon words as the basic units of language model-
ing and speech recognition. As prefixes, suffixes and compound words are the cause of the growth
of the vocabulary in many languages, a logical idea is to split the words into shorter units. Then
the language modeling and recognition can be based on these word fragments. Several approaches
have been proposed for different languages, and perplexity reductions have been achieved, but few
have reported clear recognition improvements. Byrne et al. (2000) used a morphological analyzer
for Czech to split words in stems and endings. A language model based on a vocabulary of 9600
morphemes gave better results when compared to a model based on a vocabulary of 20,000 words.
However, with larger vocabularies (61,000 words and 25,000 morphemes), the word based models
performed better (Byrne et al., 2001). Kwon and Park (2003) also used a morphological analyzer
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to obtain morphemes for a Korean recognition task. They reported that merging short mor-
phemes together improved results. Szarvas and Furui (2003) used an analyzer to get morphemes
for a Hungarian task. Additionally, morphosyntactic rules were incorporated into the model
allowing only grammatical morpheme combinations. Relative morpheme error reductions be-
tween 1.7% and 7.2% were obtained.

In contrast to using a morphological analyzer, data-driven algorithms for splitting words in
smaller units have also been investigated in speech recognition. Whittaker and Woodland
(2000) proposed an algorithm for segmenting a text corpus into fragments that maximize the 2-
gram likelihood of the segmented corpus. Small improvements in error rates (2.2% relative) were
obtained in an English recognition task when the sub-word model was interpolated with a tradi-
tional word-based 3-gram model. Ordelman et al. (2003) presented a method for decomposing
Dutch compound words automatically, and reported minor improvements in error rates.

To our knowledge, there is little previous work on basing the language modeling and recogni-
tion on sub-word units for Finnish LVCSR. Kneissler and Klakow (2001) segmented a corpus
into word fragments that maximize the 1-gram likelihood of the corpus. Four different segmenta-
tion strategies were compared in a Finnish dictation task. The strategies required various amounts
of input from an expert of the Finnish language. However, no comparisons to traditional word
models were performed.

There are a number of works that aim at learning the morphology of a natural language in a
fully unsupervised manner from data. Often words are assumed to consist of one stem typically
followed by one suffix. Sometimes prefixes are possible. The work by Goldsmith (2001) exempli-
fies such an approach and gives a survey of the field. The morphologies discovered by these algo-
rithms have not been applied in speech recognition. It seems that this kind of method is not
suitable for agglutinative languages, such as Finnish, where words may consist of lengthy se-
quences of concatenated morphemes.

Morpheme-like units have also been discovered by algorithms for word segmentation, i.e., algo-
rithms that discover word boundaries in text without blanks. Deligne and Bimbot (1997) derive a
model structure that can be used both for word segmentation and for detecting variable-length
acoustic units in speech data. Their data-driven units do not, however, produce as good results
as conventional word models in recognizing the speech of French weather forecasts. Brent
(1999) is mainly interested in the acquisition of a lexicon in an incremental fashion and applies
his probabilistic model to the segmentation of transcripts of child-directed speech.

1.2. Contents of the article

In this work, we make use of word fragments in language modeling and speech recognition. To
avoid using a huge word vocabulary consisting of hundreds of thousands of distinct word forms,
we split the words into frequently occurring sub-word units.We present an algorithm that discovers
such word fragments from a text corpus in a fully unsupervisedmanner. The fragment inventory, or
lexicon, is optimized for the given corpus according to a model based on the information-theoretic
MinimumDescription Length (MDL) principle (Rissanen, 1989).1 The resulting fragments are here
1 For readers more familiar with probabilistic models, we note that our MDL model can also be formulated in the
maximum a posteriori (MAP) framework. See Section 3.1.2.
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referred to as statistical morphs as the boundaries of the fragments often coincide with grammatical
morpheme boundaries.

The algorithm is motivated by the following features: The resulting model can cover the whole
language obtaining a 0% out-of-vocabulary (OOV) rate by a reasonably sized but still apparently
meaningful set of word fragments. The degree of word-splitting is influenced by the size of the
training corpus, and foreign words are split as well, because no language-dependent assumptions
are involved. A word can be split into a long sequence of fragments, which makes the model suit-
able for agglutinative languages. An earlier version of the method has already given good results
in Finnish and Turkish recognition tasks (Siivola et al., 2003; Hacioglu et al., 2003).

In this article, we give a detailed description of the algorithm for segmenting a text corpus into
statistical morphs, and compare the resulting language models with models based on two alterna-
tive methods. The other models are also capable of generating the whole language, albeit in a
more simplistic manner: words augmented with phonemes, and fragments based on automatic
grammatical analysis augmented with phonemes. The language modeling and recognition perfor-
mance of n-gram models built using these units are evaluated in two Finnish tasks. We also
discuss how the use of fragments affects the decoder of our speech recognition system.

In Section 2, we present the two Finnish tasks and performance measures used in the experi-
ments. The central section of the paper is Section 3. It describes the statistical model and algo-
rithm for segmenting a text corpus into word fragments. The alternative approaches for
producing complete-coverage vocabularies are also presented with comparative cross-entropy
experiments. Section 4 describes the recognition system. The acoustic models are presented briefly,
the emphasis being on the duration models for Finnish phonemes, followed by the description of
the decoder. The results of the experiments are given in Section 5 with discussion, and Section 6
concludes the work.
2. The Finnish evaluation task

This chapter describes the LVCSR task that we propose for evaluating the new language mod-
els for Finnish. The language research community for Finnish is rather small, and extensive text
and speech corpora for language modeling and speech recognition research do not exist yet. How-
ever, the Finnish IT center for science has an ongoing project Kielipankki (Language bank) which
collects Finnish and Swedish text and speech data that can be obtained for research purposes.2

One of our aims was to use evaluations that could be easily utilized by other research groups
to build and test comparable LVCSR systems.

2.1. Text and speech data

The large-vocabulary language models were trained using a text corpus of 40 million words.
The main material is from the language bank described above, which was augmented by almost
an equal amount of newswire text from the Finnish National News Agency.
2 The project page of the Language bank is http://www.csc.fi/kielipankki/.

http://www.csc.fi/kielipankki/
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Two different speech data sets, not included in the language model training, were used for eval-
uating the recognition performance. For both data sets, acoustic models were trained and evalu-
ated separately. As there is not yet enough Finnish speech data available to train proper speaker-
independent models for this kind of tasks, we have considered only speaker-dependent tasks.

The first data set is a Finnish audio book3 containing 12 h of speech from one female speaker.
The first 11 h were used for training the acoustic models, and from the end of the book, 20 min
were used for tuning the decoder parameters and 27 min for evaluation. The task is here referred
to as BOOK.

The second speech data set, referred to as NEWS, consists of about 5 h of news reading by an-
other female speaker. The content is divided into short newswire articles, where each article has its
own characteristic topic. From this task, about 3.5 h were used for training the acoustic models,
and 33 min for development and 49 min for evaluation.

In addition to training acoustic models, the reference transcriptions of the training portions of
the BOOK and NEWS tasks were used to evaluate the cross-entropies of the language models
reported in Section 3.6.

2.2. Phonetic transcriptions

The orthography of the Finnish language has a straightforward connection with the pronunci-
ation. There is an almost one-to-one correspondence between letters and phonemes, with the
exception of a few clusters of letters that correspond to one phoneme, such as double letters indi-
cating a long sound. The splitting of words into fragments is thus rather unproblematic for speech
recognition applications that need to reconstruct words from fragments and spell the words
correctly.

However, foreign words, which are common especially in news data, are more problematic. In
this work, we have utilized software to automatically produce satisfactory pronunciations for for-
eign names, and to expand numbers and abbreviations to complete written forms.4 The reference
transcriptions are also processed by the program, so currently foreign words are spelled as they
would most likely be pronounced, and we leave it to a future version of our system to fully cope
with the orthography.

2.3. Performance measures

2.3.1. Cross-entropy and perplexity
Because running extensive speech recognition tests to analyze the effect of all language model

parameters takes too much time, it is common to first measure the language modeling accuracy
for text data. This is often done by computing the probability of independent test data given
by the model, or derivative measures such as cross-entropy and perplexity (Chen and Goodman,
3 The audio version of the book Syntymättömien sukupolvien Eurooppa by Eero Paloheimo was kindly provided by the
Finnish Federation of the Visually Impaired. In the near future, the book will be available in the Finnish language
bank.
4 We are grateful to Nicholas Volk from the University of Helsinki for kindly providing the software: http://

www.ling.helsinki.fi/suopuhe/lavennin/.

http://www.ling.helsinki.fi/suopuhe/lavennin/
http://www.ling.helsinki.fi/suopuhe/lavennin/
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1999). It is important to notice that, if the language models operate on different units, such as dif-
ferent fragment inventories, cross-entropy and perplexity must be computed over a common sym-
bol set, such as words for example, to allow for a fair comparison. See Section 3.6 for more
details.

2.3.2. Recognition error rates
It is well known that a decrease in cross-entropy (or perplexity) does not necessarily lead to bet-

ter recognition performance, so main conclusions should be based on the quality of the recognizer
output. In speech recognition, the conventional error measure is the word error rate (WER),
which is the proportion of all the deleted, added, and substituted words to the total number of
words in the reference transcript. The WER is usually applied independent of the application
for which the speech recognition is intended, although it obviously assumes that all the deletion,
addition, and substitution errors are equally significant.

An example of more application-oriented recognition error measures is term error rate (TER).
It is more suitable for measuring the quality of speech transcripts in speech retrieval applications
(Johnson et al., 1999), because it concentrates on the more important content words. For dicta-
tion applications, the direct performance measure would be letter error rate (LER), because it best
resembles the number of editing operations required to manually correct the text. In Finnish, the
phoneme error rate (PHER) is close to LER as the letters in the written form of the words cor-
respond almost directly to phonemes.

If the recognition is based on fragments of words, it is naturally possible to define an error rate
for those units. However, if the evaluation concerns specifically the different ways of defining the
fragments, it would not make sense to have separate measures for all of them. In this work, we use
WER and PHER, but analyze mainly the latter which has a finer resolution than WER. Especially
in Finnish, WER is perhaps not the most descriptive measure, since the words are often long, and
making a tiny error in one of the suffixes of a long word renders the whole word erroneous.
3. Language modeling with data-driven units

In this section, we propose to solve the problem of large word vocabularies by producing a lex-
icon of word fragments and estimating n-gram language models over these fragments instead of
entire words. Our algorithm learns a set of word fragments from a large text corpus or a corpus
vocabulary in an unsupervised manner, and utilizes a model that is based on the MDL principle.
The algorithm has obvious merits as it is not language-dependent and it relies on a model with a
principled formulation, which takes the complexity of the model into account in addition to the
likelihood of the data.5 Furthermore, any word form can be constructed, which implies a 0% OOV
rate for the model.

The word fragments produced by this algorithm will be referred to as statistical morphs. The
choice of term reflects that the algorithm utilizes statistical criteria in selecting fragments into
the lexicon. Moreover, when a word form is built by a concatenation of fragments, the boundaries
5 Venkataraman (2001) exemplifies a maximum likelihood (ML) approach to word segmentation of transcribed speech.
In ML estimation, the complexity of the model is not taken into account.
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between the fragments frequently coincide with morpheme boundaries. The term morph is used in
linguistics to denote a realization of a morpheme, which is the smallest meaningful unit of lan-
guage. Morphs can be realizations of the same morpheme, e.g., English �city� and �citi� (in
�citi+es�), or the suffixes �-ssa� and �-ssä� in Finnish (having roughly the same meaning as the
English preposition �in�). Our algorithm does not, however, discover which morphs are realiza-
tions of the same morpheme.

To make comparisons, we have also constructed a recognition lexicon consisting of grammat-
ical morphs. These morphs were produced with the help of software for automatic morphological
analysis, based on a hand-made lexicon and rule-set. Additionally, we have tested traditional word
lexicons. In these models, OOV words are problematic for different reasons. In the model based on
grammatical morphs, some words are OOV, because they lack a morphological analysis in the
hand-made description. In a model based on words, the lexicon can only hold a limited number
of word forms. Thus, some words in the training corpus are left out and there will always be some
perfectly valid word forms that were never observed in the available corpus. We suggest a simplis-
tic solution to this problem by including all individual phonemes in the lexicon as word fragments
allowing any OOV word to be composed of a concatenation of phonemes.

3.1. Statistical morphs

The original version of the algorithm for discovering statistical morphs was presented by Creutz
and Lagus (2002), and it was called the Recursive MDL algorithm. The name reflects properties of
the search heuristics and the model structure.6 The algorithm, here slightly modified, learns a lex-
icon of morphs in an unsupervised manner from the same corpus that is used for training n-gram
language models. The morph lexicon is constructed so that it is possible to form any word in the
corpus by concatenating some morphs. We aim at finding an optimal lexicon and segmentation,
i.e., a concise set of morphs giving a concise representation for the corpus. The source code for the
algorithm is public (Creutz and Lagus, 2005).

3.1.1. Morph segmentation model
Following the MDL principle (Rissanen, 1989), the idea is to find an optimal encoding of a data

set. That is, on the one hand, we choose a model and encode its parameters. On the other hand,
we encode the data conditioned on the model. The optimal encoding is such that it gives the
shortest total length, L(x,h), of the code of the data, x, together with the code of the model
parameters, h
6 Ar
argmin
h

Lðx; hÞ ¼ argmin
h
½LðxjhÞ þ LðhÞ�: ð1Þ
To be more concrete, in our case the data consist of a corpus or list of unsegmented words. The
model is a set of unique morphs or a morph lexicon, where each morph is a string of characters and
has a particular probability of occurrence. Now, each word in the corpus can be rewritten as a
sequence of morph tokens. This can be thought of as encoding the corpus as a sequence of morph
pointers, which point to entries in the morph lexicon. Our aim is to find the combination of a
gamon et al. (2004) propose another kind of recursive MDL-based algorithm for segmentation of words.
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concise lexicon together with a concise representation of the corpus that yields the shortest total
code length.

In an imagined scenario, we have a sending and receiving party. The sender is to transmit
data (the corpus) to the receiver using the shortest possible code. Both sender and receiver
are supposed to share some common knowledge, so that the receiver is able to decode the code
used by the sender. Here, we assume that the sender first encodes the lexicon, which consists of
the morphs spelled out. To spell out a morph there is a unique code for every character in the
alphabet. The code length for each character a is derived from its probability P(a). We thus as-
sume that there is a given probability distribution over the characters in the alphabet and a code
for each character, which both parties have knowledge of. The code length of the entire lexicon
is then
LðlexiconÞ ¼
XM
j¼1

XlengthðljÞ

k¼1
� log PðajkÞ; ð2Þ
where j runs over all morphs lj in the lexicon, which contains a total number of M morphs. The
index k runs over the characters ajk in each morph lj. The code length of an individual character is
the negative logarithm of its probability. (All logarithms in this section have base 2, which means
that code lengths are measured in number of bits.) To be able to distinguish where one morph
ends and the next begins, every morph is assumed to end in a morph boundary character, which
is part of the alphabet. Finally, the end of the lexicon is marked by appending an additional
morph boundary character.

Next, the probability distribution of the morphs in the lexicon is transmitted. This probability
distribution is used for creating codes for the morphs and is needed when the corpus is encoded
(see Eq. (6)). The probabilities are estimated from the proposed segmentation of the corpus, such
that the probability of each morph is its frequency (number of occurrences) in the corpus divided
by the total number of morphs in the corpus. We denote the total number of morphs in the corpus
by N, which is a token count, since the same morph may naturally occur many times in the seg-
mented corpus. In contrast, the number of morphs in the lexicon, M, is a type count, since the
lexicon contains no two identical morphs. In order to avoid sending floating-point numbers,
which have to be truncated to some precision, the sender first encodes the total number of mor-
phs, N, and then the frequencies of the M distinct morphs. This means that only positive integers
need to be encoded. The receiver can compute the probability of a morph by dividing its
frequency by the total number of morphs. The value of N can be encoded using the following
number of bits (Rissanen, 1989, p. 34):
LðNÞ � log cþ logN þ log logN þ log log logN þ � � � ; ð3Þ
where the sum includes all positive iterates, and c is a constant, about 2.865. The formula for L(N)
gives a code length for any positive integer and is related to the probability distribution 2�L(N + 1),
which Rissanen calls a universal prior for non-negative integers.

The M individual morph frequencies could be encoded in the same way, but there exists a
more compact code. As there are N�1

M�1
� �

possibilities of choosing M positive integers (the fre-
quencies) that sum up to N, approximately the following code length applies (Rissanen, 1989,
pp. 35–37):
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Lðmorph frequenciesÞ ¼ log
N � 1

M � 1

� �
¼ log

ðN � 1Þ!
ðM � 1Þ!ðN �MÞ! : ð4Þ
Note that Stirling�s approximation can be applied for large factorials: n! � ðn=eÞn
ffiffiffiffiffiffiffiffi
2np
p

.
One way to derive Eq. (4) is to imagine that the N morph tokens are sorted into alphabetical

order and each morph is represented by a binary digit. Since some morphs occur more than once,
there will be sequences of several identical morphs in a row. Now, initialize all N bits to zero.
Next, every location, where the morph changes, is switched to a one, whereas every location,
where the morph is identical to the previous morph, is left untouched. There are N

M

� �
possibilities

of choosingM bits to switch in a string of N bits. However, as the value of the first bit is known to
be one, it can be omitted, which leaves us with N�1

M�1
� �

possible binary strings. These strings can be
regarded as binary integers and ordered by magnitude. In the coding scheme, it is sufficient to tell
which out of the N�1

M�1
� �

strings is the actual one. Thus, the binary string itself is never transmitted.
At this stage the entire model has been encoded using the following code length:
LðhÞ ¼ LðlexiconÞ þ LðNÞ þ Lðmorph frequenciesÞ: ð5Þ
The code length of the corpus (the data) is given by
LðxjhÞ ¼
XN
i¼1
� log PðlijhÞ; ð6Þ
where the corpus contains N morph tokens; li is the ith token; and P(li|h) is the probability of
that morph, which can be calculated from the morph frequencies as described above. The length
of each pointer is the negative logarithm of the probability of the morph it represents. Thus, fre-
quently occurring morphs have shorter codes while rare morphs have longer codes. This implies
that there is a tendency for frequent substrings of words to be selected as morphs, because they
can be coded efficiently as a whole, whereas rare substrings are better coded in parts, as sequences
of more common substrings.
3.1.2. Discussion of the formulation of the model
We have chosen to formulate the model in an MDL framework, because we find the interpre-

tation offered by this framework instructive and rather intuitive. The task is to code, or compress,
information into the smallest possible number of bits. This goal of minimizing the required stor-
age capacity has practical implications, which are familiar to most people: Computer memory and
disk space are limited and so is the capacity of the human memory. Saving storage capacity is thus
valuable. In this respect, our model resembles text compression algorithms, which have also been
proposed for word segmentation (e.g., Teahan et al., 2000).

However, the model could as well be expressed in a probabilistic, or Bayesian, framework. In-
stead of finding the parameter values that minimize the overall code length, the parameter values
would be chosen that maximize the overall probability of the model and the data given the model.
This is called MAP estimation. Conveniently, MDL and MAP are equivalent and produce the
same result, as is demonstrated, e.g., in Chen (1996). A code length, L(z), is transformed to the
probability P(z) through the simple formula: P(z) = 2�L(z). The sums of code lengths in Eqs.
(1), (2), (5), and (6) can be rewritten as products of probabilities.
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A model resembling the current one is expressed in a MAP framework in Creutz (2003). There,
explicit prior distributions for morph length and morph frequency are utilized. As the beneficial
effect of the priors diminishes when large training corpora are used (as is now the case), a simpler
scheme was judged sufficient for the current work.

3.1.3. Search heuristics
The search algorithm utilizes a greedy search, where each word in the corpus is initially a morph

of its own. Different morph segmentations are proposed and the segmentation yielding the short-
est code length is selected. The procedure continues by modifying the segmentation, until no sig-
nificant improvement is obtained.

The MDL framework is used as a theoretical basis for our model. Our intention is not to build
real encoders and decoders. Therefore, in practice some minor simplifications to the overall code
length as expressed in Section 3.1.1 are possible. As it is important to know the difference in code
length between different segmentations, the absolute value is not crucial. The contribution of L(N)
in Eq. (3) is insignificant and is left out. We have also used a uniform distribution for the char-
acters in the alphabet (see Eq. (2)), a solution chosen due to its simplicity.7

The search algorithm makes use of a data structure, where each distinct word form in the cor-
pus has its own binary splitting tree. Fig. 1 shows the hypothetical splitting trees of the English
words �reopened� and �openminded�. The leaf nodes of the structure are unsplit and they represent
morphs that are present in the morph lexicon. The leaves are the only nodes that contribute to the
overall code length of the model, whereas the higher-level nodes are used solely in the search. Each
node is associated with an occurrence count indicating the number of times it occurs in the corpus.
The occurrence count of a node always equals the sum of the counts of its parents. For instance,
in Fig. 1 the count of the morph �open� would equal the sum of the counts of �reopen� and
�openminded�.

During the search process, modifications to the current morph segmentation are carried out
through the operation resplitnode (see Algorithm 1). All distinct word forms in the corpus
are sorted into a random order and each word in turn is fed to resplitnode, which produces
a binary splitting tree for that word. First, the word as a whole is considered as a morph to be
added to the lexicon. Then, every possible split of the word in two substrings is evaluated. The
split (or no split) yielding the lowest code length is selected. In case of a split, splitting of the
two parts continues recursively and stops when no more gains in overall code length can be
7 Later experiments, where character probabilities were estimated from the corpus, have produced similar morph
lexicons and segmentations, and the resulting n-gram models did not perform significantly better or worse when cross-
entropies were calculated for different n-gram orders on two held-out test sets.
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obtained by splitting a node into smaller parts. After all words have been processed once, they are
again shuffled by random, and each word is reprocessed using resplitnode. This procedure is
repeated until the overall code length of the model and corpus does not decrease significantly from
one epoch to the next.

Every word is processed once in every epoch, but due to the random shuffling, the order in
which the words are processed varies from one epoch to the next. It would be possible to utilize
a deterministic approach, where all words would be processed in a predefined order, but the sto-
chastic approach (random shuffling) was preferred, because deterministic approaches were sus-
pected to cause unforeseen bias. If one were to employ a deterministic approach, it seems
reasonable to sort the words in order of increasing or decreasing length, but even so, words of
the same length ought to be ordered somehow, and for this purpose random shuffling seems much
less prone to bias.

However, the stochastic nature of the algorithm means that the outcome depends on the series
of random numbers produced by the random generator. The effect of this indeterminism was stud-
ied by running the morph segmentation algorithm with 11 different random seeds. For each out-
come, n-gram language models were trained as described in Sections 3.1.4 and 3.5. The language
models were tested as described in Section 3.6 on two different test sets. It was observed that for
the n-gram orders 2, 3, and 4, the variation in cross-entropy due to different random seeds was
always within the very small range of ±0.01 bits. Therefore, we found it sufficient to use only
the outcome of the first of the 11 runs in the speech recognition experiments.

Algorithm 1 resplitnote(node)
Require: node corresponds to an entire word or a substring of a word

//REMOVE THE CURRENT REPRESENTATION OF THE NODE//
if node is present in the data structure then
for all nodes m in subtree rooted at node do

decrease count(m) by count (node)
if m is a leaf node, i.e., a morph then
decrease L(x|h) and L(morph frequencies) accordingly

if count(m) = 0 then
remove m from the data structure
subtract contribution of m from L(lexicon) if m is a leaf node

//FIRST, TRY WITH THE NODE AS A MORPH OF ITS OWN//
restore node with count(node) into the data structure as a leaf node
increase L(x|h) and L(morph frequencies) accordingly
add contribution of node to L(lexicon)
bestSolution [L(x,h),node]

//THEN TRY EVERY SPLIT OF THE NODE INTO TWO SUBSTRINGS//
subtract contribution of node from L(x,h),
but leave node in data structure
store current L(x,h) and data structure
for all substrings pre and suf such that pre � suf = node do
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for subnode in [pre, suf] do
if subnode is present in the data structure then

for all nodes m in the subtree rooted at subnode do
increase count(m) by count (node)
increase L(x|h) and L(morph frequencies) if m is a leaf node

else
add subnode with count (node) into the data structure
increase L(x|h) and L(morph frequencies) accordingly
add contribution of subnode to L(lexicon)

if L(x,h) < code length stored in bestSolution then
bestSolution [L(x,h),pre,suf]

restore stored data structure and L(x,h)

//SELECT THE BEST SPLIT OR NO SPLIT//
select the split (or no split) yielding bestSolution
update the data structure and L(x,h) accordingly
if a split was selected, such that pre � suf = node then
mark node as a parent node of pre and suf
//PROCEED BY SPLITTING RECURSIVELY//
resplitnode(pre)
resplitnode(suf)
3.1.4. Language modeling with statistical morphs
The flow of operations for estimating a morph-based n-gram model is shown in Fig. 2. A corpus

vocabulary is extracted from a text corpus, such that every distinct word form in the corpus occurs
once in the vocabulary. This corpus vocabulary is used as input to the morph segmentation algo-
rithm, which produces a morph lexicon, where every morph has a particular probability (see Eqs.
(3)–(6)).

The morph segmentation algorithm also produces a segmentation of the words in the corpus
vocabulary. However, this segmentation is not used as such, but the Viterbi algorithm is applied
in order to produce the final morph segmentation of the words in the corpus. The Viterbi algo-
rithm finds the most probable segmentation of a word given the morph lexicon and the morph
Morph lexicon
+ probabilities

word forms
Distinct

Text with words
segmented into

morphs model
Language

Text corpus

Train
ngramssegmentation

Viterbi

segmentation
MorphExtract

vocabulary

Fig. 2. The steps in the process of estimating a language model based on statistical morphs from a text corpus.
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probabilities. The Viterbi search advances from left to right, or sequentially, in contrast to the
recursive search heuristics described above. Therefore, the final segmentation differs, but only
slightly, from the segmentation produced by recursive splitting. The rationale for utilizing one
search algorithm when estimating the segmentation model and another one when using it is that
the recursive search avoids local minima better than the Viterbi search, but once a model is esti-
mated, the Viterbi algorithm can easily provide segmentations for new word forms that were not
present in the training data. This means that it is possible to train morph segmentation models on
only part of the words in the text corpus and yet obtain a morph segmentation for all words.8

In this work, two different sets of statistical morphs were trained. A morph lexicon containing
66,000 morphs was produced by extracting a corpus vocabulary containing all words in the cor-
pus. Another smaller morph lexicon (26,000 morphs) was obtained by training the algorithm on a
corpus vocabulary where word forms occurring less than three times in the corpus were filtered
out. This approach is motivated by the fact that rare word forms might be noise (such as misspell-
ings and foreign words) and their removal might increase the robustness of the algorithm.

Once the corpus has been segmented into morphs, n-gram language models are estimated over
the morph sequences using Kneser-Ney smoothing. Word boundaries need to be modeled explic-
itly, as only part of the transitions between morphs occur at word boundaries. In our solution,
word boundaries are realized as separate units, and occur in the n-grams as morphs among the
others.

Note that the extraction of corpus vocabularies differs from the approach used in Creutz and
Lagus (2002), where the whole corpus was used as training data for the algorithm. In the original
approach, the amount of training data was much larger, because many word forms naturally oc-
curred many times. Large training corpora lead to large morph lexicons, since the algorithm needs
to find a balance between the two in its attempt to obtain the globally most concise model. By
choosing only one occurrence of every word form as training data, the optimal balance occurs
at a smaller morph lexicon, while still preserving the ability to recognize good morphs, which
are common strings that occur in words in different combinations with other morphs.

It is possible to reduce the size of the morph lexicon also when training the model on a corpus
instead of a corpus vocabulary. The rarest word forms can be filtered out from the corpus and the
frequencies of the remaining morphs can be lowered, such that their relative weight in the corpus
remains approximately the same as before. By filtering out words occurring less than 20 times in
the corpus the resulting lexicon contained 35,000 morphs, which is comparable to the 26,000
morph lexicon obtained when a corpus vocabulary was used in the training. When n-gram lan-
guage models were trained using both approaches, the two performed as well in terms of cross-
entropy calculated on two separate test sets. Better results were not obtained for larger morph
lexicons.

However, when comparing the obtained segmentations to a grammatical morph segmentation
(see Section 3.2), the segments trained on the corpus vocabulary clearly matched the grammatical
8 It is possible, although this occurs extremely rarely in our experiments, that there is no Viterbi parse in the model of
a word form not observed in the training data. This might happen, e.g., if a word contains a new letter, which does not
occur in any morph in the model. To make sure that every word obtains a segmentation, every individual letter, which
does not already exists as a morph in the lexicon, can be suggested as a morph by the Viterbi search with a very low
probability.
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morphs better than the segments trained on the corpus itself. It sounds desirable to model lan-
guage based on units with a close correspondence to actual morphemes, i.e., units associated with
a meaning. Therefore, the n-gram language models used in our speech recognition experiments are
based on morphs trained using a corpus vocabulary.

3.2. Grammatical morphs

To obtain a segmentation of words into grammatical morphs, each word form was run through
a morphological analyzer9 based on the two-level morphology of Koskenniemi (1983). The output
of the analyzer consists of the base form of the word together with grammatical tags indicating,
e.g., part-of-speech, number and case. Boundaries between the constituents of compound words
are also marked. We have created a rule set that processes the output of the analyzer and produces
a grammatical morph segmentation of the words in the corpus. The segmentation rules are de-
rived from the morphological description for Finnish given by Hakulinen (1979).

Words not recognized by the morphological analyzer are treated as OOV words and split into
individual phonemes, so that it is possible to construct any word form by a concatenation of pho-
nemes. Such words make up 4.2% of all the words in the training corpus, and 0.3% and 3.8% of
the words in the two test sets (BOOK and NEWS, respectively).

The n-gram probabilities are estimated over the segmented training corpus, and as in the case of
statistical morphs, word boundaries are modeled explicitly as separate units.

A slightly newer version of the grammatical morph segmentation is called Hutmegs (Helsinki
University of Technology Morphological Evaluation Gold Standard). Hutmegs is publicly avail-
able10 for research purposes (Creutz and Lindén, 2004). For full functionality, an inexpensive li-
cense must additionally be purchased from Lingsoft, Inc.

3.3. Words

Vocabularies containing entire word forms have also been tested. The number of possible Finn-
ish word forms is very high. Since no vocabulary can hold an unlimited number of words, we have
selected the most common words in the training corpus to make up the vocabulary. Instead of
discarding the remaining OOV words, they are split into phonemes. The n-gram probabilities
are estimated as usual over the training corpus, where the rare word forms have been split into
phonemes.

Word breaks are modeled so that we have two variants of each phoneme, one for occurrences in
the beginning or middle of a word and one for occurrences at the end of a word. Each unsplit
word is assumed implicitly to end in a word break.

Even if we choose a huge vocabulary of the 410,000 most common words in the training corpus,
5.0% of all words are OOV and need to be split. The OOV rate of the test sets BOOK and NEWS are
7.3% and 5.0%, respectively. We have also chosen to experiment with a smaller vocabulary con-
taining 69,000 words in order to have a vocabulary of approximately the same size for statistical
9 Licensed from Lingsoft, Inc.: http://www.lingsoft.fi/.
10 URL: http://www.cis.hut.fi/projects/morpho/.

http://www.lingsoft.fi/
http://www.cis.hut.fi/projects/morpho/
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morphs (66,000), grammatical morphs (79,000), and words. For the smaller word vocabulary, the
OOV rates are as follows: 15.1% (training), 19.9% (test BOOK), 13.1% (test NEWS).

The splitting of OOV words into phonemes allows for a direct comparison with other language
models that have an OOV-rate of 0%. It is thus convenient in two ways: Firstly, we achieve a the-
oretical 100% coverage of any possible word (and non-word) of the language. Secondly, we can
make fair comparisons with other language models that work in the same way, without having to
weight two measures against each other in the comparison (i.e., cross-entropy or perplexity
against the OOV-rate). This, of course, presupposes that the method for achieving a 0% OOV
is not worse than the standard method involving OOV words. Therefore, we compared the effect
of splitting OOV words into phonemes with the effect of leaving them out (or actually, replacing
them with a special OOV symbol). This comparison of speech recognition accuracy was per-
formed only on the 410,000 word model, and both approaches performed on roughly equal level
(see Section 5.3).

3.4. Example

Table 1 shows the splittings of the same Finnish example sentence (‘‘Tuore-mehuasema aloitti
maanantaina omenamehun puristamisen Pyynikillä.’’) using the six different lexicon configurations.
The statistical morph segmentations differ from each other in the larger (66k) and the smaller
(26k) lexicon. In the larger lexicon the two morphemes �tuore� (fresh) and �mehu� (juice) occur to-
gether as �tuoremehu�. The place name ‘‘Pyynikki’’ is segmented as �pyynik� (in front of the ending
�-illä�) in the large lexicon, whereas it is split into the nonsense �pyy+nik� by the smaller lexicon. In
the grammatical segmentation ‘‘Pyynikki’’ is unknown to the morphological analyzer and has
been split into phonemes. The word for ‘‘juice factory’’ (�tuoremehuasema�) is rare and therefore
Table 1
A sentence of the training corpus: ‘‘Tuoremehuasema aloitti maanantaina omenamehun puristamisen Pyynikillä.’’

segmented using different lexicons

Model Segmentation

Statist. morphs (26k) tuore mehu asema # al oitti # maanantai na # omena mehu n # purista misen # pyy nik
illä #

Statist. morphs (66k) tuoremehu asema # aloitti # maanantai na # omena mehu n # purista misen # pyynik illä
#

Gramm. morphs (79k) tuore mehu asema # aloitt i # maanantai na # omena mehu n # purista mise n # p yy n i
k i ll ä #

Words (69k) t u o r e m e h u a s e m a# aloitti# maanantaina# o m e n a m e h u n# p u r i s t a m i s e
n# pyynikillä#

Words (410k) t u o r e m e h u a s e m a# aloitti# maanantaina# omenamehun# puristamisen#
pyynikillä#

Words-OOV (410k) OOV# aloitti# maanantaina# omenamehun# puristamisen# pyynikillä#

Literal translation fresh juice station # start -ed # Monday on # apple juice of # press -ing # Pyynikki in #

(An English translation reads: ‘‘On Monday a juice factory started to press apple juice in Pyynikki.’’) The word fragments
are separated by space. Word breaks are indicated by a number sign (#). In case of the word models, the word breaks
are part of other fragments, otherwise they are units of their own.
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it is an OOV in all word models. In the word models 69k and 410k, it has been split into pho-
nemes. In the words-OOV (410k) model it has been replaced by an OOV symbol.
3.5. Kneser-Ney smoothing

The n-gram probabilities were estimated from the corpus for each of the segmentation ap-
proaches. Modified Kneser-Ney smoothing (Chen and Goodman, 1999) was utilized due to its
favorable behavior, not only on low-order, but also on high-order n-grams. The estimation of
the n-gram probabilities was carried out using the SRI Language Modeling Toolkit (Stolcke,
2002).

3.6. Cross-entropy comparisons

The performance evaluation of a language model is usually based on the probability the lan-
guage model assigns for an independent test text. Because the probability as such depends
strongly on the length of the text, derivative measures normalized over words are often used,
the most common being cross-entropy and perplexity.

Given the text data T consisting of WT words and a language model M, the cross-entropy
HM(T) of the model on the data is given by
HMðT Þ ¼ �
1

W T
log2P ðT jMÞ; ð7Þ
which can be interpreted as the number of bits needed to encode each word on average (Chen and
Goodman, 1999). The data probability P(T|M) is often decomposed into probabilities of words:
PðT jMÞ ¼

QW T
i¼1Pðwijwi�1; . . . ;w1;MÞ, and in n-gram models only a few preceding words are con-

sidered instead of the whole history (wi� 1, . . .,w1). Note, however, that Eq. (7) does not assume
that the underlying model defines probabilities on words, as long as the model gives the probabil-
ity for the whole test text. Thus, even if we compare cross-entropies of models that have different
word fragment sets, the cross-entropy comparisons are fair.

Perplexity is very closely related to cross-entropy. It is defined as
PerpMðT Þ ¼
YW T

i¼1
P ðwijwi�1; . . . ;w1;MÞ

 !� 1
W T

ð8Þ
and it is easy to see that the relation to cross-entropy is given by
PerpMðT Þ ¼ 2HMðT Þ: ð9Þ

It has been suggested that cross-entropy predicts the word error rates better than perplexity
(Goodman, 2001). Thus, we have decided to report cross-entropies instead of perplexities in
the experiments.

We tested n-gram models of order 2–7 and the results are shown in Fig. 3. The reported model
size refers to the amount of memory the language model occupies in the memory of the decoder of
our speech recognizer. The models are stored in a tree structure similar to the structure presented
by Whittaker and Raj (2001), but without quantization. The word model without phonemes is
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omitted from the entropy comparison, because the OOV words would make the comparison
meaningless.

The main notion from the results in Fig. 3 is that the statistical and grammatical morph models
seem to be more effective with respect to model sizes when the order of the n-gram model is small.
On higher-order models, the differences even out. We discuss the entropy results more in Section
5.3 together with the speech recognition results.
4. Speech recognition system

4.1. Acoustic modeling

In this section, we describe the acoustic models used in the experiments. Since our emphasis is
on the language modeling, the acoustic part is not discussed in great detail. The main difference to
the corresponding English LVCSR systems, in addition to the Finnish phonemes, is the utilization
of monophone models embedded with explicit models for the phone duration.

4.1.1. Features and phoneme models
The acoustic features in our speech recognition system are based on 12 mel-frequency ceps-

tral coefficients and power. In addition, first-order derivatives are computed for each feature
yielding a 26-dimensional feature vector. The acoustic phoneme models are traditional hidden
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Markov models (HMMs) with three states in a left-to-right topology. The emission probability
densities are modeled by Gaussian mixtures (10 kernels per mixture) with diagonal covariance
matrices.

The feature space is transformed linearly with a global matrix. The transformation is optimized
in a maximum likelihood manner (Gales, 1999) to minimize the correlation between the feature
components in each phoneme class. The acoustic models are initialized with Self-Organizing maps
and then refined with Viterbi training (Kurimo, 1997).

Because our decoder does not handle acoustic phoneme contexts across units in the lexicon, and
we study recognition based on different word fragments, we have used acoustic monophone mod-
els instead of triphone models to make the comparisons fair. In total, 44 phoneme models were
used. Most of the Finnish phonemes have a short and a long variant, and we used separate models
for them.

4.1.2. Phone duration models
Phone durations play a significant part in the comprehension of Finnish speech. There exist

many word pairs which are distinguishable mainly by the duration of their phones. It is therefore
necessary to use duration information to improve the speech recognition. Unfortunately, the tra-
ditional HMM-based acoustic models are rather poor at modeling phone durations, because of
the intrinsic geometric state duration distributions (e.g., Pylkkönen and Kurimo, 2004).

Gamma distributions have been suggested as good models for state durations but this breaks
the Markov property, which is heavily utilized in HMM algorithms, such as Baum-Welch and
Viterbi searches. Modifying the algorithms to take these explicit duration distributions into ac-
count seriously degrades their efficiency. Several approaches have been suggested to overcome
these problems (e.g., Russell and Cook, 1987; Bonafonte et al., 1993). In our preliminary testings,
we have concluded that a simple post-processor approach proposed by Juang et al. (1985) pro-
vides a good trade-off between accuracy and efficiency for our purposes.

The post-processor duration model uses the output of the Viterbi alignment and adds a penalty
term depending on the state occupancy durations in the alignment. This way the different align-
ments can be ranked using better state duration models than the standard HMMs offer. The aug-
mentation of the likelihood obtained from the Viterbi alignment can be formulated as
log f̂ ¼ log f þ a
XN
j¼1

log djðsjÞ; ð10Þ
where f denotes the original likelihood score. In the augmentation term, a is an empirical scaling
factor, N is the number of distinct HMM states through which the best path traversed, dj are
the duration probability distribution functions of those states, and sj are the time spent in each
state.

Although there is a mismatch between the normal Viterbi alignment and the true optimal path
in the explicit state duration models, the post-processor performs very well in practice. Due to the
operation of the decoder, a large number of competing paths are ranked using the better state
duration models, guiding the decoder to better results. The augmentation has a negligible impact
on the recognition efficiency, making the post-processor model an interesting choice for integrat-
ing explicit state duration distributions into the HMMs.
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4.2. The decoder

In speech recognition systems based on the HMM framework, the final recognition result is
decided by the decoder. As the acoustic and language models give probabilities for HMM state
sequences, decoding is theoretically very simple: one just computes the probability of every pos-
sible HMM state sequence given the observed speech, and selects the most probable one. How-
ever, because the number of possible state sequences is astronomical even for short speech
signals, only a fraction of the sequences can be considered, and several different decoding ap-
proaches have been presented in the literature. A good overview of different techniques has been
presented by Aubert (2002).

4.2.1. Overview of the approach
The one-pass decoder used in the experiments was originally developed along the principles of

Ducoder (Willett et al., 2000). The main idea is that the language model is not built in the recog-
nition network. Instead, the search process consists of two parts. The first part (local acoustic
search) computes the acoustically best words (or word fragments in our case) starting from a given
frame. The second part (hypothesis search) controls the local search and selects the acoustically
best word fragments for certain frames. It combines the acoustically best fragments to longer
word sequences (referred to as hypotheses), adds language model probabilities, and stores the most
probable hypotheses in frame-wise stacks. Various pruning methods can be used to discard
improbable hypotheses. The main advantage of separating the acoustic search and language mod-
eling is that complex language models can be used easily without affecting the acoustic search.

While many decoders use a lexicon containing a collection of the most frequent words, our lex-
icon mostly contains word fragments. Thus, a word break does not follow every fragment implic-
itly, and it has to be modeled in the lexicon and language model.

4.2.2. Local acoustic search
The task of the local acoustic search is to compute the acoustic probabilities for the most prob-

able word fragments starting from the given frame. In the HMM framework, a common practice
is to make the Viterbi approximation, and find only the most probable state sequence for each
word fragment (Rabiner, 1989). This can be done efficiently by combining all fragments into a
single big tree-shaped HMM, so that common prefixes of the state sequences are merged. Then
the Viterbi search algorithm can be used to compute the cumulative probability of the best path
to each state for each frame. After completing the search, every state corresponding to a last state
of a word fragment, gives the best alignment and best probability of the fragment ending at each
frame.

After the Viterbi search is completed, the results can be utilized to choose the best ending time
for each word fragment. Currently, the frame which has the best average log-probability per
frame is chosen. In addition, a few neighboring frames are used in the next stage to search for
the best location for fragment boundaries.

4.2.3. Stacks and hypotheses
The local search described above can be used to find the acoustically best word fragments start-

ing from a given frame, but since it considers only single fragments, several fragments must be
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combined to form longer hypotheses. The hypotheses are stored in frame-wise stacks, so that all
the hypotheses ending at a certain frame are stored in the corresponding stack. Initially, only the
first stack contains an empty hypothesis. Then, the decoder performs the local search to find the
acoustically best word fragments starting from the first frame. New hypotheses are generated by
copying the empty hypothesis and appending each fragment in turn to the hypothesis. The new
hypotheses are stored according to the ending times of the fragment. At this point, the language
model probabilities can also be taken into account, because when a fragment is appended to a
hypothesis, the language model history is fixed, and the probability of the hypothesis can be
updated.

Fig. 4 presents a simplified English example. The local acoustic search starts on frame t and the
two acoustically most promising fragments find and minded are found. The two hypotheses ending
at frame t are then expanded using the two fragments. This results in eight new hypotheses, as
versions with and without word breaks are considered for each hypothesis.

4.2.4. Pruning
The procedure described above generates an exponentially growing number of hypotheses un-

less the decoder discards all but the most probable hypotheses. Pruning is essential to make the
decoding feasible, but it is also a potential source for recognition errors. It is noteworthy that
the effect of the pruning on the recognition result is not always very intuitive. When recognition
experiments are made in order to improve some part of the recognition system, for example lan-
guage modeling, one has to consider the impact of the pruning techniques on the different meth-
ods tested. One method may benefit from looser pruning, while another one may be effective also
when tighter pruning is applied.

In our decoder, the search space of the local acoustic search is pruned using two standard meth-
ods. First, all paths falling outside a log-probability beam, B, are discarded, and the number of
active paths, S, is limited during the Viterbi search. Additionally, after the best ending times
and the corresponding log-probabilities have been computed for each word fragments, only the
F best fragments are utilized.

Pruning is also needed in the hypothesis search. Willett et al. (2000) present various pruning
methods, but our decoder prunes hypotheses only within one stack, as it is not straightforward
to compare hypotheses ending at different frames. In our decoder, the size of each stack is limited
to H hypotheses. In addition, hypotheses which have the L last words in common are pruned so
that only the best is retained. Theoretically, the value of L should depend on the language model,
because this pruning of the hypotheses should be made only when it is sure that the language
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model probabilities cannot change the order of the hypotheses in future. However, all pruning
parameters affect each other and the value L = 2 has turned out to function well in combination
with the other pruning parameters H = 10, F = 100 and S = 3000. The beam-width B has varied
between 40 and 85.
5. Recognition experiments

5.1. Setup

The recognition system was evaluated in both the BOOK and the NEWS tasks (see Section 2). For
each of the lexicon types (statistical morphs, grammatical morphs, words, and words-OOV), and
for each n-gram model (orders 3–5), development data were used to tune the weight between
acoustic and language models. The weight was tuned to optimize the phoneme error rate in the
development data. We did not study n-gram models of order 6 or 7 in the recognition, because
of the high memory requirements.

When speech recognition experiments are done in order to evaluate and compare different ways
to construct the lexicon, it is important to experiment with different decoder pruning settings to
get a clear picture of how the methods behave on different recognition speeds. The pruning set-
tings of the decoder may affect the models using a different type of lexicon differently and the opti-
mal setting may vary. For the recognition of the evaluation data, we used four different beam
pruning settings in the local acoustic search to study the performance on varying decoding speeds.
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Fig. 5. Phoneme error rates of the speech recognition experiments. The four points along each curve are the four
different beam pruning settings.



Table 2
Best phoneme error rates for each model (PHER), the percentage of word fragments consisting of a single phoneme in
the test data (Singles), and the average span in phonemes of the n-grams used (AvgSpan)

Model BOOK NEWS

PHER (%) Singles (%) AvgSpan (phon.) PHER (%) Singles (%) AvgSpan (phon.)

Statist. 66k, 4-gr. 4.21 1.2 12.8 4.84 1.8 13.5
Statist. 26k, 4-gr. 4.35 2.1 11.8 5.04 2.7 12.5
Gramm. 79k, 4-gr. 4.57 6.6 10.5 6.05 9.3 10.3
Words 410k, 5-gr. 6.14 12.0 22.9 5.50 9.6 25.7
Words 69k, 5-gr. 7.58 30.3 13.8 6.25 21.0 17.5
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5.2. Results and significance tests

Fig. 5 shows the best phoneme error versus real-time factor curves for different lexicons. Only
the curve of the best n-gram model (see Table 2) is plotted for each lexicon, and the four points
along the curve are the four pruning settings of the decoder. In Fig. 6, the corresponding word
error rates are presented. In Fig. 7, the phoneme error rates are shown again, but here the points
on the curve are the order of the n-gram model, and the horizontal axis shows the size of the lan-
guage models as described in Section 3.6. The least amount of pruning was used in the decoding.

Both tasks were divided into several independent segments before recognition in order to mea-
sure the statistical significance of the results. The BOOK task had 20 segments and the NEWS task 40
segments. The significance was evaluated with the Wilcoxon signed-rank test (Milton and Arnold,
1995) for paired data (level 0.05).
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Fig. 6. Word error rates of the speech recognition experiments. The four points along each curve are the four different
beam pruning settings.
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Fig. 7. Phoneme error rates and model sizes for different n-gram orders on the decoder settings with the least pruning.
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The most relevant significance results are the following: On the left graph in Fig. 5, the differ-
ence between the best word model and any of the morph models is significant, while the differences
between the three morph models are not significant. In the NEWS task (right side of Fig. 5), the best
results of the both statistical morph models are significantly better than the other models. The dif-
ference between the two statistical morph models is not significant.

5.3. Discussion of the results

The most interesting result is that the statistical morphs seem to provide a good basis for mod-
eling and recognition of Finnish. The entropy tests in Fig. 3 in Section 3.6 already suggested that
morph models are more efficient than word models with respect to memory consumption. Fur-
thermore, the same efficiency can also be seen in Fig. 7. Even the 3-gram statistical morph models
seem to outperform the higher-order word models in both tasks. It is also interesting to see that
the statistical morph model is not very sensitive to the number of morphs in the lexicon. While the
number of words considerably affects the performance of the word model, the two statistical
morph models of different sizes are consistently equal.

Results in Figs. 5 and 6 also provide a verification that modeling OOV words as sequences of
phonemes (Words 410k) does not degrade recognition performance in comparison to leaving
them out altogether (Words-OOV 410k). Both models achieve roughly the same error rates.

5.3.1. Why are the statistical morphs good?
But what is the reason for the good recognition performance of the statistical morphs? Fig. 3

showed that the 3-gram statistical morph model gives higher entropies than the 5-gram word
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model, but still it gives lower error rates. To rule out the possibility that the pruning methods used
by the decoder would cause the difference, we ran a few additional recognition tests in the NEWS

task, loosening various pruning settings further. Even so, the difference between the best statistical
morph model and word model remained. Also, as the acoustic phoneme models have been mon-
ophones in our tests, the acoustic probabilities of the hypotheses are the same for morphs and
words.

The exact reason for the difference is not clear, but one possibility is that statistical morph mod-
els offer a good balance between restricting the search space and modeling the rare words. In the
word models, very common words might be modeled better, but the rare long words are more
problematic. Modeling them phoneme by phoneme offers a huge number of acoustically similar
hypotheses, and the weak phoneme language model is poor at guessing the correct recognition
result. This hypothesis is partly supported by the number of single phonemes the splitting methods
need to use for the test data. There seems to be some correlation with the actual error rates regard-
less of the applied splitting method, as can be seen in Table 2.

Table 2 further shows that the error rate does not correlate with the average span of the n-gram
language models used. The span is calculated as the number of phonemes that are on average cov-
ered by an n-gram window in the test data, including word breaks as ‘‘phonemes’’. The best result
for the morph models were obtained using 4-grams, which span about 10–13 phonemes. The best
results for the word models were obtained using 5-grams spanning 14–26 phonemes. However,
there is no correlation between the span, i.e., the size of the prediction window, and error rate.
A correlation can only be traced within groups, when comparing morph models with each other,
or word models with each other. This observation is not explained by the different orders of n-
grams used for morphs and words. Thus, the selection of a good fragment inventory seems impor-
tant and the effects of a bad fragment inventory cannot be fully compensated by longer-range
n-grams despite the utilization of an efficient smoothing technique (Kneser-Ney).

5.3.2. The effect of the task
While the grammatical morphs seem to give good results in the BOOK task, their performance is

much worse in the NEWS task. This is most likely due to the many foreign names in the latter task.
The rule-based grammatical morphs cannot split these names properly, and the language model
has to resort to the single phonemes to build the names correctly.

The nature of the task also affects the word models and statistical morphs. When moving from
the BOOK to the NEWS task, the word models seem to improve, while the morph models seem to
degrade, even if the entropy results in Section 3 suggested that both word and morph models
would perform better in the NEWS task. This is partly explained by Table 2. The number of single
phonemes used by the statistical morph models increases in the NEWS task, while the correspond-
ing number for the word models decreases.
6. Conclusions

In this article, we have described and evaluated language models based on the segmentation of
text corpora into suitable word fragments by an unsupervised machine learning algorithm. We
have shown how such an automatically derived lexicon can be effectively used in language
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modeling and speech recognition for Finnish, which is a good example of agglutinative, highly
inflecting and compounding languages. Due to the huge amount of distinct word forms, the tra-
ditional methods based on full words are not very effective and it is not straightforward to train
efficient language models with good coverage of the language.

The entropy measurements and recognition experiments on two Finnish tasks gave good results.
To evaluate the modeling performance of these so-called statistical morphs, we additionally trained
n-grammodels for full words and rule-based grammatical morphs. By using statistical morph mod-
els instead of word models, significant relative error rate reductions of 31% and 12% were obtained
in two tasks. Also the grammatical morphs performed well in the BOOK task, but much worse in the
NEWS task, probably due to the larger number of foreign words not handled by the morphological
analyzer. In addition, the statistical morph models seemed to be robust with respect to the number
of morphs in the lexicon, and give good results already with lower-order n-gram models. This is
useful especially if the memory resources of the speech recognizers are limited.

As a final conclusion, it seems important to find a good balance between modeling the frequent
and rare words. Statistical morphs seem to provide a good basis for the recognition of Finnish
speech with n-gram models. How well it can be utilized in other language models remains to be
seen in future research.
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